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CHAPTER I 

 

INTRODUCTION 

 

Charge-trap transistors (CTTs) enhance and exploit the properties of the dielectric layers 

of high-k-metal-gate (HKMG) devices for use as memory elements [1]. The amount of charge 

trapped in the HKMG dielectric layer is determined by the degree of voltage-ramp-stress (VRS). 

The threshold voltage Vth shifts due to the resulting charge trapping in the gate oxide are sufficient 

and stable enough for use in non-volatile memories (NVM) [1]–[3]. CTTs are fabricated in 

commercial CMOS processes and are a potential low-power, non-volatile memory. As a 

commercial CMOS process, CTTs are manufactured without additional process complexity and 

therefore can be designed as an embedded memory along with other circuitry. Because CTTs have 

high integration and low power consumption, they are attractive for use as digital or analog 

memories in neuromorphic computing, which is brain-inspired, non-von Neumann computing. 

However, CTTs are not just limited for use in neuromorphic computing architectures. Due to CTTs 

being low-cost, low-power, multi-time programmable memories (MTPM), they can be used in 

conventional von Neumann architectures as well. 

 However, total-ionizing-dose (TID) environments can similarly introduce trapped charges 

within dielectric materials potentially introducing a competing memory effect. Therefore, in this 

dissertation, the direct current (DC) characteristics of individual charge-trap transistors 

manufactured in both 22 nm fully-depleted silicon-on-insulator (FDSOI) and 14 nm bulk fin field-

effect transistor (FinFET) technologies are investigated for their total-ionizing-dose and 

programming response. Past work on FDSOI and bulk devices show that FDSOI is sensitive to 



2 

 

TID while bulk devices are not [4]–[16]. This work investigates and quantifies the TID response 

of FDSOI and bulk FinFET CTTs. FDSOI CTTs were found to be sensitive to TID as expected 

from the literature. It was also found that 2-fin bulk FinFET CTTs were impervious to TID up to 

500 krad(SiO2), while 40-fin bulk FinFET CTTs saw increased sub-threshold leakage current with 

increasing dose. It is demonstrated that charge-trap transistors can maintain their programmed state 

in TID environments when not degraded by the process isolation structures. 

The key contributions of this work are as follows. First, the TID response is characterized 

for individual 22 nm planar FDSOI and 14 nm bulk FinFET CTTs, which is the first ever 

examination of the response of CTTs to TID. Unprogrammed transistors are exposed to TID and 

characterized to determine the effect of TID on the two process technologies. In addition, CTTs 

are programmed before irradiation, and CTTs are programmed after irradiation to determine what 

effect, if any, TID has on the programmability of CTTs. The collected experimental data is then 

applied to neural network simulations in a forward-looking view to assess the potential 

ramifications of a TID-environment on CTTs used as neuron weights in neural networks. 

 Several important results are found. The most important finding is that the tolerance of 

CTTs to TID is found to depend primarily on the properties of the nearby insulators in the 

transistors, such as the buried oxide (BOX) or shallow trench isolation (STI), not on the memory 

element. 22 nm FDSOI CTTs are found to lose their programmed state above ~150 krad(SiO2) as 

a result of hole trapping in the BOX. On the other hand, 14 nm bulk FinFET CTTs with two fins 

are minimally affected by TID. 40-fin, 14 nm bulk transistors have increasing subthreshold leakage 

currents with increasing TID. 

 In addition, programming is shown to result in sufficient electron trapping in the gate oxide 

to support non-volatile memory applications for both technologies.  Furthermore, the order of 
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programming and irradiation had no effect on programmability of 14 nm bulk FinFET CTTs, while 

22 nm FDSOI CTTs saw higher shifts when programmed after irradiation due to neutralization of 

trapped holes in the BOX. 

 Finally, application of the experimental data to exploratory neural network simulations 

shows potential for CTTs to be used in neural networks as neuron weights. Gradual decreases in 

classification accuracy are projected with increasing TID. In addition, strong dependence on 

architecture is found, indicating there is potential for TID effects in CTT-based neural networks to 

be mitigated by conscientious development of the neural network architecture. 

 The remainder of the dissertation is organized as follows. Chapter 2 gives important 

background for understanding the contributions resulting from this dissertation. In addition, work 

done by other individuals on implementation of CTTs in neural networks is also presented. The 

next chapter, Chapter 3, focuses on the experimental setup for the irradiation, programming, and 

subsequent data analysis of the CTTs tested in this work. Chapters 4 and 5 present the experimental 

results collected on the CTTs. The focus of Chapter 4 is the TID response of the 22 nm FDSOI 

CTTs and the impact of TID on the programmability of the devices. Chapter 5 similarly focuses 

on the characterization and programmability of the 14 nm bulk FinFET devices, both those with 2 

fins and those with 40 fins. Following the experimental results, Chapter 6 is a discussion and 

analysis of the data collected in the previous two chapters. Simulations exploring the potential 

application of CTTs to neural networks within a TID environment is studied in Chapter 7 using 

the experimental data collected in Chapters 4 and 5. Finally, Chapter 8 summarizes the findings 

and conclusions resulting from this dissertation. 
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CHAPTER II 

 

BACKGROUND 

 

Introduction to Charge-Trap Transistors 

Charge-trap transistors (CTTs) enhance and exploit the properties of the dielectric layers 

of high-k-metal-gate (HKMG) devices for use as memory elements [1]. The amount of charge 

trapped in the HKMG dielectric layer is determined by the degree of voltage-ramp-stress (VRS). 

The threshold voltage Vth shifts due to the resulting charge trapping are sufficient and stable enough 

for use in non-volatile memories (NVM) [1]–[3]. Total ionizing dose (TID) irradiation can 

introduce competing effects in the dielectric layers of NVM transistors [17]–[19]. Thus, it is 

important to determine whether TID irradiation reduces the effective memory windows, based on 

threshold voltage shifts of CTTs, in advance of potential use in space or other high-radiation 

environments. 

In this work, the programming and TID irradiation responses of hafnium-based high-k 

CTTs fabricated in GlobalFoundries 22FDX and 14LPP processes [20], [21] using their 

conventional CMOS process flow have been evaluated. Each type of CTT has three initial 

conditions: unprogrammed, programmed (Fig. 1), and erased [1]. The unprogrammed state is the 

initial state as the as-processed device. After initial programming of the as-processed device, the 

multi-time programmable CTT can be cycled between programmed and erased states [1], [3], [22]–

[24]. In each case, the programmed state of the CTT is established by electron trapping in the 

HKMG dielectric. For the 22 nm fully depleted silicon-on-insulator (FDSOI) devices, the radiation 

response is determined primarily by hole trapping in the buried oxide (BOX). For 14 nm bulk 
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devices, minimal Vth shifts are observed when devices are irradiated, but multi-fin devices show 

increasing leakage with increasing TID. 

 

Fig. 1. Programming the CTT causes accumulation of electrons in the gate oxide. The threshold voltage shifts 

positively. (Adapted from [1].) 

 

The Physics of Charge-Trapping in HKMG Oxides 

Most advanced CMOS technologies already use HfO2 in the gate oxide, so CTTs can be 

manufactured as NVM devices without additional process complexity [22], [23]. As a result, CTTs 

are inexpensive to manufacture [1]. In Hf-based oxides, electron trapping is possible due to oxygen 

vacancies [22]. The formation energy of these O vacancies is low, so many states exist for electron 

trapping. Trap densities in HfO2 are estimated in [25] to be as high as 1018/cm3. Fig. 2 shows 

several energy levels of oxygen vacancies in HfO2 [26].  

 

Fig. 2. Oxygen vacancy trap levels in HfO2 in relation to the conduction and valence bands of silicon. (From [26].) 
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Applying a modest positive bias to the gate can lead to electron trapping through hot-carrier 

injection. While hot-carrier injection has typically been undesirable in traditional use of transistors 

due to reliability concerns, the application of a modest positive bias to the drain at the same time 

as to the gate produces predictable, stable threshold voltage shifts that can be exploited for non-

volatile memory applications [27]. The trapped electrons in the gate oxide create a positive Vth 

shift that is large enough to make small fluctuations in threshold voltage insignificant in 

comparison. Therefore the Vth shifts in HfO2 gates are stable enough on which to establish a 

sufficient memory window to enable application as a NVM [23], [28]. In addition to enhanced hot 

carrier injection allowing for electrons to be trapped in the gate oxide, these electrons can also be 

removed via tunneling by simultaneously applying a modest negative voltage to the gate and 

positive voltage to the drain. Fig. 3 shows the band diagram as well as the process of electron 

trapping and detrapping for a SiO2/HfO2/poly-Si gate stack [26]. 

 

Fig. 3. Band diagrams for SiO2/HfO2/poly-Si gate stack under negative gate bias (a), flatband (b), and positive gate 

bias (c). In (a) and (c), the trapping and detrapping of electrons in the HfO2 gate oxide as they tunnel though the silicon 

oxide is shown. (From [26].) 
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CTT-Based Programmable Memories 

Several works have explored programmable memories created from both 22 nm FDSOI 

and 14 nm bulk FinFET CTTs [1], [3], [22]–[24], [27]–[37]. Transistors are programmed via hot-

carrier injection under gate and drain bias conditions that favor electron trapping in HfO2 over 

interface-trap generation [3], [23], [24], [29], [31], [34]. An 80 kb, multi-time programmable 

memory was successfully implemented using 22 nm FDSOI CTTs in [22], [30], and it was 

demonstrated that the same principles would apply to 14 nm bulk FinFET CTTs showing 

scalability of CTTs. In [23], 64 kb DRAM and SRAM arrays are constructed from HfO2-based 22 

nm SOI devices. The use of 22 nm SOI CTTs for use in unsupervised learning in neuromorphic 

computing was analyzed in [27]. The creation of both digital and analog memories constructed 

from CTTs was also studied in-depth in [36].  

From the various studies on non-volatile memories constructed from CTTs, it has been 

established that programming one cell does not affect Vth for adjacent cells, cycling between 

programmed and erased states does not cause an increase in leakage current, and retention of 

trapped charge is greater than 80% after 10 years [23], [24], [27]. The 14 nm bulk FinFET based 

devices have been shown to share similar memory transistor properties with the 22 nm FDSOI-

based devices [22], [24], [29]–[31]. Scalability to later-generation technology nodes, even down 

to 7 nm FinFETs, has also been demonstrated [24]. 

 The use of these GlobalFoundries CTTs fabricated in 22 nm FDSOI as analog memories 

is explored in [28]. The state is stored as trapped charge in the CTT, and the state is read as a 

current. The different states within the CTT are linearly spaced out with regards to drain current. 

The targeted drain currents ranged from -800 nA to +800 nA, and the read voltages are VG = 200 

mV and VD = 50 mV. A twin-CTT cell is used where the state is represented by the difference 
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between the two devices: w = w + - w -. As a result of this twin-cell arrangement, both positive and 

negative states can be implemented, and the effect of device variation is reduced. When using this 

twin-cell arrangement, only one of the CTTs is programmed. Since programming shifts the 

threshold voltage positively (Fig. 1), the drain current decreases with programming. Therefore, the 

“negative” CTT is programmed to increase the drain current, and the “positive” CTT is 

programmed to decrease the drain current. Analog CTTs have a lower margin for variability than 

their purely digital counterparts since the difference between two states is smaller. However, it 

was found in [28] that even with accounting for variation between devices and programming 

differences, 5 bits are possible for individual CTTs and 3 bits each for a CTT array. 

 

Total-Ionizing Dose Effects in MOSFETs 

 When metal-oxide-semiconductor field-effect transistors (MOSFETs) are exposed to 

ionizing radiation, electron-hole pairs are generated in the oxide as the ionizing particle passes 

through it [38], [39]. The total absorbed dose due to this ionizing radiation is aptly named total-

ionizing dose (TID). TID is an expression of energy absorbed per unit mass, and the common base 

unit for TID is rads, and the SI unit for dose is the gray (Gr) where 1 Gr = 1 J/kg = 100 rads [38]. 

Since the target material affects the amount of energy absorbed due to TID being a function of 

mass, the unit “rad” is usually proceeded by a material designator, for example, rad(SiO2). 

 

The Physics of TID 

While some of the TID-induced electron-hole pairs recombine, a number of the electrons 

and holes move through the oxide due to the electric field resulting from an applied voltage. Fig. 

4 uses a band diagram to demonstrate the physics of TID in the case of an SiO2 nMOS transistor 
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under positive bias [39]. The generated electrons from the electron-hole pairs are swept by the 

electric field to the gate and quickly collected. On the other hand, the holes move more slowly and 

in the opposite direction of the electrons toward the SiO2/Si interface. Some of these holes become 

trapped in the oxide near the interface, and these are called oxide traps. However, some holes make 

it to the SiO2/Si interface and subsequently interact there resulting in interface traps. Annealing, 

or recovery of some oxide and interface traps, can occur over time and is accelerated by elevated 

temperatures [40], [41]. 

 

Fig. 4. The physics of TID in an nMOS transistor under positive bias. (From [39].) 

 

The effect of oxide and interface traps on a transistor can be seen in a semi-log ID-VG curve. 

Fig. 5 shows such curves for a nMOS device that is measured before and after irradiation to 300 

krad(SiO2) [42], [43]. The oxide traps cause a shift in the curve to the left. However, the interface 

traps cause the slope of the linear region of the curve to decrease. If annealing results in the removal 

of interface or oxide traps, the curve recovers by changing from the post-irradiation curve toward 
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the pre-irradiation one. The number of traps that anneal is directly related to how much the curve 

recovers toward the pre-irradiation curve. With respect to the post-irradiation curve, the annealing 

of interface traps results in a steeper slope while the annealing of oxide traps shifts the curve to the 

right. 

 

Fig. 5. ID-VG response of a transistor before and after irradiation to 300 krad(SiO2). (Adapted from [42], [43].) 

 

TID Response in Various Technologies 

 A number of studies have been conducted on the total-ionizing-dose response of various 

transistor technologies. A non-exhaustive list of some of these studies conducted on recent 

technology nodes include planar bulk transistors [4], [5], [9], planar FDSOI transistors [10]–[12], 

bulk FinFETs [6]–[8], [13]–[16], and FDSOI FinFETs [13], [14]. 

 Experiments on the TID response of 28 nm planar bulk transistors have been conducted 

using X-rays [4], [5], [9]. Ultra-high doses of up to 1 Grad(SiO2) were achieved, and both n- and 

pMOSFETs were tested for several dimensions and at various bias conditions. The 28 nm planar 
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bulk transistors were found in general to be TID-tolerant with very small threshold voltage shifts. 

However, some TID effects were seen depending on device geometry. Some subthreshold leakage 

current was seen for the nMOSFETS, and long, narrow channel pMOSFETs saw threshold voltage 

shifts after irradiation to very high doses. 

 Planar FDSOI transistors exposed to X-rays were found to be TID-sensitive with increasing 

threshold voltage shift with increasing dose [10]–[12]. These threshold voltage shifts are attributed 

to charge-trapping in the buried oxide of these transistors. Little to no sub-threshold leakage 

current was seen in these types of transistors. 

 A number of TID studies have been conducted on bulk FinFETs [6]–[8], [13]–[16], 

including the 14 nm bulk FinFET technology node [15], [16]. Threshold voltage shifts are minimal 

in these technologies up to high doses, but some interface trap formation is seen. The TID effects 

resultant from radiation are attributed to charge-trapping the shallow-trench isolation oxide 

regions. 

 Finally, some TID studies have been conducted on FDSOI FinFETs and their results 

compared to bulk FinFETs [13], [14]. In these works, it was found that the SOI devices exposed 

to TID had larger threshold voltage shifts than their bulk counterparts. The TID response was 

attributed to charge-trapping in the buried oxide for the SOI devices and charge-trapping in the 

shallow-trench isolation for the bulk devices. Changing the fin width resulted in similar responses 

in both bulk and SOI transistors. Lower temperatures were found to cause more charge-trapping 

in the BOX of the SOI devices resulting in larger threshold voltage shifts than room temperature. 

 In general, it was found that SOI devices were more sensitive to TID than their bulk 

counterparts. This is attributed to the trapping of charge in the buried oxide of these silicon-on-

insulator devices. Comparing planar and FinFET devices, the shallow-trench isolation regions in 
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the FinFETs also contributed to TID effects not seen in planar devices such as increased 

subthreshold leakage current and interface trap generation. 

 

Non-Volatile Memories 

 The amount of information that is available is multiplying at a rapid rate. As the amount of 

known information grows, there is an increasing need both for storage to be more compact and for 

the data to be processed more efficiently. Currently, memories can be classified as either non-

volatile or volatile memories. Volatile memories are very fast, but they require constant power in 

order to keep the data. The speed of these memories makes them ideal for calculations. On the 

other hand, non-volatile memories are slower to read and write; however, the data does not require 

constant power and can be retained for years. Not surprisingly, these are primarily used for long-

term data storage.  

 

Floating-Gate Based Memories 

A floating gate MOSFET (FG MOSFET) is a non-volatile CMOS-based memory device 

based on a modification to the structure of a regular MOSFET [44], [45]. In a FG MOSFET, the 

gate stack is modified (compared to a regular MOSFET) to include a metallic floating gate. This 

metallic floating gate is isolated from the control gate and channel via insulators as shown in Fig. 

6 [45]. The floating gate contains the data in the form of charge. An array of FG MOSFETs can 

be used to construct memory arrays, such as electronically-erasable programmable read-only 

memories (EEPROMs) and Flash memories. 
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Fig. 6. Cross-section cut of a floating gate MOSFET. (From [45].) 

 

Floating-Gate Based Memories: EEPROMs 

EEPROMs are a type of memory constructed from FG MOSFETs where individual bytes 

of data can be modified [44], [45]. Writing to the EEPROM memory is accomplished through use 

of a high electric field that either deposits or removes electrons in the FG MOSFET gates 

depending on the bias conditions. Under the high electric field, the electrons transport through the 

tunnel oxide into or out of the floating gate via Fowler-Nordheim tunneling. In order to read the 

bit value stored in an FG MOSFET memory cell, a voltage is applied to the gate, and the current 

between the drain and source is measured. Unlike some memories, reading the data from 

EEPROMs does not destroy the data. EEPROMs are capable of storing data for many years, and 

they have high endurance allowing for many cycles of writing. However, since individual bytes 

can be modified, EEPROMs suffer from very long read/write times and have lower areal density 

than that of their successor, Flash memories. 

 

Floating-Gate Based Memories: Flash Memories 

 Flash memories are another type of floating-gate based memory composed of poly-silicon 

that is very common today [44], [45]. In contrast to their predecessor, the EEPROM, Flash 



14 

 

memories are fast, boasting quick write and erase times due to their ability to erase in groups. 

Within Flash memories, there are two types: NOR Flash and NAND Flash. NOR Flash is faster 

than NAND at reading, while NAND Flash is faster at erasing. As a result, NAND Flash is more 

suited to large data storage and is currently being used in solid state drives (SSDs). 

Data is written and erased from the Flash cells by removing or adding electrons via 

tunneling though the oxide thereby changing the threshold voltage of the device [44], [45]. Flash 

is inexpensive to manufacture and has higher areal density than EEPROMs. However, Flash is 

sensitive to total-ionizing-dose. When a Flash cell is irradiated, holes are injected into the floating 

gate [19]. These holes then recombine with the electrons that were previously injected to establish 

the state of the Flash memory cell. As a result, data in Flash memories is corruptible by TID. 

 Although Flash is a valuable memory device, it has some drawbacks even outside of the 

radiation realm, particularly when it comes to scaling [45]. As the thickness of the oxide has 

decreased with scaling, it has become harder to retain the stored charge. In addition, as the device 

dimensions decrease, the coupling between neighboring devices increases. As a result, one cell 

can affect an adjacent one as shown in Fig. 7. Additionally, there are leakage paths that are able to 

form in the tunneling oxide (TOX). Combined with oxide defects, low-resistance paths form 

through which leakage current can flow. In addition, since the total amount of charge capable of 

being stored in the floating-gate is decreasing with transistor size, charge leakage is also becoming 

more of a factor due to scaling. 
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Fig. 7. Coupling between adjacent Flash cells in highly scaled technologies. (From [45].) 

 

Charge-Trap Memories 

 In an attempt to overcome some of the scaling issues with Flash memories, a new memory 

concept was introduced: charge-trap memories [44], [45]. Over time as it deteriorates, a MOSFET 

begins to have an unwanted leakage current, and this extra current further degrades the 

performance of the device. By purposely replacing the floating gate in an FG MOSFET with a 

material that has atomic defects, a charge-trapping layer (CTL) is created as shown in Fig. 8. 

Memories created by exploiting the trapping charge properties of the atomic defects in the CTL 

are a form of aptly-named charge-trap memories (CTMs). While CTTs do not require the addition 

of a CTL, CTTs are a type of charge-based memories since their operation is determined by the 

amount of charge trapped in the gate oxide. 
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Fig. 8. Transistor structure similar to a FG MOSFET that replaces the floating gate with a CTL. (From [45].) 

 

One type of CTL is based on silicon nitride. Electrons are able to tunnel from the channel 

through the thin silicon dioxide layers into the many electron traps located in the silicon nitride 

CTL under an electric field produced by an applied bias [44]. The electrons as a result of the traps 

are able to be stored in a localized place, therefore allowing for the possibility of multiple bits to 

be stored on a single transistor. In the case of two separate bits, threshold voltage readings are 

taken on both sides of the transistor. Fig. 9 shows an example of the threshold voltage readings 

and how they correlate to the values of the bits stored on that particular transistor [44]. 

 

Fig. 9. The establishment of two bits in a single transistor due to the possibility of localized electron trapping in a 

CTL. (From [44].) 
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SONOS Memories 

A common type of charge-trap memory that pre-dates CTTs is SONOS, and the CTL in 

SONOS is comprised of silicon nitride (commonly Si3N4) [44], [45]. Whereas CTTs do not require 

additional manufacturing steps or process complexity for CMOS implementation, SONOS 

necessitates the addition of the charge trapping layer during fabrication. Therefore, since SONOS 

is not a CMOS process and requires additional manufacturing steps, the fabrication of SONOS 

transistors is more expensive than CTTs. 

Compared to Flash memories, a major advantage of SONOS is their charge trapping 

density which can be as high as 1019 or 1020 cm-3 [46]. Flash data is stored in a sea of charge within 

the floating gate while SONOS structures contain the individual charges in traps located 

throughout the entire CTL. As a result, one defect in the SONOS structure is less likely to cause 

complete charge removal. In SONOS, only a small percentage of the total charge would be lost 

from the cell from a single defect while Flash could have instant loss of charge due to a defect in 

the tunneling oxide [45]. Because of the reduced likelihood of complete charge loss in SONOS, 

SONOS can withstand a higher accumulation of defects than floating-gates before failure. 

Therefore, SONOS is more resistant to total ionizing dose effects than Flash [46]. 

SONOS is not completely immune to TID however. TID still causes deposition of positive 

charge in the CTL which reduces the charge in programmed cells and increases the charge in 

erased cells [47]. While SONOS structures provide some clear advantages to Flash memory, they 

are much more expensive to produce making them better suited for niche markets than general 

consumption. Additionally, retention in these SONOS is not ideal due to silicon-rich nitrides that 

compose the CTL [45]. 
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Crossbar Architectures 

 As increasingly larger amounts of data are being collected and analyzed in all areas of life, 

it has become necessary to find ways to process these massive amounts of data. As previously 

mentioned, it has become increasingly important to use data analysis methods that are efficient 

while also being able to handle large and complicated data sets. A promising technique is through 

use of neural networks, and some promising neural networks have been created using crossbar 

architectures [48]. Research is currently being conducted on crossbar arrays and how they might 

be integrated with current CMOS technology to advance the next generation of computing 

technology [49], [50]. 

 In a neuromorphic computing architecture, crossbar arrays are used for the synapse portion 

of the neural network, discussed previously in the neuromorphic computing section of this chapter. 

A crossbar array consists of m word line inputs and n bit line inputs where each possible bit line 

and word line combination is connected through a weight Wij [51]. The simplest implementation 

of this crossbar weight is through a transistor/resistor pair (1T1R). This transistor/resistor pair is 

implemented as the weight corresponding to the particular word line and bit line, and this weight 

is stored as a conductance using the 1T1R. A diagram of a single layer neural network in the 1T1R 

architecture along with its circuitry implementation is shown in Fig. 10. 
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Fig. 10. Mapping from a single layer neural network (left) to the circuit-level crossbar array (right) in the 1T1R 

architecture. (From [51].) 

 

It is possible to either have set weight values that are unchanged or to have weights that 

can be updated during training. The particular application for which the neural network is meant 

for determines which is used. Regardless of which method is selected, the weights must be written 

at least once. This is accomplished through the word lines and bit lines. The inputs to the crossbar 

are voltage inputs to the n bit lines, while the m outputs from the crossbar array are currents. The 

outputs come from the additive currents resulting from sources of the transistors in the 1T1R pair. 

This structure parallels a single-layer neural network which has n voltage inputs (V1, …, Vn) and 

m current outputs (I1, …, Im). Each input is connected to each output through a weight (Wij for Vi 

and Ij) specific to the individual connections. 

To translate from crossbar architectures to a general neural network, the inputs become the 

axons, the weights become synapses, and the outputs become neurons [49]. Fig. 10 shows the 

translation between a single layer neural network and the crossbar array. Each output I is the 
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weighted sum of the product of the input voltages V and conductances W. The mathematical 

equation governing this process is a simple summation 

𝐼𝑗(𝑛) = ∑ 𝑊𝑖𝑗𝑉𝑖(𝑛)

𝑛

𝑖=1

. 

The weight Wij in this equation is the conductance Gij for a 1T1R synapses, or in the case of a 

differential pair at the ij node, the weight is the difference in the conductances (Wij = Gij
+ - Gij

—) 

[52]. This equation requires a vector-matrix multiply which can be expensive in terms of power 

consumption when implemented in circuitry [53]. 

One way to reduce the energy consumed by the vector-matrix multiply is to implement the 

crossbar architecture using analog components, such as a CTT. As a by-product, this also allows 

for a wider range of bit values to be stored. An example of implementing analog components in 

the architecture would be to encode the word line and bit line voltage inputs in time and voltage 

height respectively, and an example of such an implementation is shown in Fig. 11. As a result, 

the “strength” of the weight is governed by the voltage height of the bit line. Additionally, the 

weight can only be written to when the word line value is non-zero [53]. 

 

Fig. 11. Parallel write with x and y encoded in time and height respectively. (From [53].) 
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A major attraction for using crossbar architectures is the simplicity of it. However, there 

are currently still disadvantages to this structure that must be addressed before wide-spread usage; 

one such disadvantage is power consumption as discussed previously. In addition, parasitic 

leakage currents can also be a concern. Popular devices to use for crossbar implementation are a 

resistive memory element, and a simple implementation of a crossbar architecture uses a 1T1R 

pair. However, an issue faced by these resistive memories is very large resistance requirements 

which in turn results in large parasitic currents. Then as the dimensions of a crossbar array increase, 

these parasitic currents accumulate and reach unacceptable levels [54]. 

Therefore, for efficient use of the crossbar array, it is likely that at least some components 

of the crossbar will need to be constructed in novel technologies. One possible implementation 

would be to use novel, two-terminal devices as the weights, but continue to use traditional CMOS 

for the surrounding circuitry [49]. Several works focus on the individual novel technologies that 

could possibly be used as the weights in a crossbar architecture. A few novel technologies analyzed 

include memristors [48], [50], carbon nanotube FETs [49], [54], and spin transfer torque (STT) 

magnetic RAM (MRAM) [55]. Some of the aspects examined in these novel technologies include 

optimization [50], [56], power consumption, timing [50], defect and fault tolerance [54], and 

transistor density [55]. CTTs have been successfully implemented in prototype crossbar arrays, 

demonstrating the feasibility of using CTTs in crossbar arrays for neuromorphic computing [32]. 

In addition, since CTTs are a commercial CMOS process, it is possible to manufacture the entire 

crossbar structure including the peripheral circuity at the same time thereby making it inexpensive. 

Use of crossbar architectures in neuromorphic computing and neural networks is still an 

emerging research area. While some companies have specialized hardware that implements 

crossbar architectures for use in neural networks, crossbar architectures have not yet seen 
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widespread adoption. However, foundational research into crossbar architectures has begun. 

Exploratory research has been conducted into important aspects including how to operate them, 

possible technologies to use with them, and potential issues that may arise with use of these 

architectures. The hope is that this foundational research paves the way for an eventual new, robust, 

efficient architecture for use in neural networks and neuromorphic computing. 

 

Neural Networks Implemented with CTTs 

 A few works have investigated the potential for CTTs to be implemented in neural 

networks [27], [28], [32], [33]. The first work on the subject explored the use of CTTs as analog 

synapses (weights) for unsupervised learning in a neural network [27]. The devices used were 22 

nm planar SOI CTTs with a hafnium-oxide based gate dielectric. A simple, single-layer, winner-

take-all neural network was simulated based on CTT experimental data collected on individual 

CTTs. This proof-of-concept neural network was simulated using 27 CTTs as the weights in the 

network. For this neural network, there are three possible output classifications based on nine input 

neurons. Each of the neurons could take on one of two states representing a pixel that is either 

black or white. Fig. 12 shows the possible inputs to the neural network. The left-most column is 

the ideal classification while the other nine inputs in a given row are single-pixel modifications of 

the left-most inputs. Fig. 13 shows the fully connected, single-layer neural network. The CTTs in 

the simulation correspond to the weights (shown as lines) connecting each input to each output. 
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Fig. 12. The thirty possible 3x3 pixel inputs to the neural network where the left-most column corresponds to the 

desired classification. (From [27].) 

 

 

Fig. 13. Fully-connected single layer neural network with 9 inputs and 3 outputs. (From [27].) 

 

The CTTs were initially programmed to a random value, and subsequent training was 

conducted by alternating between presenting one of the three ideal inputs (left-most column of Fig. 

12) and then presenting a single-bit flip version of this same input. This process was repeated until 

100% classification accuracy was achieved, and this occurred on average after 24 training cycles 

over 10,000 simulations. This demonstrated that it is indeed possible to use CTTs for unsupervised 

learning in a neural network. 

 Following this initial study [27] demonstrating proof-of-concept, two other studies 

followed expanding on the results of the first one utilizing more complex networks [28], [32]. 

Using the experimental data of [27], [32] simulated the use of a 784 x 784 array of CTTs as weights 
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in a neural network to classify handwritten digits from the MNIST database [57]. Over 95% 

classification accuracy was achieved using a four layer, fully-connected analog neural network 

with two hidden layers. This demonstrates that CTTs can be used in more complex neural networks 

involving practical applications such as that of handwritten digit classification. 

 The use of CTTs as analog memories for neural networks has been explored in [28]. The 

focus of this work is the programming accuracy and stability of CTTs with application as analog 

synapses in mind. In neural networks sometimes a twin-cell architecture, where the state is 

determined by the difference between the two weights (Fig. 14), is implemented to allow for 

bipolar states and reduce the effects of device-to-device variation. In this work, five arrays, each 

constructed with forty sets of twin-CTT cells, were programmed and tested. It was found that fairly 

accurate analog values could be programmed to these CTTs in an array. Accounting for 

programming variation, drift, and device variation, a total of ten separate digital values, or more 

than three distinct bits, were able to be programmed in the array of CTTs. These results 

demonstrate that CTTs can be used in neural networks as analog weights. 

 Finally, [33] looks at the fault tolerance of CTTs implemented as multi-level cell (MLC) 

weights in neural networks. An MLC application increases the likelihood of faults compared to a 

single-level cell (SLC) due to a decreased distance between states. However, in this work, it was 

found that careful design and implementation of MLC resulted in no discernable loss in accuracy 

in the neural network during fault injection. In addition, the resulting MLC-CTT neural network 

implementation reduced the area requirement by an order of magnitude compared to an SRAM 

neural network implementation. 
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Fig. 14. Twin-cell structure for a neural network weight where the resulting output weight is the difference between 

the weights of the two transistors, w = w+ - w-. (From [28].) 
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CHAPTER III 

 

EXPERIMENTAL SETUP 

 

Devices 

The CTTs used in this work were nMOS devices fabricated by GlobalFoundries in their 

22FDX® and 14LPP process-design kits. The 22FDX® CTTs are 22 nm fully-depleted silicon-

on-insulator (FDSOI) MOSFETs, and the 14LPP devices are low power, 14 nm bulk FinFET 

MOSFETs [20], [21]. Fig. 15 shows cross-sections of both planar FDSOI and bulk FinFET 

transistors, which corresponds to the structure of 22 nm FDSOI and 14 nm bulk FinFET CTTs 

respectively. The CTTs have three modes: initial, programmed, and erased. The initial state is a 

one-time, pre-programmed state (virgin). After the first programming, the multi-time 

programmable CTT can be cycled between the programmed and erased states by trapping and de-

trapping electrons in the gate oxide. This cycling process is shown in Fig. 16. 

 

Fig. 15. Cross-section showing the structure of a planar FDSOI transistor (left) and a bulk FinFET transistor (right). 

(Adapted from [58].) 
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Fig. 16. The initial, virgin state (top), the programmed state after positive gate pulses (middle), and the erased state 

after negative gate pulses (bottom). (Adapted from [1].) 

 

Mounting and Bonding 

The dies containing the CTTs were mounted on custom high-speed packages [59]. Fig. 17 

shows a photomicrograph of a die containing two rows of 22 nm FDSOI CTTs (boxed in red.) 

Each row contains 25 pinouts and seven total devices per row, where each CTTs varies from the 

others in the row in length (or width) while the width (or length) stays constant for the row. The 

seven CTTs in a row all share the n-well, p-well, and substrate contacts while each device has 

separate drains, sources, and gates. Table I shows the pinouts for these 22 nm FDSOI devices, 

where pad 1 corresponds to the far left pad in a row in Fig. 17. 
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Fig. 17. Photomicrograph of a die containing two rows of 22 nm FDSOI CTTs with seven CTTs per row. 

 

Table I. Pinout diagram for the 22 nm FDSOI CTTs. The substrate, n-well, and p-well are shared between the seven 

devices, while the drains, gates, and sources are separate. Pads 1 through 25 correspond from left to right in Fig. 17. 

22 nm 

Device 

Pad Number 

Drain Gate Source Substrate N-Well P-Well 

1 2 3 1 25 24 23 

2 5 6 4 25 24 23 

3 8 9 7 25 24 23 

4 11 12 10 25 24 23 

5 14 15 13 25 24 23 

6 17 18 16 25 24 23 

7 20 21 19 25 24 23 

 

The 14 nm bulk FinFETs had similar-looking dies with slightly smaller pitch between pads, 

but different pinouts from the 22 nm CTTs. The 14 nm CTTs had 14 devices per row, no pads for 

the n-well and p-well, shared gates, and drains shared between pairs of CTTs. Table II shows the 

pinouts for the 14 nm bulk FinFET CTTs. Each 14 nm CTT has two gates due to being a multi-
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fingered device, and these two gates are shared throughout the whole row of 14 devices. During 

testing, the two gates are connected to the same potential, therefore during the bonding process 

they could be connected to the same output on the high-speed package. Table II also shows that a 

single drain pad is shared between two devices. In order to test two devices with a single drain 

separately, the source from one device was grounded while the other was left floating. To avoid 

this issue entirely, only one device from a shared drain was bonded out at a time. 

 

Table II. Pinout diagram for the 14 nm bulk FinFET CTTs. 

14 nm 

Device 

Pad Number 

Drain Gate Gate2 Source Substrate 

1 2 23 24 1 25 

2 2 24 23 3 25 

3 5 23 24 4 25 

4 5 24 23 6 25 

5 8 23 24 7 25 

6 8 24 23 9 25 

7 11 23 24 10 25 

8 11 24 23 12 25 

9 14 23 24 13 25 

10 14 24 23 15 25 

11 17 23 24 16 25 

12 17 24 23 18 25 

13 20 23 24 19 25 

14 20 24 23 21 25 

 

After mounting to the high-speed package, the pads of the transistors are attached to the 

outputs of the package via thin gold wires using a ball bonder. Fig. 18 shows a picture taken 

through a microscope of Device 3 from Table I that is bonded out to the high-speed package, and 

Fig. 19 shows the bonded out die mounted to the middle of the high-speed package. At minimum 

for each device, each drain and gate must be bonded to separate outputs. In addition, the sources 
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of the devices, shared substrate, n-well, and p-well are either connected to ground on the high-

speed package or bonded to an output that is grounded during testing. Since each high-speed 

package contains between 6-8 outputs, up to four devices can be bonded out and tested at a time. 

However, typically two or three devices were bonded out and tested at a time. ID-VG sweeps were 

conducted on the CTTs using a HP 4156 Parametric Analyzer, and the parameter analyzer had four 

inputs therefore limiting the number of devices that could be tested simultaneously. Three devices 

could be tested simultaneously if their three gates were connected together to one input of the 

parameter analyzer. Then the remaining three inputs to the parameter analyzer could be used for 

the three drains of the devices. Typical settings on the ball bonder during the bonding process were 

as follows: ball 1.0, initial power 1.09, final power 1.52, loop 8.9, time 9.9, force 1.0, step 0.0, and 

tail 6.0. 

 

 

Fig. 18. Photo taken through a microscope of the gate, source, and drain of a CTT that is bonded out to the high-speed 

package (not visible in this picture.) 
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Fig. 19. High-speed package (gold-colored octagon) with the die mounted at the center. 

 

Programming and Erasing 

Programming and erasing are accomplished using pulsed-voltage ramped stress [2], [3]. 

Stressing is done by applying high gate-voltage VG and drain-voltage VD pulses; sensing is 

performed at lower VG and VD values. The degree of programming is determined primarily by the 

strength of the gate electric field. Retention and stability of the Vth shift depends primarily on drain 

voltage [3]. For programming in this work, VD is set at 1.2 V, pulse times are 10 ms, and the peak 

VG is set initially at 1.4 V and incremented in magnitude in a series of 39 pulses until reaching a 

maximum VG of 2.7 V for the 22 nm FD SOI devices, and 27 pulses until reaching a maximum of 

2.2 V for 14 nm bulk FinFETs. Fig. 20 shows the voltage versus time relationship for the pulsed-

voltage ramped stress applied to these devices. The erase pulses for both the 22 nm FDSOI and 14 

nm bulk FinFET CTTs consist of 51 VG pulses starting at -2.4 V, increasing in magnitude to -3.1 V. 

The drain is grounded during the erase pulses. For sensing pulses following programming or 

erasing, VG is 0.6 V and VD is 0.1 V. The sensing time is 50 ms per cycle. 
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Fig. 20. Pulsed-voltage ramped stress applied to both the 22 nm FDSOI CTTs and 14 nm bulk FinFET CTTs. The 

inner box shows the pulses applied to the 14 nm CTTs while the outer box shows the additional pulses applied to the 

22 nm CTTs. The peak gate voltage (blue) increases in magnitude until 2.7 V for the 22 nm CTTs and 2.2 V for the 

14 nm CTTs. The peak drain voltage (red) is 1.2 V during pulsing for both types of CTTs.  

 

Irradiation 

Devices were irradiated up to 500 krad(SiO2) with ~10 keV X-rays at a dose rate of 

~30 krad(SiO2)/min using an ARACOR Model 4100 X-ray Irradiator [60], [61]. A picture of the 

irradiation test setup is shown in Fig. 21 where the CTTs are mounted in the center of the high-

speed package which is located directly in-line with the X-ray beam line. The peak energy is 

~10 keV, with 95% uniformity for a 3 cm diameter beam [60]. All device pins were grounded 

during irradiation, typical for non-volatile memory applications [17]–[19]. All irradiation and 

annealing steps were performed at room temperature. Before irradiation and after each dose 

increment, ID-VG sweeps at VD = 50 mV were performed using the medium integration time setting 

of a HP 4156 Parametric Analyzer. For consistent results, exactly one minute of annealing time 
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was taken after irradiation before the ID-VG sweep was conducted. At least two (typically three or 

more) devices were tested at each condition. Results for devices programmed and/or irradiated 

under similar conditions vary by less than ±10 %. 

 

 

Fig. 21. Experimental test setup for X-ray irradiation. The CTTs to be irradiated are located in the center of the high-

speed package directly underneath the beam line (gray). The package was secured with ESD-safe tape. 

 

Data Analysis 

 A script written in Python was used to extract the relevant parameters from the ID-VG curves 

resulting from the Parameter Analyzer. Both the threshold voltage (Vth) and the transconductance 

(Gm) were of interest and collected for the various ID-VG curves. For a given ID-VG curve, a five-

point stencil was used to find the maximum slope over five consecutive data points. The window 

of five data points was used instead of the maximum between any two consecutive points to reduce 

the effect of noisy data. The slope found then is the transconductance (Gm). This transconductance 
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was then used at with the center data point from the five-point stencil to find Vth by calculating the 

x-intercept and subtracting VD/2. VD in this work was always 50 mV, and the resulting equation 

for finding Vth is 

𝑉𝑡ℎ = 𝑉𝐺(𝐺𝑚) −
𝐼𝐷(𝐺𝑚)

𝐺𝑚
− 0.025 𝑉. 

Fig. 22 shows an example ID-VG curve with the five point window of maximum slope, and 

Fig. 23 shows a closer view showing the location of Gm, the x-intercept, and Vth. After calculating 

the threshold voltages and transconductances for all the ID-VG curves in a data set, the changes in 

threshold voltage or transconductance compared to the pre-irradiation, virgin devices were 

calculated. Since everything was with respect to the pre-irradiation curves, ΔVth values greater than 

zero indicate a positive threshold voltage shift, or a shift of the ID-VG curve to the right compared 

to the pre-irradiation device. Similarly, ΔVth values less than zero indicate negative threshold 

voltage shifts and a shift of the curve to the left compared to the initial state of the device. 

 

Fig. 22. Location of maximum slope using a five-point stencil where the five points are denoted by markers. 
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Fig. 23. Zoomed in version of Fig. 22 where the locations of Gm, the x-intercept, and calculated Vth are denoted. 

 

Experimental Sequence 

Both the 22 nm FDSOI and 14 nm bulk FinFET charge-trap transistors are tested in two 

sequences as shown in Fig. 24. Some CTTs are programmed before irradiation while others are 

programmed after irradiation. The two sequences are then compared to determine whether 

irradiation effects the programmability of the devices. It is found that the memory and TID effects 

are largely independent for the 14 nm bulk FinFET CTTs. However, the 22 nm FDSOI CTTs saw 

higher threshold voltage shifts when programmed after irradiation, and this is attributed to 

neutralization of radiation-induced trapped holes in the buried oxide. 
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Fig. 24. Programming sequence for both the 22 nm FDSOI and 14 nm bulk FinFET CTTs. Some devices were 

programmed and then irradiated while others were irradiated and then programmed. These two sequences were then 

compared to determine the effect of irradiation on the programmability of the CTTs. 

  



37 

 

CHAPTER IV 

 

TID RESULTS ON 22 NM FDSOI CTTS 

 

 The experimental data and results from TID irradiation on the 22 nm FDSOI CTTs are 

presented here. The majority of this chapter has been published in [62]. 

 

Programming Before Irradiation 

Fig. 25(a) and Fig. 25(b) show typical ID-VG curves for single-finger, 22 nm FDSOI devices 

of width W = 120 nm and length L = 20 nm programmed before irradiation. Fig. 26 shows extracted 

ΔVth data and error bars for several devices tested in the same manner. Programming the device 

results in a threshold voltage shift (ΔVth) of ~100 mV. The nearly parallel shifts in ID-VG curves 

show that this shift is caused primarily by electron trapping, and not interface traps [1]–[3], [61]. 

When the device is irradiated to 50 krad(SiO2), Vth shifts by about −40 mV from its programmed 

value. By ~150 krad(SiO2), Vth has returned to its initial value, before programming, so any 

potential memory window would be fully closed. Irradiating devices to 500 krad(SiO2) leads to a 

further Vth shift of approximately −50 mV. To assist in the evaluation of trapping mechanisms, the 

device was annealed at room temperature (RT) and reprogrammed after irradiation without 

performing an erase cycle (Fig. 25(b)). The second programming results in a positive Vth shift of 

only ~45 mV, leaving Vth still below its initial value. Hence, the programming sequence is 

insufficient to re-establish a usable memory window in a potential NVM operation. 

Fig. 27(a) and Fig. 27(b) show typical ID-VG curves for 22 nm FDSOI devices of width W 

= 300 nm and length L = 20 nm, programmed before irradiation. Fig. 28 shows extracted ΔVth data  
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Fig. 25. Typical ID-VG curves for 22 nm FDSOI CTT devices with channel width of 120 nm after programming, (a) 

irradiation to 500 krad(SiO2), and (b) 30 minutes of room temperature (RT) annealing, reprogramming, and additional 

annealing. “Fresh” indicates the response of as-processed devices that were not programmed or erased. 
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Fig. 26. Extracted threshold voltage shifts with error bars denoting standard deviation for three 22 nm FDSOI CTT 

devices programmed and irradiated using sequences similar to those shown in Fig. 25. 

 

and error bars for several devices tested in the same manner. Programming these devices results 

in Vth shifts of ~170 mV, due to the additional electron trapping that occurs during programming 

in wider devices [3]. For the devices in Fig. 27 and Fig. 28, Vth does not return to its initial value, 

before programming, until a dose of ~400 krad(SiO2) at which point the amount of charge trapped 

in the gate oxide and buried oxide cause equal and opposite direction Vth shifts. Moreover, in 

contrast to the narrower devices of Fig. 25 and Fig. 26, a second programming pulse is able to 

restore the value of ΔVth to ~60% of its initial, programmed value. Thus, if memory density 

requirements allow the use of wider devices, doing so may significantly facilitate their radiation 

tolerance. However, because CTTs are of most interest in more highly scaled device applications 

[1]–[3], the focus is primarily on the responses of the 120 nm devices in this work. 

The smaller Vth shifts produced by post-irradiation programming than before irradiation in 

Fig. 26 and Fig. 28 strongly suggest that (1) the first programming sequence efficiently fills most 

available electron traps in the HfO2 layer, and (2) the majority of these traps remain filled after  
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Fig. 27. Typical ID-VG curves for 22 nm FDSOI CTT devices with channel width of 300 nm after programming, (a) 

irradiation to 500 krad(SiO2), and (b) 30 min. of RT annealing, reprogramming, and additional annealing. 
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devices are irradiated to 500 krad(SiO2) [1]. Hence, the significant, negative Vth shifts in these 

devices are caused most likely by the electrostatic effects of radiation-induced trapped holes in the 

BOX on these FDSOI devices [63]–[65], not by neutralization of programming-induced charge. 
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Fig. 28. Extracted Vth shifts, with error bars denoting standard deviation for three 22 nm FDSOI CTT devices 

programmed and irradiated using sequences similar to those shown in Fig. 27. 

 

The results of Fig. 25-Fig. 28 contrast with the efficient neutralization of trapped charge 

often observed in Flash memories [18], [19] and/or SiO2 gate dielectrics [66] when programmed 

devices are irradiated to similar doses. The gate dielectric responses are similar instead to those of 

earlier-generation charge-trapping memories based on silicon nitride that are quite robust to 

ionizing radiation [17]. Similar to HfO2 [67]–[71], Si3N4 dielectric layers also contain high 

densities of hole and electron traps that are not readily neutralized by radiation-induced charge 

[17], [72], [73].  
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Programming After Irradiation 

Fig. 29 shows typical ID-VG curves for 22 nm FDSOI devices (W = 120 nm, L = 20 nm) 

programmed after irradiation. The black dotted curve (labeled “Fresh”) shows results before 

programming or irradiation. Irradiation to 500 krad(SiO2) in Fig. 29(a) leads to ΔVth ≈ −120 mV. 

Fig. 29(b) shows annealing after TID, programming, and annealing after programming. Fig. 30 

shows extracted Vth shifts and error bars for several devices irradiated and programmed via similar 

sequences. Programming after irradiation in Fig. 29(b) results in a positive Vth shift of 145 mV, 

which is ~45% larger than shifts in unirradiated devices when programmed in Fig. 25 and Fig. 26. 

A significant decrease in slope of the subthreshold curve is observed in the post-

programming ID-VG curve and quantified in Fig. 31. If this were due to the buildup of interface 

traps, one would expect to see significant degradation in the peak transconductance Gm of the 

devices after programming. Fig. 31(a) shows selected Gm-VG curves for the devices of Fig. 29(b), 

and Fig. 31(b) shows peak Gm, normalized to initial values, through the full irradiation, annealing, 

and programming sequence of Fig. 29(b). Programming the devices after irradiation leads to a 

slight increase in peak Gm. Hence, the decrease in subthreshold slope observed in Fig. 29 and 

quantified in Fig. 31 is most likely not due to the buildup of a significant density of interface traps 

[61]. Instead, it is more consistent with lateral nonuniformities in the oxide-trap charge distribution 

[74] and/or a significant border-trap density, as discussed in Chapter VI. 

The negative radiation-induced Vth shifts in Fig. 30 are similar to those observed after 

programming in Fig. 26 and Fig. 28. When devices are programmed after irradiation and 

annealing, a positive Vth shift of ~160 mV is observed in Fig. 30. The ability to fully program 

devices after irradiation in Fig. 29 and Fig. 30 strongly suggests that little radiation-induced charge 

is trapped in the HfO2 layer when devices are irradiated at 0 V [67], [69], [70]. This result is 
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consistent with the above inference that the radiation response of these FDSOI devices is 

dominated by radiation-induced hole trapping in the BOX [63]–[65]. 
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Fig. 29. Typical ID-VG curves for 22 nm FDSOI CTT devices after (a) irradiation to 500 krad(SiO2) and (b) 30 minutes 

of RT annealing, reprogramming, and additional annealing. 
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Fig. 30. Extracted threshold voltage shifts for three 22 nm FDSOI CTT devices programmed and irradiated using 

sequences similar to those shown in Fig. 29. 

 

Erasing Before and After Irradiation 

Fig. 32 and Fig. 33 investigate the effects of sequential erasure and programming steps on 

a 22 nm FDSOI CTT (W = 120 nm, L = 20 nm) before and after irradiation. The fresh device is 

initially stressed using the erase sequence. A negligible change is seen in Vth since no electrons 

had yet been trapped in the gate to remove via erasing. Hence, the erased state is the same as the 

initial state in these devices. Programming the device leads to a 70 mV shift. Erasing and 

reprogramming the devices shows these processes are repeatable and reversible to within ± 5 mV 

in these 22 nm FDSOI CTTs. After devices are irradiated to 100 krad(SiO2), ΔVth ≈ -100 mV, and 

little change is observed in Vth during annealing. After irradiation and annealing, the device can 

still be erased and reprogrammed, consistent with the inference above that the radiation-induced 

changes in Vth are caused primarily by charge trapping in the BOX. 
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Fig. 31. (a) Selected Gm-VG curves and (b) peak transconductance normalized to the initial value for the 22 nm FDSOI 

CTT device (W = 120 nm, L = 20 nm) of Fig. 29(b). 
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Fig. 32. Selected ID-VG curves for 22 nm FDSOI CTT devices after (a) two erase and program cycles, irradiation to 

100 krad(SiO2), (b) 90 minutes of RT annealing, and an erase and program cycle. 
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Fig. 33. Extracted Vth shifts for the 22 nm FDSOI CTT device in Fig. 32 that was cycled between erasing and 

programming, irradiated, annealed at RT, and then erased and programmed again. 
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CHAPTER V 

 

TID RESULTS ON 14 NM BULK FINFET CTTS 

 

The experimental data and results from TID irradiation on the 14 nm bulk FinFET CTTs 

are presented here. The majority of this chapter has been published in [62]. 

 

Programming Before and After Irradiation 

 

CTTs with 40 Fins 

 Now the responses of CTTs built in a 14 nm bulk FinFET technology are evaluated. Fig. 

34(a) shows ID-VG curves for a device with L = 16 nm and 40 fins of width 75 nm (total effective 

fin width of 3 µm), before and after it was programmed and irradiated. Post-irradiation annealing 

and a second programming sequence are shown in Fig. 34(b). Fig. 35 shows extracted ΔVth data 

and error bars for devices tested in the same manner. Programming unirradiated bulk FinFETs 

results in an ~80 mV Vth shift, again due primarily to electron trapping [1]–[3], [61]. This shift is 

about 20% less than shifts observed for unirradiated 22 nm FDSOI devices in Fig. 25 and Fig. 26 

as a result of the reduced programming voltage, and concomitant decrease in hot carrier injection. 

Irradiating devices to 500 krad(SiO2) leads to Vth shift of −15 mV, with little change in Vth during 

annealing. Only ~10 mV of positive Vth shift is observed when the device is programmed for a 

second time, with a Vth shift of −15 mV during the subsequent annealing period. In contrast to the 

FDSOI devices of Fig. 25 and Fig. 26, the 14 nm bulk FinFETs retain a significant memory 

window through the full irradiation and annealing sequence. This reinforces the above conclusion 
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that the closure of the memory window for the SOI devices is due to charge trapping in the BOX, 

and not the neutralization of programming-induced charge in the HfO2.  
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Fig. 34. Typical ID-VG curves for 14 nm CTTs with 40 fins and total effective fin width of 3 µm after programming, 

(a) irradiation to 500 krad(SiO2), and (b) 35 minutes of RT annealing, reprogramming, and additional annealing. 

Arrows denote directions of (a) increasing and (b) decreasing leakage current over time. 
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Fig. 35. Extracted Vth shifts of three typical 14 nm CTT devices with 40 fins and total effective fin width of 3 µm, 

programmed and irradiated using sequences similar to those in Fig. 34. 

 

 Significant subthreshold leakage is observed in Fig. 34 at doses above ~200 krad(SiO2), 

due most likely to charge trapping in the shallow trench isolation (STI) in proximity to the sub-fin 

regions of the devices [8], [75], [76]. This contrasts with the FDSOI devices of Fig. 25-Fig. 33, for 

which no STI- or BOX-related leakage current is observed. The leakage current decreases less than 

an order of magnitude during annealing. 

 Fig. 36(a) shows ID-VG curves before and after a device with 40 fins, W = 3 µm, and L = 

16 nm was irradiated up to 500 krad(SiO2) and annealed in-situ. The device was then programmed 

and annealed, as shown in Fig. 36(b). Fig. 37 shows extracted ΔVth data and error bars for several 

devices tested in the same manner. Irradiating these bulk FinFETs resulted in a Vth shift of −10 mV, 

with little change during annealing. A positive Vth shift of 80 mV is observed when the device is 

programmed after irradiation, with less than 10 mV of Vth shift during annealing. That it is possible 

to fully program irradiated FDSOI and bulk FinFET CTTs confirms that the programming  
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Fig. 36. Typical ID-VG curves for 14 nm CTT devices with 40 fins and total effective fin width of 3 µm after (a) 

irradiation to 500 krad(SiO2), and (b) 30 minutes of RT annealing, programming, and additional annealing. 
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sequence is much more effective in filling traps in the HfO2 dielectric than exposure to irradiation. 

Hence, the radiation response of these devices is determined primarily by charge trapping in 

isolation oxides. 
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Fig. 37. Extracted Vth shifts for three typical 14 nm CTT devices with 40 fins and total effective fin width of 3 µm, 

programmed and irradiated using sequences similar to those in Fig. 36. 

 

CTTs with 2 Fins 

 Fig. 38 shows ID-VG curves for a 14 nm bulk FinFET with two fins, effective fin width of 

150 nm, and gate length of 16 nm. Fig. 39 shows extracted ΔVth data and error bars for devices 

tested in the same manner. Programming unirradiated devices leads to Vth shifts of 85 mV, and 

irradiation to 500 krad(SiO2) causes almost no shift in Vth. Programming the device without an 

erase cycle after irradiation leads to an additional Vth shift of 70 mV. In Fig. 40, it is demonstrated 

that this decrease in subthreshold slope is accompanied by a significant reduction in peak Gm. 

Hence, the decreased subthreshold slope for the 14 nm FinFETs is due most likely to the generation 

of interface traps, as discussed in Chapter VI.  
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Fig. 38. Typical ID-VG curves for 14 nm CTT devices with 2 fins and total effective fin width of 150 nm after 

programming, (a) irradiation to 500 krad(SiO2), and (b) 35 minutes of RT annealing (obscured by the initial program 

and irradiation curves), reprogramming, and additional annealing. 
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Fig. 39. Extracted Vth shifts for 14 nm CTT devices with 2 fins programmed and irradiated using sequences similar to 

those shown in Fig. 38. 

 

Fig. 41 shows ID-VG curves for 14 nm bulk FinFETs with two fins and total effective fin 

width of 150 nm that were irradiated and then programmed after annealing. Fig. 42 shows extracted 

ΔVth data and error bars for several devices tested in the same manner. Irradiation to 500 krad(SiO2) 

causes almost no Vth shift. Programming the device after irradiation leads to a Vth shift of ~80 mV, 

similar to that of unirradiated devices in Fig. 34. In contrast to the 40-fin devices of Fig. 36, no 

STI-related leakage is observed for the 2-fin devices of Fig. 41. Comparing Fig. 34 and Fig. 38, 

the reduction in leakage (up to a factor of 1000 or more) at the highest doses is much greater than 

the 20:1 ratio of the numbers of fins. Thus, it is likely that the enhanced leakage in the devices 

with 40 fins and total effective fin width of 3 µm is due to the increased probability that one or 

more fins will have a more defective sub-fin/STI interface than average, due to the much greater 

widths, and/or differences in layout of the two structures [8], [76]. 
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Fig. 40. (a) selected Gm-VG curves and (b) peak transconductance normalized to the initial value for the 14 nm FinFET 

device with 2 fins and total effective fin width of 150 nm of Fig. 38(b). 
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programmed and irradiated using sequences similar to those shown in Fig. 41. 
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Erasing Before and After Irradiation 

Fig. 43 and Fig. 44 show selected ID-VG curves and a summary of results, respectively, for 

a 14 nm bulk FinFET CTT with 2 fins and total effective fin width of 150 nm that was erased and 

programmed before and after irradiation in a sequence similar to that of the 22 nm FDSOI device 

of Fig. 32 and Fig. 33. The as-processed device is first given an erase cycle resulting in no Vth shift. 

Subsequent programming results in a threshold voltage shift of 55 mV, which is ~30% smaller 

than the averages of values for initially programmed devices in Fig. 36-Fig. 39 above. This 

reduction in shift is due most likely to sample-to-sample variation, since responses are otherwise 

similar. Erasing the programmed device returns the device to its initial state. The device is then 

reprogrammed and irradiated to 500 krad(SiO2). Negligible changes in Vth are observed during 

irradiation and post-irradiation annealing. 

In contrast to the CTT devices of Fig. 32 and Fig. 33, the 14 nm CTTs that are programmed 

and irradiated to 500 krad(SiO2) cannot be erased using the same sequence of pulses employed to 

successfully erase these devices before irradiation and erase the 22 nm CTT devices before and 

after irradiation (Fig. 34 and Fig. 35). Reprogramming leads to a more positive shift, similar to the 

response observed in Fig. 39 in the absence of erase cycles. After reprogramming, again the charge 

is stable during an erase cycle, due most likely to an increase in density of stable electron traps 

during irradiation [71], [77], [78]. Attempts to increase the magnitude, duration, or number of 

negative pulses for these devices lead to damage or device destruction. Hence, additional 

refinement may be required before these 14 nm CTTs are suitable for use in high-dose radiation 

environments. 
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Fig. 43. Selected ID-VG curves for 14 nm CTTs with 2 fins and total effective fin width of 150 nm after (a) initial erase, 

program, irradiation to 500 krad(SiO2), 45 minutes of RT annealing, and (b) erase, reprogram, and erase. 

 



59 

 

 

Fig. 44. Extracted Vth shifts for the 14 nm CTT of Fig. 43. 
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CHAPTER VI 

 

DISCUSSION OF TID RESULTS 

 

 The results of Fig. 34-Fig. 43 show that the 14 nm FinFET-based CTTs show similar 

programming-induced Vth shifts to those of the 22 nm FDSOI devices of Fig. 25-Fig. 33. The HfO2 

gate dielectrics show similar resilience to radiation exposure before and after programming for the 

22 nm FDSOI and 14 nm FinFET based CTTs. STI-related leakage is observed in 14 nm devices 

with 40 fins and total effective fin width of 3 µm, but not in 14 nm devices with 2 fins and total 

effective fin width of 150 nm. Taken together, the results of Fig. 25-Fig. 44 strongly suggest that 

neither radiation-induced charge trapping nor neutralization of trapped negative charge in the 

HfO2-based gate dielectrics limit the radiation tolerance of these CTTs. Thus, the tolerance of CTT 

memory devices based on transistors similar to those evaluated in this work are likely to be limited 

primarily by the charge-trapping properties of surrounding insulators. This contrasts with most 

Flash memory devices, where the radiation tolerance typically is limited by the neutralization of 

charge on the floating gate [18], [19]. 

 Consideration is now given to why increased subthreshold stretchout (decreases in 

subthreshold slope of the ID-VG curves) is observed in Fig. 27 and Fig. 29 for FDSOI devices after 

irradiation and programming, and in Fig. 38 for 14 nm FinFETs when devices are irradiated after 

programming. Because there is no degradation in peak Gm in Fig. 31, the increased subthreshold 

stretchout for the 22 nm FDSOI device is evidently not caused by interface-trap buildup. Fig. 

45(a) shows a schematic diagram of a 22 nm FDSOI CTT being programmed after irradiation. A 

fraction of hot electrons generated by the programming sequence will be trapped in the gate  
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(a) 

 
(b) 

Fig. 45. Schematic illustrations of programming under positive gate bias (a) an irradiated FDSOI CTT and (b) an 

irradiated 14 nm FinFET (shown in cross section for an individual gated region). In (a), most hot electrons are trapped 

in the gate as desired, but some scatter into the BOX where they neutralize radiation-induced trapped positive charges. 

In (b), protons are released within the gate dielectric during irradiation and/or programming and transport to the 

interface under the influences of the large positive programming bias and/or built-in electric field, creating border or 

interface traps. 

 

dielectric, as desired [1]–[3]. While the majority of hot electrons generated by the programming 

pulses are attracted to the gate, some hot electrons inevitably scatter into the BOX, enabling the 

neutralization of a portion of the trapped positive charge [61], [79]. The resulting variations in 
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densities of near-interfacial trapped charge along the channel can lead to spatial variations in Vth. 

These local variations in charge density and Vth evidently result in a significant portion of the 

observed increase in subthreshold slope of the ID-VG curves for the 22 nm FDSOI devices in Fig. 

27 [65], [74], [80]. Non-uniform trapping of electrons [1]–[3] and generation of border traps in the 

HfO2 gate dielectric [61], [81] can potentially add to the resulting increase in subthreshold 

stretchout. 

As shown by the results of Fig. 40, the increase in subthreshold stretchout for the 14 nm 

FinFETs evidently is due at least in part to the buildup of interface traps. As shown schematically 

in Fig. 45(b), one possible mechanism of interface-trap formation during programming is the 

release of a proton in the gate dielectric during the stressing sequence. These protons can transport 

to or near the Si/SiO2 interface under the influences of the large positive programming bias and/or 

built-in electric field due to the gate-to-substrate work function difference [67]–[70] and react to 

form interface and/or border traps [61], [82]–[86]. DiMaria et al. have shown that the threshold 

for hydrogen release via hot carrier injection into SiO2 is ~2 eV [84]. Marinopoulos et al. have 

shown that this barrier for hydrogen release in a HfO2 dielectric is reduced near a Hf atom [87]. 

While the probability of hydrogen release by an injected electron is initially much lower than the 

probability of trapping, this mechanism of interface- and/or border-trap formation may become 

significant after the majority of electron traps are filled, and/or when devices are programmed for 

a second time after initial programming and irradiation (e.g., for the bulk 14 nm FinFET devices 

of Fig. 35). 

 Especially if programming conditions are not optimized, hot electrons can also create 

interface traps along the channel via impact ionization [84], [86] or multi-carrier-scattering 

induced multi-vibrational excitation release of passivating hydrogen atoms from dangling Si bonds 
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at the Si/SiO2 interface [88]–[90]. Recently, Reaz et al. [91] also have shown that electrons with 

energies higher than ~1.3 eV [92] can lead to efficient release of hydrogen from passivated 

phosphorus dopant atoms (~1.4 eV for arsenic [93]) within the drain of nanoscale gate-all-around 

devices [91]–[93]. The diffusion of these hydrogen atoms can lead to interface-trap formation in 

the nearby channel region via processes similar to those inferred to lead to interface-trap creation 

as a result of negative-bias instability and/or irradiation [81]–[91]. Hence, this mechanism may 

also play a role in the interface-trap buildup in these CTT devices during a second programming 

cycle without erasure. Additional work is required to determine whether this is the case. The 

resolution of this issue is important not only to understand the irradiation response, but also to 

understand the role of interface and border traps on degradation due to cycling in CTT devices 

[1]–[3], [17], [94], [95].  
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CHAPTER VII 

 

IMPLICATIONS OF TID IN CTT-BASED NEURAL NETWORKS 

 

 As mentioned in Chapter II, research has been conducted into the potential application of 

CTTs for use in neural networks [27], [28], [32], [33]. In these neural networks, CTTs were applied 

as non-volatile memories to store neuron weights. This chapter leverages simulations of both 

circuits and neural networks to explore the potential effects that total-ionizing dose could have on 

neural networks that employ CTTs as neuron weights. 

 

Neuromorphic Computing 

 A promising application of CTTs is in the field of neuromorphic computing. Neuromorphic 

computing is brain-inspired, non-von Neumann computing. The goal of neuromorphic computing 

is to emulate the way the brain processes information as well as imitate the way it approaches and 

solves complex problems, such as pattern recognition. There are a variety of applications for 

neuromorphic computing which span across disciplines and include signal and image processing, 

high performance computing, text and audio processing, learning and optimization among others 

[96]. Neural networks can be used for neuromorphic computing, and these neural networks can be 

implemented in software or emulated in hardware. Interest in specialized hardware 

implementations to accelerate these computations has increased recently. Several companies 

including IBM, Intel, Qualcomm, and Nvidia have produced specialized hardware solutions 

implementing neuromorphic computing architectures in digital CMOS [97]. These early 

generation products will ideally evolve into highly-integrated, three-dimensional, non-volatile 
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technologies. These future technologies will require implementation of advanced devices that are 

both low-power and high density. CTTs are one such possible technology. 

 

Neural Networks 

Neuromorphic computing architectures are constructed using neural networks. There are 

several different types of neural networks, including artificial, convolutional, and deep neural 

networks to name a few. The idea for neural networks to be used in computing is based on 

biological neural networks, such as those found in the human brain. A biological neural network 

consists of interconnected neurons which communicate with each other using axons and synapses. 

Communication signals travel through the neuron via the axon, and this information is transferred 

to other neurons though a synapse connection between two neurons. The “strength” of the signal 

is modulated by the weight of the synapse connection. In a similar fashion, a neural network used 

in computing transfers signals from one neuron to the next, and the strength (or magnitude) of the 

signal is based on a weight which is specific to the two connected neurons [48]. Neural networks 

connected in such a fashion where all inputs are connected to all outputs via weights are called 

fully-connected neural networks. This type of network forms a crossbar array structure, which was 

covered earlier. 

 

Neuromorphic Architectures 

Neuromorphic architectures, composed of neural networks, are densely interconnected 

with each output sharing large portions of the same input space as inputs from several neurons. 

Consequently, the neuromorphic architecture possesses increased redundancy compared to 

traditional computing architectures and can be fault tolerant if specifically designed that way. 
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However, this comes at a computational cost [98]–[101]. The way neuromorphic computers 

“learn” is through the use of self-tuning weights (synapses). Neuromorphic architectures utilize a 

type of non-von Neumann computing. Traditional, von Neumann computer architectures have 

physically separated memory and computing components that communicate with each other using 

a bus. This bus can be a bottleneck for computing, particularly in neuromorphic computing 

applications. Instead, neuromorphic architectures utilize non-von Neumann computing 

architectures which feature a distributed memory structure allowing for computations to be 

performed locally with the data storage [102]. As a result, neuromorphic architectures have 

increased redundancy and a reduction in the memory bandwidth bottleneck compared to traditional 

computing [98]. Error! Reference source not found. shows these two types of architectures. 

 

Fig. 46. Comparison of traditional, von Neumann architecture (left) with a non-von Neumann architecture (right) 

where the calculations and data storage are grouped together in small groups. (From [102].) 

 

Artificial Neuron 

Artificial neurons are the basic building blocks used in the construction of the 

abovementioned neural networks [103], [104]. These artificial neurons are a mathematical way to 
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model biological neurons for use in neuromorphic architectures. Each input xi to the neuron (a 

number) is weighted by its corresponding weight wi, and the sum of all these weighted inputs is 

computed. This weighted sum is then applied to an activation function φ which then results in the 

output y. The equation for the weighted output y from a neuron is 

𝑦 = 𝜙 ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

. 

The output y from the artificial neuron can then be used as an input to one or more neurons in a 

subsequent artificial neuron. Artificial neurons can be implemented in software, digital circuits, or 

analog circuits. Error! Reference source not found. shows a schematic of an artificial neuron. 

 

Fig. 47. Representation of an artificial neuron. The inputs to the system are denoted by xi and the output by y. 

 

Activation Functions 

The weighted sum of the inputs can take on a range of values. The purpose of the activation 

function is to map these weighted sums to one of the possible outputs. In the case of the activation 

function being a step function, values above a certain point produce a high output, while values 

below this point result in the output y being low. Thus, even though the weighted sum can take on 

a variety of values, there are only two possible outputs for a step activation function. Other 

activation functions exist and have various applications and complexity. Some additional 
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activation functions include sigmoid and hyperbolic tangent functions, which have bounded 

outputs; linear functions, whose outputs are unbounded; and functions that are not one-to-one, 

where different inputs can result in the same outputs. 

 

Artificial Neural Networks 

 Artificial neural networks can be constructed by linking a number of artificial neurons 

together where outputs of individual neurons are used as inputs to neurons in the next layer [104]. 

These networks have more processing power, flexibility, and applicability than single neurons. 

Artificial neural networks are claimed to be intrinsically fault tolerant; however, most artificial 

neural networks cannot be considered fault tolerant without a proper design [100], [101]. Passive 

fault tolerance can be achieved through redundancy or by modifying learning. Including faults 

during training promotes better generalization than other limited solutions, but it comes at both a 

higher computational cost and more time necessary for training. Active fault tolerance such as 

resetting the neural network to a faultless state after a fault occurs and propagates is the most 

widely used design of fault tolerant neural networks in hardware. 

 

Feedforward Neural Network 

 A feedforward neural network is an artificial neural network in which artificial neurons are 

linked together in multiple layers where information propagates one direction through the network 

[104], [105]. This neural network is composed of many neurons and can solve a wide variety of 

classification problems. The first layer is called the “input layer” and receives the inputs to the 

neural network. The final layer is called the “output layer” since this layer produces the final output 

of the neural network. All layers (if any) between the input and output layers are called “hidden 
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layers” because their inputs and outputs are not directly observable outside the neural network 

[105]. The number of hidden layers can vary depending on the application and the complexity 

needed in the neural network. Each layer can have any number of neurons in it, and the number of 

neurons in one layer has no bearing on the number of neurons allowed in subsequent layers. If 

every neuron in one layer is connected to every neuron in the next layer, the layers are considered 

to be “fully connected.” Error! Reference source not found. is an example of a fully-connected, 

feedforward neural network that contains a single hidden layer. 

 

 

Fig. 48. Example of a fully-connected, feedforward neural network where every neuron is connected to all the neurons 

in the next layer. The network shown has a single hidden layer, and the arrows represent the weights between the 

neurons where the thickness represents the strength of the weight. 

 

Perceptron 

 The perceptron is one of the most basic neural networks and is a type of feedforward neural 

network [103]. A perceptron is composed of at least one layer of artificial neurons with input and 

output neurons, and it uses the step function as its activation function. As a result of using the step 
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function, there are only two possible outputs from each neuron. Depending on the application, the 

two possible outputs could be 1 or 0, or they could be 1 and -1. The bias b is used in the activation 

function to determine the output state of the perceptron. This bias is independent of the input value 

and is simply an offset from the origin. The perceptron output is 1 (high) when the neuron’s 

weighted sum is greater than the bias, and the output is 0 or -1 (low) if the weighted sum is less 

than the bias. More complex neural networks that incorporate more complicated aspects, such as 

feedback loops for example, are capable of better classification and more complex problem-

solving than a simple perceptron network. However, only perceptron networks are considered in 

this dissertation. 

 

Circuit Modeling 

The circuit simulations were conducted using LTSpice, a SPICE-based software for the 

simulation of analog devices and circuits [106]. The models for the 22 nm FDSOI and 14 nm bulk 

FinFET transistor simulations come from [107] and are based on the work from these papers: 

[108], [109]. 

 

Modeling Radiation and Programming 

In order to model the effects of radiation and programming of the CTTs within the circuit 

simulation, additional voltage sources were included to model the threshold voltage shifts resulting 

from radiation and programming in the CTTs. Fig. 49 shows the LTSpice circuit schematic for a 

single transistor where the radiation and programming effects on ΔVth are modeled by the 

parameters r and p respectively. Since radiation and programming result in threshold voltage shifts 

in opposite directions, the difference between p and r is taken. 
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Fig. 49. Inclusion of the effects of radiation and programming on the threshold voltage on the simulation of a CTT. 

 

Fig. 50 shows the simulated ID-VG curves for the schematic in Fig. 49 using the dimensions 

and threshold voltage shifts from Fig. 25, a 22 nm CTT that was programmed before irradiation. 

The simulation was run with a 22 nm CTT model with L = 20 nm and W = 120 nm, and VG was 

swept from -0.4 to 1.2 V. The fresh curve (black) is obtained from setting p = r = 0 to simulate no 

radiation or programming. The programming curve (red) is when p = 100 mV, r = 0 to simulate a 

device programmed before irradiation. Finally, the irradiation curve is from setting p = 100 mV, r 

= 150 mV to simulate irradiation to 500 krad(SiO2) after programming. Both Fig. 25 and Fig. 50 

result in threshold voltage shifts of 100 mV for programming and -50 mV for programming and 

irradiation to 500 krad(SiO2) with respect to the fresh, pre-programmed curve. Threshold voltage 

shifts due to radiation and programming are modeled for the rest of this section in this same fashion 

by applying an additional voltage source to the gate of each transistor. 
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Fig. 50. Simulated results from the model in Fig. 49 for a single 22 nm FDSOI CTT programmed before irradiation 

to 500 krad(SiO2) to model the experimental results in Fig. 25. 

 

Modeling an Artificial Neuron 

 The artificial neuron simulated in this subsection is the three input model presented in 

[110]. Fig. 51 shows the relation between the artificial neuron with three inputs and weights (left) 

and its corresponding simplified circuit schematic using twin-cell CTTs (right). The inputs, xi, are 

voltages applied to the gates of the transistors; the weights, wi, are the transconductances of the 

CTTs; and the output, y, for the whole neuron is the current found by taking the sum of each current 

difference through the drains, ∑(ΔID). The weight that an individual CTT is programmed to 

corresponds to a drain current based on the voltages applied to the drain and gate. Since all the 

experimental data presented applied 50 mV to the drain, all the circuit models use VD = 50 mV as 

well. In addition, since the neuron model being studied utilizes a twin-cell architecture, the output 

current for each weight is determined by the difference between the two drain currents of the CTTs, 
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shown by the purple box in Fig. 51. The resulting output from the neuron, y, is found by summing 

up the three sets of differential drain currents. 

 

Fig. 51. Implementation of the three-weight artificial neuron (left) in a simplified circuit representation using twin-

cell weights (right). The inputs are voltages, the weights are transconductances, and the output is the drain current. 

(Adapted from [110].) 

 

 Fig. 52 shows the LTSpice implementation of the simplified circuit diagram shown on the 

right side of Fig. 51. The six CTTs modeled are all identical and shown in Fig. 52 as M1t, … M3t, 

and M1c, … M3c, where the number indicates which of the three weights, and t and c indicate the 

respective true and complement values for the twin-cell. As before, ΔVth due to radiation and 

programming are modeled by changeable parameters. Radiation is modeled as r, and programming 

modeled by 1t, 2t, 3t for the true bit line transistors and 1c, 2c, 3c for the complement transistors. 

For these simulations, only one of the two CTTs in a twin-cell is programmed as was done in [28]. 

The true side is programmed to achieve positive programming values, and the complement side is  
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Fig. 52. Implementation of a three-weight, twin-cell CTT neuron in LTSpice. 
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programmed to achieve negative differential programming threshold voltage shifts. In addition, 

the applied gate voltage is set by assigning values to v1, v2, v3. VG = 200 mV in [28], [37], so this 

is the gate voltage used in simulations as well unless otherwise noted. VD_BLt = VD_BLc = 50 

mV are the drain voltages for the true and complement sides of the twin-cell. Finally, as indicated 

in Fig. 51 on the right in the purple box, the current output for each synapse is the difference 

between the left and right drain current. As discussed in Chapter II, the output value for the neuron 

is determined by the sum of the three differential currents, which is equivalent to the difference 

between the currents traveling through the two VD = 50 mV sources. 

 

Modeling Results 

 Various simulations were performed in LTSpice using the circuit model in Fig. 52 with 

many different values of programming ΔVth. A representative example is presented here where 

Fig. 53 shows the simplified circuit representation with the programmed values indicated. The 

three synaptic weights were programmed to have differential threshold voltage shifts of 80 

mV, -130 mV, and 50 mV by setting 1t = 0.08, 2c = 0.13, 3t = 0.05, and 1c = 2t = 3c = 0. 

 

Fig. 53. Simplified circuit schematic showing the threshold voltage shifts to which the CTTs were programmed. 

80 mV
130 mV

50 mV
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 Radiation-induced threshold voltage shifts were also simulated on all six transistors in 50 

mV increments. As ΔVth increased, so did the output drain current from the neuron. Therefore, the 

current gain was calculated to quantify the increase in drain current due to the modeled radiation 

effect. The gain factor is the ratio between the drain current with radiation-induced ΔVth compared 

to the modeled drain current with no radiation, or ID(post-rad) / ID(pre-rad). 

Table III shows the output drain current and current gain for several radiation-induced Vth 

shifts for 22 nm devices operating in the linear region. This gain factor was then plotted as a 

function of the Vth shifts in Fig. 54. As can be seen from the semi-log graph, there is an exponential 

relationship, and to first order for this linear region, the equation that models this behavior is 

(𝑔𝑎𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟, 22 𝑛𝑚) =  𝑒0.0252∗(∆𝑉𝑡ℎ,𝑟𝑎𝑑). 

 

Table III. Data and calculations resulting from varying the parameter r from Fig. 52 to model TID-induced ΔVth for 

22 nm FDSOI devices. 

 

 

Modeled ΔVth

from Radiation 
(mV)

Output Drain 
Current (nA)

Drain Current 
Gain Factor

0 2.38 1

50 8.72 3.7

100 31.19 13

150 107.3 45

200 347.1 146
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Fig. 54. Output neuron current gain as a function of Vth shift resultant from TID for 22 nm FDSOI devices. 

 

An equivalent form of this equation can be derived from the definition of subthreshold 

slope. Since subthreshold slope (SS) is the slope of a semi-log ID-VG plot, it is defined by 

𝑆𝑆 =
∆𝑉𝐺

∆(𝑙𝑜𝑔𝐼𝐷)
. 

Using the logarithmic identity log(a) – log(b) = log(a/b), the fact that the current gain is ID2 / ID1, 

and ΔVG = ΔVth, the above equation can be rewritten as 

(𝑔𝑎𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) = 𝐼𝐷2/𝐼𝐷1 = 10(Δ𝑉th
𝑆𝑆⁄ ). 

For the simulated 22 nm FDSOI devices, the subthreshold slope was extracted to be 88 mV/decade 

around the operating gate voltage. Plugging this into the above equation and converting to natural 

logarithms results in the following equation: 

(𝑔𝑎𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟, 22 𝑛𝑚) = 𝑒
𝑙𝑛(10)∗∆𝑉𝑡ℎ

88⁄ = 𝑒0.026∗∆𝑉𝑡ℎ 

This is almost exactly the same as the relationship between gain factor and ΔVth found above from 

the circuit simulations, demonstrating the relationship between current gain of the neuron and ΔVth 

depends on the subthreshold slope. 
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Simulating the 14 nm bulk FinFET devices in a similar fashion, a current gain for these 

devices is also found. The equation for these devices is 

(𝑔𝑎𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟, 14 𝑛𝑚) =  𝑒0.0256∗(∆𝑉𝑡ℎ,𝑟𝑎𝑑). 

 

Neural Network Modeling 

 The equations found in the previous section show that the drain current gain factor of the 

neuron scales as a result of irradiation which was modeled in millivolts of threshold voltage shift. 

Since the weight of the neuron is determined by a linear operation on the drain current, the neuron 

weight also scales as a result of irradiation. Therefore, scaling the neuron weights in a neural 

network can be used to model the effect of radiation in the neural network. Using this information 

in a neural network simulator can therefore give a first look into the possible effects of TID on 

classification accuracy for 22 nm FDSOI and 14 nm FinFET CTTs implemented in neural 

networks. 

 

Neural Network Modeling Setup 

Keras, written in Python, is a high-level neural network application programming interface 

which was used to create the simulations [111]. Keras was used in conjunction with TensorFlow 

[112], an open-source framework for developing machine learning applications. Keras and 

TensorFlow were used to construct and train a perceptron-based neural network. The neural 

network was trained to classify handwritten digits between 0 and 9 from the Modified National 

Institute of Standards and Technology (MNIST) database [57]. Each handwritten digit is a 

grayscale image composed of 28x28 pixels. Of the 70,000 total digits in the database, 60,000 
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images are designated for the training data set. The remaining 10,000 digits are for classification 

using the trained network, and there are approximately 1000 samples of each digit. 

The perceptron neural network model created is a multi-layer, feedforward neural network. 

Each model created has 784 inputs, one for each pixel in the 28x28 image, and 10 outputs, 

corresponding to the ten possible classifications of 0, 1, 2, … 9. The number of hidden layers is a 

tunable parameter, and in these simulations, it ranges from 16 layers to 512 layers in powers of 2. 

In these simulations, the effect of radiation is modeled by scaling all the neuron values in the 

trained network to model the current gain. This is from the results of the previous section showing 

that radiation causes the drain current (which corresponds to the neuron output) to scale as a 

function of dose. The results of scaling all the neuron values by a factor two in the neural network 

is shown in Fig. 55. The distribution of neuron values becomes flatter and more spread out with 

the scaled values. In addition, clipping of the neuron values occurs at the two extrema as the neuron 

values are scaled more and more. In the simulations that follow, the average of at least five runs is 

displayed to reduce the effect of variation in training on the results. Each data point collected is 

the trained neural network’s classification accuracy, which is the percentage of total number of 

correct classifications of the 10,000 handwritten digits. 

 

Modeling Results 

 Fig. 56 shows the simulation results of classification accuracy as a function of gain factor 

for different numbers of layers in the perceptron network. A gain factor of 1 indicates the 

classification accuracy of the neural network before radiation. In general, as the gain factor 

increases, corresponding to an increase in radiation and therefore threshold voltage shift, the 

overall classification accuracy decreases before leveling off at higher gain factors. As the number 
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of layers increases, so does the classification accuracy for any given gain factor. This indicates 

that the architecture of the neural network plays an important role in determining the accuracy of 

the neural network. 

 

Fig. 55. Neuron value histogram before and after scaling all neuron values by a factor of 2. The original trained 

network values are shown in blue, while the scaled values (simulating radiation) are shown in orange. 

 

 

Fig. 56. Accuracy as a function of current gain and number of layers in the perceptron-based neural network 

simulation. 
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By using the conversion between current gain and ΔVth as found in the circuit simulation 

section, Fig. 57 was produced showing the relationship between accuracy and the amount of 

threshold voltage shift due to TID in CTTs in the neural network simulation. As the number of 

layers decreases or threshold voltage shift increases, the classification accuracy of the network 

decreases. 

 

 

Fig. 57. Accuracy as a function of threshold voltage shift as calculated by the relation between gain factor and ΔVth as 

determined in the previous section. 

 

Modeling Results: 22 nm FDSOI CTTs 

 Utilizing the experimental data on 22 nm FDSOI CTTs irradiated without programming 

(Fig. 29 and Fig. 30), the effect of dose on classification accuracy can be predicted. Fig. 30 shows 

a decrease in threshold voltage until approximately 200 krad(SiO2) where ΔVth ≈ -120 mV, and at 

higher doses, the threshold voltage shift saturates. From these data, a conversion between threshold 

voltage and dose can be determined. Fig. 58 shows the relationship between dose and classification 
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accuracy using the results shown in Fig. 56 and Fig. 57. As TID increases until 200 krad(SiO2), 

the classification accuracy decreases. However, above 200 krad(SiO2), an increase in dose does 

not result in additional threshold voltage shifts; therefore, the accuracy remains constant above 

200 krad(SiO2). In addition, increasing the number of layers in the neural network increases the 

classification accuracy for the different dose levels. Finally, the initial increase in TID results in a 

gradual decrease in classification accuracy, and none of the curves result in a classification 

accuracy less than 60%.  

 

Fig. 58. Accuracy as a function of TID for several numbers of layers in 22 nm FDSOI CTTs in a twin-cell structure. 
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remains approximately constant. The possible exception is the simulations for 16 layers in which 

the accuracy decreases slightly. Additionally, as the number of layers increases, so does the 

accuracy, once again indicating that the architecture of the neural network is an important 

consideration. 

 

Fig. 59. Accuracy as a function of TID for several numbers of layers in 14 nm bulk FinFET CTTs in a twin-cell 

structure. 

 

Discussion of Modeling Results 
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resistant 14 nm bulk FinFET CTTs, the classification accuracy at 500 krad(SiO2) is dominated by 

the number of layers in the neural network with essentially no change in accuracy with increasing 

dose. Therefore, as a possible application, it may be possible to mitigate TID-induced ΔVth 

degradation by careful consideration and selection of the neural network architecture and structure.  
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CHAPTER VIII 

 

CONCLUSIONS 

 

 This dissertation has evaluated the charge trapping properties and TID responses of 22 nm 

FDSOI and 14 nm bulk FinFET charge-trap memory transistors. Significant positive threshold-

voltage shifts due to electron trapping in the HfO2 gate dielectric leads to memory windows that 

are large enough to support non-volatile memory applications in each case. To first order, 

radiation-induced trapped charge does not interact strongly with programming-induced charges in 

the gate dielectric in either device type. Hole trapping in the buried oxide leads to a collapse of the 

memory window in the 22 nm FDSOI devices at doses below 200 krad(SiO2). 14 nm bulk devices 

with 2 fins and total effective fin width of 150 nm are minimally affected by TID, but 14 nm bulk 

devices with 40 fins and total effective fin width of 3 µm show increasing STI-related leakage with 

increasing TID. 

Significant increases in transistor subthreshold stretchout are observed when FDSOI 

devices are programmed after being irradiated to 500 krad(SiO2). This is attributed to hot-carrier-

induced border-trap generation at the Si/SiO2 interface and/or charge lateral non-uniformities in 

the buried oxide. For bulk 14 nm FinFETs, interface-trap generation may occur during continued 

programming after available electron traps are filled in the HfO2. The release of hydrogen from 

the dielectric layer and/or from passivated dopants in the drain may play roles in the observed trap 

generation, as may multi-carrier-scattering induced multi-vibrational release of hydrogen from 

passivated Si dangling bonds at the Si/SiO2 interface. This dissertation shows that CTTs based on 

HfO2 dielectrics are promising for use as nonvolatile memory elements in space and other high 
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radiation environments, but detailed charge trapping and neutralization mechanisms require further 

investigation, and process optimization and/or refinement of erase cycles are required for 14 nm 

bulk FinFET CTTs. 

 A preliminary study of the effects of TID on CTTs implemented in neural networks is also 

examined. The TID-sensitive 22 nm FDSOI CTTs have a gradual decrease in classification 

accuracy with increasing TID until 200 krad(SiO2) after which the classification accuracy remains 

constant. In contrast, the 14 nm bulk FinFETs, which have minimal Vth shifts due to TID, show no 

change in classification accuracy with increasing dose. However, for both technologies, modifying 

the neural network architecture by increasing the number of layers in the network results in 

improved classification accuracy across all doses. These results indicate that it may be possible to 

mitigate TID-degradation by careful selection of architecture and related parameters in the neural 

network. 

 In summary, total-ionizing-dose on charge-trap transistors does not directly alter the 

memory element of the CTTs. Instead, the response of CTTs to TID is mainly contingent on the 

nearby insulators such as the BOX and STI and their properties. In addition, enough electron 

trapping occurs in CTTs for use as memory elements, and TID does not affect the programmability 

of 14 nm bulk FinFET CTTs. However, in 22 nm FDSOI CTTs, programming does neutralize 

some of the trapped holes from TID resulting in higher threshold voltage shifts. Finally, in looking 

ahead to potential implementation of CTTs in neural networks, it is found that the underlying 

neuromorphic architecture plays a critical role in the accuracy of the neural network after being 

subjected to TID.  
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