MULTIVARIATE LESION SYMPTOM MAPPING FOR PREDICTING TRAJECTORIES OF
RECOVERY FROM APHASIA

By

Deborah Faith Levy

Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in
Hearing & Speech Sciences

August 13, 2021

Nashville, Tennessee

Approved:

Dr. Stephen Wilson, Ph.D.
Dr. Michael de Riesthal, Ph.D.
Dr. Melissa Duff, Ph.D.
Dr. Ipek Oguz, Ph.D.



To my grandfather, Marvin Levy, whose inexhaustible wit and curiosity at the age of 97 serve as a
constant reminder that there will never be a good excuse to stop learning.

i



ACKNOWLEDGMENTS

There’s an old adage, attributed to many potential sources but with which I am most familiar
through my grandfather: “If you’re the smartest person in the room, you’re in the wrong room”. In
alignment with this quote, I'd like to acknowledge some of the numerous brilliant individuals with
whom I’ve been lucky enough to share rooms over the last five years, and without whom this work
would not have been possible.

First and foremost, to my advisor, Dr. Stephen Wilson: thank you for your clear and effective
guidance, your systematicity and (to borrow a term) perspicacity, your approachable demeanor,
your patience and understanding, and your trust in me to learn to do things I didn’t know I was
capable of. Working with you made graduate school an altogether pleasant (in addition to an
extremely educational) experience, and I couldn’t have asked for a better advisor.

To my lab mates in the Language Neuroscience Lab: thank you for your incisive questions,
your expertise and guidance (both clinical and scientific), your kindness, your support, and your
incredibly hard work. To Sarah, Jillian, Caitlin, Maysaa, and Marianne, this dissertation quite
literally could not have happened without your years of effort. Thanks to all of you, as well as to
Melodie, Anna, and Yev, for your camaraderie as well as your scientific counsel.

To my various committee members and mentors across multiple projects—Drs. de Riesthal,
Duff, Oguz, Ramachandran, Stecker, Chang, Morgan, and Booth—thank you for your valuable
insights and instructive feedback. The quality of my work was increased greatly by your oversight.

To Dominique and the members of the Aphasia Group of Middle Tennessee: thank you for
welcoming me into your incredibly special community with open arms, and for your patience and
openness towards me despite my lack of clinical training. It was an absolute honor getting to know
you all, and I will never forget everything you’ve taught me about resilience, humor, the value of
community, and the multitudinous ways a person can express who they are.

To my Hearing and Speech Sciences cohort: thank you for your steadfast support and inspiring
successes. | am so amazed by all that you’ve accomplished! Thank you in particular to Sarah
and Natalie for your friendship, and your constant willingness to dissect all the eccentricities of
academic life with me.

To my friends—in particular Carley, Emily, Meredith, Alina, and Nic—thank you for remind-
ing me that there is life outside of graduate school, and for always making that life so much fun.

To my parents and big sibling Rowan: thank you for the unending love and support that made
me believe I was capable of anything. I am so lucky to have had you all as cheerleaders, both
throughout this process and throughout my life.

To my fiancé, Isaac: thank you for flying to Nashville at 4:00 AM twice a month for three
years to come visit me while we were long distance; thank you for driving cross-country to move
here immediately after defending your Master’s thesis, despite the fact that you hadn’t slept in a
week; thank you for letting me ask you endless methodological questions and tolerating it when I
inevitably yelled at you for answering them too intelligently; thank you for loving me uncondition-
ally, even at my messiest, grouchiest, least confident, and most covered in Hot Cheeto dust. Thank
you for still wanting to marry me despite it all.

And finally, to all the participants in this study and their loved ones who made this work possi-
ble: thank you for your time, your tenacity, your faith in the scientific process, and your willingness
to let us learn from you. This work is the result of nothing if not your strength and generosity.

1l



TABLE OF CONTENTS

Page

DEDICATION . . . . o ittt e e e e et e ittt et neeas ii
ACKNOWLEDGMENTS . . .. . it e i it e it e ittt et ee e an iii
LISTOFTABLES . . . . i it it it i it e ittt et e e n e vii
LISTOFFIGURES . . . . . i i ittt i it ettt ittt et n e viii
1 Literature Review . . . . . . . . . i i i i ittt et e e e 0
1.1 Predicting recovery from aphasia . . . . . .. ... ... ... ... ... ... 1
1.1.1  Linguistic predictors . . . . . . . . . . . . . e 1

1.1.2  Demographic predictors . . . . . . . . . ... ... 2

1.1.3  Lesion-related predictors . . . . . . . ... ... ... ... 3

1.2 Lesion-symptom mapping (LSM) . . . . .. .. .. ... ... . 5
1.2.1  Anabridged history . . . . . . . . ... ... . 5

1.2.2  Contemporary methods . . . . . .. ... ... ... ... ... ... 10

1.2.2.1 Methods for quantifying language . . . . . ... ... ... .. 10

1.2.2.2  Methods for quantifying lesions . . . . ... ... ... .... 13

1.3 Multivariate approaches . . . . . . . .. ... L 17
1.3.1 General concepts . . . . . . ..o 18

1.3.2  Prior multivariate LSM studies of aphasia . . . . . . ... .. ... ... 20

2 Methods & Analysis . . . . . ¢ v v v v i i i i i e e e e e e e e e e 28

v



2.1 Characterization of dataset . . . . . . . . . . . . . ... 28

2.1.1  Participants . . . . . . ... e e e e 28

2.1.2  Languageevaluation . . . . . . . . .. .. ... .. 29

2.1.3  Lesiondelineation . . . . . . . .. .. ... 31

2.2 Analysis . ... e e e e 32
22.1 Mixedeffectsmodeling . . . ... ... ... ... . ... 32

2.2.2  Support vector regression (SVR) . . . . ... o oo 33
2221 Feature representation . . . . . ... ... ... ... ... .. 34

2222 Modelbuilding . ... ... ... ... o 35

2223 Datahandling . . . .. ... ... ... .. ........... 38

2.2.2.4  Cross-validation and performance assessment . . . . . . . . .. 38

2.2.2.5 Model comparison . . . .. .. ..o 39

2.2.2.6  Beta weight extraction/feature importance . . . . . .. .. ... 40

3 Results . ... i e e e e e e e e e e e e 41
3.1  Descriptive statistics and figures . . . . . . . ... oL L Lo 41
3.1.1  Language . . . . . . . .. e 41

3.1.2  Imaging . . . . . . . . e e 46

3.2  Linear SVR model performance . . . . . . .. ... ... ... ... ... ... 49
3.2.1  Models 1 through 4: Cognitive neuroscience focus . . . . . . .. ... .. 50
3.2.1.1 Neural correlates and other predictors of recovery . . . . . . . . 51

3.2.2  Models 5 through 8: Clinical focus . . . . . . ... ... ... ...... 51
3.2.2.1 Predicting outcomes at follow-up . . . . . . .. ... ... ... 52

3.2.2.2  Neural correlates and other predictors of recovery . . . . . . .. 53

3.2.2.3 Predicting change at follow-up . . . . . ... .. .. ... ... 53

3.3 Non-linear SVR model performance . . .. ... ... ... ... ... ..... 54
4 Discussion . . ... i e e e e e e e e e e e e e e e 70



4.1

Language recovery is decelerating but continuous across most language domains . 70

4.2 SVR can predict some language outcomes with excellent accuracy as measured
by ICC . . . e 72
4.3  Information about lesion location significantly improves predictions . . . . . . . . 75
4.4  Correlation-based accuracy on predictions of change scores should be interpreted
withcaution . . . . . . .. L 76
4.5 RBF-based SVR models do not appear to offer clear benefits over linear SVR
models . . .. 77
4.6  Implications for treatment and ethical considerations . . . . . . . .. .. .. ... 78
4.7  Limitations and future directions . . . . . . . ... ... Lo 81
S5 Conclusion . .. .. ... it e e e e e e e e e e 84
References . . . . . . . . i i i i i ittt i it i i e e e 85

vi



Table

1.1

2.1
2.2

3.1
3.2
33

LIST OF TABLES

Page
Theorized relationships between lesions and symptoms in Wernicke (1886).. . . 8
Participant characteristics and retention across time points. . . . . . . . . . . .. 30
Model characteristics for different experimental questions. . . . . . . ... . .. 36
Mean QAB scores for people with aphasia across time. . . . . . . .. ... ... 41
Mean QAB scores for people without aphasia across time. . . . . . .. ... .. 42
Abbreviations for regions of interest. . . . . . . . ... ..o 49

Vil



Figure

1.1
1.2

2.1
22

3.1
3.2
33
34
3.5
3.6
3.7

3.8

3.9

3.10

3.11

3.12

LIST OF FIGURES

Page
The classic model of aphasia. . . . . ... ... ... .. ... ......... 7
[ustration from Mah et al. (2014) of spatial bias in mass-univariate lesion
symptom mapping techniques. . . . . . . . .. ..o o 16
Lesion delineation and normalization. . . . . . . . . .. ... ... ... .... 33
Combined gray and white matter atlas used in feature generation. . . . . . . . . 35
Alluvial plot showing sample makeup and retention across time points. . . . . . 43
Spaghetti plots of QAB overall across the first year of recovery. . . . . .. . .. 44
Mixed-effects estimates of QAB scores across time. . . . . ... ... ..... 45
Correlations between subscores of the QAB acrosstime. . . . . . .. ... ... 46
Lesionoverlays. . . . . . . . . . . .. 47
Correlations between lesion size and ROl damage. . . . . . ... ... ... .. 48
Model performance (ICC) for cognitive neuroscience-focused Models 1 and 2
(including only individuals with aphasia). . . . . . . . ... ... ... ... .. 56
Model performance (ICC) for cognitive neuroscience-focused Models 3 and 4
(including individuals with and without aphasia). . . . . . . ... ... ... .. 57
Scatter plots of actual versus predicted outcomes for Model 1 across stages of
the model-building procedure. . . . . . . . ... ... .. L. 58
Regions of interest (ROIs) implicated for language domains well-predicted by
Model 1 at the one year time point. . . . . . . . . . .. ... ... ....... 59
Model performance (ICC) for clinically-focused Models 5 and 6 (predicting
outcomes using acute score as apredictor.) . . . . . ... L. 60
Scatter plots of actual versus predicted scores for Model 6 across stages of the
model-building procedure. . . . . . . ... 61

viil



3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

Regions of interest (ROIs) implicated for language domains well-predicted by
Model 5 at the one year time point. . . . . . . . ... ... ... ........ 62
Model performance (ICC) for change-focused Models 7 and 8 (predicting change
using acute score as a predictor.). Note validity concerns. . . . . . . .. .. .. 63
Scatter plots of actual versus predicted change for Model 8 across stages of the
model-building procedure. Note validity concerns. . . . . . . . ... ... ... 64
Model performance (ICC) for Models 7 and 8 when predicted change is added
totruebaselines. . . . . . ... L oL 65
Scatter plots of actual versus predicted outcomes based on predicted change for
Model 8 across stages of the model-building procedure. . . . .. ... ... .. 66
Illustration of the origins of spurious results in correlations between actual and
predicted change. . . . . . . . . . ... 67
Model performance (ICC) for non-linear models using a radial basis function
kernel when all predictors are utilized. . . . . . .. ... ... ... ... ... 68
Differences in model performance (ICC) between non-linear and linear models

when all predictors are utilized. . . . . . .. ... ... ... ... ... ..., 69

1X



CHAPTER 1

Literature Review

Aphasia is an acquired disorder of communication that results from injury to regions of the brain
that support language (NIDCD, 2015). While aphasia can result from a number of etiologies,
including traumatic brain injury, brain tumor, and neurodegenerative disease, it is most commonly
caused by stroke (Crinion et al., 2013; Shuster, 2018; Mayo Clinic Staff, 2020).

Of the approximately 800,000 individuals who have a stroke in the United States each year
(Benjamin et al., 2017), anywhere from 21-38% of them present with aphasia acutely (Pedersen
et al., 1995; Laska et al., 2001; Pedersen et al., 2004; Flowers et al., 2016). The vast majority
of cases of aphasia result from infarct to the left hemisphere (Berthier, 2005) and most in the
territory of the middle cerebral artery (MCA) (Fridriksson et al., 2018). Maximal recovery of lan-
guage function tends to occur within the first three months (Kertesz and McCabe, 1977; Pedersen
etal., 1995; Laska et al., 2001; Wilson, 2019), and while it was once widely believed that recovery
plateaus after the first six months post-stroke (Hersh, 1998; Elman, 2016; Johnson et al., 2019),
recent work has begun to seriously challenge this adage (Fridriksson and Hillis, 2021). However,
there remains a significant amount of inter-individual variability in both short- and long-term re-
covery (Lazar and Antoniello, 2008; Dunn et al., 2016; Hope et al., 2017); some individuals will
recover their language near-completely in the first few months following stroke, while others may
be forced to deal with the resulting language impairment for the rest of their lives (Lendrem and
Lincoln, 1985; Pedersen et al., 1995). Due to the devastating consequences of aphasia on qual-
ity of life (Spaccavento et al., 2013; Musser et al., 2015), the burden it imposes on loved ones
and caregivers (Hilton et al., 2014; Musser et al., 2015), and the clinical desire to provide clear
and effective guidance on navigating the recovery process (Doogan et al., 2018), individuals with
aphasia, their loved ones, and their treating clinicians alike are eager to better understand whether

and in what ways language can be expected to recover in individuals who have experienced aphasic



stroke (Worrall et al., 2011; Bright et al., 2013; Hope et al., 2013).

1.1 Predicting recovery from aphasia

When aiming to predict recovery from aphasia, there are three main classes of information that
have been commonly considered; linguistic, demographic, and stroke-related. Linguistic predic-
tors, generally, refer to the nature of language or aphasia immediately following stroke, including
overall severity, particularities of language symptoms, and the presence and extent of therapeu-
tic intervention. Demographic predictors describe characteristics of individuals prior to the onset
of their aphasia, including information about age, gender, or years of education. Finally, stroke-
related predictors cover information about the cerebrovascular event that caused the aphasia, such
as the extent and location of the lesion or the subtype of stroke experienced. A summary of find-
ings on aphasia recovery with reference to these three general classes of predictors are presented

below.

1.1.1 Linguistic predictors

Linguistic predictors are commonly believed to be among the most effective predictors of apha-
sia recovery, with initial severity in particular being associated with poorer long-term outcomes
(Lazar et al., 2010; Osa Garcia et al., 2020). Patients who present with milder language impair-
ments tend to recover more quickly, and often resolve to better language function in the long-term
(Pedersen et al., 1995). Those with more severe presentations acutely unfortunately tend to remain
significantly impaired linguistically (Kertesz et al., 1979; Lazar et al., 2010). To the extent that
they do recover, more severe, non-fluent forms tend to evolve to milder, more fluent forms over
time (Kertesz and McCabe, 1977; Laska et al., 2001; Pedersen et al., 2004; Bakheit et al., 2007),
with cases reported of individuals transitioning from globally aphasic to mildly anomic within a
year (Pedersen et al., 2004). Earlier and more intensive administration of speech-language therapy
have been associated with more positive outcomes in recovery (Bhogal et al., 2003; Breitenstein
et al., 2017; Fridriksson and Hillis, 2021; Ali et al., 2021), though these findings have at times been

challenged (Lincoln et al., 1984; Laska et al., 2001); for discussion of some open questions and



new developments regarding the role of speech and language therapy in post-stroke aphasia, see
Doogan et al. (2018) or Fridriksson and Hillis (2021).

It is commonly believed that recovery from aphasia, like other post-stroke deficits, abides by a
“proportional recovery rule”, which states that individuals with stroke tend to recover some fixed
proportion of their lost function, in general about 70% (Lazar et al., 2010; Marchi et al., 2017).
However, the legitimacy of this rule is disputed from a statistical perspective, as the strong baseline-
change correlations that appear to support proportional recovery have been shown to occur even in
simulated data with no true association between baseline and outcome scores (Hope et al., 2019;
Hawe et al., 2019; Bonkhoff et al., 2020; Bowman et al., 2021). However, the general notion that

initial severity is highly predictive of long-term outcomes is largely uncontroversial.

1.1.2 Demographic predictors

Demographic variables refer to characteristics of patients that are unrelated to their stroke, such
as age, sex, race, or years of education. The extent to which this class of variables is predictive
of language and recovery from aphasia is still debated. While there do not generally appear to be
significant independent effects of sex on aphasia outcomes (Pedersen et al., 1995; Wallentin, 2018;
Gerstenecker and Lazar, 2019) some studies have suggested that females may have slightly better
recoveries than males (Basso et al., 1985; Pizzamiglio et al., 1985). Many studies have noted no
effect of age on aphasia recovery (Lendrem and Lincoln, 1985; Lazar and Antoniello, 2008; Ellis
and Urban, 2016), but some studies have suggested that younger individuals show better recoveries
than older individuals (Pickersgill and Lincoln, 1983; Laska et al., 2001). Years of education may
have a modest positive relationship with aphasia recovery (Gonzélez-Ferndndez et al., 2011), but
this effect is debated (Connor et al., 2001; Lazar and Antoniello, 2008); interestingly, however,
individuals with more education have been shown to be less likely to present with aphasia at all
following stroke (Gonzalez-Fernidndez et al., 2011; Watila and Balarabe, 2015). While socioeco-
nomic status (SES) has been shown to be a good predictor of initial aphasia severity, such that

individuals with lower SES tend to present with more severe aphasia acutely, the rate of recovery



from aphasia was not shown to differ across socioeconomic groups (Connor et al., 2001). Ethnic-
ity does not appear to independently contribute to outcomes in aphasia recovery (Holland et al.,
1989), although there is very little work investigating the subject; though race-related differences
in neurocognitive outcomes following stroke have been reported, they seem to be mediated by
other factors (Horner et al., 2003; Johnson et al., 2017).

In line with this concept, it is important to note that even when demographic variables show
associations with language outcomes, this does not inherently mean that they are mechanisms of
recovery in and of themselves. Instead, demographic variables may covary with unmeasured vari-
ables that more directly drive recovery (e.g., years of education may covary with cognitive reserve
that allows for more successful compensatory strategies; see Umarova et al., 2019), or covary with
nuisance variables that can disguise recovery when it is present (e.g. age may covary with fac-
tors like hearing and vision loss which could impact assessment results without truly reflecting
language abilities; see Wertz and Dronkers, 1990). In summary, prior work has revealed very
few unambiguous relationships between demographic variables and language recovery following

stroke.

1.1.3 Lesion-related predictors

Lesion and stroke-related factors appear to be the most reliably predictive determinants of aphasia
recovery (Watila and Balarabe, 2015), although the relationship between lesions and language is
far from straightforward. Whether or not stroke subtype—that is, ischemic or hemorrhagic—has
effects on aphasia recovery remains somewhat unclear, with some studies showing no association
between stroke type and recovery (Paolucci et al., 2003; Salvadori et al., 2020) and others sug-
gesting that survivors of hemorrhagic stroke have better language outcomes in the long-term (Jung
etal., 2011). Lesion size and lesion location, however, strongly associate with language outcomes,
such that larger lesions are strongly associated with poorer recoveries, and lesions in peri-Sylvian
regions in the generally language-dominant left hemisphere are associated with poorer language

outcomes than lesions to other sites (Naeser and Palumbo, 1994; Gerstenecker and Lazar, 2019).



Such findings were extremely enlightening in the early days of aphasia research, when the ex-
istence of “language regions” at all was a source of significant debate (see the next section for
a review of this historic period and the resulting classical model of language). However, at this
point in history, the general assertion that extensive damage to known language regions will have
negative effects on language leaves much to be desired in terms of its prognostic power. Contempo-
rary research has demonstrated that a significant number of patients do not conform to theoretical
expectations for their language based on their lesion location (Mohr, 1976; Basso et al., 1985;
Willmes and Poeck, 1993; Berthier, 2001; Yourganov et al., 2015), and that information that is not
directly attributable to the size or location of the infarct, such as hypoperfusion, diaschisis, and
abnormal functional activation, also make significant contributions to language impairment (Olsen
et al., 1986; Metter et al., 1989). Even so, lesion-related factors remain perhaps the most powerful
predictors of aphasia recovery (Watila and Balarabe, 2015), and have formed the basis for a widely
used method in research on language and aphasia, lesion symptom mapping (Wilson, 2017; Forkel
and Catani, 2018). Findings from the lesion symptom mapping literature will be discussed in detail
in later sections of this document.

Taken together, all of this information suggests that recovery from aphasia is a complex and
multicomponent problem, one that is influenced by many interacting variables and that is ex-
tremely difficult to predict using overly simplistic models, even those that take the most robust
predictors—Ilesion-related factors—into account. However, it would be unwise to embark upon
any serious discussion of factors contributing to aphasia and aphasia recovery without first dis-
cussing the foundational models that shaped the field. The next section will explore the long and
influential history of lesion-deficit models in the study of aphasia, to put into context the more

contemporary methods and findings that inform the current work.



1.2 Lesion-symptom mapping (LSM)

1.2.1 An abridged history

The ability to reliably map functions of language onto neural regions has been sought after for
centuries (Tesak and Code, 2008), but the search perhaps began in earnest in the early 1860’s,
with a series of debates among Parisian physicians leading to key breakthroughs that still influence
aphasia practice today (Leblanc, 2019). In these days prior to computerized neuroimaging, such
investigations into the brain-language relationship could not occur until autopsy, when the locus of
neural damage could be assessed and retroactively mapped onto language symptoms displayed by
a patient during their lifetime. Using this method, physicians and in-laws Jean-Baptiste Bouillaud
and Ernest Auburtin had noticed a pattern in their patients: those who suffered from deficits in
their language almost universally came to autopsy with lesions to their frontal lobes. Bouillaud
and Auburtin became so convinced of the relationship between frontal lobe damage and language
impairment that they put forth a challenge to their peers: anyone who could show them a patient
with language impairment who did not have frontal lobe damage would be rewarded with 500
Francs (in the case of Bouillaud) and a public renunciation of their beliefs (in the case of Auburtin).
Not long after, a new patient, Leborgne, came to the care of neurologist Paul Broca, suffering
from an acute gangrenous infection in addition to a chronic and severe impairment of expressive
language. Leborgne quickly became the test case for the challenge, and he did not disappoint:
upon coming to autopsy less than a week later, Leborgne’s brain showed extensive degeneration
centered on—as judged by Broca—the third frontal convolution. Surprisingly, the fact that it was
Leborgne’s left frontal lobe that was impacted did not strike Broca as particularly important until
several years later, when the pattern among later autopsy cases became too striking to ignore.
It was at that time that his famous theory of language lateralization—"“we speak with the left
hemisphere”—was established (Berker et al., 1986). Interestingly, a relatively unknown father-
son pair of physicians, Marc and Gustave Dax, actually arrived at this same conclusion several
years earlier (Joynt and Benton, 1964), but attempts to publish the findings were met with little

success. The final Dax paper ended up being published in the same year as Broca’s—earlier, in



fact—but was greatly overshadowed; as Levelt (2013) puts it, “It is not a modern phenomenon that
the process of peer review can occasionally fail” (p. 61).

In the intervening years, the new study of aphasiology spread across Europe and found a new
home in Germany, where a young physician, Carl Wernicke, took up its study. Wernicke re-
jected the notion that language could have a single circumscribed seat in the brain, deeming it
highly improbable in the context of his understanding of speech development and his findings of
comprehension-based impairments to language following posterior damage (Wernicke, 1875). He
instead proposed a connectionist model of language, in which multiple nodes and connections in
the left hemisphere operated in tandem to produce fluent language production and comprehension.
These nodes and connections could, he suggested, each be lesioned with varying effects on lan-
guage, resulting in a list of seven language syndromes which could theoretically occur as a function
of the language centers lesioned. This model was clarified, schematized, and demonstrated in pa-
tients by Wernicke’s student, Ludwig Lichtheim (Lichtheim, 1885), and finally crystallized in 1886
into what we generally now refer to as the “classic model” (Wernicke, 1886).

The classic or “house” model of aphasia (see Fig. 1.1) consisted of three primary centers, re-
ferred to by Lichtheim as (A) the center for auditory images, (M) the center for motor images, and
(B), the center for concepts; the remaining two centers were (m) and (a), referring to the articula-
tory system and the auditory sensory system, respectively. Lesions to the centers and commissures
and their associated language syndromes as described in Wernicke (1886) are summarized in Table
1.1.

Based on autopsy, centers A and M were localized to the left inferior frontal gyrus and the left
superior temporal gyrus, respectively, with center B theorized to consist of a number of distributed
cortical areas dedicated to representing sensory and conceptual information. This anatomically-
based connectionist model provided explanatory power both to predict lesion location from aphasic
syndrome, as well as to bring together Broca’s expressive aphasia and Wernicke’s sensory aphasia,
two distinct syndromes which had not always been considered in tandem as equally “linguistic”

(as many early physicians considered receptive aphasias to be impairments of intelligence, rather



Fig._ 1.

Figure 1.1: Reproduced from Lichtheim (1885). The classic model of aphasia as shown by Lichtheim (1885). See
Table 1.1 for further detail.



Lesion Wernicke Nomenclature Symptoms

- Spontaneous speech in tact

Commissure a—A | Subcortical sensory aphasia . . o
- Impaired comprehension/repetition

- Spontaneous speech with semantic paraphasias

Center A Cortical sensory aphasia . . .
yap - Impaired comprehension/repetition

- Spontaneous speech with semantic paraphasias
Commissure A—B | Transcortical sensory aphasia | - Repetition in tact
- Impaired comprehension

- Comprehension in tact

Commissure A-M | Conduction aphasia i .
- Semantic paraphasias

- Repetition/comprehension in tact

Commissure B-M | Transcortical motor aphasia .
- Impaired spontaneous speech

- Comprehension in tact

Center M Cortical motor aphasia . .\
- Impaired spontaneous speech/repetition

- Comprehension/“word-concept” in tact

Commissure M—m | Subcortical motor aphasia ) ...
- Impaired spontaneous speech/repetition

Table 1.1: Theorized relationships between lesions and symptoms in Wernicke (1886).

than language; Tesak and Code, 2008). The model was initially celebrated for its incisiveness, but
even as early as 40 years later was mocked for its oversimplification of aphasic syndromes; Head
(1926) wrote, “Lichtheim’s paper...reads like a parody of the tendencies of the time...it enabled...an
easy dogmatism, but serious students could not fit these conceptions of aphasia to the clinical
phenomena” (p. 65). Though this critique may seem harsh in the context of the model’s enduring
influence, it has indeed become clear over time that the ability of the classic model to predict
aphasia outcomes in the real world is far from infallible.

A number of issues with the early autopsy method can account for some of the model’s short-
comings. First of all, characterizations of language function in early autopsy studies were broad
and unsystematic, depending heavily on what a given physician, often with specific a priori hy-
potheses and without specific linguistic training, deemed interesting or important to test (Heilman,
2015). Additionally, the majority of historical conclusions relied on subjective judgments of where
the bounds of lesions truly laid, as there was no reliable means for standardizing lesion location
across individual cases (Dronkers et al., 2007). Finally, the need to wait for autopsy meant neural

findings were non-contemporaneous with symptoms; the state of the brain at death provided only



a single time point, precluding the ability to make inferences about how disease processes over the
lifetime may have dynamically impacted language at different stages of illness or recovery (Mohr,
1976). Due in part to such criticisms, connectionist approaches fell out of favor for several decades,
rejected in favor of more holistic models of language and intelligence in which all neural regions
worked together as a system, with no special role for particular nodes or connections in particular
processes. Yet the classic model remains the basis for a significant portion of modern-day practice
and study around aphasia.

The classic model was revived in the late 1960’s by Norman Geschwind, a Boston neurologist
who felt compelled to revisit the classical literature following discoveries about the behavioral
effects of severing the corpus callossum in animals (Geschwind, 1965). He brought to light several
cases that conformed to the predictions of the classic model, and in concert with Harold Goodglass
cemented the neo-classical Boston classification as a unified theory of brain and language. In
this school of thought, the primary components of the language system were Broca’s area (the
left pars opercularis and triangularis), involved in the production of language; Wernicke’s area
(the posterior superior temporal gyrus), involved in the comprehension of language; the arcuate
fasciculus, connecting Broca’s and Wernicke’s areas and involved in connection/feedback between
productive and receptive processes; and the angular gyrus, involved in cross-modality associations
(Geschwind, 1965; Tesak and Code, 2008). Damage to these areas and their connections could
result in a set of syndromes very similar to those described by Wernicke and Lichtheim; Broca’s
aphasia, Wernicke’s aphasia, conduction aphasia, transcortical sensory/motor aphasia, and anomia.
This Boston classification formed the basis for both the Boston Diagnostic Aphasia Examination
(BDAE) (Goodglass et al., 2001) and the Western Aphasia Battery (WAB) (Kertesz, 2007), two of
the most commonly used aphasia assessments today (Spreen and Risser, 2003; Patterson, 2015).

Not long after the neo-classical revival, the advent of computerized neuroimaging brought
with it new opportunities for comparatively more objective and immediate assessments of lesion
locations in relation to clinical syndromes. Initially, the majority of these investigations were

completed using lesion overlays, in which the lesions of patients with similar language syndromes



or symptoms were overlaid on top of each other to determine areas of maximal overlap that reliably
associated with language outcomes. Results from the overlay method supported some postulates
of the classic model (Kertesz et al., 1977; Naeser and Hayward, 1978), but raised a number of
issues with it as well; for example, exclusive damage to “Broca’s area”—anatomically, the pars
opercularis—very rarely lead to a lasting Broca’s aphasia (Mohr, 1976); a significant portion of
patients did not conform to theoretical expectations for their language based on their lesion location
(Basso et al., 1985), and language deficits often attributed to specific brain areas could arise from
damage to different brain areas entirely (Berthier, 2001). Willmes and Poeck (1993) even claimed
that “no unequivocal association between type of aphasia and localization of lesion” could be
found among a cohort over 200 patients (p. 1527), further challenging the connectionist approach.
Yet this new lesion overlay method was still plagued by some of the same issues as the autopsy
method; judgments of the bounds of lesion were holistic in nature, and in most cases required the
grouping of patients into aphasia subtypes into which they often only loosely fit, ignoring inter-
individual variation in symptoms within those subtypes. In order to make precise, longitudinal and
statistically tenable predictions about the relationship between lesions and language symptoms,
both measures of language and measures of lesions would have to be appropriately quantified. A
discussion of contemporary means by which first, language, and second, lesions, have been and

are currently being quantified for the purposes of aphasia research is presented below.

1.2.2 Contemporary methods

1.2.2.1 Methods for quantifying language

As discussed above, the BDAE and the WAB, in their revised forms, are two of the most commonly
used comprehensive aphasia assessments today. Both tests aim to assess aphasia severity and di-
agnose it taxonomically according to the Boston classification of aphasia. The WAB-R consists
of four main subtests (Spontaneous Speech, Auditory Verbal Comprehension, Repetition, Naming
and Word Finding) and four supplemental sections (Reading, Writing, Apraxia, and Construction-

al/Visuospatial/Calculation). The BDAE-3 consists of six sections: Conversational and Expository
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Speech, Auditory Comprehension, Oral Expression, Reading, Writing, and Praxis. Both assess-
ments collapse across scores on the subtests to arrive at one or more composite scores assessing
overall severity and a subtype diagnosis. These tests are widely used, but can be time-consuming
to administer in their full, most validated forms and have been criticized for their emphasis on
classical syndromes and the lack of nuance in their summary scores (Crary and Gonzalez Rothi,
1989; Hula et al., 2010; Patterson, 2015). More recent tests have focused less on classification
and more on assessing strengths and weaknesses across linguistic domains (for review, see Spreen
and Risser, 2003; Patterson, 2015), leading to results in the form of a multidimensional language
profile rather than a single diagnosis. However, the question of what should constitute a “linguistic
domain” remains its own area of research.

A number of studies have aimed to reveal subcomponents of language in a data-driven man-
ner. Dimensionality reduction techniques such as factor analysis (FA) and principal components
analysis (PCA) have been used to observe how performance on multiple language subtasks in in-
dividuals with aphasia clusters together; the majority of studies have detected at least one factor
that maps onto general severity, along with factors loosely mapping onto motor-speech, grammat-
icality, comprehension, and cognition; see Section 1 of Wilson and Hula (2019) for a review. Such
factors have, in many cases, become the basis for clinical assessment, defining which dimensions
are reflected in a multidimensional language profile. However, as Wilson and Hula (2019) note, it
is important to remember that any factors identified in such a manner are, by necessity, a function
of the tasks administered when probing for clusters, and thus task selection in any such investiga-
tion must be conducted carefully, aiming to sample widely across as many modalities as possible
(Hanson et al., 1982; Wilson and Hula, 2019). Another concern relates to the way that scores or
diagnoses on an aphasia battery are calculated, which can influence the methods by which their
results may be validly statistically analyzed and interpreted; for example, the Porch Index of Com-
municative Ability (PICA) has been criticized for treating its scoring system as equal interval (i.e.,
a score of 1 is as different from a score of 2 as a score of 15 is from a score of 16) without evi-

dence to suggest that it is necessarily even ordinal (Lincoln et al., 1981), with the WAB critiqued
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on similar fronts (Hula et al., 2010); see Ivanova and Hallowell (2013) for a summary of related
psychometric concerns in aphasia assessment at large. Particularly if ones’ interest is in lesion-
symptom mapping of the recovery process—that is, how the state of the brain relates to language
performance over time—it is imperative that any changes between language assessments be a re-
sult of actual changes in language itself, rather than measurement error of the language assessment
technique. It is therefore extremely important when choosing a quantitative method for assessing
language in aphasia to consider the reliability, validity, and statistical assumptions of the language
measure in question.

A newly introduced language assessment, the Quick Aphasia Battery (QAB), offers a rapid
means by which to comprehensively assess language using carefully selected test items (Wilson
et al., 2018b). The QAB is a non-classificatory, multidimensional aphasia battery consisting of
eight subtests: (1) level of consciousness, (2) connected speech, (3) word comprehension, (4) sen-
tence comprehension, (5) picture naming, (6) repetition, (7) reading aloud, and (8) motor speech.
Scores on these subtests are used to derive eight summary measures: (1) word comprehension, (2)
sentence comprehension, (3) word finding, (4) grammatical construction, (5) speech-motor pro-
gramming, (6) repetition, (7) reading, and (8) QAB overall, along with measures of dysarthria and
consciousness. The paper introducing the QAB provides quantitative evidence of its reliability
and validity (e.g. ICC range of .91-.99 for inter-rater reliability), provides clear scoring guidelines
for assessors, and supplies different testing forms for use specifically in longitudinal assessment.
The QAB demonstrated its ability to capture difference in language in its norming sample—with
more variability in language profiles across clinical diagnoses than within them—and correlated
with subscores on the well-established WAB. Limitations of the QAB include the absence of writ-
ing in its sampled language domains, and a relatively small norming sample size. However, its
psychometric characteristics, in conjunction with its extremely rapid administration time that ren-
ders it easy to administer at the bedside or even remotely, make the QAB a promising tool for the
longitudinal assessment of aphasia and language recovery.

Before moving forward, it is important to note that all of the previously described measures
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are impairment-based measures, meaning they assess the extent of disability across hypothesized
linguistic domains. However, there is also another school of thought entirely around aphasia as-
sessment in which language is measured from a functional perspective, that is, based on an indi-
vidual’s ability to communicate and participate in their life, rather than their ability to achieve high
performance on strictly linguistic tasks (Crockford and Lesser, 1994; Doyle et al., 2003; Galletta
and Barrett, 2014; Fama et al., 2016; Fridriksson and Hillis, 2021). For the purposes of this dis-
sertation, the focus is on linguistic outcomes, and thus such functional measures of language will
not be discussed in detail here; however, functional communication strategies and psychosocial
wellbeing are both crucial aspects of effective recovery, and should not be overlooked in broader
contexts. A review of functional methods for assessment is available in Chapter 8 of Spreen and
Risser (2003), and some preliminary work from this dissertations’ author on the benefits of apha-
sia groups for maximizing life participation, psychosocial wellbeing, and creative self-expression

while living with aphasia is presented in Kasdan et al. (2021).

1.2.2.2 Methods for quantifying lesions

Let us pivot now back to the quantification of lesions as needed for statistical approaches to
lesion-symptom mapping. One of the first efforts to explicitly quantify lesion extent in a study
by Turkheimer et al. (1990), which quantified the location and extent of lesions with respect to
anatomical landmarks across all axial slices of the brain, then assessed their covariance with var-
ious behavioral measures to derive “importance functions” across the cortex as related to those
behaviors. This study found damage to left frontal regions to be most important for predicting
verbal errors on the Aphasia Screening Exam. Similarly, Caplan et al. (1996) normalized CTs
to a Talairach template, calculated the amount of each normalized slice occupied by the lesion,
multiplied it by the slice thickness, and summed across slices in which the lesion appeared, to
then be split across regions of interest and associated with behavioral performance on a sentence
comprehension task. This study found that left-hemisphere peri-Sylvian areas were most associ-

ated with poor sentence comprehension, but detected no difference between patients with anterior
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and posterior lesions. These were some of the earliest studies to use explicit quantification of le-
sions in terms of covariance with language performance along a spectrum of scores, rather than
artificially dividing those scores or lesions into categories. A breakthrough in this method was
reached, however, when advances in computational ability first allowed for statistical calculations
on a voxel-wise basis.

In the late 1990’s and early 2000s, two new, mass-univariate methods for lesion-symptom
mapping were introduced: voxel-based lesion symptom mapping (Bates et al., 2003) and voxel-
based morphometry (VBM) (Ashburner and Friston, 2000). In VLSM, lesions are drawn either
manually or automatically on 3D images and then treated as binary masks, such that for each voxel
participants may be divided into lesioned versus non-lesioned groups and statistically assessed for
differences in the behavioral measure of interest. In VBM, each voxel’s integrity is instead treated
as a continuous measurement of the proportion of the voxel that is gray matter; this measure
is then correlated directly on a voxel-wise basis to behavioral scores across participants. The
two methodologies have been shown to produce partially overlapping but non-identical results in
the localization of language functions (Geva et al., 2012), and have occasionally been blended
to achieve particular theoretical or methodological aims (Leff et al., 2009; Wilson et al., 2015).
Taken together, VBM and VLSM have suggested that many distinct sub-functions of language
have distinct neural correlates, demonstrating, for example, differing neural bases for phonemic
substitution errors versus phonemic distortion errors (Wilson et al., 2010) and semantic naming
errors versus semantic conceptualization errors (Schwartz et al., 2009); see Wilson and Hula (2019)
for a detailed review. However, such univariate approaches are plagued by three main issues; first,
they artificially treat each voxel as a potentially independent predictor of language, even though this
is conceptually untenable; second, they are plagued by the “partial injury problem”, in which the
ability to detect regions relevant to a function of interest is dependent upon individuals exhibiting
different symptoms across lesion statuses at every voxel within a given functional region (Rorden
et al., 2009; Karnath et al., 2018); and third, they are subject to issues of notable spatial mis-

localization due to dependencies between lesion locations following the vascular distribution of
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the brain (Mah et al., 2014; Nachev, 2015).

Mass-univariate analyses artificially treat measurement units—that is, arbitrarily delineated
cubes of neural tissue in a brain image, or voxels—as functional units—that is, segments of the
brain that can meaningfully underlie particular cognitive processes (Karnath et al., 2018; Pustina
etal., 2018). It would seem quite unreasonable to suggest that, if a single cubic millimeter of brain
was lesioned in myself but not one of my peers, our language abilities would differ in any mean-
ingful way; however, mass-univariate analyses assume just that, treating each cubic millimeter of
tissue as if it has the potential to independently predict differences in language or language recov-
ery across individuals. Rather, lesioned voxels occur in a neural, vascular, and functional context,
such that the lesion status of a given voxel is (a) highly correlated with that of its neighbor (Pustina
et al., 2017), (b) highly dependent upon the vascular supply of the brain (such that certain voxels
are significantly more likely to be damaged than others; see Mah et al., 2014; Pustina et al., 2018),
and (c) is just one part of a much larger pattern of lesioned voxels, which in its entirety has effects
on behavior. Related to this last point is the “partial injury problem”, or the fact that behavioral
effects may result from damage to any given part of a functional unit, without the functional unit
needing to be destroyed in its entirety. However, if any set of voxels within a functional unit are
all needed for a given behavior, each of those voxels may be opaque to VLSM analysis, as its
statistical testing requires that behavior differs across lesion statuses within a single voxel (Rorden
et al., 2009; Karnath et al., 2018). Finally, the mass-univariate approach can easily mis-localize
symptoms as a result of neural regions that can be systematically damaged with, without them-
selves being, areas critical for a behavior of interest (see Figure 1.2 for an illustration, as well as
Mah et al., 2014; Inoue et al., 2014; Herbet et al., 2015; Xu et al., 2018).

Take, for example, the insula: the insula is often damaged in large MCA stroke due to its
position along the artery’s M2 segment; thus, most patients who have any significant damage along
the MCA will have damage to the insula, regardless of the heterogeneity in lesion distribution along
more distal branches of the artery (Kodumuri et al., 2016). Statistical power for detecting lesion-

symptom relationships may therefore be greatest in such vulnerable vascular territory (e.g. the
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Figure 1.2: Reproduced from Mabh et al. (2014): “Illustration of how stereotyped patterns of brain damage...across a
set of patients can hypothetically mislocalize damage of any part of critical area A...to the non-critical area B...This
will happen whenever the spatial variability of damage to a non-critical area is less for the group or factor of interest
than for the critical area” (p. 2523).
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insula), artificially de-emphasizing distal regions or tracts that are, in fact, behaviorally relevant
for language, but may not be adequately represented in a patient sample (Mah et al., 2014; Xu
et al., 2018; Wilson and Hula, 2019). Additionally, patterns of neural damage often occur in a
stereotyped manner due to the innate structure of the vasculature, resulting in a “hidden deep
structure in the data” (Nachev, 2015, p. 1) that spuriously influences the results of VLSM. For all
of these reasons, the mass-univariate approach to lesion-symptom mapping is difficult to interpret,

and some argue should not be used at all (Nachev, 2015).

1.3 Multivariate approaches

Recently, as computational power and ease of use has increased, multivariate! methods—that is,
methods that are able to deal with extremely high numbers of variables—have become increasingly
popular, and brought with them the ability to address a number of the issues presented by mass-
univariate methods. While mass-univariate lesion-symptom mapping methods operate on voxels,
aiming to localize functions to particular places in the brain based on differences in performance
across lesioned and non-lesioned individuals at each voxel, multivariate lesion-symptom mapping
methods operate on individuals, aiming to predict functional abilities based on an entire lesion map
considered simultaneously (often in combination with other factors). This capacity for prediction
over and above that of localization is an important difference between univariate and multivariate
methods; while both univariate and multivariate methods can be used to represent topographically
the neural correlates of behaviors (as we will discuss in detail shortly), only multivariate meth-
ods also possess the capacity to quantitatively predict behaviors from voxel-based lesion data on
an individual basis. While this is a slightly different question than that posed by much of prior
neuroscientific research historically, it is perhaps an even more clinically relevant area of research;

both clinicians and patients alike would likely be much more eager to know what they can expect

'The term “multivariate” here is used for consistency with other work in this field (e.g. Zhang et al., 2014; DeMarco
and Turkeltaub, 2018; Sperber et al., 2019; Ivanova et al., 2021); however, this may in fact be a bit of a misnomer,
as models that take multiple predictors should in the strictest terms be called multivariable models, as opposed to
multivariate models, a term which technically refers to models that produce multiple outcomes (Hidalgo and Good-
man, 2013). For the purposes of this dissertation, this questionable terminology goes unchallenged, but future work
may adjust terms accordingly.
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during recovery than whether or not a given cubic millimeter of tissue is associated with the ability
to speak.

There are a number of methods available for multivariate lesion-symptom mapping, influenced
by the field of machine learning, many of which have recently been used in the context of re-
search on aphasia. Broadly, these methods can be divided into supervised versus unsupervised
approaches, the former making use of some known “ground truth” (that is, prior knowledge about
the outcome of interest), and the latter operating in its absence, revealing instead any underlying
structure in the data set that may or may not be known to the experimenters. Supervised approaches
are very common in the multivariate lesion-symptom mapping literature and are the focus of this
dissertation, so they will be treated with the most care here; however, it is worth noting that super-
vised approaches often make use of unsupervised approaches within their implementations, e.g.
for the purposes of dimensionality reduction (that is, reducing the number of features/predictors
to be input to a model). A discussion of some existing methods for multivariate lesion-symptom

mapping, focusing on those most commonly used in research on aphasia, will be presented below.

1.3.1 General concepts

In supervised learning approaches, the overarching goal is to uncover relationships between input
features and known outcomes of interest such that future, unknown outcomes can be predicted
based on their input features alone. Relationships between features and outcomes are first “learned”
by an inducer (or specific machine learning algorithm) during the training phase, during which
some subset of the available data (the training data) is input in conjunction with its outcome labels
so that a potential relationship can be modelled between the two. The resulting model is then
subsequently tested on its ability to predict outcomes on the remaining held-out (testing) data
using only input features. This training-testing split occurs in an iterative fashion such that all
of the data is eventually used for both training and testing, in a procedure referred to as cross-
validation. Ideally, an independent test set is also held out to evaluate final model performance.

These hold out sets are crucial, as they simulate how well the model might do on future data with
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truly unknown outcomes (what we are actually interested in as scientists, who are curious about
the way things work in the real world); we do not want our model to overfit (that is, to only work
on the specific data set we trained it on and not generalize to new exemplars). The details of how
the cross-validation procedure should occur—e.g., whether a leave-one-out, in which all but one
exemplar are trained at a time, or a k-fold approach, in which smaller groups are used in the training
set—remains a subject of some debate (Poldrack et al., 2020), but regardless of the specifics of its
implementation it is an important process for assessing the generalizability and utility of a model,
with some measure of the average accuracy across training-testing splits generally mapping onto
the reported model performance in a study.

In the case of lesion-symptom mapping for aphasia, generally the input features would (at
minimum) reflect some representation of each patient’s lesion, such that each of the P participants
in question is represented as a vector in n-dimensional space where n corresponds to the number of
lesion-based features of interest. For example, an experimenter might represent each patient as the
binary lesion status of each voxel in their lesion image (1 x numberO fVoxels, categorical) or as the
percent damage they sustained to a number of a priori selected ROIs (1 x numberO fROIs, scalar).
The outcome would then be either some category (e.g., aphasia type) or some scalar (e.g., score on
some aphasia assessment) reflecting the nature of the language phenomenon the experimenter aims
to predict. Then the relationship between the lesion-based feature vector and the language-based
outcome would be modelled using the inducer the experimenter deems theoretically useful for the
problem at hand.

To date, the most commonly used inducers in lesion-symptom mapping for aphasia are sup-
port vector machines (SVMs; Vapnik, 1998). SVMs can be used either to classify, in the case
of support vector classification (SVC), or estimate continuous values for, in the case of support
vector regression (SVR), unlabeled test data. In a linear SVM analysis, a hyperplane is calculated
to model a linear relationship between the input features and the behavioral outcome of interest;
if (as is generally the case with multivariate data) the relationship between the input and output

variables is non-linear, a “kernel trick” may be used to project the data into a higher-dimensional
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space where it can be modelled linearly (DeMarco and Turkeltaub, 2018). In the case of SVC, the
hyperplane is meant to maximally divide data points (in this case, individuals) that belong to differ-
ent binary classes (e.g. aphasic versus non-aphasic). The position and orientation of the separating
hyperplane is influenced by those hard-to-classify data points that are closest to it, the eponymous
“support vectors”, and is chosen so as to maximize the distance or “margin” between the boundary
and those support vectors. In the case of SVR, the hyperplane is less of a separator than a plane of
best fit, a series of predictions (e.g. Aphasia Quotient as measured on the WAB) with some toler-
ance for error, referred to as the e-tube, built around it. In SVR the hyperplane and its surrounding
e-tube are placed so as to capture as many data points as possible while maximizing distance be-
tween the hyperplane and the support vectors, which in this case are those data points that fall just
outside the bounds of the g-tube (DeMarco and Turkeltaub, 2018). Those features that informed
the SVR can also be mapped back into voxel space to create topographic lesion maps akin to those
created using VLSM, though this mapping is not straightforward (Zhang et al., 2014; DeMarco and
Turkeltaub, 2018). Parameters that can influence the performance of SVM-based analyses include
the box constraint C, which specifies how much to penalize misclassifications or errors; the kernel
shape gamma, which dictates the manner in which the data is mapped into higher-dimensional
space to simulate linearity; and the threshold for what constitutes an error during training of a
regression model, €. Notably, because of the emphasis on support vectors, the majority of the
data is not actually used when determining the location for the separating hyperplane, making it
computationally less expensive than many other methods and less subject to overfitting to atypical

data points (Vapnik, 1998).

1.3.2 Prior multivariate LSM studies of aphasia

SVM approaches have become relatively popular in lesion-symptom mapping for aphasia. One of
the earliest studies to use such an approach was Wilson et al. (2009), which showed that diagnosed
primary progressive aphasia (PPA) subtype (semantic, logopenic, or non-fluent variant) could be

reliably predicted using structural imaging data in an SVC analysis, attaining a mean accuracy of
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92.2%. This study used voxel-wise gray matter integrity in the structural images as input, and
accounted for the lateralized nature of degeneration in PPA by including a lateralization image (the
difference between gray matter in the right hemisphere versus the left) as a feature. However, the
study was limited by small sample sizes in some of its patient groups. Additionally, the nature of
PPA is quite different than that of post-stroke aphasia in both its spatial distribution and degener-
ative progression, making such findings difficult to extend to a post-stroke population; thus, other
studies that have used SVM-based approaches in investigations of neural determinants of PPA will
not be discussed here.

The same technique has recently grown popular in investigations of aphasia following stroke.
Yourganov et al. (2015) used SVC to classify aphasia subtype as diagnosed using the WAB in a
post-stroke population, using the proportion of damage to a series of a priori selected ROIs as the
input features. A range of classification accuracies were obtained, varying depending on which
atlas was used to parcellate the brain images into ROIs and which aphasia subtypes were being
distinguished; classification was best (87-95% accuracy) when fluent versus non-fluent subtypes
were pitted against each other, but the model was generally unreliable at distinguishing within-
fluency subtypes. This study also had relatively poor representation of some clinical groups (e.g.,
only 7 patients with Wernicke’s aphasia), and could be argued to have relied too heavily on a priori
assumptions with regard to the reality of the Boston classification/classical syndromes and relevant
ROIs.

The first study to move beyond classification and instead use a regression-based SVM approach
was Zhang et al. (2014), which attempted both to create SVR-based lesion-symptom maps (SVR-
LSM) and to predict proportions of phonological and semantic errors on the Philadelphia Naming
Test (PNT) using voxel-wise lesion status as input. The lesion maps were able to localize the neural
bases of functions in synthesized lesion-symptom relationships (AUC of .94 in an ROC analysis,
compared to .71 for VLSM) and corresponded well with VLSM-generated maps based on real
patient data (with correlations of .94 and .87 between univariate and multivariate semantic and

phonological-based maps, respectively). However, the accuracy at predicting behavioral outcomes
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was very low (R? of .10 for semantic errors, .11 for phonological errors).

Xing et al. (2016) combined VBM and SVR-LSM to investigate whether right hemisphere gray
matter volumes correlated positively with language outcomes in left-hemisphere stroke, but did not
aim to explicitly predict such outcomes from neural data; rather, SVR-LSM was used mainly as
the method for selecting regions of interest known to be associated with language.

DeMarco and Turkeltaub (2018) created an SVR-LSM toolbox to refine the Zhang et al. (2014)
approach (in particular by providing more options for accounting for lesion volume), but again
focused mainly on localizing language-predictive regions rather than explicitly predicting language
outcomes.

SCCAN, or Sparse Canonical Correlation Analysis (Pustina et al., 2018), is a newly devel-
oped multivariate method that maximizes overall correlation between input features and outcome
variables by adjusting weights in a series of common components; the authors describe these
components as “principal components...of the covariance matrix computed between two different
modalities acquired in the same subject” (e.g., voxel-wise lesion statuses and behavioral outcomes;
Pustina et al., 2018, p. 155). This method was compared with VLSM on its accuracy at localizing
simulated lesion-symptom relationships and was shown to outperform it on a variety of measures
(e.g., Dice similarity with simulated source maps, average distance from implicated to actual region
as assessed based on contour and peak voxel displacement, etc.). However, the SCCAN method,
as noted by the authors, is extremely new and therefore at risk for bugs and errors, and additionally
was indicated only for lesion-symptom mapping, not prediction.

Ivanova et al. (2021) directly compared a variety of univariate and multivariate methods for
lesion-symptom mapping and found that multivariate methods still suffered from statistical issues
such as high false positive rates and spatial displacement of implicated regions, the conclusion
being that the jury is still out on whether multivariate methods should universally be preferred to
univariate. However, this paper did not focus on the ability of multivariate methods to directly
predict behavioral outcomes, a clear benefit of multivariate over univariate approaches, focusing

instead on localizationist aims.
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Lately, greater emphasis has been placed on prediction as well as localization. Del Gaizo et al.
(2017) used linear SVR to predict WAB Aphasia Quotient (AQ) and fluency scores from percent
damage to cortical language ROIs, structural connections from probabilistic DTI, and structural
brain dynamics (that is, a measure of how information might spread through a structural network).
The mean R? (over multiple iterations of k-fold cross-validation) between actual and predicted
scores for the models using all predictors was 0.58 for AQ and 0.53 for fluency. The primary aim
of this study was to compare the utility of connectivity-based versus cortically-based measures for
predicting outcomes, as in a similar SVR-based study out of the same lab (Yourganov et al., 2016)
which predicted WAB speech fluency, auditory comprehension, speech repetition, oral naming,
and AQ from gray matter and structural connectome maps. In that study, R? values between ac-
tual versus predicted outcome were lower, ranging from 0.21 for auditory comprehension using
connectome-based predictors to 0.50 for fluency using gray-matter predictors.

Hope et al. (2018) used SVR along with 16 other inducers to assess the relative utility of lesion
load versus structural connectivity-based features for predicting language outcomes on multiple
domains of the Comprehensive Aphasia Test. The main finding of this paper was that structural
connectivity measures do not increase the predictive power of MLSM models, regardless of the
specifics of how these models are built. This study boasts a very large sample size (818 par-
ticipants pulled from the PLORAS database) and demonstrates high correlation between actual
and predicted scores in multiple models (average R*=0.42, maximum R?>=0.58 among the highest
performing models). Some limitations of this study include the fact that all findings were depen-
dent upon an automated lesion segmentation procedure (not meeting the current gold standard for
lesion delineation; Liew et al., 2018) and relied on coarse-grained characterization of lesions (cal-
culated as percentages of the AAL atlas, which captures less than 60 regions in each hemisphere)
and structural connections (estimated from T1 images rather than participant-specific measures of
tractography). Additionally, as this study’s aim was to abstract across inducers to learn about the
utility of different features, its model-comparison scope is extremely broad, and its final analysis

takes into account only the highest-performing models (regardless of their specifics) on each lan-
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guage domain. Thus, it is difficult to interpret the meaningfulness of any one model’s reliability
for predicting language outcomes from this study.

Halai et al. (2020) examined the utility of multiple imaging modalities (T1 versus DTI), brain
parcellation strategies (whole brain-, anatomical-, lesion clustering-, connectivity-based-, and the-
orized language network-based atlases), and inducer types (kernel ridge regression, relevance vec-
tor regression, GPR, and multi-kernel regression, an expansion of SVR) for predicting four dimen-
sion of language and cognition post-stroke. Similar to Hope et al. (2018), they found that DTI
data did not provide a significant benefit over other imaging modalities, regardless of the model
parameters or language dimensions in question. Also similarly to Hope et al. (2018), lesions were
segmented automatically, and interpretability of any one particular model’s utility for predicting
language outcomes was limited due to the very high number of models generated and reporting
of results from only the best-performing models. Even still, while the best of the best-performing
models had an R? of 0.53 between actual and predicted values (though mean squared error was the
primary measure reported), none of the runners-up exceeded R? values of .28.

Kristinsson et al. (2021) used SVR to predict multiple subscores of the WAB-R using task-
based fMRI, DTI, cerebral blood flow (CBF), and lesion-load data in a sample of size N=116
(which skewed disproportionately male, with only 41 females in the data set). The fMRI measures
utilized were based on a picture naming task in which the task condition required speaking and
the control condition did not, which may confound imaging results with aphasia severity due to
increased effort in the speaking condition. The maximum correlation between actual and predicted
values achieved in this study was R?=0.45, based on a model using all modalities as predictors.
Though this finding suggests the multimodal model performed better than the other models gener-
ated in this particular paper, it is lower performance than many of the published models discussed
above. This is the case even despite the fact that feature selection (that is, the decision of which
variables should be used as input to the SVR) consisted of univariate regressions of all ROIs in all
imaging modalities on the same data and language scores to be predicted by the full SVR models,

an example of “leakage” of test data into training (Poldrack et al., 2020) which can inflate predic-
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tion accuracy. Similarly, the selection of the radial kernel function applied in the final SVR models
was accomplished via “applying various kernel functions [to the data] to select the most robust
parameters” (p. 1689), and it is not described whether or not this selection process was limited to
be based on training data alone. A recent paper by Hosseini et al. (2020), entitled “I tried a bunch
of things: The dangers of unexpected overfitting in classification of brain data” warns against the
dangers of such an approach (which apply to regression as well as classification analyses), as it is
likely to result in models that do not generalize to new exemplars.

Another supervised method that has been employed for the use of lesion-symptom mapping
and outcome prediction is Gaussian process model regression (GPR). GPR is similar in concept
to SVR in that it predicts real-valued outcomes based on input featural data mapped into a high-
dimensional space. However, it differs from SVR in a number of ways mathematically, perhaps
the most important being that it does not provide a single estimated outcome but a distribution of
estimated outcomes for each set of input features, mapping approximately onto its “confidence”
about its estimates. The distribution of predictions at each set of feature values is created by
determining all functions that could reasonably explain the data (subject to some limiting and
smoothing constraints), then providing the output to all of these functions based on the featural
inputs at that point; unlike SVR, it does not optimize the placement of a single hyperplane, but
generates a set of possible hyperplanes along which outcome values can be predicted and provides
the output from all of them at once.

Hope et al. (2013) used GPR based on structural imaging data and clinical variables to predict
speech production on the CAT at both single and multiple time points. This study had a large
sample size (with 270 total patients, of whom 38 were assessed more than once), reasonable pre-
dictive ability (with R? ranging from .34-.59 across speech production subtasks and versions of the
model), and made an explicit attempt to account for recovery, a facet of aphasia that is crucially
important and often ignored in the lesion-symptom mapping literature (Flowers et al., 2016; Price
et al., 2017). Hope et al. (2013) made use of language scores and brain scans available in the

PLORAS database and created a composite speech production score associated with each scan,
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calculated as the mean of the minimum score of two visually-based production tasks (object nam-
ing and picture description) and two aurally-based production tasks (word and sentence repetition).
Lesions were delineated on structural images using an automated detection algorithm and binary
thresholding procedure. A leave-one-out cross-validation procedure was used in the GPR mod-
els, of which there were several: the first, a model based only on time post-stroke, age at time of
stroke, handedness prior to stroke, and gender (resulting in an R?=0.01); the second, a model in
which lesion volume was included as a predictor (resulting in an R2=0.35); the third, a model in
which the extent of lateralization of the lesion (indexed as the number of lesioned voxels in each
hemisphere) was added (resulting in an R2=0.47); the fourth, a model in which the lateralization
predictor was replaced with the proportion of damage to 232 anatomically defined ROIs (resulting
in an R2:0.52); and finally, the fifth, a more constrained model consisting of time post-stroke, le-
sion size, and proportional damage to the 35 most relevant ROIs as indicated using an automatic
relavence detection procedure (resulting in a final R*=0.59). These results were superior to other
similar studies at the time. However, some important caveats must be noted. First, although the
final selected model consisted of 35 ROIs, similar results could be obtained using approximately
half the number of predictors, suggesting redundancy/autocorrelation within the input variables.
Similarly, the selection of these 35 ROIs appears to have been completed post-hoc (that is, using
information gained on the full dataset during previous iterations of the model-building procedure);
while this raises possible concerns of “leakage” as described above, the fact that results of earlier
versions of the model are also reported (in which the unselected list of ROIs was used) at least
offers some transparency with regard to the relative performance increases incurred. Second, the
study combined images of stroke in both acute and chronic stages, which can vary notably due
to either biological processes or imaging differences and lead to the potential for introducing bi-
asing noise into the analysis (i.e., if production is generally better in individuals in later stages of
recovery, artifactual characteristics of non-acute images could end up driving predictions; Lough-
nan et al., 2019). Third, only a small fraction of the patients (N=38) were assessed longitudinally,

making any claims about the nature of “recovery” somewhat weak. Finally, the study focuses on
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only a single domain of language—speech production—Ileaving any questions about expectations
for recovery across other linguistic subdomains unanswered.

Corbetta et al. (2015) used an unsupervised PCA and FA approach to investigate what factors,
across multiple imaging and behavioral domains, may predict language (and other behavioral) out-
comes; they found that language outcomes across modalities are associated with integrity, function,
and connectivity of multiple nodes in a widely distributed language network, extending beyond
known peri-Sylvian regions. The functional connectivity finding in particular was corroborated
in a study using a supervised ridge-regression approach (Siegel et al., 2016) which showed that
both lesion location and changes in functional connectivity following stroke likely have effects
on language, with altered interhemispheric communication exerting a large influence. Other work
made use of a stacked, multi-modal random-forest approach to estimate picture naming, sentence
repetition, sentence comprehension, and aphasia severity scores through a combination of lesion
maps, structural connectivity, and functional connectivity, attaining strong correlations between
predicted and obtained scores; however, performance on a completely untrained validation set was
much lower than that reported for the preceding models, rendering the extent of the true generaliz-
ability of the model somewhat unclear (Pustina et al., 2017).

It is worth noting that, in all but one of these studies just described (Hope et al., 2013), only
a single time point was considered, and in most cases, only a subsample of language functions
were investigated; no SVM-based approaches have yet, to our knowledge, been used to examine
complete language profiles at multiple, systematically arranged time points along the course of
recovery.

To summarize, multivariate methods are an extremely promising means by which to account for
the multidimensional nature of lesions and language, allowing us both to map out lesion-symptom
relationships and predict language outcomes directly. However, there is yet to exist a study that
has applied such methods to specifically investigate longitudinal recovery from aphasia across a

comprehensive set of language domains. This is the aim of the present dissertation.
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CHAPTER 2

Methods & Analysis

2.1 Characterization of data set

2.1.1 Participants

359 patients both with and without aphasia consented for this study at the bedside following stroke.
Consent was acquired directly from the patient when possible, with the use of visual aids and
supportive conversation techniques as necessary; in participants for whom comprehension deficits
were too great for direct consent to occur, surrogate consent was acquired from a family member.

In order to qualify for the study, patients must have met the following inclusion criteria:

left hemisphere or aphasia-causing stroke confirmed by CT or MR imaging

over 18 years old

pre-morbid fluency in English
* no previous symptomatic stroke in a known language area or its right hemisphere counterpart
* no concurrent neurological condition (e.g. dementia or schizophrenia).

All consenting patients were deemed aphasic or not aphasic per clinical impression by a speech-
language pathologist. Language evaluation using the QAB was attempted at the bedside for all
patients. Follow-up language evaluation at 1 month, 3 months, and 12 months post-stroke was
attempted only for those individuals who presented with aphasia acutely, barring rare exceptions.
See Table 2.1 for patient characteristics and retention across time points. At the acute time point,
independent samples t-tests revealed no significant difference in age between people with (M =
62.78, SD = 14.04) and without (M = 62.31, SD = 15.62) aphasia, 1(349) = 0.28, p = .78, as well
as no significant difference in years of education between people with (M = 12.86, SD = 3.16)

and without (M = 13.38, SD = 2.74) aphasia, 1(345) = —1.50, p = 0.13. Similarly, Fisher’s exact

28



tests revealed no significant differences in the prevalence of ischemic versus hemorrhagic strokes
in people with (174/223) and without (95/120) aphasia (p = 0.89), no significant differences in
the prevalence of males versus females in people with (122/230) and without (57/121) aphasia
(p = 0.31), and no significant differences in the prevalence of right versus non-right (i.e., left or
ambidextrous) handedness in people with (205/230) and without (106/121) aphasia (p = 0.72).
Of 359 patients consented, 5 were considered to be outliers due to suspected right hemisphere
dominance or bilaterality for language, as evidenced by aphasia given right hemisphere lesion (N =
2) or absence of aphasia given large left hemisphere lesion (N = 3). All analyses and figures herein
exclude these patients. Please note that the choice to exclude these participants from analysis does
not reflect a lack of regard for the importance of these unique presentations, but rather an attempt
to capture generalizable patterns of the collected data set without running the risk of overfitting to
atypical cases. For a detailed discussion of unexpected absence of aphasia in one of these unique

participants, see Schneck et al. (2021).

2.1.2 Language evaluation

Language evaluation was attempted by a speech-language pathologist at each time point using
the Quick Aphasia Battery (QAB). As described in the literature review, the QAB is a valid and
reliable measure of language resulting in a multidimensional characterization of language func-
tion. Language summary scores on the QAB reflect single word comprehension, sentence compre-
hension, word finding, grammatical construction, speech-motor programming, repetition, reading,
dysarthria, and overall severity. In some patients who were amenable to testing, assessment was
prevented by either impairment or situational factors (e.g. intubation, somnolence); these patients
were marked as “untestable” rather than “missing”, as some knowledge about their language func-
tion was gained despite the inability to test it comprehensively. Any validity concerns that may
have affected scores on a given summary measure (e.g. marked dysarthria impacting interpretabil-
ity of responses in word finding) were flagged for handling in analysis. At the acute time point, the

standard version of the QAB was administered; at all follow-up time points, the extended version
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Clinical opinion: Aphasia No Aphasia
Acute
No. patients 230 121
Age (yrs) 62.78 + 14.04 62.31 £+ 15.62
Sex (M/F) 122/108 57/64
Handedness (R/ambi/L) 205/5/20 106/3/12
Education (yrs) 12.86 £3.16  13.38 +2.74
Stroke type (isch/hem/N.A.) 174/49/7 95/25/1
One month
No. patients 103 1
Age (yrs) 62.24 £ 13.83 56
Sex (M/F) 60/43 0/1
Handedness (R/ambi/L) 90/2/11 0/0/1
Education (yrs) 1322 £2.70 12
Stroke type (isch/hem/N.A.) 82/21/0 0/1/0
Three months
No. patients 96 0
Age (yrs) 62.66 + 13.40 N.A.
Sex (M/F) 57/39 N.A.
Handedness (R/ambi/L) 84/3/9 N.A.
Education (yrs) 13.20 £2.80 N.A.
Stroke type (isch/hem/N.A.) T7/19/0 N.A.
One year
No. patients 70 0
Age (yrs) 61.77 +13.37 N.A.
Sex (M/F) 38/32 N.A.
Handedness (R/ambi/L) 61/3/6 N.A.
Education (yrs) 13.57£+£2.92 N.A.
Stroke type (isch/hem/N.A.) 55/15/0 N.A.

as necessary during the COVID-19 pandemic.

30

Table 2.1: Participant characteristics and retention across time points. No significant differences in patient character-
istics were detected between individuals with and without aphasia at the acute time point. The eight cases in which
stroke type is unavailable acutely come from patients who consented and for whom a clinical decision regarding

aphasia was obtained, but for whom no imaging or language data was acquired.

(including additional sections on writing, written word comprehension, and extra single word and

sentence comprehension) was administered. Follow-up evaluations were administered over Zoom

Many scoring decisions on the QAB, particularly those related to ratings of connected speech,

contain some subjectivity. Thus, consensus meetings were held to discuss the scores for each



patient with aphasia and to arrive at the final scores used in analysis.

2.1.3 Lesion delineation

As part of their clinical care, all patients that come through Vanderbilt University Medical Center
suspected for stroke undergo a head MRI and/or CT to identify the presence, location, and extent
of neural damage; consenting patients agreed to have these images collected for the purposes of the
research study. Lesions were drawn manually in ITK-Snap (Yushkevich et al., 2006) on clinical
imaging acquired within the first 5 days post-stroke. Lesion drawings were completed by trained
students in the Language Neuroscience Lab, with guidelines determined based on consultation
with the prinicipal investigator and a VUMC neuroradiologist. These guidelines are described in
detail below.

Lesions due to ischemic stroke (in which blood supply to a portion of the brain is blocked by a
blood clot or embolus) and hemorrhagic stroke (in which a weakened blood vessel ruptures, lead-
ing to a pooling of blood on the brain that is toxic to nearby tissue) appear differently on different
modalities of MRI (Dehkharghani and Andre, 2017) and at different times post-stroke (Lin and
Liebeskind, 2016). In acute ischemic stroke, the lack of blood flow due to occlusion results in
swelling which restricts the motion of extracellular water (Xing et al., 2012). This restricted diffu-
sion is visible as increased signal on diffusion-weighted magnetic resonance imaging (DWI) and
decreased signal on both apparent diffusion coefficient (ADC) MRI (Baliyan et al., 2016) and CT
(Lin and Liebeskind, 2016). Acute hemorrhagic stroke appears hypointense on FLAIR imaging
and hyperintense on CT due to effects of pooling blood on the magnetic susceptibility and density
of nearby tissue (Heit et al., 2017). Thus, when MRI was available, lesions due to ischemic stroke
were drawn on DWI/ADC and hemorrhagic strokes were drawn on FLAIR, with the minority of
patients who did not undergo MRI scanning having their lesions drawn on CT. VUMC-acquired
imaging was preferred, with outside images used when VUMC imaging was unavailable. The or-
der of preference for base images in lesion drawing was as follows: first, VUMC MRI; second,

outside MRI; third, VUMC CT; fourth, outside CT. Participants in whom extension of the lesion
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occurred within 30 days following study-eligible stroke were each represented with an additional
lesion drawing depicting the extended lesion, termed an ext image. In participants who had had
asymptomatic strokes prior to enrollment in the study, prior lesions were delineated in a different
color to distinguish them from study-relevant lesions; for the purposes of this dissertation, these
prior lesions were masked out and excluded from analysis.

The resulting binary lesion masks, along with their accompanying clinical images, were nor-
malized to MNI space using both the unified segmentation procedure as implemented in SPM12
(Ashburner and Friston, 2005) and DARTEL, a top-performing deformation algorithm for normal-
izing structural images (Ashburner, 2007; Klein et al., 2009). All analyses presented here make use
of the images warped using the unified segmentation procedure. All image warps were checked,
manually adjusted as necessary, smoothed using a 4mm FWHM Gaussian blur (Cox, 1996), and
approved by the author and principal investigator. Warped ext images were updated to reflect both
the original and the extended lesion by taking the union of the two images in MNI space; this al-
lowed for a complete representation of the tissue believed to be damaged at the time of extension,
despite any changes in visibility of the initial lesion on follow-up imaging due to pseudonormal-

ization over time (Allen et al., 2012).

2.2 Analysis

2.2.1 Mixed effects modeling

Mixed effects models are regression models that, by taking into account grouped structure within
data, are able to make less biased estimates of means at different levels of a factor in the presence
of randomly missing data (Cunnings and Finlayson, 2015). In order to examine basic patterns of
language recovery in the data set independent of subject-level variation, mixed-effects models of
QAB scores across domains were generated to assess the effect of time post-stroke on language
function using the fitlme function in Matlab2019a (Mathworks, Inc., 2019). Time was modeled
as a fixed effect (as time points at which to examine language were pre-selected as part of the

study design) while participants were modeled as random effects, with random slopes (rates of
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Figure 2.1: Lesion drawings and their corresponding MNI warps from two sample participants. Top row displays
original modalities with and without lesion drawings, with bottom row showing the same images after warping to
MNI space using the unified segmentation procedure. (A) An ischemic stroke drawn on DWI. (B) A hemorrhagic
stroke drawn on FLAIR, excluding surrounding edema.

recovery), intercepts (baseline acute scores), and slope-intercept correlations (effects of baseline
score on rate of recovery) modeled for each participant. Note that this analysis was completed
only on individuals who presented with aphasia acutely, as data from individuals without apha-
sia were missing from the data set in a non-random manner due to lack of follow up. The end
result was nine mixed-effects models, one for each of the QAB domains of interest (i.e. single
word comprehension, sentence comprehension, word finding, grammatical construction, speech-
motor programming, repetition, reading, dysarthria, and overall severity) reflecting the impact of

increasing time post-onset on language function in that domain.

2.2.2 Support vector regression (SVR)

As discussed in Section 1.3, support vector regression (SVR) is a method in machine learning by
which to predict real-valued numbers from high dimensional input data. Machine learning models
require input in the form of vectors of real numbers corresponding to representative features of the

actual data of interest. The methods by which these features were generated and subsetted to create
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different models for comparison are described below.

2.2.2.1 Feature representation

Due to their frequent discussion in the existing literature (Watila and Balarabe, 2015; Gerstenecker
and Lazar, 2019), age, sex, years of education, handedness, stroke type, and lesion size (calculated
as the size of the binarized lesion mask in ¢m?) were included as an initial set of features in
the model. Each numerical predictor was normalized to a 0-1 scale using min-max scaling by
theoretically informed minimums and maximums (i.e. age between 0 and 100, years of education
between 0 and 25, lesion size between 0 and 640 cm?) to speed the model-building process and
increase interpretability of beta weights across predictors.

Lesion location was transformed into a vector space representation via calculation of the align-
ment of each patient’s lesion mask with 294 spatial regions of interest (ROIs) as defined in a
combined gray matter and white matter atlas (Mori et al., 2005; Fan et al., 2016). During the cre-
ation of this combined atlas, any voxels which were assigned a value in both atlases were set to the
value in the gray matter atlas; then, the values of voxels in the white matter atlas were re-assigned
such that each ROI (that is, both gray matter and white matter ROIs) had a distinct value in the
combined atlas image (see Fig. 2.2). Individual patients’ lesion vectors were then calculated as
the number of voxels in the intersection between their particular lesion mask (weighted by the
“certainty” of each voxel as indicated by the smoothing procedure) and each ROI in the combined
atlas, divided by the size of that ROI. Thus, each patient’s lesion was represented as a 1 x 294 vec-
tor corresponding to the extent of damage to each of the 294 ROIs in that patient. This vector will
henceforth be referred to as “lesion load”. Note, however, that for the purposes of analysis only
left hemisphere lesion load was used, as right hemisphere damage was not well represented in this
data set by design. Left hemisphere lesion load thus corresponded to a 1 x 144 vector, excluding

all right hemisphere ROIs and 6 commissural tracts.
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2.2.2.2 Model building
A series of support vector-based models were generated to predict QAB summary measures at
various time points in recovery using the firrsvm function in Matlab2019a (Mathworks, Inc., 2019).

Models were designed in attempts to answer the following questions:

1. Given demographic information and lesion information, can we predict language scores at

all time points following stroke?

2. Given demographic information, lesion information, and initial language scores, can we

predict language recovery at all follow-up time points following stroke?

The first of these questions may be thought of as a cognitive neuroscience question, focusing on
the relationship between brain and language, while the latter may be thought of as more clinically
oriented, making use of all available information to predict long-term language outcomes.

The nature of each model built to answer these questions was dependent upon a number of
analytical decisions, e.g. whether individuals who did not present with aphasia should be included
in the data set and how to account for patients who were untestable at the time of assessment (who
might reasonably be argued to be globally aphasic, and whose inclusion would allow for a higher
sample size and increased power). Eight classes of models (Models 1 through 8) were therefore

built corresponding to different methods of answering the questions above (see Table 2.2 for an

Figure 2.2: Combined gray and white matter atlas used in feature generation, based on Mori et al. (2005) and Fan et al.
(2016).
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at-a-glance depiction of each). All models were built up in stages corresponding to the relative
ease of acquiring the relevant predictive information at the bedside, beginning with only those
predictors that could be determined by conversing with the patient or looking at their medical chart
(e.g. demographic information, stroke type, initial language scores), then sequentially adding in
additional predictors requiring processing of the lesion image, namely lesion size (available with
minimal processing) and lesion load (available with in-depth processing). The details of each set

of models and their corresponding model-building procedures are described in further detail below.

Cohort Predictors Untestable Pred. Time Pred. Domain
Aph | No | Dem/Les | Lang | NaN | Zero | Acute | Follow-up | Diff | Subscores | Overall
MI X X X X X X X
Q1 M2 X X X X X X
M3 X X X X X X X
M4 X X X X X X
M5 X X X X X X X
Q2 M6 X X X X X X
M7 X X X X X X X
M8 X X X X X X

Table 2.2: Table depicting characteristics of different classes of models (M1-M8) addressing different experimental
questions (Q1, on the neural bases of language, versus 02, on the utility of all predictors including linguistic predic-
tors for predicting outcomes and recovery). Columns 1-3 correspond to details of the input data (Cohort included,
Predictors included, and handling of Untestable participants) while columns 4-5 correspond to details of the output
data (Predicted Times and Predicted Domains).

Models 1 through 4

Models 1 through 4 address the cognitive neuroscience question regarding the neural bases
of language by using only demographic and neuroimaging data to predict language outcomes at
various times post-stroke. Models 1 and 2 use information only from individuals deemed to have
aphasia, and are thus able to predict language outcomes acutely and at all follow-up time points.
Models 3 and 4 use information from individuals both with and without aphasia, as this maximized
sample size; however, they can only predict language outcomes acutely (as individuals without
aphasia were not followed up). Models 1 and 3 treat untestable patients as missing data points,
while Models 2 and 4 assume that, if tested, these patients would be globally aphasic (with a QAB

overall score of 0); this means, however, that Models 2 and 4 can predict only the QAB overall
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score, as the specifics of an untestable patient’s language presentation cannot be quantified in the

absence of testing. Predictors used in each stage of model building were as follows:
1. Age, sex, years of education, handedness, stroke type
2. Age, sex, years of education, handedness, stroke type, lesion size
3. Age, sex, years of education, handedness, stroke type, lesion size, lesion load

A total of 150 distinct models were therefore created to address Question 1 (Model 1: 4 time points
X 9 subscores x 3 stages = 108 models; Model 2: 4 time points x 1 subscore x 3 stages = 12
models; Model 3: 1 time point X 9 subscores x 3 stages = 27 models; Model 4: 1 time point X 1
subscore x 3 stages = 3 models).

Models S through 8

Models 5 through 8 address the clinical question of how a patient’s initial aphasia severity
interacts with their stroke characteristics to determine the extent of their recovery at later time
points. As acute scores were used as predictors here, no outcomes were predicted at the acute
time point to avoid circularity in the models. Patients without aphasia were similarly not included
in these models, as patients without aphasia had only the acute time point available by design.
Models 5 and 6 predict language scores at later time points, differing from each other only in their
treatment of untestable patients (see description of Models 1-4 above). Models 7 and 8, however,
were not trained to predict scores at a given time point, but rather changes in scores between the
acute and later time points, aligning more closely with prior work on proportional recovery in
aphasia (Lazar et al., 2010; Marchi et al., 2017). Models 7 and 8 differ from each other in their
treatment of untestable patients as above. Predictors used in each stage of model building were as

follows:
1. Age, sex, years of education, handedness, stroke type, acute score
2. Age, sex, years of education, handedness, stroke type, acute score, lesion size

3. Age, sex, years of education, handedness, stroke type, acute score, lesion size, lesion load

37



A total of 180 distinct models were therefore created to address Question 2 (Model 5: 3 time
points x 9 subscores x 3 stages = 81 models; Model 6: 3 time points X 1 subscore x 3 stages =9
models; Model 7: 3 time points X 9 subscores x 3 stages = 81 models; Model 8: 3 time points X
1 subscore x 3 stages = 9 models).

All stages of all preceding models were generated using a linear SVR model, due to lower
computational time, relatively high accuracy, and increased interpretability of output beta weights.
However, a non-linear model was also generated for each of the final-stage models (that is, includ-
ing all predictors), using an RBF kernel with hyperparameter values per the recommendations of
Zhang et al. (2014) and DeMarco and Turkeltaub (2018) (RBF kernel scale of 5, box constraint
C of 30, and € value of 0.1). This allowed for the possibility of cross-featural interactions and
eased comparison with much of the greater literature. Thus, 440 models were generated in total to

address the experimental questions noted above.

2.2.2.3 Data handling

At each time point, patients were filtered to remove anyone in whom evaluation was missing at that
time point. For patients in whom lesion extension had occurred, the latest lesion vector relative to
the date of evaluation was used. In analyses where acute score was included as a predictor (Models
5-8), only patients who had the same lesion at the time of both assessments were included (i.e.,
no extension between assessments), as language change may have occurred in these cases due to

change in lesion status rather than neuroplastic recovery.

2.2.2.4 Cross-validation and performance assessment

Model generalizability was assessed using a leave-one-out cross-validation procedure, in which
each patient was held out in turn to have their score predicted from a model based on data from
the remaining patients. Performance of each model was calculated using intraclass correlation
coefficient (ICC) type A-1 as implemented by Salarian (2021) in Matlab2019a, corresponding
to the degree of absolute agreement between actual and predicted values across all folds of the

cross-validation procedure. Prior to calculation of this statistic, predictions were capped so as not
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to be more extreme than theoretical bounds would allow (e.g., predictions of outcomes could be
no less than 0 and no more than 10, or the possible scores to be obtained; predictions of change
scores could be no more than 10, or the largest amount a participant could improve by). Note
that ICC is a ratio measure of relative variance between a factor of interest (in our case, individual
patients) and a nuisance factor (in our case, “raters”, or measured versus predicted scores); thus,
if there is very little variance in the factor of interest, we may reasonably expect low values of
ICC (Liljequist et al., 2019). Standards for the quality of ICCs obtained came from Cicchetti
(1994), with ICC < 0.4 considered “poor”, 0.4 < ICC < 0.6 considered “fair”, 0.6 < ICC < 0.75
considered “good”, and 0.75 < ICC considered “excellent”. In the cases of Model 7 and Model
8, ICC values were calculated both for actual versus predicted change scores and actual versus
predicted outcome scores (in this case, the true outcome score versus the score generated by adding
the predicted change score to the true initial score). This is both to put the various models on the
same footing and to account for the fact that prediction accuracy on change scores is likely to be
artificially inflated relative to prediction accuracy on the corresponding predicted outcomes due to
mathematical coupling (see Hope et al., 2019; Hawe et al., 2019; Bonkhoff et al., 2020; Bowman

et al., 2021, Results in Section 3, and Discussion in Section 4 for further detail).

2.2.2.5 Model comparison

The extent to which adding information to a model led to a significant improvement in predictive
ability was assessed using permutation testing. For each of the available time points in each of the
relevant language domains, a null distribution of ICC values was generated using up to 1000 itera-
tions of the following procedure: randomly shuffle the newly added predictors across observations
in the input feature matrix; generate a new SVR-based model predicting scores from that shuf-
fled input; cross-validate and calculate ICC between true scores and predicted scores across folds;
store the resulting null ICC value. Less than 1000 permutations were used only in cases where sig-
nificant improvements were trivially apparent and the time required to generate null models was

excessively long (Stage 2 versus Stage 1 of Models 1-4; 500 iterations). P-values (one-tailed) were
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calculated for each model by calculating the number of null ICCs that were greater than or equal to
the actual ICC divided by the total number of iterations of the procedure. Criteria for significance
corresponded to an « level of 0.05 (that is, less than 5% of the ICC values in the null distribution

were greater than or equal to the true ICC).

2.2.2.6 Beta weight extraction/feature importance

Though the focus of this dissertation is primarily on prediction, rather than localization of function,
the beta weights output by linear SVR models may arguably be used to surmise the approximate
relative importance of each predictor, and particularly each ROI in the lesion load vector, for
generating predictions. In order to investigate the potential neural, clinical, and demographic bases
of those long-term language outcomes that were well-predicted by our models, beta weights were
extracted from the one year time point for re-fit versions of Models 1 and 5 (those that predicted
all language domains without and with acute scores in the models, respectively), such that all
available data was used (that is, with all available predictors and without withholding any test set).
As there is currently no well-established method for assessing significance of SVR-generated beta
weights in a neuroimaging context (Haufe et al., 2014; Sperber et al., 2019; Halai et al., 2020), raw
beta weights (thresholded only to exclude those less extreme than 0.2) are plotted directly on their
corresponding location on the brain. It is noted that, due to their experimental nature, these results

should be interpreted with caution.
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CHAPTER 3

3.1 Descriptive statistics and figures

3.1.1 Language

Results

Tables 3.1 and 3.2 show descriptive statistics at each time point across domains for people who

presented with and without acute aphasia, respectively. Patients who were untestable are treated as

missing in these tables.

Acute (N=197%)

Overall SwcC SC | WF | GC | SMP | Rep | Read Dys

Mean 5.81 747 | 457|452 ] 6.17 | 827 | 6.23 | 5.02 8.08
SD 2.69 3.12 338 | 3.09 | 346 | 3.41 | 3.38 | 3.37 3.19
Range | 0-9.75 0-10 | 0-10 | 0-10 | 0-10 | 0-10 | 0-10 | O-10 0-10

One month (N=97)
Mean 7.19 8.56 6.19 | 6.27 | 772 | 879 | 7.16 | 6.74 9.23
SD 2.33 262 | 3351298 (244 | 248 | 273 | 3.21 1.82
Range | 0-9.93 0-10 | 0-10 | 0-10 | 0-10 | 0-10 | 0-10 | 0-10 0-10
Three months (N=96)

Mean 7.74 924 | 6.89 | 6.81 | 8.10 | 8.88 | 7.66 | 7.25 9.48
SD 2.21 1.80 | 3.20 | 2.84 | 243 | 248 | 249 | 3.13 1.20
Range | 0.15-990 | 0-10 | 0-10 | 0-10 | 0-10 | 0-10 | 0-10 | O-10 | 5.00-10
One year (N=70)

Mean 8.13 949 | 732|756 | 839 | 882|805 ]| 7.72 9.61
SD 1.93 1.21 3.08 | 247 | 228 | 243 | 2.09 | 2.66 1.01
Range | 0.90-10 | 2.50-10 | 0-10 | 0-10 | 0-10 | 0-10 | 0-10 | 0-10 | 5.00-10

Table 3.1: Mean QAB scores for people with aphasia across time. Asterisk is to indicate that N =196 for reading at

the acute time point, due to a single participant’s inability to complete the reading task for situational reasons. Abbre-

viations are as follows: SWC = single word comprehension; SC = sentence comprehension; WF = word finding; GC

= grammatical construction; SMP = speech-motor programming; Rep = repetition; Read = reading; Dys = dysarthria.

To visualize any potential relationship between aphasia severity and follow up retention sta-

tus, an alluvial plot was generated in RawGraphs (Mauri et al., 2017) depicting the approximate
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Acute (N=121)

Overall | SWC SC WF GC SMP Rep Read | Dys

Mean 9.19 9.82 | 840 | 9.00 9.26 9.96 9.25 9.07 | 837
SD 0.75 0.46 1.79 1.07 1.03 0.32 0.78 1.32 | 2.60
Range | 4.05-10 | 7.08-10 | 0-10 | 2.25-10 | 1.00-10 | 7.50-10 | 5.42-10 | 3.33-10 | 0-10

Table 3.2: Mean QAB scores for people without aphasia acutely. Abbreviations are as follows: SWC = single word
comprehension; SC = sentence comprehension; WF = word finding; GC = grammatical construction; SMP = speech-
motor programming; Rep = repetition; Read = reading; Dys = dysarthria.

makeup of the full cohort (including both patients who were and were not clinically deemed to
have aphasia) across evaluation times, with severity groupings generated as (reluctantly) indicated
by the authors of the QAB (that is, QAB overall of 0-4.99 = severe, 5-7.49 = moderate, 7.5-8.89
= mild, 8.9-10 = very mild or no aphasia; see https://langneurosci.org/qab/). This plot demon-
strates that a similar proportion of each severity is represented in the data set at all time points,
suggesting little influence of severity on retention status. Note the distinction between unavailable
and untestable patients; subsequent analyses treat these untestable patients as missing data points
except where explicitly stated otherwise.

To visualize trajectories of recovery in individual participants, spaghetti plots of QAB overall
scores in those who were clinically deemed to present with aphasia are displayed in Fig. 3.2.
Grouping by severity is for purposes of visualization only, and it is emphasized that the cutoffs
used are arbitrary (again, 0-4.99 = severe, 5-7.49 = moderate, 7.5-8.89 = mild, 8.9-10 = very mild
or no aphasia); no claims are made about differences across these groups. Nearly all participants
showed improvement across the first year of recovery with decelerating improvement across time.
Similar patterns were observed across subscores of the QAB (not shown in Fig. 3.2), summarized
in the mixed-effects models described below.

Mixed effects modeling generated estimates of QAB scores at each time point for individuals
with aphasia on all summary measures of the QAB, revealing a decelerating trajectory of recovery

across language domains (see Fig. 3.3). Results of both coding untestable patients as missing and
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Acute severity One month severity Three months severity One year severity
Unavailable
-

‘Elsrl;\‘i"ibll Unavailable

258

Unavailable
284

No aphasia
30

Figure 3.1: Alluvial plot showing sample makeup and retention across time points.

coding them as globally aphasic were examined. When patients who were untestable were coded
as missing, the overall QAB score was estimated at 5.58 (SD 2.80) acutely, 7.33 (SD 1.54) at one
month, 7.99 (SD 1.91) at three months, and 8.30 (SD 2.09) at one year. When these patients were
coded as globally aphasic, estimates changed to 4.98 (SD 3.20) acutely, 6.98 (SD 1.87) at one
month, 7.74 (SD 2.18) at three months, and 8.08 (SD 2.38) at twelve months. Note that only QAB
overall score was examined when untestable patients were treated as globally aphasic (as detailed
information about these patients’ language was not available).

Two language domains did not show precisely the same decelerating trajectory as the others:

speech-motor programming appeared to plateau after the one month time point, while word finding
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Figure 3.2: Spaghetti plots demonstrating trajectories of recovery across the first year post-stroke at the individual
level as measured by QAB overall. Severity groupings are for the purposes of visualization only, based on arbitrary
guidelines put forth by the authors of the QAB (0-4.99 = severe, 5-7.49 = moderate, 7.5-8.89 = mild, 8.9-10 = very
mild or no aphasia).

continued to show improvements between three months and one year. Scores were estimated to be
highest across time points on the dysarthria and single word comprehension domains, and lowest
across time points on the sentence comprehension and word finding domains. Note that the purpose
of this analysis was intended to be descriptive (that is, to reflect general patterns of language change
over time in our particular data set, rather than to generalize to new exemplars); thus, results of
statistical tests are not reported or interpreted here.

Correlation coefficients between the nine QAB summary measures of interest were calculated
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Figure 3.3: Plot of estimated QAB performance as a function of time in individuals who presented with aphasia. Left
panel excludes those who were untestable at a given time point while right panel codes them as globally aphasic.
Estimates reflect participants with aphasia for whom at least one valid language evaluation was available across time
points (N=213 and N=230, respectively). Shaded error bars correspond to standard deviation of QAB overall scores
across participants at each time point as calculated in the mixed-effects modeling procedure. Abbreviations are as
follows: SWC = single word comprehension; SC = sentence comprehension; WF = word finding; GC = grammatical
construction; SMP = speech-motor programming; REP = repetition; READ = reading; DYS = dysarthria; QAB =
QAB overall.

across time points in order to examine how relationships between them stayed stable or fluctuated
over time (see Figure 3.4). All measures correlated with all others across all time points except for
dysarthria, which gradually became less correlated with other scores over time. The highest cor-
relations across time points were observed between word finding and QAB overall, grammatical
construction and QAB overall, and repetition and QAB overall. Note that these measures are not
entirely independent, as the QAB is a composite score of other summary measures; however, the
measures that correlate most highly with QAB overall vary in their contribution to the QAB overall
score, with word finding and grammatical construction each contributing 14% and repetition con-
tributing only 8%. Thus, the high correlations between these measures (range: r = 0.90 — 0.94)
relative to low correlations with other measures that contribute to the QAB overall in similar ways
(e.g. speech-motor programming at one month, r = 0.55, which like repetition also contributes 8%

to QAB overall) may still be meaningfully interpreted. The lowest correlations were generally ob-
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served in the presence of the motor speech measures, speech-motor programming and dysarthria,
with speech-motor programming and sentence comprehension in particular showing particularly

low correlations across all time points (range r = 0.22 — (0.48).

Acute One month

SwcC
sC

0.68 0.65 i3 068 0.73

0.57 0.5

0.69 059

0.59 052 0.83 GC

0.39 - 0.61 b SMP

0.60 0.64 0.79 L I REP

053 049 0.71 I i b NN} 0.62 | 0.47
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Figure 3.4: Correlations between subscores of the QAB at different time points. Coefficient values are plotted when
significant at p < 0.05. Abbreviations are as follows: SWC = single word comprehension; SC = sentence compre-
hension; WF = word finding; GC = grammatical construction; SMP = speech-motor programming; REP = repetition;
READ = reading; DYS = dysarthria; QAB = QAB overall.

3.1.2 Imaging
Lesion overlays demonstrated near-complete coverage of the left hemisphere in our data set, as well
as distinct lesion distributions across patients with and without aphasia (see Fig. 3.5). Regions of

maximum overlap associated with an aphasia diagnosis fell in the left external capsule (85/220)
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and left insula (83/220), while the region of maximum overlap associated with a diagnosis of no

aphasia fell in the left putamen (23/119).

Figure 3.5: Lesion overlays for (A) individuals with aphasia (N=220) and (B) individuals without aphasia (N=119).

Color for each voxel corresponds to the number of patients in whom that voxel is lesioned.

In order to assess correlations between lesion size and damage to different ROIs, a correla-
tion matrix was generated including lesion size as well as damage to all left hemisphere regions
of interest in participants with aphasia for whom imaging was available (see Fig. 3.6; for list of

abbreviations, see Table 3.3). Lesion size correlated maximally with damage to the superior tem-
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poral gyrus, the post-central gyrus, and white matter regions. The majority of high correlations
fell within a superset region (i.e., pars opercularis and pars triangularis, both within the realm of
the IFG, were highly correlated), although other high correlations were observed (e.g. insula with

inferior frontal gyrus and paracentral lobule). Note that ext images are not reflected in this plot.

Occ

Thal

WM
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] [ = o 8 = = 7]
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u

Figure 3.6: Correlations between lesion size and damage to left hemisphere ROIs in people with aphasia (N = 220).
To aid in visualization and readability, only superset regions are labeled; see Table 3.3 for meanings of abbreviations,

and Table 1 in Fan et al. (2016) for further description of comprising subregions.
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Abbreviation Expanded name Num. LH subregions

SFG Superior frontal gyrus 7
MFG Middle frontal gyrus 7
IFG Inferior frontal gyrus 6
OorG Orbital gyrus 6
PrC Precentral gyrus 6
PCL Paracentral lobule 2
STG Superior temporal gyrus 6
MTG Middle temporal gyrus 4
ITG Inferior temporal gyrus 7
FuG Fusiform gyrus 3
PhG Parahippocampal gyrus 6
pSTS Posterior superior temporal sulcus 2
SPL Superior parietal lobule 5
IPL Inferior parietal lobule 6
Pcu Precuneus 4
PoG Postcentral gyrus 4
Ins Insula 6
Lim Limbic lobe (cingulate gyrus) 7
Occ Occipital lobe 11
Amy Amygdala/hippocampus 4
BG Basal ganglia 6
Thal Thalamus 8
WM White matter 21

Table 3.3: Table of ROI abbreviations as extracted from Fan et al. (2016) and Mori et al. (2005). Far right column
refers to number of subregions comprising each ROI in the left hemisphere of the combined atlas. See Table 1 of Fan
et al. (2016) for further detail.

3.2 Linear SVR model performance

As discussed in the Methods section above, a variety of different models reflecting different analyt-
ical choices were created for the purposes of predicting language outcomes at various timepoints
post-stroke. A recap of the characteristics of each of these models is included prior to the presen-

tation of their results to increase interpretability; Table 2.2 may also be consulted for this purpose.
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3.2.1 Models 1 through 4: Cognitive neuroscience focus

Models 1 through 4 address a cognitive neuroscience question by using only demographic and
lesion-related predictors, excluding information about acute language scores. Models 1 and 3 treat
untestable patients as missing while Models 2 and 4 treat them as globally aphasic (such that only
QAB overall can be predicted, due to a lack of detail regarding specific characteristics of language);
Models 1 and 2 include only individuals with aphasia while Models 3 and 4 include individuals
both with and without aphasia (such that only the acute time point can be predicted, due to lack of
follow-up of those without aphasia).

Figures 3.7 and 3.8 show model performance for models addressing the extent to which lan-
guage outcomes at different time points can be predicted from demographic and lesion information
alone. Demographic and stroke type information alone were insufficient to accurately predict lan-
guage outcomes for any time point or language domain, regardless of methods for filtering the
input data (i.e. inclusion or exclusion of individuals without aphasia or who were untestable),
with the maximum ICC achieved across all Stage 1 models being 0.08 (Model 3, acute sentence
comprehension). The addition of lesion size as a predictor in the Stage 2 models led to signifi-
cant improvements in prediction of outcomes at all time points across all data filtering strategies
and language domains except for speech-motor programming and dysarthria (though the addition
of lesion size marked a significant increase in accuracy for dysarthria at the acute time point, the
absolute accuracy was still extremely low), though all resulting predictions still remained below
Cicchetti’s standards for good or excellent reliability (Cicchetti, 1994). With the addition of le-
sion load information in Stage 3 came statistically significant improvements in all but one model
(Model 1 reading at three months), such that 19 out of 50 models reached “good” reliability per
Cicchetti (Model 1 sentence comprehension at one month and twelve months, word finding at three
months and twelve months, grammatical construction at three months and twelve months, repeti-
tion acutely, overall at three months and twelve months; Model 2 overall at all time points; Model
3 word finding, grammatical construction, repetition, reading, and overall acutely; Model 4 overall

acutely).
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Across all models addressing the neural bases of language, the maximum predictive accuracy
(ICC =0.73) was achieved when predicting QAB overall score at the one year time point using all
available predictors and excluding individuals without aphasia (Models 1 and 2, Stage 3, which
show identical results at the one year time point due to the absence of untestable patients). Fig-
ure 3.9 shows representative raw scatter plots of actual versus predicted overall QAB scores as

generated by Model 1.

3.2.1.1 Neural correlates and other predictors of recovery
In order to get a sense of which regions are associated with language recovery in the long-term, beta
weights from high-performing Model 1 models at the one year time point are displayed in Figure
3.10, with ROIs associated with negative beta weights (that is, ROIs in which larger amounts
of damage were associated with lower than average language scores) plotted in hot colors and
ROIs associated with positive beta weights (that is, ROIs in which larger amounts of damage were
associated with higher than average language scores) plotted in cool colors.
Non-lesion-load-related predictors were interpreted as potentially associated with outcomes if
their assigned beta weights were as extreme or more than two standard deviations from the mean
beta weight across all predictors in the model. By this metric, years of education were positively
associated with sentence comprehension (8=1.00) and grammatical construction (=0.85) out-

comes, while age was negatively associated with word finding outcomes (=-1.18).

3.2.2 Models 5 through 8: Clinical focus

Models 5 through 8 address a clinical question by using all available predictors, including infor-
mation about acute language scores, to predict language at later time points; thus, only post-acute
scores in individuals with aphasia are predicted, and individuals without aphasia (who were not
followed up after the acute stage) are excluded. Models 5 and 7 treat untestable patients as missing
while Models 6 and 8 treat them as globally aphasic (such that only QAB overall can be predicted,
due to a lack of detail regarding specific characteristics of language); Models 5 and 6 predict out-

comes at particular time points while Models 7 and 8 predict score change between the acute and
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later time points; see again Table 2.2.

Figures 3.11 and 3.14 show model performance for models addressing the extent to which lan-
guage recovery can be predicted given information about acute language presentation in addition
to demographic and lesion information. As the two sets of models address this question using
different methods—namely, by predicting outcome versus by predicting change/recovery—their

results will be discussed separately here.

3.2.2.1 Predicting outcomes at follow-up

Figure 3.11 shows model performance for models addressing the extent to which a later cross-
sectional language score can be predicted given information about acute presentation. Stage 1
models including only demographic information, stroke type, and acute language score were al-
ready highly predictive of longer-term outcomes at earlier time points, with word finding, gram-
matical construction, speech-motor programming, repetition, reading, dysarthria, and QAB overall
at the one month time point, as well as QAB overall at the three month time point, already well-
predicted per the Cicchetti (1994) standards for “good” reliability. These findings held whether
individuals who were untestable were coded as missing or globally aphasic. The addition of lesion
size information in Stage 2 still contributed to prediction, however, with significant increases ob-
served for single word comprehension at one month and one year, sentence comprehension at one
month and three months, word finding and grammatical construction at all time points, repetition
at one month and three months, reading at three months, and overall score at all time points. The
further addition of lesion load information in Stage 3 significantly increased predictive accuracy
for single word comprehension at one year, sentence comprehension at all follow-up time points,
word finding at one year, repetition at one year, dysarthria at all follow-up time points, and overall
QAB at the one year time point (as well as the three month time point when untestable patients
were included in the data set). Note that the majority of the cases in which predictions were im-
proved by the presence of lesion load information were at later time points post-stroke. Figure 3.12

shows representative raw scatter plots of actual versus predicted overall QAB scores as generated
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using Model 6.

3.2.2.2 Neural correlates and other predictors of recovery

In order to get a sense of which regions are associated with language recovery in the long-term
when initial presentation is accounted for, beta weights from high-performing Model 5 models at
the one year time point are displayed in Figure 3.13, with negative beta weights (ROIs in which
larger amounts of damage were associated with lower than average language scores) plotted in hot
colors and positive beta weights (ROIs in which larger amounts of damage were associated with
higher than average language scores) plotted in cool colors.

Non-lesion load related predictors were again interpreted as potentially associated with out-
comes if their assigned beta weights were as extreme or more than two standard deviations from
the mean beta weight across all predictors in the model. By this metric, acute score was posi-
tively associated with sentence comprehension (8=1.14), word finding (8=1.18), and QAB overall
(B=1.01). Age was negatively associated with sentence comprehension (=-0.94), word finding

(B=-1.41), and QAB overall (f=-0.76).

3.2.2.3 Predicting change at follow-up

Figure 3.14 shows model performance for models addressing the extent to which recovery of lan-
guage (that is, change in language score between the acute and later time point) can be predicted
at later time points given information about acute presentation. ICC values indicated that predic-
tion of change at Stage 1 was, in many cases, already excellent per Cicchetti’s standards, with few
significant increases in ICC as further predictors were added.

Note, however, that correlations between actual and predicted change scores will be inflated
when variance is lower in outcome than baseline scores see (as is the case in our data and most
stroke data sets; see Hope et al., 2019; Hawe et al., 2019; Bowman et al., 2021). Thus, it is likely
to paint a rosier picture of prediction accuracy than truly is warranted. Per Kundert et al. (2019), it
is a “common but inaccurate assumption” (p. 885) that being able to predict change means being

able to predict outcomes by adding predicted change to baseline scores, and indeed the falsity of
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this supposition is borne out in the figures and analysis described below.

Figure 3.16 shows model performance for the same models assessed in Figure 3.14, but with
ICC calculated between actual outcomes and predicted outcomes based on predicted change (that
is, actual acute score plus predicted change) rather than actual change and predicted change. Note
that many of the extremely high ICC values observed in Figure 3.14, for example single word com-
prehension, grammatical construction, and dysarthria at the three and twelve month time points,
have lowered in this version of the accuracy analysis.

Across all models in the Model 7, Stage 3 class, acute score was the highest predictor of change
scores, with B values ranging from -4.53 to -6.26, all more extreme than those observed for any
predictors in the previously reported models.

To further illustrate this point with regard to the apparent spuriousness of calculating ICC
on change scores, let us briefly return to Stage 1 of Model 5 (demographics, stroke type, and
acute score predicting cross-sectional outcomes), with a focus on single word comprehension.
Predictions of single word comprehension outcomes were quite poor at this stage, with the greatest
ICC being attained at the three month time point (/CC = 0.23). However, if we were to use
this very same model but instead calculate ICC between predicted and actual change at the three
month time point—that is, between (actualOutcome — actualAcute) and (predictedOutcome —
actual Acute)—our ICC suddenly skyrockets to ICC = 0.90. Clearly the model itself is not superior
for practical purposes when we calculate accuracy in this manner; the correlation-based metric
simply exploits the synthetic variance generated by subtracting the highly variable true baselines
from the highly invariable predicted outcomes, which are most pronounced when ceiling effects

are present (see Fig. 3.18).

3.3 Non-linear SVR model performance
Finally, a non-linear version of this analysis was completed using an RBF kernel per the recommen-
dations of Zhang et al. (2014) and DeMarco and Turkeltaub (2018). This approach allows for the

possibility of interactions between features/predictors and has the potential to improve prediction
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accuracy, but at the expense of providing clearly interpretable beta weights and a clear path forward
for statistical comparison with the linear models reported above. The highest predictive accuracies
across these models in general were generated using Models 7 and 8 (with ICCs calculated between
actual outcomes and change-based predicted outcomes, since accuracy for predicting change alone
is difficult to interpret; see discussion above), with excellent accuracy reached for word finding at
the one month time point, repetition at the three month time point, and QAB overall at the one
and three month time points. Most other predictive accuracies fell into the “good” range, with the
exception of single word comprehension at one and twelve months, grammatical construction and
repetition at twelve months, and reading and dysarthria at three and twelve months, which were
fair to poor per Cicchetti’s standards. Results are plotted in Figure 3.19.

As stated above, there is not a straightforward way to statistically compare linear and non-
linear models using the permutation approach taken by this study. To provide a general sense
of any potential improvements in accuracy using a non-linear RBF versus a linear kernel in the
models using all predictors, raw differences in ICC between Stage 4 RBF-based models and Stage
3 linear models are plotted in Figure 3.20. Though some models showed improved accuracy with
the use of the non-linear kernel, the benefits were not strikingly apparent across language domains

or time points.
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Figure 3.7: Plots of model performance (ICC) attained for Models 1 (left) and 2 (right) across domains (color) and
times (bar within group; left = earliest) at different stages (rows). Dotted lines show “good” and “excellent” ICCs.
Error bars show 95% ClIs (parametric). Asterisks denote models on which new predictors significantly improved
accuracy. SWC=single word comprehension, SC=sentence comprehension, WF=word finding, GC=grammatical con-
struction, SMP=speech-motor programming, REP=repetition, READ=reading, DY S=dysarthria, QAB=overall.
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Figure 3.8: Plots of model performance (ICC) attained for Models 3 (left) and 4 (right) across domains (color) and
times (bar within group; left = earliest) at different stages (rows). Dotted lines show “good” and “excellent” ICCs.
Error bars show 95% ClIs (parametric). Asterisks denote models on which new predictors significantly improved
accuracy. SWC=single word comprehension, SC=sentence comprehension, WF=word finding, GC=grammatical con-
struction, SMP=speech-motor programming, REP=repetition, READ=reading, DY S=dysarthria, QAB=overall.
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Figure 3.9: Representative scatter plots across model stages (rows) and times (columns) demonstrating increasing
accuracy at predicting QAB overall score with lesion load included as a predictor. Scatters are drawn from Model 1,
which excludes both patients without aphasia and untestable patients. Diagonals (black) correspond to the identity line
(perfect correlation).
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Sentence comprehension

Figure 3.10: Regions of interest (ROIs) implicated for high-performing Model 1, Stage 3 models (all predictors except
acute score, participants with aphasia only) at the one year time point. Hot colors reflect ROIs which were assigned
negative beta weights (meaning damage was associated with worse than average scores); cool colors reflect ROIs
which were assigned positive beta weights (meaning damage was associated with better than average scores). Maps

are thresholded to show betas with values more extreme than 0.2 and capped at 1.0.
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Figure 3.11: Plots of model performance (ICC) attained for Models 5 (left) and 6 (right) across domains (color) and
times (bar within group; left = earliest) at different stages (rows). Dotted lines show “good” and “excellent” ICCs.
Error bars show 95% ClIs (parametric). Asterisks denote models on which new predictors significantly improved
accuracy. SWC=single word comprehension, SC=sentence comprehension, WF=word finding, GC=grammatical con-
struction, SMP=speech-motor programming, REP=repetition, READ=reading, DY S=dysarthria, QAB=overall.
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Figure 3.12: Representative scatter plots across model stages (rows) and times (columns) demonstrating generally
high accuracy at predicting QAB overall score across model stages when acute score is included as a predictor, but
with increased accuracy at later time points when lesion load information is added to the model. Scatters are drawn

from Model 6, which includes untestable patients by treating them as globally aphasic. Diagonals (black) correspond
to the identity line (perfect correlation).
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Figure 3.13: Regions of interest (ROIs) implicated for high-performing Model 5, Stage 3 models (all predictors includ-
ing acute score, with untestable patients treated as missing) at the one year time point. Hot colors reflect ROIs which
were assigned negative beta weights (meaning damage was associated with worse than average scores); cool colors
reflect ROIs which were assigned positive beta weights (meaning damage was associated with better than average

scores). Maps are thresholded to show betas with values more extreme than 0.2 and capped at 1.0.
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Figure 3.14: Plots of ICCs between actual change and predicted change for Models 7 (left) and 8 (right) across domains
(color) and times (bar within group; left = earliest) at different stages (rows). Note validity concerns of this approach.
Error bars show 95% ClIs (parametric). Asterisks denote models on which new predictors significantly improved
accuracy. SWC=single word comprehension, SC=sentence comprehension, WF=word finding, GC=grammatical con-
struction, SMP=speech-motor programming, REP=repetition, READ=reading, DY S=dysarthria, QAB=overall.
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Figure 3.15: Representative scatter plots across model stages (rows) and times (columns) demonstrating generally
high accuracy at predicting change in QAB overall score between acute and later time points across model stages
when acute score is included as a predictor. Note validity concerns of this approach. Scatters are drawn from Model 8,

which includes untestable patients by treating them as globally aphasic. Diagonals (black) correspond to the identity
line (perfect correlation).
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Figure 3.16: Plots of model performance (ICC) attained between actual outcome and predicted outcome based on
change for Models 7 (left) and 8 (right) across language domains (color) and times (location within group; left = earli-
est) at different stages (rows), revealing the spuriousness of the results in Fig. 3.14. Asterisks show significance of new
predictors. SWC=single word comprehension, SC=sentence comprehension, WF=word finding, GC=grammatical
construction, SMP=speech-motor programming, REP=repetition, READ=reading, DY S=dysarthria, QAB=overall.
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Figure 3.17: Representative scatter plots across model stages (rows) and times (columns) demonstrating generally
high accuracy at predicting outcomes using predicted change scores with acute score as a predictor, but with different
findings relative to predicting change alone (see Fig. 3.15). Scatters show actual outcomes versus predicted outcomes

as generated by adding actual baselines to changes predicted by Model 8. Diagonals (black) correspond to the identity
line (perfect correlation).
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Figure 3.18: An illustration of why ICCs calculated between actual and predicted change might be inflated relative to
those calculated between actual and predicted outcomes. Data reflect predictions of sentence comprehension at three
months post-stroke from Model 5, Stage 1. Actual outcomes (blue) reflect ceiling effects in the true data, such that
predicted outcomes (yellow) occupy a very small range between 9 and 10 (/CC = 0.22 for actual versus predicted
outcomes). However, when the true baseline score is subtracted from actual and predicted outcomes (orange and
purple, respectively), the invariance is obliterated and actual versus predicted change appear to be highly correlated

(ICC = 0.90 for actual versus predicted change).
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Figure 3.19: Model performance for final-stage non-linear RBF models. Error bars show 95% Cls (parametric).
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SMP=speech-motor programming, REP=repetition, READ=reading, DY S=dysarthria, QAB=overall.
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Figure 3.20: Differences in ICC between non-linear and linear models across domains (color) and times (lo-

cation in group:

left=earliest). ~No consistent benefits are readily apparent.

SWCs=single word compre-

hension, SC=sentence comprehension, WF=word finding, GC=grammatical construction, SMP=speech-motor,
REP=repetition, READ=reading, DY S=dysarthria, QAB=overall.
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CHAPTER 4

Discussion

The current study reveals that many aspects of language recovery in the first year following stroke
can be predicted with good to excellent accuracy (ICCs up to 0.83 in linear models and 0.86
in RBF-transformed models, both for QAB overall at three months post-stroke) using SVR-based
models that take demographic, language, and lesion-related variables as input. These values exceed
many attained in the existing literature (e.g. Zhang et al., 2014; Del Gaizo et al., 2017; DeMarco
and Turkeltaub, 2018; Kristinsson et al., 2021) despite being calculated in a more conservative
manner in many cases (that is, using ICC(A,1) rather than Pearson correlation). Furthermore, our
study demonstrates that information about the /ocation of a lesion, beyond simply its size, is in
many cases crucial for making these predictions, as made clear by the large number of significant
increases in ICC observed with the addition of lesion load vectors into the models. This remains
true even in cases when acute measures of language are included as predictors, particularly at later
time points post-stroke. Finally, this study demonstrates differences in both predictive ability and
the utility of different neural regions as predictors across different language domains, suggesting

sub-specialization of particular regions for particular functions of language.

4.1 Language recovery is decelerating but continuous across most language domains
Figure 3.3 demonstrates a decelerating trajectory of recovery across the majority of language do-
mains, in line with prior work (Kertesz and McCabe, 1977; Pedersen et al., 1995; Laska et al.,
2001; Wilson, 2019). In all cases, the greatest gains appear to be made in the first month post-
stroke, with slowing increases in function between one month and three months and three months
and one year. Two notable exceptions to this rule in our data are speech-motor programming, which
stays approximately stable after the one month time point, and word finding, which continues to
show gains in function even in the three month to one year interval.

With regard to speech-motor programming, there appears to be very little research to date in-
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vestigating the nature of recovery from specifically apraxia of speech (AOS) (Haley et al., 2016),
perhaps due to the inherent difficulty in distinguishing apraxia of speech from aphasia (Basilakos
et al., 2015). However, the trajectory of recovery for speech-motor programming observed here
suggests that apraxia of speech may recover in a slightly different manner than aphasia does, per-
haps reaching a plateau at an earlier time point. This would seem to be at odds with one of the only
studies to longitudinally follow individuals with apraxia of speech, which showed similar patterns
of recovery for both aphasia and apraxia (Hybbinette et al., 2021). Future work should examine
whether the AOS-specific plateau observed here holds up in other longitudinal data sets. In gen-
eral, scores related to motor speech in this data set are higher than scores on language domains, as
demonstrated by the relatively high estimates for both speech-motor programming and dysarthria
observed across time points. This may be an effect of scale; motor speech summary scores take on
a more limited set of values than do language summary scores as calculated in the QAB (Wilson
et al., 2018b), and thus may not be directly comparable to the language summary scores. How-
ever, prior work has suggested that while dysarthria may be more common than aphasia acutely
(Ali et al., 2015; Mitchell et al., 2020), dysarthria may be more likely to have resolved completely
by three months post-stroke than aphasia (Ali et al., 2015). The high scores reflecting lack of
dysarthria at the one year time point and gradually decreasing correlation between measures of
dysarthria and other language subscores observed in our data appear to support these findings.
With regard to word finding, the consistently steady gains observed after the three month time
point are interesting, and could arise from a variety of causes. One theory might suggest that,
because word finding is one of the most commonly impaired functions acutely following stroke
(Conroy et al., 2018), the striking continued recovery may simply be due to the fact that there is
more room for improvement available after the acute stage. However, compare the trajectory of
word finding recovery to that of sentence comprehension, which starts at approximately the same
severity acutely but does not exhibit the same steep recovery slope after three months; this suggests
that a more severe initial presentation is not sufficient on its own to engender a markedly different

course of language recovery. Another hypothesis is that, as speech-language therapy generally
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focuses disproportionately on naming skills compared to other domains of language (Conroy et al.,
2009), speech-language therapy is the cause of continuously increasing word finding abilities;
however, as it is difficult to obtain reliable data about the nature and extent of speech-language
therapy following stroke in a large cohort (Berthier, 2005; Xing et al., 2016; Price et al., 2017),
support for this claim is lacking in this data set. It may be the case that, even independent of speech-
language therapy, naming deficits are those that benefit the most from compensatory strategies
developed over time (e.g. circumlocution, self-correction, pausing rather than moving forward with
an incorrectly selected phoneme, etc.), and that it is the result of the formulation of those strategies
that is observed here; indeed, the means by which word-finding is scored and calculated in the
QAB may capture such effects, as delays are scored more leniently than paraphasias, for example.
As with the motor speech findings, it will be interesting to see whether this effect replicates in
future work, or when using other measures of language besides the QAB.

Another feature of interest in these findings is the striking difference in single word comprehen-
sion and sentence comprehension across time points. Though they both show similar contours of
recovery, single word comprehension scores greatly exceed sentence comprehension scores at all
time points, perhaps demonstrating a dissociation in the initial vulnerability of these two systems
(that is, single word comprehension appears to be significantly less vulnerable to injury than does
sentence comprehension). Sentence comprehension similarly shows a greater impairment over-
all than does grammatical construction, in line with conceptualizations of the language network
that suggest distinct mechanisms to support comprehension and production of complex syntax
(Matchin and Hickok, 2020). Note, as well, that correlations between both sentence comprehen-
sion and single word comprehension, and sentence comprehension and grammatical construction,

are relatively low across all time points (see Fig. 3.4).

4.2 SVR can predict some language outcomes with excellent accuracy as measured by ICC
Good to excellent accuracy was attained given particular predictors for certain language domains

and time points post-stroke.
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Across models and time points, the most reliably well-predicted language domains were sen-
tence comprehension, word finding, and QAB overall, while the least reliably well-predicted were
single word comprehension, speech-motor programming, reading, and dysarthria.

The fact that QAB overall would be among the easiest subscores to predict is perhaps unsurpris-
ing, as what it captures is the overall severity of aphasia, a general measure likely to be influenced
by the integrity of a variety of patient characteristics and neural regions simultaneously. Thus,
as is indeed observed in Figures 3.10 and 3.13 (hot colors), SVR models predicting QAB overall
seem to heavily utilize information about damage to left peri-Sylvian language regions, such as
the inferior frontal gyrus, precentral gyrus, anterior temporal lobe, and angular and supramarginal
gyri. Similarly, word finding correlates highly with QAB overall across time points (see Fig. 3.4),
and predictions of word finding scores appear to be driven by a pared down but similar network of
regions (see 3.10 and 3.13, second row). This suggests that measures of naming or word finding
may be appropriate proxies for aphasia severity when time to conduct a full evaluation is lim-
ited (Wallace et al., 2014; Evans et al., 2020; Fridriksson, 2020). The ability to predict sentence
comprehension, and perhaps particularly the extent to which lesion load information aided in pre-
dicting sentence comprehension even when acute scores were included in the model (most notable
at the one year time point; see 3.11), was perhaps more interesting, as the comprehension of com-
plex syntax is arguably a more distinct sub-function of language. Of note, the posterior superior
temporal sulcus appeared to be a significant driver of sentence comprehension predictions across
models (see Figs. 3.10 and 3.13, first row), in line with prior work that highlights the importance
of this region for specifically syntactic comprehension (Pallier et al., 2011; Wilson et al., 2018a;
Matchin et al., 2020; Matchin and Hickok, 2020).

It is interesting and perhaps unsurprising that recovery of single word comprehension and artic-
ulation are both more difficult to predict, at least when prediction accuracy is measured using ICC,
given that these skills often recover relatively well (Selnes et al., 1984; Rogalsky et al., 2008; Ali
et al., 2015; Wilson et al., 2018c), though this rule is certainly not without exceptions. It may be

that single word comprehension is more bilateral in its underpinnings in healthy language function,
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such that it is less vulnerable to injury via one-sided stroke; this notion would be in line with prior
findings that damage to both auditory cortices is necessary to cause pure word deafness (Poeppel,
2001), that the bilateral superior temporal gyrus plays a large role in comprehending speech at the
phoneme and word level (e.g. Mesgarani et al., 2014; Leonard et al., 2016), and that the anterior
temporal lobes bilaterally are implicated in the word-level comprehension impairments of semantic
dementia (though some aspects of this process appear to be more-left lateralized; Mesulam et al.,
2013). Indeed, the current dominant model of language, Hickok and Poeppel (2007), purports that
auditory word comprehension is bilateral in healthy language function (though cultural dominance
is not necessarily a good index of scientific accuracy). Alternatively, a compensatory upregulation
of the right hemisphere following injury may aid in the comprehension of single words, though
recent findings suggest that right hemisphere reorganization may be a less prevalent mechanism of
language recovery in stroke than is commonly believed (Wilson and Schneck, 2021). Dysarthria
caused by upper motor neuron damage is often transient, and it has been theorized that this is due
to the bilateral innervation to most cranial nerve nuclei (Enderby, 2013). However, it is important
to note that some patients do continue to exhibit persistent deficits on both of these domains fol-
lowing left-hemisphere stroke (Palmer et al., 2007; Knollman-Porter et al., 2018), suggesting that,
regardless of any potential underlying mechanism for its involvement, the isolated right hemisphere
cannot always handle word comprehension or motor speech alone.

The lack of ability to predict recovery of reading from left hemisphere damage is somewhat
surprising, as the neural bases of reading are somewhat well-established and appear to be primarily
left-lateralized (Seghier and Price, 2011). Assessments of reading in the QAB are somewhat sparse
compared to other language assessments, and writing is assessed only partially in this data set (not
analyzed here); future work may need to probe more deeply into reading and writing abilities if

predictions of recovery in these domains are to be accurately made.
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4.3 Information about lesion location significantly improves predictions

The addition of lesion load vectors had a significant positive impact on predictive accuracy in some
key scenarios. All Model 1 models except for one (reading at three months) were significantly
improved by the presence of lesion load information, above and beyond what was predicted by
lesion size (see Fig. 3.7). In line with prior work, handedness and gender did not appear to have
any influence on long-term aphasia recovery, while age and years of education appeared to show
relationships with outcomes in some cases (Watila and Balarabe, 2015; Gerstenecker and Lazar,
2019). Of particular note, speech-motor programming and dysarthria were not predictable at all
from lesion size and demographic information alone, with predictive accuracy greatly increased
by the addition of lesion load information. This suggests that speech-motor deficits in particular
may result from focal, anatomically specific damage, rather than gross disruption to the language
network (Enderby, 2013; Basilakos et al., 2015). Even when acute scores (which are able to predict
outcomes quite well at one month without lesion information) were included in the models, the
addition of lesion load information had a significant positive impact on predictions at the one year
time point (see Figs. 3.11, 3.16). This suggests that the integrity of specific anatomical regions may
be even more crucial for predicting recovery in the long-term than initial presentation, commonly
believed to be the best predictor of final outcome (Lazar and Antoniello, 2008; Gerstenecker and
Lazar, 2019). It has been theorized that language recovery in the first two weeks following stroke
is dependent on re-normalization processes, e.g. reperfusion and resolution of diaschisis/swelling,
while at later stages it is more dependent upon neuroplastic reorganization and recruitment of
other regions and networks (Marsh and Hillis, 2006). The predictive power afforded by lesion load
information at later stages of recovery may support this theory, as the extent to which remaining
regions retain their integrity is likely to dictate their potential for recruitment or reintegration in the

chronic stages of recovery.

75



4.4 Correlation-based accuracy on predictions of change scores should be interpreted with
caution

A growing body of work has recently emerged suggesting that correlations between baseline scores
and change scores (that is, some outcome score minus that baseline score) are statistically inflated
due to mathematical coupling, or the correlation “of a variable with an expression containing that
same variable” (Bowman et al., 2021, p. 1916). Due to ceiling effects, the general tendency
of function following stroke to improve, and decreased variance in change scores compared to
baselines, baseline-change correlations will often be trivially high, regardless of the biological
mechanisms underlying recovery (Hope et al., 2019; Hawe et al., 2019; Bonkhoff et al., 2020;
Bowman et al., 2021). The spuriousness of this relationship is quite eloquently put by Bowman
etal. (2021): “...if the variability of X is substantially larger than the variability of Y, Y-X becomes
close to -X+constant...As a result, the correlation of X with Y-X degenerates, approaching the
correlation of X with -X+constant, which, of course, is minus one, what would be interpreted as
maximum evidence for proportional recovery...To put it in the bluntest terms, if the variability of
outcome scores is substantially smaller than initial scores, there really is no need to calculate the
correlation between initial scores and change, we know exactly what it will be [namely, -1]...This
raises the specter of tautology—in other words, one cannot help but find evidence for proportional
recovery but that evidence is very often spurious” (p. 1916).

These statistical issues hold for correlations between actual and predicted change scores (Hope
etal., 2019), as evidenced by the at times startlingly high prediction accuracies obtained in the orig-
inal Models 7 and 8 (wherein acute scores were included as predictors to predict language change),
particularly for those subscores and time points on which ceiling effects were most pronounced
(sentence comprehension, grammatical construction, and dysarthria at the three and twelve month
time points). Additionally, the disproportionate weighting of acute scores in these models may
provide further reason to be suspicious of their generalizability; while cross-sectional models sug-
gest that acute score has decreasing influence on prediction accuracies with increasing time (see

Fig. 3.11), the change-specific models show the opposite pattern (see Fig. 3.14), with acute scores
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being weighted by as much as six times more than other predictor variables when change is the
response variable. It seems also worthwhile to note that the seminal paper on proportional recov-
ery in aphasia is based on an extremely small sample size of 21 patients (Lazar et al., 2010), all
who fell within a mild-to-moderate range of severity, with follow-up studies utilizing even smaller
sample sizes (e.g. 14 patients with aphasia, with 4 excluded as non-fitters; Marchi et al., 2017).
This issue, additionally, warrants a conversation about ceiling effects in general—for example,
whether ICC is really the appropriate metric for assessing accuracy of a model when ceiling effects
are expected (as is perhaps the case with single word comprehension and dysarthria in our data set).
It may well be the case that a measure such as mean squared error would be more appropriate in a
case where a lack of variability in the true outcome scores is anticipated. However, it remains an
open question whether measures of aphasia that result in ceiling effects are, truly, good measures
of function. While people who attain a score of 10 might be “normal” in their language function,
often this “normal” language is still markedly below their baseline. A professor who had a mild
left hemisphere stroke, for example, may fall within the bounds of normal language function, but
be unable to return to his or her work. Thus, when considering the deleterious effects ceiling
effects can have on the interpretability of model accuracy in the presence of ceiling effects (at least
when calculated using ICC), it is important to consider the origin of those ceiling effects in the
first place, and whether that is a separate issue that needs to be addressed (see Hope et al., 2019;

Bowman et al., 2021).

4.5 RBF-based SVR models do not appear to offer clear benefits over linear SVR models

Many studies to date using SVR methods have utilized kernel transformations in their analyses (e.g.
Zhang et al., 2014; DeMarco and Turkeltaub, 2018; Hope et al., 2018; Kristinsson et al., 2021).
These methods prevent clear interpretation of beta weights, require a number of arbitrary choices
with regard to parameter selection, have a higher risk of overfitting, and rarely appear to have sound
theoretical bases in terms of the kernel transform selected beyond it being “widely used” (Zhang

et al., 2014). In the data reported here, some (but not all) models appeared to perform slightly

77



better under the use of the kernel trick with the field-specific recommended parameters (though this
difference was not assessed statistically; see Fig. 3.20); however, it remains an open question as to
whether the trade-off in interpretability when a non-linear kernel is introduced is worth the small
increases in predictive accuracy it might afford. A linear SVR model assumes that features are
additive, such that each increase in each feature value independently contributes some fixed amount
(defined by the calculated beta weight) to the predicted response variable. While there are certainly
good reasons to question whether the relationship between predictors and behavior is really that
straightforward (one can, for example, easily imagine an interaction wherein pre-morbidly left
versus right handed individuals with identical damage to the left hand-motor region might have
different outcomes in their writing abilities), the optimal solution does not seem to be to pick
an arbitrarily more complex relationship between all variables with no accompanying theoretical
basis, particularly one in which the feature-prediction relationships cannot be easily recovered
(Zhang et al., 2014). Rather than simply reporting the models with the highest accuracy, regardless
of their complexity, results of all models, including the simplest and thereby most interpretable,

are reported here.

4.6 Implications for treatment and ethical considerations
The ability to effectively predict outcomes for individuals with aphasia could have an extremely
positive impact on clinical practice and living with aphasia.

First, a better baseline understanding of recovery from aphasia lays the groundwork for as-
sessing the efficacy of treatment in clinical practice and/or clinical trials. Knowing what might
be expected for a given patient’s recovery at a given time based on lesion, language, and clinical
characteristics alone could help to elucidate which speech and language treatments really do lead
to better outcomes than would be expected naturally, essentially setting a threshold of recovery
to exceed. Importantly, using this type of multidimensional and prediction-focused model, this
threshold could be patient-specific, in line with recent work such as the Predicting Outcomes of

Language Rehabilitation (POLAR) trial demonstrating that particular treatments may better ben-
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efit particular individuals (Fridriksson and Hillis, 2021). Such a model could, in a similar man-
ner, set goalposts for investigations into pharmacological and stimulation-based aids to behavioral
treatment (e.g. Hillis, 2007; Crinion, 2016; Fridriksson et al., 2019). Additionally, due to the lon-
gitudinal aspects of the model described here, questions about the optimal timing of treatment
(Holland and Fridriksson, 2001; Teasell et al., 2005; Marsh and Hillis, 2006; Godecke et al., 2012;
Ali et al., 2021; Fridriksson and Hillis, 2021) could be more thoroughly investigated by providing
time point-specific baselines for comparison. While this dissertation is agnostic as to what treat-
ment approaches and timings are most effective, gaining clearer expectations for baseline recovery
at particular time points will help to better define the bar for success of an intervention.

Second, the ability to provide a patient with a sense of what recovery is likely to look like for
them, specifically, would help to set realistic expectations for the patient, their loved ones, and
their clinical team alike, such that appropriate strategies for managing impairment and collabora-
tive goal setting could be put into place (Haley et al., 2019). While this dissertation has taken a
largely impairment-based perspective for the purposes of scientific clarity, a more social model of
aphasia management could actually be aided by this work: providing individuals in the lives of
people with aphasia (e.g. loved ones, clinicians, regular contacts) with a greater understanding of
what are likely to be the person with aphasia’s areas of strength could help those contacts to ap-
propriately adjust their own behavior to better meet their loved one where they are. To quote Byng
and Duchan (2005) in their paper on the social model of disability in aphasia, “...if other people
behaved differently and if environments were changed, then many of the challenges associated
with an impairment would be considerably reduced” (p. 907). Patient-specific models of expected
relative strengths could help inform individuals around the patient of what is likely to be easiest or
hardest for them, such that those proximal individuals could learn to better create conversational
and environmental contexts to reveal competence in the person with aphasia.

A final thought is that, while students of speech-language pathology tend to recognize the im-
portance of neuroanatomical awareness in clinical practice (Martin et al., 2014; Barros et al., 2017),

neuroanatomical information is often poorly retained (Barros et al., 2018). Many student clinicians
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exhibit “neurophobia” (Javaid et al., 2018) based on the perceived difficulty of neuroscience-related
content compared to other coursework, which may prevent them from engaging deeply with neu-
rological information which could be illuminating when available in clinical practice. Thus, the
creation of an automatic tool by which to “interpret” neuroimaging data, such as the one described
here, might help make the ability to make neuroanatomically informed predictions for patients
more accessible to clinicians across the spectrum of care.

However, despite all of these potential benefits, it is crucial to note that statistical models are
just that—models—and can only be as good as the data that goes into them and the validity of
the methods that they employ. While great care has been taken to collect a high-quality patient
sample and ensure the integrity of the data and analyses presented herein, machine learning ap-
proaches should always be considered as a supplement to, not a replacement for, clinical expertise.
As machine learning models become more and more common in clinical practice, blind trust in
algorithms that purport to, for example, predict when a given patient will cease to benefit from ther-
apy could have detrimental effects on patients’ quality of care or recovery (Challen et al., 2019;
Thomas, 2020). Indeed, important questions have been raised as to precisely how neuroimaging-
based models for predicting recovery from aphasia will benefit clinical practice, given common
concerns about a lack of regard for individual differences, poor validation on independent data
sets, inaccessibility of scanner environments for certain patients, and inattention to predictors that
do not relate directly to the academic hypotheses in question (Shuster, 2018). It is the belief
of the author that many of these concerns are addressed in this dissertation (e.g., individual dif-
ferences are accounted for via the positioning of patients in a multidimensional symptom space;
leave-one-out cross-validation at least partially handles a risk of overfitting; patients who were not
MRI-safe are included via drawing lesions on CTs; demographic and non-lesion based predictors
are already included, with even more predictors planned for inclusion in the future); nevertheless,
this work should simply be considered an early step towards a better understanding of the myr-
iad factors that can influence language recovery, in tandem with individual patient characteristics,

therapeutic intervention, changes in neural function, and stochastic processes beyond our current

80



understanding—a tool, rather than a solution. It is encouraging that similar work is currently being
investigated for a directly applied purpose: to determine who is most likely to benefit from which

aphasia treatments (Fridriksson, 2018; Spell et al., 2020; Fridriksson and Hillis, 2021).

4.7 Limitations and future directions
This study has several notable limitations.

The participant sample herein was limited to individuals with primarily left hemisphere dam-
age, with right hemisphere regions excluded entirely from analysis. While this decision is justified
in order to avoid the curse of dimensionality (that is, having significantly more predictors than ob-
servations, particularly when those predictors are sparse in nature), it precludes the possibility of
better understanding any structural contributions of the right hemisphere to language recovery and
function. Perhaps similarly, the treatment of white matter regions in this analysis was somewhat
crude compared to the treatment of gray matter regions, with 123 gray matter regions considered
compared to only 21 white matter regions. Future work could make use of the DTTI available for
the majority of patients in this data set to trace white matter tracts within individuals, rather than
relying on average white matter atlases.

In terms of statistical validity, the reporting of beta weights to ascribe importance to particular
predictors was quite experimental, without accompanying metrics of significance. At this time,
there do not appear to be commonly agreed upon guidelines for assessing the statistical significance
of SVR-based beta weights, and the extent to which doing so is valid, at least in the case of
functional neuroimaging data, is debated (Haufe et al., 2014); thus, it is important to note that
these reported values should be interpreted with caution. Similarly, the statistical significance of
differences between linear and non-linear models was not assessed due to a lack of a clear path
forward for conducting such an analysis. Though there do not, on the surface, appear to be clear
benefits of using non-linear over linear SVR models in the analyses herein, the jury appears to
still be out on the matter, with some work suggesting that nonlinear SVM models provide no

benefit over linear ones (Misaki et al., 2010), and other work suggesting non-linear models are
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superior (Hope et al., 2018). The question of whether linear or non-linear models perform better for
predictive modeling using neuroimaging data thus remains an empirical question to be examined
by future studies.

Recent work has introduced the possibility of longitudinal SVR—that is, SVR analyses that
can account for the fact that the same patients are evaluated multiple times longitudinally, and
thereby exploit within-subject dependence (Chen and Bowman, 2011; Du et al., 2015). However,
as analytical tools for this purpose are not yet available in standard software packages, longitudinal
SVR was not attempted here; such an approach may be attempted as methods for longitudinal SVR
become more accessible and user-friendly.

Finally, leave-one-out cross-validation was used in this analysis in order to maximally utilize
the available data while maintaining some metric of generalizability. However, concerns have been
raised about high variability of predictions using leave-one-out cross-validation compared to less
noisy k-fold procedures (Poldrack et al., 2020), with some authors claiming leave-one-out cross-
validation can still result in overfitting (Halai et al., 2020). Additionally, although the training and
validation data used in our cross-validation procedure were fully independent, we were not able
to hold out a true independent test set to evaluate final model performance without sacrificing our
powerful sample size. As data from future patients is collected, this new data will become the
test set upon which the true generalizability of our models can be assessed. Of course, it is our
hope that these models will be equally effective for patient data acquired outside of Vanderbilt
University Medical Center, which remains to be seen (Price et al., 2017; Loughnan et al., 2019).

Though creating an effective model for structurally based predictions of language recovery is
exciting in and of itself, it is perhaps most exciting in its ability to serve as a baseline upon which
other, more functionally oriented predictors can be assessed for their utility in predicting language
recovery. Future work will examine the extent to which maps of the language network acquired
using fMRI (Wilson et al., 2018c; Yen et al., 2019), along with other measures of brain health or
structure such as leukoaraiosis and tractography and information about provision of speech and

language therapy, can account for variance unexplained by these models. A better understanding
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of patterns of reorganization following injury and their functional consequences could further clar-
ify what is different when, structural damage being equal, recovery is more successful in some
individuals than others, with the long-term aim of finding methods to induce such positive change

in language recovery.

83



CHAPTER 5

Conclusion

This study is the first to systematically predict language outcomes for multiple pre-defined time
points and on multiple language domains post-stroke, reliably doing so with good to excellent ac-
curacy. Its findings demonstrate that information about lesion location is crucial for making the
majority of these predictions, particularly at later time points post-stroke, suggesting that language
recovery in the long-term is supported by mechanisms specific to particular neural regions, vary-
ing by language domain, rather than simply global processes of recovery. This work provides
a valuable structural baseline upon which to build further, more functionally-oriented models of
language recovery incorporating functional maps of language organization and effects of speech-
language therapy in individual patients. Taken together, these scientific endeavors will help to
elucidate not only who we expect to show successful recovery from aphasia, but also how and why
that recovery might occur. This will help the field of communication sciences to better design
personalized treatment plans for individual people with aphasia, more effectively manage expec-
tations of these individuals and their loved ones, identify potential targets for stimulation-based or
pharmacological treatments, and to better understand the neural bases of one of our fundamental

human abilities—the capacity to communicate using language.
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