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Chapter 1

Background and Introduction

1.1 Clinical Motivation

In the United States, liver cancer incidence is rising at a higher rate than any other

cancer type, increasing by 2-3% per year [1]. The most common form of liver cancer is

Hepatocellular Carcinoma (HCC), which comprises >90% of cases [2]. Despite advances

in clinical care, less than 30% of patients are eligible for curative surgical intervention and

the five-year survival rate for HCC remains below 20% [2, 3]. Overall, liver cancer is a

leading cause of cancer-related death, accounting for roughly 300,000 deaths in the United

States over the past two decades [4].

Liver cancer is associated with a poor prognosis due to the prevalence of advanced-

stage disease at diagnosis. The Barcelona Clinic Liver Cancer (BCLC) scoring system is

widely used to stratify HCC into five levels (0, A-D) based on morphological (number and

size of lesions) and functional (Child-Pugh score and bilirubin) parameters [5, 6]. Only

patients that have early stage (BCLC-A) HCC with 3 or fewer small lesions are eligible for

curative liver transplantation [7]. For intermediate and advanced stage HCC, locoregional

therapies are employed for tumor down-staging, bridge to transplantation, and palliative

care.

Transarterial Chemoembolization (TACE) is the preferred locoregional therapy for the

treatment of intermediate-stage HCC [8]. Conventional TACE involves the delivery of a

chemotherapy drug in Lipiodol, an ethiodized oil, to the tumor site. An embolic agent is

then injected into the tumor’s feeding vasculature to improve chemotherapeutic retention

and elicit tumor ischemia. TACE has been shown to prolong survival up to 5 years, though

the objective response rate is reported from 51-76 % [9–13]. TACE outcome variability is

partly attributed to insufficient intraprocedural assessment of embolization endpoints [14].
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Repeat TACE treatment is typically performed ‘on demand’ based on therapeutic re-

sponse, rather than at fixed intervals [8, 11, 15]. However, therapeutic efficacy cannot be

established until 4-6 weeks following the procedure, which may delay additional sessions

[8, 10, 16]. Therapeutic efficacy is assessed using contrast-enhanced computed tomography

(CT) or magnetic resonance imaging (MRI) and measured using the mRECIST criteria, as

shown in Table 1.1 [8, 17]. Earlier assessment is precluded by confounding imaging fea-

tures including lipiodol deposition for CT and inflammation on MRI [8, 18].

In clinical practice, sufficient embolization is qualitatively evidenced by contrast back-

flow on digital subtraction angiography (DSA). Efforts to standardize grading of progres-

sive embolization based on the appearance of antegrade flow and tumor blush have not

been widely adopted due to inter-reader variability [14, 19]. Quantitative measures, includ-

ing contrast time-to-peak and tumor blood supply time, have shown preliminary efficacy

[19, 20]. However, a drawback of angiography is the necessity for contrast injection, which

prevents continuous real-time imaging. Additionally, the field of view on DSA is limited to

the extent of contrast diffusion; as a result, tumor-feeding vessels may be missed in roughly

20% of cases [21].

Contrast-enhanced and power Doppler ultrasound modalities have also been considered

for early assessment of tumor response to TACE. Contrast-enhanced ultrasound (CEUS)

involves the application of a harmonic pulse to induce cavitation of an intravascular mi-

crobubble contrast, which yields enhancement of viable tumor. CEUS methods including

time-intensity analysis, morphological feature detection, and qualitative enhancement have

been proposed for TACE evaluation as early as 1-2 weeks post-treatment [18, 22]. Im-

mediate post-procedural evaluation is impaired by tumoral hyperenhancement induced by

trapped air bubbles, necrotic gas formation, and the deposition of drug-eluting beads (DEB)

used in DEB-TACE [18, 23, 24]. Non-contrast power Doppler has consequently been pro-

posed for immediate evaluation of blood flow in liver lesions, as power Doppler is less

susceptible to hyperenhancing artifacts and is not limited by contrast dose. Historically,

2



Response Qualification

Complete Response Complete disappearance of arterial enhancement in all lesions.

Partial Response At least 30% decrease in sum of diameters of enhancing lesions
from pre-treatment baseline.

Stable Disease Intermediate cases that do not qualify for PR or PD.

Progressive Disease At least 20% increase in sum of diameters of enhancing lesions
from pre-treatment baseline.

Table 1.1: mRECIST Classification

power Doppler evaluation of blood flow in liver lesions suffered from poor sensitivity to-

ward low velocity blood flow; however, the development of advanced methods for motion

compensation, high frame rate imaging, and filtering have aided in overcoming these bar-

riers [25, 26].

Prior research performed by Tierney et al.demonstrated that non-contrast power Doppler

can detect changes in blood flow induced by TACE [27]. This thesis builds on these find-

ings and presents two techniques to improve visualization of low velocity blood flow using

ultrasound. The clinical objective of this research is to establish the feasibility of using

non-contrast ultrasound during TACE procedures for immediate evaluation of therapeutic

response.

1.2 Fundamentals of Ultrasound Imaging

1.2.1 Transmission and Reception

Pulse-echo ultrasound imaging involves the transmission of an acoustic wave into the

body and subsequent reception of reflected echo signals, which are reconstructed to form

an image. Transmission and reception events are controlled by an ultrasound transducer,

which contains one or more piezoelectric elements arranged in a linear or curvilinear ge-

3



ometry. During transmission, the elements are excited in succession by a phased voltage

to achieve wavefront steering and focusing. The spherical wavefields produced by each

element combine to form a unified wavefront, as characterized by Huygen’s principle [28].

Reflected echoes arise due to acoustic impedance mismatches at region boundaries, as

well as from impedance inhomogeneities throughout a scattering medium. The size of

the scattering object (e.g. the scatterer) influences the scattering characteristics of an inci-

dent wavefront. Bodily tissues are primarily composed of acoustic scatterers that are much

smaller than the acoustic wavelength, which produce diffuse Rayleigh scattering. For in-

stance, blood is effectively modeled by a collection of sub-resolution scatterers. However,

some anatomical boundaries and structures, such as bone, yield strong specular reflections

[28]. The amplitude of the received echo signal represents the superposition of these nu-

merous scatterered echoes, which gives rise to the unique contrast and speckle texture of

anatomy in ultrasound images.

Acoustic scattering by a diffuse medium is much weaker than the incident wavefront, so

higher-order scattering events can be neglected [29]. This assumption, known as the Born

approximation, implies that received echoes have undergone a single scattering event. As

a result, the depth of a target, d, can be measured based on the time, t, at which the echo

signal is received as d = ct/2, where c is the speed of sound in tissue ( 1540 m/s [30]). This

relationship is fundamental for beamforming, the process of ultrasonic image formation.

1.2.2 Conventional B-Mode Imaging

After transmission, the Nelem elements of the transducer record the backscattered echoes.

The echoes are sampled at a high rate, forming a time-series of length T f ast along ‘fast-

time’. After a complete transmit-receive cycle, the transducer has recorded a matrix,

x ∈ RT f ast×Nelem , known as channel data.

The process by which an ultrasound image is reconstructed from the channel data

is termed ‘beamforming’. Beamforming is a means to preferentially focus the sampled
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Figure 1.1: The process of delay-and-sum beamforming. (A) The transducer samples the
received echo, forming channel data. (B) Focusing is achieved by time-delaying the chan-
nel data. (C) The contributions of each channel are summed to produce a scanline of
radiofrequency (RF). (D) Multiple scanlines are acquired and displayed on a log-scale as
the B-mode image.

echoes using propagation time relations. The generic method for beamforming is termed

‘delay and sum’ beamforming, as outlined in Figure 1.1. Delay and sum beamforming

first involves delaying the channel data along fast-time to align the echoes returning from

a specific spatial location. The delayed channel data is then summed across the channel

dimension, which forms a scanline of radiofrequency (RF) data. Repeating this process

for consecutive lateral locations forms the image matrix. For tissue imaging, envelope de-

tection and log compression are performed, which yield the anatomical Brightness Mode

(B-mode) image.

1.2.3 Blood Flow Imaging

Non-contrast ultrasound imaging of blood flow comprises four principal imaging modes:

continuous wave, pulse wave, color Doppler, and power Doppler. These methods leverage

principles of the Doppler effect to generate images of spectral, velocity, or power charac-

teristics of blood flow.

When an ultrasonic wave interacts with a moving scatterer, the echoes exhibit a fre-

quency shift characterized by the Doppler effect. This frequency shift may be observed by

comparing the transmitted and received echo frequencies, described by

fd = fr − f0 = 2 f0
vcos(θ)

c
(1.1)
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where fd is the Doppler shift frequency, fr is the frequency observed by the receiver, f0 is

the transmitted center frequency, and vcos(θ) describes the axial component of the scatterer

velocity for a vessel positioned at an angle of θ relative to the transducer [28].

Continuous wave Doppler operates by directly measuring the frequency shift between

the transmitted and received signal. CW systems employ two transducer elements to trans-

mit and receive continuously, which enables measurement of velocity. CW imaging cannot

resolve range or spatial information, so the CW signal is often presented in a spectral or

audio format.

Pulse wave systems enable range resolution by transmitting a series of short pulses.

Measuring the Doppler shift directly is non-trivial for pulse wave techniques due to atten-

uation and pulse-length limitations [28]. As a result, the Doppler shift is measured from

consecutive echoes, which form the ‘slow-time’ dimension. For a given frame rate, Tpr f ,

a scatterer moving with an axial velocity, vz, will exhibit an axial translation proportional

to Tpr f vz between consecutive frames. Using the lag-one correlation between successive

complex echoes, R, a phase angle can be estimated as

∠ = atan
Im(R)
Re(R)

(1.2)

where atan is the four-quadrant arctangent bounded by [−π : π], which corresponds to dis-

placements between [−λ2 : λ2 ]. Using the complex demodulated RF signal, a velocity esti-

mate can be derived as

v1D =
c
2

fpr f

2π

atan( Im(R)
Re(R) )

f0 fs
. (1.3)

Averaging over a two dimensional kernel may also be implemented to reduce jitter [31–33].

Of note, the maximum velocity that can be estimated is bound by

vmax ≤
c
2

fpr f

2 f0
. (1.4)
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Figure 1.2: Color and Power Doppler employ a similar processing methodology. Color
Doppler images display the velocity, measured using a lag-one correlation between succes-
sive frames. Power Doppler images display the energy, measured using a zero-lag correla-
tion.

Conventional pulse wave imaging presents the spectral or velocity information for a sig-

nal returning from a selected range. Color Doppler imaging employs a similar methodology

to estimate the mean velocity, rather than the spectra. Color Doppler yields a complete im-

age of blood flow where the velocity is encoded as a color intensity. Alternatively, the

signal energy (e.g. power) can be encoded by the intensity, which forms a power Doppler

image. The general processing pipeline for power and color Doppler imaging is shown in

Figure 1.2

1.3 Power Doppler Imaging

The work in this thesis primarily considers power Doppler imaging techniques. Power

Doppler images measure the power of the Doppler spectra, which is proportional to the

number of scatterers per voxel to a first approximation [34]. Power Doppler is considered to

offer higher sensitivity toward blood flow than color Doppler; this is because noise signals

often have a uniform power density, producing a single intensity in power Doppler image,

whereas in color Doppler, the random phase of noise presents as a multitude of random

velocities [28]. In addition, power Doppler is less prone to aliasing and is independent of

insonation angle.

Power Doppler images are produced by estimating the lag-zero autocorrelation of the

7



filtered Doppler signal, as shown in Equation 1.5. Averaging over an axial kernel may

additionally be introduced to improve the estimation, as described by Loupas et al.[31].

High-pass filtering is necessary to remove the stationary tissue signal, which can be 40-100

dB larger than the blood signal.

PD =

A∑
a=1

|RF(a)|2. (1.5)

The magnitude of a power Doppler image is linearly proportional to the number of

moving blood scatterers within a pixel, termed the ‘fractional moving blood volume’ [34].

The scattering of ultrasound by blood is primarily attributed to red blood cells. The average

diameter of a red blood cell is 7 µm, which is much smaller than typical wavelengths used

for clinical ultrasound imaging (approximately 0.1 - 1 mm) [35]. As a result, red blood

cells produce diffuse Rayleigh scattering proportional to the fourth-power of the imaging

frequency. Scattering is additionally influenced by a number of complex parameters, in-

cluding hematocrit, flow turbulence, and shear effects [34, 35]. However, blood can be

generally modeled as a collection of scatterers; by applying the principle of superposition,

the total backscattered echo is the sum of the echoes produced by each scatterer. Therefore,

the magnitude of the backscattered echo encodes the number of blood scatterers in a first

approximation [34]. The relationship between power Doppler image intensity and changes

in blood flow has been leveraged for semi-quantitative assessment of functional activity and

therapeutic response [27, 36, 37]. However, the primary role of power Doppler in clinical

settings is for qualitative assessment and detection tasks.

1.4 Challenges for Low Velocity Blood Flow Imaging

The presence of residual tissue, noise, and acoustic ‘clutter’ (e.g. reverberation, off-

axis scattering) signals cause ultrasound image degradation which can lead to exam fail-

ure. Clinical failure rates for non-contrast ultrasound detection of hepatocellular carcinoma
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ranges from 20-50%, particularly for patients with obesity and cirrhosis [38, 39]. Overall,

the reported sensitivity of ultrasound B-mode surveillance for hepatocellular carcinoma is

approximately 60% [39, 40]. Additionally, non-contrast power Doppler evaluation of in-

tertumoral vascularity in the liver has historically suffered from poor image quality, with

sensitivity reported below 40% [26, 41]. In this section, two primary barriers for power

Doppler addressed in this thesis are identified.

1.4.1 Limitations Due to the Signal-to-Noise Ratio

The first obstacle for robust Doppler imaging is discriminating low amplitude ultrasonic

echoes arising from deep imaging targets. The transmitted wavefront is susceptible to

attenuation and aberration effects, which limits the penetration of the ultrasound signal. As

a result, received echoes from deep targets are difficult to distinguish from acoustic clutter

signals and thermal noise, which manifests as a poor SNR.

Thermal noise, which arises from electronic components, is often modeled as an addi-

tive random noise source with a uniform power spectrum. This noise is biased by imaging

settings such as time-gain compensation, which leads to a spatially-variant noise profile.

Thermal noise limits the detection of weak blood flow echoes and increases measurement

jitter, imposing a fundamental lower bound on the variance of estimators [42]. Methods

to reduce noise include digital and morphological filtering operations, coherence-based

beamforming, and post-processing techniques to equalize bias [43–45].

Propagation through non-homogeneous mediums also degrade the received echo signal

due to aberration. Phase aberration is caused by sound speed variations that distort the echo

wavefront. These distortions decrease focusing efficacy, which reduce the lateral resolution,

signal-to-noise ratio (SNR), and contrast. Efforts to correct aberration often employ phase

screen models or channel-domain correlations to estimate the errors in beamforming [46,

47].

Layered subcutaneous tissue boundaries additionally cause reverberation artifacts, which
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are a form of acoustic clutter. Reverberation is a primary form of image degradation in

ultrasound imaging that occurs when echoes undergo multiple reflections before being re-

ceived by the transducer. Conventional beamforming methods invoke the Born approx-

imation, which models scattering events as linear, single scattering events. However, in

the presence of large impedance mismatches, higher-order or multiple scattering events

become non-negligible [48]. Reverberant echoes received by the transducer have delayed

arrival times relative to a single scattering event, which results in artifacts and degraded

axial resolution [49]. Reverberation clutter can be characterised as coherent or diffuse,

arising from strong specular boundaries or propagation paths through a specular medium,

respectively [50]. Techniques to address reverberation are primarily focused on aperture-

domain processing methods, including spatial coherence and non-linear modeling tech-

niques [51, 52].

1.4.2 Limitations Due to Signal Separation

The second barrier for low-velocity blood flow imaging is the presence of dominant

tissue signals. Since blood is a weakly scattering medium, the tissue echo can be 40-100

dB larger than the blood echo [52, 53]. To remove the tissue signal from Doppler images,

a filter is applied to the radiofrequency data prior to velocity or power estimation.

Tissue rejection filters typically operate along the ensemble (slow-time) dimension of

the data. Tissue signals are largely characterized by low frequencies, under the assumption

that tissue is relatively stationary. In comparison, blood signals incur a Doppler shift pro-

portional to their velocity, as described in Eq. 1.1. Filters that are based on Fourier domain

separation, including finite impulse response (FIR) and infinite impulse response (IIR), are

widely used. Time-domain methods, such as polynomial regression filters, have also been

proposed [54, 55].

However, these filters suffer when the frequency characteristics of the blood signal and

tissue signal overlap. Motion induced by the sonographer and physiological effects can
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result in a non-zero mean Doppler frequency of the tissue signal. Similarly, accelerative

motion increases the tissue signal bandwidth. As a result, there is often a trade-off between

preservation of low velocity blood flow and rejection of the tissue signal. Historically,

this has imposed a minimum resolvable blood flow velocity of 5 - 15 mm/sec for clinical

Doppler imaging [53].

To overcome these limitations, adaptive filters that employ blind source separation have

been developed. Blind source separation techniques generate a set of underlying source

signals, or bases, that characterize the dominant directions of variance in the data. Filters

that employ blind source separation methods, including SVD, can therefore enable more

adaptive separation of the blood signal and tissue signal in clinical conditions [56, 57].

1.5 Techniques for Low Velocity Blood Flow Imaging

To overcome the barriers of poor SNR and signal separation for reliable imaging of low

velocity blood flow, several advanced imaging methods have been proposed. This section

will discuss methods considered in this thesis, as well as discuss remaining challenges.

1.5.1 Plane Wave Synthetic Focusing

In conventional focused ultrasound imaging, the medium is sequentially illuminated

using a series of focused transmits. Transmit focusing is achieved by time-delaying the

pulse emission from each element of the array such that the wavefront converges at a spec-

ified focal depth. During beamforming, synthetic aperture methods may be performed to

Figure 1.3: To perform plane wave synthetic focusing, multiple plane waves are steered
along different angles.
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Figure 1.4: Time-of-flight for
plane wave imaging.

td(i) =
zp cos(α) + xp sin(α) +

√
(xp− xi)2 + z2

i

c
(1.7)

achieve uniform focusing over the insonated field. However, multiple focused transmits are

required to form a complete image, which limits the achievable frame rate.

Ultrasonic imaging at high frame rates is desirable for imaging of low velocity blood

flow. High frame rates enable a longer temporal ensemble to be accumulated so that

Fourier-based filters with a higher roll-off and adaptive filters can be implemented. To

achieve high frame rate imaging without limiting the field of view, unfocused plane wave

or diverging wave sequences can be used to illuminate a broader region during transmis-

sion. In plane wave imaging, several transmit events are performed where the plane wave

is steered along different tilt angles, as shown in Figure 1.3. Transmit focusing is syntheti-

cally achieved by summing the time-delayed echo data obtained from each steered transmit.

The time delay for each transmit is computed using the geometric time-of-flight, shown in

Equation (1.7). As a result, the time required to form an image is

timage =
Nang ∗2∗ zmax

c
, (1.6)

where Nang is the number of angled plane wave transmissions compounded to form an

image. Since plane wave sequences illuminate a broader region, fewer transmissions are

required to form an image in comparison to focused sequences, enabling a higher frame

rate.

The plane wave sequence is characterized by the angular span and number of transmis-
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sions, which influence the resolution, contrast, and frame rate of the imaging system. The

lateral image resolution depends on the maximum steering angle, αmax. For a given angle,

the F-number can be expressed as

F# =
z
D
≈

1
2αmax

. (1.8)

where z indicates the imaging depth and D is the aperture size [58]. The number of angles

affects the contrast of the image as the summation of N emissions yields a
√

(N) gain in

SNR. Since the number of angles incurs a trade-off between image quality and frame rate,

sparse angular sequences are often used for high-frame-rate blood flow applications [59].

However, decimation of the angular sequence introduces grating lobes, which decreases

image quality [58].

1.5.2 Spatial Coherence Beamforming

In addition to delay and sum beamforming, several adaptive beamformers have been

developed that employ measures of spatial coherence. Spatial coherence is derived from

statistical optics, and in ultrasound, refers to the covariance of fast-time signals recorded

by a pair of transducer elements. The van Cittert-Zernike (VCZ) theorem describes the

Figure 1.5: The van Cittert-Zernike theorem characterizes the spatial coherence function of
a diffuse scatterer. For a rectangular transmit aperture, the spatial coherence is a triangular
function. In comparison, noise is uncorrelated in the aperture domain.
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development of wavefront coherence as a wave propagates away from an incoherent, quasi-

monochromatic source [60]. In the context of ultrasound, the backscattered echo produced

by an incoherent scattering medium such as tissue is functionally equivalent to the medium

acting as an incoherent source. As a result, the coherence of the echo observed at two

channel positions takes a predictable form [61]. For a pair of time-delayed channel signals,

y1( f ) and y2( f ), at a given depth, z, the spatial coherence may be written as

R̆(x1, x2,z, f ) = y1( f )y2( f ) =
χ( f )
z4 Ro{x1− x2}, (1.9)

where χ( f ) is the scattering function and Ro is the autocorrelation of the transmit aperture

function evaluated as a function of the spatial separation between the channels, x1 − x2.

This is a favorable result, as we note that the spatial coherence is not dependent on the

actual locations of the observation points, but rather the distance between them.

The predictable spatial coherence of echo signals can be used to differentiate and re-

ject extraneous clutter signals. In the case of an unapodized linear array with N elements,

the aperture function, O(x), is a rectangular function so we obtain a triangular coherence

function for tissue and blood, Λ[ m
N ], as shown in Figure 1.5 [61]. In comparison, signals

produced by noise, reverberation, and off-axis scattering are largely uncorrelated, produc-

ing a coherence function modeled by a delta function. Tissue and blood echoes can be

readily distinguished from clutter using spatial coherence measured between elements sep-

arated by a short distance, or lag, m; this characteristic is the basis for ‘short-lag spatial

coherence’ beamforming.

1.5.2.1 Short Lag Spatial Coherence

Short lag spatial coherence (SLSC) is an image formation method that depicts the spa-

tial coherence of the backscattered echo. Rather than performing a delay and sum process

to obtain radiofrequency data, the channel data is only delayed to form ‘aperture data’. Af-

14



ter applying the focusing delay, the signals recorded by each channel are aligned. SLSC

computes the normalized coherence (e.g. correlation) between pairs of aperture signals

recorded at separate channels. This is measured as

R(m) =
1

N −m

N−m∑
i=1

∑n2
n=n1 yi(n)yi+m(n)√∑n2

n=n1 y2
i (n)

∑n2
n=n1 y2

i+m(n)
, (1.10)

which is calculated for all pairs of time-delayed, filtered RF channel signals, yi and yi+m,

separated by a given lag, m, within an axial window between n1 and n2. The SLSC metric,

or pixel intensity, is then computed by summing the normalized coherence over a set of M

lags, as

V(a) =
1
M

M∑
m=1

R(m). (1.11)

1.5.2.2 Coherent Flow Power Doppler

Coherent Flow Power Doppler is an image formation method for blood flow imaging

that employs the SLSC technique. Using an ensemble of channel data that has been filtered

to reject the tissue signal, the SLSC metric for each frame can be computed as shown in

Eq. 1.11. The SLSC metric is then squared and summed to form an image qualitatively

similar to power Doppler, as

CFPD =

A∑
a=1

V(a)2. (1.12)

Unlike power Doppler, which displays the signal power, CFPD images portray the nor-

malized spatial coherence. As demonstrated by Li et al., normalized spatial coherence may

be utilized to improve sensitivity toward blood flow in cluttered environments [62]. How-

ever, the non-linear response of CFPD toward the signal power limits sensitivity toward

changes in blood flow, which is valuable for functional and therapeutic assessment. To ad-

dress this barrier, we proposed a modified form of CFPD called ’power preserving CFPD’,

described in Chapter 2.

15



1.5.3 Adaptive Filtering

In traditional blood flow imaging algorithms, the tissue signal is removed via applica-

tion of an FIR, IIR, or polynomial regression high pass filter. However, the performance of

these filters relies on the separation of tissue and blood signals in the Fourier or polynomial

domain. This assumption is often violated in clinical environments, where spectral overlap

can occur due to tissue motion. In addition, conventional high pass filters face a number

of practical drawbacks: FIR filters have wider transition bands, IIR filters require appropri-

ate initialization to reduce the transient response, and polynomial regression filters require

appropriate regression modeling of the clutter space [54, 55, 63].

Filters that employ singular value decomposition have demonstrated strong perfor-

mance for visualizing low-velocity blood flow in clinical environments [57, 64, 65]. Sin-

gular value decomposition (SVD) is a matrix factorization technique that can be used to

perform clutter rejection for blood flow imaging. SVD filtering can be advantageous over

conventional methods because (1) it is inherently adaptive, as the basis set is defined by the

covariance characteristics of the data, and (2) temporal and spatial features can be used to

classify and reject clutter signals. The SVD of the matrix X is given by

SVD(X) = US V′ =
∑

k

σkukv′k, (1.13)

whereσk is the kth singular value, with uk and vk as the corresponding left and right singular

vectors. The symbol ′ indicates the conjugate transpose. The singular vectors characterize

the dominant features of the data, conventionally along the spatial (U) and temporal (V)

dimensions. Singular values indicate the scale of each singular vector. The singular val-

ue/vector pairs are ordered by descending energy, meaning the features that characterize

the greatest proportion of the data are contained in the first few singular vectors.

To perform SVD filtering on Doppler RF or complex (IQ) data, the depth and lateral

spatial extents are often combined in a Casorati form [1]. This produces a 2-D data matrix,
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X ∈CN×M, with N spatial samples and M frames. Alternative formulations have been posed

to iteratively filter single A-line, single depth, and higher-order data matrices [54, 66–68].

After decomposing the data into its constituent singular value and vector matrices, fil-

tering is performed by weighting or zeroing components that correspond to clutter or noise.

The set of components to remove is determined manually or with a classifier that leverages

a priori assumptions about the data features. After clutter rejection, the filtered matrix is re-

constructed. Early techniques manually discarded subspaces corresponding to eigenvalues

exceeding a pre-defined energy, as tissue is expected to correspond to higher magnitude

signal components than blood [55, 69]. More recently, a number of adaptive techniques

have been proposed to leverage characteristics of slow-time and fast time singular vectors,

as well as attributes of the singular value curve. This enables filtering on the basis of spatial

or temporal characteristics.

Limited research has been performed to investigate SVD-based filtering of aperture

data. The rationale for SVD-filtering of aperture data is that the predominant or first k

largest subspaces are likely to correspond to main lobe signals, whereas off-axis signals

will accumulate in later subspaces. Initial studies have demonstrated that using singular

value thresholding techniques can effectively suppress these off-axis signals, which can be

used to reduce focusing errors in synthetic aperture data and improve minimum variance

weighting [69–71]. To improve visualization of blood flow in poor SNR environments, we

propose the application of a higher-order SVD filter applied to aperture data, described in

Chapter 3.

1.5.4 Summary

Non-contrast ultrasound has substantial potential for assessment of low velocity blood

flow in the liver. The development of high-frame-rate acquisitions, motion compensation

techniques, and adaptive filters have aided in resolving these barriers, but clinical imaging

of low-velocity blood flow remains challenging [26, 41, 72]. In this thesis, two aperture
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domain technologies are presented and evaluated for immediate post-operative evaluation

of TACE procedures.
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Chapter 2

Spatial Coherence Beamformer Design for Power Doppler Imaging

This work has been reprinted, with permission, from [73] K. Ozgun, J. Tierney, and

B. Byram, ”A spatial coherence beamformer design for power Doppler imaging,” IEEE

Transactions on Medical Imaging, vol. 39, no. 5, pp. 1558–1570, 2019. © 2019 IEEE.

2.1 Introduction

Assessment of blood flow using ultrasound has substantial clinical utility for diagnosis

and surveillance. However, achieving adequate visualization in all patients remains a chal-

lenge for power Doppler imaging. Extraneous signals imposed by thermal noise, off-axis

scattering, and reverberation can degrade image quality and obscure perception of blood

flow [53, 74, 75].

A number of signal processing techniques may be used with conventional beamform-

ing to improve sensitivity toward blood flow [76, 77]. Ultrafast acquisition sequences em-

ploy synthetic aperture focusing to amend the reduction in image quality inherent to unfo-

cused transmissions [59, 78]. To improve rejection of the tissue signal, advanced filtering

techniques, such as eigen-based filtering, have been proposed [55–57]. Further, filtering

efficiency can be improved through down-mixing and motion compensation techniques

[55, 79].

Despite these advancements, however, conventional delay-and-sum beamforming re-

mains susceptible to acoustic clutter and thermal noise. This has motivated the develop-

ment of coherence-based beamformers, which use aperture domain coherence as the basis

of image formation rather than the magnitude of echo reflectivity [52, 62, 80].

Aperture domain, or ‘spatial’ coherence quantifies the similarity between echo signals

received by a pair of elements. Mediums with diffuse structure, such as tissue or blood,

exhibit a characteristic coherence behavior described by the van Cittert-Zernike (VCZ)
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theorem [60]. As described by Mallart and Fink, the spatial coherence function of these

signals is proportional to the autocorrelation of the transmitter’s aperture function [61, 81].

In comparison, thermal noise and several forms of acoustic clutter are regarded as spatially

incoherent signals [49, 82]. As a result, the coherence of aperture domain data can be

leveraged to achieve suppression of acoustic clutter and thermal noise.

Li et al.established a coherence-based beamforming technique for blood flow visualiza-

tion called CFPD, which employs a measure of correlation between received echo signals.

In a number of studies, CFPD has demonstrated greater sensitivity over conventional PD

in cluttered environments [45, 62, 83]. However, a drawback of CFPD is that the image in-

tensity portrays the normalized echo coherence, which is influenced by the signal-to-noise

ratio [82, 84]. This implies that CFPD image intensity does not scale linearly with respect

to blood signal power, but rather as a function of the relative noise power.

The non-linear relationship between CFPD image intensity and echo power compro-

mises quantification of blood flow volume. In comparison, PD may be used to assess

the fractional moving blood volume, as PD image intensity is proportional to the number

of scatterers incurring a Doppler shift [34, 85, 86]. Assessment of the fractional moving

blood volume is clinically valuable, as changes in local blood volume are correlated with

malignancy and therapeutic response [27, 87, 88].

Herein, we propose a modification to the CFPD beamforming technique, termed ppCFPD.

We demonstrate that utilizing a non-normalized coherence metric preserves sensitivity to-

ward the underlying blood echo power, while maintaining superior rejection of acoustic

clutter and thermal noise in comparison to conventional power Doppler. Furthermore, we

derive a theoretical model for thresholding residual incoherent noise incurred by small,

partial correlations. The efficacy of these techniques is demonstrated using simulation,

phantom, and in vivo data.
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2.2 Image Formation Techniques

2.2.1 Power Doppler

Power Doppler is a conventional technique for blood flow imaging, depicting the in-

tegrated echo amplitude. In comparison to color Doppler, power Doppler offers several

clinical advantages, namely being unaffected by aliasing and being relatively independent

of insonation angle [34]. Unlike other Doppler methods, power Doppler does not measure

blood flow velocity, but instead depicts the relative amount of flow within a pixel, termed

the ‘fractional moving blood volume’ [86].

To isolate the blood signal, a clutter filter is applied to an ensemble of delay-and-sum

beamformed RF-data to attenuate slowly moving tissue clutter. The power may then be

estimated from the filtered complex data, r(a), over a temporal ensemble of length A.

PD =

A∑
a=1

|r(a)|2 (2.1)

Additionally, averaging over an axial kernel may be introduced to improve the estimation,

as described by Loupas et al.[89].

2.2.2 Coherent Flow Power Doppler

Coherent Flow Power Doppler portrays the normalized spatial coherence of the backscat-

tered echo. CFPD adapts the Short Lag Spatial Coherence (SLSC) tissue imaging technique

by initially applying a filter to the delayed channel data to suppress the tissue signal. Subse-

quent calculation of the SLSC metric and summation over a temporal ensemble suppresses

spatially incoherent clutter [62].

The SLSC metric is formulated using the normalized spatial coherence measured be-

tween two channel signals separated by a given distance, or ‘lag’. The normalized coher-
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ence, R(m), for a transmit aperture of size N may be written as

R(m) =
1

N −m

N−m∑
i=1

∑n2
n=n1 yi(n)yi+m(n)√∑n2

n=n1 y2
i (n)

∑n2
n=n1 y2

i+m(n)
, (2.2)

which is calculated for all pairs of time-delayed, filtered RF channel signals, yi and yi+m,

separated by a given lag, m. To reduce random errors, estimation over a kernel, n, spanning

approximately one wavelength is employed. Conventionally, m and N are described in

terms of number of elements.

Measurement of the average normalized covariance is repeated for a set of M successive

lags, which is used to obtain the SLSC metric,

V(a) =
1
M

M∑
m=1

R(m). (2.3)

The final CFPD image is reconstructed through computation of the SLSC metric for each

pixel, which is squared and summed over a slow-time ensemble of length A, as

CFPD =

A∑
a=1

V(a)2. (2.4)

2.2.3 Power Preserving Coherent Flow Power Doppler

The proposed approach involves a modest, but impactful, modification to the CFPD

beamforming scheme [90]. These adaptations are enacted to preserve the linear relation

between pixel intensity and the blood echo power, while maintaining improved suppres-

sion of incoherent signals over PD. Omission of the denominator in the calculation for

normalized coherence yields the spatial coherence, which may be written

R̆(m) =
1

N −m

N−m∑
i=1

n2∑
n=n1

yi(n)yi+m(n). (2.5)
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In this thesis, the term spatial coherence will be used to refer to Equation (2.5), and the term

normalized spatial coherence will be used in reference to Equation (2.2). Coherence, also

called mutual intensity, can be difficult to interpret in comparison to normalized coherence,

as the resultant value is scaled by the relative signal intensities. However, in the context

of a backscattered blood or tissue echo, spatial coherence may be theoretically described

through an assessment of the van Cittert-Zernike theorem, as described in Section 2.3.1.

Observing the spatial coherence for a given lag, m, allows the underlying signal energy

to be conveyed in the intensity of the beamformed image. Averaging the spatial coherence

for a defined set of M lags produces

V̆(a) =
1
M

M∑
m=1

R̆(m). (2.6)

Subsequently, the ppCFPD image is reconstructed by summing over a temporal ensemble,

shown in Equation (2.7). Noting the omission of the squaring term used in Equation (2.4),

the computation of the spatial coherence shown in Equation (2.7) effectively yields units of

amplitude squared. As a result, the amplitude of the ppCFPD image exhibits a power scale

equivalent to power Doppler.

ppCFPD =

A∑
a=1

V̆(a) (2.7)

2.3 Theory

2.3.1 Coherence of Signals in the Aperture Domain

The van Cittert-Zernike theorem describes the development of wavefront coherence as

a wave propagates away from an incoherent, quasi-monochromatic source [60]. In the

context of ultrasound, insonification of an incoherent scattering medium gives rise to a

backscattered echo, which is functionally equivalent to the medium acting as an incoherent

source. As such, the coherence of the time-delayed echo observed at two channel positions
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across the aperture takes a predictable form [61]. For a pair of delayed channel signals,

y1( f ) and y2( f ) at the focal depth, z, the spatial coherence may be written as

R̆(x1, x2,z, f ) = y1( f )y2( f ) =
χ( f )
z4 Ro(x1− x2), (2.8)

where χ( f ) is the scattering function and Ro is the autocorrelation of the transmit aperture

function evaluated as a function of the spatial separation between the channels, x1− x2. As

described in prior literature, the autocorrelation of a rectangular aperture may be modeled

as a triangular function, Λ[ m
N ] [61]. Assuming a rectangular aperture, we may equivalently

describe spatial coherence using the relation

R̆(m) =
χ( f )
z4 Λ[

m
N

]. (2.9)

The scattering function, χ( f ), describes the collective acoustic scattering produced by the

scatterers contained in the illuminated media. In a general sense, the scattering intensity and

integrated Doppler spectra are linearly proportional to the number of scatterers incurring

a Doppler shift [81, 85]; thus, spatial coherence is proportional to the fractional moving

blood volume. Comparatively, measures of normalized spatial coherence portray only the

transmitter aperture function and omit dependence on the scattering amplitude and depth

[61].

2.3.2 The Effect of Noise on Coherence Measures

Acoustic clutter and thermal noise limit the performance of Doppler imaging tech-

niques, particularly for slow flow assessment [53] and deep imaging targets [84]. These

incoherent signals, which we refer to as ‘noise’ for brevity, produce a spatial coherence

function that may be modeled by a delta function at lag zero [49, 82]. Coherence-based

beamformers leverage this characteristic, as tissue and blood signals exhibit higher mea-

sures of normalized coherence in the short lag region (M < 30% N) [52, 62]. However,
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normalization imparts a dependency on SNR level, which is a practical drawback for beam-

forming applications.

This effect can be demonstrated by considering a scenario in which a received echo

has been corrupted by noise. To begin, we note that the normalized spatial coherence

described in Equation (2.2) is equivalent to the first moment, or mean, of the correlation,

ρy1y2 , measured between two channel signals.

If we consider the noise signal, n, to be uncorrelated from the signal of interest, s, the

correlation measured between the two channel signals may be written

ρy1y2 =
E[(s1 + n1)(s2 + n2)]√
E[s2

1 + n2
1] E[s2

2 + n2
2]
, (2.10)

where the symbol E[·] denotes the expectation operator.

Assuming a rectangular receive aperture and that the respective signal powers asso-

ciated with any two elements on the array are approximately equal, we can describe the

correlation coefficient as

ρy1y2 =
Ps(1− m

N )
Ps + Pn

=
1− m

N

1 +
Pn
Ps

, (2.11)

where Ps represents the underlying blood signal power and Pn denotes noise power [82].

Thus, the normalized coherence observed between two signals retains a dependence on the

signal SNR.

In comparison, we may perform an analogous derivation for the spatial coherence posed

in Equation (2.5). We note that this spatial coherence expression is equivalent to the first

moment of the covariance, σy1y2 . Using the same assumptions as before, we obtain

σy1y2 = E[(s1 + n1)(s2 + n2)] = Ps(1−
m
N

) + Pnδ(0). (2.12)

As described in prior literature, the spatial coherence function of incoherent noise signals

can be approximated as a delta function at lag zero, which is excluded from the summation
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in Equation (2.6) [49]. Therefore, we may theoretically conclude that the ppCFPD pixel

intensity scales linearly with the power of the received blood echo, and is independent of

additive noise for non-zero lags, as performed in Equation (2.6).

2.4 Robust Noise Thresholding

Despite a favorable theoretical assessment, a small amount of uncorrelated noise will

persist at non-zero lags due to random partial correlations [82]. The residual noise sig-

nal is often low amplitude; however, remaining noise may misguide assessment of flow,

particularly in SNR-limited environments.

Further, a consequence of employing a measure of coherence in the ppCFPD beam-

forming scheme is the potential for negative pixel values to be produced. Negative pixel

values confound image quality metrics and need to be addressed for standard log com-

pression. Prior literature in related areas have associated negative pixel values with partial

correlations incurred by clutter, and thus have enforced thresholding to set all negative pixel

values to zero [91, 92].

We propose a statistically-driven threshold to adaptively suppress residual additive

noise and simultaneously justify eliminating the negative signals generated by incoherent

backscattered signals. The additive noise is modeled as a statistically independent process

from the blood signal. Therefore, the threshold may be defined through an exercise where

we presume that the channel data contain only noise.

2.4.1 An Expression of ppCFPD Pixel Intensity for Noise Signals

We begin by writing an equivalent statement of the ppCFPD pixel intensity, shown in

Equation (2.7), for the particular scenario in which the channel data contain only noise.

We model this noise signal as an independent, normally distributed random variable with

constant variance, distributed identically across all elements. The ppCFPD coherence mea-
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sure described in Equation (2.5) may be written in terms of the normalized correlation

coefficient, ρyiyi+m , through the relationship

R̆(m) =
1

N −m

N−m∑
i−1

ρyiyi+m

√√√ n2∑
n=n1

y2
i (n)

n2∑
n=n1

y2
i+m(n). (2.13)

Due to the assumption of constant variance, this equation may be simplified by noting that

the noise variance can be equivalently written as

σ2
noise =

√√√
1
H

n2∑
n=n1

y2
i (n)

1
H

n2∑
n=n1

y2
i+m(n), (2.14)

where H indicates the axial kernel size. Thus we may further simplify Equation (2.13) to

R̆(m) =
Hσ2

noise

N −m

N−m∑
i−1

ρyiyi+m . (2.15)

Modeling ρyiyi+m as an ergodic random variable, we may extend this derivation to Equations

(2.6) and (2.7), to obtain an expression of ppCFPD pixel intensity as

ppCFPD = AHσ2
noise

1
M

M∑
m=1

1
N −m

N−m∑
i=1

ρyiyi+m . (2.16)

2.4.2 Modeling Gaussian Statistics of ppCFPD Pixel Intensity for Noise

Signals

Next, we consider the statistical character of the correlation measured between channel

signals, ρyiyi+m , and subsequently, the statistical character of ppCFPD pixel intensity. For

a Gaussian noise signal, the expected value of the correlation coefficient is zero. In appli-

cation, estimation of the sample correlation using finite signal lengths will incur non-zero

correlation measures, i.e. non-zero variance.

The exact distribution of the sample correlation measured between two normal variables

27



is rather arduous, so we employ an approximation as follows [93]. For small correlations,

we note the Fisher transform is approximately an identity function, such that the value of

ρ(m) is approximately equal to its related Z-score, z(m). The correlation coefficient may be

transformed to the Z-space via the Fisher Transform,

z(m) =
1
2

ln
1 +ρ(m)
1−ρ(m)

= arctanh(ρ(m)). (2.17)

For the derivation of ppCFPD pixel intensity statistics, we will approximate the distribution

of the correlation coefficient using its correspondent Z-score statistical distribution, which

is approximately normally distributed, (z ∼ N(0,σz)), with calculable standard deviation

σz =
1

√
H−3

. (2.18)

Modeling ρ(m) as a normally distributed random variable allows us to generalize the statis-

tical character of ppCFPD pixel intensity via properties of location-scale family probability

distributions, which we briefly discuss in Appendix A. Thus, we find that the pixel intensity

for noise signals is normally distributed with a mean and variance described as

µpixel = AHσ2
noise µz ≈ 0

σ2
pixel = A(

1
M

Hσ2
noise σz)2

M∑
m=1

1
N −m

.
(2.19)

Additionally, it may be noted that the summation term may be expressed via generalized

harmonic numbers, as
M∑

m=1

1
N −m

=HN-1−HN-M-1, (2.20)

such that a closed form approximation can be obtained using the truncated series form

Ha−Hb = ln(
a
b

) +
a−1−b−1

2
−

a−2−b−2

12
. (2.21)
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This derivation is further described in Appendix B.

2.4.3 Approximation of Noise Variance

In practice, it is necessary to estimate the noise variance, σ2
noise, as depicted in Equation

(2.14). Reasserting our assumption that the noise signal is zero-mean, the noise variance is

equal to the noise power
(
E[(x−µ)2] = E[x2]

)
. As described in prior literature [82, 94], we

can obtain an expression for noise power in terms of the SNR, as

σ2
noise ≡ Pn =

Ps+n

SNR + 1
, (2.22)

where the SNR can be estimated via a lag-one autocorrelation technique described by Long

et al.[95].

2.4.4 Definition of a Threshold

Once we obtain an estimate of the ppCFPD pixel variance for the noise signal as shown

in Equation (2.19), we can derive a threshold to suppress residual noise. Here, we will de-

fine the threshold as the upper bound of the 95% statistical interval of noise signal intensity.

For a given pixel, x, this may be written

f (x) =


x, if x ≥ 1.96 σpixel,

0, otherwise.
(2.23)

We note that the method of setting negative pixel values to zero used by other investigators

is equivalent to defining the threshold as the upper bound of the 50% statistical interval of

pixel intensity [44, 91, 92].

Comparatively, PD and CFPD pixel intensity is biased by noise. A supplementary

derivation of pixel intensity for PD is presented in Appendix C. For channel data containing

only noise, we observe PD pixel intensity is approximately Gamma distributed with mean
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and variance described as
µpixel = ANσ2

noise

σ2
pixel = 2A(Nσ2

noise)2.
(2.24)

2.5 Methods

2.5.1 Simulated Data Acquisition

Simulations were performed using Field II to study the performance of ppCFPD under

varied noise conditions [96, 97]. The simulated phantom included a single blood vessel

with a 5 mm diameter, embedded in a 9 cm by 5 cm homogeneous tissue block at a 45◦

angle relative to the transducer. The blood signal was simulated using scatterers moving

in a laminar flow state. The velocity distribution was parabolic [98], with a maximum

velocity of 5 cm/sec. This models the range of velocities observed in capillary (<1 mm/sec),

ppCFPD, zero ppCFPD, adaptive CFPD PD

Figure 2.1: Comparison of image formation techniques. For ppCFPD, application of the
theoretical threshold (ppCFPD, adaptive) suppressed the noise floor more effectively than
thresholding negative values (ppCFPD, zero). Note that the dynamic range is extended so
that the noise floor is visible in all cases. Images depict a 100% fractional moving blood
volume realization with -10dB blood channel SNR.
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arteriole (<1 cm/sec), and small arteries [53, 98].

Channel data for the blood scatterers and tissue scatterers were simulated separately,

then combined into a single channel data set. The blood channel data were scaled -60

dB relative to the surrounding tissue. Normally distributed white noise was added to the

channel data to simulate thermal noise [82]. The noise was scaled between 20 to -20 dB

relative to the power of the blood channel data. No temporal motion was simulated.

The simulated acquisitions were performed using a 128-element linear array transducer

with a center frequency of 3 MHz and pitch of 0.257 mm. For each acquisition, plane

waves between -4◦ and 4◦ spaced by 1◦ were simulated at a pulse repetition frequency

(PRF) of 9 kHz. The channel data were delayed using Plane Wave Synthetic Focusing

(PWSF), in which the delayed channel data acquired at consecutive angles were summed

to produce a final pulse repetition frequency of 1 kHz [99]. PWSF achieves a uniform

focusing throughout the image and maintains consistent coherence measures [82]. A 10 Hz

IIR filter cutoff was used for temporal clutter suppression, chosen empirically to provide

filter stability and rejection of the tissue signal.

Matched PD, CFPD, and ppCFPD images were generated as shown in Figure 2.1. For

ppCFPD and CFPD processing, a maximum lag (M) of 20 was used to correspond with

prior literature [45]. A kernel size (H) equal to one wavelength was employed, to reconcile

the trade-off between jitter and loss of spatial resolution [33]. Images were formed using

an ensemble of 50 frames, and displayed on a 10log10(·) dB scale.

2.5.2 Perception of Fractional Moving Blood Volume

The assertion that ppCFPD image intensity is linearly proportional to the blood echo

power was evaluated via a successive dilution study, emulating a prior PD assessment by

Rubin et al.[86]. As described in subsection 2.5.1, the blood channel data was obtained

independently from the tissue channel data using Field II. The blood scatterers were sep-

arated into two groups: a stationary subset and a moving subset. The fractional moving
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Figure 2.2: Signal (blue) and background (green) ROIs for image quality metrics.

Bmode PD CFPD ppCFPD

Figure 2.3: Phantom study images. Figure depicts a 100% fractional moving blood volume
realization with 5 cm/s flow, obtained at 11 V. Bmode image shown on a 60 dB scale.

blood volume was modified by incrementally changing the ratio of moving-to-stationary

blood scatterers. This was done to fix the acoustic scattering strength of the blood scatter-

ers across fractional levels and produce equivalent scaling for a given SNR. The stationary

blood scatterers are rejected during processing, so the observed blood signal power de-

creases proportionally with the fractional moving blood volume, in agreement with prior

literature [85, 86]. The fraction of moving blood scatterers was iteratively decreased from

100% (all moving) to 1% (nearly all stationary). Five independent simulations of blood

and tissue were generated for each fractional step. In addition, additive thermal noise was

added to the channel data containing blood and tissue to assess discrimination of fractional

moving blood volume at five blood channel SNR levels.
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The average blood pixel intensity was measured within a defined region of interest

for each non-log compressed image, as shown in Figure 2.2. For each fractional step,

the mean and standard deviation of the average intensity was measured across the five

independent simulations to generate curves. The curves were normalized to the highest

mean value for each noise case, in accordance with the technique by Rubin et al.[86].

The theoretical thresholding was not applied when estimating the fractional moving blood

volume. However, negative pixels were excluded from the calculation of mean and standard

deviation, since negative pixels are produced by out-of-phase noise signals [92].

2.5.3 Image Quality Metrics

Conventional image quality metrics, including contrast and CNR, were calculated as

shown in Equations (2.25) and (2.26). Negative pixels were not considered when calculat-

ing image quality metrics. This approach is consistent with similar coherence algorithms

used in prior literature, which set negative pixels to zero [44, 91, 92].

We calculated image quality using

Contrast = 10log10(
S̄ i

S̄ o
) (2.25)

CNR =
|S̄ i− S̄ o|√
σ2

i +σ2
o

(2.26)

where S i indicates the signal within the vessel ROI, and S o indicates the signal within the

background ROI, as shown in Figure 2.2. The standard deviation of the pixel values is

represented by σ. The mean signal value is denoted by an overbar symbol. The theoretical

thresholding was not applied when calculating metrics.

We acknowledge that the image quality metrics measured across PD, CFPD, and ppCFPD

may not be entirely comparable; these algorithms depict fundamentally different quanti-
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ties (echo intensity and spatial coherence, respectively), so conventional metrics may not

equally impute the ability to discriminate structures with a similar intensity level. For in-

stance, squaring the SLSC metric in the summation of Equation (2.4) extends the dynamic

range of CFPD, which improves measures of contrast, but does not necessarily improve

feature detection. Recently, Rodriguez-Morales et al.proposed an alternative image quality

metric termed the generalized contrast-to-noise ratio (GCNR) [100]. The GCNR metric

depicts the likelihood of discriminating a signal of interest as an expression of probability

density function overlap, which is invariant to changes in dynamic-range. For complete-

ness, we include an assessment of image quality in terms of the GCNR, measured

GCNR = 1−OVL, (2.27)

where OVL is the overlap between the intensity distribution of the background and the

intensity distribution of the blood signal. This formulation implies that GCNR = 1 if there is

complete discrimination of the blood signal, and GCNR = 0 if the distributions completely

overlap. To compute the GCNR, histograms with 1,000 equally spaced bins were generated

for the data within the signal and noise ROIs, respectively. The fraction of pixels contained

in overlapping bins was measured as OVL. The GCNR was measured at each fractional

moving blood volume increment, for blood channel SNR levels between -20 and 20 dB.

2.5.4 Assessment of Theoretical Bound for Noise Thresholding

For algorithm validation, the theoretical noise threshold was applied to the simulation

and phantom data produced in subsections 2.5.1 and 2.5.5. The noise power was estimated

using the lag-one spatial coherence described by Long et al.[95]. For the Field II simula-

tions, a single estimate of pixel variance was obtained as shown in Equation 2.19, using

the average of the noise power estimates for σ2
noise. Values below the theoretical threshold

were set to zero prior to log compression.
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For the phantom data, local estimates of pixel variance were obtained to accommodate

depth-dependent attenuation. Noise variance, as shown in Equation 2.12, was computed for

each pixel via lag-one spatial coherence, using a kernel matching the SLSC axial kernel.

2.5.5 Phantom Data Acquisition

A wall-less vessel phantom study was conducted for further validation. An aqueous so-

lution of 6% (mass %) polyvinyl-alcohol (PVA) with a molecular weight of 89,000 (Sigma-

Aldrich, St. Louis, MO) was heated to 85◦ C and stirred until fully dissolved. To form a

scattering medium, graphite powder was added to the solution at a 6% mass concentration

Figure 2.4: Plots depict the mean and standard deviation of image quality metrics measured
across simulation realizations.
Top Row: The ppCFPD blood signal amplitude remains a linear approximation of the frac-
tional moving blood volume despite variation in the blood channel signal-to-noise ratio
(SNR) from -20 dB to 20 dB. This may be observed in the figure, as the ppCFPD curve
closely approximates the theoretical value, shown in black. Center Row: The CNR of
ppCFPD remained nearly constant across noise levels indicating effective suppression of
the noise floor relative to the blood signal. Bottom Row: For all noise cases, ppCFPD and
CFPD offered greater contrast than conventional PD.
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Figure 2.5: Each plot depicts the GCNR metric as a function of the blood channel signal-
to-noise ratio, for incrementally decreasing fractional blood volume levels. The fractional
moving blood volume ranged from 100% (left), indicating full flow, to 1% (right), indicat-
ing nearly no flow. The ppCFPD images produced a higher GCNR for blood flow at all
levels of flow, indicating greater discrimination capability in comparison to PD and CFPD.

[101]. Once the solution reached room temperature, the PVA/graphite solution was poured

into a mold made of a 12 oz disposable paper cup. Prior to adding a PVA/graphite solution,

a 6.35 mm (1/4 in) diameter glass rod was inserted to form a single 45 degree vessel. The

phantom was stored in a freezer at -20◦C for 16 hours, then thawed at room temperature

for 8 hours to complete one freeze-thaw cycle. Three freeze-thaw cycles were completed

to increase phantom stiffness and preserve the vessel structure upon removal of the glass

rod.

An aqueous cornstarch solution served as a blood-mimicking fluid. The concentration

of cornstarch was varied to emulate fractional changes in the proportion of blood scatterers.

The base solution contained contained 3% (mass %) cornstarch [62], which corresponded

to the 100% relative concentration. The base solution was diluted to obtain 85, 70, 55, 40,

Figure 2.6: Left: Distribution of pixel intensity for channel data containing only noise.
The theoretical threshold is an effective approximation of the 95% confidence interval,
compared to the empirically measured value. Right: The confidence interval remained a
robust approximation of noise pixel variance for simulations additionally containing blood.
Data shown depicts a 100% fractional moving blood volume realization with -10dB SNR.
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25, 10 and 0% relative concentrations. To ensure the concentration remained constant, the

solution was placed in a beaker and continuously stirred. A continuous-flow pump (Cole-

Parmer, Vernon Hills, IL) was used to circulate the solution through the vessel at velocities

of 3 and 5 cm/s (95 and 57 ml/min). Proximal to the phantom, the blood mimicking fluid

was passed through a pulse dampener to obtain a laminar flow profile.

The phantom study was conducted using a Verasonics Vantage system (Verasonics, Inc.,

Kirkland, WA) and an L12-5 linear array probe with a 5.43 MHz center frequency. Channel

data were acquired from nine angled plane wave transmits spanning from -4◦ to 4◦, spaced

by 1◦. The channel data acquired at the nine angles were compounded to achieve synthetic

aperture focusing, resulting in a final PRF of 1 KHz. Data were acquired at 11, 16, and

21 Volts to obtain varied SNR. For each voltage, the SNR was estimated from the RF data

using the temporal lag-one correlation [94]. A 50 Hz IIR filter was used to suppress tissue

clutter. The PD, CFPD, and ppCFPD images were formed using matched ensembles of 50

frames, as shown in Figure 2.3. For ppCFPD and CFPD processing, a maximum lag (M)

of 20 and a kernel size (H) equal to one wavelength was employed.

2.5.6 In vivo Data Acquisition

An in vivo liver imaging case was obtained from a healthy adult male subject in com-

pliance with Vanderbilt’s Institutional Review Board (IRB) protocol. The study was con-

ducted using a Verasonics Vantage system (Verasonics, Inc., Kirkland, WA) and a C5-2

curvilinear array probe with a 4.16 MHz center frequency. Channel data were acquired at

21 V from nine angled unfocused transmits spanning from -4◦ to 4◦, spaced by 1◦. The

steered transmit delays were calculated as t =
rφsinθ

c , where r is the probe radius, φ is the

elemental angle span, θ is the steering angle, and c is the speed of sound. The channel data

were coherently compounded to achieve synthetic aperture focusing, producing a final PRF

of 600 Hz.

An adaptive demodulation scheme was applied to the channel data to reduce motion
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Figure 2.7: Axial cross sections of simulation data for 10dB channel SNR (left) and -10dB
channel SNR (right) cases. Realization shown depicts a 100% fractional moving blood
volume case. The black line depicts the theoretical threshold.

incurred by the patient and sonographer, using a kernel size of 10 λ and a lag of 1 frame

[76, 79]. A 120 Hz IIR filter was applied to suppress tissue clutter. For ppCFPD and CFPD

processing, a maximum lag (M) of 20 and a kernel size (H) equal to one wavelength was

employed. The theoretical threshold was applied. The images were formed using 50 frame

ensembles.

2.6 Results

2.6.1 Fractional Moving Blood Volume

Figure 2.4 depicts plots of PD, CFPD, and ppCFPD image intensity as a function of

the fractional moving blood volume for five simulated SNR levels. CFPD produces a non-

Figure 2.8: Axial cross section of phantom
ppCFPD data (blue) depicting the theoreti-
cal threshold (black) obtained using local es-
timates.

Figure 2.9: Contrast and CNR for varied en-
semble lengths. Phantom data shown corre-
sponds to the 5cm/s flow rate and 21 V ac-
quisition.
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linear response with respect to echo magnitude, whereas the ppCFPD image response is

linear. The observed variability of CFPD is a result of normalization, which imparts a de-

pendence on SNR, as CFPD image intensity is proportional to
(

1−m/N
1+Pn/Ps

)2
. This relationship

results in a concave or convex function of intensity, depending on the SNR.

As observed in prior literature, PD is an effective linear estimator of the fractional mov-

ing blood volume in good imaging conditions [34]. However, this relationship is compro-

mised in SNR-limited environments, as noise overwhelms the PD signal. In comparison,

ppCFPD is robust to varied SNR and remains proportional to the fractional moving blood

volume. The greater capability of ppCFPD to accurately estimate relative concentrations

of blood flow in SNR-limited environments is attributed to greater suppression of incoher-

ent noise, which extends the dynamic range and improves sensitivity toward low-amplitude

features.

2.6.2 Image Quality

Figures 2.4 and 2.5 depict image quality measures for ppCFPD, CFPD, and PD ob-

tained at seven blood volume concentrations and five levels of SNR. In matched simula-

tions, ppCFPD yielded marked image quality improvement over PD, exhibiting contrast

improvements up to 26.24 dB and a CNR gain of 1.38.

In Figure 2.4, we observe that measures of contrast and CNR for CFPD exceed those

of ppCFPD in several cases. This illustrates the dependence of CFPD image quality on

SNR. At 20dB SNR, CFPD demonstrates a substantial CNR gain in comparison to lower

SNR levels. This behavior is similar to SLSC performance, where the CNR value has been

shown to peak at a specific SNR depending on intrinsic contrast of the medium [82, 102].

In comparison, CNR performance of ppCFPD is fairly flat, indicating that it is robust to

noise.

It is worth noting that we observed low intensity side lobes in both CFPD and ppCFPD

under conditions of low channel noise, which has also been observed in previous literature
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[62, 91]. These side lobe artifacts are due to out-of-phase correlations produced by off-

axis signals. The squaring term in CFPD transforms these negative correlation values to

positive pixel intensities; as a result, CFPD exhibits a slight reduction in contrast at high

SNR levels due to the presence of these side lobes [62]. In ppCFPD image formation,

negative values are removed, so these side lobes do not degrade image quality metrics. The

squaring operation in CFPD additionally decreases the GCNR of CFPD in SNR-limited

environments, as a greater proportion of the noise pixel intensity may overlap with low,

positive blood pixel values.

2.6.3 Theoretical Thresholding

Initial simulations demonstrate feasibility in using the theoretical threshold for robust

noise suppression. For a case of channel data containing only noise, the assumption that

the statistical distribution of the correlation coefficient is equivalent to the distribution of

the Z-score appears to hold. Extension of this model to ppCFPD pixel intensity appears

to remain valid in simulation, as depicted in Figures 2.6 and 2.7. Figure 2.7 depicts an

axial cross section for simulations with 10 dB and -10 dB channel SNR. Both ppCFPD and

CFPD demonstrate greater dynamic ranges as a result of improved noise suppression. The

theoretical threshold remains effective at both SNR levels.

Both ppCFPD and CFPD beamforming improve discrimination of the blood signal from

background noise in comparison to PD. Application of the theoretical threshold further

improves this delineation, shown in single vessel simulations in Figure 2.1.

The presence of side lobes in the high SNR cases did skew the distribution of ppCFPD

pixel intensity toward negative values, which violates the assumption of Gaussian dis-

tributed noise. As a result, we observed underestimation of the theoretical noise threshold

for simulations with high SNR. However, in these conditions, the blood is readily observed

without thresholding.

Preliminary efficacy of the theoretical threshold was also observed in phantom data.
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Figure 2.8 shows an axial cross section of the phantom with locally-derived threshold es-

timates. The theoretical threshold can be applied to effectively suppress the noise floor in

the ppCFPD images.

10 20 30 40 50

Figure 2.10: Fractional moving blood volume plots for ensemble lengths between 10 (left)
and 50 (right) frames. The phantom data shown correspond to 5 cm/s flow obtained at 21
Volts.

11 V 16 V 21 V

Figure 2.11: Fractional moving blood volume plots for phantom data obtained at 11, 16,
and 21 V for 3 cm/s (top) and 5 cm/s (bottom) blood flow velocities.

2.6.4 Phantom Study

Overall, ppCFPD offered greater noise suppression than PD, resulting in image quality

improvements of up to 13.42 dB in contrast and 2.1757 for CNR. Figure 2.12 depicts image

quality metrics for the 5 cm/s case across voltages. Varying the acquisition voltage between
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11, 16, and 21 Volts produced varied SNR levels of 28.14 ± 3.67 dB, 31.16 ± 3.66 dB, and

33.31 ± 3.68 dB, respectively.

Figures 2.9 and 2.10 depict results for ensemble lengths ranging from 10 to 50 frames.

As shown in Fig. 2.10, ppCFPD remains an effective estimator of the fractional moving

blood volume for short ensemble lengths, which is necessary for most clinical systems.

Figures 2.11 and 2.12 demonstrate that ppCFPD image performance was consistent

across the varied voltage levels, indicating that ppCFPD is robust to varied SNR. In com-

parison, the CFPD image performance exhibits a non-linear relationship toward the frac-

tional moving blood volume.

11 V 16 V 21 V

Figure 2.12: CNR and Contrast plots for phantom data obtained at 11, 16, and 21 V. Mean
and standard deviation of metrics shown for the 5 cm/s velocity realizations.

A small amount of clutter is visible in the deeper region of the ppCFPD image of Figure

2.3; however, the clutter signal is likely tissue signal that was not suppressed by the wall

filter. The application of motion compensation techniques [79] and advanced clutter filters

[56] would improve suppression of residual tissue signals.
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2.6.5 In vivo Case

PD, CFPD, and ppCFPD images of a healthy liver were produced to demonstrate pre-

liminary in vivo efficacy, as shown in Figure 2.13. The in vivo case had a beamformed SNR

of 33.14 dB.

The CFPD and ppCFPD images have a greater dynamic range than the PD image,

resulting in greater discrimination of low amplitude vasculature. As shown with in vivo

data, limiting the PD display dynamic range improves contrast, but results in the loss of

low intensity image features.

Bmode PD CFPD ppCFPD

Figure 2.13: Preliminary images of liver blood flow to demonstrate in vivo feasibility.
Bmode images shown on a 60 dB scale.
Top Row: PD, CFPD, and ppCFPD images displayed on a 27 dB scale. Images produced
via the ppCFPD algorithm effectively delineated small vessels, which are nearly indistin-
guishable from the noise floor in the PD case.
Bottom Row: The dynamic range is scaled to just above the perceptible noise floor for each
image. The dynamic range is 21 dB for PD, 25 dB for CFPD, and 27 dB for ppCFPD.
Decreasing the dynamic range compromises the visibility of low-intensity vasculature in
PD relative to ppCFPD and CFPD.

2.7 Discussion and Conclusions

This paper presents an adapted coherence-based beamforming technique based on a

measure of spatial coherence, rather than normalized spatial coherence, to mitigate in-
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coherent clutter signals while preserving the backscattered echo intensity. In addition, a

theoretical threshold was derived to rigorously justify the suppression of negative pixel

values and small positive pixels associated with clutter signals, and to facilitate improved

perception of vasculature.

The performance of ppCFPD was robust to varied ensemble lengths, SNR levels, and

blood flow velocities. The coherence metric used in ppCFPD is not normalized; there-

fore, ppCFPD images portray the mutual intensity of the channel signals. As shown in

simulation and phantom data, the resultant ppCFPD image intensity scales linearly with

the underlying echo magnitude. This means that the ppCFPD image intensity portrays the

fractional moving blood volume, which may be clinically valuable for in vivo assessment

of local changes in perfusion. In comparison, CFPD employs a normalized measure of

coherence, which results in varied performance depending on the SNR.

The ppCFPD technique produced higher image quality over PD, which is ascribed to

improved suppression of thermal noise and incoherent clutter. Subsequently, ppCFPD im-

ages exhibit a greater dynamic range than PD images, which enables low intensity blood

vessels to be more readily observed.

The simulation and phantom experiments assessed ppCFPD performance for varied

conditions of white thermal noise. We anticipate that other forms of spatially incoherent

clutter, such as reverberation, will be suppressed in accordance with our theoretical deriva-

tion, though not directly studied here. However, other forms of image degradation, such

as phase aberration, may reduce overall coherence measures [49]. In the presence of these

factors, spatial coherence would be decreased and the ppCFPD pixel intensity would likely

be degraded, though PD would suffer as well.

We note that coherence-based beamformers can be used in conjunction with other ad-

vanced tissue clutter suppression techniques. In this paper, an adaptive demodulation tech-

nique proposed by Tierney et al.was used to compensate for tissue motion in vivo [79].

Advanced filtering techniques would likely further improve suppression of residual tissue,
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which is not inherently mitigated in coherence-based beamforming. Filtering is necessary

because tissue signals are coherent in the aperture domain. We expect that the combina-

tion of coherence beamforming and advanced clutter filters will yield superior sensitivity

toward blood flow.

As described for similar coherence-based beamforming approaches, computational cost

remains a practical drawback of this technique. The ppCFPD beamforming scheme has

a substantially larger computational burden in comparison to power Doppler due to the

necessity to perform coherence estimates of channel data signals. We anticipate that a

software beamforming implementation would make a real-time implementation of ppCFPD

feasible, using approaches developed by others [83].

An unresolved challenge for coherence imaging in general is the presence of so-called

‘dark-region artifacts’ [103, 104]. These artifacts occur when regions adjacent to bright tar-

gets exhibit reduced coherence measures due to high amplitude off-axis scattering. In the

context of blood flow imaging, out-of-phase or negative correlation measures produce the

appearance of negative pixel values. Since measures of signal power and PD are inherently

positive valued, the consensus in prior investigations has been to set these values to zero

[44, 91]. We hypothesize that the development of advanced filters may reduce the ampli-

tude of acoustic clutter, which can produce dark-region artifacts and reduce visualization

of adjacent, low-amplitude blood flow.

Overall, this approach shows promise for improving discrimination of blood flow within

cluttered environments. Both CFPD and ppCFPD offer improved image quality over PD;

however, we demonstrated that the CFPD technique exhibited non-linear characteristics as

a function of varied SNR. In comparison, ppCFPD was robust to thermal noise power and

retained sensitivity to relative variations in fractional moving blood volume. This prelim-

inary study suggests that a mutual intensity metric may be a valuable approach to assess

blood flow gradation in cluttered imaging environments.
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Chapter 3

Multidimensional Clutter Filtering of Aperture Domain Data

This work has been reprinted, with permission, from [105] K. A. Ozgun and B. C.

Byram, “Multidimensional clutter filtering of aperture domain data for improved blood

flow sensitivity,” IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control,

2021. © 2021 IEEE.

3.1 Introduction

PD imaging is a preferred ultrasonic technique for visualization of low velocity blood

flow. When coupled with plane wave synthetic focusing (PWSF), Doppler data can be ac-

cumulated at high frame rates with improved sensitivity toward microvasculature [99], [37].

This has enabled visualization of low velocity blood flow without contrast enhancement,

which is clinically valuable for functional and therapeutic assessment [37], [27].

However, the sensitivity of power Doppler imaging is inherently tied to the signal-to-

clutter ratio (SCR) and the filter rejection band [37]. These constraints particularly impede

microvasculature imaging, as low velocity blood echoes are often close to the noise floor

[44, 106] and can exhibit similar slow-time characteristics to tissue [44], [106]. For non-

contrast PD, these challenges have been primarily addressed through novel beamforming

[62, 73, 91, 107], clutter rejection [56, 57, 65, 108–111], and post-processing strategies

[43, 106].

Clutter rejection filtering is used to suppress undesirable noise and “clutter” signals,

which arise from reverberation, off-axis scattering, and non-stationary tissue echoes [111],

[53]. Historically, clutter rejection algorithms have used infinite impulse response, finite

impulse response, and regression filters, which have been extensively studied and optimized

[54, 55, 112, 113]. These filters are effective when the blood and clutter signals reside in

orthogonal Fourier or polynomial basis vectors; however, this assumption can be violated
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in imaging conditions with patient and sonographer motion, as well as in conditions with

strong electronic white noise [111], [53]. Frequently, clutter rejection filters are coupled

with motion correction techniques to reduce the mean frequency and bandwidth of the

clutter signal [55], [79].

More recently, singular value decomposition (SVD) filters have emerged as a robust

alternative to conventional filters. The motivation for using SVD filters is two-fold. First,

SVD filtering is inherently adaptive, as the SVD basis set is defined by the covariance

characteristics of the data. In addition, SVD filters can operate on 1-D (temporal) or 2-

D (spatial and temporal) data, which expands the feature space for signal classification.

As a result, SVD filtering can achieve superior performance over conventional methods

[109], [57, 65, 111]. However, SVD filter utility suffers when blood, clutter, and noise

are not distributed over orthogonal bases. Complex tissue motions and factorization rank

limitations can cause signal overlap, which imposes a trade-off between clutter rejection

and preservation of the blood signal [106], [110]. Accordingly, SVD filtering improves

with longer ensemble sizes [57], [65], but this is not feasible on clinical scanners which

rely on short ensemble lengths ( typically <50 frames) to achieve reasonable real-time

Doppler frame rates [114], [115].

HOSVD filtering has been proposed to improve the SCR while preserving sensitivity

toward microvasculature. The application of HOSVD was first proposed by Kim et al.,

who demonstrated efficacy in filtering a 3-D tensor of multi-rate radiofrequency data [116],

[68]. This method has been termed multi-rate because it employs two temporal dimensions:

the pulse dimension, which is sampled on the slow time interval at the pulse repetition fre-

quency, and the Doppler frame dimension, which constitutes a set of pulses. Expanding the

dimensionality of the data expands the feature space, which enables better separability of

the blood signal. To date, research on clutter rejection filtering has been limited to temporal

and spatial extents. However, advancements in PD beamforming have primarily focused

on leveraging features of delayed channel data and sub-aperture data [56, 57, 65, 108–111].
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With the exception of limited research [71], [117], these features have remained broadly

unstudied for clutter filtering. In this paper, we present a novel filtering methodology that

uses a higher-order SVD applied to a 3-D tensor of aperture data, with spatial, slow-time,

and channel dimensions. To demonstrate feasibility of the approach, these methods are

applied to simulated and in vivo liver data.

3.2 Theory

3.2.1 Doppler Data

In conventional power Doppler processing, filtering is applied to beamformed radiofre-

quency data, which is composed of Z axial samples, X lateral samples, and A slow-time

frames. To perform singular value decomposition, the beamformed data is often reshaped

into Casorati form, combining the axial and lateral spatial dimensions to yield the 2-D

matrix X ∈ CK×A, where K ≡ XZ [57]. We propose using the higher-order SVD to filter

aperture data. ‘Aperture data’ refers to the delayed channel data after synthetic transmit fo-

cusing, prior to the beam sum. This data is composed of Z axial samples, X lateral samples,

A slow-time frames, and N channels. Combining the spatial samples in a Casorati form,

the aperture data is represented as a 3-D matrix, X ∈ CK×A×N .

3.2.2 Singular Value Decomposition

Conventionally, the singular value decomposition (SVD) of the beamformed data ma-

trix X ∈ CK×A is given by

X = US V′ (3.1)

where unitary matrices U ∈CK×K and V ∈CA×A contain the spatial and temporal singu-

lar vectors, respectively. The matrix, S ∈ RK×A, contains the corresponding singular values

along the diagonal.
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Figure 3.1: Top: Computation of the mode-2 eigenvalues from the HOSVD core tensor, G.
Bottom: Mode-n unfoldings of the data tensor, X, used to compute eigenvectors

3.2.3 Higher-Order Singular Value Decomposition

The higher order singular value decomposition (HOSVD) is a generalization of the

SVD and a special case of the Tucker decomposition [118]. The HOSVD of the 3-D aper-

ture data tensor X ∈ CK×A×N is given by

X = G×1 U ×2 V ×3 W (3.2)

where ×n indicates the mode-n product [118]. The mode-n product, G×n U, is equiva-

lent to the multiplication of the matrix and the mode-n unfolding of the tensor, e.g. UG(n).

The unfolded matrix, denoted by the subscript X(n), is the 2-D matrix representation of the

data formed by fixing one dimension and combining the other dimensions, as depicted in
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Figure 3.2: The HOSVD of the data tensor, X, yields the core tensor G and three eigenvec-
tor matrices corresponding to temporal, spatial, and aperture dimensions.

Figure 3.1 [119].

As shown in Figure 3.2, HOSVD yields a core tensor, G ∈ CK×A×N and three unitary

matrices: the spatial singular vectors, U ∈CK×K); the temporal singular vectors, V ∈CA×A);

and the channel singular vectors, W ∈ CN×N). In practice, the singular vector matrices are

computed from the mode-n unfoldings of X. The unfolded matrix is used to produce a

covariance matrix, R, from which the singular vector matrix is obtained through eigen-

decomposition.

RK = X(1)X
T
(1) = UΛKUT (3.3)

RA = X(2)X
T
(2) = VΛAVT (3.4)

RN = X(3)X
T
(3) = WΛNWT (3.5)

The set of mode-n singular values, λ(n), are computed as the Frobenius norms of the

core tensor, G. This can be written as

λ(1)
k =

A∑
a=1

N∑
n=1

|gk,a,n|
2 (3.6)

λ(2)
a =

K∑
k=1

N∑
n=1

|gk,a,n|
2 (3.7)
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Figure 3.3: Left to Right: The features used for HOSVD cutoff selection (green marker) in-
cludes temporal singular vector mean frequency, temporal singular value magnitude, aper-
ture singular vector phase deviation, and spatial singular vector amplitude.

λ(3)
n =

K∑
k=1

A∑
a=1

|gk,a,n|
2 (3.8)

3.3 Filter Design

HOSVD and SVD filtering involve a similar process, characterized by (1) decomposi-

tion of the Doppler data, (2) classification of the dominant signal type contained in each

orthogonal component, and (3) rejection of the components corresponding to clutter and

noise. We define the HOSVD filter rejection band using four cutoffs, { ct1,ct2,ca,cs}, ob-

tained using the following classification scheme. The features used to determine the cutoffs

are shown in Figure 3.3.

3.3.1 Temporal domain classification

Two cutoffs are defined in the temporal domain. The lower cutoff is used to reject

clutter, which typically exhibits a large magnitude and low mean Doppler frequency. The

upper cutoff is defined to reject noise, which typically is clustered in the final singular

values. As shown in Fig. 3.4, the spectral content of the temporal singular vectors is nearly

symmetric across the positive and negative frequencies. For each singular vector, the mean

frequency was estimated from the power spectral density [109], [57]. The lower cutoff,

ct1, is chosen to be the point where the mean singular vector frequency exceeds a specified

cutoff frequency. The cutoff frequency is selected to reject components that contain the
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Figure 3.4: Power spectral density of temporal singular vectors. The black line indicates
the weighted mean frequency.

clutter signal. The frequency distribution and quantity of clutter-bearing components is

influenced by imaging conditions, such as the presence of motion and the clutter-to-blood

ratio [56].

For noise rejection, the upper cutoff is determined in two steps, as presented by Song

et al.[65]. First, a pre-cutoff is defined by fitting the Doppler frequencies to a sigmoid

function to find the noise transition point. Second, a linear fit is applied to the singular

values after the pre-cutoff point, as the singular value magnitude of noise is expected to

follow the Marčenko–Pastur distribution [65], [120]. The upper cutoff, ct2, is chosen as the

point where the singular values deviate from this line.

3.3.2 Aperture domain classification

Several aperture domain features have been leveraged by adaptive beamformers, in-

cluding coherence [52], [121], frequency [122], and phase disparity [80]. Further, a limited

number of aperture domain SVD studies have demonstrated that singular value magnitude

[71] and singular vector frequency [117] can be used for classification. Here, we propose

a single cutoff that uses the phase characteristics of the complex singular vectors. As de-

scribed by Camacho et al., the phase disparity across the aperture may be used to discrim-
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inate between echoes from the focal zone and echoes from other locations [80]. Synthetic

aperture focusing achieves uniform focusing over the entire field-of-view, such that on-axis

signals are phase aligned, exhibiting low deviation. In comparison, off-axis clutter signals

and additive white noise will produce high measures of deviation. Specifically, the phase

of additive white noise can be modelled as a uniform distribution between −π and π, with a

standard deviation of π√
3
. Therefore, we computed the standard deviation of the phase for

each aperture domain singular vector. The aperture cutoff, ca, is determined by finding the

point where the standard deviation of the phase plateaus to π√
3
.

In application, a confidence interval for the spatial cutoff was determined empirically.

The standard deviation was measured from 100,000 realizations of uniformly distributed

random values of length N. The 2.5 and 97.5 percentiles were used to compute a 95%

confidence interval. If the measured phase exceeded the upper confidence interval bound,

the signal likely crossed the −π to π phase boundary, so auxiliary phases were computed,

as done by Camacho et al.[80]. The aperture cutoff, ca, was defined as the last point where

the measured phase fell below the lower confidence interval bound.

3.3.3 Spatial domain classification

In the spatial domain, we leverage the amplitude characteristics of the singular vectors.

Singular vectors containing noise can be modeled as zero-mean complex Gaussian signals,

N(0,σ2). The amplitude component of these singular vectors is therefore characterized by

the Nakagami distribution with shape and scale parameters of m = 1 and w = 2σ2.

The Nakagami shape parameter, m, has been used to characterize envelope statistics

of backscattered echoes, as the Nakagami distribution encompasses pre-Rayleigh (m<1),

Rayleigh (m=1) and Rician (m>1) statistics [123, 124]. The inverse normalized variance es-

timator (INV) is a common technique for estimating the Nakagami shape parameter [125],
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[126]. The INV estimator is
√

N-consistent and asymptotically unbiased, defined as

m̂INV =
(E[A2])2

E[A4]−E[A2])2 (3.9)

As a result, we can define a stabilizing transform which converges to a zero-mean Gaus-

sian random variable,

s =
√

N(m̂INV −m)→ N(0,σ2
INV) (3.10)

with an asymptotic variance of

σ2
INV = 2m(m + 1). (3.11)

The stabilizing transform parameter, s, is be computed for every spatial singular vector.

Finally, the spatial cutoff, cs, is defined as the point where s falls within ±3σ2
INV . In

practice, a 5-point moving average was first applied to the stabilizing transform parameter,

to reduce spurious outliers.

3.3.4 Clutter Rejection and Power Estimation

Filtering is performed by reducing or zeroing the clutter-dominant components. There-

fore, we define the blood core tensor, Ĝ, as

ĝk,a,n =



0, for cs ≤ k ≤ K

0, for ca ≤ a ≤ A

0, for n ≤ ct1 and n ≥ ct2

gk,a,n, otherwise.

(3.12)

and filtered dataset as

X̂ = Ĝ×1 U ×2 V ×3 W (3.13)
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Figure 3.5: Examples of delayed channel data with various levels of clutter rejection filter-
ing. Left to Right: (1) Unfiltered data, (2)temporal filtering only, (3) temporal and spatial
filtering, (4) temporal, spatial, and aperture filtering.

Finally, the beamsum and power estimation are performed, yielding the power Doppler

image, PHOSVD. Fig. 3.5 depicts an example of the benefit of multidimensional clutter

rejection, showing that the greatest detection of the on-axis blood flow signal is achieved

using temporal, spatial, and aperture domain cutoffs.

3.4 Methods

Processing and analysis were performed in Matlab (version R2018b, MathWorks, Nat-

ick, MA). Beamforming was implemented using the UltraSound ToolBox (v2.1) [127]. The

TensorLab (v3.0) function mlsvd was used for HOSVD [128]. All power Doppler images

are shown on a dynamic range normalized to the maximum intensity of the image.

3.4.1 Performance Metrics

We compare the HOSVD filter to (1) a conventional SVD filter applied to the radiofre-

quency data, and (2) a novel SVD filter applied to the mode-3 unfolding (e.g. frames ×

space*channels) of the aperture data. ‘Gold standard’ power Doppler images were formed

using these methods, denoted PS VD and PS VD−a, respectively.

The blood flow detection performance was assessed using a receiver operating charac-

teristic curve (ROC) analysis, similar to Chee et. al [129]. ROC curves were generated by

plotting the true positive rate against the false positive rate, measured over a set of thresh-

olds. The true positive rate was defined as the fraction of blood pixels that exceeded the
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threshold value, and the false positive rate was defined as the fraction of tissue pixels that

exceeded the threshold value. The thresholds were post-filter Doppler power values, swept

between the minimum and maximum Doppler power in 0.2 dB increments. The area under

the ROC curve (AUC) was used to quantify how well the blood flow was distinguished

from the background. Further, the image quality was measured in terms of the contrast,

defined as

Contrast = 10∗ log10
(

P̄blood

P̄background

)
(3.14)

and the CNR,

CNR = 10∗ log10
(

P̄blood − P̄background

σbackground

)
. (3.15)

3.4.2 Simulation Design

A simulation study was conducted using Field II [96, 97]. A 2 x 3 cm tissue phantom

was designed with a 0.4 mm vessel angled 60° relative to the probe. Blood scatterers were

perfused in a parabolic velocity profile, with a peak velocity of 10 mm/s.

To simulate realistic clutter, bulk motion was applied to the tissue and blood scatterers.

Five independent motion profiles were obtained by averaging 2D displacement estimates

[31] from tissue mimicking phantoms. The five tissue phantoms were composed of a PVA-

graphite mixture [73] and acquired using an L12-4 probe held freely by a sonographer.

The phantom acquisition was performed using probe parameters similar to the simulation

( f0 = 7.813 MHz, fs = 31.24 MHz) and the same plane wave acquisition sequence.

Five independent simulation realizations were generated using the five motion profiles.

For each simulation, the tissue and blood channel data were simulated separately, and nor-

mally distributed random noise was used to simulate electronic noise. The data were com-

bined using a -40 dB blood-to-tissue ratio and a -45 dB noise-to-tissue ratio. Five phantoms

were generated for independent speckle and displacement realizations. A sample B-mode

is shown in Figure 3.6.
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A linear probe was modelled using the parameters shown in Table 3.1. Channel data

was acquired using an ultrafast plane wave sequence composed of 13 plane waves evenly

spaced between −2.7◦ and 2.7◦. Plane wave synthetic focusing was applied to achieve

uniform focusing [99], yielding a net PRF of 700 Hz. Power Doppler images were formed

from a 4 x 13 mm patch (164 x 64 samples) of simulated data.

3.4.3 Simulation Experimental Set Up

3.4.3.1 Optimal Performance

To assess the optimal performance of the filter, a set of power Doppler images were

formed by manually defining the HOSVD cutoffs in a bounded grid search over the ranges

depicted in Table 3.2. Since the optimal contrast, CNR, and AUC may correspond to

unique cutoff choices, each performance metric was optimized separately. The reference

SVD filters were manually tuned over the ct1 and ct2 ranges. Ensembles of 50 frames were

used.

Table 3.1: Field II Simulation Parameters

Parameter Value

f0 7.813 MHz

Bandwidth 65%

fs 78.13 MHz

Element Number 128

Element Width 0.1703 mm

Element Pitch 0.1953 mm

Sound Speed 1540 m/s

Table 3.2: Optimal Performance Study Cutoff

Ranges

Parameter Min Max Increment

ct1 1 K-1 2

ct2 ct1+1 K 2

ca 8 64 8

cs 400 1900 300
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Figure 3.6: Sample B-mode of simulated vessel phantom shown on a 60dB scale.

3.4.4 Classifier Performance

Classifier performance was assessed by comparing the results of the manually-tuned

study to power Doppler images formed using the HOSVD cutoffs obtained using the clas-

sifier described in Section III.

The spatial and aperture domain cutoffs were determined using the theoretical cutoff

points, e.g. when the phase deviation plateaued at π√
3

and when the stabilizing transform

parameter plateaued at ±3σ2
INV . The lower temporal cutoff, defined as a cutoff frequency,

was the only bound that needed to be parameterized. The temporal cutoff frequency was

tuned between 2 to 100 Hz, in 2 Hz increments. Ensembles of 50 frames were used.

3.4.5 Short Ensemble Performance

To assess the value of using HOSVD filtering for power Doppler imaging using rel-

atively short ensembles, images were additionally formed using ensembles of 16 and 25

frames. The same classifier parameterization was used, however, the temporal cutoff fre-

quency was tuned between 2 to 200 Hz, in 2 Hz increments. The extended frequency range

was used as shorter ensembles result in temporal singular vectors with more broadband

frequency content, which increases the mean frequency.
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3.4.6 In vivo Study

Efficacy was further demonstrated in vivo using a small pilot study of liver imaging data

acquired from a healthy adult male subject. Five datasets were obtained in compliance with

Vanderbilt’s Institutional Review Board (IRB) protocol. Channel data was acquired using

a C5-2 probe on a Verasonics research system (Verasonics Inc., Kirkland, WA), with a

sequence composed of nine angled plane wave transmits evenly spaced from -4º to 4º. The

pulse was designed with a f0 of 4.167 MHz and fs of 16.68 MHz. Plane wave synthetic

focusing was applied, yielding a net PRF of 600 Hz.

3.4.7 Image Quality

Power Doppler images were formed using ensembles of 50 frames. Since global pro-

cessing was used, depth-dependent effects such as attenuation and gain may confound ac-

curate estimation of the Nakagami parameters [123] . To overcome this constraint, the

power of each singular vector amplitude was normalized through depth when computing

the stabilizing transform parameter. For each dataset, a single region of 1299 axial samples

and 64 lateral samples was processed. The temporal cutoff frequency was tuned between

2 and 200 Hz, in 2 Hz increments. Image quality was measured in terms of contrast and

CNR using manually-segmented regions of interest, as shown in Figure 3.7. To assess the

sensitivity of each filter toward the temporal cutoff frequency, the robustness was measured

in terms of contrast loss relative to the highest achievable contrast for each dataset. This

was measured as 1− |Contrast−Contrastmax|
Contrastmax

, using the non-log compressed contrast values.

3.4.8 Computational Complexity

The computational cost of HOSVD filtering is more demanding than conventional SVD

filtering. The HOSVD and SVD-a filters are both applied to delayed channel data, which

inherently increases the memory demand by the size of the channel count in comparison to
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Figure 3.7: Blood (dashed) and background (solid) regions of interest used for human in
vivo performance assessment. Power Doppler images formed using a conventional SVD
filter are shown on a 30dB scale.

conventional SVD filtering, which is applied to beamformed radiofrequency data.

The computational complexity of SVD is often approximated as O(ka2) for a matrix

with dimensions k>a. As a tensor method, the computational complexity of HOSVD is

greater, although truncated methods and efficient approximation methods have been devel-

oped. The HOSVD of a three-dimensional tensor with dimensions [n,k,a] involves three

separate SVDs to obtain the singular vector matrices. We estimate that HOSVD would

therefore be associated with a baseline computational complexity of roughly [O(kan2) +

O(nak2) + O(nka2)]. However, the absolute computational throughput would depend on

various factors, including the processing system, available memory, and decomposition al-

gorithm. The time expense of the different decomposition methods was evaluated using the

five in vivo datasets with varied parameterization. We measured the total serial run time

to perform each decomposition in MATLAB (The Mathworks Inc., Natick, MA, USA) on

a desktop computer running dual Intel Xeon E5-3643 v4 CPUs at 3.40GHz with 6 cores

each. The computation time across each run was measured using the built-in MATLAB tic

and toc commands.

For benchmarking, transmit beamforming was applied to each in vivo dataset, yielding a

tensor with dimensions [K×A×N] corresponding to spatial samples, channels, and frames.

The HOSVD computation time was recorded as the time to decompose the full tensor. We

assessed the time to perform a standard HOSVD using the function mlsvd. The SVD-a

computation time was recorded as the time to perform an SVD on the unfolded matrix with

dimensions of [KA×N]. Finally, the conventional SVD computation time was measured
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Figure 3.8: Sample power Doppler images obtained using SVD, SVD-a, and HOSVD.
Images correspond to the results from the classifier-generated cutoff study that produced
the highest contrast for a single simulation case.

as the time to perform an SVD on the beamformed matrix with dimensions of [K×N],

obtained by summing over the tensor’s channel dimension.

To assess the effects of varied parameterization, we demonstrate the relative effects of

(1) changing the temporal ensemble length between 10 and 50 frames and (2) processing

a spatial sample containing between 100 and 500 depth samples. For all cases, 128 chan-

nels and 64 lateral samples were used. Plots were formed to depict the effect of varying

each parameter, while holding the other parameter constant at 50 frames or 500 pixels,

respectively.

3.5 Results and Discussion

3.5.1 Simulation study

The HOSVD clutter filter demonstrated improved performance over the SVD filters in

simulation, as depicted in Figure 3.8. Result metrics are reported using the mean ± one

standard deviation over the five simulated phantoms.

3.5.2 Optimal Performance

HOSVD outperformed conventional SVD filtering in an ideal setting, as depicted in

Figure 3.9 and Figure 3.10. Using the optimized set of manually-tuned cutoffs for each

filter, HOSVD produced a maximum contrast of 19.99 ± 1.97 dB, compared to SVD (14.48

± 3.13 dB) and SVD-a (19.54 ± 2.21 dB). Similarly, HOSVD produced a higher maximum
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Figure 3.9: Depiction of the optimal performance study grid search. CNR (left) and Con-
trast (right) results shown on a dB scale for PSVD (top), PSVD−a(middle), and PHOSVD
(bottom) as a function of the lower and upper temporal cutoffs. The HOSVD results de-
pict the highest values obtained over the spatial and aperture ranges. The highest achieved
image quality for each method shown in bottom corner.

Figure 3.10: Simulation results for the optimal performance study. Contrast and CNR are
shown on a dB scale.
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CNR (22.11 ± 1.72 dB versus 15.59 ± 3.7 dB for SVD and 21.88 ± 1.81 dB for SVD-a).

However, an additional key benefit of HOSVD is that it is more robust in non-ideal con-

ditions than SVD or SVD-a. Fig. 3.9 depicts contrast and CNR results across all temporal

cutoffs for a single simulated dataset. Similar to the findings of Baranger [111], this figure

highlights that errors in threshold choice for SVD and SVD-a can cause substantial loss

in image quality. The lower temporal cutoff can have the greatest effect on image quality,

as it is a primary means of rejecting on-axis clutter and the cutoff is operator-dependent.

HOSVD is less sensitive to the temporal frequency cutoff choice than SVD and SVD-a,

maintaining a broader region of image quality. This is important for clinical imaging sce-

narios, where factors such as accelerative motion can confound cutoff selection [56].

The differences observed between SVD and SVD-a merit further research but may be

explained by several underlying factors. First, we assume that the temporal information

provided by the right singular vectors in SVD and SVD-a are comparable. However, scat-

terer translation is observed differently across the aperture [130], therefore it is reasonable

to hypothesize that temporal information may be encoded differently. In addition, the con-

sistency of basis estimation using sample data matrices is dependent on the ratio between

the number of samples and number of observations [131]. Since the temporal singular vec-

tors of SVD-a are derived using a factor equal to the number of channels (N) additional

observations, there may be implicit differences between the SVD-a and SVD subspaces.

3.5.3 Classifier Performance

The classifier scheme used to generate the HOSVD filter cutoffs demonstrated robust

performance in simulation. The power Doppler images generated using the classifier-

generated cutoffs produced reasonably similar image quality in comparison to the to the

optimal cutoff case. This result is quantified via the AUC analysis in Fig. 3.11, where the

HOSVD classifier cutoff produced a maximal AUC of 0.987 ± 0.009, in comparison to the

optimal cutoff AUC of 0.994 ± 0.004. In comparison, the maximal PS VD and PS VD−a AUC
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Figure 3.11: Image quality results for ensembles of 50 (top), 25 (center), and 16 (bottom)
using the classifier-generated cutoffs. Left to Right: Contrast (dB), CNR (dB), AUC.

values were measured as 0.933 ±0.044 and 0.979 ± 0.016. HOSVD produced a maximum

contrast of 16.37± 2.45 dB, compared to SVD (12.10 ± 3.34 dB) and SVD-a (14.28 ± 3.24

dB).

3.5.4 Short Ensemble Performance

Across ensemble sizes, HOSVD remained an effective method for clutter rejection. Fig.

3.11 shows maximum contrast, CNR, and AUC for ensemble sizes of 16, 25, and 50 frames.

For 16 frames, PHOS VD produced a maximum contrast of 12.07± 2.64 dB, compared to

PS VD (8.43 ± 4.74 dB) and PS VD−a (10.21 ± 2.12 dB). For 25 frames, PHOS VD produced a

maximum contrast of 14.21 ± 3.69 dB, compared to PS VD (12.21 ± 5.06 dB) and PS VD−a

(12.05 ± 3.90 dB).

The HOSVD and SVD-a filters have similar tissue rejection performance because they

leverage the same temporal singular vectors produced by the unfolded data tensor for tis-

sue classification, as described in Section III.A. However, the HOSVD filter additionally

leverages spatial and aperture domain signal suppression, which enables greater rejection
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of noise and off-axis signals. In addition, aside from rank limitations, the spatial and aper-

ture domain signal classification methods are independent of temporal ensemble length.

This is supported by Figure 3.11, which shows that HOSVD filter consistently yielded

contrast gains over the conventional SVD filter, which demonstrates effective clutter rejec-

tion despite varied ensemble size. Further, the HOSVD filter consistently yielded a median

AUC above 0.85 for varied ensemble lengths indicating that vessel discrimination remained

strong. Overall, this demonstrates that HOSVD is robust to ensemble-size constraints ob-

served on clinical scanners.

3.5.5 In vivo study

3.5.5.1 Image Quality Performance

In vivo feasibility is demonstrated in liver data, as shown in Figure 3.12, which depicts

the PHOS VD, PS VD, and PS VD−a images. As shown in Figure 3.13, HOSVD produced

greater rejection of clutter and noise, yielding a maximum contrast of 14.15±2.69 dB and

maximum CNR of 19.01 ±3.03 dB. In comparison, the SVD filter produced a contrast

of 9.92 ±2.83 dB and CNR of 14.96 ±3.15 dB, and the SVD-a filter produced a con-

trast of 10.49 ±2.95 dB and CNR of 17.05 ±3.03 dB. Figure 3.14 depicts the effect of

over-estimation and under-estimation of the temporal frequency cutoff, which is manually

parameterized. Similar to the findings of Baranger et. al [109], threshold estimation er-

ror results in decreased image quality for all filters. However, the HOSVD filter retains a

higher contrast at non-optimal cutoff frequencies in comparison to SVD and SVD-a.

This pilot study shows that HOSVD filtering can improve visualization of blood flow

in clinical imaging scenarios. The HOSVD filter improves contrast, which improves as-

sessment of vasculature through the reduction of clutter and noise. Abdominal ultrasound

imaging is associated with higher rates of inadequate clinical visualization and limitations

due to poor image quality [84]. Due to improved suppression of noise and clutter, small
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Figure 3.12: Left to Right: B-mode, PSVD, PSVD−a, and PHOSVD images depicting
peripheral blood flow in a healthy liver. B-mode images are shown on a 60 dB scale.
Filtered images display the highest contrast achieved using each filter.
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Figure 3.13: Image quality results for
in vivo study. Results are depicted
for power Doppler images formed using
SVD, SVD-a, and HOSVD filtering. Met-
rics for a non-filtered power Doppler im-
age shown for reference.

Figure 3.14: Effect of over-estimation
and under-estimation of the temporal fre-
quency cutoff on image contrast, shown in
terms of relative change in comparison to
the maximum achievable contrast.

vasculature is more readily observed with HOSVD filtering in comparison to SVD and

SVD-a.

3.5.6 Computational Complexity

One drawback of HOSVD filtering is its associated computational complexity. As

shown in Figure 3.15, the computation time increases at a greater rate with HOSVD in

comparison to SVD. This suggests that block-wise, downsampling [114], or projecting

[132] may greatly improve HOSVD processing speed. In addition, blockwise processing

reduces variation caused by time-gain compensation and depth-dependent effects, which

may improve estimation of the Nakagami parameters. Further, performing a truncated

HOSVD has been shown to improve computational time without a reduction in filtering

performance [116]. For example, a sequentially truncated HOSVD [133] could be param-

eterized with an adaptive tolerance that is defined using the upper channel cutoff, spatial
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Figure 3.15: Computational expense for SVD, SVD-a, and HOSVD with varied spatial
(left) and temporal (right) parameterization.

cutoff, and channel cutoff.

3.6 Conclusions

Expanding the dimensionality of clutter rejection filters has substantial opportunity for

power Doppler imaging. We demonstrate that leveraging spatial, temporal, and aperture

features can enable improved rejection of clutter and noise signals. Further, we show

that multidimensional decomposition effectively captures dynamic imaging environments

in relatively few samples, which is valuable for clinical contexts.

This work validates a semi-automated multidimensional classifier that operates along

spatial, temporal, and aperture extents. The classifier leverages theoretical principles of

signal phase and amplitude to reject off-axis clutter and noise. These signal features used

for classification are likely interchangeable over the different dimensions, as we assume

that the noise-bearing components of each dimension are white Gaussian processes. To re-

ject tissue clutter, a frequency-based classifier parameterized by a cutoff frequency is also

employed, which is a broadly accepted method within SVD literature [56]. We note that

automated approaches to find the lower temporal cutoff have also been proposed, such as

computing the minima of the singular value curvature radius [109]. Overall, this semi-

automated framework reduces the burden of cutoff parameterization and can improve per-

formance across varied clinical contexts.
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Since the HOSVD filter may be used in place of the SVD filter, HOSVD filtering may

be used in a variety of imaging applications beyond power Doppler imaging. Singular

value decomposition and other blind source separation filtering techniques have been in-

vestigated for several other blood flow imaging applications, including color Doppler [56],

contrast-enhanced ultrasound [134], and super resolution imaging [135]. Further, simi-

lar blind source separation methods have been examined for tissue imaging applications,

such as for minimum variance imaging [44], clutter rejection [106], and noise suppression

[91]. HOSVD filtering can also be used concurrently with other post-processing methods,

including morphological filtering or background noise removal [106], [135]. The combina-

tion of adaptive clutter filtering and noise suppression algorithms has been shown to yield

remarkable improvements in image quality, and we anticipate HOSVD filtering would yield

a similar combinatorial benefit.

Additionally, HOSVD filtering may be directly amenable to adaptive beamformers.

A number of techniques have been proposed which require clutter rejection filtering of

aperture or sub-aperture data, including coherent flow power Doppler (CFPD) [62], power-

preserving coherent flow power doppler (ppCFPD) [73], short-lag angular coherence (SLAC)

[52], and acoustic sub-aperture processing (ASAP) [91]. A drawback of coherence-based

adaptive beamformers is the presence of ‘dark region artifacts’, which manifest due to

strong off-axis scattering [103]. Since HOSVD filtering can reject off-axis contributions,

it may effectively mitigate dark region artifacts in adaptive beamforming. Adaptive beam-

formers have been shown to benefit from synthetic transmit focusing, which aligns with the

assumption of low phase dispersion for the aperture domain classifier. Techniques that use

a fixed transmit focus will exhibit greater phase dispersion away from the focal point, which

may degrade performance of the phase-based classifier. Further, we demonstrated the effi-

cacy of HOSVD filtering for visualization of vasculature in the liver, which suggests that

HOSVD filtering is well-suited for deeper clinical imaging applications. Clinical visual-

ization of low velocity blood flows and deep imaging targets are frequently limited by body
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habitus [84]. Future work will assess the combinatorial benefits of using HOSVD filtering

with other advanced processing methods, such as adaptive beamforming or motion correc-

tion, to visualize low velocity blood flow in liver lesions. A reliable assessment mechanism

of lesion blood flow would improve therapeutic evaluation and clinical outcomes.

In this work, we demonstrate that HOSVD may be used for clutter rejection in a scheme

in which contiguous blocks of clutter-dominant components are removed. However, several

studies have demonstrated that various imaging conditions may incur subspace overlap,

in which tissue and blood features are not separately contained [106], [110], [136]. We

anticipate that further study on the selective rejection of indices within the core tensor, G,

could produce a clutter rejection filter with even greater efficacy.

Overall, we present a methodology for clutter rejection filtering using a HOSVD filter.

The proposed technique effectively overcomes the subspace separation limitations of SVD

for short ensembles, achieving greater suppression of clutter and noise without loss of blood

flow sensitivity. The novel classification scheme additionally considers features of aperture

domain data which have previously not been studied in the context of clutter filtering.

Demonstration of the proposed HOSVD filter for in vivo visualization of small vasculature

demonstrates its potential for clinical translation.
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Chapter 4

Non-Contrast Ultrasound Imaging for Immediate Evaluation of Transarterial

Chemoembolization Procedures

4.1 Introduction

Over the last decade, liver cancer has become a leading cause of cancer-related death in

the United States [1]. Despite advances in clinical care, prognosis remains poor because a

majority of patients ( >70%) are diagnosed with advanced disease and are not eligible for

curative intervention [2, 3]. Global treatment guidelines endorse trans-arterial chemoem-

bolization (TACE) as the standard therapy for palliative care, bridge-to-transplant, and

downstaging of intermediate-stage liver cancer [8].

TACE involves the delivery of a chemotherapeutic drug and embolizing agents via a

catheter placed within a tumor-feeding arterial vessel. Successful TACE elicits occlusion

of the tumor vascular supply and can prolong survival up to 5 years. For improved dis-

ease management, multiple TACE sessions are often performed based on initial treatment

efficacy [8, 11, 15].

Therapeutic efficacy is determined by reduced contrast enhancement on MRI or CT,

which correlates with tumor necrosis [8, 17]. However, therapeutic evaluation is not per-

formed until 4-6 weeks post-treatment due to confounding interactions with the chemother-

apeutic delivery agent, lipiodol, and post-embolization inflammatory changes [8, 18]. This

delays re-treatment and can lead to interim disease progression. A reliable, early assess-

ment mechanism could improve survival.

Ultrasound has been proposed as an alternative modality for earlier evaluation of TACE

response. Contrast-enhanced ultrasound (CEUS) has demonstrated efficacy in several stud-

ies for differentiation of TACE outcomes as early as 1-2 weeks post-treatment [23]. Qual-

itative and quantitative assessment methods, including time-intensity analysis and mor-
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phological feature detection, have been proposed for CEUS assessment [18, 22]. CEUS

for liver imaging is approved by the United States Food and Drug Administration and is

advantageous over other contrast-enhanced modalities due to cost, portability, and lack

of ionizing radiation [137]. However, detection earlier than 1-2 weeks can be compro-

mised by hyperechoic artifacts produced by trapped gas and the deposition of drug-eluting

beads (DEB) used in DEB-TACE [18, 23]. In addition, not all liver lesions exhibit contrast

washout and variations in contrast dose or timing may cause lesion mischaracterization; as

a result CEUS is unsuitable for standalone staging [137, 138].

In comparison, non-contrast power Doppler images display the strength or power of the

Doppler echo produced by moving red blood cells and are less susceptible to artifacts from

the TACE treatment. Historically, power Doppler evaluation of liver lesions was limited

by poor sensitivity toward low velocity blood flow; however, the development of advanced

Doppler techniques for motion compensation and filtering has aided in overcoming this

barrier [25, 26]. Several studies have demonstrated the diagnostic utility of power Doppler

with advanced processing techniques for the characterization of liver lesions [139, 140].

Recently, power Doppler has been proposed for the diagnosis of Hepatocellular Carcinoma

(HCC) [72, 139] and the detection of residual blood flow following TACE [27, 41].

However, motion artifacts and poor image quality remain primary limitations for non-

contrast power Doppler detection of blood flow in liver lesions [41]. Poor image qual-

ity results from attenuation of the echo signal, which limits the signal-to-noise (SNR) ra-

tio for deep imaging targets. Cirrhotic liver tissue, which has a higher attenuation than

healthy parenchyma, is frequently associated with HCC and can further exacerbate this

barrier [141]. In addition, motion or ‘flash’ artifacts are a limitation of Doppler imaging

caused by insufficient rejection of the tissue signal, which can be 40-100 dB larger than the

blood signal [53]. The presence of motion causes spectral overlap between the tissue and

low-velocity blood signals, which compromise conventional filtering methods. For liver

imaging, the cardiac cycle and diaphragm motion are primary reported sources of motion
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artifacts [41].

Recently, several aperture domain techniques to reduce these barriers for blood flow

imaging have been proposed. To overcome SNR limitations, coherence-based image for-

mation methods have been developed as an alternative to power Doppler [52, 62, 73, 107,

142]. Li et al.proposed Coherent Flow Power Doppler (CFPD), which employs a measure

of the short-lag spatial coherence to suppress noise and acoustic clutter [45, 62]. Similarly,

an adapted form of this technique, termed power-preserving CFPD (ppCFPD), employs a

measure of spatial covariance to retain proportionality between image intensity and blood

volume [73, 90, 143].

This study aims to investigate the ability of using non-contrast power Doppler imaging

to detect changes in low velocity flow as a means for early evaluation of TACE therapeu-

tic efficacy. Adaptive filtering and processing methods to reduce noise bias and artifacts

caused by motion are considered. In addition, this work studies the feasibility of using

coherence-based beamforming to improve the detection of low velocity blood flow in liver

lesions. This work extends the prior work of Tierney et al.who demonstrated the feasibil-

ity of detecting residual blood flow after TACE using non-contrast ultrasound with motion

correction and adaptive filtering methods [27].

4.2 Data Acquisition

4.2.1 Subject Recruitment

A retrospective analysis was performed using ultrasound data collected from 17 human

subjects undergoing conventional TACE for the treatment of liver cancer at the Vander-

bilt University Medical Center between February 2018 and October 2019. The data was

acquired with informed consent of the subjects and the approval of the Vanderbilt Univer-

sity institutional review board as part of an ongoing study. One of the subjects underwent

TACE twice, resulting in a total of 18 procedural data acquisitions. In the present study,
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Table 4.1: Subject Characteristics

ID BMI [ kg
m2 ] MELD Type Size [cm] Location Response

1 51.9 11 HCC 4.7 Segment 3 PR

2 24.2 12 HCC 2 Segment 5/6 CR

5 25.8 13 HCC 2.4 Segment 5 PR

6 25.0 N/A NET 6 Segment 6/7 CR

7 22.4 N/A NET 4.1 Segment 4B CR

8 29.9 11 HCC 4.5 Segment 5 PR

9 32.5 7 HCC 3.4 Segment 5/6 CR

10 23.9 7 HCC 4.6 Segment 7 PR

11 24.4 N/A NET 6 Segment 6 SD

12 24.8 13 HCC 5.3 Segment 6 CR

13 45.9 14 HCC 5.2 Segment 5/6 CR

15 22.7 8 HCC 4 Segment 3 CR

Table of subject demographics and tumor characteristics. The targeted lesions
consisted of hepatocellular carcinoma (HCC) or neuroendocrine tumors (NET). The

tumor size depicts largest measured diameter. Tumor response indicates the mRECIST
score at the first follow-up after TACE.

one dataset was excluded from analysis due to incomplete data acquisition and five were

excluded due to insufficient visualization of tumor vasculature on Pre-TACE images. An

example of excluded image cases are shown in Figure 4.1. Of the included 12 cases, the

targeted lesion was hepatocellular carcinoma (N=9) or a neuroendocrine tumor (N=3). Ta-

ble 4.1 outlines the patient’s demographic characteristics including BMI, tumor size, tumor

location, and treatment response. The MELD score, a measure of mortality risk, is pro-

vided for subjects with HCC. The MELD score is not an effective predictor for NET cases,

as the patient’s liver synthetic function is often preserved [144].

The subject demographics were fairly representative of population characteristics de-

scribed in other published findings. A majority of the cases involved posterior (N=8)

or anterior (N=5) segments, rather than lateral (N=2) and medial (N=1) segments. This
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aligns with previously studied cohorts, which report a greater proportion of lesions in the

right lobe [145, 146]. The average lesion diameter (4.35 ± 1.27 cm) and MELD score

(10.67± 2.70) were also representative of published values (diameter = 1.4-5 cm, MELD

= 10-11) [145–149]. In addition, this study includes examples of lesions with large diam-

eters (>5 cm), multi-segment involvement, and medial location (Segments 1 and 4). These

features are often associated with poorer treatment response, due to proximal vasculature

that is favorable for feeder vessel recruitment and the difficulty of achieving complete em-

bolization in large lesions [145, 148–150].

However, we note that non-contrast ultrasound methods may be less effective for as-

sessment of deep lesions and among patients with obesity. In the current work, only sub-

jects with peripheral lesions (e.g. lesion within 10 cm imaging depth) were recruited. We

note that roughly 20% of HCC lesions are centrally located (e.g. ≥ 3 cm of liver capsule)

[149, 151, 152]. Ultrasound imaging of deeper targets is more susceptible to degraded SNR

due to attenuation; however, lesion depth has not been identified as a predictor for TACE

response [149]. In addition, a majority of the recruited subjects exhibited a healthy body

mass index (BMI) (< 25kg/m2). Obesity is associated with poor TACE outcomes and con-

tributes to degraded ultrasound image quality, which may lead to exam failure [84, 153].

Assessment of TACE response using ultrasound for subjects with deep lesions and obesity

will be validated in future work.

Figure 4.1: Insufficient visualization of tumor vasculature is caused by the presence of
hyperechoic imaging artifacts, possibly produced by reverberation or tissue leakage due to
motion. Examples of these artifacts are shown for Subjects 3 and 4.
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4.2.2 Treatment Response

Treatment response was evaluated approximately one month after treatment using contrast-

enhanced CT or MRI. At clinical follow-up, the lesions were classified as exhibiting pro-

gressive disease (PD), stable disease (SD), partial response (PR), or complete response

(CR) using the modified Response Evaluation Criteria in Solid Tumors [17]. Here, the

treatment was defined as incomplete (i.e. PD, SD, PR), suggesting residual tumor burden,

or defined as complete (i.e. CR), indicating a total reduction in enhancement and tumor

size. At the first follow-up, 7 cases were classified as complete response (CR=7), and 5

cases yielded an incomplete response (PR=4, SD=1).

4.2.3 Data Acquisition

All data acquisition was completed using a Verasonics research scanner equipped with

a C5-2 transducer operating at a center frequency of 4.16 MHz with a 16.6 MHz sampling

frequency. The imaging sequence was composed of nine angled plane waves spaced evenly

between -8 and 8 degrees at a frame rate of 5.4 KHz. Plane wave synthetic focusing (PWSF)

was applied, yielding a net frame rate of 600 Hz [58].

Ultrasound data was collected from subjects in the operating suite immediately before

and immediately after undergoing TACE therapy. Selection of the imaging field of view and

data collection was performed by a trained interventional radiologist. Three datasets each

consisting of 1,200 frames (2 seconds) were obtained at each timepoint, and one dataset

was selected for image processing based on tumor visualization and motion characteristics.

The spatiotemporal coherence was computed to adaptively select an ensemble of 300

consecutive frames (0.5 seconds) to form the images. As described by Nayak et al., the
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Figure 4.2: Four image processing pipelines were tested: ppCFPD + SVD filtering, CFPD
+ SVD filtering, Power Doppler + SVD filtering, and conventional Power Doppler + IIR
filtering. Adaptive demodulation (AD) was used to reduce degradation due to axial motion.

spatiotemporal coherence matrix can be computed as

C(i, j) =

∑Nx
x1

∑Nz
z=1

(
yi(x,z)− ȳi(x,z)

) (
y j(x,z)− ȳ j(x,z)

)
√∑Nx

x=1
∑Nz

z=1

∣∣∣∣yi(x,z)− ȳi(x,z)
∣∣∣∣2 ∑Nx

x=1
∑Nz

z=1

∣∣∣∣y j(x,z)− ȳ j(x,z)
∣∣∣∣2 . (4.1)

between successive frames, yi and y j, over all axial and lateral (Nz and Nx) pixels. High

spatiotemporal coherence is associated with low axial, lateral, and out-of-frame motion,

which are sources of degradation in power Doppler images [154–156]. For the coherence

computation, a 7 cm axial range centered around each tumor was used. The 300 frame

ensemble with the highest mean coherence was used for image formation.

4.3 Image Formation

4.3.1 Pre-Processing

Four image processing pipelines were considered to assess the utility of adaptive filter-

ing and coherence-based beamforming (CFPD and ppCFPD), as shown in Figure 4.2. The
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aperture domain methods were compared to conventional power Doppler images formed

with adaptive SVD filtering and conventional IIR filtering. All image processing methods

studied used matched pre-processing, described as follows.

Processing and analysis were performed with Matlab (version R2018b, MathWorks,

Natick, MA), using Vanderbilt’s Advanced Computing Center for Research and Education

(ACCRE). Beamforming was implemented using the UltraSound ToolBox (v2.1) and the

TensorLab (v3.0) function mlsvd was used for HOSVD [127, 128]. In addition, CFPD and

ppCFPD processing was performed using a modified implementation of the C++ spatcov

library [52, 157].

The conventional power Doppler images were produced from the radiofrequency (RF)

data, which was obtained by beamforming the channel data. Since plane wave imaging was

used, synthetic transmit focusing was achieved by compounding each steered transmission

[58]. The coherence beamforming methods studied in this paper operate on ‘aperture data’,

rather than RF data. Aperture data refers to the delayed channel data after plane wave

synthetic transmit focusing, prior to the channel sum.

To reduce axial motion, adaptive demodulation was applied to the RF or aperture data

[79]. The estimated motion profile for adaptive demodulation was obtained from the RF

data using a 1 mm axial kernel. All images were formed using a 9 cm field of view,

processed in 1 cm axial blocks for computational efficiency.

To facilitate SVD filtering, the data is reshaped into a Casorati form. For RF data, this is

a matrix of size CXZ×T , composed of X×Z spatial pixels and T temporal frames. Similarly,

for aperture data, the casorati form is a matrix of size CXZC×T , where C is the number of

channels. Filtering was implemented using random sampling of each 1 cm axial image

block to form 10 submatrices as described by Song et al.[108].
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4.3.2 Power Doppler with IIR Filtering

Power Doppler images are conventionally formed using a wall filter that rejects low

frequency signals. However, wall filters impose a trade-off between the rejection of non-

stationary clutter and the preservation of low velocity blood flow. These low-frequency

signals overlap in the Fourier Domain, which has historically limited Doppler detection

of blood flow to velocities greater than 5-15 mm/sec [53]. Here, we employ a 6th order

Chebyshev infinite impulse response (IIR) filter applied to the RF data to demonstrate the

‘clinical standard’.

The power Doppler image was reconstructed from the filtered RF data, RF(a), over a

temporal ensemble of length A as

PD =

A∑
a=1

|RF(a)|2 (4.2)

Averaging was performed over an axial kernel of one wavelength to reduce error, as de-

scribed by Loupas et al.[89].

4.3.3 Power Doppler with SVD Filtering

Recent advances in adaptive SVD filtering have enabled improved sensitivity toward

low velocity blood flow. Several clinical systems have developed ‘low velocity’ imaging

modes that use adaptive filtering, including Superb Microvascular Imaging (Canon Medical

Systems, Otawara, Japan) and Microvascular Flow Imaging (Samsung Medison Co., Ltd.,

Seoul, Korea) [41].

Various techniques exist for SVD filter implementation and subspace classification [56].

In this embodiment, the singular value decomposition is performed on the Casorati ma-

trix of RF data. Tissue clutter is suppressed by removing the lower order singular value

components, which are classified using the mean frequency of the corresponding temporal
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singular vectors. Similar to IIR filtering, adaptive cutoff is performed by defining a cutoff

frequency [65]. After filtering, the power Doppler image is formed as written in Eq. 4.2.

4.3.4 Coherent Flow Power Doppler (CFPD) with SVD Filtering

Coherent Flow Power Doppler (CFPD) images display the normalized spatial coher-

ence of the backscattered blood echo. CFPD imaging estimates the short-lag spatial coher-

ence after applying a filter to remove the tissue signal. For clarity, we note that ‘spatial’

coherence refers to the measure of coherence across the aperture dimension, e.g. between

pairs of channels. Several forms of extraneous signals that degrade image quality, including

noise and reverberation clutter, are uncorrelated and suppressed in CFPD imaging.

After transmit focusing and performing adaptive demodulation, the aperture data was

reshaped into a casorati form, e.g. that spatial and channel dimensions were combined.

SVD filtering was then performed as described in Subsection 4.3.3, where a lower cutoff

was obtained to remove the tissue signal. The filtered aperture data then undergoes short-

lag spatial coherence processing, whereby an estimate of the normalized spatial coherence

is obtained. The normalized spatial coherence, R(m), for a transmit aperture of size N may

be written as

R(m) =
1

N −m

N−m∑
i=1

∑n2
n=n1 yi(n)yi+m(n)√∑n2

n=n1 y2
i (n)

∑n2
n=n1 y2

i+m(n)
, (4.3)

which is calculated for all pairs of aperture signals, yi and yi+m, separated by a given channel

separation or lag, m. To reduce random errors, estimation over an axial kernel, n, of one

wavelength is employed.

The short lag spatial coherence metric is obtained by averaging the normalized spatial

coherence for a set of M successive lags as

V(a) =
1
M

M∑
m=1

R(m). (4.4)
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The CFPD image is then reconstructed using a modified power estimate for an ensemble of

length A, as

CFPD =

A∑
a=1

V(a)2. (4.5)

4.3.5 Power Preserving CFPD with SVD Filtering

The image intensity of CFPD portrays the normalized spatial coherence, rather than

the power of the Doppler echo [62]. This can be beneficial for detection tasks, as CFPD

is less sensitive to depth-dependent effects [84]. However, unlike power Doppler, CFPD

intensity has a non-linear response toward the number of blood scatterers, which limits

detection of changes in blood flow [73]. Power preserving CFPD (ppCFPD) is a modified

form of CFPD that employs a measure of covariance, rather than normalized coherence.

This method preserves the linear relation between image intensity and scatterer density,

while retaining suppression of incoherent signals [73]. For ppCFPD, the spatial covariance

may be written

R̆(m) =
1

N −m

N−m∑
i=1

n2∑
n=n1

yi(n)yi+m(n). (4.6)

Similarly, the spatial covariance is averaged for a set of M successive lags as

V̆(a) =
1
M

M∑
m=1

R̆(m). (4.7)

and the ppCFPD image is reconstructed using the relation

ppCFPD =

A∑
a=1

V̆(a). (4.8)

Note that Equation 4.8 omits the square term shown in Equation 4.5; the computation of

covariance in Eq. 4.6 results in units of amplitude squared, e.g. power, so the ppCFPD im-

age scale remains equivalent to power Doppler. For both CFPD and ppCFPD, a maximum
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lag (M) of 15 was used.

4.4 Analysis

Power Doppler image intensity is proportional to the volume of blood scatterers that

exhibit a velocity exceeding the filter cutoff frequency [86, 158]. For equal assessment

between paired pre-TACE and post-TACE images, a single cutoff frequency between 10

and 80 Hz (2-15 mm/sec) was chosen for each subject and filter type. The lowest cutoff

frequency that enabled rejection of tissue clutter at the tumor site was selected.

4.4.1 Changes in Contrast as a Measure of Therapeutic Efficacy

To quantify the differences between the pre-TACE and post-TACE images, the change

in tumor-to-noise contrast was measured. Contrast enables a relative measure of the tumor

intensity compared to the background noise. Noise arises from the electronic components

of the ultrasound system and is approximately uniform over the full field of view. However,

image processing methods, such as as time-gain compensation, cause spatial variation of

the noise profile. To facilitate comparison between images, noise equalization was applied

to reduce intensity bias. The noise field for each dataset was estimated using the last-rank

singular vector obtained from the SVD performed for power Doppler image formation, as

described by [106].

The anatomical Bmode image was used to identify the tumor boundary and generate

Figure 4.3: Example of paired pre-TACE (left) and post-TACE (right) ROIs generated for
Subject 6.
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a tumor region of interest (ROI) for each case, as depicted in Figure 4.3. The size of the

ROI was scaled to the largest tumor diameter, measured using the pre-treatment CT or

MRI, and adjusted based on the field-of-view. The noise ROI was defined as a 20×30 mm

rectangular region corresponding to noise in the PD image formed using SVD filtering.

Using the tumor and blood ROIs, the contrast was measured as

C = 10log10(
S̄ tumor

S̄ noise
), (4.9)

where S̄ tumor indicates the average tumor intensity and S̄ noise is the mean noise intensity.

Since the TACE procedure occludes blood flow at the tumor site, a decrease in contrast

between pre-TACE and post-TACE images was expected for successful cases. The change

in contrast between time points was measured for each subject as CPre−T ACE −CPost−T ACE .

4.4.2 Coherence-Based Beamforming

Unlike PD and ppCFPD, CFPD image intensity does not scale linearly with echo power

so changes in CFPD image contrast are not proportional to changes in blood flow. However,

coherence-based imaging can improve detection tasks, such as the identification of tumor-

feeding vessels [84]. To study the feasibility of using CFPD and ppCFPD imaging to detect

tumor blood flow, the tumor-to-background contrast and generalized contrast-to-noise ratio

(GCNR) were computed for the pre-TACE images. Both complete and incomplete pre-

TACE cases were considered.

Since HCC and NET are hypervascular lesions, the pre-TACE images were expected

to produce a positive tumor-to-background contrast, measured using Eq. 4.9. Since the

contrast quantifies the difference between the tumor and background enhancement, a higher

contrast is assumed to indicate improved visibility of the lesion.

Similarly, the generalized contrast-to-noise ratio (GCNR) measures the likelihood of

discrimination based on the amount of overlap between the signal and background intensity
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Figure 4.4: Examples of data ensembles with low (red box) and high (yellow box) spa-
tiotemporal coherence for Subject 10 (top) and Subject 1 (bottom). The high coherence
image (center) exhibits higher blood flow sensitivity than the low coherence image (right).

histograms [100]. The GCNR is computed as

GCNR = 1−
∫ ∞

−∞

∫ ∞

−∞

min{ f (x)g(x)}dx, (4.10)

where f (x) is the intensity distribution of the background and g(x) is the intensity distri-

bution of the blood signal. A GCNR of 1 indicates complete discrimination of the blood

signal from the background, and a GCNR of 0 indicates no discrimination. For this study,

256 bins were used.

4.5 Results and Discussion

Images are displayed on a log scale with the upper bound (0 dB) equal to the maximum

image intensity. The lower bound of the dynamic range was defined as the median intensity

of the background region of interest for each image.
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Figure 4.5: Conventional power Doppler images (left) exhibit a depth-dependent bias that
can be reduced by performing noise equalization (center). The derived noise profile for
Subject 11 is shown on the right.

4.5.1 Spatiotemporal Coherence

Qualitatively, the global spatiotemporal coherence was an effective indicator of data

quality and metric for adaptive ensemble choice. Ensembles with low spatiotemporal co-

herence exhibited greater motion and may require higher cutoff frequencies for sufficient

rejection of the tissue signal, which can decrease sensitivity toward low velocity blood flow.

Adaptive demodulation additionally improved ensemble coherence through the reduction

of axial motion. As shown in Figure 4.4, spatiotemporal coherence may be a valuable

metric to assess image quality during clinical data acquisition and processing.

4.5.2 Noise Equalization

Noise equalization improved differentiation of low intensity blood flow, especially for

deep targets in SNR-limited conditions [44, 106]. In addition, applying the equalization

produced a more uniform noise floor, depicted in Figure 4.5 which permits equitable com-

parison between images. As shown in Figure 4.6 the pre-TACE power Doppler contrast

was improved for both IIR filtering (before: 0.34 ± 4.05 dB, after: 2.27 ± 2.18 dB) and

SVD filtering (before: 0.34 ± 3.16 dB, after: 2.25 ± 1.37 dB) with noise equalization.
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4.5.3 Changes in Contrast as a Measure of Therapeutic Efficacy

Treatment-induced changes in tumor contrast are observed after TACE. As shown in

Figure 4.7, cases with a complete response exhibited a decrease in contrast (IIR = 2.01 ±

1.71 dB, SVD = 2.12 ± 1.44 dB). In comparison, incomplete cases do not exhibit a clear

trend for contrast change (IIR = 0.71 ± 3.36 dB, SVD = 0.53 ± 1.17 dB). In this study,

an upper SVD cutoff to reject noise is not employed because low velocity flow may exist

within the last rank singular vectors [106]. As a result, the SVD and IIR filters exhibit

comparable noise rejection and a similar tumor-to-noise contrast. However, the SVD filter

was more robust for tissue signal rejection, as shown in Figure 4.8. Since IIR filtering is

not adaptive, a higher cutoff frequency often had to be used to achieve sufficient rejection

of the tissue signal.

Qualitatively, the observed change in tumor enhancement after TACE aligns with the

therapeutic response, as depicted in Figure 4.9. Full suppression of blood flow within and

adjacent to the tumor site is observed for Subjects 2 and 15, who exhibited a complete

response. In comparison, Subjects 8 and 10 had a partial therapeutic response and exhibit

residual blood flow. Before TACE, Subject 8 exhibits discrete and sub-resolvable blood

Figure 4.6: The blood-to-background
contrast is improved by applying noise

equalization.

Filter CR PR SD

IIR 2.01 ± 1.71 0.49 ± 3.83 1.58

SVD 2.12 ± 1.44 0.77 ± 1.2 -0.43

Table 4.2: Change in Contrast (dB) between
Pre-TACE and post-TACE images by thera-
peutic response (CR = 7, PR = 4, SD = 1) for
PD images with noise equalization.
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Incomplete Response Complete Response

Figure 4.7: Complete (CR) cases exhibited a greater change in contrast after TACE than
incomplete (PR, SD) cases.

flow at the tumor site. Although a decrease in vascular burden is observed after TACE,

several discrete vessels remain. For Subject 10, the Portal Vein and peripheral tumor vas-

culature is visible before TACE. The portal vein is no longer in the field of view following

TACE, but some residual tumor vasculature is observed. Lastly, Subject 11 had no change

in observed vessels following TACE, which corresponds to the stable disease classification

at follow up.

Figure 4.8: As shown for Subject 9 (top) and Subject 1 (bottom), the SVD filter was more
robust than the IIR filter at preserving blood flow and rejecting the tissue signal.
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Figure 4.9: Paired Pre-TACE (left) and Post-TACE (right) images for subjects with com-
plete response, partial response, or stable disease at follow-up using mRECIST criteria.
Rows 1 and 2: Subject 2 and Subject 15 were classified as complete response.
Rows 3 and 4: Subject 8 and Subject 10 were classified as a partial response.
Row 5: Subject 11 presented with stable disease at follow up, indicating no change.

4.5.4 Coherence Beamforming

Initial feasibility for liver tumor flow detection with coherence imaging methods is

demonstrated, as potrayed in Figure 4.10. Qualitatively, CPFD and ppCFPD improved

suppression of background noise, which yields improved detection of conspicuous vessels.

Two cases (Subjects 7 and 11) exhibited ppCFPD image dropout at the tumor location

due to dark-region artifacts, described in the next section, and were excluded from image

quality assessment. As show in Figure 4.11, the coherence imaging methods produced a
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Figure 4.10: Comparison of PD + SVD, ppCFPD + SVD, and CFPD + SVD images for
Subject 2. Blood flow is visible at the tumor site for pre-TACE (top) and suppressed in
post-TACE (bottom) images.

higher tumor-to-background contrast (CFPD = 4.81 ± 1.81 dB, ppCFPD = 6.97 ± 4.55

dB) in comparison to the power Doppler methods (IIR = 1.97 ± 2.18 dB, SVD = 2.07 ±

1.44 dB). However, we pair this finding with a note of caution regarding two weaknesses

of image quality measures for adaptive beamforming.

As described by Rindal and others, we first recognize that image contrast is sensitive

to dynamic range transformations [159, 160]. CFPD images portray the normalized coher-

ence of the echo data, which does not scale linearly with echo power. Therefore, quan-

titative comparison between CFPD and power Doppler contrast may be complicated by

non-linear dynamic range bias. In recent literature, several techniques have been proposed

to enable fairer comparison between conventional and adaptive beamformers for B-mode

(tissue) applications. One such method is histogram matching, wherein images containing

varied dynamic ranges are transformed to a consistent scale [160]. However, a limitation

of histogram matching for blood flow applications arises when the adaptive and conven-

tional images exhibit different image features; For example, low velocity blood flow that is

obscured in power Doppler may be uncovered due to improved rejection of tissue or acous-

tic clutter. For blood flow imaging, there remains an unsolved need for robust, invariant

measures of clinical image quality.

A potential solution for adaptive imaging is the generalized contrast-to-noise ratio,
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Figure 4.11: Pre-TACE tumor-to-background contrast (left) and GCNR (right) metrics.
Subjects 7 and 13 were excluded due to the presence of dark-region artifacts that obscured
perception of tumor blood flow.

which is a scale-invariant metric that can be used to assess vessel detectability [100]. As

shown in Figure 4.11, we observe that CFPD yields a higher GCNR than power Doppler,

which indicates improved discrimination (CFPD = 0.72 ± 0.17, PD + IIR = 0.52 ± 0.21,

PD + SVD = 0.56 ± 0.25). In comparison, ppCFPD performed slightly worse than PD with

SVD with a difference in GCNR of 0.44 ± 0.25 dB.

The disparity between ppCFPD contrast and GCNR performance demonstrates a sec-

ond weakness of the adaptive beamformers in the current study. Adaptive beamformers,

including ppCFPD and CFPD, are susceptible to the formation of ‘dark-region’ artifacts

[103]. Dark-region artifacts occur during adaptive beamforming when the imaging field

of view contains hyperechoic structures which produce strong off-axis scattering. Off-axis

Figure 4.12: Subject 13 exhibits a dark-region artifact that obscures visualization of blood
flow at the tumor site. For ppCFPD, dark-region artifacts manifest as negative pixels, which
are set to zero. For CFPD, dark region artifacts degrade coherence measures and result in
lower contrast.
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signals result in negative coherence measures, which decrease contrast and affect visual-

ization of blood flow, as shown in Figure 4.12. For ppCFPD, negative pixel values are

set to zero, so dark region artifacts present as image dropout. Since CFPD pixel inten-

sity is positive-valued, image drop out does not occur, but coherence measures are likely

degraded.

As performed for other adaptive beamformers, negative pixel values are not considered

for ppCFPD image quality metrics. Under the assumption of additive noise, the ppCFPD

background pixel intensity is expected to follow a zero-mean Gaussian distribution. Thus,

roughly half of the noise pixels are expected to fall below zero; however, the presence of

dark-region artifacts decreases the proportion of excluded background pixels, which de-

grades metric computation. In addition, strong off-axis scattering can cause signal-bearing

regions to produce negative coherence values, resulting in drop-out in areas of blood flow.

The channel data degradation likely arises from a number of factors, including acous-

tic clutter (e.g. off-axis scattering and reverberation), phase aberration, and attenuation

from cirrhotic liver parenchyma. Channel-based processing methods, such as ADMIRE

or HOSVD filtering, may aid in reducing acoustic clutter [51, 105]. Similarly, methods

that operate across transmit angles, rather than across channels, have been proposed for

aberration correction and coherence computations [107, 161].

Figure 4.13 demonstrates initial feasibility of applying an HOSVD filter to reduce

ppCFPD image drop-out. The SVD-filtered ppCFPD image preserves conspicuous vas-

culature within the tumor region, but areas of low-intensity enhancement are suppressed.

Enhancement at the tumor site is expected to correspond to unresolvable blood flow, which

may be valuable for assessment of TACE [27]. Figure 4.13 displays the histogram of pix-

els within the background ROI for Subject 2, where the pixels are observed to be skewed

toward negative values. To reduce this effect, an HOSVD filter was implemented with

three upper cutoffs along the temporal, channel, and spatial dimensions [105]. Matching

SVD, a 40 Hz cutoff was employed to choose the temporal cutoff. The spatial cutoff was
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Figure 4.13: A ppCFPD image formed with SVD filtering (column 1) compared to ppCFPD
images formed with HOSVD filtering (columns 2-4). The ppCFPD images suffered from
dark region artifacts, which cause negative pixel values. HOSVD filtering increased im-
age coherence, resulting in higher pixel intensities. However, greater rejection of channel
singular vectors with HOSVD (increasing left to right) resulted in rejection of background
noise and affected image contrast.

empirically selected. Images were formed using three channel cutoffs (64, 96, or 112) to

reject noise and off-axis scattering within the higher rank vectors. Rejection of channel

components using an HOSVD filter improved image coherence, and may be valuable for

preservation of unresolvable blood flow.

In future work, a straightforward approach to improve the quality of the channel data

is to modify the transmit angle sequence. Plane wave imaging sequences invoke a trade-

off between frame rate, resolution, and contrast [58]. Image resolution is determined by

the angular span; however, the number and inter-transmit angular spacing affect the image

contrast. Sparse angular sequences introduce grating lobes, which degrade the channel

coherence. For future work, a smaller angular span is recommended. As shown in Figure

4.14, employing an acquisition sequence with 9 angles spaced between -4 and 4 degrees,

rather than -8 and 8 degrees, improves the channel quality without lowering frame rate.
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Figure 4.14: Example of filtered, delayed channel data from Subject 2 that is degraded by
strong off-axis signals. As demonstrated using Field II simulations, the use of a smaller
angle span or greater number of angles improves the appearance of the channel data.

4.6 Conclusions

This pilot study demonstrates that power Doppler imaging with advanced processing

methods may be used to differentiate complete and incomplete therapy immediately after

TACE. Using power Doppler imaging, we demonstrate that the change in contrast between

pre-TACE and post-TACE images was indicative of procedural outcome. Advanced image

processing methods, including adaptive ensemble selection, noise equalization, and SVD

filtering, improved sensitivity to low velocity tumoral flow by (1) improving the tumor-

to-background contrast and (2) improving rejection of the tissue signal. Challenges and

considerations for aperture domain processing are addressed.

Adaptive selection of the imaging ensemble using the spatiotemporal coherence pro-

duced fewer tissue artifacts. Regions of high spatiotemporal coherence exhibit improved

tissue stationarity, which improves separation of tissue and low velocity blood flow dur-

ing filtering. In this work, the spatiotemporal coherence was employed to optimize retro-

spective ensemble selection from datasets containing 2 seconds of data. However, several

datasets produced insufficient rejection of the tissue data due to excess motion. During the

TACE procedure, the subject is under mild sedation and may experience difficulty breath-

holding due to discomfort. Spatiotemporal coherence could be a potential solution for

intraoperative assessment of data quality, and should be considered during real-time imag-
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ing.

Similarly, the use of noise equalization yielded improved tumor-to-background contrast

and improved homogeneity of the noise floor. We note that noise equalization does not

directly change the intrinsic separation between the blood signal and the noise floor, but

improves the dynamic range of small vessels. Noise equalization reduces intensity bias

caused by TGC and other processing, which enabled the TACE-induced changes in blood

flow to be detected using the change in contrast, a relative measure. Direct measurement of

the change in blood echo power, which scales linearly with blood volume, is compromised

by factors including the field-of-view and cardiac cycle. In future work, the change in

power could be considered by EKG gating and by fixing the probe during TACE to ensure

a consistent field-of-view.

Both SVD and IIR filtering yielded sufficient rejection of the tissue signal to permit

TACE-induced changes in blood flow to be observed. The SVD filter produced better

rejection of tissue clutter than the IIR filter, likely due to adaptive basis generation and

blockwise processing. Filtering efficacy was likely improved by the application of adaptive

demodulation to reduce axial motion as described by Tierney et al.[79]. A 2D motion

correction algorithm, such as speckle tracking, could further address rotational and lateral

translation.

The aperture domain processing improved visualization of coherent signals, such as

conspicuous vasculature, but was limited by aperture data degradation. This work demon-

strates that CFPD and ppCFPD can detect low velocity blood flow in liver tumors, but

additional studies are needed to assess if sensitivity is retained for perfusion-level (e.g.

sub-resolution) flow. A primary limitation of this study is that strong off-axis scattering

resulted in the presence of dark-region artifacts that compromised measurement of image

contrast. The application of channel-based filtering methods, such as HOSVD, may address

these limitations. Since CFPD image intensity does not scale with the blood echo power,

alternative measures of vessel detection, such as a reader study, may also be considered.
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For future work, transmit sequence design should be considered, including the number

and span of steering angles. The use of smaller inter-angle spacing may reduce the presence

of grating lobes and improve coherence estimation. In addition, methods to synthetically

increase the number or span of the transmissions could be applied to increase the signal-to-

noise level of the data. In addition, the development of real-time power Doppler imaging

via GPU and parallel processing would improve data collection and enable more robust

assessment of the proposed processing methods.

Non-contrast power Doppler is a potential solution for immediate evaluation of thera-

peutic response during TACE procedures. In combination with adaptive filtering, motion

compensation, and noise equalization, power Doppler is sensitive to changes in low ve-

locity blood flow. In addition, we demonstrate preliminary feasibility of using coherence-

based imaging methods to improve detection of conspicuous tumor blood vessels in clut-

tered environments. The findings of this pilot study indicate that power Doppler can be

used to detect residual vascularity and differentiate therapeutic outcome after TACE.
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Chapter 5

Conclusions and Future Work

This thesis presents aperture domain methods to improve visualization of low velocity

blood flow in challenging imaging environments. The clinical objective of this work was

to improve evaluation of residual blood flow following TACE procedures, which may lead

to improved identification of collateral feeder vasculature, earlier retreatment of recurrent

lesions, and improve procedural outcomes. Non-contrast power Doppler ultrasound is an

attractive modality for TACE evaluation because it eliminates the need to intravenously ad-

minister contrast and reduces radiation exposure. The primary barriers for ultrasound eval-

uation of blood flow in liver lesions, as well as other deep imaging targets, are insufficient

signal separation and inadequate signal-to-noise ratio [41]. We proposed two technologies

that address these barriers and potentially facilitate earlier evaluation of TACE efficacy.

The first contribution of this thesis was developing a coherence-based beamforming

method, termed power-preserving Coherent Flow Power Doppler (ppCFPD). This method

is a modified form of CFPD that employs spatial coherence to suppress clutter, while re-

taining proportionality between image intensity and the fractional moving blood volume.

In addition, a theoretical bound was devised to enable adaptive thresholding to remove re-

maining spurious noise. Validation was performed using simulated, phantom, and in vivo

data.

In Chapter 2, ppCFPD was shown to improve image quality in experimental data. This

work is the first example of a spatial coherence beamforming method that can preserve a

linear imaging response toward the echo power. This outcome addresses a primary limita-

tion of CFPD imaging, which has a non-linear imaging response that is dependent on the

SNR and flat with respect to echo power. As a result, CFPD is appropriate for anatomical

or feature detection tasks, but not quantitative or semi-quantitative assessment [84]. We

demonstrate that ppCFPD is sensitive toward changes in blood signal power, which is pro-
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portional to the blood volume; thus, ppCFPD may be well-suited for perfusion imaging

applications.

Future work may be performed to further characterize the ppCFPD parameters. The

coherence measure is estimated by averaging the covariance for short lag values, which

aligns with SLSC and CFPD imaging. The rationale for using short lag values is that

the coherence of blood is readily separable from incoherent clutter and noise. However,

lateral resolution improves with an increasing maximum lag, which may be valuable for

small vessel imaging. Similarly, the application of an axial kernel improves the covariance

estimate for ppCFPD imaging, but reduces the axial resolution. In this thesis, the maximum

lag value and kernel sizes are only studied in a limited scope, and may be further optimized.

In addition, additional study is necessary to validate ppCFPD for clinical imaging of

microvascular flow. Low velocity blood flow is typically associated with small-diameter

vessels, including arterioles, venules, and capillaries. Prior work in the lab and by others

has suggested that sub-resolution blood flow may appear on Doppler imaging as a haze,

rather than as discrete vessels [27, 34]. Validation of ppCFPD and the thresholding tech-

nique were performed using single vessel simulations, which are not representative of true

microvascular flow. Additional research is needed to determine the feasibility and imaging

characteristics of applying ppCFPD to visualize sub-resolution blood flow.

A limitation for ppCFPD imaging is the potential to develop ‘dark region artifacts’,

which are regions of drop-out adjacent to bright targets [103]. Since ppCFPD employs

a measure of covariance between channels, strong off-axis echoes manifest as negative

pixel values. Dark region artifacts compromise vessel detection and quantitative measures,

as low-amplitude blood flow may be obscured. One potential solution to mitigate dark

region artifacts is to pre-process the delayed channel data using a channel-dimension filter

to remove strong off-axis contributions. As shown in Chapter 2, aperture domain features

could be leveraged using an HOSVD or SVD filter.

The second contribution of this thesis was establishing a framework for higher-order
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singular value decomposition (HOSVD) filtering of aperture data. The efficacy of this

technique compared to SVD filtering was demonstrated using simulated and in vivo data.

Further, we studied the novel application of an SVD filter to aperture data for further com-

parison. Finally, both technologies were successfully applied to clinical data and prelim-

inary feasibility was shown for using HOSVD to improve visualization of residual blood

flow after TACE.

A shortcoming of the current filtering framework is that the spatial dimension classifier

is sensitive to spatially-variant imaging features, such as depth-dependent gain or inhomo-

geneous tissue regions. Although the classifier worked well in simulation and for initial

in vivo liver imaging, it was not robust when applied to the TACE data. This is likely

due to factors such as cirrhosis and field-of-view heterogeneity in the TACE data, which

are not considered in the proposed classifier. In addition, the TACE data employed dif-

ferent imaging parameters and filter implementation, as the TACE data focused on larger

fields-of-view, blockwise processing, and longer ensembles. The dimensions of the aper-

ture data tensor affect subspace distribution across singular values and singular vectors.

For example, the effect of sample size on noise-bearing singular values is modelled by the

Marcenko-Pastur distribution [120]. In addition, factors including aperture-based effects

(aberration, reverberation, off-axis signals), complex motion (tissue compression, out-of-

frame motion), and varied field of view (cirrhosis, multiple vessels) likely affect estimation

of the Nakagami parameters. A variety of alternative cutoff methods have been proposed

for SVD and HOSVD filtering. These methods include manual (e.g. defined number of

singular vectors), parameterized (e.g. based on frequency or singular value magnitude),

and automated (e.g. spatial correlation matrix) techniques.

Clinical adoption of HOSVD filtering will primarily be limited by its associated com-

putational burden. As described in Chapter 3, implementing the HOSVD filter incurs sub-

stantially greater computational cost than a conventional SVD filter. This burden may be

reduced through the use of parallel computing or GPU processing, which could enable
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real-time or more efficient processing. Alternatively, we note that the classifier features

proposed for the HOSVD filter could be applied to other SVD or blind-source-separation

frameworks. We have demonstrated that an SVD filter can be applied to a casorati matrix

of aperture data, and have proposed efficient projection-based techniques as well.

Lastly, the work presented in Chapter 4 demonstrates the feasibility of using non-

contrast ultrasound to evaluate tumor vascular response after TACE therapy. This work

extends a prior study that demonstrated that non-contrast ultrasound is sensitive to sup-

pression of blood flow incurred by TACE [27]. In this thesis, non-contrast ultrasound was

combined with adaptive demodulation, aperture domain beamforming, noise equalization,

and adaptive ensemble selection. These methods were shown to improve flow detection in

clinical data, as characterized by image quality and a novel reader assessment. The use of

noise equalization removed the depth-dependent effects of time-gain compensation, which

enabled a novel assessment of tumor power. In addition, the use of a temporal correlation

measure for ensemble selection further illustrates the benefit of adaptive demodulation for

low-velocity blood flow imaging.

The advantage of using ultrasound for post-operative assessment of TACE is the ca-

pacity for immediate evaluation before the patient leaves the operating suite. Conventional

evaluation of therapeutic efficacy using MRI or CT cannot be performed until 4-6 weeks

post-treatment [8, 10, 16]; similarly, contrast-enhanced ultrasound is susceptible to artifacts

until 1-2 days post-treatment [18, 23]. Re-treatment of lesions that exhibit recurrence or

residual tumor burden is performed ‘on-demand’ based on follow-up imaging [8, 11, 15].

Multiple sessions are frequently used to maximize chemoembolization response; however,

repeated TACE can be detrimental to liver and vascular function [162]. Immediate follow-

up would allow the clinician to re-treat residual tumor within a single TACE treatment,

which would likely improve therapeutic efficacy and improve patient outcomes.

Future work will further validate the pilot study discussed in Chapter 4 to characterize

the relationship between post-TACE ultrasound findings and patient outcomes. Future re-
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cruitment will focus on patients with intermediate-stage hepatocellular carcinoma, which

often presents with hypervascularity at the tumor site. Continuation of this clinical study

will permit comparison between ultrasound and follow-up MRI/CT, evaluation of image

quality based on tumor size and location, and measurement of time-to-progression. The

relationship between ultrasound findings and treatment efficacy will be determined using

a Cox Proportional Hazard model. In addition, further research may consider the implica-

tions of tumor vessel morphology, the tortuosity, size, and density of tumoral vessels may

influence therapeutic delivery.

In addition, work will be performed to further develop post-processing methods and im-

prove the acquisition sequence. Since the acquisition frame rate is limited by the number

of angles, one focus of improvement may be adjusting the spacing of the angular sequence.

Using a sparse angle sequence incurs grating lobes, so using a tighter spacing and smaller

total angular span would improve contrast resolution [58]. In addition, the development

of real-time processing and display of power Doppler images would improve data acquisi-

tion, particularly for deep lesions. The development of real-time processing and indepen-

dent component analysis (ICA) clutter filtering is ongoing work that will enable improved

study of low-velocity and perfusion-level flow [163–165]. The methods presented in this

thesis are also complimentary with other techniques developed in the lab, such as Aper-

ture Domain Model Image REconstruction (ADMIRE) [166–168], deep learning methods

for clutter rejection [169, 170], and coded transmit sequences for increased imaging SNR

[171].

The application of ultrasound imaging to evaluate changes in blood flow after TACE

additionally supports research to optimize TACE embolization endpoints. A deficiency of

the TACE procedure is the lack of an objective endpoint metric to assess the degree of em-

bolization achieved [172]. Procedural completion is evidenced by qualitative presentation

of digital subtraction angiography, characterized by decreased contrast diffusion within the

target region and contrast backflow. Angiographic studies suggest that embolization to a
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substasis antegrade flow produces a greater treatment benefit, in comparison to full-stasis

endpoints [173]. Overall, TACE outcomes remain mixed with complete or partial response

achieved reported as (51-76%), in part due to varied levels of embolization achieved [9–13].

In particular, tumors supported by multiple vessels have a lower response rate, as feeding

vessels outside of the region of contrast diffusion may not be detected with DSA [174].

Since Power Doppler and ppCFPD are indicative of the fractional moving blood volume,

ultrasound may be an effective modality to measure the degree of arterial stasis. Addi-

tionally, ultrasound-based assessment is well-suited for clinical adoption in comparison to

other modalities, as it is portable and does not require specialized operating suites.

Beyond TACE, this work has broader applications for functional and therapeutic assess-

ment. TACE is an appealing clinical application for the development and validation of flow

imaging methods due to its controlled nature and potential for clinical benefit. However,

several other therapies for the treatment of hepatocellular carcinoma could benefit from

perfusion evaluation, including transarterial radioembolization (TARE), ‘bland’ transarte-

rial embolization (TAE), and radiofrequency ablation. These methods comparably involve

ablation or embolization to reduce tumor viability, and could benefit from ultrasonic blood

flow imaging for navigation or treatment evaluation. Numerous other clinical ultrasound

applications are limited or degraded by acoustic clutter, such as functional neuroimaging,

which could also benefit from the aperture domain methods presented in this thesis.

In conclusion, this thesis presents the development, validation, and clinical assessment

of two aperture domain technologies to improve blood flow imaging in poor imaging envi-

ronments. This work addresses two limitations of Doppler imaging, poor SNR and insuf-

ficient signal-separation, which limit clinical evaluation of low-velocity blood flow using

ultrasound. In Chapter 2, an aperture domain beamforming method is presented improves

image quality by rejecting acoustic clutter sources. In Chapter 3, a higher-order singular

value decomposition filter is proposed that operates on a tensor of aperture data for greater

suppression of clutter and noise signals. These technologies are shown to overcome clinical
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barriers and enable non-contrast ultrasound assessment during TACE procedures. Overall,

this work demonstrates the value of aperture domain methods and motivates future study

of filtering and beamforming methods.
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Appendix A

Elaboration on Location-Scale Probability

As asserted in Section 2.6.1, location-scale probability statistics, which includes the
normal distribution, are used to obtain the model of ppCFPD pixel intensity for noise sig-
nals. The family of location-scale probability distributions assert that for any random vari-
able X described by a class of distributions, Ω, that belongs to the location-scale family, the
distribution Y d

= a + bX is also a member of Ω.
This means that for two independent, normally-distributed random variables, X1 ∼

N(µ1,σ
2
1) and X2 ∼ N(µ2,σ

2
2), their linear combination will also be normally distributed,

aX1 + bX2 ∼ N(aµ1 + bµ2, a2σ2
1 + b2σ2

2). (A.1)

As posed previously in Equation (2.16), the expression for the ppCFPD pixel intensity for
a signal containing only noise is

ppCFPD = AHσ2
noise

1
M

M∑
m=1

1
N −m

N−m∑
i=1

ρyiyi+m ,

where we describe the variable ρyiyi+m to be a normally distributed random variable with
calculable mean and variance as described in 2.18, assuming that ρyiyi+m is approximately
equal to its comparable Z-score, z(m), for low correlation values as obtained in the case of
IID noise.

The remaining variables in Equation (2.16) are defined as constants, such that the
ppCFPD pixel intensity shares a linear relationship with ρyiyi+m , following the assertions in
Equation (A.1). This allows us to obtain the final probability distribution for the ppCFPD
pixel intensity described in Equation (2.19).
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Appendix B

Closed Form Approximation of a Harmonic number

We note that an approximate closed form solution for generalized harmonic numbers is
formulated as

Hn ≈ ln(n) +γ+
1

2n
−

∞∑
k=1

B2k

2kn2k , (B.1)

where Bk are Bernoulli numbers and γ is the Euler-Mascheroni constant, which describes
how harmonic numbers asymptotically approach the natural log. A closed form approxi-
mation can be obtained using a truncated series

Hn ≈ ln(n) +γ+
1

2n
−

1
12n2 +

1
120n4 . (B.2)

The accuracy of using the truncated series approximation in the difference equation ∆H =

(HN-1 −HN-M-1) is depicted below in Table 2.1. The relative error was evaluated for N =

128 elements and M = 20 lags as

Error, dB = 20log10

 |∆Ĥ −∆H|

∆H

 . (B.3)

Table 2.1: Accuracy ofHN-1−HN-M-1 Approximation

Approximation Form Error, dB

Ha−Hb = ln( a
b ) -47.3 dB

Ha−Hb = ln( a
b ) + a−1−b−1

2 -98.1 dB

Ha−Hb = ln( a
b ) + a−1−b−1

2 − a−2−b−2

12 -194.7 dB
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Appendix C

Power Doppler Noise Statistics

The formula for power Doppler shown in Equation (2.1) may be expanded to

PD =

A∑
a=1

 N∑
i=1

yi(n)


2

, (C.1)

where the power Doppler signal is computed as the squared sum of N delayed channel
signals, yi(n), summed over a temporal ensemble, A.

If we assert the same assumptions as in the ppCFPD analysis, namely that yi(n) ∼
N(0,σ2

noise), we find that
N∑

i=1

yi(n) ∼ N(0,Nσ2
noise). (C.2)

Squaring this normal term yields a Gamma distribution, N∑
i=1

yi(n)


2

∼ Γ(
1
2

, 2Nσ2
noise), (C.3)

of shape k = 1
2 and scale θ = 2Nσ2

noise. The summation of A Gamma distributed parameters,
Xi, with the same scale, θ, produces

A∑
i=1

Xi ∼ Γ

 N∑
i=1

ki, θ

 , (C.4)

hence we find that power Doppler pixel intensity computed for channel signals containing
only noise is distributed

PD ∼ Γ

(A
2

, 2Nσ2
noise

)
, (C.5)

with a non-zero mean and variance of

µpixel = kθ = ANσ2
noise

σ2
pixel = kθ2 = 2A(Nσ2

noise)2.
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