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Chapter 1

Introduction

A holomorphic discrete series representation is an infinite dimensional unitary repre-

sentation of a semi-simple Lie group G, which is usually non-compact. There is a large

family of discrete series representations of real reductive Lie groups and also an interesting

family of admissible representations of algebraic groups over R. Harish-Chandra proved

such representations exist if and only if rankG = rankK, where K is a maximal compact

subgroup with a non-finite center [17, 26]. Indeed, such a representation is realized as

certain holomorphic functions on the bounded symmetric domain D = G/K with values

in a highest weight representation (π,Vπ) of K. In particular, they reduce to these highest

weight representations when G = K, i.e., G is compact. As is the case with these finite

dimensional highest weight representations, the holomorphic discrete series can also be

described by the dominant weights of K.

The first non-trivial example is the discrete series of SL(2,R), whose maximal com-

pact subgroup is SO(2) (up to conjugation). In this case, the symmetric domain D =

SL(2,R)/SO(2) is just the open unit disk which is holomorphically isomorphic to the

Poincaré upper half-plane H. As the irreducible representations of SO(2) are character-

ized by integers, the holomorphic discrete series of SL(2,R) can be denoted by (Lm,Hm)

where m∈Z and Hm is a certain subspace of the holomorphic functions on H [32]. Further-

more, for the modular group Γ = SL(2,Z), the cusp forms are also holomorphic functions

with some Γ-invariant properties. V. Jones found that the multiplication by a cusp form of

weight p is in B(Hm,Hm+p) that intertwines the actions of SL(2,Z) on Hm and Hm+p. More

precisely, the multiplication operator

M f : Hm→ Hm+p, φ(z) 7→ f (z)φ(z)
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intertwines the actions of Γ on Hm and Hm+p, i.e., M f Lm(γ) = Lm+p(γ)M f for all γ ∈

SL(2,Z) [16].

Observe PSL(2,Z) is an ICC group. (Recall that a group G is an infinite conjugacy

classes group, or an ICC group for short if every non-trivial conjugacy class Ch = {g−1hg|g∈

G},h 6= 1 is infinite.) Its group von Neumann algebra and the commutant are both factors

of type II1 (provided the formal dimension is finite). A natural question arises whether

these operators composed with their adjoints, i.e., operators of the form M∗gM f , generate

the commutant factor. (Note the adjoint M∗f is more complicated than a single multiplica-

tion, see Section 4.3 or [16].) In 1994, F. Radulescu gave an affirmative answer by applying

the Berezin quantization [33, 34].

Theorem 1.1 [F. Radulescu, 1994] The von Neumann algebras generated by the forms

M∗gM f is the commutant of the II1 factor = Lm(PSL(2,Z))′′, i.e.,

{span f ,gM∗gM f }
w.o.

= Lm(PSL(2,Z))′,

where f ,g run through the cusp forms of same weights.

But no result is known for other Fuchsian subgroups of SL(2,R) or, more generally, lattices

of a general real Lie group.

In the first part of this thesis, we generalize the result for SL(2,Z) to the holomorphic

discrete series of non-compact semi-simple real Lie groups. These representations can be

denoted by (Lπ ,Hπ), where Hπ = L2
holo(D ,Vπ) and (π,Vπ) is an irreducible representa-

tion of K. We first use a generalized Berezin quantization to transfer each operator A in

B(Hπ) to an End(Vπ)-valued function S(A)(z) on D with some holomorphic properties (

see Section 3.1). Once a discrete subgroup Γ of the Lie group G is given, we also give

an explicit formula of a faithful normal tracial state on the commutant Lπ(Γ)
′ = B(Hπ)

Γ =

{A ∈ B(Hπ)|ALπ(γ) = Lπ(γ)A,∀γ ∈ Γ} of the group von Neumann algebra Lπ(Γ)
s.o.

.

Proposition 1.2 (The trace formula for Lπ(Γ)
′) Assume π is an irreducible representa-

tion of K. Let τ : B(Hπ)→ C be the linear functional defined by
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τ(A) = 1
µ(F )

∫
F tr(S(A)(z))dµ(z), A ∈ B(Hπ).

Then τ is a positive, faithful, normal, normalized trace on Lπ(Γ)
′. In particular, if Γ is an

ICC group, τ is the unique normalized trace on the II1 factor Lπ(Γ)
′.

We then generalize the classical Toeplitz operator Tf ∈ B(Hπ) associated with f ∈

L∞(D) to an essentially bounded matrix Toeplitz operator Tf associated with an essentially

bounded matrix-valued function f on D . Then the Γ-invariant functions can be identi-

fied with the ones defined on (Γ\D . Using several formulas of the tracial state of these

operators, we prove

Theorem 1.3 (Main Theorem I) The commutant Lπ(Γ)
′ is generated by the Toeplitz op-

erators of matrix-valued functions, i.e.,

〈Tf | f ∈ L∞(Γ\D ,End(Vπ))〉
w.o.

= Lπ(Γ)
′.

In the second part, we consider cusp forms defined on real Lie groups, which were

first studied by Harish-Chandra [18]. By definition, given a semi-simple Lie group G,

an automorphic form on G is a complex (or complex vector-valued) function f : G→ C

(or taking values in a finite dimensional representation Vρ of K) which is K-right-finite

(or right-equivariant), Γ-left-invariant and satisfies some analytic properties. Indeed, we

focus on another type of automorphic form defined on the domain D = G/K, which can

be easily obtained from the ones defined on the group G. As for intertwining properties of

the classical cusp forms of the modular group SL(2,Z), we also show the existence of Γ-

invariant bounded operators between these holomorphic function spaces from the cuspidal

automorphic forms, or simply cusp forms, on general real Lie groups. Let f : G(or D)→

Vρ be a cusp form of Γ of type (ρ,Vρ) (here (ρ,Vρ) is a representation of K), which is not

always holomorphic as in the case of SL(2,R). The multiplication operator M f is no longer

closed. We construct a Toeplitz-type operator

Tf : Hπ → Hρ⊗π given by φ(z) 7→ Pρ⊗π( f ⊗φ)(z),
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where Pρ⊗π is the projection from L2(D ,Vρ⊗π) to the closed subspace Hρ⊗π =L2
hol(D ,Vρ⊗π)

which is square-integrable and not always irreducible. Then Tf also commutes with the ac-

tions of Γ on Hπ and Hρ⊗π respectively. This implies Tf ∈ B(Hπ ,Hρ⊗π)
Γ and T ∗g Tf ∈

Lπ(Γ)
′ if f ,g are cusp forms of the same type. Our construction includes the earlier result

on SL(2,Z)⊂ SL(2,R) as a special case [16, 34, 30, 23].

In this thesis, we generalize Theorem 1.1 to

1. Fuchsian subgroups of the first kind of SL(2,R),

2. Lattices of real Lie groups (with holomorphic discrete series and dimCVπ = 1).

The result on SL(2,R) is obtained by proving certain existence theorems of meromorphic

functions and holomorphic functions on the compact Riemann surface F ∗=Γ/H∗. We ap-

ply Riemann-Roch theory for the proofs about meromorphic and holomorphic functions on

F ∗. We prove there are enough cusp forms that can separate the points in the fundamental

domain Γ/H of any Fuchsian group Γ of the first kind, i.e., Γ is a lattice.

For the most general case, we apply Baily-Borel compactification and show the Poincaré

series are abundant to separate points in the fundamental domain F = Γ\D . We always

assume G has no normal Q-subgroup of dimension 3 [3]. Finally, we prove the following

theorem in Section 7 (see Theorem 7.1).

Theorem 1.4 (Main Theorem II) The commutant Lπ(Γ)
′ can be generated by the cusp

forms, i.e.,

〈{span f ,gT ∗g Tf }⊗End(Vπ)〉
w.o.

= Lπ(Γ)
′,

where f ,g run through cusp forms for Γ of same types. Moreover, if dimCVπ = 1, we have

〈span f ,gT ∗g Tf 〉
w.o.

= Lπ(Γ)
′,

where f ,g ∈ A 0
D(Γ,ρ) for some ρ ∈ K̂ (K̂ is the set of equivalence classes of irreducible

representations of K, and A 0
D(Γ,ρ) is the space of cusp forms of type ρ , see Section 5.2).
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Section 2 provides a brief discussion of the holomorphic discrete series representations

and their realizations. Section 3 is devoted to the theory of the Berezin transform and con-

struction of the matrix Toeplitz operators. We provide formulas for a trace τ on the finite

von Neumann algebra Lπ(Γ)
′ In Section 4, we consider the extension of the Berezin trans-

form of from Lπ(Γ)
′ to the standard module L2(Lπ(Γ)

′,τ)of it. In Section 5, we construct

Γ-intertwining operators from the cusp forms defined on the Lie group. Section 6 and 7

apply the results from previous sections to SL(2,R) with its discrete subgroups and then

to semi-simple real Lie groups with holomorphic discrete series. Then we prove our main

result, Theorem 7.1.
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Chapter 2

The Holomorphic Discrete Series

We review some basic facts about discrete series representations. Then we focus on the

family of holomorphic discrete series representations and their construction. We refer to

[17, 26, 29] for more details.

2.1 The discrete series representations

Let G be a locally compact unimodular group with Haar measure dg. Moreover, we are

interested in the case that G = GR is a connected semi-simple real Lie group. We assume

K is a maximal compact subgroup of G and H is the Cartan subgroup of G. We will use

the following notations.

• h,k,g: the Lie algebra of H,K,G respectively and hC,kC,gC are their complexifica-

tions;

• ∆,∆K: roots of (gC,hC) and (kC,hC);

• WG,WK: the Weyl groups of ∆,∆K;

• δG,δK: the respective half-sums of positive roots.

Furthermore, we have in mind G should be a non-compact group though we do not

exclude the compact case. Let π : G→U(H) be a unitary representation of G where H is

a Hilbert space with inner product 〈·, ·〉H . For vectors u,v ∈ H, one defines the coefficient

g ∈ G 7→ cu,v(g) = 〈π(g)u,v〉H .

We obtain cu,v(h−1g) = cu,π(h)v(g) and cu,v(gh) = cπ(h)u,v(g) for all g,h ∈ G.
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Definition 2.1 Let π be a unitary representation of G. We say it is square-integrable if it

has a non-zero square-integrable coefficient

0 6= cu,v ∈ L2(G,dg) for some u,v ∈ H.

If π is irreducible, we call it a discrete series representation of G.

Theorem 2.2 [32] Let π be a unitary irreducible representation of a locally compact group

G. The following properties are equivalent:

1. There exist u,v ∈ H such that cu,v is square-integrable.

2. For any u,v ∈ H, cu,v is square-integrable.

3. π is equivalent to a subrepresentation of the right regular representation ρ : G→

U(L2(G,dg)).

For each discrete series representation π : G→U(H), there is a parameter called formal

dimension dπ ∈ R+ determined only by π , which is given by the following theorem.

Theorem 2.3 ([32]) Let (π,H) be a discrete series representation of G. Then there is a

constant dπ ∈ R≥0 such that

〈cu,v,cx,y〉L2(G) = d−1
π 〈u,x〉H · 〈v,y〉H , for all u,v,x,y ∈ H.

Moreover, if (π,H),(π ′,H ′) are two discrete series representations that are not equivalent,

then 〈cu,v,cu′,v′〉L2(G) = 0, for all u,v ∈ H and u′,v′ ∈ H ′.

There is a criterion for the existence of discrete series representations proposed by

Harish-Chandra and also proved by him. As in the case of the highest weight represen-

tations of compact Lie groups, these discrete series representations (up to unitary equiva-

lence) can also be classified by their weights.
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Theorem 2.4 (Harish-Chandra [17]) The discrete series representations exist if and only

if rankG = rankK. They are classified by πλ with non-singular weight λ ∈ (ih)
′

such that

λ +δG is analytically integral. Moreover, πλ
∼= πλ ′ if and only if λ ,λ ′ are conjugate under

WK .

Here (ih)
′
denotes the dual space of ih.

Note when G is compact, i.e., G = K, this theorem reduces to the theorem of highest

weight representations. In particular, for a complex Lie group GC with a compact real

form GR, we have rankGC = 2rankGR, and it never has discrete series representations.

More details of the construction of these representations can be found in [26]. A geometric

realization of these representations or the generalized Borel-Weil-Bott theorem using L2-

cohomology was conjectured by R. Langlands and then proved by W. Schmid [36].

Remark 2.5 By Theorem 2.4, we can easily determine whether some classical groups have

a discrete series or not. For instance:

1. SL(n,R) has a discrete series only when n = 2, and SL(n,C) has no discrete series.

2. Each SU(p,q) has a discrete series for p,q≥ 1.

3. SO(p,q) has a discrete series only when q = 2.

4. Each Sp(n,R) has a discrete series, but Sp(n,C) has none.

2.2 Construction of the holomorphic discrete series

The holomorphic discrete series are the discrete series that can be represented in a

natural way by Hilbert spaces of holomorphic functions. We refer to [17, 29, 13] for the

relevant descriptions. From now on, we always assume G is a connected non-compact

semi-simple real Lie group with rankG = rankK, and K has a non-finite center.

Let θ ∈Aut(g) be a Cartan involution and g= k⊕p be the Cartan decomposition. Then

we have k⊕ ip is a compact real form of gC. We also write Z∗ = (X + iY )∗ = −θ(X +
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iY ) = −X + iY for Z = X + iY ∈ gC with X ,Y ∈ g. For g = exp(X + iY ) ∈ GC, we write

g∗ = exp((X + iY )∗) = exp(−X + iY ) = g−1. (The notation Z∗ and g∗ has this meaning

only when we consider Lie algebras and Lie groups)

Consider the root space decomposition gC = hC⊕∑α∈∆ gα . We further obtain kC =

hC⊕∑α∈∆K gα and pC = ∑α∈∆n gα where pC is the complexification of p and ∆n = ∆−∆K

is the set of noncompact roots. Let ∆+,∆+
K ,∆

+
n be selected sets of positive roots, positive

compact roots, and positive non-compact roots, respectively. We set p+ = ∑α∈∆
+
n
gα and

p− = ∑α∈∆
−
n
gα

Let P+ and P− be the analytic subgroups of GC with Lie algebras p+ and p− re-

spectively. There is a diffeomorphism (z+,k,z−) 7→ z+ · k · z− from P+×KC×K− to an

open submanifold of GC containing G [20]. Following [29], we also introduce the pro-

jections ζ : P+KCP− → P+, κ : P+KCP− → KC and ξ : P+KCP− → P−. Then the map

φ : G/K → p+ given by φ(gK) = log(ζ (g)) induces a diffeomorphism from G/K to a

bounded domain D ⊂ p+. The domain D is an irreducible Hermitian symmetric space of

non-compact type [20, 13] and is known as the Harish-Chandra realization of G/K. We

will identify D with G/K in the following sections.

Let B(·, ·) be the Killing form. We have

Theorem 2.6 ([35]) The bounded symmetric domain can be given by

D = {z ∈ p+|‖adz‖<
√

2}

where the norm is the operator norm on gC equipped with the positive definite Hermitian

form −B(X ,θY ).

Recall the map κ : P+KCP−→ KC defined above. We define a map from D×D to KC,

which is also denoted by κ , by

κ(z,w) = κ(exp(w∗)exp(z))−1, z,w ∈D .

We define a map J : G×D → KC by
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J : G×D → KC by J(g,z) = κ(gexpz), g ∈ G,z ∈D .

The map J is usually called the canonical automorphy factor of G, which satisfies the

following properties:

(i) J(g,z) is C∞ in the first variable and holomorphic in the second one,

(ii) J is a 1-cocycle, i.e., J(gh,w) = J(g,hw)J(h,w) for g,h ∈ G, w ∈D ,

(iii) J(k,0) = k if k ∈ K.

For κ , we have an alternative definition by the following properties: (i)κ(0,0) = e, (ii)

κ(z,w) is holomorphic in z, (iii) κ(z,w)= κ(w,z)∗ and (iv)κ(gz,gw)= J(g,z)κ(z,w)J(g,w)∗.

Remark 2.7 Let ρ be a unitary representation of K (so it can be extended to KC). For

g ∈ KC, we have ρ(g∗) = ρ(g)∗, the adjoint operator associated with ρ(g).

Indeed, we assume ρ(g)= exp(X+ iY ) with X ,Y ∈ ρ(kR). Then ρ(g∗)= exp(−X+ iY ).

As ρ is unitary on K, X+X∗= 0. So we obtain exp(−X+ iY )= exp(X∗− i ·Y ∗)= exp((X+

iY )∗) = ρ(g)∗.

Now we can construct the holomorphic discrete series of G. Let (π,Vπ) be a finite

dimensional unitary representation of the compact subgroup K and 〈,〉π : Vπ ×Vπ → C is

a K-invariant inner product. We also let (π,Vπ) denote the representation extended to KC.

Here we do not assume the irreducibility of π .

Consider the space

Map(D ,Vπ) = { f : D →Vπ | f is measurable}

and the following inner product on it:

〈 f ,h〉=
∫
D〈π(κ(z,z)−1) f (z),h(z)〉πdµ(z), f ,h ∈Map(D ,Vπ)

where µ is the G-invariant measure on D given by

dµ(z) = detadp+ κ−1(z,z)dz,
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and dz is the Euclidean measure on D ⊂ p+ [35]. Following Remark 2.7 above, one can

check it is positive-definite. We define

L2(D ,Vπ) = { f ∈Map(D ,Vπ)|〈 f , f 〉< ∞},

and also the subspace spanned by holomorphic functions

Hπ = L2
hol(D ,Vπ) = { f ∈ L2(D ,Vπ)| f is holomorphic}

where the inner product restricted to Hπ will be written as 〈,〉Hπ
. It can be shown that Hπ

is closed subspace of L2(D ,Vπ). The action Lπ of G on Hπ is given by

Lπ(g) f (z) = π(J(g−1,z)−1) f (g−1z), f ∈ Hπ ,g ∈ G,z ∈D .

It can be proved that this representation (Lπ ,Hπ) is a unitary representation of G [13].

Please note the unitary representations (Lπ ,Hπ) are square-integrable, i.e., Hπ ⊂ L2(G).

The holomorphic discrete series of G are the (Lπ ,Hπ)’s, where π is an irreducible repre-

sentation of K.

Theorem 2.8 ([17, 26]) Assume π is an irreducible representation of K with highest weight

Λ, then Hπ is nonzero if and only if (Λ+ δG)(Hβ ) < 0 for all β ∈ ∆+
n . In this case, it is

irreducible.

The formal dimensions of these representations can be given by explicit formulas [29,

13]. Now we let Pπ be the orthogonal projection from L2(D ,Vπ) to Hπ . Let Lπ be the

action of G on L2(D ,Vπ) defined by

Lπ(g) f (z) = π(J(g−1,z)−1) f (g−1z), f ∈ Hπ ,g ∈ G,z ∈D , f ∈ L2(D ,Vπ).

This is to say Hπ is a G-invariant subspace and (Lπ ,L2(D ,Vπ)) also gives us a well-defined

unitary representation.

Proposition 2.9 For g∈G, Lπ(g) and Pπ commute on L2(D ,Vπ), i.e., Lπ(g)Pπ f =PπLπ(g)( f )

for f ∈ L2(D ,Vπ).
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Proof: Take h∈ L2(D ,Vπ). Assume h= h0⊕h1 with h0 =Pπ(h),h1 =(1−Pπ)(h). We can

show Lπ leaves H⊥π invariant: 〈Lπ(g) f1,h0〉L2 = 〈 f1,Lπ(g−1)h0〉 = 0. Hence Lπ(g)Pπ f =

PπLπ(g) f .

2.3 Discrete subgroups and von Neumann dimensions

Recall that semi-simple real Lie groups are unimodular. Let G be a connected semi-

simple real Lie group with the Haar measure dg. Let Γ be a discrete subgroup of G. Let

D⊂ G be the fundamental domain for Γ, that is D satisfies:

1. γ1D∩ γ2D has null measure with respect to dg if γ1 6= γ2 ∈ Γ,

2. G\∪γ∈Γ γD has null measure with respect to dg.

For the fixed Haar measure dg on G, we call the measure of D the covolume of Γ and denote

it by covol(Γ). Note that if d′g = λdg, then covol′(Γ) = λ · covol(Γ).

By definition, a von Neumann algebra M is a C∗-subalgebra of B(H), the algebra

of bounded linear operators on a Hilbert space H, such that it coincides with its double

commutant M = M′′, or equivalently, it contains the identity operator on H and is closed

in the strong operator topology M = Ms.o.. M is a factor if it has trivial center, that is

M′∩M =C · id. Further, we call a factor a II1 factor, if it is infinite dimensional and admits

a positive, faithful, normal, and normalized trace [22].

Let L Γ⊂ B(l2(Γ)) be the group von Neumann algebra associated to Γ, i.e., the strong

operator closure of the left regular representation of its group algebra on the Hilbert space

l2(Γ).

Definition 2.10 A group G is called an infinite conjugacy classes group, or an ICC group

for short, if every non-trivial conjugacy class Ch = {g−1hg|g ∈ G},h 6= 1 is infinite.

We have the following well-known result [16].
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Theorem 2.11 The group von Neumann algebra M =L Γ is a factor of type II1 if and only

if Γ is nontrivial and ICC.

Note that for any discrete series representation L : G→U(H), L|Γ gives a representation of

L Γ [16].

For a II1 factor M represented on a separable Hilbert space H, there is a von Neumann

dimension dimM(H) ∈ R≥0∪{∞} with the following properties [21]:

(i) dimM(H) = dimM(K) if and only if H,K are isomorphic as left M-modules,

(ii) 0 < dimM(H)< ∞ if and only if M′∩B(H) is also a II1 factor,

(iii) dimM(H⊕K) = dimM(H)+dimM(K),

(iv) dimM(L2(M)) = 1.

The von Neumann dimension can be related to the formal dimension by the following

theorem [16].

Theorem 2.12 Let G be a connected semi-simple real Lie group with Haar measure dg

and Γ a discrete subgroup of G. Suppose L : G→U(H) is an irreducible discrete series

representation with formal dimension dL. Assume Γ is an ICC group and M = L(Γ)′′ which

is a II1 factor. Then

dimM(H) = covol(Γ) ·dL.

Let (Lπ ,Hπ) be the holomorphic discrete series representation of G associated with

an irreducible representation (π,Vπ), which is constructed in Section 2.2. We define the

commutant by

Aπ = {A ∈ B(Hπ)|ALπ(γ) = Lπ(γ)A, ∀γ ∈ Γ},

which is equivalent to Aπ = Lπ(Γ)
′∩B(Hπ). Assume Γ is a discrete subgroup with finite

covolume, covol(Γ)< ∞. By Theorem 2.12, we have dimM(Hπ)< ∞.
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Corollary 2.13 Assume Γ is a discrete subgroup that is ICC and has finite covolume. If π

is irreducible, then Aπ is a type II1 factor.

In general, Aπ is not a factor but always a finite von Neumann algebra. This will be

proved in the next section by exhibiting a positive, faithful, normal, tracial state on it.
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Chapter 3

Berezin Transform, Toeplitz Operators and Trace Formulas

In this section, we will study the holomorphic discrete series representations (Lπ ,Hπ) of

a semi-simple real Lie group G restricted to a lattice Γ ⊂ G and the related von Neumann

algebras. We construct some Berezin quantizations and generalized Toeplitz operators,

emphasizing the Γ-invariant properties. We obtain several explicit formulas of a trace on

the commutant.

3.1 Berezin symbols and a trace

The Berezin quantization is defined for the upper half-plane H= {z= x+ iy∈C|y> 0}.

It may also be defined for the open unit disk D= {z ∈ C||z|< 1} by the Cayley transform,

which sends z ∈ H to z−i
z+i ∈ D [4, 5]. This is a special case of the bounded symmetric

domain D = G/K when G = SL(2,R) and K = SO(2). We will focus on its generalization

to the bounded symmetric domain D = G/K for a Lie group G with holomorphic discrete

series as introduced in the previous sections.

Let (Lπ ,Hπ) be a nontrivial square-integrable representation of G which is associated

to the finite dimensional unitary representation (π,Vπ) of a maximal compact subgroup K.

Recall that Hπ = L2
holo(D ,Vπ). Here we do not assume it is irreducible (and (π,Vπ) neither

by Theorem 2.4). For any z ∈ D, the evaluation function Kz : Hπ → Vπ given by f 7→ f (z)

is continuous and bounded [29]. Hence its adjoint operator Ez = K∗z : Vπ → Hπ is defined

by

〈Kz f ,v〉π = 〈 f (z),v〉π = 〈 f ,Ez(v)〉Hπ
, ∀ f ∈ Hπ ,v ∈Vπ ,

where 〈·, ·〉π is the K-invariant inner product on Vπ .

Let G = NAK be the Iwasawa decomposition. There is a smooth embedding
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i : D ∼= G/K ↪→ NA⊂ G, z 7→ gz.

Please note we have z= ġz = gz ·K as a coset in G/K. We denote hz = κ(gz)∈KC for z∈D

and also let Hz = π(h−1
z ) ∈ GL(Vπ) (see Section 2.2 for the map κ : P+KCP−→ KC).

The following result and its proof can be found in [29, 11].

Lemma 3.1 (i) There exists a constant cπ ∈ R>0 such that E∗z Ew = cππ(κ(z,w)) for

z,w ∈D .

(ii) Egz = Lπ(g)Ezπ(J(g,z)∗) for g ∈ G,z ∈D .

Now we define four Berezin symbols for operators in B(Hπ). Recall cπ ∈ R is the

contant given in Lemma 3.1.

Definition 3.2 For an operator A ∈ B(Hπ), the Berezin symbols of A are defined as the

following End(Vπ)-valued function:

1. KA(z,w) = E∗z AEw,

2. R(A)(z,w) = 1
cπ

HwKA(w,z)H∗z = 1
cπ

HwE∗wAEzH∗z ,

3. S(A)(z) = R(A)(z,z) = 1
cπ

HzKA(z,z)H∗z = 1
cπ

HzE∗z AEzH∗z ,

4. Q(A)(z) = 1
cπ

KA(z,z)H∗z Hz =
1
cπ

E∗z AEzH∗z Hz

where z,w ∈D .

Note KA,R(A) are maps from D ×D to End(Vπ) and S(A),Q(A) are maps from D to

End(Vπ).

Let U be a non-empty open subset of CN×CN . Given a function f (z,w) : U → C, we

call it sesqui-holomorphic if f is holomorphic in both z and w̄.

Theorem 3.3 ([6] II.4.) Assume a complex function f (z,w) of 2N complex variables z =

z1, . . . ,zN and w = w1, . . . ,wN is given in a neighborhood of the origin (0,0). If f is sesqui-

holomorphic function and f (z, z̄) = 0 for all z, then we have f = 0.
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Now we fix the bounded domain D with the measure µ given in Section 2.2. We give

some properties of the Berezin symbols. The result concerning only KA can be found in

[11].

Proposition 3.4 (i) KA∗(z,w) = KA(w,z)∗.

(ii) KA(z,w) is holomorphic in z and anti-holomorphic in w.

(iii) The correspondences A 7→ KA(z,w), A 7→ KA(z,z) and KA(z,w) 7→ KA(z,z) are all

injective.

(iv) KA(gz,gw) = π(J(g,z))KLπ (g)−1ALπ (g)(z,w)π(J(g,w))
∗.

Proof: For (i), we have KA(w,z)∗ = (E∗wAEz)
∗ = E∗z A∗Ew = KA∗(z,w).

For (ii), observe KA(z,w)(v) = (AEw(v))(z) is a holomorphic function of z as it belongs

to Hπ . Furthermore, by (i), it is anti-holomorphic in w.

For (iii), we first show KA(z,w) determines A. Take φ ∈ Hπ and consider the inner

product 〈(Aφ)(z),v〉π .

〈(Aφ)(z),v〉π = 〈φ ,A∗Ez(v)〉Hπ

=
∫
D
〈π(κ(w,w)−1)E∗wφ ,E∗wA∗Ez(v)〉πdµ(w)

=
∫
D
〈π(κ(w,w)−1)φ(w),KA(z,w)∗(v)〉πdµ(w)

Hence KA(z,w) determines A. For the injectivity of the map KA(z,w) 7→ KA(z,z), we con-

sider the KA(z,w) = [ki, j(z,w)]n×n (here n = dimVπ ) such that each ki, j(z,w) : D×D →C

is a sesqui-holomorphic function. Then it immediately follows from Theorem 3.3.

Moreover, (iv) is a direct consequence of (ii) of Lemma 3.1.

The Berezin symbol S(A) also has some similar properties.

Proposition 3.5 Given A ∈ B(Hπ), we have:

(i) The maps A 7→ KA,R(A),S(A),Q(A) are all injective.
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(ii) S(A)(z)∗ = S(A∗)(z) and R(A)(z,w)∗ = R(A∗)(w,z) for z,w ∈D .

(iii) S(I)(z) = IVπ
for each z ∈D .

(iv) The spectral radius of S(A)(z) on Vπ is bounded by ‖A‖ for each z ∈D .

(v) For g ∈ G,z ∈D , we have

S(A)(gz) = π(k(g,z)−1)S(Lπ(g)−1ALπ(g))(z)π(k(g,z))

where k(g,z) = h−1
z κ(gexpz)−1hgz.

Proof: (i) and (ii) follow Proposition 3.4.

For (iii), note KI(z,z) = E∗z Ez = cππ(κ(z,z)−1) by Lemma 3.1(i), it suffices to prove

π(hzh∗z ) = π(κ(z,z)−1). We write gz = expz · hz · p with p ∈ P− (see the definition of κ

in Section 2.2). As gz ∈ G = GR, we have g∗z = g−1
z = g−1

z and π(g∗z )π(gz) = Iv. Hence

π(p)∗π(hz)
∗π(expz)∗π(expz)π(hz)π(p) = IV . We obtain π(hz)

∗π(expz)∗π(expz)π(hz) =

IV and also π(hz)
∗π(κ(expz∗ expz))π(hz) = IV where the middle term is just π(κ(z,z)−1).

For (iv), we assume λ is an eigenvalue of A of the maximal modulus and v 6= 0 is the

corresponding eigenvector. Note S(I)(z) = IVπ
, we have

|λ |=
∣∣∣∣〈S(A)(z)v,v〉π〈v,v〉π

∣∣∣∣= ∣∣∣∣〈S(A)(z)v,v〉π〈S(I)(z)v,v〉π

∣∣∣∣=
∣∣∣∣∣c−1

π · 〈AEzH∗z v,EzH∗z v〉π
c−1

π · 〈EzH∗z v,EzH∗z v〉π

∣∣∣∣∣
=

∣∣∣∣〈AEzH∗z v,EzH∗z v〉π
〈EzH∗z v,EzH∗z v〉π

∣∣∣∣≤ ‖AEzH∗z v‖π · ‖EzH∗z v‖π

‖EzH∗z v‖2
π

≤ ‖A‖.

So λ ≤ ‖A‖.

For (v), we also assume gz = expz · hz · p. Following [20], the action G y D induced

from G y G/K is given as g · z = logζ (gexpz). Hence we have

ggz = gexpzhzy = exp(g · z)κ(gexpz)ξ (gexpz)hzy.

We have gg·z = exp(g · z)hg·zy′ for some y′ ∈ P−. Note ˙ggz = ˙ggż in G/K, there is some

k = k(g,z) ∈ K such that gg·z = ggzk. So we obtain κ(gexpz)ξ (gexpz)hzyk = hg·zy′ and
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further κ(gexpz)hzk = hg·z by applying κ . Now we can apply Proposition 3.4(iv) and

obtain

S(A)(g · z) = 1
cπ

π(h−1
g·z )π(κ(gexpz))E∗z Lπ(g)−1ALπ(g)π(κ(gexpz))∗π(h−1

g·z )
∗

=
1
cπ

π(k)−1
π(h−1

z )E∗z Lπ(g)−1ALπ(g)π(h−1
z )∗π(k)

= π(k)−1S(Lπ(g)−1ALπ(g))(z)π(k)

Parts (ii), (iii) and (v) of Proposition 3.5 are first proved by B. Cahen [11].

Now we are able give an explicit formula for the projection Pπ .

Lemma 3.6 Given any φ ∈ L2(D ,Vπ), its image under Pπ is given by

(Pπφ)(z) =
∫
D E∗z EwH∗wHwφ(w)dµ(w).

Proof: As S(I)(w) = IVπ
, we have 1

cπ
HwE∗wEwzH∗w = IVπ

. Then, by Lemma 3.1(i), we get

π(κ(w,w)−1) = H∗wHw. Now let v ∈Vπ ,z ∈D and consider the inner product 〈 f ,Ez(v)〉Hπ
.

We have
〈(Pπφ)(z),v〉π = 〈E∗Z(Pπφ),v〉π = 〈Pπφ ,Ezv〉Hπ

= 〈φ ,Ezv〉L2

=
∫
D
〈π(κ(w,w)−1)φ(w),E∗wEzv〉πdµ(w)

=
∫
D
〈Hwφ(w),HwE∗wEzv〉πdµ(w)

= 〈
∫
D

E∗z EwH∗wHwφ(w)dµ(w),v〉π

which completes the proof.

We denote by tr = trπ the normalized trace on End(Vπ).

Corollary 3.7 Let A ∈ B(Hπ) such that it commutes with the action of Γ, i.e., ALπ(γ) =

Lπ(γ)A for any γ ∈ Γ. Then we have

1. tr(S(A)(z)) is Γ-invariant,

2. tr(R(A)(z,w)R(A)(z,w)∗) is Γ-invariant.
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Proof: The first statment follows from the fact trπ(S(A)(gz)) = trπ(S(Lπ(g)−1ALπ(g))(z))

in Proposition 3.5 (v).

For the second statement, let γ ∈ Γ and z̃ ∈ G be the inverse image of z ∈D . Note that

π(J(γ,z))∗H∗γzHγzπ(J(γ,z)) = π(J(γ,z))∗π(J(γ̃z,0)−1)∗π(J(γ̃z,0)−1)π(J(γ,z))

= (π(J(γ̃z,0)−1)π(J(γ,z)))∗ · (π(J(γ̃z,0)−1)π(J(γ,z)))

= π(J(z̃,0)−1)∗π(J(z̃,0)−1) = H∗z Hz

Then we have

tr(R(A)(γz,γw)R(A)(γz,γw)∗)

=
1
c2

π

tr(HγwKA(γw,γz)H∗γzHγzKA∗(γz,γw)H∗γw)

=
1
c2

π

tr(Hγwπ(J(γ,w))KA(w,z)π(J(γ,z))∗H∗γzHγzπ(J(γ,z))KA∗(z,w)π(J(γ,w))∗H∗γw)

=
1
c2

π

tr(KA(w,z)π(J(γ,z))∗H∗γzHγzπ(J(γ,z))KA∗(z,w)π(J(γ,w))∗H∗γwHγwπ(J(γ,w)))

=
1
c2

π

tr(HwKA(w,z)H∗z HzKA∗(z,w)H∗w) = tr(R(A)(z,w)R(A)(z,w)∗).

Let F = Γ\D be the fundamental domain of the left action of Γ on D = G/K. Suppose

the discrete group Γ is a lattice, we have µ(F ) is finite. Recall Aπ = B(Hπ)
Γ = {A ∈

B(Hπ)|ALπ(γ) = Lπ(γ)A,∀γ ∈ Γ} is the commutant.

Proposition 3.8 Assume π is an irreducible representation of K. Let τ : B(Hπ)→C be the

linear functional defined by

τ(A) = 1
µ(F )

∫
F tr(S(A)(z))dµ(z), A ∈ B(Hπ).

Then τ is a positive, faithful, normal, normalized trace on Aπ .

In particular, if Γ is an ICC group, τ is the unique normalized trace on the II1 factor

Aπ .
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Proof: We first show |τ(A)| < ∞ for all A ∈ B(Hπ). By Proposition 3.5 (iv), we know

| tr(S(A)(z))| ≤ ‖A‖ and the integral is finite as µ(F ) is finite.

Note τ(I) = 1 and τ(A∗A) ≥ 0 since S(A∗A)(z) = S(A∗A)(z)∗ by Proposition 3.5 (v).

Suppose dimCVπ = n and take an orthonormal basis {vi,1≤ i≤ n} of Vπ . One has

τ(A∗A) =
1

µ(F )

∫
F

tr(S(A∗A)(z))dµ(z) =
1

µ(F )

∫
F

tr(
1
cπ

HzE∗z A∗AEzH∗z )dµ(z)

=
1

n · cπ ·µ(F )

∫
F

n

∑
i=1
〈HzE∗z A∗AEzH∗z vi,vi〉πdµ(z)

=
1

n · cπ ·µ(F )

∫
F

n

∑
i=1
〈AEzH∗z vi,AEzH∗z vi〉Hπ

dµ(z)

=
1

n · cπ ·µ(F )

∫
F

n

∑
i=1

(∫
D
〈π(κ(w,w)−1)(AEzH∗z vi)(w),(AEzH∗z vi)(w)〉πdµ(w)

)
dµ(z)

=
1

n · cπ ·µ(F )

∫
F

n

∑
i=1

(∫
D
〈HwE∗wAEzH∗z vi,HwE∗wAEzH∗z vi〉πdµ(w)

)
dµ(z)

=
1

cπ ·µ(F )

∫
F

(∫
D

tr((HzE∗z A∗EwH∗w)(HwE∗wAEzHz))dµ(w)
)

dµ(z)

=
1

cπ ·µ(F )

∫
F×D

tr((HzE∗z A∗EwH∗w)(HwE∗wAEzHz))dµ
2(z,w).

Here we are able to take the integral over the product space F ×D since the integral is

finite. Similarly, we obtain

τ(AA∗) =
1

cπ ·µ(F )

∫
F×D

tr((HzE∗z AEwH∗w)(HwE∗wA∗EzHz))dµ
2(z,w).

Consider the diagonal action of Γ on D ×D . Both of the two integrations are over a Γ-

fundamental domain of D ×D . As the measure µ2 is Γ-invariant and the integrand is

Γ-invariant by Lemma 3.7, we replace it with the integration over another fundamental

domain (z,w) ∈ D ×F , which is equivalent to swapping z,w. Note the integrand is Γ-

invariant under the same action of Γ on D×D by Lemma 3.7. Hence the integration above

is invariant if we swap z,w. This is to say τ(A∗A) = τ(AA∗) and τ is a trace.

Note {EzH∗z vi|z ∈ D ,1 ≤ i ≤ n} spans a dense subspace of Hπ . If A 6= 0, we have

‖AEz0H∗z0
vi‖2 > 0 for some z0 ∈D and i. As AEzH∗z vi is continuous in z, we have ‖AEzH∗z vi‖2 >
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0 in a neighbourhood Nz0 of z0 whose measure µ(Nz0) is strictly positive. From the equality

above, we also have

τ(A∗A) = 1
n·cπ ·µ(F )

∫
F ∑

n
i=1〈AEzH∗z vi,AEzH∗z vi〉Hπ

dµ(z)

Hence τ(A∗A)> 0 and τ is faithful.

For the normality, it suffices to prove τ is completely additive [22]. Take a family of

mutually orthogonal projections {p j| j ∈ J} in Aπ and let p = ∑ j∈J pi. We have

τ(p) = 1
µ(F )

∫
F tr(S(p)(z))dµ(z) = 1

µ(F )

∫
F ∑ j∈J tr(S(p j)(z))dµ(z),

which converges since τ(p) ≤ τ(1) = 1. Moreover, as 0 ≤ tr(S(p j)(z)) ≤ tr(S(p)(z)), we

have tr(S(p j)(z)) ∈ L1(F ,µ). By the Fubini Theorem, we obtain

1
µ(F )

∫
F ∑ j∈J tr(S(p j)(z))dµ(z) = ∑ j∈J

1
µ(F )

∫
F tr(S(p j)(z))dµ(z) = ∑ j∈J τ(p j).

Hence τ is normal.

3.2 Toeplitz operators of matrix-valued functions

In this section, we define the generalized Toeplitz operators associated with End(Vπ)-

valued functions on the bounded symmetric domain D . Then we focus on the Γ-invariant

case and give another formula of the trace of the Toeplitz operator.

Let Hπ be the holomorphic discrete series (or square-integrable) representations de-

fined in Section 2. Recall that Pπ is the orthogonal projection from L2(D ,Vπ) onto Hπ =

L2
hol(D ,Vπ) and Hz ∈ GL(Vπ) defined in Section 3.1.

Now we consider a measurable End(Vπ)-valued function f on D . For any φ ∈L2(D ,Vπ),

one may wonder that when the multiplication operator M f : φ 7→ f ·φ is bounded. Indeed,

we have

〈 f ·φ , f ·φ〉L2(D ,Vπ )
=
∫
D
〈Hz f (z)φ(z),Hz f (z)φ(z)〉πdµ(z)

=
∫
D
〈Hz f (z)H−1

z Hzφ(z),Hz f (z)H−1
z Hzφ(z)〉πdµ(z)

≤
∫
D
‖Hz f (z)H−1

z ‖2
op〈Hzφ(z),Hzφ(z)〉πdµ(z),
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where ‖ · ‖op is the operator norm on the finite dimensional Hilbert space Vπ . Hence if

‖Hz f (z)H−1
z ‖op is essentially bounded on D , say ‖Hz f (z)H−1

z ‖op ≤ C for all z ∈ D , we

will certainly get ‖M f ‖L2(D ,Vπ )
≤C.

We define the following two spaces

1. L∞
H(D ,End(Vπ)) = { f : D → End(Vπ) measurable|‖Hz f (z)H−1

z ‖op ∈ L∞(D)}.

2. L∞(D ,End(Vπ)) = { f : D → End(Vπ) measurable|‖ f‖F ∈ L∞(D)}.

Please note for a measurable space (X ,µ), we call a function f : X → End(Vπ) measurable

if f = [ fi, j]1≤i, j≤n and fi, j : X → C is measurable for all 1≤ i, j ≤ n.

We also let ‖A‖F = Tr(A∗A)1/2 be the Frobenius norm of a square matrix A where Tr

is the trace that is not normalized (or the sum of the diagonal elements).

Lemma 3.9 We have f (z)∈ L∞
H(D ,End(Vπ)) iff ‖Hz f (z)H−1

z ‖F is essentially bounded i.e.,

Hz f (z)H−1
z ∈ L∞(D ,End(Vπ)).

Proof: It follows by the fact that the operator norm is always bounded by the Frobenius

norm (i.e., ‖A‖op ≤ ‖A‖F for square matrix A).

Definition 3.10 For any f ∈ L∞
H(D ,End(Vπ)), we define the Toeplitz operator in B(Hπ)

associated to f by

Tf = Pπ ·M f ·Pπ = Pπ ·M f .

where M f is the multiplication operator by f on Hπ . More precisely, for any φ ∈ Hπ , the

operator acts on it by

(Tf ◦φ)(z) = Pπ( f ◦φ)(z)

where ( f ◦φ)(z) = f (z)φ(z) ∈Vπ .

Remark 3.11 When f takes values in the center of End(Vπ), it can be identified with a

scalar-valued function. In this case, Tf is just the classical Toeplitz operator associated
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with f ∈ L∞(D). For more details on classical Toeplitz operators associated with functions

on the open unit disk, we refer to [9, 19, 40].

Proposition 3.12 We have Tf ∈ B(Hπ) for each f ∈ L∞
H(D ,End(Vπ)) with the following

properties:

(i) T : f 7→Tf is linear, i.e., Tα f+βh =αTf +βTh for α,β ∈C and f ,h∈L∞(D ,End(Vπ)),

(ii) T ∗f (z) = TH−1
z (H∗z )−1 f (z)∗H∗z Hz

where f ∗ is given pointwise by f ∗(z) = f (z)∗ acting on

Vπ . In particular, if f ∈ L∞(D), T ∗f = Tf .

Proof: As M f is bounded, it is clear that Tf = PπM f Pπ is bounded on Hπ .

The linearity is straightforward. For the adjoint T ∗f , let φ ,η ∈ Hπ and consider the

following inner product:

〈φ ,T ∗f η〉Hπ
= 〈Tf φ ,η〉Hπ

= 〈M f φ ,η〉L2

=
∫
D
〈Hw f (z)φ(z),Hzη(z)〉πdµ(z)

=
∫
D
〈Hz f (z)H−1

w Hzφ(z),Hzη(z)〉πdµ(z)

=
∫
D
〈Hzφ(z),(H−1

z )∗ f (z)∗H∗z Hzη(z)〉πdµ(z)

=
∫
D
〈Hzφ(z),Hz(H−1

z (H−1
z )∗ f (z)∗H∗z Hz)η(z)〉πdµ(z)

= 〈φ(z),MH−1
z (H−1

z )∗ f (z)∗H∗z Hz
η(z)〉L2

= 〈φ(z),TH−1
z (H−1

z )∗ f (z)∗H∗z Hz
η(z)〉Hπ

.

This implies T ∗f (z) = TH−1
z (H−1

z )∗ f (z)∗H∗z Hz
.

Now we consider the left action of G on D and also on L∞(D ,End(Vπ)) given by

g · f (z) = f (g−1z).

Proposition 3.13 For any f ∈ L∞
H(D ,End(Vπ)), We have

Lπ(g)Tf (z)Lπ(g)∗ = Tπ(J(g−1,z))−1(g· f )(z)π(J(g−1,z)).
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Hence if f (g−1 ·z) = π(J(g−1,z)) f (z)π(J(g−1,z))−1 for all γ ∈Γ,z∈D , then Tf commutes

with the action of Γ. In particular, for f ∈ L∞(D), Tf commutes with the action of Γ if f is

Γ-invariant.

Proof: Let φ ∈ Hπ . We have

(Lπ(g)Tf Lπ(g)∗φ)(z)

=Lπ(g)PπM f π(J(g,z))−1
φ(gz) = PπLπ(g) f (z)π(J(g,z))−1

φ(gz)

=Pππ(J(g−1,z))−1 f (g−1z)π(J(g−1,z))π(J(g,z))−1
π(J(g,g−1z))−1

φ(z)

=PπMπ(J(g−1,z))−1 f (g−1z)π(J(g−1,z))φ(z)

=Tπ(J(g−1,z))−1(g· f )(z)π(J(g−1,z))φ(z),

where we use π(J(g,z))−1π(J(g,g−1z))−1 = I. Hence

Lπ(g)Tf (z)Lπ(g)∗ = Tπ(J(g−1,z))−1(g· f )(z)π(J(g−1,z)).

If f ∈ L∞(D), i.e., f (z) ∈ C, we have f (z) = g · f (z) = f (g−1z).

Now we define R : D×D → End(Vπ) by

R(w,z) = HzE∗z EwH∗w.

Note R(w,z)∗ = R(z,w) and it is indeed the element cπ ·R(I)(z,w) in End(Vπ). Moreover,

we let δ : D×D → End(Vπ) given by

δ (z,w) = R(w,z)R(w,z)∗ = HzE∗z EwH∗wHwE∗wEzH∗z ,

which is a positive operator in End(Vπ).

Lemma 3.14 For f ∈ L∞
H(D ,End(Vπ)), we have

S(Tf )(z) = 1
cπ

∫
D R(w,z)(Hw f (w)H−1

w )R(w,z)∗dµ(w).

If f ∈ L∞(D), S(Tf )(z) = 1
cπ

∫
D f (w)δ (z,w)dµ(w).
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Proof: Take any u,v ∈Vπ and consider the following inner product.

〈S(Tf )(z)u,v〉π =
1
cπ

〈Tf EzH∗z u,EzH∗z v〉Hπ
=

1
cπ

〈M f EzH∗z u,EzH∗z v〉L2

=
1
cπ

∫
D
〈H∗wHwE∗wM f EzH∗z u,E∗wEzH∗z v〉πdµ(w)

=
1
cπ

∫
D
〈H∗wHw f (w)E∗wEzH∗z u,E∗wEzH∗z v〉πdµ(w)

=
1
cπ

∫
D
〈HzE∗z EwH∗wHw f (w)E∗wEzH∗z u,v〉πdµ(w)

=〈 1
cπ

∫
D

R(w,z)(Hw f (w)H−1
w )R(w,z)∗dµ(w)u,v〉π

If f (z)∈C ·I ∈End(Vπ), we can further obtain R(w,z)(Hw f (w)H−1
w )R(w,z)∗= f (w)δ (z,w).

Now we identify the Γ-invariant function in L∞(D) with L∞(F ), i.e., L∞(F )=L∞(D)Γ.

By Proposition 3.13, the Toeplitz operator gives a map T : L∞(F )→ B(Hπ)
Γ = Aπ by

f 7→ Tf .

For the End(Vπ)-valued Toeplitz operators, consider the extension form L∞
H(F ,End(Vπ))

to L∞
H(D ,End(Vπ)) given in Proposition 3.13 by

γ · f (z) = f (γ−1z) = π(J(γ−1,z)) f (z)π(J(γ−1,z))−1, ∀γ ∈ Γ, z ∈F

This establishes a map form L∞
H(F ,End(Vπ)) to Aπ :

T : L∞
H(F ,End(Vπ))→ B(Hπ)

Γ = Aπ by f 7→ Tf .

Proposition 3.15 Given A ∈ Aπ and f ∈ L∞
H(F ,End(Vπ)), we have

τ(ATf ) =
1

µ(F )

∫
F tr( f (z)Q(A)(z))dµ(z).

Proof: We let v1, . . . ,vn be an orthonormal basis of Vπ . By Lemma 3.6 and Proposition
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3.8, we obtain:

τ(ATf ) =
1

µ(F )
tr(S(ATf )(z))dµ(z)

=
1

n · cπn ·µ(F )

∫
F

n

∑
i=1
〈HzE∗z ATf EzH∗z vi,vi〉πdµ(z)

=
1

ncπ µ(F )

n

∑
i=1

∫
F
〈Tf EzH∗z vi,A∗EzH∗z vi〉Hπ

dµ(z)

=
1

ncπ µ(F )

n

∑
i=1

∫
F
〈M f EzH∗z vi,A∗EzH∗z vi〉L2dµ(z)

=
1

ncπ µ(F )

n

∑
i=1

∫
F

(∫
D
〈Hw f (w)E∗wEzH∗z vi,HwE∗wA∗EzH∗z vi〉πdµ(w)

)
dµ(z)

=
1

cπ µ(F )

∫
F

(∫
D

tr(HzE∗z AEwH∗wHw f (w)E∗wEzH∗z )dµ(w)
)
dµ(z)

As in the proof of Proposition 3.8, we consider the diagonal action of Γ on D2. The

fundamental domain is F ×D . Since µ2 is a Γ-invariant measure and the integrand

tr(HzE∗z AEwH∗wHw f (w)E∗wEzH∗z ) is also Γ-invariant, we can also replace it with another

fundamental domain D ×F by changing (z,w) to (w,z), which leaves the integration in-

variant. Hence the integral above equals to:

1
cπ µ(F )

∫
F

(∫
D

tr(HzE∗z AEwH∗wHw f (w)E∗wEzH∗z )dµ(z)
)
dµ(w)

=
1

ncπ µ(F )

n

∑
i=1

∫
F

(∫
D
〈HzE∗z AEwH∗wvi,HzE∗z Ew f (w)∗H∗wvi〉πdµ(z)

)
dµ(w)

=
1

ncπ µ(F )

n

∑
i=1

∫
F
〈AEwH∗wvi,Ew f (w)∗H∗wvi〉Hπ

dµ(w)

=
1

cπ µ(F )

∫
F

tr(Hw f (w)E∗wAEwH∗w)dµ(w)

=
1

µ(F )

∫
F

tr(Hw f (w)H−1
w S(A)(w))dµ(w)

=
1

µ(F )

∫
F

tr(KA(w)H∗wHw f (w))dµ(w)

If f ∈ L∞(D), this formula of the trace can be simplified as follows.

Corollary 3.16 For f ∈ L∞(F ), we have
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τ(ATf ) =
1

µ(F )

∫
F f (z) tr(Q(A)(z))dµ(z).

Proof: It follows the fact tr( f (z)Q(A)(z)) = f (z) tr(Q(A)(z)) if f (z) is a scalar.
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Chapter 4

The Commutant of the Group von Neumann Algebras

4.1 The L2-space of matrix-valued functions

We keep the notations as in the previous sections. For a measurable function f : F →

End(Vπ), we denote by fH the following function

fH(z) = Hz · f (z) ·H−1
z , z ∈F .

Consider the following vector space of End(V )-valued functions on F :

L2
H(F ,End(V ),µ) = { f : F → End(V ) measurable|

∫
F Tr( fH(z) fH(z)∗)dµ(z)< ∞}.

Here Tr is the trace on End(V ) which is not normalized.

We also denote a sesquilinear form defined on L2
H(F ,End(V ),µ) by

〈 f ,h〉= 〈 f ,h〉L2
H
=
∫
F Tr( fH(z)hH(z)∗)dµ(z) =

∫
F Tr(Hz f (z)H−1

z (H−1
z )∗h(z)∗H∗z )dµ(z),

where f ,h ∈ L2
H(F ,End(Vπ),µ).

Lemma 4.1 The sesquilinear form 〈·, ·〉 is an inner product on L2
H(X ,End(V ),µ).

Proof: We can check 〈α f1+β f2,h〉=α〈 f1,h〉+β 〈 f2,h〉 for α,β ∈C. As Tr( fH(z)hH(z)∗)=

Tr(Hz f (z)H−1
z (H−1

z )∗h(z)∗H∗z ) = Tr(Hzh(z)H−1
z (H−1

z )∗ f (z)∗H∗z ) = Tr(hH(z) fH(z)∗), we

have 〈 f ,h〉= 〈h, f 〉.

Now we assume 〈 f , f 〉= 0. Then ‖Hz f (z)H−1
z ‖F = 0 almost everywhere on F . Hence

f a.e.
= 0.

Therefore we obtain a Hilbert space L2
H(F ,End(V ),µ) or simply L2

H(F ,End(V ))

Now we consider the following space

L∞
H(F ,End(Vπ)) = { f : F → End(Vπ) measurable|‖ fH(z)‖F ∈ L∞(F )}.
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One can show this is a complex algebra by the fact ( f h)H(z) = fH(z)hH(z) and the Frobe-

nius norm ‖·‖F is sub-multiplicative, i.e., ‖AB‖F ≤‖A‖F ·‖B‖F . We denote ‖(‖ fH(z)‖F)‖∞,

which is the essential norm of ‖ fH(z)‖F ∈ L∞(F ), by ‖ f‖H,∞. Note that ‖ fH(z)‖op ≤

‖ f‖H,∞ for all z ∈F .

Furthermore, we also define another Hilbert space

L2
H(F ,Vπ) = {φ : F →Vπ measurable|

∫
F 〈Hzφ(z),Hzφ(z)〉πdµ(z)< ∞},

where the inner product is given as 〈·, ·〉1 =
∫
F 〈Hzφ(z),Hzψ(z)〉πdµ(z) for φ ,ψ ∈L2

H(F ,Vπ).

Define an action σ of f ∈ L∞
H(F ,End(Vπ)) on L2

H(F ,Vπ) as

f ◦φ(z) = f (z) ·φ(z),

where f ∈ L∞
H(F ,End(Vπ)) and φ ∈ L2

H(F ,Vπ).

Proposition 4.2 The action σ defined above gives a well-defined faithful C∗-representation

of the algebra L∞
H(F ,End(Vπ)) such that

1. The adjoint of σ( f (z)) is σ( f (z))∗ = σ(H−1
z (H∗z )

−1 f (z)∗H∗z Hz),

2. σ( f (z)) is a positive operator iff Hz f (z)H−1
z = g(z)∗g(z) for some g∈L∞(F ,End(Vπ)).

Proof: Assume ‖ f‖H,∞ =C. Then we have

〈Hz f (z)φ(z),Hz f (z)φ(z)〉π = 〈 fH(z)Hzφ(z), fH(z)Hzφ(z)〉π

≤ ‖ fH(z)‖op · 〈Hzφ(z),Hzφ(z)〉π ≤C · 〈Hzφ(z),Hzφ(z)〉π .

Hence ‖σ( f )‖L2
H(F ,Vπ )

≤C which is well-defined.

It is straightforward to check σ( f ) = 0 if and only if f = 0. Moreover, we have

〈σ( f )φ ,ψ〉H =
∫
F
〈Hz f (z)φ(z),Hzψ(z)〉πdµ(z)

=
∫
F
〈Hz f (z)H−1

z Hzφ(z),Hzψ(z)〉πdµ(z)

=
∫
F
〈Hzφ(z),HzH−1

z (H∗z )
−1 f (z)∗H∗z Hzψ(z)〉πdµ(z).
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This proves σ( f (z))∗ = σ(H−1
z (H∗z )

−1 f (z)∗H∗z Hz). By the second line above, σ( f (z)) is

positive iff Hz f (z)H−1
z = g(z)∗g(z) for some g ∈ L∞(F ,End(Vπ)).

As σ is faithful, we denote also by L∞
H(F ,End(Vπ)) its image under σ and equipped it

with the C∗-structure as above.

Now we regard L∞
H(F ,End(Vπ)) as the Γ-invariant functions in L∞

H(D ,End(Vπ)) (see

3.13). For a given f ∈L∞
H(F ,End(Vπ)), we denote by f̃ its Γ-invariant lifting to L∞(D ,End(Vπ))

as follows. For w ∈ D , there is a unique γ ∈ Γ such that w = γz. Let γπ(z) = π(J(γ,z)) =

π(κ(γ expz)), the function f̃ (w) with w ∈D is given as following:

f̃ (w) = f̃ (γz) = γπ(z) f (z)γπ(z)−1, for all γ ∈ Γ,z ∈F .

Lemma 4.3 For z ∈F , we have

Hγz f̃ (γz)H−1
γz = π(k(γ,z))∗Hz f (z)H−1

z π(k(γ,z))

with some k(γ,z) ∈ K. Hence the End(Vπ)-valued function f̃ is in L∞
H(D ,End(Vπ)) and

gives a well-defined Γ-intertwining Toeplitz operator T f̃ .

Proof: Recall Hz = π(h−1
z ) = π(κ(gz)

−1) (see Section 3.1). In the proof of Proposi-

tion 3.5.(v), we know there is k(γ,z) ∈ K such that k(γ,z) = h−1
z κ(γ expz)−1hγz. Then

π(k(γ,z)) = Hzπ(κ(γ expz)−1)H−1
γz . We obtain

Hγz f̃ (γz)H−1
γz = π(k(γ,z))−1Hzπ(γ expz)−1) f̃ (γz)π(γ expz))H−1

z π(k(γ,z))

= π(k(γ,z))−1Hz f (z)H−1
z π(k(γ,z)).

Note k(γ,z) ∈ K and π is a unitary representation of K. We have ‖Hγz f̃ (γz)H−1
γz ‖op =

‖Hz f (z)H−1
z ‖op.

The Γ-intertwining property follows from the definition of f̃ and Proposition 3.13.

Now we define a map B on L∞
H(F ,End(Vπ)) by

B f (z) = 1
cπ

E∗z T f̃ EzH∗z Hz, z ∈D ,
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for f ∈ L∞
H(F ,End(Vπ)). It is related to the Berezin symbols by B f (z) = H−1

z S(T f̃ )(z)Hz.

We denote the π(k(γ,z))∗ by kπ(γ,z).

Lemma 4.4 For f ∈ L∞
H(F ,End(Vπ)), we have B f (z) ∈ L∞

H(F ,End(Vπ)) which can be

given as

B f (z) = H−1
z

∫
F

1
cπ

∑
γ∈Γ

R(γw,z)(Hγwγπ(w) f (w)γπ(w)−1H−1
γw )R(γw,z)∗dµ(w)Hz

= H−1
z

∫
F

1
cπ

∑
γ∈Γ

R(γw,z)kπ(γ,z)(Hw f (w)H−1
w ))kπ(γ,z)∗R(γw,z)∗dµ(w)Hz

Furthermore, if we take f = IVπ
, BIVπ

(z) = IVπ
.

Proof: As B f (z) = H−1
z S(Tf )(z)Hz, it follows then by Proposition 3.13 and Proposition

4.3. Then the case f = IVπ
is straightforward by Proposition 3.5.

Proposition 4.5 The map B defined in Lemma 4.4 can be extended to a bounded operator

on L2
H(F ,End(Vπ)).

Proof: As µ(F ) < ∞, L∞
H(F ,End(Vπ)) is a dense subspace of L2

H(F ,End(Vπ)). It suf-

fices to show

‖B f‖2
L2

H(F ,End(Vπ ))
≤C · ‖ f‖2

L2
H(F ,End(Vπ ))

for any f ∈ L∞
H(F ,End(Vπ)).

Take any z ∈F and consider the following map

φz : L∞
H(F ,End(Vπ)) → End(Vπ)

f 7→ φz f = Hz ·B f (z) ·H−1
z

We first show φz is a unital positive map. By Proposition 4.2.2, we assume σ( f ) (or simply

f ) is positive, i.e., Hz f (z)h−1
z = g(z)∗g(z) for some g ∈ L∞(F ,End(Vπ)). Hence φz is

positive as φz f =
∫
F

1
cπ

∑γ∈Γ R(γw,z)kπ(γ,z)∗(g(w)∗g(w))R(γw,z)∗dµ(w) is positive in

End(Vπ). Furthermore, φz is unital by Lemma 4.4.
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Witout loss of generality, we may assume f is normal (or self-adjoint). Then, by Kadi-

son’s inequality [24], we have

φz( f )φz( f ∗)≤ φz( f f ∗)

=
∫
F

1
cπ

∑
γ∈Γ

R(γw,z)kπ(γ,z)∗(Hw f (w)H−1
w (H∗w)

−1 f (w)∗H∗wHwH−1
w )R(γw,z)∗dµ(w)

=
∫
F

1
cπ

∑
γ∈Γ

R(γw,z)kπ(γ,z)∗(Hw f (w)H−1
w (H∗w)

−1 f (w)∗H∗w)R(γw,z)∗dµ(w).

Consider the L2
H-norm of B f . Note that R(w,z)∗= R(z,w) and ‖R(w,z)‖2

F is Γ-invariant

by Lemma 3.7. Hence we have

‖B f‖2
L2

H(F ,End(Vπ ))

=
∫
F

Tr(HzB f (z)H−1
z (H−1

z )∗B f (z)∗H∗z )dµ(z)

=
∫
F

Tr(φz( f )φz( f ∗))dµ(z)≤
∫
F

Tr(φz( f f ∗))dµ(z)

=
∫
F

Tr(
∫
F

1
cπ

∑
γ∈Γ

R(γw,z)kπ(γ,z)∗(Hw f (w)H−1
w (H∗w)

−1 f (w)∗H∗w)kπ(γ,z)R(γw,z)∗dµ(w))dµ(z)

=
1
cπ

∫
F

∫
F

∑
γ∈Γ

Tr(R(γw,z)kπ(γ,z)∗(Hw f (w)H−1
w (H∗w)

−1 f (w)∗H∗w)kπ(γ,z)R(γw,z)∗)dµ(w)dµ(z)

=
1
cπ

∫
F

∫
F

∑
γ∈Γ

‖R(γw,z)kπ(γ,z)∗Hw f (w)H−1
w ‖2

Fdµ(w)dµ(z)

≤ 1
cπ

∫
F

∫
F

∑
γ∈Γ

‖R(γw,z)‖2
F‖Hw f (w)H−1

w ‖2
Fdµ(w)dµ(z)

=
1
cπ

∫
F

(
‖Hw f (w)H−1

w ‖2
F ·
∫
F

∑
γ∈Γ

‖R(γw,z)‖2
Fdµ(z)

)
dµ(w)

=
1
cπ

∫
F

(
‖Hw f (w)H−1

w ‖2
F ·
∫
F

∑
γ∈Γ

‖R(w,γ−1z)‖2
Fdµ(z)

)
dµ(w)

=
1
cπ

∫
F

(
‖Hw f (w)H−1

w ‖2
F ·
∫
F

∑
γ∈Γ

Tr(R(w,γ−1z)R(w,γ−1z)∗)dµ(z)
)
dµ(w)

=
1
cπ

∫
F

(
‖Hw f (w)H−1

w ‖2
F ·
∫
F

∑
γ∈Γ

Tr(R(γ−1z,w)∗R(γ−1z,w)∗)dµ(z)
)
dµ(w)

=
1
cπ

∫
F

(
‖Hw f (w)H−1

w ‖2
F ·Tr(

∫
F

∑
γ∈Γ

R(γ−1w,z)∗R(γ−1w,z)∗dµ(z))
)
dµ(w)
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=
∫
F

n · ‖Hw f (w)H−1
w ‖2

F µ(w)

=n · ‖ f‖2
L2

H(F ,End(Vπ ))
,

where we also apply BIVπ
(z) = IVπ

(see Lemma 4.4). Hence B is a bounded.

Corollary 4.6 The operator B is injective on L∞
H(F ,End(Vπ)).

Proof: Take f ∈ L∞
H(F ,End(Vπ)), we know Hz f (z)H−1

z ∈ L∞(F ,End(Vπ). Rewrite

Hz f (z)H−1
z = g(z)+ i ·h(z) for some f ,g∈ L∞(F ,End(Vπ)) such that g(z)∗= g(z),h(z)∗=

h(z) for all z ∈F .

We assume B f = 0. From the proof of 4.5, we know

‖B f‖2
L2

H(F ,End(Vπ ))
=
∫
F Tr(φz( f )φz( f ∗))dµ(z) = 0.

So φz( f ) = 0 for all z, which is to say

Tr(φz) =
∫
F

1
cπ

∑
γ∈Γ

R(γw,z)kπ(γ,z)(g(w)+ i ·h(w))kπ(γ,z)∗R(γw,z)∗dµ(w)

= Tr
(∫

F

1
cπ

∑
γ∈Γ

R(γw,z)kπ(γ,z)g(w)kπ(γ,z)∗R(γw,z)∗dµ(w)
)

+ i ·Tr
(∫

F

1
cπ

∑
γ∈Γ

R(γw,z)kπ(γ,z)h(w)k∗π(γ,z)R(γw,z)∗dµ(w)
)
.

Hence it imlplies g(w) = h(w) = 0 for all w ∈F and f = 0.

We denote the extended map also by B and write T f̃ simply as Tf .

Proposition 4.7 The map T : L∞
H(F ,End(Vπ))→ Aπ given by f 7→ Tf can be extended to

a bounded linear operator L2
H(F ,End(Vπ))→ L2(Aπ ,τ).

Proof: Note L∞
H(F ,End(Vπ)) is dense in L2

H(F ,End(Vπ)) since µ(F ) is finite. Take
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f ∈ L∞
H(F ,End(Vπ)) and consider the trace τ(T ∗f Tf ).

‖Tf ‖2
L2(Aπ ,τ)

= τ(T ∗f Tf ) =
1

µ(F )

∫
F

tr( f (z)Q(T ∗f )(z))dµ(z)

=
1

µ(F )
〈 f ,B f 〉L2

H(F ,End(Vπ ))
≤
‖B‖L2

H(F ,End(Vπ ))

µ(F )
‖ f‖2

L2
H(F ,End(Vπ ))

.

Hence T can be extended to a bounded operator on L2
H(F ,End(Vπ)):

T : L2
H(F ,End(Vπ))→ L2(Aπ ,τ)

with ‖T‖ ≤ ‖B‖L2
µ(F ) , which is bounded by Proposition 4.5.

Corollary 4.8 T ∗(A) = 1
n·µ(F )Q(A)

Proof: Let us consider 〈T ∗(A), f 〉L2
H(F ,End(Vπ ))

for an arbitrary f ∈ L∞
H(F ,End(Vπ)). By

Proposition 3.15 and 5.8.(ii), we have

〈T ∗(A), f 〉L2
H(F ,End(Vπ ))

= 〈A,Tf 〉L2(Aπ ,τ)
= τ(AT ∗f ) = τ(ATH−1

z (H−1
z )∗ f (z)∗H∗z Hz

)

=
1

µ(F )

∫
F

tr(KA(z)H∗z HzH−1
z (H−1

z )∗ f (z)∗H∗z Hz)dµ(z)

=
1

µ(F )

∫
F

tr(Hz(KA(z)H∗z Hz)H−1
z · (H−1

z )∗ f (z)∗H∗z )dµ(z)

=
1

µ(F )

∫
F

tr(HzQ(A)(z)H−1
z · (H−1

z )∗ f (z)∗H∗z )dµ(z)

=
1

n ·µ(F )

∫
F

Tr(HzQ(A)(z)H−1
z · (H−1

z )∗ f (z)∗H∗z )dµ(z)

= 〈 1
n ·µ(F )

Q(A)(z), f (z)〉L2
H(F ,End(Vπ ))

As the L∞-space is dense in L2(F ,End(Vπ)), this implies T ∗(A) = 1
n·µ(F )Q(A).

Proposition 4.9 The range of T is dense in L2(Aπ ,τ).

Proof: It suffices show T ∗ is injective on L2(Aπ ,τ). Let ν be the measure cπ

µ(F )(µ × µ)

on F ×D . Consider the following Hilbert space

K = L2(F ×D ,End(Vπ),ν) = { f : F ×D → End(Vπ)|〈 f , f 〉K < ∞}.
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Here the inner product is given by

〈 f ,h〉K =
∫
F×D tr( f (z,w)h(z,w)∗)dν(z,w).

We can check this gives an inner product which gives the Hilbert space.

For any A,B ∈ Aπ , we have

τ(AB∗) =
1

cπ µ(F ) ∑
1≤i≤n

∫
F
〈HzE∗z B∗AEzH∗z vi,vi〉πdµ(z)

=
1

cπ µ(F ) ∑
1≤i≤n

∫
F
〈AEzH∗z vi,BEzH∗z vi〉Hπ

dµ(z)

=
1

cπ µ(F ) ∑
1≤i≤n

∫
F

(∫
D
〈HwE∗wAEzH∗z vi,HwE∗wBEzH∗z vi〉πdµ(w)

)
dµ(z)

=
∫
F×D

tr(R(A)(z,w)(R(B)(z,w))∗dν(z,w).

Hence 〈A,B〉τ = 〈R(A),R(B)〉K and R is an isometry from L2(Aπ ,τ) to K, i.e. R∗R = id.

Note we have T ∗(A) = 1
n·µ(F )Q(A) by Corollary 4.8. Hence the map T ∗R∗ on R(Aπ) is

exactly the map given by

T ∗R∗ : R(A)(z,w) 7→ 1
n·µ(F )Q(A)(z), A ∈ Aπ .

Note each element in R(Aπ) can be written as 1
cπ

HwKA(w,z)H∗z for some A ∈ Aπ . So this

map is exactly the map given by

1
cπ

HwKA(w,z)H∗z 7→ 1
n·cπ ·µ(F )KA(z,z)H∗z Hz

It can be further extended to a well-defined bounded map on R(L2(Aπ ,τ)), the range of R.

Note by Proposition 3.5, the map R(A) 7→ Q(A) is injective.

For any A ∈ Aπ , by Proposition 3.4, we know cπH−1
w R(A)(z,w)(H∗z )

−1 = KA(w,z) is

holomorphic in w, z̄. Hence that the range R(L2(Aπ)) are also in the following set

{h(z,w) : F ×D → End(Vπ)|H−1
w h(z,w)(H∗z )

−1is holomorphic in w, z̄}

As the map T ∗R∗ on R(Aπ) above, we obtain the explicit formula for T ∗R∗ on R(L2(Aπ))

given by
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T ∗R∗ : h(z,w) 7→ q(z) = 1
n·µ(F )H

−1
z h(z,z)Hz, ∀h(z,w) ∈ R(L2(Aπ)).

Note H−1
w h(z,w)(H∗z )

−1 is sesqui-holomorphic. By Theorem 3.3, we know the map

H−1
w h(z,w)(H∗z )

−1 7→ H−1
z h(z,z)(H∗z )

−1

is injective. Hence the map h(z,w) 7→ q(z)H−1
z (H∗z )

−1 is injective and so is T ∗R∗ : h(z,w) 7→

q(z).

4.2 The commutant and its subalgebras

We will show the operators Tf above with f ∈ L∞
H(F ,End(Vπ)) generate the commutant

Aπ of the group von Neumann algebra Lπ(Γ)
′′. Some results on subalgebras and subfactors

are also included. We recall a well-known fact:

Lemma 4.10 Let M ⊂ B(H) be a von Neumann algebra with a positive, faithful, normal,

normalized trace tr. Then the topology induced by ‖x‖2 = tr(xx∗)1/2 coincides with the

strong operator topology on any bounded subset of M.

Proof: It suffices to consider the unit ball M1 = {x∈M|‖x‖B(H)≤ 1} in M. Let us consider

the GNS construction for tr and we get a normal faithful representation

πtr : M→ B(L2(M, tr)).

Note πtr is injective, strong operator topology to strong operator topology continuous and

‖πtr(x)‖ ≤ ‖x‖.

Take a sequence {xi}i≥1 in M1 and suppose we ‖xi‖2 → 0. Let Ω = 1̂ be the cyclic

vector in L2(M, tr). We take an arbitrary y ∈M and ŷ = yΩ ∈ L2(M, tr).

‖πtr(xi)ŷ‖2
2 = 〈πtr(xi)yΩ,πtr(xi)yΩ〉L2(M,tr) = tr(xiyy∗x∗i )

≤ ‖y‖2 tr(xix∗i )→ 0.
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Note M is ‖ · ‖2-dense in L2(M, tr) by the GNS construction. For any v ∈ L2(M, tr) and

positive integer N, there exists a y ∈ M such that ‖v− ŷ‖ < 1
N . We have ‖πtr(xi)v‖2 ≤

‖xi‖‖v− ŷ‖2 + ‖πtr(xi)ŷ‖2 ≤ 1
N + ‖πtr(xi)ŷ‖2. Hence πtr(xi)v→ 0 and we can apply π

−1
tr

(which is also strong operator continuous, see [25] 7.1.16) so that xi → 0 in the strong

operator topology on B(H).

Conversely, if xi → 0 in the strong operator topology on B(H), we have πtr(xi) also

converges to 0 in the strong operator topology on L2(M). Then

‖xi‖2
2 = tr(xix∗i ) = 〈πtr(xi)Ω,πtr(xi)Ω〉L2(M)→ 0.

As shown above, Tf ∈ Aπ for f ∈ L∞(F ,End(Vπ)). A natural question is how large is

the subalgebra of Aπ generated by these operators.

Proposition 4.11 Let M ⊂ B(H) be a von Neumann algebra with a positive, faithful, nor-

mal trace tr and A⊂M be a ∗-subalgebra of M. Then A is L2-dense in L2(M, tr) if and only

if it is weak operator dense in M, i.e.,

A||·||2 = L2(M) if and only if Aw.o
= M.

Proof: As the norm topology is finer than the weak operator topology, we assume A is

norm closed, i.e., A is a C∗-algebra. Since A is convex, Aw.o
= As.o.

Take any self-adjoint x ∈ M with ‖x‖ ≤ 1. There exists a net {an}n≥1 in A such that

‖an− x‖2→ 0. Also we have ‖a∗n− x∗‖2→ 0 as ‖a‖2 = tr(aa∗) = tr(a∗a) = ‖a∗‖2 for all

a ∈M. So ‖an+a∗n
2 −x‖2→ 0 and hence we can further assume {an}n≥1 are self-adjoint, i.e.

an ∈ As.a.

Consider f (t) = 2t
t2+1 which is a bijection on [−1,1]. Let g = f−1 and y = g(x) then

y ∈Ms.a. By the argument above, there are {bn}n≥1 in As.a such that ‖bn− y‖2→ 0.

We want to show ‖ f (bn)− x‖2→ 0. Note that f (bn) ∈ A and ‖ f (bn)‖ ≤ 1, hence by

continuous functional calculus, we have
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f (bn)− f (y) = 2(bn(1+y2)−y(1+b2
n))

(1+b2
n)(1+y2)

= 2(bn−y)
(1+b2

n)(1+y2)
+ 2bny(y−bn)

(1+b2
n)(1+y2)

.

Note that ‖ab‖2 ≤ ‖a‖‖b‖2 and ‖ab‖2 ≤ ‖b‖‖a‖2. Moreover, ‖(1+b2
n)
−1‖ ≤ 1 and ‖(1+

y2)−1‖ ≤ 1. Hence

‖ f (bn)− f (y)‖2 ≤ 2‖(1+ y2)−1‖ · ‖bn− y‖2 +2‖ f (bn)‖‖y(1+ y2)−1‖ · ‖bn− y‖2

≤ 4‖bn− y‖2→ 0.

Hence ‖ f (bn)− x‖2 = ‖ f (bn)− f (y)‖2→ 0.

Note ‖ f (bn)‖ ≤ 1. That is to say the closure of unit ball of As.a (inside M) in ‖ · ‖2

is just the unit ball of Ms.a. By Lemma 4.10, we obtain (As.a)1
s.o

= (Ms.a)1 and hence

Aw.o
= As.o

= M.

For the converse, it suffices to prove A1
||·||2 = M1

||·||2 or equivalently for any x ∈ M1,

there exists a sequence {xk}k≥1 in A1 such that xk
‖·‖2−−→ x. This is guaranteed by the as-

sumption As.o
= M, Lemma 4.10 and also the Kaplansky density thoerem [22].

Finally we can determine the von Neumann algebra generated by these Tf ’s with f ∈

L∞
H(F ,End(Vπ)).

Theorem 4.12 We have

〈Tf | f ∈ L∞
H(F ,End(Vπ))〉

s.o.
= Aπ .

Proof: As L∞
H(F ,End(Vπ)) is dense in L2

H(F ,End(Vπ)), by Proposition 4.9, we know

{Tf | f ∈ L∞
H(F ,End(Vπ))} is a dense subspace of L2(Aπ ,τ). Then, by Proposition 4.11,

these Tf ’s generated Aπ in the strong operator (hence also in the weak operator topology).

Corollary 4.13 We have 〈{Tf | f ∈ L∞(F )}⊗End(Vπ)〉
s.o.

= Aπ .

Proof: Take f ∈ L∞
H(F ,End(Vπ)) and assume Hz f (z)H−1

z = g(z) = [gi, j(z)]1≤i, j≤n with

each gi, j ∈ L∞(F ). Then we have
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Tf = TH−1
z g(z)Hz

= T
∑i, j H−1

z gi, j(z)ei, jHz
= ∑i, j Tgi, j(z)H−1

z ei, jHz
..

Now we define a map between two complex vector spaces:

Φ : {Tf | f ∈ L∞
H(F ,End(Vπ))}→ {Tf | f ∈ L∞(F )}⊗Matn(C),

which is given by

Φ : Tf = ∑i, j Tgi, j(z)H−1
z ei, jHz

7→ [Tgi, j ]1≤i, j≤n.

It is straightforward to check Φ is linear and surjective.

For the injectivity, we suppose there are two gi, j,g′i, j ∈L∞(F ) such that Tgi, j(z)H−1
z ei, jHz

=

Tg′i, j(z)H
−1
z ei, jHz

as Toeplitz operators. Then we have S(Tgi, j(z)H−1
z ei, jHz

) = S(Tg′i, j(z)H
−1
z ei, jHz

).

Hence B(gi, j(z)H−1
z ei, jHz) = B(g′i, j(z)H

−1
z ei, jHz). Then, by Corollary 4.6, we know gi, j =

g′i, j as they are scalar functions and Φ is injective.

Remark 4.14 For f ∈ L∞(F ), these Tf ’s will certainly generate a von Neumann subalge-

bra of Aπ . For n 6= 1, it is still unknown that how large this subalgebra is. This is related to

the Toeplitz C∗-algebras with continuous symbols on the bounded symmetric domains, see

[39].

Indeed {pi = MH−1
z ei,iHz

}1≤i≤n gives a family of orthogonal projections in B(L2(D ,Vπ))

satisfying ∑1≤i≤n pi = 1. One can show

〈M f | f ∈ L∞
H(D ,End(Vπ))〉 ∼= 〈M f | f ∈ L∞(D)〉⊗End(Vπ)

as an isomorphism of von Neumann algebras acting on L2(D ,Vπ), piL2(D ,Vπ),Vπ respec-

tively (ei, j ∈ End(Vπ) acts as MH−1
z ei, jHz

). Note these pi’s commute with the action of G. We

can also consider the Γ-invariant case:

〈M f | f ∈ L∞
H(F ,End(Vπ))〉 ∼= 〈M f | f ∈ L∞(F )〉⊗End(Vπ).

We have Aπ = Pπ · 〈M f | f ∈ L∞
H(F ,End(Vπ))〉 ·Pπ .
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Chapter 5

Actions of Cuspidal Automorphic Forms

We construct a family of Γ-invariant bounded linear operators from the cuspidal auto-

morphic forms, with actions between these square-integrable representations. We mainly

consider functions that are right-equivariant for the action of the maximal compact sub-

group K and left-invariant for the discrete subgroup Γ.

5.1 Automorphic forms on a real reductive group

We review automorphic forms on real reductive Lie groups. A comprehensive treatment

of this theory can be found in many resources, for example, see [7, 8, 18].

Let G be a connected reductive group over Q. Let Γ be an arithmetic subgroup of G(Q).

Furthermore, as in the previous sections, we let K be a maximal compact subgroup of G =

G(R), g,k be the Lie algebras of G,K respectively and Z(R) be the center of G. Let U(g) be

the universal enveloping algebra and Z(g) be the center of U(g). Let H = H (G(R),K)

be the Hecke algebra which is the convolution algebra of all K-finite distributions on G

with support in K [27].

Let (π,V ) be a representation of K, and we do not assume it is finite dimensional. Let

K̂ be the set of equivalence classes of irreducible representations of K and take ρ ∈ K̂. We

denote

V (ρ) = {v ∈V |spank∈K π(k)v∼= ρ}.

By a (g,K)-module, we mean a complex vector space V with a representation π of g and K

which satisfies the following:

(i) The space V is a countable algebraic direct sum V = ⊕iVi where each Vi is a finite

dimensional K-invariant vector space.
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(ii) For X ∈ p,v ∈V , we have

π(X)v = d
dt π(exp(tX))v|t=0 = lim

h→0

π(exp(hX))v−v
h ,

where the limit exists.

(iii) For k ∈ K,X ∈ g, we have π(k)π(X)π(k−1)v = π(Ad(k)X)v.

Furthermore, we call it an admissible (g,K)-modules if V (ρ) is finite dimensional for each

ρ ∈ K̂. Note for a smooth function φ : G(R)→ C, there is a natural action of K and g

(hence U(g)) on φ . The complex span of φ over the action of g and K gives us a (g,K)-

module [41]. Moreover, we say φ is slowly increasing if there are constants c,r ∈R>0 such

that

|φ(g)| ≤C · ‖g‖r,

where ‖g‖= (tr(σ(g)∗σ(g)))1/2 and σ is a finite dimensional complex representation with

finite kernel and closed image. This condition does not depend on the choice of the repre-

sentation σ [8] but the constant C does.

A smooth complex valued function φ on G(R) is an automorphic form for (Γ,K) if it

satisfies the following conditions:

(i) It is Γ-left invriant: φ(γ ·g) = φ(g), g ∈ G(R),γ ∈ Γ.

(ii) The right translates of φ by elements of K span a finite dimensional vector space.

(iii) There is an ideal I ⊂ Z(g) of finite codimension such that x◦φ = 0 for all x ∈ I.

(iv) It is slow increasing.

Note the condition (ii) is equivalent to the existence of an idempotent ζ ∈H such that the

convolution φ ∗ ζ = φ . We let A (Γ,ζ , I,K) be the space of all the automorphic forms of

this type.
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Assume N is the unipotent radical of any proper maximal parabolic Q-subgroup of

G(Q). Given φ ∈A (Γ,ζ , I,K), we call it a cuspidal automorphic form, or simply a cusp

form if

∫
(Γ∩N(R))\N(R)φ(n ·g)dn = 0, ∀g ∈ GR,

where dn is the measure on the quotient space (Γ∩N(R))\N(R) obtained from the measure

dg on G. We let A 0(Γ,ζ , I,K) be the subspace of cusp forms in A (Γ,ζ , I,K). By [8, 18],

a cusp form is bounded and square-integrable modulo Z(R) ·Γ.

Let ρ : K → GL(Vρ) be a finite dimensional unitary representation of K and Vρ is

equipped with a Hermitian product 〈,〉ρ and hence a norm ‖ · ‖ρ . We also have the fol-

lowing definition of Harish-Chandra [18, 7] of the vector-valued automorphic forms as

follows.

Definition 5.1 A smooth function F : G(R)→Vρ is called a Vρ -valued automorphic form

if it satisfies

(i) F(γ ·g) = F(g), g ∈ G(R),γ ∈ Γ.

(ii) F(g · k) = ρ(k−1) ·F(g), g ∈ G(R),k ∈ K.

(iii) There is an ideal I ⊂ Z(g) of finite codimension such that x◦F = 0 for all x ∈ I.

(iv) F is slow increasing, i.e., ‖F(g)‖ρ ≤C · ‖g‖n for some C > 0, for all g ∈ G.

We denote the space of all such Vρ -value functions by A (Γ, I,ρ) or simply A (Γ,ρ). Fur-

thermore, if we also have
∫
(Γ∩N(R))\N(R)F(n · g)dn = 0, for all g ∈ GR, it is called a Vρ -

valued cuspidal form or cusp form. This vector space is denoted by A 0(Γ, I,ρ) or simply

A 0(Γ,ρ).

As in the scalar-valued case, a vector-valued cusp form is also bounded (in each coor-

dinate of Vρ ) and square-integrable modulo Z(R) ·Γ.
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Now we introduce automorphic forms on the domain D = G/K. Although the defini-

tion given by A. Borel [7] involves a general cocycle µ defined on Γ×D , we only focus on

the special case of the canonical automorphy factor J(g,x) : G×D→KC (see Section 2.2).

We also fix the finite dimensional unitary representation ρ : K→ GL(Vρ) and also denote

by ρ its extension to KC.

Definition 5.2 Let J be the canonical automorphy factor. A vector-valued automorphic

form of type ρ is a smooth function f : D = G/K→Vρ satisfying

f (γx) = ρ(J(γ,x)) · f (x), ∀x ∈D ,∀γ ∈ Γ.

We denote the space of such functions by AD(Γ,J).

Example 5.3 Let G = SL2(R), K = SO(2) and Γ⊂ G is the modular group. Let J(g,z) =

cz+ d for g =
(

a b
c d

)
∈ G. We also take the irreducible representation ρ = ρm : K → S1

given by k 7→ km. Then a function f : H→ C satisfying

f (az+b
cz+d ) = (cz+d)m f (z)

for all
(

a b
c d

)
∈Γ gives us a classical modular form for Γ (with some holomorphy conditions,

see [37]).

Now we can relate AD(Γ,J) with the classical automorphic forms A (Γ,ρ) above.

Lemma 5.4 Given F ∈ A (Γ,ρ), the map given by Φ(F)(ġ) = f (ġ) = ρ(J(g,0))F(g) is

well-defined and Φ(A (Γ,ρ))⊂AD(Γ,J).

Proof: Take g1,g2 ∈ G such that ġ1 = ġ2 and we assume g1 = g2k for some k ∈ K. Then

we have

ρ(J(g1,0))F(g1) = ρ(J(g2k,0))F(g2k) = ρ(J(g2k,0))ρ(k)−1F(g2)

= ρ(J(g2,0))ρ(J(k,0))ρ(k)−1F(g2)

= ρ(J(g2,0))ρ(k)ρ(k)−1F(g2) = ρ(J(g2,0))F(g2),

where we apply the cocycle condition of J and the fact J(k,0) = k for k ∈ K. We also have
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f (γ̇g) = ρ(J(γg,0))F(γg) = ρ(J(γ, ġ)J(g,0))F(g) = ρ(J(γ, ġ)) f (ġ).

So f ∈AD(Γ,J).

For a general cocyle µ , we may not be able to define an inverse map from AD(Γ,µ)

to A (Γ,ρ) since the cocyle µ on Γ cannot always be extended to G. An example on

Γ0(4) with half-integral weight was given by G. Shimura [38]. Recall there is a smooth

embedding i : D = G/K ↪→ NA⊂G and we denote this map from D→G by i(z) = gz (see

Section 2.2). Please note we have z = ġz = gz ·K as a coset in G/K.

Corollary 5.5 Let F ∈A (Γ,ρ) and f = Ψ(F). Then F(gz) = ρ(J(gz,0)−1) f (z).

Proof: It follows from the fact F(g) = ρ(J(g,0)−1) f (ġ).

5.2 The intertwining operators

Take a cusp form F ∈A 0(Γ,ρ) and let f =Φ(F) which is a vector-valued automorphic

form on the domain D . We also call a function of such type a cusp form and denote them

by A 0
D(Γ,ρ).

Lemma 5.6 Let φ ∈ L2(D ,Vπ), then the map

M f : f (z) 7→M f (φ)(z) = f (z)⊗φ(z)

is a well-defined bounded map with image in L2(D ,Vρ⊗π)

Proof: Let us consider the norm ‖M f (φ)‖L2(D ,Vρ⊗π )
. We have

‖M f (φ)‖2 = 〈 f ⊗φ , f ⊗φ〉L2

=
∫
D
〈(ρ⊗π)(κ(w,w)−1) f (w)⊗φ(w), f (w)⊗φ(w)〉Vρ⊗π

dµ(w)

=
∫
D
〈ρ(κ(w,w)−1) f (w), f (w)〉Vρ

· 〈π(κ(w,w)−1)φ(w),φ(w)〉πdµ(w).

Suppose w ∈D = G/K has a representative ġ with g ∈G. Note f (ġ) = ρ(J(g,0))F(g) and

κ(ġ, ġ)= J(g,0)J(g,0)−1. Following Remark 2.7, one has ρ(κ(ġ, ġ))= ρ(J(g,0))ρ(J(g,0))∗.
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(Note that F(g) is independent of the choice of the representative ġ in the coset w ∈ D =

G/K.) We have

〈ρ(κ(w,w)−1) f (w), f (w)〉Vρ

=〈(ρ(J(g,0))−1)∗ρ(J(g,0)−1)ρ(J(g,0))F(g),ρ(J(g,0))F(g)〉Vρ

=〈F(g),F(g)〉Vρ
.

Note F is bounded on G since it is a cusp form, i.e., there is a positive constant CF such

that 〈F(g),F(g)〉Vρ
≤CF for all g ∈ G. So we get ‖M f (φ)‖2

L2(D ,Vρ⊗π )
≤CF · ‖φ‖2

L2(D ,Vπ )
.

Now we define a Toeplitz-type operator on the holomorphic discrete series. Recall that

Pπ is the orthogonal projection from L2(D ,Vπ) to Hπ = L2
hol(D ,Vπ). Let Tf : Hπ → Hρ⊗π

be the operator defined by

Tf (φ) = Pρ⊗πM f Pπ(φ) = Pρ⊗πM f (φ) = Pρ⊗π( f (z)⊗φ(z)).

where φ ∈ Hπ . Moreover, when ρ is the trivial representation of K, f is an essentially

bounded function on D , i.e., f ∈ L∞(D ,dµ). Then M f is bounded L2(D ,Vπ) and the

definition above coincides with the classical Toeplitz operator Tf = PπM f ∈ B(Hπ) for any

finite dimensional representation π (see Section 3.2).

Remark 5.7 The tensor product above is pointwise defined. Indeed, the vector-valued

function ρ(J(g,0)−1) f (ġ) is essentially bounded so that f (z)⊗φ(z) is still in the Hilbert

space L2(D ,Vρ⊗π).

In general, the tensor Hilbert space Hρ ⊗Hπ is an infinite direct sum of discrete series

representations, which is much larger than Hρ⊗π . J. Repka gave a clear description of the

decomposition of arbitrary tensor products of these holomorphic discrete series represen-

tations [31].

Proposition 5.8 Tf ∈ B(Hπ ,Hρ⊗π) and its adjoint operator T ∗f ∈ B(Hρ⊗π ,Hπ) is given by

46



T ∗f (ψ⊗η) = T( f ,ψ)η(w), for ψ(z) ∈ Hρ ,η(z) ∈ Hπ

where ( f ,ψ) = 〈ρ(κ(w,w)−1) f (w),ψ(w)〉Vρ
is a function on D .

Proof: As Tf is a composition of M f and a projection, the boundedness follows from

Lemma 5.6. Note Hρ⊗π can be densely generated by the vector-valued functions of form

ψ(z)⊗η(z) : D → Vρ ⊗Vπ with ψ(z) ∈ Hρ and η(z) ∈ Hπ . Let φ ∈ Hπ . Assume ġw = w

and consider the inner product 〈φ ,T ∗f (ψ⊗η)〉Hπ
= 〈Tf (φ),ψ⊗η〉Hρ⊗π

. We have

〈Tf (φ),ψ⊗η〉Hρ⊗π
= 〈Pρ⊗π( f ⊗φ),ψ⊗η〉L2 = 〈( f ⊗φ),ψ⊗η〉L2

=
∫
D
〈(ρ⊗π)(κ(w,w)−1)( f ⊗φ)(w),(ψ⊗η)(w)〉Vρ⊗π

dµ(w)

=
∫
D
〈ρ(κ(w,w)−1) f (w),ψ(w)〉Vρ

· 〈π(κ(w,w)−1)φ(w),η(w)〉πdµ(w)

=
∫
D
〈π(κ(w,w)−1)φ(w),〈ρ(κ(w,w)−1) f (w),ψ(w)〉Vρ

η(w)〉πdµ(w)

=〈φ ,M( f ,ψ)η〉L2 = 〈φ ,PπM( f ,ψ)η〉Hπ
= 〈φ ,T( f ,ψ)η〉Hπ

.

This is to say

T ∗f (ψ⊗η)(w) = T( f ,ψ)η(w).

Note ( f ,ψ) may not be essentially bounded, but M( f ,ψ)η is still in the space L2(D ,Vπ)

by Cauchy-Schwarz inequality. As F is left-invariant for Γ, a natural question is how Tf

intertwines the action of Γ.

Proposition 5.9 With the assumption above, Tf commutes with the action of Γ, i.e., Tf Lπ(γ)=

Lρ⊗π(γ)Tf , for any γ ∈ Γ.

Proof: Take φ ,η ∈ Hπ , ψ(z) ∈ Hρ and z ∈D . We have

〈Lρ⊗π(γ)Tf (φ(z)),(ψ⊗η)(z)〉Hρ⊗π

=〈Lρ⊗π(γ)Pρ⊗πM f (φ(z)),(ψ⊗η)(z)〉Hρ⊗π
= 〈Pρ⊗πLρ⊗π(γ)( f ⊗φ)(z),(ψ⊗η)(z)〉L2

=〈(Lρ(γ)( f )⊗Lπ(γ)(φ))(z),(ψ⊗η)(z)〉L2 = 〈Tf Lπ(γ)(φ)(z),(ψ⊗η)(z)〉Hρ⊗π
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where we apply Proposition 2.9 and use the fact Lρ(γ) f = f .

Take another cusp form H ∈A 0(Γ,ρ) and let h(z) = Φ(H).

Corollary 5.10 The composite operator T ∗h Tf ∈ B(Hπ) commutes with the action of Γ, i.e.,

T ∗h Tf Lπ(γ) = Lπ(γ)T ∗h Tf for γ ∈ Γ. Moreover, if either one of f or h is holomorphic, we

have

T ∗h Tf φ(z) = T( f ,h)φ(z) = T〈F(gz),H(gz)〉Vρ
φ(z)

for any φ(z) ∈ Hπ .

Proof: The first claim is straightforward by Proposition 5.8. Assume f is holomorphic

and take an arbitrary η ∈Hπ . Note f (z)⊗φ(z)∈Hρ⊗φ so 〈T ∗h Tf φ ,η〉Hπ
= 〈T ∗h f ⊗φ ,η〉Hπ

.

Then the first equality follows from Proposition 5.8.

Moreover, by Remark 2.7, we have

ρ(κ(z,z)) = ρ(J(gz,0))ρ(J(gz,0)∗) = ρ(J(gz,0))ρ(J(gz,0))∗.

Then
( f ,ψ)(z) = 〈ρ(κ(z,z)−1) f (z),ψ(z)〉Vρ

= 〈ρ(J(gz,0)−1) f (z),ρ(J(gz,0)−1)h(z)〉Vρ

= 〈F(gz),H(gz)〉Vρ
,

which is bounded since F,H are bounded in each coordinate. Hence 〈F(gz),H(gz)〉Vρ
∈

L∞(D) that makes the associated Toeplitz operator well-defined.
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Chapter 6

An Example on SL(2,R) and Fuchsian Subgroups

In this section, we consider the Lie group SL(2,R) and apply the previous results to its

discrete series representations and its Fuchsian subgroups. We remind the reader that by a

Fuchsian subgroup, we mean a Fuchsian group of the first kind, i.e., a discrete subgroup

Γ of SL(2,R) (or PSL(2,R)) such that Γ\H∗ is compact [37]. Let {(Lm,Hm)|m ≥ 2} be

the family of holomorphic discrete series representations of SL(2,R) (see below) and let

Am = Lm(Γ)
′∩B(Hm)’s be the commutants.

This section is devoted to the proof of the following result:

Theorem 6.1 Let Γ ⊂ SL(2,R) be a Fuchsian subgroup and Tf be the Toeplitz operator

associated with a cusp form f of Γ. Then

{span f ,g(Tg)∗Tf }
w.o.

= Am

as f ,g run through all cusp forms of Γ of same weights.

Note for G = SL(2,R), K = SO(2) is a maximal subgroup. Hence by Theorem 2.6,

the symmetric domain D = G/K is just the open unit disk. For the convenience to discuss

automorphic forms, we identify it with the Poincaré upper-half plane

H= {z = x+ iy ∈ C|y > 0}.

with the invariant measure dµ = y−2dxdy. Moreover, since K = SO(2) is abelian, all its

irreducible representation are one-dimensional and can be characterized as (πm,Vm) such

that πm(g) = gm ∈ S1 for an integer m.

Note KC = C× is the complexified group of K = SO(2). By definition, the canonical

automorphy factor J : SL(2,R)×H→ C× is given by
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J(g,z) = cz+d for g =
(

a b
c d

)
∈ SL(2,R), z ∈H.

Following Section 2.2, we can describe the holomorphic discrete series representations

of SL(2,R). One can show that πm(κ(z,z)−1) = ym where z = x+ iy. So we move the term

ym to the measure and denote ymdµ = ym−2dxdy by dµm.

Let L2(H,µm) be the square-integrable functions on H with respect to the measure

µm = ym−2dxdy (and µ0 is just µ). Let Hm be the subspace of all holomorphic functions in

L2(H,µm), i.e.,

Hm = L2
hol(H,µm).

As in Section 2.2, for a given g =
(

a b
c d

)−1 ∈ SL2(R) and f ∈Hm, the action on Hm is given

by

(Lm(g) f )(z) = f (g−1z)(cz+d)−m

where g−1z = az+b
cz+d .

Proposition 6.2 ([16]) For any integer m≥ 2, (Lm,Hm) is an irreducible unitary represen-

tation of SL(2,R). Moreover, it is square-integrable with formal dimensions dm = m−1
4π

.

To have a positive formal dimension, we will focus on the case m≥ 2 from now on.

6.1 Berezin transform and the trace

Let (Lm,Hm) be the holomorphic discrete series of SL(2,R) associated with the one

dimensional representation (πm,Vm) of K = SO(2) (and also of KC = C×). Note all the

matrix-valued (End(Vπ)-valued) functions defined in Section 3.1 reduce to the scalar-valued

functions since Vm =C. In this section, we use the following simplified notation for Berezin

symbols:

(i) K(z,w) = E∗z Ew and K(z,z) = E∗z Ez.

(ii) Â(z) = S(A)(z) for A ∈ B(Hm)
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(iii) Â(z,w) = R(A)(z,w) for A ∈ B(Hm) (defined in the proof of Proposition 4.9).

Let v1 ∈Vm be a unit vector, one can further show Â(z,w) = 〈AEw(v1),Ez(v1)〉Hm
〈Ew(v1),Ez(v1)〉Hm

.

Corollary 6.3 Given A,B ∈ B(Hm), then

(i) Â(z,w) is sesqui-holomorphic (i.e., holomorphic in z and anti-holomorphic in w),

(ii) the map A 7→ Â(z,w) or Â(z) is one-to-one,

(iii) supz∈H |(̂A)(z)| ≤ ||A||,

(iv) Â∗(z,w) = Â(w,z),

(v) ÂB(z,w) =
∫
H

K(z,η)K(η ,w)
K(z,w) Â(z,η)B̂(η ,w)dµm(η).

Proof: It follows from Proposition 3.4 and Proposition 3.5.

Now we define the commutant by

Am = Lm(Γ)
′∩B(Hπ) = {A ∈ B(Hm)|ALm(γ) = Lm(γ)A, ∀γ ∈ Γ},

which will be shown to be a tracial von Neumann algebra. It is a II1 factor if Lm(Γ)
′′ is

a II1 factor and the coupling constant of dimLm(Γ)′′Hm is finite, which holds when Γ is an

ICC lattice.

Corollary 6.4 If A,B ∈ B(Hm) and g ∈ SL2(R), the Berezin transform of Lm(g)−1ALm(g)

is Â(gz,gw). A ∈Am if and only if Â is Γ-invariant.

Proof: It follows from Proposition 3.5 (iv).

Corollary 6.5 For m ≥ 2, the following linear functional defines a faithful normal tracial

state on Am: Let A ∈ Am, then

τ(A) = 1
µ(F )

∫
F Â(z)dµ(z).

τ is the unique tracial state if Am is a type II1 factor.
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Proof: It follows from Proposition 3.8.

In the special case Γ = SL(2,Z), most of the results above are known, see [34, 30].

Remark 6.6 Let Z(Γ) be the center of Γ. The representation (Lm,Hm) is indeed a projec-

tive unitary representation of Γ/Z, which may also give a factor. For example, in the case

PSL(2,Z) = SL(2,Z)/{±I}, as H2(PSL(2,Z),S1) = 0, the representation is ordinary and

gives the factor Lm(PSL(2,Z))′′ since each Fuchsian subgroup of PSL(2,Z) is ICC [1].

One may also consider the lattices in SL(2,R). Indeed, they are all essentially ICC:

there are only finitely many conjugacy classes that are finite. Following [30], in this case

the Am’s are also factors of type II1.

6.2 The action of cusp forms

Let Γ be a Fuchsian subgroup of the first kind. Recall that a cusp form of weight p of

Γ is a holomorphic function f : H→ C satisfying

(i) f (z) = (cz+d)−p f (az+b
cz+d ), z ∈H,

(
a b
c d

)
∈ Γ,

(ii) f vanishes at each cusp of Γ.

By definition, cusps are some elements in R∪{∞}. One can refer [28, 37] for the precise

description. Let Sp(Γ) be the vector space generated by all cusp forms of weight p of Γ,

which is finite dimensional. It is well-known that for any f ∈ Sk(Γ), there is a constant

B f ≥ 0 such that | f (x+ iy)| ≤ B f · y−p/2 [28].

Recall that A 0(Γ,πp) is the space of cusp forms defined on the real Lie group G =

SL(2,R) (see Section 4.1).

Lemma 6.7 Each f ∈ Sp(Γ) is the image of some F ∈A 0(Γ,πp) under the map Φ(F)(ġ)=

πp(J(g,0))F(g).

Proof: Following [10], it is straightforward to check πp(J(g,0))−1 f (ġ) is a well-defined

function on SL(2,R) which is also a cusp form.
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Indeed, let ∆ be the Casimir element of glC2 and Z be the 2-by-2 identity matrix in gl2,

there is an isomorphism

Sp(Γ)→A 0(Γ,〈∆− p2−1
4

,Z〉,πp)

f 7→ φ f (g) = J(g, i)−p f (gi)

which also illustrates the correspondence between two types of cusp forms. We refer to

[10] for more details about the relation between the automorphic forms on SL(2,R) and

the classical automorphic forms defined on the upper-half plane H.

As representations of SO(2), we have

Vp⊗Vm ∼=Vp+m.

Hence the Toeplitz-type operator Pπp⊗πm( f ⊗·) defined in Section 5.2 reduced to the classi-

cal Toeplitz operator Pπp⊗πmM f , or simply Pm+pM f . Now, given an arbitrary f ∈ Sp(Γ) and

any m≥ 2, let Tf = Pm+pM f Pm ∈ B(Hm,Hm+p) be the Toeplitz operator associated with f .

The following two results are the special cases of the ones in Section 5.3. For the reader’s

convenience, we also give separate proofs that emphasize more scalar-valued cusp forms

instead of the vector-valued ones.

Proposition 6.8 The Toeplitz operator Tf satisfies the following conditions.

(i) Tf ∈ B(Hm,Hm+p),

(ii) Tf intertwines the action of Γ, i.e

Tf πm(g) = πm+p(g)Tf , ∀g ∈ Γ.

(iii) (Tg)
∗ = PmMg·ypPm+p ∈ B(Hm+p,Hm), which also intertwines the action of Γ.

Proof: (i) Let φ ∈ Hm and ψ ∈ Hm+p. Then

‖Tf φ‖2
m+p =

∫
H
| f (z)φ(z)|2ym+p−2dxdy

≤
∫
H

B2|φ(z)|2ym−2dxdy,
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where we used | f (z)| ≤ By−p/2. So Tf ∈ B(Hm,Hm+p).

(ii) Take g =
(

a b
c d

)−1 ∈ Γ. We have

Lm+p(g)Tf φ(z) = f
(

az+b
cz+d

)
φ

(
az+b
cz+d

)
(cz+d)−(m+p)

= f (z)φ
(

az+b
cz+d

)
(cz+d)−m

= Tf Lm(g)φ(z).

(iii) Consider the inner product on Hm+p. We have

〈T m
g φ ,ψ〉m+p =

∫
H

g(z)φ(z)ψ(z)ym+p−2dxdy

=
∫
H

φ(z)(Pmgypψ(z))ymdxdy,

which is 〈φ ,(Tg)
∗ψ〉m. Hence Tg

∗ = PmMg·ypPm+p.

Corollary 6.9 Given f ,g ∈ Sp(Γ), we have

(Tg)
∗Tf = PmM f gypPm = Tf gyp ∈ Am,

where Am = Lm(Γ)
′ is the factor.

Proof: Recall ( f (z),g(z)) = 〈κ(z,z)−p f (z),g(z)〉Vm = f (z)g(z)yp. Note both f ,g are

holomorphic, then it follows from Corollary 5.10.

6.3 Two existence results

This part is devoted to the proof of Theorem 6.1. Before this, we need two theorems

for the existence of some meromorphic functions and holomorphic functions on a compact

Riemann surface. We refer to [14] for the theory of Riemann surfaces.

Let Γ⊂ SL(2,R) be an arbitrary Fuchsian group of the first kind and PΓ be the set of all

cusps of Γ. Let H∗ =H∪PΓ. Denote F = Γ\H and F ∗ = Γ\H∗ be the quotient spaces by

the action of Γ. It is well-known that F ∗ is a compact Hausdorff space and also a compact

54



Riemann surface [28]. We denote a Riemann surface by M and the field of meromorphic

functions on M by A(M ).

Theorem 6.10 If M is a compact Riemann surface and P1, . . . ,Pn ∈M are distinct points

and z1, . . . ,zn ∈ C, there exists φ ∈ A(M ) such that φ(Pi) = zi for all 1≤ i≤ n.

Proof: Take integers i, j such that 1≤ i 6= j ≤ n. Let us consider the divisor D = kPi−Pj

where k = ki, j ∈ Z. Apply the Riemann-Roch Theorem for the divisor D, we get

l(D) = deg(D)−g+1+ l(div(ω)−D) = m−g+ l(div(ω)−D),

where l(D) = dimCL(D) with L(D) = { f ∈ A(M )| f = 0 or div( f )+D ≥ 0} and div(ω)

is a canonical divisor. Take k sufficiently large, there would be a desired ki, j such that

deg(div(ω)− kPi +Pi) < 0 and hence l(div(ω)− kPi +Pi) = 0. Then, as l(kPi−Pj) >

l((k− 1)Pi−Pj), there must be some ψi, j ∈ L(kPi−Pj)−L((k− 1)Pi−Pj). So we get a

meromorphic function ψi, j with

vPi(ψi, j) =−ki, j < 0 and vPj(ψi, j)≥ 1.

Let φi, j =
ψi, j

ψi, j+1 then φi, j(Pi) = 1 and φi, j(Pj) = 0. Now we define φi = ∏1≤ j≤n, j 6=i φi, j

which satisfies

φi(Pi) = 1,φi(Pj) = 0 for j 6= i.

Then the function φ = ∑1≤i≤n ciφi is the one we want.

We further assume F ∗ to be the compact Riemann surface given by Γ\H∗.

Theorem 6.11 Let P1, . . . ,Pn ∈F ∗ be distinct points, then there exists a holomorphic au-

tomorphic form f such that f (Pi) 6= 0 for all 1 ≤ i ≤ n. Moreover, if {Pi}1≤i≤n are not

cusps, we can further require f to be a cusp form.
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Proof: We first focus on a single point P1. Suppose all holomorphic automorphic forms

have P1 as zeros. We take a holomorphic f1 such that vP1( f1) = m≥ 1 is minimal.

Consider the divisor kP. By the Riemann-Roch Theorem, we have

l(kP) = deg(kP)−g+1+ l(div(ω)− kP) = k−g+1+ l(div(ω)− kP).

For sufficiently large k, we have deg(div(ω)− kP) < 0 and l(kP) = k−g+1. Then there

exists φ1 ∈ A(F ∗) with a single pole of order k. Then g1 = f k
1 φ m

1 is holomorphic and does

not vanish at P1.

Now suppose we have such holomorphic automorphic forms {gi}1≤i≤n such that gi(Pi) 6=

0 and the weight of gi is ki for 1 ≤ i ≤ n. Now let N be a common multiple of all these

ki’s. Then a linear combinations f = ∑1≤i≤n λig
N/ki
i (with some suitable λi’s) will give us

a desired automorphic form of weight N.

If {Pi}1≤i≤n are not cusps, we can further assume from the beginning that all gi’s are

cusp forms. Then we get a desired f in the same way.

6.4 II1 factors from cusp forms on SL(2,R)

Now we let Ak(Γ) be the space of automorphic forms of weight k so Sk(Γ) is a subspace

of Ak(Γ) spanned by the cusp forms. We know the Petersson inner-product on Sk(Γ) is

given by

〈 f ,g〉= 1
µ(F )

∫
F f (z)g(z)ykdµ(z),

which is Hermitian. We denote the term in the integral by ( f ,g)k = f (z)g(z)yk with a

emphasis on the weight k.

Now let

F1 = F ∗/(Γ\PΓ) = Γ\(H∗/PΓ) = F ∪{pt}.

by identifying all cusps in the fundamental domain with one point. Hence F1 is compact.
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Proposition 6.12 {( f ,g)k|k ∈ N, f ,g ∈ Sk(Γ)} are well-defined functions on F1 and sep-

arate points of F1.

Proof: As all ( f ,g)k’s vanish on all cusps, it is well-defined on the quotient space of F ∗

by identifying all cusps.

Now we take a pair of distinct points P,Q ∈F1. By Theorem 6.10, there is a meromor-

phic function φ ∈ A0(Γ) such that φ(P),φ(Q) are distinct.

Case 1: P,Q ∈F .

We take f (z),g(z) ∈ Sk(Γ) with all f (P), f (Q),g(P),g(Q) are nonzero. The existence

follows from Theorem 6.11.

For sufficiently large k, we may assume the multiplication by f eliminates all the poles

of φ . So we can further assume f (z) satisfies f (z)φ(z) ∈ Sk(Γ). We assume ( f ,g)k cannot

separate P,Q, i.e.,

( f ,g)k(P) = f (P)g(P)yk
P = f (Q)g(Q)yk

Q = ( f φ ,g)k(Q).

Then we have

( f φ ,g)k(P) = f (P)φ(P)g(P)yk
P 6= f (Q)φ(Q)g(Q)yk

Q = ( f φ ,g)k(Q).

Case 2: P ∈F , Q = {pt}.

As Q stands for cusps, it suffices to show some ( f ,g)k(P) 6= 0. But this follows from

Theorem 6.11.

As F1 is compact, we apply Stone-Weierstrass to get the following corollary.

Corollary 6.13 The functions of the form ( f ,g)k generate the function space of continuous

functions on F1 that vanish at the the point pt, or equivalently, ( f ,g)k’s generate the space

of continuous functions on F that vanish on all cusps, i.e.,

{( f ,g)k|k ∈ N, f ,g ∈ Sk(Γ)}
||·||∞

= {ψ ∈C(F ∗) | ψ|cusps = 0}.

As there are only finitely many cusps in F and µ(F )< ∞, we obtain:

57



Proposition 6.14 For m≥ 2, we have

{span f ,g(Tg)∗Tf }
w.o.

= Am,

where f ,g run through all cusp forms of same weights of Γ.

Proof: By Corollary 6.13, we know the these ( f ,g)k’s generate the space of continuous

functions on F ∗ that vanish at cusps. Hence the restriction of ( f ,g)k’s on F also span a

dense subspace of L2(F ).

Note that T (( f ,g)k) = T ( f gyk) = (Tg)
∗Tf . Then, by Theorem 4.9, we know these

(Tg)
∗Tf ’s give a ∗-closed subalgebra which is dense in L2(Am). Then the claim follows

from Proposition 4.11 or Proposition 4.12.
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Chapter 7

The von Neumann Algebras from Cusp Forms

Let Hπ = L2
holo(D ,Vπ) be the holomorphic discrete series representation of G associated

with an irreducible representation (π,Vπ) of its maximal compact subgroup K. Given a

cusp form f : D →Vρ for Γ, we denote by Tf the Toeplitz-type operator associated with f

as in Section 5.

This section will be largely devoted to proving the following result.

Theorem 7.1 Assume dimCVπ = 1, the von Neumann algebra Lπ(Γ)
′ of Γ-intertwining

operators on the holomorphic discrete series Hπ can be generated as:

Lπ(Γ)
′ = {span f ,gT ∗g Tf }

w.o.
,

where f ,g run through the cusp forms for Γ of same types.

The proof is based on the Baily-Borel compactification and the cusp forms given by

Poincaré series.

7.1 Baily-Borel compactification

We review some basic facts of the Baily-Borel compactification of the quotient space

Γ\D . It is a generalization of the compactification of the fundamental domain SL(2,Z)\H,

or equivalently,

SL(2,Z)\SL(2,R)/SO(2)∼= {z ∈H| |z|> 1, |Re(z)|< 1
2}

to a general Lie group G and an arithmetic subgroup Γ. From now on, we assume G has no

normal Q-subgroup of dimension 3. More details can be found in [2, 3, 35].

Let G be a semi-simple linear algebraic group defined over Q such that G = GR is the

real Lie group we discussed in the previous sections. Let D = G/K as before.
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By the Harish-Chandra realization, we regard D ⊂ p+ =CN as a smooth manifold with

the natural action of G. The action also extends to the closure D ⊂ p+. We say a real

affine hyperplane H ⊂ CN is a supporting hyperplane if H ∩D 6= /0 and H ∩D = /0. Let

H be such a supporting plane and denote its intersection with the closure D by F , i.e.,

F = H ∩D . Furthermore, there is a minimal complex affine subspace L⊂ Cm contains F .

The boundary component F is a nonempty open subset of L whose closure is F , which is

also a bounded symmetric domain in L. The detailed construction of boundary components

is based on the R-roots and Q-roots of G [2, 3].

Meanwhile, there is a maximal set (α1, . . . ,αt)⊂ ∆+
n such that they are strongly orthog-

onal, i.e., neither αi +α j nor αi−α j is a root. The standard boundary components Fb are

indexed by 1≤ b≤ t, which can generate all the boundary components by the transfroms of

G (see [3] 1.5). For such a boundary component Fb, there is also an unbounded realization

Sb ⊂ p+ and also a cocyle Jb(g,x) : G×Sb→ C which is defined as the determinant of the

Jacobian of g ∈ G at x ∈ Sb.

One should keep in mind that D itself is an improper rational boundary component. For

each rational boundary component F , there is a canonical projection σF : D → F .

For a boundary component F , its normalizer is defined by

NG(F) = {g ∈ G|g ·F ⊂ F},

where the action is induced from that on D . It is well-known NG(F) is a parabolic subgroup

of G. We call F a rational boundary component if NG(F) is defined over Q as a subgroup

of the linear algebraic group (see G [3].3 and [2].III). There are countably many rational

boundary components.

Now we let D∗ be the union of D and its rational boundary components, equipped

with the Satake topology, which is the unique topology with some properties related to the

arithmetic group Γ (see [2] III. or [3] Theorem 4.9). Let F = Γ\D be the fundamental

domain.

Definition 7.2 The Baily-Borel compactification F ∗ of F is defined to be the quotient
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F ∗ = Γ\D∗,

equipped with the quotient topology.

Baily and Borel proved the following result.

Theorem 7.3 ([2] III.6) The Baily-Borel compactification F ∗ is a compact Hausdorff space

containing F as an open dense subset. F ∗ is a finite union of subspaces of the form

ΓF\F,

where F is a rational boundary component and ΓF = Γ∩NG(F).

Moreover, the closure of ΓF\F is the union of ΓF\F and subspaces ΓF ′\F ′ of strictly

smaller dimension.

They actually proved F ∗ is isomorphic to a projective subvariety of some complex

projective space PN
C. From now on, we will denote the compactafication as

F ∗ =V0∪V1∪·· ·∪Vt ,

where V0 = F and Vi = ΓFi\Fi for some rational boundary component Fi with 0≤ i≤ t. It

can also be proved that dim(F ∗−F ) ≤ dim(F )− 2 if G has no normal Q-subgroup of

dimension 3.

7.2 Poincaré-Eisenstein series

The Poincaré series were first constructed for automorphic forms on a Lie group by

Poincaré. Intuitively, for SL(2,R), Poincaré series apply group averages of an infinite sum,

which is a natural way to construct functions invariant under the automorphy action of the

modular group. We have the following result proved by Harish-Chandra (see [3] Theorem

5.4) and R. Godement [15]. Note we focus on the functions with the left action of Γ and

usually the right action of K instead of the ones with actions on different sides in these

references.
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Theorem 7.4 (Harish-Chandra, Godement) Let Γ be a discrete subgroup of G and V be

a finite dimensional complex vector space. Let f̃ : G→V be a function in L1(G)⊗V , which

is Z(g)-finite and is K-finite on the left. Then the series

Pf̃ (g) = ∑γ∈Γ f̃ (γ ·g), P‖ f̃‖(g) = ∑γ∈Γ ‖ f̃ (γ ·g)‖,

are absolutely and uniformly convergent on compact subsets and are bounded on G.

Furthermore, if f̃ is of finite type on the right instead, Pf̃ is absolutely and uniformly

convergent on compact sets, but not necessarily bounded.

The series Pf̃ are called a Poincaré series on the group G [15]. We are more inter-

ested in the following Poincaré series defined on the bounded symmetric domain D . For

the canonical autormorphy factor J : G×D ∈ KC and a representation (ρ,Vρ) of K, we

associate a function f : D →Vρ to f̃ : G→V ρ by

f (ġ) = ρ(J(g,0)) f̃ (g).

They satisfies the property that f is holomorphic on D if and only if Y ◦ f̃ = 0 for all Y ∈ p−.

Now we consider the action of G on G/K =D ⊂ p+. For any z∈D , we let JD(g,z)∈C

be the determinant of the Jacobian of z 7→ g(z).

Lemma 7.5 ([35] II.5.3.) The Jacobian of z 7→ g(z) is the adjoint representation ad of the

canonical automorphy factor J, i.e.,

Jac(z 7→ g(z)) = adp+(J(g,z)).

where adp+ is the restriction of ad on p+.

Hence we have JD(g,z) = det(adp+(J(g,z))).

Theorem 7.6 ([7, 12]) Let f be a polynomial function on D , m≥ 4 be an integer. Then the

series

Pm, f (z) = ∑γ∈Γ JD(γ,z)m f (γ · z)
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converges absolutely and uniformly on compact sets. It defines a holomorphic automorphic

form of weight m, i.e.,

Pm, f (z) = JD(γ,z)mPm, f (γz).

The function g 7→ f (g ·0)JD(g,0)−m is bounded on G.

The functions Pm, f ’s above are called Poincaré series on the domain D [3]. Indeed,

these series are sufficient to separate the points.

Proposition 7.7 Let z1, . . . ,zN be Γ-inequivalent points in D . Take a set of points c1, . . . ,cN ∈

C. For m sufficiently large, we can find a polynomial f such that Pf ,m(zi) = ci for all

1≤ i≤ N.

Proof: Let us consider the linear map given by

E~z : f 7→ (Pm, f (z1), . . . ,Pm, f (zN)).

Its image is a linear subspace of CN . We will show this map is surjective for sufficiently

large m.

Take some 0 < u < 1. By [3] Lemma 5.8, we know the function g 7→ |JD(g,0)|a is in

L1(G) if a≥ 2. Then, by Theorem 7.4, we conclude ∑γ∈Γ |JD(γ,z)|2 converges absolutely

and uniformly on compact sets. Hence the set Γu,i = {γ ∈ Γ||JD(γ,zi)|> u} is a finite. Now

let f be a polynomial on p+ such that

f (zi) = ci and f (γzi) = 0 for γ ∈ Γu,i, 1≤ i≤ N.

Note JD(e,zi)
l f (zi) = f (zi) = ci, we have |Pm, f (zi)− ci| ≤ ∑γ /∈Γu,i |u

l f (γzi)| which con-

verges to 0 as l → ∞. So for any ε > 0, there exists an integer m(ε) such that ‖E( f )−

~c‖CN < ε if m > m(ε). Now let~c runs through the standard basis {e1, . . . ,eN}of CN and let

ε be small enough, the argument above implies the map E contains a basis for m sufficiently

large. Hence E is surjective.

Now we introduce the Poincaré-Eisenstein series. We first introduce some notations.

63



(i) P : a parabolic Q-subgroup of G,

(ii) U : Ru(P), the unipotent radical of P,

(iii) Γ∞ : a subgroup of finite index of Γ∩P,

(iv) B : a normal connected Q-subgroup of P which contains the split radical of P,

(v) Γ0 = Γ∞∩B.

Let f̃ be a function on G. Following [3], The Poincaré-Eisenstein series are defined to be:

E f̃ (g) = ∑γ∈Γ/Γ0 f̃ (γ ·g), g ∈ G.

When f̃ satisfies certain conditions (see [3] Theorem 6.4), we can show E f̃ converges

absolutely and uniformly on compacts sets.

Let us fix F = Fb, a standard rational boundary component. We further assume

• P = NG(F),

• B : a normal connected Q-subgroup containing the split radical of P such that B0
R ⊂

Z(F) and Z(F)/B0
R is compact,

• Γ∞ = P∩Γ,

• Γ0 = B0
R∩Γ.

Let φ be a polynomial on F in the coordinates of the canonical bounded realization of

F and let l be a positive integer. Consider the series

E(z) = Eφ ,l,Γ(z) = ∑γ∈Γ/Γ0 φ(σb(γ · z)) · JF(γ,z)l ,

which are called Poincaré-Eisenstein series adapted to F in [3]. We also consider the

transform of E by g:

(E ◦g)(z) = JF(g−1,z)lE(g−1 · z).
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For the convergence of these series, Baily and Borel also gave the following result.

Theorem 7.8 ([3] Section 7.2) There exists a positive integer l0 such that if l is a positive

multiple of l0, then the series Eφ ,l,Γ◦g converges absolutely and uniformly on compact sets.

Now let f be an integral automorphic form (see [3] Section 8.5) on D of weight l, i.e.,

f (z) = JD(γ,z)l f (γ · z) for all γ ∈ Γ. Then for each rational boundary component F , it has

an extension to an automorphic form for ΓF on F , which we denote by ΦF( f ).

Theorem 7.9 ([3] Theorem 8.6) Let E be a Poincaré-Eisenstein series adapted to the ra-

tional boundary component F, for the arithmetic group Γ of weight l. Then E is an in-

tegral automorphic form. Let F ′ be a rational boundary component. Then ΦF ′E = 0 if

dimF ′ ≤ dimF and F ′ ( Γ ·F. The operator ΦF maps the module of Poincaré-Eisenstein

series adapted to F of weight l, onto the module of Poincaré series for Γ(F) of weight l.

Remark 7.10 By this theorem, the Poincaré series Pm,φ defined on the improper compo-

nent D satisfies ΦF(Pm,φ ) = 0 for any proper boundary components F. This also implies

Pm,φ is a cusp form (see [3] Section 8.10).

Since the function g 7→ f (g ·0)JD(g,0)−m is bounded (Theorem 7.6), as in the proof of

Lemma 5.6, we are able to associate to each Pm, f a well-defined Toeplitz operator TPm, f . We

will focus on the Toeplitz operators of this type later for the proof of Theorem 7.1.

7.3 Proof of the main theorem

Two cusp forms f ,g on the bounded symmetric domain D are called of a same type ρ

if both f ,g take values in a representation Vρ of K and f (γx) = ρ(J(γ,x)) · f (x),g(γx) =

ρ(J(γ,x)) · g(x) as in Definition 5.2. For the proof of Theorem 7.1, we will focus on the

cusp forms of type det−m(adp+), which are nothing but the cusp forms of weight m by

Lemma 7.5.

Proof: [Proof of Theorem 7.1] By Corollary 5.10, if f ,g are cusp forms of type (ρ,Vρ)

and at least one of them is holomorphic, we know the composite operator T ∗g Tf is just
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the Toeplitz operator T( f ,g) associated with the essentially bounded function ( f ,g)(w) =

〈ρ(κ(w,w)−1) f (w),g(w))〉Vρ
. Hence, by Corollary 4.2, it suffices to show these ( f ,g)’s

span a dense subspace of L2(F ) (or equivalently L∞(F ), C(F ).)

By Theorem 7.3, we know F ∗ is a compact Hausdorff space which contains F as a

dense open subset. Let us consider the quotient space F1 of F ∗ by identifying all the

elements do not belong to F (which form a closed subset of F ∗ ), i.e.,

F1 = F ∗/(F ∗\F ).

This is also the disjoint union of F and a single point, denoted as {pt} (which represents

all the proper boundary components), i.e., F1 = F t{pt}.

Let us consider the Poincaré series Pm,φ for a polynomial φ on D . By Theorem 7.9,

ΦF(Pm,φ ) = 0 for any proper boundary components F . Hence every Pm,φ gives a well-

defined function on F1 which vanishes at pt. Then, by Remark 7.10, it suffices to consider

the functions of the type (Pm,φ ,Pm,ψ).

Take any two distinct points z1,z2 ∈F1 and consider the following two cases: (i) z1 =

pt,z2 ∈F , or (ii) z1,z2 ∈F . In either of the two cases, by Proposition 7.7, there is a poly-

nomial φ such that Pm,φ (z1) 6= Pm,φ (z2) for some m. So (Pm,φ ,Pm,ψ)(z1) 6= (Pm,φ ,Pm,ψ)(z2)

for a suitable ψ such that Pm,ψ(z2) 6= 0. Note F1 is compact and Hausdorff, by Stone-

Weierstrass Theorem, the forms (Pm,φ ,Pm,ψ) generate the space

{h : F1→ C|h is continuous, h(pt) = 0}.

Hence their restriction on F is dense in L∞(F ), which completes the proof.

Remark 7.11 Assume G is a connected semi-simple linear algebraic group over R and a

lattice Γ is Zariski-dense in G. We can show Γ is an ICC group (see [16] 3.3.b). This gives

a large family of the cases that Aπ is a II1 factor.
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