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Chapter 1 

Plant a tree and save a life: Estimating the health benefits of urban forests 

1.1 Introduction 

More than 100 million people, 30% of the population of the United States, live in urban 

counties. 1 They share this space with more than a billion trees (Nowak & Greenfield, 2018a). In 

these densely populated counties, the opportunity cost of tree planting may be high (Pandit, 

Polyakov, & Sadler, Valuing public and private urban tree canopy cover, 2013); every acre of trees 

is an acre that cannot be used for office buildings, big box stores or parking lots (Conniff, 2018). 

For this and other reasons, urban tree cover in the United States has been declining in recent years 

(Nowak & Greenfield, 2018b). 

 Is the decline worth reversing? There are many costs to maintaining or increasing urban 

tree cover. Direct costs, which include the costs of purchasing, planting, maintenance of trees and 

the removal of dead trees, are substantial – so much so that Gary, Indiana eliminated its whole 

forestry department due to budget cuts in the wake of the Great Recession (Vogt, Hauer, & Fischer, 

2015). Closely related to these costs are the liability risks that trees bring; cities are liable if poorly 

maintained city trees fall and injure people (Vogt, Hauer, & Fischer, 2015). Finally, the 

opportunity costs of trees – the alternative uses of the land they take up - are especially salient in 

urban areas, where high population density means that land is already scarce.  

 
1 These refer to the “large central metro” counties in the NCHS 2013 Urban-Rural Classification Scheme 

for Counties.  
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What of the benefits? The most attention has been paid to how trees may reduce the urban 

heat island effect (Conniff, 2018). 2 Other benefits may include the filtration of air pollution, a 

moderating effect on local air temperatures (Food and Agriculture Organization of the United 

Nations, 2016), improved water quality by mitigating stormwater runoff from precipitation 

(Berland, et al., 2017), reduction in electricity use for heating and cooling (Akbari, 2002) 

absorption of atmospheric carbon dioxide (Demuzere, et al., 2014) and perhaps even reducing 

crime (Kondo, Han, Donovan, & MacDonald, 2017).  

Nonetheless, it is difficult to estimate the benefits of urban forests; cross-sectional estimates 

are confounded by the varying preferences and constraints of different city governments and 

different individuals, which are likely correlated with underlying health behaviors and outcomes. 

As a result, the benefits of urban forests are likely underappreciated (Conniff, 2018). 

My paper is the first to provide robust quasi-experimental evidence on how air pollution and 

human health respond to urban forest loss caused by the accidental introduction of the emerald ash 

borer, an insect that eats ash trees. Because tree cover is quantified, I estimate the elasticity of air 

pollution and mortality to forest loss in cities, rather than, as in previous work, the response of 

health outcomes to an emerald ash borer infestation of unknown severity.  This distinction matters 

because the policy question is not whether cities should welcome invasive insects that eat urban 

forests, but whether cities should maintain (or improve) urban forests. Using remotely sensed data, 

I provide an estimate of how much urban tree cover was lost to this shock and assess the channels 

 
2 The urban heat island effect refers to the phenomenon that urban areas experience higher temperatures 

than peripheral rural areas (Stone Jr. & Rodgers, 2001)  
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through which a reduction of urban tree cover of this size (up to 5.5%) affects human health 

outcomes.  

Ultimately, I find increases in ambient levels of air pollution and all-cause mortality, with 

the size of this effect, at a constant elasticity, implying that the presence of forests reduced all-

cause mortality rates in urban counties by 29.3%. This reduction amounted to 290000 deaths in 

2014, worth a total of $146 billion in 2014 at the FDA’s value of a statistical life year. 

1.2 Background and identification 

Ash trees (Fraxinus sp.) are commonly found as a shade tree in urban areas in the United 

States (Poland & McCullough, 2006). These trees, which comprise up to 10-40% of many urban 

forests (Coalition for Urban Ash Tree Conservation, 2011), are now under threat from the emerald 

ash borer Agrilus planipennis, the larvae of which severely damage ash trees by causing dieback3 

and death (McCullough, Schneeberger, Katovich, & Siegert, 2015). 

The emerald ash borer (EAB) is a beetle native to north-east Asia whose presence in the 

United States was first reported in the Detroit area in 2002, although it may have been present for 

substantially longer, likely introduced by infested shipping material (Muirhead, et al., 2006). The 

natural spread of the EAB is slow, but as the Detroit introduction suggests, human transport of 

infested wood may disperse EAB infection over long distances (Muirhead, et al., 2006). Even 

though a federal quarantine has been in place since 2003, the spread of emerald ash borer has 

 
3 Dieback is defined as “the progressive death of twigs and branches which generally starts at the tips” 

(Pataky, 1996). 
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continued, and the quarantine is now being lifted as ineffective (USDA Animal and Plant Health 

Inspection Service, 2018). 

The emerald ash borer does not directly harm humans (Oliver, 2014), the public find it 

difficult to distinguish ash trees from other tree species (Poland & McCullough, 2006), and the 

emerald ash borer has proven impossible to eradicate (Herms, et al., 2019) with government 

officials stating that they have “no adequate tools with which to manage” this insect. (United States 

Government Accountability Office, 2006). Furthermore, while the emerald ash borer spreads 

naturally over short distance, the rapid spread of this insect is largely through “unintentional 

human agency” (National Academies of Sciences, Engineering, and Medicine, 2019; emphasis 

added), occurring when humans transport infested wood products like firewood (Donovan, et al., 

2013).  

That the spread of emerald ash borer is accidental means there is a significant random 

component to EAB spread (Jones & McDermott, 2018). It does not mean spread is completely 

random; as a map of infestation (in Figure 1) shows, locations near the original introduction in 

Detroit are more likely to be infested. To account for the differences in climate (and other regional 

differences) caused by this correlation, state by 2012 USDA plant hardiness zone4 and year fixed 

effects (to be discussed in more detail in section 3.2) are an important part of my identification 

strategy. However, conditional on being nearby and having a similar climate, substantial 

randomness remains even between closely connected regions. For instance, the ash borer was 

 
4 “The 2012 USDA Plant Hardiness Zone Map is the standard by which gardeners and growers can 

determine which plants are most likely to thrive at a location. The map is based on the average annual 

minimum winter temperature, divided into 10-degree F zones.” (U.S Department of Agriculture 

Agriculture Research Service, 2012) 
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found in Fort Worth in 2018 but has not been detected in adjacent Dallas almost 3 years later 

(Tarrant, 2021) despite that city containing 2 million ash trees (Texas Trees Foundation, 2015). 

Similarly, it was found in Westchester County, NY (a suburb of New York City) in 2014 but was 

only detected in the adjacent Bronx 5 years later, a period long enough for the insect to spread 

from the Midwest to Boulder, CO. 

Therefore, the spread of emerald ash borer serves as a natural experiment for the effect of 

tree cover on human health, which is otherwise confounded by factors such as preferential sorting 

into neighborhoods with more tree cover. 

Existing work about the health benefits of urban afforestation includes Jones & Goodkind, 

(2019), who look at the effects of an urban afforestation program in New York City, 

MillionTreesNYC, on infant health, relative to surrounding counties which did not implement such 

a program. They find reductions in premature births and the probability of low birth rate. That 

emerald ash borer infestation, as a quasi-random shock to forest health, is a good instrument for 

forest cover has also been recognized. In the medical literature, Donovan, et al. (2013) used county 

fixed effects models to find that the presence of the emerald ash borer is associated with increases 

in mortality from cardiovascular disease and upper respiratory tract illness. However, they control 

for the ash canopy in the county, estimated by multiplying the total forest cover in the county by 

the statewide proportion of ash trees. 5 The change in the ash canopy is the channel by which the 

EAB presumably affects human health, making it unclear what their regression estimates. 

Donovan, Michael, Gatziolis, Prestemon, & Whitsel (2015) also find that the presence of emerald 

 
5 The ash canopy will be measured with error that covaries with treatment, because ash borer infestation 

reduces the county fraction of ash trees more than the statewide fraction of ash trees. 
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ash borer is associated with more cardiovascular illness, but their method only controls for 

observable differences between counties. In fact, they acknowledge that their result appears to be 

“influenced by uncontrolled differences between EAB and non-EAB counties”. 

In the economics literature, Jones & McDermott (2018) find using event study models that 

the emerald ash borer has caused increases in ambient air pollution of up to 50%. These are 

accompanied by large increases in cardiovascular mortality of up to 26% cumulatively (given that 

cardiovascular disease mortality comprises over 30% of deaths, these imply very large increases 

in all-cause mortality).  Similar papers include Jones (2018), which finds that emerald ash borer 

infestation decreases infant birth weight and increases the likelihood of premature birth, and Jones 

(2019), which finds that emerald ash borer infestation increases non-winter temperatures. 

However, their omission of most pre-treatment periods6 from the event study (Schmidheiny & 

Siegloch, 2020) materially changes their results, 7 making a causal interpretation of their results 

uncertain. 

A related literature estimates the hedonics of tree cover. The health benefits of tree cover 

may be incorporated into individuals’ preferences for trees. Works in this literature include 

Polyakov, Pannell, Pandit, Tapsuwan, & Park (2015) and Pandit, Polyakov, & Sadler (2013). 

These papers find that re-vegetating cities are likely to yield benefits to property owners (in terms 

of property value), particularly if trees are planted on public land. Exploring the extent to which 

 
6 Specifically, they omit dummies for periods before -3 that are in the sample. This omits 4 balanced  (and 

considerably more unbalanced) pre-periods. 
7 Replication results are available on request. 
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the health benefits of tree cover are valued by property owners may be a productive line of future 

enquiry. 

These studies look at how air pollution and health outcomes respond to emerald ash borer 

infestations of unknown severity. Unlike them, my paper is the first to use emerald ash borer 

infestation to quantify the policy-relevant parameter of how ambient air pollution levels and health 

outcomes respond to tree loss. Additionally, I focus on all-cause mortality 8  rather than 

cardiovascular and respiratory disease mortality as in Jones & McDermott, (2018) and Donovan, 

et al. (2013).  

1.3 Data and Methods 

I focus on the effects of the negative shock to forest cover, caused by emerald ash borer 

infestation, in urban counties. The higher temperatures and levels of ambient air pollution in urban 

areas mean that the potential benefits of trees are likely to have the greatest salience. Unfortunately, 

the opportunity costs of tree planting may be highest here given tighter space constraints in cities. 

Finally, the damage that emerald ash borer is likely to be largest in urban areas; urban ash trees 

are more susceptible to infestation; urban environments are stressful for trees (Poland & 

McCullough, 2006; Greene & Millward, 2018) and urban ash forests are often planted in single-

species stands (Poland & McCullough, 2006) which have low genetic diversity (Greene & 

Millward, 2018).  

 
8 This is of particular interest because it shows whether cause-specific mortality increases are leading to 

excess deaths, or whether they are “harvesting” individuals who would soon die of other causes. This 

phenomenon is also known as mortality displacement. 
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1.3.1 Data 

My estimation sample includes annual county-level data between 1990 and 2014. The 

dependent variables I analyze fall into several categories. First, I use mean Leaf Area Index [LAI, 

defined as the ratio of green leaf area to land area]) as a measure of forest cover to assess the 

damage caused by emerald ash borer. 9 This measure, which has been used to assess ash borer 

infestation (Tremberger, Sunil, Holden, Marchese, & Cheung, 2012; Murfitt, He, Yang, Mui, & 

De Mille, 2016), is averaged over July to mid-October, the period in the growing season10 when 

emerald ash borer larvae are active (Orlova‐Bienkowskaja & Bieńkowski, 2016). 11  This is 

obtained from the Advanced Very High Resolution Radiometer (AVHRR) instrument installed on 

a series of National Oceanic and Atmospheric Administration satellites. 

Second, there are measures of causal channels by which tree cover may affect human health, 

including mean annual ambient PM2.5, annual temperature maximums and annual temperature 

minimums12 (averaged over county from gridded observations at ~1km2, ∼16km2, ∼16km2 and 

∼25km2 resolution respectively). The use of gridded PM2.5 measurements, derived from both 

monitor and satellite information, avoids issues stemming from incomplete and potentially 

endogenous (Grainger & Schreiber, 2019) county coverage by ground pollution monitors. 

As measures of human health, I look at age-standardized mortality rates from all causes, 

cardiovascular disease, and chronic respiratory disease. As a falsification check, I also look at the 

age-standardized mortality rate from unintentional injuries.  

 
9 No comprehensive data on the prevalence of ash trees are available (Donovan, 2013).  
10 Leaf area index is only sensitive to green leaf cover. 
11 Emerald ash borer adults do not cause significant damage (McCullough, 2020). 
12 More precisely, the annual maximum (minimum) of mean monthly high (low). 
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I include median household income, unemployment rate, population density, race/ethnicity, 

weather controls such as temperatures and squared temperatures, precipitation, wind speed, and 

NAAQS standards as covariates in different models. 

The data source for each variable is listed in Table 1, and summary statistics are available in 

Table 2. 

1.3.2 Methods 

Denoting county by 𝑖 and year by t, I evaluate the effect of emerald ash borer infestation in 

the continental United States using fully saturated13  (Clarke & Schythe, 2020) event study14 

models. These estimate dynamic treatment effects, which are the coefficients 𝜇ℓ associated with 

indicators for the observations of counties ℓ years after tree death from emerald ash borer starts. 

To use the notation of Sun & Abraham (2020), the specification is: 

𝑦𝑖𝑡 = 𝛼𝑖 + 𝑈𝑖𝑌𝑡 +  𝑈𝑖𝑌𝑡 + 𝑆𝑖𝐶𝑖𝑌𝑡  + ∑ 𝜇ℓ𝟏{𝑡 −  𝐸𝑖  = ℓ} 

ℓ≠−1

+ 𝜐𝑖𝑡 

All dependent variables 𝑦𝑖𝑡, with the exception of temperature which is an interval variable, 

are log-transformed so that I can estimate elasticities (Wooldridge, 2013 p.44) as the policy 

 
13 “Binning” is not necessary because there are never treated units and requires the (unlikely in this 

context) assumption that treatment effects are constant outside the event window (Schmidheiny & 

Siegloch, 2020).  
14 A slew of recent papers have discussed potential problems with the weights that event studies assign to 

different treatment cohorts in the presence of heterogenous treatment effects. In Appendix Table A7 and 

Figure A3 I show using the Sun and Abraham (2020) decomposition that the weights each event study 

coefficient places on the corresponding event year in each treatment cohort are reasonable – in particular, 

they are positive and closely correlated with the number of counties in the cohorts. 
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parameters of interest.15 I include fixed effects for county 𝜇𝑖 to account for fixed unobservable 

differences between infested and unaffected counties in my sample.  

I stratify the coefficients 𝜇ℓ by urban status and at the median first year of tree death (2008) 

to obtain results specific to urban counties where tree death occurred early (up to and including 

the median). The first stratification is necessary because urban areas are the focus of my study, but 

an important part of my estimation strategy is to include fixed effects that interact states 𝑆𝑖 with 

USDA 2012 plant hardiness zones 𝐶𝑖. These are then interacted with year fixed effects 𝑌𝑡 (denoted 

by 𝑆𝑖𝐶𝑖𝑌𝑡 in the equation above). These interactions are included to account for climatic and other 

regional differences between the affected and unaffected counties (apparent in Table 2) which 

affect environmental health and may vary over time, particularly over 25 years when climate 

change is occurring. 16 Since many state by plant hardiness zone fixed effects contain only 1 urban 

county, 17 this estimation strategy requires the inclusion of all counties. The stratification by urban 

status is then done to obtain results specific to urban counties.  

 
15 Estimates in levels are in Appendix Table A1. While showing similar patterns, they appear to be 

confounded by differential trends, which are not present in the log specification. It is not possible for 

specifications in levels and logs to simultaneously have parallel trends unless the outcomes are the same 

in the base year (McKenzie, 2020).  
16 The assumption here is that the climate trends similarly over time in locations in the same state and 

plant hardiness zone. By this logic, outcomes of interest are likely to be correlated in these locations. 

Therefore, I cluster standard errors by state interacted with plant hardiness zone (127 clusters). This also 

helps address the potential for overly optimistic standard errors from the inclusion of non-urban countries 

by dramatically reducing the number of clusters relative to clustering at the level of treatment (county, 

with 3096 clusters). Results are similar if the standard errors are clustered by state (48 clusters). 
17 This is problematic if the sample is restricted to urban counties because the state by plant hardiness zone 

fixed effect interacted with year will absorb all variation if the fixed effect contains only 1 urban county. 
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The second stratification, at the median approximate first year of tree death (2008), 18 allows 

me to estimate event study coefficients from the same set of counties over a long event window 

(known as the balanced event window) for urban counties where tree death occurred early. 

Treatment effects in that window are not confounded by changes in sample composition 

(Goodman-Bacon, 2019; Clarke & Schythe, 2020). Such a window does not exist without 

stratifying because detections are continuously occurring. In my results, I focus on the balanced 

event window for early cohorts after stratifying. However, the results absent stratifying (shown in 

column (8) of Appendix Tables A2-A6) are similar, with the caveats that the changing sample 

composition makes the results not directly comparable and causes some loss of statistical power 

(Schmidheiny & Siegloch, 2020). 

I determine 𝐸𝑖, the year when tree death from emerald ash borer starts using information, 

correct as of May 2021, about when emerald ash borer was detected19 in a county from the Emerald 

Ash Borer Information Network20 and the U.S. Department of Agriculture Animal and Plant 

Health Inspection Service. 21 However, the treatment of interest is not the detection of the insect 

per se; it is damage to the urban forest caused by the insect. There is usually at least a 4 to 6-year 

lag between infestation and detection and decline and death usually occurs over a 3 to 5-year period 

 
18 Among counties where tree death started up to 2014; counties where tree death started after that are 

effectively controls (and are coded as such) since my sample ends in 2014. Results are very similar if they 

are treated as late cohorts. 
19 Detection methods include insect traps, removing the bark from ash logs, and visually inspecting ash 

trees (U.S. Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and 

Quarantine, 2020). 
20 This website is “a collaborative effort of the USDA Forest Service and Michigan State University to 

provide comprehensive, accurate and timely information on the emerald ash borer” (Emerald Ash Borer 

Information Network, 2021) 
21 There are inconsistencies between the records of detection status and year in these two sources. To 

address this conservatively, I treat any county where a detection is listed in either source as detected and 

use the minimum of detection years. 
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(Herms, et al., 2019; Arsenault, 2020). Therefore, tree death from emerald ash borer infestation is 

likely to start around 3 years before detection. Since tree death is the treatment of interest, I set the 

omitted year (year -1 in event timing) to be 4 years before detection. 22 In this context, the choice 

of an event study is advantageous because it transparently demonstrates the validity of this choice. 

Pre-trends (which are generally absent from my results) would be present if significant damage 

occurred before my choice of omitted year.  

I also include county fixed effects 𝛼𝑖, year fixed effects 𝑌𝑡 interacted with urban status, and 

following controls 𝑋𝑖𝑡 interacted with urban status:23 24 

• log(median household income), because wealthier neighborhoods can more easily 

afford to green their neighborhoods (Hoffman, Shandas, & Pendleton, 2020) and 

are less exposed to pollution (Bell & Ebisu, 2012),  

• proportion of population that is non-Hispanic White (Jones & McDermott, 2018), 

and proportion of population that is Hispanic, because communities of color have 

less green cover (Hoffman, Shandas, & Pendleton, 2020) and are more exposed to 

pollution (Banzhaf, Ma, & Timmins, 2019; Bell & Ebisu, 2012).  

Therefore, the key identifying assumption is that after controlling for:  

• income and race/ethnicity, 

 
22 Based on the 4 to 6-year detection lag and the 3 to 5-year progression of decline and death, the range of 

start of tree decline is 3 years before detection to 1 year after detection. Based on this range, the omitted 

year should be 4 years before detection based on the standard normalization (Borusyak & Jaravel, 2018).  
23 Interacting all covariates and year fixed effects with urban status ensures that outcomes of non-urban 

counties only affect the identification of 𝜇
ℓ
 through the state by hardiness zone and year fixed effects. 

24 The functional forms for covariates are chosen according to the guidelines in Wooldridge (2013, p.193). 
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• all other factors that impacted every county in the same climatic zone as the infested 

county, 

• all other county-specific factors that stayed constant over time, 

the outcomes of interest (leaf area index, PM2.5 levels, all-cause, cardiovascular, and 

respiratory disease mortality) in uninfested counties reflect what would have happened in the 

infested counties if emerald ash borer did not affect them. Some robustness checks, including a 

variety of controls such as log(population), temperatures and squared temperatures, precipitation 

and squared precipitation, wind speed and squared wind speed, unemployment rate, and 

log(upwind Leaf Area Index) and indicators for NAAQS standards, are discussed in Section 3.1 

and presented in Appendices Tables A2-A6.  

1.3.3 Dynamic treatment effects 

One reason why I adopt the event study methodology is to estimate dynamic treatment 

effects (Sun & Abraham, 2020). There are two reasons why treatment effects are likely to increase 

in magnitude over time. First, the damage caused by emerald ash borer accumulates over several 

years (Sadof, Mockus, & Ginzel, 2021). Second, exposure to changes in the environment caused 

by tree loss may have a cumulative effect on humans in addition to the contemporaneous effect. 

For instance, we will see later that ambient PM2.5 concentrations increases as tree cover falls. 

Human mortality caused by air pollutants such as PM2.5 may occur contemporaneously or 

accumulate over time, and the former may be overstated if the pollutants only “harvest sick 

individuals who were about to die anyway” (Anderson, 2019). Similar to the analysis in Anderson 

(2019) of cumulative versus contemporaneous treatment effects, I study the sequence of treatment 
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effects, the maximum treatment effect, and its timing to understand the accumulation of health 

damage from tree loss. 

1.4 Results and discussion 

1.4.1 Tree loss 

I first discuss the results of my event study for Leaf Area Index to quantify the damage from 

dieback caused by emerald ash borer infestation to city forests. In Figure 3 I show that urban 

vegetation cover as measured by remotely sensed Leaf Area Index averaged over July to the first 

week of October (the part of the growing season where emerald ash borer larvae are active) 

consistently declines after tree death from emerald ash borer starts, with the largest decline being 

5.8% (95% CI  -11%, -0.9%) in event year 6. It is worth noting that LAI only captures changes in 

green leaf area. Leaf loss (and as such, a decline in LAI) occurs with dieback caused by emerald 

ash borer larvae feeding on the inner bark. Unlike loss of green leaf cover in ash trees (which are 

deciduous), dieback that involves stems (which also trap air pollutants (Nowak, Crane, & Stevens, 

2006))  is likely to persist through the non-growing season months.  

One limitation of this analysis is that there is no data with which I can apportion loss of LAI 

to emerald ash borer or other causes (Jones & McDermott, 2018). As such, the parallel trends 

assumption requires that any other factors that might affect LAI, such as land clearing, trended the 

same way in uninfested and infested counties. However, since ash trees comprise up to 10-40% of 

many urban forests (Coalition for Urban Ash Tree Conservation, 2011) and emerald ash borer 

eventually kills nearly all ash trees in an infested area (Jones & McDermott, 2018), the reductions 

of 5-6% that I find after several years seem plausible. 
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1.4.2 Potential channels by which trees affect human health 

One channel by which damage to trees is likely to affect human health is through increases 

in air pollution. As a measure of air pollution, I look at ambient fine particulate matter (PM2.5) 

levels in affected counties. PM2.5 is one of the largest threats to air quality in the United States 

and is well measured even historically. However, PM2.5 is not the only pollutant that is potentially 

abated by trees, and my findings should be interpreted as an indicator of the effect of tree loss on 

ambient air pollution more generally, in what Dominici, Peng, Barr, & Bell (2012) describe as “the 

indicator approach”, rather than specifically being the effect on PM2.5 levels.  

In Figure 4 I show that there are increases in ambient PM2.5 levels in cities following 

declines in Leaf Area Index due to emerald ash borer infestation, with a maximal increase in annual 

mean ambient PM2.5 of 4.4% (95 CI 1.8%, 6.9%) in event year 5. Leaves and bark surfaces of 

urban trees can filter particulate matter from the atmosphere (Nowak, Crane, & Stevens, 2006), so 

this result is not unexpected even if some particulate matter is only temporarily trapped by 

vegetation (Nowak, 2002).  

Another potential channel by which urban forests could affect health is by moderating urban 

temperatures. Unlike with PM2.5, I do not find any meaningful changes in temperature maximums 

and minimums, shown in Appendix Figures A1a and A1b respectively, with the largest change 

being well below 1◦C. For reference, the temperature “bins” with which Deschenes (2014) shows 

the “U-shaped” effect of temperature on mortality, and within which mortality is assumed constant, 

are about 5◦C wide. The cooling impact of trees comes from two sources; the shade that the tree 

cover provides, and evaporative cooling from the transpiration of trees (Wimborne, et al., 2020). 

As temperature data are interpolated from weather station measurements which should be sited in 
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the open (World Metereological Organization, 2018), my null finding cannot rule out changes in 

temperatures from a reduction in tree shade. It does however provide evidence against a reduction 

in transpiration-related cooling, which affects air temperatures at both the local and regional level 

(Wimborne, et al., 2020). 

Since I cannot definitively isolate a pollutant as the single cause of health effects, I focus on 

the cautious interpretation (Anderson, 2019) which relates to the reduced-form effect of tree cover 

on mortality. However, in a later section I explore what can be said about the pollution-mortality 

relationship under stronger assumptions. 

1.4.3 Mortality outcomes 

The event study for all-cause mortality is displayed graphically in Figure 5 and numerically 

in Appendix Table A4. Increases in mortality are gradual and reach a maximum of 1.8% (95% CI 

0.2%, 3.4%) in the 5th event year. The increase then falls to 1.1% (95% CI -0.6%, 2.9%) over the 

base year even as tree cover continues to decline and PM2.5 levels are essentially level, which is 

suggestive evidence of some “harvesting” of individuals who would have died in a later year, but 

the point estimates remain positive and with only 1 year of such a dip this evidence is not 

conclusive. The median elasticity of all-cause mortality to city forest loss implied by the 7 post-

treatment coefficients in my event studies is 0.42.  

Do these increases come from causes that are consistent with increases in air pollution and 

potentially heat stress? I look at mortality from the causes most closely linked to these 

environmental causes – cardiovascular disease and chronic respiratory disease (Deschenes, 2014; 

Anderson, 2019). In Figures 6a and 6b I show increases in mortality from cardiovascular diseases 

of up to 3.0% (95% CI 1.0%, 5.0%) in the 5th event year and weaker evidence of increases in 
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mortality from chronic respiratory diseases of up to 2.5% (90% CI 0.2%, 4.8%).  Because these 

diseases make up 34% and 6% of deaths in affected counties respectively, these two causes account 

for around 2/3rds of the all-cause mortality increases found earlier. 

Treating PM2.5 as an index of ambient air pollution and assuming for the moment that 

greater exposure to heat stress is not a factor, I combine the PM2.5 (“first stage”) and mortality 

results to obtain a back-of-the-envelope estimate of the elasticity of mortality with respect to air 

pollution (Anderson, 2019). The median elasticity (again over the 7 post-treatment years) is about 

0.45, a value that is larger than comparable estimates of the PM2.5-mortality elasticity, such as 

Jha & Muller (2018) who find an elasticity of 0.11 in adults for PM2.5 alone. This difference may 

reflect health effects resulting from exposure to both PM2.5 and pollutant mixtures correlated with 

PM2.5 (Kim, et al., 2007), or it may reflect the difference in time horizons over which the estimates 

are calculated (monthly in Jha & Muller (2018), versus up to 7 years in my paper). 

1.4.4 Robustness of my results 

I perform a variety of robustness checks with different specifications to ensure that my 

results are not idiosyncratic to the base specification. First, I estimate the event studies in levels 

rather than logs in Appendix Table A1. I also add a variety of controls such as unemployment rate, 

weather controls such as temperatures and squared temperatures, precipitation, wind speed, and 

NAAQS standards to the covariates in the base specification. Finally, I estimate a specification 

that omits covariates altogether. These robustness checks, displayed in Appendix Tables A2-A6, 

do not substantially change my results (except potentially for chronic respiratory disease 

mortality). 
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As a falsification check, I run the same event study regressions as discussed earlier on 

mortality from unintentional injuries, an outcome that is unlikely to be affected by pollution 

exposure (Jha & Muller, 2018) or heat stress. Although it is possible that air pollution increases 

the likelihood of accidents through harming the nervous system (Guo, et al., 2018), the evidence 

for this is sparser than that for cardiovascular and respiratory disease mortality. I present these 

event study estimates in Appendix Figure A2. I do not find any significant changes in mortality 

from unintentional injuries before and after treatment, suggesting that there are no underlying 

differential trends common to deaths from unintentional injury and cardiovascular/respiratory 

causes (such as the quality of the local healthcare system) that are driving my results. 

Another concern is that the effect in any given county is overestimated because of the spatial 

correlation of emerald ash borer infestation. This correlation may mean that there are also fewer 

trees in nearby counties, so that air pollutants are more easily dispersed to urban areas. The first 

line of defense against this is the state by plant hardiness zone and year fixed effects, which absorb 

changes in air quality from pollutants that disperse equally across nearby areas. To eliminate the 

possibility of asymmetric wind distributions causing unequal dispersion of pollutants across these 

regions, I add as a robustness check a covariate for the mean late growing season leaf area index 

(the same variable as described above) in locations upwind25 of each county, where “upwind” is 

defined with respect to the prevailing wind direction at each county’s centroid in each year, 

interacted with urban status. The addition of this covariate, which in the presence of fixed effects 

controls for changes in upwind leaf area index, does not meaningfully change my results, which 

are shown in column (2) of Appendix Tables A2-A6.  

 
25 Restricted to grid cells up to 100km away. 
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Yet another potential source of bias, especially with the pollution results, are the 

contemporaneous imposition of policy changes such as new NAAQS standards (Jones & 

McDermott, 2018). My results are robust to including controls for the presence of a nonattainment 

designation for the NAAQS standards for PM10, PM2.5, lead, nitrogen dioxide, sulfur dioxide, 

carbon monoxide, and ozone. Results with these controls are shown in column (3) of Appendix 

Tables A2-A6. 

1.4.5 Policy implications 

The most immediate policy implication is that there are important health costs to 

uncontrolled emerald ash borer spread. The average excess mortality in early affected urban 

counties amounted to 189 extra deaths a year in event year 5. At the FDA’s value of a statistical 

life year, $490000 (Viscusi, 2020), these extra deaths came at a cost of $92.6 million per early 

affected urban county. Therefore, devoting more resources to the control of emerald ash borer 

seems justifiable.  

Although substantial, these estimates are meaningfully smaller than previous literature. The 

increases in excess deaths of 1.8% that I find are caused by emerald ash borer infestation may be 

compared to the increases in cardiovascular mortality of 14-26% found by Jones & McDermott 

(2018), which, given that cardiovascular disease causes about a third of all deaths in the United 

States, imply increases in all-cause mortality of about 4-9% due to cardiovascular mortality alone.  

Extrapolating the constant elasticity of 0.42 to all forests in all urban counties in the 

continental United States, my results imply that the presence of these forests reduced all-cause 

mortality rates in urban counties by 29.3%. Across all urban counties in the United States, this 

reduction implies that urban forests were responsible for preventing a total of 299000 deaths in 
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2014 alone. At the FDA’s value of a statistical life year, the value of the life-years saved thereby 

was $146 billion. 26  Even ignoring other manifestations of ill-health, the mortality benefit 

substantially outweighs the direct cost of maintaining urban forests. For instance, the entire budget 

of the City of Chicago’s forestry department in 2020 was about $25 million, substantially smaller 

than the mortality cost of losing a city’s tree cover.  

Furthermore, the liability risk from falling trees (Vogt, Hauer, & Fischer, 2015) is 

insignificant relative to the benefits of retaining tree cover. Schmidlin (2009) finds that there were 

407 deaths from wind-related tree failures in the United States between 1995 and 2007, or an 

average of 31 a year. This is dominated by the 299000 deaths I find that the urban forests in the 

continental United States prevented in 2014.  

My results show that urban afforestation has an important role to play in abating air 

pollution. Not all means of urban afforestation are equal, however, and the planting of trees should 

be done with care to maintain biodiversity. One of the reasons for why emerald ash borer has been 

so damaging has been the low genetic diversity of city ash trees (Greene & Millward, 2018). The 

experience of the emerald ash borer suggests that maintaining high levels of biodiversity is 

important for urban forests to stay resilient in the face of yet unknown invasive pests and the more 

extreme climatic conditions of the future. 

1.4.6 Limitations 

First, I would like to reiterate that while I have identified one plausible channel by which 

tree cover improves human health, I cannot rule out some others such as increased heat stress from 

 
26   These rather large numbers should be viewed in the context of being the result of a large treatment, 

since my results are extrapolated to calculate the effect of the loss of the entire urban forest. 
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reductions in tree shade. Relatedly, my results are identified off the loss of ash trees due to emerald 

ash borer infestation and may not be generalizable to urban forests made up of other species of 

tree. I have not found any evidence that ash trees are more effective in filtering air pollution than 

any other tree species. However, if changes in tree shade are a relevant channel, its effect may be 

larger in this context because ash trees were often planted for shade (Poland & McCullough, 2006).  

While my analysis is at the county level, there is likely a great deal of within-county variation 

in tree cover (Kondo, Han, Donovan, & MacDonald, 2017). For instance, “redlining” and its 

influence on tree cover (Hoffman, Shandas, & Pendleton, 2020) likely occurred at a smaller scale 

than the county. A more detailed accounting of tree cover will allow for more precise estimates of 

the relationship between urban tree cover and human health. There are no temporally consistent 

estimates of tree cover that span the variation I use, but future studies using other sources of 

variation should explore this source of heterogeneity in treatment. 

1.5 Conclusion 

In this paper I study the effect of a quasi-experimental negative shock to urban forests, 

stemming from the introduction of the invasive emerald ash borer, on the health of urban residents. 

Urban tree cover is quantified by remote sensing data, so my estimates reveal the elasticity of air 

pollution and health outcomes to urban forest loss, which answers the policy-relevant question of 

whether cities should invest in their forests. 

I find that one channel by which trees benefit urban health is by reducing pollution, with 

dieback that affects up to 4.2% of city forests being associated with increases in mean PM2.5 of 

up to 4.4%. These increases in ambient air pollution are one plausible cause for the increase in all-

cause mortality I find following tree loss, which gradually increase and peak at 1.8% in affected 
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cities. The median elasticity (across 7 post-treatment years) of all-cause mortality to urban forest 

loss of 0.42; extrapolating this elasticity to all urban forests in the continental United States, the 

presence of these forests reduced all-cause mortality by 29.3%, or 299000 deaths total, in 2014. 

At the FDA’s value of a statistical life year, these avoided deaths had a total value of $146 billion.  

My results show that urban afforestation is an important way of abating air pollution and 

thereby improving human health in urban areas, in addition to its potential benefits for urban 

livability. Such benefits will only become more important as land suitable for development gets 

scarcer and the cities of the future get denser.
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1.7 Tables and Figures 

Table 1: Data Sources 

Variable Source 

Age adjusted mortality per 100000 population 

All-cause, chronic respiratory disease, 

cardiovascular disease, injuries 

Dwyer-Lindgren, et al., 2016 

Weather and environment variables 

Mean annual ambient PM2.5 Meng, et al., 2019 

Maximum and minimum temperature, 

annual mean precipitation 

PRISM Climate Group, 2020a 

Leaf Area Index Claverie, Vermote, & NOAA CDR Program, 2020 

Wind speed and direction National Centers for Environmental 

Prediction/National Weather Service/NOAA/U.S. 

Department of Commerce, 1994, updated monthly 

USDA plant hardiness zone PRISM Climate Group, 2020b 

Year of emerald ash borer detection Emerald Ash Borer Information Network State & 

County Detection Table (Emerald Ash Borer 

Information Network, 2021), USDA APHIS Emerald 

Ash Borer Known Infested Counties (U.S. 

Department of Agriculture Animal and Plant Health 

Inspection Service, 2021) 

Other variables 

Median household income Census Bureau Small Area Income and Poverty 

Estimates 

Unemployment rate Bureau of Labor Statistics Local Area Unemployment 

Statistics 

Total, White and Hispanic population Census Bureau Population and Housing Estimates 

Urban classification NCHS 2013 Urban-Rural Classification Scheme for 

Counties 
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Table 2: Summary statistics of dependent variables in urban counties by approximate initial year 

of tree decline 

This table reports means and standard deviations (in parentheses). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Full sample Base year 

Initial year: Never 1999- 

2008 

2009-

2014 

Never 1999- 

2008 

2009-

2014 

No. of counties: 30 17 14 30 17 14 

Environment variables 

Jul-early Oct Leaf Area 

Index 

1.15 

(0.650) 

1.74 

(0.595) 

1.48 

(0.801) 
- 

1.79 

(0.621) 

1.55 

(0.924) 

Annual ambient PM2.5 

(μgm−3) 

9.87 

(3.24) 

13.2 

(3.76) 

13.6 

(3.61) 
- 

12.8 

(2.83) 

9.43 

(1.34) 

Maximum temperature 

(°C) 

32.7 

(4.08) 

29.1 

(2.11) 

30.7 

(1.99) 
- 

29.7 

(1.54) 

31.2 

(1.90) 

Minimum temperature 

(°C) 

2.87 

(4.97) 

-7.98 

(4.30) 

-4.18 

(3.05) 
- 

-7.29 

(3.38) 

-3.91 

(3.21) 

Mortality variables (age adjusted rates per 100000 population) 

All-cause 
894 

(145) 

925 

(136) 

974 

(190) 
- 

911 

(128) 

819 

(156) 

Cardiovascular disease  
313 

(69.3) 

323 

(75.3) 

355 

(85.2) 
- 

310 

(72.5) 

271 

(49.3) 

Chronic respiratory 

disease  

50.6 

(9.30) 

49.1 

(10.8) 

45.2 

(10.7) 
- 

50.3 

(11.7) 

44.0 

(11.8) 

Unintentional injuries 
18.3 

(4.70) 

20.4 

(3.85) 

20.6 

(5.71) 
- 

20.3 

(3.75) 

19.5 

(6.21) 
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Table 3: Urban counties with emerald ash borer detection by year  

Approx. year when 

tree decline started 
County City State 

1999 Wayne County Detroit MI 

2000 
Kent County 

Franklin County 

Grand Rapids 

Columbus 

MI 

OH 

2003 

Cook County 

Cuyahoga County 

Marion County 

Chicago 

Cleveland 

Indianapolis 

IL 

OH 

IN 

2004 
Alleghany County 

Hamilton County 

Pittsburgh 

Cincinnati 

PA 

OH 

2006 

Jefferson County 

Milwaukee County 

Ramsey County 

Louisville 

Milwaukee 

St. Paul 

KY 

WI 

MN 

2007 
Hennepin County 

Monroe County 

Minneapolis 

Rochester 

MN 

NY 

2008 

Alexandria City 

District of Columbia 

Erie County 

Alexandria 

District of Columbia 

Buffalo 

VA 

DC 

NY 

2010 

Fulton County 

Hartford County 

Jackson County 

Atlanta 

Hartford 

Kansas City 

GA 

CT 

MO 

2011 

Baltimore City 

Davidson 

Suffolk 

Baltimore 

Nashville 

Boston 

MD 

TN 

MA 

2012 

St. Louis City 

Wake 

Essex 

St. Louis 

Raleigh 

Newark 

MO 

NC 

NJ 

2013 
Hudson 

Philadelphia 

Jersey City 

Philadelphia 

NJ 

PA 

2014 

Kings  

Mecklenburg 

Queens 

New York City (Brooklyn) 

Charlotte 

New York City (Queens) 

NY 

NC 

NY 
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Figure 1: Two emerald ash borers Agrilus planipennis on a leaf 

 
Source: United States Department of Agriculture 
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Figure 2: Map of counties by status of tree death from emerald ash borer (up to 2014) and urban status 

 



 

42 

 

Figure 3: Early emerald ash borer infestation is associated with decreases in late growing season 

Leaf Area Index after approximate start of tree death in urban counties 

 
Leaf area index is defined as the ratio of one-sided green leaf area to land area. July to early (the 

first week of) October is the part of the growing season where emerald ash borer larvae are actively 

feeding. Standard errors clustered by state interacted with plant hardiness zone; 95% confidence 

intervals shown. Covariates include log(median household income), log(population density), 

log(% population that is white), and log(% population that is Hispanic), all interacted with urban 

status. Fixed effects are county, urban status interacted with year, and state interacted with USDA 

plant hardiness zone and year.  Displayed coefficients are for balanced event years. 
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Figure 4: Early emerald ash borer infestation is associated with increases in ambient average 

PM2.5 in urban counties 

 
Standard errors clustered by state interacted with plant hardiness zone; 95% confidence intervals 

shown. Covariates include log(median household income), log(population density), log(% 

population that is white), and log(% population that is Hispanic), all interacted with urban status. 

Fixed effects are county, urban status interacted with year, and state interacted with USDA plant 

hardiness zone and year.  Displayed coefficients are for balanced event years.
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Figure 5: Early emerald ash borer infestation is associated with increases in all-cause mortality in 

urban counties  

 
Standard errors clustered by state interacted with plant hardiness zone; 95% confidence intervals 

shown. Covariates include log(median household income), log(population density), log(% 

population that is white), and log(% population that is Hispanic), all interacted with urban status. 

Fixed effects are county, urban status interacted with year, and state interacted with USDA plant 

hardiness zone and year.  Displayed coefficients are for balanced event years for urban counties. 
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Figure 6: Early emerald ash borer infestation is associated with increases in cardiovascular disease mortality and chronic respiratory 

disease mortality in urban counties 

a) Cardiovascular disease mortality 

 

b) Chronic respiratory disease mortality 

 
Standard errors clustered by state interacted with plant hardiness zone; 95% confidence intervals shown. Covariates include log(median 

household income), log(population density), log(% population that is white), and log(% population that is Hispanic), all interacted with 

urban status. Fixed effects are county, urban status interacted with year, and state interacted with USDA plant hardiness zone and year.  

Displayed coefficients are for balanced event years for urban counties. 
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1.8 Appendices 

Appendix Table A1: Robustness checks for event study specifications in levels 

 (1) (2) (3) (4) (5) 

 July-early Oct 

Leaf Area 

Index 

Ambient 

average PM2.5 

All-cause 

mortality 

Cardiovascular 

disease 

mortality 

Chronic 

respiratory 

disease 

mortality 

-9 -0.03 

(-0.97) 

-0.01 

(-0.07) 

-2.38 

(-0.20) 

-2.33 

(-0.55) 

0.01 

(0.01) 

-8 0.04 

(0.54) 

0.07 

(0.46) 

-3.80 

(-0.33) 

-5.45 

(-1.18) 

0.23 

(0.23) 

-7 0.02 

(0.50) 

0.09 

(0.56) 

-8.37 

(-0.82) 

-6.17 

(-1.37) 

0.04 

(0.04) 

-6 -0.02 

(-0.61) 

0.10 

(0.76) 

-6.41 

(-0.79) 

-4.87 

(-1.55) 

-0.09 

(-0.12) 

-5 0.01 

(0.29) 

0.17 

(1.32) 

-6.58 

(-1.05) 

-5.15* 

(-1.96) 

-0.02 

(-0.03) 

-4 -0.08*** 

(-2.65) 

0.16* 

(1.78) 

0.85 

(0.12) 

-2.44 

(-0.74) 

0.21 

(0.44) 

-3 0.02 

(0.64) 

0.07 

(0.71) 

-2.66 

(-0.58) 

-2.94 

(-1.37) 

0.39 

(0.95) 

-2 0.05*** 

(2.76) 

-0.03 

(-0.36) 

0.22 

(0.08) 

-2.07 

(-1.56) 

0.10 

(0.25) 

-1 0.00 

(.) 

0.00 

(.) 

0.00 

(.) 

0.00 

(.) 

0.00 

(.) 

0 -0.04** 

(-2.35) 

0.03 

(0.57) 

1.47 

(0.74) 

0.50 

(0.42) 

0.47 

(1.51) 

1 -0.01 

(-0.61) 

0.09 

(1.32) 

9.74*** 

(2.97) 

3.53*** 

(3.83) 

1.04* 

(1.98) 

2 -0.04 

(-1.21) 

0.10 

(0.77) 

10.36** 

(2.26) 

6.10*** 

(3.74) 

0.82 

(1.17) 

3 -0.07** 

(-2.10) 

0.03 

(0.25) 

11.54** 

(2.55) 

8.42*** 

(3.73) 

0.75 

(1.14) 

4 -0.04 

(-1.46) 

0.02 

(0.15) 

15.32** 

(2.61) 

9.26*** 

(4.36) 

0.75 

(0.84) 

5 -0.08** 

(-2.35) 

0.14 

(1.10) 

18.78*** 

(2.98) 

10.74*** 

(4.39) 

1.57* 

(1.94) 

6 -0.10** 

(-2.49) 

0.15 

(1.07) 

14.42** 

(2.09) 

9.33*** 

(3.45) 

1.55* 

(1.69) 

Base 

covariates 

X X X X X 

Standard errors clustered at the state by plant hardiness zone level. t statistics in parentheses, * p < 0.1, ** p < 

0.05, *** p < 0.01 
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Appendix Table A2: Robustness checks for Jul-early Oct leaf area index event studies 

 (1) (2) (3) (4) (5) (6) (7) (8) 

-9 
-1.21 

(-0.62) 

-1.50 

(-0.79) 

-1.17 

(-0.60) 

-0.40 

(-0.23) 

-1.41 

(-0.73) 

-1.20 

(-0.61) 

-3.08* 

(-1.71) 

0.50 

(0.32) 

-8 
0.75 

(0.23) 

0.19 

(0.06) 

0.86 

(0.26) 

1.23 

(0.38) 

0.61 

(0.19) 

0.76 

(0.24) 

-0.89 

(-0.26) 

2.23 

(1.01) 

-7 
1.48 

(0.52) 

0.87 

(0.34) 

1.67 

(0.58) 

1.42 

(0.48) 

1.39 

(0.49) 

1.49 

(0.53) 

-0.12 

(-0.04) 

2.72 

(1.37) 

-6 
-1.37 

(-0.66) 

-1.55 

(-0.80) 

-1.58 

(-0.74) 

-0.52 

(-0.25) 

-1.38 

(-0.67) 

-1.35 

(-0.64) 

-2.77 

(-1.35) 

1.75 

(0.96) 

-5 
0.22 

(0.14) 

0.03 

(0.02) 

-0.06 

(-0.04) 

1.29 

(0.78) 

0.30 

(0.19) 

0.24 

(0.15) 

-0.96 

(-0.60) 

1.47 

(0.84) 

-4 
-2.85 

(-1.64) 

-2.55* 

(-1.67) 

-3.15 

(-1.61) 

-3.03* 

(-1.73) 

-2.84 

(-1.63) 

-2.84 

(-1.62) 

-3.85** 

(-2.21) 

-1.91 

(-1.44) 

-3 
0.62 

(0.46) 

0.57 

(0.47) 

0.36 

(0.22) 

1.29 

(0.90) 

0.68 

(0.50) 

0.63 

(0.46) 

-0.24 

(-0.17) 

-0.14 

(-0.13) 

-2 
2.68 

(1.61) 

2.23 

(1.29) 

2.43 

(1.62) 

3.27** 

(2.02) 

2.73* 

(1.66) 

2.69 

(1.61) 

2.07 

(1.36) 

0.53 

(0.34) 

-1 - - - - - - - - 

0 
-2.88** 

(-2.13) 

-2.64** 

(-2.13) 

-3.11** 

(-2.02) 

-3.44** 

(-2.28) 

-3.03** 

(-2.25) 

-2.86** 

(-2.14) 

-3.02** 

(-2.05) 

-0.62 

(-0.52) 

1 
-1.54 

(-0.81) 

-1.28 

(-0.64) 

-2.06 

(-1.05) 

-1.13 

(-0.57) 

-1.57 

(-0.83) 

-1.52 

(-0.81) 

-1.23 

(-0.66) 

0.41 

(0.28) 

2 
-1.70 

(-0.71) 

-0.27 

(-0.11) 

-3.13 

(-1.19) 

-1.44 

(-0.64) 

-1.72 

(-0.72) 

-1.67 

(-0.70) 

-1.36 

(-0.59) 

0.01 

(0.01) 

3 
-4.52* 

(-1.77) 

-3.46 

(-1.50) 

-5.91** 

(-2.22) 

-3.92 

(-1.54) 

-4.50* 

(-1.80) 

-4.50* 

(-1.78) 

-3.88 

(-1.43) 

-1.70 

(-0.79) 

4 
-2.44 

(-1.31) 

-1.88 

(-1.07) 

-4.07* 

(-1.78) 

-3.34 

(-1.37) 

-2.43 

(-1.36) 

-2.41 

(-1.30) 

-1.75 

(-0.85) 

-0.69 

(-0.40) 

5 
-4.23** 

(-2.07) 

-2.64 

(-1.34) 

-5.70** 

(-2.16) 

-4.29** 

(-2.05) 

-4.16** 

(-2.05) 

-4.20** 

(-2.09) 

-3.15 

(-1.55) 

-3.35* 

(-1.82) 

6 
-5.79** 

(-2.34) 

-4.52* 

(-1.92) 

-7.84** 

(-2.56) 

-5.52** 

(-2.33) 

-5.81** 

(-2.36) 

-5.76** 

(-2.36) 

-4.42 

(-1.63) 

-5.05** 

(-2.07) 

Base covariates X X X X X X  X 

Log(upwind LAI)  X       

NAAQS 

standards 

  X      

Weather variables    X     

Unemployment     X    

Log(Population)      X   

Do not stratify        X 

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01 
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Appendix Table A3: Robustness checks for PM2.5 event studies 

 (1) (2) (3) (4) (5) (6) (7) (8) 

-9 
-0.18 

(-0.12) 

-0.19 

(-0.13) 

-0.50 

(-0.32) 

-0.09 

(-0.06) 

-0.09 

(-0.06) 

-0.16 

(-0.11) 

-0.38 

(-0.26) 

-1.01 

(-0.93) 

-8 
0.33 

(0.21) 

0.37 

(0.23) 

-0.05 

(-0.03) 

0.41 

(0.26) 

0.39 

(0.25) 

0.34 

(0.22) 

0.14 

(0.09) 

-0.20 

(-0.18) 

-7 
0.50 

(0.35) 

0.50 

(0.35) 

0.12 

(0.08) 

0.50 

(0.37) 

0.53 

(0.37) 

0.51 

(0.36) 

0.27 

(0.19) 

-0.08 

(-0.08) 

-6 
0.56 

(0.43) 

0.53 

(0.41) 

0.27 

(0.19) 

0.50 

(0.43) 

0.54 

(0.42) 

0.57 

(0.45) 

0.29 

(0.23) 

-0.00 

(-0.00) 

-5 
1.25 

(0.89) 

1.23 

(0.89) 

0.98 

(0.65) 

1.26 

(0.92) 

1.19 

(0.85) 

1.26 

(0.90) 

1.00 

(0.71) 

0.48 

(0.52) 

-4 
1.07 

(1.16) 

1.05 

(1.16) 

0.93 

(0.87) 

0.91 

(1.09) 

1.04 

(1.15) 

1.08 

(1.19) 

0.82 

(0.86) 

1.01 

(1.62) 

-3 
0.22 

(0.29) 

0.24 

(0.31) 

0.04 

(0.05) 

0.30 

(0.40) 

0.18 

(0.24) 

0.23 

(0.30) 

-0.02 

(-0.02) 

0.29 

(0.52) 

-2 
-0.12 

(-0.20) 

-0.13 

(-0.22) 

-0.25 

(-0.40) 

-0.15 

(-0.24) 

-0.16 

(-0.26) 

-0.12 

(-0.19) 

-0.34 

(-0.56) 

0.86 

(1.56) 

-1 - - - - - - - - 

0 
1.09* 

(1.79) 

1.13* 

(1.81) 

1.26** 

(1.99) 

1.08* 

(1.76) 

1.18* 

(1.92) 

1.10* 

(1.80) 

1.00* 

(1.77) 

1.02*** 

(2.67) 

1 
1.26* 

(1.78) 

1.30* 

(1.80) 

1.32* 

(1.89) 

1.26* 

(1.73) 

1.29* 

(1.89) 

1.28* 

(1.79) 

1.33* 

(1.92) 

1.00** 

(2.10) 

2 
2.13* 

(1.84) 

2.20* 

(1.86) 

2.28** 

(2.41) 

2.23* 

(1.87) 

2.15* 

(1.92) 

2.17* 

(1.86) 

2.20* 

(1.83) 

2.31*** 

(2.75) 

3 
2.07* 

(1.81) 

2.11* 

(1.83) 

2.41** 

(2.47) 

2.03* 

(1.69) 

2.06* 

(1.93) 

2.09* 

(1.82) 

2.22** 

(2.08) 

1.78* 

(1.96) 

4 
2.49** 

(2.01) 

2.52** 

(2.02) 

2.86*** 

(2.79) 

2.50* 

(1.91) 

2.49** 

(2.10) 

2.52** 

(2.02) 

2.64** 

(2.35) 

2.02* 

(1.87) 

5 
4.39*** 

(3.41) 

4.44*** 

(3.42) 

4.99*** 

(4.46) 

4.51*** 

(3.40) 

4.37*** 

(3.57) 

4.42*** 

(3.41) 

4.69*** 

(3.82) 

3.84*** 

(3.47) 

6 
4.37*** 

(3.17) 

4.42*** 

(3.13) 

5.11*** 

(3.87) 

4.30*** 

(2.92) 

4.41*** 

(3.29) 

4.40*** 

(3.16) 

4.80*** 

(3.66) 

3.82*** 

(3.00) 

Base covariates X X X X X X  X 

Log(upwind LAI)  X       

NAAQS standards   X      

Weather variables    X     

Unemployment     X    

Log(Population)      X   

Do not stratify        X 

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01 

Appendix Table A4: Robustness checks for all-cause mortality event studies 

 (1) (2) (3) (4) (5) (6) (7) (8) 
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-9 
0.59 

(0.42) 

0.58 

(0.41) 

0.95 

(0.80) 

0.71 

(0.51) 

0.60 

(0.42) 

0.63 

(0.46) 

0.03 

(0.02) 

0.79 

(0.80) 

-8 
0.29 

(0.22) 

0.27 

(0.21) 

0.73 

(0.67) 

0.43 

(0.33) 

0.29 

(0.22) 

0.34 

(0.27) 

-0.18 

(-0.14) 

0.46 

(0.51) 

-7 
-0.15 

(-0.13) 

-0.14 

(-0.11) 

0.26 

(0.25) 

-0.02 

(-0.02) 

-0.16 

(-0.13) 

-0.13 

(-0.11) 

-0.61 

(-0.53) 

0.35 

(0.42) 

-6 
-0.02 

(-0.02) 

-0.01 

(-0.01) 

0.30 

(0.36) 

0.08 

(0.08) 

-0.03 

(-0.03) 

-0.07 

(-0.07) 

-0.43 

(-0.48) 

0.17 

(0.25) 

-5 
-0.17 

(-0.22) 

-0.17 

(-0.22) 

0.03 

(0.04) 

-0.07 

(-0.09) 

-0.17 

(-0.21) 

-0.19 

(-0.25) 

-0.52 

(-0.73) 

0.34 

(0.60) 

-4 
0.47 

(0.57) 

0.49 

(0.59) 

0.34 

(0.51) 

0.53 

(0.64) 

0.46 

(0.55) 

0.44 

(0.57) 

0.10 

(0.14) 

0.72 

(1.34) 

-3 
0.05 

(0.09) 

0.05 

(0.08) 

-0.09 

(-0.18) 

0.19 

(0.31) 

0.04 

(0.06) 

0.03 

(0.06) 

-0.30 

(-0.65) 

0.16 

(0.40) 

-2 
0.26 

(0.68) 

0.26 

(0.68) 

0.18 

(0.55) 

0.37 

(0.91) 

0.27 

(0.68) 

0.22 

(0.65) 

-0.02 

(-0.05) 

0.74** 

(2.30) 

-1 - - - - - - - - 

0 
0.25 

(1.08) 

0.26 

(1.12) 

0.21 

(0.68) 

0.16 

(0.66) 

0.23 

(0.97) 

0.15 

(0.71) 

0.05 

(0.27) 

-0.13 

(-0.47) 

1 
0.97** 

(2.38) 

0.98** 

(2.38) 

1.12** 

(2.34) 

1.00** 

(2.38) 

0.94** 

(2.31) 

0.85** 

(2.11) 

0.95** 

(2.32) 

0.39 

(0.85) 

2 
0.96** 

(2.01) 

0.98** 

(2.03) 

1.28* 

(1.97) 

1.06** 

(2.05) 

0.96** 

(1.98) 

0.76 

(1.53) 

0.82 

(1.49) 

0.99 

(1.34) 

3 
1.04* 

(1.80) 

1.06* 

(1.84) 

1.35* 

(1.84) 

1.12** 

(2.01) 

1.05* 

(1.82) 

0.85 

(1.51) 

1.04 

(1.59) 

1.04 

(1.20) 

4 
1.52** 

(2.09) 

1.54** 

(2.14) 

1.87** 

(2.36) 

1.42* 

(1.88) 

1.50** 

(2.08) 

1.28* 

(1.81) 

1.48** 

(2.18) 

1.54 

(1.49) 

5 
1.76** 

(2.18) 

1.76** 

(2.20) 

2.09*** 

(2.68) 

1.67** 

(2.02) 

1.74** 

(2.18) 

1.53** 

(2.00) 

1.88** 

(2.51) 

2.03* 

(1.78) 

6 
1.15 

(1.28) 

1.15 

(1.30) 

1.12 

(1.33) 

1.17 

(1.30) 

1.14 

(1.27) 

0.94 

(1.11) 

1.37* 

(1.75) 

1.43 

(1.18) 

Base covariates X X X X X X  X 

Log(upwind LAI)  X       

NAAQS 

standards 

  X      

Weather variables    X     

Unemployment     X    

Log(Population)      X   

Do not stratify        X 

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01 

Appendix Table A5: Robustness checks for cardiovascular disease mortality event studies 

 (1) (2) (3) (4) (5) (6) (7) (8) 
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-9 
1.40 

(1.03) 

1.29 

(0.95) 

2.01 

(1.55) 

1.04 

(0.79) 

1.51 

(1.11) 

1.49 

(1.21) 

0.68 

(0.55) 

1.10 

(1.07) 

-8 
0.19 

(0.14) 

0.12 

(0.09) 

0.90 

(0.73) 

-0.04 

(-0.03) 

0.27 

(0.20) 

0.31 

(0.25) 

-0.42 

(-0.34) 

0.36 

(0.36) 

-7 
-0.04 

(-0.03) 

-0.06 

(-0.05) 

0.63 

(0.51) 

-0.23 

(-0.16) 

0.02 

(0.01) 

0.03 

(0.03) 

-0.64 

(-0.49) 

0.47 

(0.47) 

-6 
0.10 

(0.10) 

0.09 

(0.10) 

0.72 

(0.72) 

-0.14 

(-0.15) 

0.12 

(0.13) 

0.05 

(0.06) 

-0.50 

(-0.60) 

0.38 

(0.49) 

-5 
-0.23 

(-0.29) 

-0.26 

(-0.31) 

0.27 

(0.36) 

-0.31 

(-0.37) 

-0.23 

(-0.28) 

-0.24 

(-0.33) 

-0.71 

(-0.98) 

0.30 

(0.48) 

-4 
0.16 

(0.16) 

0.17 

(0.17) 

0.26 

(0.32) 

-0.01 

(-0.01) 

0.16 

(0.17) 

0.13 

(0.15) 

-0.26 

(-0.30) 

0.50 

(0.73) 

-3 
-0.22 

(-0.30) 

-0.22 

(-0.30) 

-0.38 

(-0.52) 

-0.21 

(-0.29) 

-0.25 

(-0.34) 

-0.25 

(-0.39) 

-0.59 

(-0.96) 

-0.13 

(-0.23) 

-2 
-0.25 

(-0.58) 

-0.24 

(-0.56) 

-0.30 

(-0.67) 

-0.12 

(-0.23) 

-0.26 

(-0.59) 

-0.31 

(-0.78) 

-0.51 

(-1.33) 

0.35 

(0.89) 

-1 - - - - - - - - 

0 
0.28 

(0.66) 

0.29 

(0.66) 

0.17 

(0.41) 

0.00 

(0.01) 

0.31 

(0.72) 

0.12 

(0.31) 

0.12 

(0.37) 

-0.30 

(-0.76) 

1 
0.88** 

(2.18) 

0.89** 

(2.19) 

0.74 

(1.56) 

1.00** 

(2.32) 

0.87** 

(2.14) 

0.68* 

(1.80) 

0.90** 

(2.22) 

0.11 

(0.24) 

2 
1.64** 

(2.48) 

1.66** 

(2.46) 

1.34* 

(1.75) 

2.09*** 

(2.95) 

1.64** 

(2.49) 

1.30** 

(2.02) 

1.60** 

(2.45) 

1.31 

(1.39) 

3 
2.35*** 

(2.63) 

2.34** 

(2.60) 

2.07** 

(2.08) 

2.41*** 

(2.72) 

2.36*** 

(2.65) 

2.05** 

(2.38) 

2.46*** 

(2.65) 

2.01** 

(2.00) 

4 
2.74*** 

(3.21) 

2.71*** 

(3.19) 

2.45*** 

(2.67) 

2.76*** 

(3.08) 

2.73*** 

(3.19) 

2.35*** 

(2.88) 

2.85*** 

(3.52) 

2.52*** 

(2.64) 

5 
3.00*** 

(2.91) 

2.95*** 

(2.87) 

2.64*** 

(2.93) 

3.43*** 

(3.35) 

2.97*** 

(2.88) 

2.63*** 

(2.80) 

3.29*** 

(3.46) 

2.91** 

(2.55) 

6 
2.38* 

(1.95) 

2.32* 

(1.90) 

1.40 

(1.28) 

2.85** 

(2.38) 

2.39* 

(1.96) 

2.03* 

(1.85) 

2.81** 

(2.46) 

2.28* 

(1.73) 

Base covariates X X X X X X  X 

Log(upwind LAI)  X       

NAAQS standards   X      

Weather variables    X     

Unemployment     X    

Log(Population)      X   

Do not stratify        X 

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01 

Appendix Table A6: Robustness checks for chronic respiratory disease mortality event studies 

 (1) (2) (3) (4) (5) (6) (7) (8) 

-9 0.89 1.01 1.53 1.26 0.96 1.05 0.92 0.47 
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(0.46) (0.52) (0.93) (0.70) (0.51) (0.53) (0.51) (0.29) 

-8 
1.03 

(0.59) 

1.09 

(0.62) 

1.72 

(1.21) 

1.50 

(0.93) 

1.08 

(0.64) 

1.21 

(0.67) 

1.07 

(0.67) 

0.80 

(0.54) 

-7 
0.41 

(0.28) 

0.50 

(0.33) 

1.04 

(0.84) 

0.73 

(0.51) 

0.46 

(0.31) 

0.53 

(0.35) 

0.40 

(0.29) 

0.67 

(0.55) 

-6 
0.18 

(0.14) 

0.27 

(0.21) 

0.59 

(0.50) 

0.25 

(0.21) 

0.20 

(0.16) 

0.17 

(0.12) 

0.19 

(0.16) 

-0.04 

(-0.04) 

-5 
0.27 

(0.23) 

0.32 

(0.28) 

0.57 

(0.58) 

0.25 

(0.23) 

0.25 

(0.22) 

0.30 

(0.24) 

0.20 

(0.19) 

0.02 

(0.02) 

-4 
0.65 

(0.76) 

0.69 

(0.79) 

0.61 

(0.78) 

0.77 

(0.97) 

0.64 

(0.76) 

0.65 

(0.76) 

0.48 

(0.65) 

0.89 

(1.31) 

-3 
0.97 

(1.40) 

0.97 

(1.37) 

0.99 

(1.58) 

1.06 

(1.65) 

0.95 

(1.40) 

0.95 

(1.30) 

0.78 

(1.11) 

-0.01 

(-0.02) 

-2 
0.25 

(0.33) 

0.25 

(0.33) 

0.31 

(0.46) 

0.18 

(0.26) 

0.21 

(0.28) 

0.19 

(0.25) 

0.07 

(0.09) 

0.55 

(1.05) 

-1 - - - - - - - - 

0 
0.93* 

(1.66) 

0.94* 

(1.68) 

0.61 

(1.01) 

0.84 

(1.40) 

1.03* 

(1.84) 

0.78 

(1.45) 

0.65 

(1.22) 

0.35 

(0.70) 

1 
1.66 

(1.65) 

1.65 

(1.63) 

1.56 

(1.50) 

1.59 

(1.51) 

1.72* 

(1.67) 

1.45 

(1.40) 

1.48 

(1.40) 

0.42 

(0.43) 

2 
1.32 

(1.09) 

1.33 

(1.10) 

1.31 

(0.96) 

1.23 

(1.00) 

1.36 

(1.10) 

1.01 

(0.78) 

0.92 

(0.67) 

0.68 

(0.57) 

3 
1.14 

(1.09) 

1.19 

(1.13) 

0.97 

(0.89) 

1.05 

(0.97) 

1.15 

(1.09) 

0.85 

(0.76) 

0.80 

(0.64) 

0.34 

(0.25) 

4 
1.29 

(0.84) 

1.35 

(0.89) 

1.16 

(0.82) 

1.04 

(0.68) 

1.34 

(0.85) 

0.91 

(0.59) 

0.85 

(0.54) 

0.57 

(0.31) 

5 
2.53* 

(1.82) 

2.59* 

(1.87) 

2.28 

(1.66) 

2.13 

(1.41) 

2.56* 

(1.83) 

2.16 

(1.52) 

2.19 

(1.45) 

2.29 

(1.24) 

6 
2.33 

(1.47) 

2.41 

(1.54) 

1.92 

(1.18) 

1.93 

(1.17) 

2.41 

(1.52) 

1.97 

(1.21) 

2.00 

(1.19) 

2.17 

(1.08) 

Base covariates X X X X X X  X 

Log(upwind LAI)  X       

NAAQS standards   X      

Weather variables    X     

Unemployment     X    

Log(Population)      X   

Do not stratify        X 

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01 

Appendix Table A7: Correlation between number of urban counties in each early cohort and 

weight for urban counties 

Event 

year 

Correlation between number of counties in cohort and weight assigned to that 

cohort’s observations in the same event year. 
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-9 0.76 

-8 0.78 

-7 0.78 

-6 0.74 

-5 0.75 

-4 0.78 

-3 0.76 

-2 0.75 

0 0.80 

1 0.75 

2 0.73 

3 0.73 

4 0.75 

5 0.76 

6 0.76 

This table shows the correlation between the “own bin” weight assigned to each cohort and the 

number of counties in that cohort. Weights are obtained from the “eventstudyweights” package 

from Sun and Abraham (2020) after partialling out covariates and event study indicators for non-

urban counties. 
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Appendix Figure A1: Early emerald ash borer infestation is associated with little change in maximum and minimum temperatures in 

urban counties 

a) Maximum temperatures 

 

b) Minimum temperatures 

  
Standard errors clustered by state interacted with plant hardiness zone; 95% confidence intervals shown. Covariates include 

log(median household income), log(population density), log(% population that is white), and log(% population that is Hispanic), all 

interacted with urban status. Fixed effects are county, urban status interacted with year, and state interacted with USDA plant hardiness 

zone and year.  Displayed coefficients are for balanced event years for urban counties. 
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Appendix Figure A2: Early emerald ash borer infestation is not associated with any change in 

unintentional injuries  

 
Standard errors clustered by state interacted with plant hardiness zone; 95% confidence intervals 

shown. Covariates include log(median household income), log(population density), log(% 

population that is white), and log(% population that is Hispanic), all interacted with urban status. 

Fixed effects are county, urban status interacted with year, and state interacted with USDA plant 

hardiness zone and year.  Displayed coefficients are for balanced event years for urban counties. 
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Appendix Figure A3: Weights for each event year indicator for urban counties 

 
Explanatory text on next page. 
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These histograms show the distribution of weights for each event study coefficient for urban 

counties using the “eventstudyweights” package from Sun and Abraham (2020) after partialling 

out covariates, and the following discussion follows their terminology.  

 

The “own bin” distributions show the weights assigned to each cohort’s observations among urban 

counties in the corresponding event year, where a cohort comprises all counties with the same year 

of approximate first tree death. For example, the weights in the “own bin” distribution for event 

time 6 are the weights assigned to each cohort’s outcome among urban counties in event year 6. 

These are, as is desirable, positive and large (Sun & Abraham (2020) show they must sum to 1).  

 

The “other included bin” distributions for event year 𝑖 reflect the weights assigned to each cohort 

in other event years 𝑗 ≠ 𝑖 or urban statuses. Sun and Abraham (2020) show that those weights are, 

counterintuitively, nonzero; however, in this case they are much smaller than the “own bin” 

weights, with no overlap, and they are tightly centered around 0, as is desirable so that event year 

𝑖’s estimates are not excessively contaminated by event years 𝑗 ≠ 𝑖 or by non-urban counties. 
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Chapter 2 

The health co-benefits of carbon pricing in the electricity sector: Evidence from Great 

Britain 

2.1 Introduction 

Carbon prices are a powerful tool in limiting greenhouse gas emissions to limit global 

warming to the “safe” level of 2C or less over pre-industrial temperatures (International Monetary 

Fund, 2019), a goal that the international community agreed to in the Paris Agreement. The energy 

sector releases the vast majority - 73% in 2016 (Ge & Friedrich, 2020) - of anthropogenic 

greenhouse gases, and coal power plants, as a major source of energy, emit a great deal of carbon 

- 30% of energy-related carbon emissions in 2018 (International Energy Agency, 2019). At the 

same time, coal plants often release large quantities of local air pollutants such as nitrogen oxides 

(NO2) (Union of Concerned Scientists, 2017). Therefore, carbon prices, if effective at reducing 

emissions of carbon from coal combustion, may also benefit local air quality and health. 

In this paper, I provide the first quasi-experimental empirical evidence on the effect of 

imposing a carbon price on local air quality and health outcomes. 

2.2 Policy background 

In April 2013, the government of the United Kingdom introduced an electricity market 

reform comprising a carbon price on power plants, known as the Carbon Price Support (CPS), 

subsidies (contracts for difference) for low-carbon generation, an emissions standard for new 

plants of 450 gCO2/kWh, and a capacity market (Grubb & Newbery, 2018). The CPS was imposed 

on top of a Climate Change Levy, which had been imposed on downstream users of energy - 
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therefore excluding electricty generators (Pearce, 2005) - since 2001, as well as the European 

Union Emissions Trading Scheme (EU ETS). Phase-in of the Carbon Price Support was gradual, 

with the rate being set to £4.94/tCO2
27 between April 2013 and March 2014 (FY 2013/14), rising 

to £9.55/tCO2 between April 2014 and March 2015 (FY 2014/2015) and £18.08/tCO2 after March 

2015 (Hirst, 2018). Since coal is the most carbon-intensive source of electricity generation, the 

introduction of this carbon tax disadvantages coal generation and has been cited as a reason why 

the share of coal generation in the UK has plunged. 

In this paper I attempt to estimate the effects of the CPS on local air quality and health, 

focusing primarily on baseload sources of power; coal plants and combined-cycle gas plants. Since 

coal plants are the largest emitters of both carbon and local air pollutants, a carbon price that 

disadvantages coal relative to, say, natural gas should improve the local air quality near coal plants. 

If the reduction in generation from coal plants is made up by natural gas plants, however, there 

may be an increase in pollution near natural gas power plants. 

2.3 Related Work 

In the economics literature, the CPS has been studied by Leroutier (2019), Abrell, Kosch & 

Rausch (2019), and Gugler, Haxhimusa & Liebensteiner (2020). These three papers study the 

effect of the Carbon Price Support on carbon emissions from the UK power sector, and find that 

significant reductions in carbon emissions result. A reduction in carbon emissions should be 

accompanied by reduction in emissions of co-pollutants. All these papers have to grapple with the 

problem of finding a valid counterfactual for the output of power plants in a setting where every 

 
27 tCO2 stands for ton of carbon dioxide. 
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other power plant in the same electricity grid is treated by the policy. Abrell, Kosch & Rausch 

(2019), and Gugler, Haxhimusa & Liebensteiner (2020) do so by using the same plants in the past 

as counterfactuals; the first uses pre-treatment outcomes to predict future output in the absence of 

treatment, and the second uses and a discontinuity in time. Leroutier (2019) takes a different 

approach and uses European power plants as synthetic controls. 

Unlike these three papers, which all focus on emissions, I consider ambient air quality and 

health outcome changes in the vicinity of power plants. Since there are areas near power plants 

and areas far from power plants, looking at this outcome sidesteps the need for identifying valid 

counterfactuals for power plants per se. Of course, the link between emissions from large point 

sources and ambient air quality is unclear in this context as it not only depends on pollutant 

emissions per se, but also how these pollutants are dispersed into the atmosphere. This dispersion 

depends on atmospheric circulation and characteristics of the power plant such as the height of its 

chimney. Unlike the power sector, where it is difficult to find counterfactuals that share a policy 

background and yet are unaffected by the Carbon Price Support, areas close to a power plant have 

a natural counterfactual in the form of areas further away from any power plants. 

More broadly, greenhouse gas reduction policy has been found to benefit human health, but 

these papers, at least in economics, generally do not address the electric power sector. These papers 

include Knittel & Sandler (2011), who find important reductions in pollutants from vehicle 

Corporate Average Fuel Economy Standards and Renewable Fuel Standards in California, and 

Holland et al. (2016), who study the local pollution benefits of electric cars. The environmental 

science literature, such as Dimanchev et al. (2019), forecasts health benefits from the 
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decarbonization of the electric sector, but these do not as a rule approach this topic from the 

perspective of causal identification. 

A necessary condition for there to be health benefits near coal plants from the imposition of 

a carbon price is that proximity to coal plants harms human health. Difference-in-difference/event 

study methods similar to those I will use generally find negative health impacts of living near coal 

power plants. For example, Barrows, Garg & Jha (2019) find that proximity to coal plants in India 

is associated with increased child mortality. Likewise, Vyas (2019) finds reductions in height for 

children living close to coal power plants in India. 

2.4 Data and Methods 

I adopt an event study framework to study the effect of the carbon price on ambient NO2 

levels and mortality. Excluding from the sample all plants with less than 2MW capacity, which 

are exempt from this policy, and all CHP plants, which are unlikely to affected by the policy 

because their electricity load follows their heat load (Denholm et. al, 2018; Jorß et. al, 2013 pp. 

149), 28  I obtain the locations of every relevant power plant from from open-power-system-

data.org (Wiese et al., 2019) and the Digest of UK Energy Statistics (DUKES) (Department for 

Business, Energy & Industrial Strategy, 2019a, Table 5.11), and run the following model, which I 

will refer to as the base specification: 

𝑌𝑖𝑡 = ∑ CAP𝑡,𝑑
𝐶𝑜𝑎𝑙β𝑦,𝑑

𝐶𝑜𝑎𝑙

𝑑

+ ∑ ∑ CAP𝑡,𝑑
𝑗

β𝑦,𝑑
𝑗

𝑑

7

𝑗=1

+ 𝑊𝑖𝑡 + μ𝑖 + θ𝑡 

 
28 I do however include Grain CHP, which appears to be primarily operated for electricity generation (Power 

Technology, 2010). 
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In this specification29, 𝑌𝑖𝑡  is the outcome of interest, i.e, ambient air quality in terms of NO2 

levels and mortality, in district i at month t. CAP𝑡,𝑑
𝑗

 is defined as the capacity (in gigawatts) of plants 

of fuel type j at time t and distance d (in bins) of district i’s population-weighted centroid as of the 

(pre-treatment) 2011 Census. Even though the data are monthly, I run the event studies at the fiscal 

year level (that is, I interact fiscal year dummies with the capacity variables) because treatment 

varies by fiscal year. As such, the vector of coefficients 𝛽𝑦,𝑑
𝐶𝑜𝑎𝑙  are of primary interest; they 

represent the change (relative to the base period, the 2012-13 fiscal year) in the average effect of 

having 1GW of coal capacity within distance d of a district on that district’s pollution/mortality 

levels. 

Pollution data come from two sources. I primarily use yearly 1km by 1km grids of modelled 

background pollution (DEFRA, 2019) which I average over each district. Unfortunately, using this 

alone induces measurement error because these grids are provided for each calendar year, but 

treatment changes by fiscal year. Therefore, I proxy for each district’s distribution of NO2 over 

each year by using that district’s distribution of tropospheric NO2
30 in that year from the Aura 

OMI-NO2 instrument (Krotkov, 2013) on a 0.25◦x 0.25◦grid (about 25 by 17km at Greenwich’s 

latitude), averaged over the district. This is subject to substantial noise for reasons such as cloud 

cover31, so I smooth each district’s time series of NO2 using nonparametric kernel regression. 

Finally, I calculate the scale factor  

 
29 I run these in a joint model because a district could be within 20km of one coal plant and, say, 35km from 

another coal plant at the same time. 
30 NO2 is technically one component of NO2, but it is used as an indicator for NO2 (U.S. Environmental 

Protection Agency, n.d.) 
31 Great Britain is notoriously cloudly; unsurprisingly, excluding pixels with substantial cloud cover leads 

to district-month combinations with no observations. 
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𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑁𝑂2 𝑓𝑜𝑟 𝑚𝑜𝑛𝑡ℎ 𝑖 𝑜𝑓 𝑦𝑒𝑎𝑟 𝑦

∑ 𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝑁𝑂2 𝑓𝑜𝑟 𝑚𝑜𝑛𝑡ℎ 𝑗 𝑜𝑓 𝑦𝑒𝑎𝑟 𝑦 / 1212
𝑗=1

 

and multiply this scale factor by year y’s modelled background NO2 to get an estimate of each 

month’s ambient NO2 levels. The monthly means of yearly background NO2, yearly NO2 

multiplied by a scale factor calculated without smoothing, and yearly NO2 multiplied by the scale 

factor calculated with smoothing are plotted in Figure 1 below. 

Total death counts by month and lower tier local authority district32 are obtained from several 

sources; the Office of National Statistics (2019a) provides them for England and Wales and 

National Records Scotland (2019a) provides them for Scotland. Cause of death data is only 

available at the yearly level; for Scotland, from National Records Scotland (2019b); for England 

and Wales between 2013 and 2017, the Office of National Statistics (2019b); for England before 

2013, Office of National Statistics (2019c); and for Wales before 2013, StatsWales (2019). Causes 

of deaths are only available for the calendar year; as with the pollution data, this is problematic 

because the treatment (by fiscal year) is not aligned with calendar year. Unfortunately, there are 

no higher frequency sources of these data, so I assume that the proportion of deaths due to 

circulatory disease is constant across the calendar year. 

Weather variables Wit are obtained from MERRA-2 (GMAO, 2015) on a 0.5◦x 0.625◦grid 

(about 55km by 43km at Greenwich’s latitude) and averaged over district. These variables include 

humidity, temperature, precipitation (all three divided into 10 quantiles), and wind direction 

 
32 There are two levels of local authorities in many parts of England. Multiple lower tier districts are nested 

in each upper tier district. 
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(divided into 5 dummies), interacted with district and wind speed (5 quantiles by district and wind 

direction). 

Lower tier local authority districts are small enough that even though there are only 8 coal 

plants operating throughout the sample period, except for the first 20km, relatively small 10km 

radii can capture a substantial number of districts. This is shown in Table 1. 

Since there are more than two kinds of power plants in Great Britain, I include additional 

“treatment” dummies to control for districts that are near power plants that are not combined-cycle 

or coal power plants. The 7 other plant types j are Combined-Cycle, Gas, Other Fossil, time-

varying CC, time-varying Coal, time-varying Gas and time-varying Other Fossil; 33  it is is 

necessary to include all of these simultaneously to control for the fact that most districts are near 

more than one type of fossil fuel plant. 

The choice to partition each fuel type’s capacity into “time-varying” and non “time-

varying” capacities requires some explanation. The “time-varying” capacity near district i in year 

y, refers to the capacity of plants near i, that are operating at time t but do not operate through the 

sample period. Therefore, the “time-varying” capacity at time t comprises plants that started 

operating after 2009 but before t and plants that retired after t but before 2018. As t increases, the 

new plants that satisfy these conditions are likely to be newer and therefore cleaner (because the 

potential start dates are later) and the will-be-retired plants that satisfy these conditions are likely 

to be more efficient and therefore cleaner (since the potential retirement dates are later). This will 

 
33 Although there are several operational oil plants, they produce a trivial amount of electricity and NO2 

emissions 
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be reflected by the associated coefficient declining over time, which is precisely what I expect will 

happen to coal plants because of the implementation of the CPS. 

This level of aggregation is chosen because it is unlikely that the carbon price will 

differentially affect plants with the same fuel/technology type, but I expect that the carbon price 

will impact plants of different fuel types differently. Consider that marginal cost = (Price of fuel * 

Fuel consumed per unit of electricity), and carbon tax paid = (Tax rate * Carbon intensity per unit 

of fuel * Fuel consumed per unit of electricity); between plants of the same fuel/technology type, 

the only differences are in fuel consumed per unit of electricity, so marginal cost is directly 

proportional to carbon tax paid. Therefore, imposing a carbon tax will not change the cost ordering 

of plants. 

Between plants of different fuel types, however, there are large differences in carbon 

intensity per unit of fuel, with coal being the most carbon-intensive (pay the most CPS) and 

combined-cycle natural gas being the least (pay the least CPS). This means that marginal cost is 

no longer directly proportional to tax paid, so imposing a carbon tax may change the cost 

ordering. There is likely also treatment effect heterogenity between combined-cycle and open-

cycle gas turbines that use the same fuel since open-cycle gas turbines, unlike their combined-

cycle brethren, are designed to run for short periods of time and cannot be substitutes for baseload 

coal plants. 

The base specification does not account for several covariates which affect the demand for 

and supply of electricity from fossil fuel generators. Many of these are applicable to the entire 

network of electricity generators and therefore have no cross-sectional variation per se, but by 
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affecting the output of generators will disproportionately affect the same locations as those affected 

by the CPS. These variables are denoted Mt and are interacted with the treatment variable CAPi
d. 

The inclusion of these variables means that the event study cannot be done at the quarterly level. 

In any case, the treatment changes in different fiscal years, so this is the level at which I perform 

the event studies. 

The covariates Mt include log electricity demand net of wind and solar (non-dispatchable 

resources), log dispatchable34 generation, and log net imports. In addition, an important factor to 

consider is the relative prices of different fuels, which determines in large part the location of a 

power plant on the supply curve and therefore its generation. I obtain the average quarterly gas 

price paid by electricity producers for natural gas and coal (Department for Business, Energy & 

Industrial Strategy, 2019b) and include their ratio in the form 𝑔(ℎ(𝑥)) = invlogit(ln(
𝑃𝑔𝑎𝑠

𝑃𝑐𝑜𝑎𝑙
)) as an 

interaction term for all plants which run on either natural gas or coal. I additionally control for the 

log real EU ETS spot price (Quandl, 2019). 35 Since the EU ETS price functions by changing the 

relative prices of gas and coal, it should should have the largest effect where a change in the price 

ratio has the largest effect (i.e, where the gradient is highest). Therefore, I interact the EU ETS 

price with the gradient of the inverse logit function 𝑔′(ℎ(𝑥)). 

 
34 Nuclear (predominantly) and hydro. 
35 The CPS rates are notionally derived by fixing a target price - the Carbon Price Floor (CPF) - and 

subtracting the EU ETS price. If that is so, omitting the EU ETS price as a control would give estimates of 

the effect of whatever level the CPF was set at. In practice, the CPS rates for 2013-14 to 2015-16 were 

derived by subtracting the 3-years ahead futures price from the CPF, so that interpretation is complicated 

by the EU ETS price changing after the CPS rate was set. In any case, the CPS was frozen after 2015-16, 

breaking the link between the CPF and the CPS. 
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Other variables, Xit, exhibit both cross-sectional and time series variation. These include 

include 16+ employment rate, manufacturing employment rate (Office of National Statistics, 

2019d), log real average gross disposable household income (GDHI) (Office of National Statistics, 

2019e) , total vehicle mileage per area, (Department of Transport, 2019), car mileage per area, 36 

population density, and a set of variables controlling for the age distribution in 5-year brackets 

(Office of National Statistics, 2019f). All these variables are observed at the calendar year level. 

 The functional form 𝑔(ℎ(𝑥)) = invlogit(ln(
𝑃𝑔𝑎𝑠

𝑃𝑐𝑜𝑎𝑙
)) is chosen so that at extreme ratios the 

marginal effect of a change in relative prices is minimal; see Appendix A for further explanation. 

For example, when gas prices are high enough every coal plant will be at maximum output, so an 

increase in the gas price will not lead to increased output from coal plants. In practice, the domain 

of the price ratio in the sample generally falls near the middle of the logistic curve where the 

gradients are steepest (but to the right of 0; gas prices are generally higher than coal prices), so the 

results are robust to including ln(
𝑃𝑔𝑎𝑠

𝑃𝑐𝑜𝑎𝑙
) linearly. 

As such, the final specification is of the form: 

𝑌𝑖𝑡 = ∑ CAP𝑡,𝑑
𝐶𝑜𝑎𝑙

𝑑

(β𝑦,𝑑
𝐶𝑜𝑎𝑙 + 𝑀𝑡,𝑑

𝐶𝑜𝑎𝑙) + ∑ ∑ CAP𝑡,𝑑
𝑗

(β𝑦,𝑑
𝑗

+ 𝑀𝑡,𝑑
𝑗

)

𝑑

7

𝑗=1

+ 𝑋𝑖𝑡 + 𝑊𝑖𝑡 + μ𝑖 + θ𝑡 

Standard errors of all specifications are two-way clustered by district and month. 

 
36 Vehicle and car mileages are only available at upper tier local authority districts, so I obtain estimates for 

each lower tier districts by scaling each upper tier district’s mileage by the proportion of the upper tier 

district’s population living in that lower tier district. 
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2.5 Results and discussion 

In the base specification, I find significant reductions in ambient NO2 levels and all-cause 

mortality rates for any given level of nearby coal capacity in the post-period. Unfortunately, as the 

significant coefficients in the pre-period suggests, this model is unable to account for all the 

idiosyncratic variation in that relationship before treatment. Of particular concern are the pollution 

and health effects of variation in the relative prices of electricity from coal and combined-cycle 

plants; these depend both on the relative input prices of coal and gas as well as the price of EU 

ETS permits - increases in the latter disproportionately disadvantages coal plants because coal 

plants are more carbon intensive. To account for these, as well as other observables that could bias 

my results, I introduce several covariates as described in the section on the preferred specification 

above. 

Turning our attention to the preferred specification, I start by discussing the effect of the 

carbon tax on air pollutants. Specifically, I look at nitrogen dioxide (NO2) levels. NO2 was a 

particularly important type of air pollution in Great Britain in the years in question, with its levels 

exceeding (legally binding) EU ambient air quality standards in most of the country throughout 

the sample period (DEFRA, 2009-2017). Long-term nitrogen oxide exposure has also been 

implicated in poor health outcomes up to increases in all-cause mortality (Hoek et al., 2013). As 

such, I focus my discussion of air quality on NO2. Ambient NO2 levels for any given level of 

nearby coal capacity fall after the carbon tax is implemented, and the largest reductions (in 

magnitude) in NO2 near coal plants occur after fiscal years 2015/2016 and beyond when the carbon 

tax is at its highest value. Such reductions imply that the capacity factor of coal plants has fallen. 

This is expected because, as described earlier, coal plants are the most carbon-intensive source of 
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generation, meaning that operating coal plants becomes more expensive relative to all other forms 

of generation. The reductions in NO2 tend to tail off beyond a 50km radius, when I fail to find any 

reductions in all-cause or circulatory disease mortality rates. 

If ambient air pollution levels fall for any given amount of nearby coal capacity, mortality 

for any given level of coal capacity should also decline. Indeed, I find such a decline in most 

districts up to 50km away from coal plants, with the most significant declines being in districts 

between 40 and 50km away from coal plants after FY 2016-2017. There are also large declines in 

mortality in the districts less than 20km from coal plants in the initial years after the introduction 

of the CPS. Those reductions in death rates amount to drops of around 1.5% to 2.5% from the pre-

treatment mean per gigawatt of coal capacity nearby. It appears that mortality reductions do not 

persist at distances further than 50km away from coal plants; therefore, even though air pollutants 

from coal plants can travel hundreds of kilometers, I cut the analysis off at a 70km radius. 

So far, I have estimated the relationship between coal capacity and mortality rates. This can 

be converted to an estimate of the changes in mortality rate in affected districts by multiplying the 

coefficient by the average coal capacity. In the districts between 40 and 50km from a coal plant, 

the effect of the carbon price was about 1.5 deaths per 100000 per GW of capacity per month in 

FY2016-2017 and about 2.1 deaths per 100000 per GW of capacity per month in the first 9 months 

of FY2017-2018. The average coal capacity in these districts was 2.5 GW. Therefore, the average 

change in mortality was a reduction of 3.8 deaths per 100000 per month in FY2016-2017 and 5.3 

deaths per 100000 per month in FY2016-2017.  
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The information outlined above can also be used to calculate the value of lives lost. The 

National Institute for Clinical Excellence (NICE) has a recommended value of £20000 for a 

quality-adjusted life year (Ogden, 2017). 37 There were 37 districts at a distance of 40-50km from 

a coal plant in those years, with a mean population of 170000. Using these numbers, I estimate 

that 2850 life-months were saved in FY 2016/2017 and 2950 life-months in the 9 months of 

FY2017/2018 in the sample. Over these 21 months, there was a total benefit of £9.7 million from 

mortality reductions stemming from the CPS in addition to the carbon reduction benefit. This is 

very much a lower bound because it only considers the significant negative mortality coefficients, 

which ignores the remaining coefficients up to 50km which are negative in every year. 

Accompanying the significant reductions in all-cause mortality are significant reductions in 

mortality from circulatory disease. The reductions in circulatory disease are, on average, a larger 

proportion of the reductions in all-cause mortality than the proportion of deaths attributable to 

circulatory disease in those fiscal years. The proportion of reductions seems to be falling over time, 

suggesting heterogenous short and long-run effects of air pollution from coal plants. 

Of course, mortality is not the only negative impact on health that NO2 exposure brings. 

Even short-term exposure to NO2 brings many less than lethal health effects, such as “coughing 

and choking”, “nausea”, “headache”, “abdominal pain” and “difficulty breathing” (National 

Institutes of Health, n.d.). Therefore, the effect of this policy on human welfare is larger than the 

effects on mortality presented here. 

 
37 This is actually a very low valuation; the US EPA’s value of a statistical life year is $490000. 
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I also consider the effect of the CPS on districts near combined-cycle gas plants. These plants 

are substantially cleaner, particularly at full load, than coal plants (Gonzalez-Salazar et. al, 2018). 

If NO2 levels near coal plants have gone down because the carbon price has induced generation to 

shift from coal plants to combined-cycle gas plants, the capacity factor of combined cycle plants 

should go up, but increases in the capacity factor from combined cycle plants should not lead to a 

large increase in the capacity-ambient NO2/mortality relationship near those plants.  

Unlike coal plants, there is no clear movement in the capacity-ambient NO2 relationship, 

with perhaps an increase in ambient NO2 levels at some distances. These increases in ambient 

pollution do not appear to be accompanied by increases in mortality; in fact, my model finds 

significant decreases in mortality in districts at 30 to 40km from these plants, but these occur even 

as the estimates indicate that NO2 levels are significantly increasing in those districts. The pre-

trends and overall larger standard errors (despite there being 4 times as many districts near 

combined-cycle gas plants as there are near coal plants) do suggest, however, that my model fails 

to capture some idiosyncratic variation in mortality in the districts near combined-cycle gas plants. 

Presumably, there is unmodelled cross-sectional or time-varying heterogenity in the mortality 

response to covariates in the model, which is perhaps inevitable with the large number of districts 

. Be that as it may, there is no evidence to suggest any (at least, short-run) cost in terms of mortality 

of substituting from coal plants to combined-cycle gas generation, which is reassuring if that 

remains necessary for carbon reduction goals until baseload can be provided by zero-GHG 

resources (Hausfather, 2015). 

We may be concerned that these changes have come about due to other changes affecting 

electricity generation occuring around this time. After all, I described earlier that the carbon price 
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support was only one of four policies introduced as part of a reform of the electricity market. Since 

my estimates control for renewable generation, they account for the effects of renewable subsidies 

on the construction of new low carbon power plants. Capacity payments do not create an incentive 

that changes the amount of electricity generated or pollutants released from a plant outside of the 

long-run decision of whether to make the plant available.38 This means that the estimates I obtain, 

which are representative of the set of plants that operate throughout the sample period, are only 

affected by the existence of the capacity market to the extent that capacity payments, which start 

in October 2018, induce plants to be available not only after October 2018 but also up to 2017. 39 

To account for variations in the other carbon tax operating through the sample period, I control for 

EU ETS permit prices. Although the Climate Change Levy might have affected the demand for 

electricity from industry, it was constant in real terms through the whole sample period. 

2.6 Conclusion 

This study shows that the imposition of a relatively small carbon tax in the electricity sector 

leads to significant reductions in ambient levels of air pollutants such as nitrogen oxides (as NO2) 

near coal power plants. Importantly, I show that even in the policy context of a developed economy 

with an advanced healthcare system, the reductions in air pollution lead to smaller but still 

significant reductions in all-cause mortality, as well as mortality from circulatory disease. These 

reductions do not appear to be accompanied by any significant increase in mortality near 

 
38 Winners of capacity auctions were obliged to deliver energy during periods of system stress, but these 

periods only occurred for 2.5 hours during the sample period (National Grid, 2016). These periods occurred 

at a time when only certain small-scale generation had a delivery obligation under the Capacity Market 

(BEIS, 2019) 
39 It is doubtful that the payments necessary to cover costs over this longer period would permit coal to win 

the auctions given the levels of oversubscription. 
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competing combined-cycle gas power plants, meaning that the health effects from this policy are 

unambiguously positive. 

When considering the merits of a carbon price, policymakers should consider these health 

benefits in addition to the carbon reductions that are the direct target of the policy. The existence 

of these additional health benefits adds weight to the case for increased adoption of carbon prices 

worldwide. Since the mechanism by which pollution reductions occur is a reduction in the capacity 

factor of coal, carbon abatement policies that are designed to allow fossil fuel plants to extend their 

useful lifespan, most notably carbon capture and sequestration, are unlikely to provide similar 

benefits and should be not be favored.  
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2.8 Tables and figures 

Table 1: Summary statistics for districts near coal plants 

Distance 

(km) 

Number of 

districts 

Mean coal capacity 

(GW) 

Mean ambient 

NO2 (ugm-3) 

before treatment 

Death rate per 100000 before 

treatment 

<20 22 2.22 27.1 76.4 

20-30 22 2.29 22.6 81.6 

30-40 29 2.54 22.8 79.1 

40-50 37 2.47 21.8 81.1 

50-60 41 2.58 21.9 81.4 

60-70 41 2.28 22.4 80.6 
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Table 2: Summary statistics for districts near combined-cycle gas plants 

Distance 

(km) 

Number of 

districts 

Mean combined-

cycle capacity 

(GW) 

Mean ambient 

NO2 (ugm-3) 

before treatment 

Death rate per 100000 before 

treatment 

<20 79 .805 28.3 72.4 

20-30 87 .872 29.5 69.6 

30-40 116 .884 27.3 70.2 

40-50 130 .858 27.5 71.4 

50-60 150 .990 26.3 72.8 

60-70 162 1.06 24.1 74.4 
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Figure 1: Monthly means of three estimates of NO2 
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Figure 2: Reductions in average ambient surface NO2 occur near coal power plants after the implementation of the Carbon Price 

Support 

 
Standard errors are clustered at the (lower tier) local authority level; 95% confidence interval shown. 
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Figure 3: Reductions in all-cause mortality occur near coal power plants after the implementation of the Carbon Price Support 

 
Standard errors are clustered at the (lower tier) local authority level and month; 95% confidence interval shown. 
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Figure 4: Reductions in cardiovascular disease mortality occur near coal power plants after the implementation of the Carbon Price 

Support 

 
Standard errors are clustered at the (lower tier) local authority level and month; 95% confidence interval shown. 

 

 



 

86 

 

Figure 5: Few changes in ambient NO2 levels occur near combined-cycle power plants after the implementation of the Carbon Price 

Support 

 
Standard errors are clustered at the (lower tier) local authority level and month; 95% confidence interval shown. 
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Figure 6: No increases in all-cause mortality occur near combined-cycle power plants after the implementation of the Carbon Price 

Support 

 
Standard errors are clustered at the (lower tier) local authority level and month; 95% confidence interval shown. 
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Figure 7: No increases in cardiovascular disease mortality occur near combined-cycle power plants after the implementation of the 

Carbon Price Support 

 
Standard errors are clustered at the (lower tier) local authority level and month; 95% confidence interval shown. 
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2.9 Appendix A 

I derive the functional form 𝑔(ℎ(𝑥)) = invlogit(ln(
𝑃𝑔𝑎𝑠

𝑃𝑐𝑜𝑎𝑙
))  =  𝑒𝑙𝑛 𝑥/(1 + 𝑒𝑙𝑛 𝑥)  =  𝑥/

(1 + 𝑥) from the following considerations. The relationship between price ratio and output should 

follow the shape of the inverse logit function, but the inverse logit has the desired shape over the 

domain (−∞,∞), as opposed to the price ratio which can only take values in the set (0,∞). Therefore, 

we need to transform the price ratio with a function h(x) that has domain (0,∞) and range (−∞,∞). 

The following considerations apply: 

• h(x) should have the property that 𝑔(ℎ(1))  −  𝑔(ℎ(
1

𝑥
))  =  𝑔(ℎ(𝑥))  −  𝑔(ℎ(1)) , 

to reflect the fact that a price ratio of, say, 
1

4
, is as far away from 1 as 1 is to 4. 

• Note that 𝑔(0)  −  𝑔(−ℎ(𝑥))  =  𝑔(ℎ(𝑥))  −  𝑔(0) . Comparing this with the 

desired property (ℎ(1))  −  𝑔(ℎ(
1

𝑥
))  =  𝑔(ℎ(𝑥))  −  𝑔(ℎ(1)), the transformation h(x) should 

have the properties that ℎ(
1

𝑥
)  =  − ℎ(𝑥)  

The natural choice of h(x) is therefore ln(x), although a logarithm of any base would work. 

So, 𝑔(ℎ(𝑥))  =  𝑔(𝑙𝑛(𝑥))  = invlogit(ln(
𝑃𝑔𝑎𝑠

𝑃𝑐𝑜𝑎𝑙
))  =  𝑒𝑙𝑛 𝑥/(1 + 𝑒𝑙𝑛 𝑥)  =  𝑥/(1 + 𝑥). 
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Chapter 3 

Making up for lost time: The effect of historical pollution on COVID-19 morbidity and 

mortality 

3.1 COVID-19 and air pollution 

COVID-19 has wreaked havoc worldwide and in the United States. Unsurprisingly, 

determining risk factors for COVID-19 infection has been a top priority for the medical and 

academic communities. Therefore, the relationship between deaths from COVID-19 and levels of 

air pollution has been a topic of interest.   

 

Understanding the relationship between COVID-19 and air pollution tells policymakers 

which locations are more vulnerable to COVID-19 and helps them decide how to allocate scarce 

medical resources. It may also be a mechanism by which other risk factors for COVID-19 operate 

(Carrington, 7 June 2020). For example, African-Americans have been disproportionately affected 

by COVID-19 (Yancy, 2020). Since black and Hispanic Americans have also been exposed to 

higher levels of air pollution (Tessum et al., 2020), a positive relationship between pollution and 

COVID-19 may be a mechanism by which COVID-19 has disproportionately affected African-

Americans.  

 

Exposure to air pollution may increase the likelihood of COVID-19 infection and resulting 

death. Conticini, Frediani, & Caro (2020) propose a cross-sectional positive correlation between 

death rates and air pollution in Italy, Wu et. al (2020) find a similar effect for historical air pollution 

in the United States, and Zhu et al (2020) find a positive association between daily air pollution 
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and infections in China. In this paper, I build upon these studies by using rich longitudinal variation 

to identify the COVID-19 – air pollution relationship. Panel data is no panacea, however, and I 

identify a major omitted variable – the differing times since COVID-19 outbreaks started in each 

county - that may confound said relationship. I account for this in estimating the effect of historical 

levels of fine particulate matter (PM2.5) on COVID-19 case rates and death rates. I find that 

historical levels of PM2.5 increase death rates, but the increase is smaller than previous estimates. 

At the same time, historical levels of PM2.5 have had no effect on case rates of COVID-19. 

 

In section 2, I discuss the problems arising from ignoring cross-sectional differences when 

the COVID-19 outbreak started, and solutions to these problems.  In section 3, I outline the data 

and models I use to estimate the COVID-19 – air pollution relationship, and in section 4 I present 

and discuss the results of these models. I conclude in section 5. 

 

3.2 Issues with modeling the COVID-19 outbreak 

Studies of the COVID-19 outbreak in countries like the United States benefit from the ready 

availability of daily county-level data. The natural way to estimate the effect of policy 

interventions or protective/risk factors on COVID-19 morbidity and mortality is to run a panel 

fixed effects regression with county and time fixed effects (Goodman-Bacon & Marcus, 2020). 

However, this approach comes with certain issues that appear to be underappreciated in the 

literature. 
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3.2.1 Date, or time since outbreak started? 

It is natural to think of a panel in terms of dates, but this obscures an important issue. Each 

county’s morbidity or mortality rate from COVID-19 depends on how much time has elapsed since 

the start of the COVID-19 outbreak in that county. Since the outbreak started on different dates in 

different counties, and because at the time of writing we are still close in time to the start of the 

COVID-19 outbreak, “time since the start of COVID-19 outbreak” and “date” are substantively 

different.  

 

This is an important distinction. 40  Consider historical levels of fine particulate matter (mean 

PM2.5 for each county between 2001 and 2016). By regressing time since first case/death on that 

variable, we can see that there is a significant correlation between historical mean PM2.5, time 

since first case was reported, and the time since first death was reported. This correlation is 

unchanged by the inclusion of date fixed effects because historical mean PM2.5 levels are constant 

within county. All these estimates are shown in Table 1. This correlation likely exists because 

polluted urban areas receive more travel – which seeds COVID-19 cases - than rural ones.  

 

This is not solved including a fixed effect for each county which encompasses the (time-

constant) date of first case/death (Fowler et al., 2020). 41 The time since date of first case/death is 

an interaction of the date since first case and the observation date that is not collinear with either. 

 
40 Chowell, Viboud, Hyman and Simonsen (2015) show that the 2014 Ebola outbreak in West Africa grew 

exponentially over date in the aggregate, but that each district’s Ebola outbreak exhibited polynomial 

growth. If aggregating by date changes the shapes of outbreaks, synthetic control designs that match by 

calendar date (for instance, Friedson et al. (2020)) may be problematic. 
41 That is impossible for historical mean PM2.5 levels, which do not have time-series variation. 



 

93 

 

Consider regressing time since first case/death on the presence of state-mandated social distancing 

measures; results are shown in Table 1. The partial correlation between the implementation of 

social distancing measures by states and time since first case/death exists after including county 

and date fixed effects.   

In both cases ignoring time since first case/death will lead to omitted variable bias if it is 

correlated with the outcome of interest. Such a correlation is very likely to exist here. It is hard to 

think of a variable of interest where a correlation with time since first case/death can be excluded. 

A good analogy for the issues caused by COVID-19 outbreaks starting at different times in 

different places is the event study when the policy of interest starts at different times in different 

locations. The pre-trends of the event study are checked to identify biases that covary with 

treatment timing. Because treatment timing is a nonlinear interaction of county and calendar time, 

these biases are not necessarily eliminated by the inclusion of county and time fixed effects in the 

event study model.  

 

3.2.2 How should the progression of COVID-19 over time be modeled? 

To eliminate the omitted variable bias described above, it is necessary to include time since 

the outbreak begin in models of COVID-19 spread. But how should this be done? Including time 

as a covariate only controls for the average partial correlation of time with the dependent variable 

(Goodman-Bacon & Marcus, 2020), but in this application the partial correlation is likely to vary 

wildly over time because COVID-19 progression over time is far from linear. Instead, I use 

parametric models derived from the epidemiology literature.  
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1.1.1 Morbidity from COVID-19  

To model morbidity – the number of cases – of COVID-19, I take inspiration from reduced-

form (“phenomenological”) epidemiological models of epidemic outbreaks. The progression of 

COVID-19 cumulative morbidity over time since the start of the outbreak, like many other 

diseases, is likely best described by a polynomial model (Chowell, Viboud, Simonsen & 

Moghadas, 2016; Maier & Brockmann, 2020). This is of the form:  

𝐶𝑎𝑠𝑒𝑠𝑖𝑡  =  (
𝑟𝑐

𝑚𝑐
𝑡𝑐   +  𝐶𝑎𝑠𝑒𝑠𝑖0

1
𝑚𝑐)𝑚𝑐 

(1) 

Here, 𝐶𝑎𝑠𝑒𝑠𝑖𝑡 is the cumulative number of cases in county 𝑖 at time 𝑡𝑐 since the first case, 

𝑟𝑐  is the growth rate per unit of time, and 𝑚𝑐  is the polynomial exponent (Chowell, Viboud, 

Simonsen & Moghadas, 2016). Since the definition of 𝑡𝑐 excludes days before the first case was 

reported, observations before the first case were reported in each county will be dropped from my 

estimation sample. 

Alternatives to the polynomial model are the exponential (Chowell, Viboud, Simonsen & 

Moghadas, 2016) and logistic (Ma, 2020) models. The polynomial model is a generalization of the 

exponential model, since as the exponent 𝑚−> ∞  the polynomial model converges to the 

exponential one. The logistic model modifies the exponential model to account for saturation, but 

that is unlikely given that the COVID-19 outbreak will likely go on for decades (Wan and Johnson, 

27th May 2020). In Appendix A.1 I show that the polynomial model has the best goodness-of-fit 

(in terms of adjusted-𝑅2 and AIC) among these alternatives for US county data. 
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1.1.2 Mortality from COVID-19 

How the severity of COVID-19 infection covaries with historical levels of air pollution is 

another parameter of interest. The intuitive measure of severity is the case fatality rate (CFR), 

which is defined as “the proportion of cases of a specified condition that are fatal within a specified 

time” (Spychalski, Błażyńska-Spychalska & Kobiela, 2020). The natural estimate of CFR with 

currently available data is: 

 𝐶𝐹𝑅𝑖𝑡  = 𝐶𝑎𝑠𝑒𝑠𝑖𝑡/𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡 (2) 

This is, however, subject to potentially severe biases such as time-lag bias (Spychalski, 

Błażyńska-Spychalska & Kobiela, 2020). Time-lag bias occurs because of the lag between 

diagnosis and death, so at any time 𝑡 there are some cases which will progress to death in future 

but have not died yet. 

Instead of trying to estimate CFR, I estimate mortality – the number of deaths – from 

COVID-19. Rewriting the definition above, we have: 

𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡  = 𝐶𝐹𝑅𝑖𝑡 ∗  𝐶𝑎𝑠𝑒𝑠𝑖𝑡 (3) 

Since the proportion 𝐶𝐹𝑅𝑖𝑡 is bounded between 0 and 1 (and in practice is likely much less 

than 1), 𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡  and 𝐶𝑎𝑠𝑒𝑠𝑖𝑡  are likely to follow similar shapes over time. In other words, 

cumulative mortality is likely to follow the process: 

𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡  =  (
𝑟𝑑

𝑚𝑑
𝑡𝑑  +  𝐷𝑒𝑎𝑡ℎ𝑠𝑖0

1
𝑚𝑑)𝑚𝑑  

(4) 
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To address time-lag bias, 𝑡𝑑 is now defined as the time since first death rather than case. 

Intuitively, replacing time since first case with time since first death shifts the curve of cases 

forward by the amount of time it took for the first case in each county to progress to death. As with 

morbidity, I show in Appendix A.1 that this functional form is preferred over the exponential and 

logistic models by adjusted-𝑅2 and AIC. Again, since 𝑡𝑑 is undefined before each county’s first 

death, those days are dropped from the estimation sample for deaths. 

Using any of these models contrasts with the approach Wu et al. (2020), take. We are 

estimating different objects; theirs is a snapshot of the effect of historical mean PM2.5 levels on 

mortality rates at  April 22nd, 2020, whereas I estimate how historical mean PM2.5 levels affect 

the growth rates of COVID-19 morbidity and mortality.  

3.3 Data and Methods 

3.3.1 Data 

My data is a panel of cumulative case counts and deaths for each county of the United States 

by date up to May 18, 2020, obtained from the New York Times (NYT) COVID-19 tracker (New 

York Times, 2020). Unlike the alternative Johns Hopkins University Center for Systems Science 

and Engineering (JHU CSSE) tracker, county-level case and death counts in the NYT tracker are 

not truncated at March 22, 2020. The confirmed case (deaths) samples comprise all county-day 

observations with at least 1 confirmed case (death). Summary statistics are available in Table 2. 

3.3.2 Model specification 

After normalizing morbidity and mortality by 100000 population, I model cumulative 

morbidity and mortality from COVID-19 as polynomial functions: 
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𝑦𝑖𝑡  =  𝑒𝛼(
𝛽 log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5𝑖 + 𝑿𝑖𝑡𝜽

𝑚
𝑡 +  𝑦𝑖0

1
𝑚)𝑚𝜀𝑖𝑡 

(5) 

Taking the natural logarithm on both sides give us:  

log 𝑦𝑖𝑡  =  𝛼 +  𝑚 log(
𝛽 log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5𝑖 + 𝑿𝑖𝑡𝜽

𝑚
𝑡 +  𝑦𝑖0

1
𝑚) + log 𝜀𝑖𝑡 

(6) 

I assume the rate of growth 𝑟 can vary linearly by county-level covariates, and estimate (6) 

in logged form by nonlinear least squares: 

min
𝜶,𝒎,𝜷

(log 𝑦𝑖𝑡 − [𝛼 +  𝑚 [log (
𝛽 log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5𝑖 + 𝑿𝑖𝑡𝜽

𝑚
𝑡 +  𝑦𝑖0

1
𝑚)]])

2

 

(7) 

Here, 𝑦𝑖𝑡 is county 𝑖’s cumulative case (death) rate per 100000 population t days since the 

first day with a non-zero case (death) count. The variable of interest, 𝑀𝑒𝑎𝑛 𝑃𝑀2.5, is the mean 

level between 2000 and 2016 of particulate matter less than 2.5 micrometers in diameter. 𝛼 

normalizes the error term to be mean 0, and implies that the first period error term for each county 

𝜀𝑖0 is normalized to a constant; at 𝑡 = 0, log 𝑦𝑖0 =  𝛼 + log 𝑦𝑖0 + log 𝜀𝑖0, so that log 𝜀𝑖0 =  −𝛼 or 

𝜀𝑖0 = 𝑒−𝛼 . 𝑋  is a vector of covariates including 1) an indicator for state-imposed distancing 

measures, 2) quantiles of population density, 3) % of population aged above 65, aged 45-64 and 

aged 15-44, 4) % living in poverty, 5) log median house value, 6) log median household income, 

7) % black, 8) % Hispanic, 9) % of population with less than a high school education, 10) % of 

owner-occupied housing, 11) obesity, 12) smoking rate, 13) number of hospital beds per capita, 

14) average summer temperatures, 15) average summer relative humidity, 16) average winter 
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temperatures and 17) average winter relative humidity. These 17 variables are the same as those 

in Wu et al. (2020) and are obtained from their code. 42  

Due to a “laconic” response to COVID-19 by the United States federal government, there 

have been large differences in response to COVID-19 between different states (Haffajee & Mello, 

2020). I include a vector of state-level fixed effects in 𝑋  to absorb state-level heterogeneity, 

particularly in COVID-19 policy interventions. Fixed effects for calendar dates are also included 

to account for the fact that counties enter the sample at different times and the possibility that 

growth rates change over time. 

3.3.3 Robustness checks 

To address the possibility that  each county’s time-series sequence of errors (𝜀𝑖𝑡)𝑡=1
𝑇  covaries 

on average with omitted variables, I instrument - using a control function approach - for each 

county’s historical average PM2.5 levels with the fraction of that county experiencing a ground-

level thermal inversion at 8 intervals across the day, consistent with the 8 times daily output of the 

NCEP North American Regional Reanalysis dataset (National Centers for Environmental 

Prediction/National Weather Service/NOAA/U.S. Department of Commerce, 2005, updated 

monthly) I use to determine the presence of thermal inversions. Thermal inversions occur when 

air at higher altitudes is warmer than the air beneath it, preventing convection and trapping 

pollutants near the ground. I define an inversion as happening when the 2-meter temperature is 

lower than the temperature at the altitude where air pressure is 25 hectopascals (hPA) lower than 

surface pressure, except for surface pressures between 700 and 300 hPA where temperatures are 

 
42 https://github.com/wxwx1993/PM_COVID 
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only available at 50 hPA intervals.  A 25 hPA difference corresponds to an altitude difference of 

about 200 meters.  

The control function approach involves first running the “first-stage” regression 

(Wooldridge, 2012): 

log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5𝑖 =  𝑰𝑵𝑽𝒊𝜽 + 𝒁𝒊𝒕𝜽 +  𝑣𝑖 (8) 

In this equation, 𝒁𝒊𝒕 includes all variables in 𝑿𝑖𝑡, as well as 𝑡 (included as fixed effects) and 

𝑦𝑖0.  Once that equation is estimated, the residuals 𝑣𝑖 are obtained. These residuals represent the 

estimated reduced form “endogenous part” of log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5𝑖 . Finally, I run a similar 

polynomial model as earlier:  

min
𝜶,𝒎,𝜷,𝝆

(log 𝑦𝑖𝑡 − [𝛼 + log (
log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5𝑖 + 𝑿𝑖𝑡𝜽

𝑚
𝑡 +  𝑦𝑖0

1
𝑚) + 𝑝𝑣])

2

 
(9) 

Testing 𝑝 = 0  tests whether 𝑣  appears in the conditional expectation of 𝑙𝑜𝑔𝑦𝑖𝑡  

(Wooldridge, 2011, p.744).  As further robustness checks I interact 𝑣 with 𝑡 and log (𝑡 + 1) to see 

if 𝑣 has a time-varying effect in the conditional expectation. 43 One requirement for this approach 

is for thermal inversions to affect mean PM2.5 levels. My instruments are a vector of 8 variables 

corresponding to the average fraction of each county experiencing a thermal inversion in each 3-

hour brackets across the day; the F-stat on the joint test 𝜽 = 0 for these instruments in the first 

stage regression (with standard errors clustered at the state level) is 11. The other requirement, that 

inversions be independent of omitted variables determining morbidity/mortality, is not testable, 

 
43 These transformations are admittedly ad-hoc. Wooldridge (2011, p.744) notes that testing 𝜌 = 0 tests for 

the presence of 𝑣 in the conditional expectation regardless of how 𝑣 is derived; given the lack of structural 

assumptions, testing 𝜌 = 0 for the interaction term should be similar.  
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but thermal inversions have frequently been used in the economics literature as instruments for 

pollution (Arceo, Hanna & Oliva, 2016; Jans, Johansson & Nilsson, 2018; He, Liu & Salvo, 2019; 

Sager, 2019). It is likely that people disregard the presence of inversions because they have no 

direct health effects (Arceo, Hanna & Oliva, 2016) and are difficult to observe since they occur 

hundreds of meters above ground level. 

3.4 Results and Discussion  

The growth of mortality and morbidity rates follow similar processes; the polynomial 

exponent 𝑚 is very similar. These results are reported in Table 3.  In either case, 𝑚 is somewhat 

above 2, consistent with the values found by Maier and Brockmann (2020) for provinces in China. 

This result underscores the existence of a correlation between time since first case/death and 

morbidity/mortality from COVID-19, which in conjunction with the correlations found in Table 1 

means that omitted variable bias will be present if time since first case/death is ignored. 

The similarity of 𝑚 for morbidity and mortality is reassuring because it suggests that errors 

in reporting cases are relatively stable over time. Morbidity rates increasing much faster than 

mortality rates suggest that the case fatality rate is falling quickly over time. In the absence of a 

cure for COVID-19, that would presumably be because only the most severe cases were diagnosed 

with COVID-19 at the start of the outbreak. 

I find a significant relationship between historical levels of PM2.5 and mortality rates from 

COVID-19, with an elasticity of .541, 95% CI (.479, .603) on May 18th, the last day of the sample. 

44 Unlike mortality rates, morbidity rates appear, at least in the preferred specification, to be 

 
44  Since the dependent variable is a cumulative rate, averaging over all dates does not produce a 

meaningful statistic. 
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unrelated to historical levels of PM2.5. These results are shown in Table 3, where the preferred 

specification is in the 4th (rightmost) column; the specifications in the other columns give broadly 

similar results except when state fixed effects are omitted. The coefficients on log(Mean PM2.5), 

reported above the elasticities, are the effect of an increase in historical mean PM2.5 on the growth 

rate of cases/deaths. Because of the sample restriction to places with at least one case (death), 

estimates for morbidity (mortality) only apply to places with at least one case (death); counties 

with at least one death account for about 91% of the US population. As of May 18th, there were 

about 90000 deaths from COVID-19 in the United States; if the historical level of pollution were 

10% (about 0.85 𝜇𝑔/𝑚3) lower, there would have been around 4500 fewer deaths from COVID-

19. 45 

Because of the relationship (3), the effect of historical mean PM2.5 levels on log(deaths) can 

be decomposed as follows: 

𝜕 log 𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡

𝜕 log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5
=  

𝜕 log 𝐶𝐹𝑅𝑖𝑡

𝜕 log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5
+

𝜕 log 𝐶𝑎𝑠𝑒𝑠𝑖𝑡

𝜕 log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5
 

(10) 

Since I find an increase in mortality but not morbidity due to historical pollution exposure, 

my results imply that 
𝜕 log 𝐷𝑒𝑎𝑡ℎ𝑠

𝜕 log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5
 is positive and 

𝜕 log 𝐶𝑎𝑠𝑒𝑠

𝜕 log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5
 is (statistically) 0. If so, 

𝜕 log 𝐶𝐹𝑅

𝜕 log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5
 must be positive; pollution exposure makes COVID-19 cases more severe. Such an 

increase in severity would not be surprising; exposure to PM2.5 is known to damage the respiratory 

system (Xing et al, 2016).  

 
45  Determining whether these are excess deaths or if these individuals would have died from other 

conditions in the absence of COVID-19, or the value of the life-years saved, are vexed questions outside 

the scope of this paper. 
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The estimates as of May 18th are not comparable with those of Wu et al (2020), which are a 

snapshot of the effect of mean PM2.5 as of April 22nd, 2020. My estimated elasticity for the same 

date is .316 (.280, .352). At the (cross-sectional) mean, an increase of 1 𝜇𝑔/𝑚3in historical PM2.5 

averages is about a 12% increase, which implies a 4% mortality increase. This is roughly half of 

the value Wu et al. (2020) find. Including time since first case in the linear index as a control as in 

Wu et al. (2020) may not be sufficient to control for the omitted variable bias problem outlined 

earlier. 

I now consider the results of the robustness check using thermal inversions. The control 

function tests for endogeneity, 𝜌=0, shown in Table 4, are far from rejecting the null of exogeneity 

of log 𝑀𝑒𝑎𝑛 𝑃𝑀2.5, so I do not correct the standard errors for the inclusion of the generated 

regressor (Wooldridge, 2011 p.412). Although the estimates for the effect of mean PM2.5 are no 

longer significant, they remain positive and are noisily estimated; the original point estimates are 

well within the confidence interval. For efficiency reasons, the estimates in Table 3 are therefore 

preferred. 

3.5 Conclusion 

Cross-sectional differences in the time the outbreak started are likely to cause omitted 

variable bias, and this bias remains in panel two-way fixed effects models. This paper estimates 

the relationship between COVID-19 morbidity and mortality and historical levels of PM2.5 in a 

panel setting, while identifying and proposing solutions to that bias. 

Historical levels of PM2.5 are correlated with when the first COVID-19 case and death was 

reported in each county. I use polynomial models of disease spread to account for the omitted 

variable bias. These indicate that historical levels of fine particulate matter have increased death 
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rates with an elasticity of .541 (.479, .603) as of May 18. These estimates are about half of prior 

cross-sectional estimates. At the same time, historical PM2.5 levels have had no effect on 

morbidity rates, suggesting that historical exposure to PM2.5 increases the severity of COVID-19 

infection.  

 

It is likely that many variables of interest other than historical PM2.5 levels – for instance, 

the imposition of social distancing measures - also covary with the start of the COVID-19 outbreak. 

Omitted variable bias will be present in regressions involving those variables, and controlling for 

the outbreak-time relationship will be important in making causal inferences. 
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3.7 Tables and Figures 

Table 1: Partial correlation between time since first COVID-19 case/death and historical levels 

of PM2.5 

 Time since first case 

Log(Mean PM2.5) 

 

5.82 

(3.84, 7.79) 

5.82 

(3.84, 7.79) 

- - 

Distancing 32.3 

(30.8, 33.8) 

4.50 

(2.58, 6.42) 

32.3 

(30.8, 33.8) 

4.50 

(2.58, 6.42) 

 Time since first death 

Log(Mean PM2.5) 

 

3.92 

(2.17, 5.67) 

3.92 

(2.17, 5.67) 

- - 

Distancing 13.2 

(11.1, 15.2) 

5.25 

(3.11, 7.38) 

13.2 

(11.1, 15.2) 

5.25 

(3.11, 7.38) 

All controls Y Y - - 

State fixed effects Y Y - - 

County fixed effects - - Y Y 

Date fixed effects  Y  Y 

Coefficients are from regressions of time since first case and time since first death on log(mean 

PM2.5 between 2001 and 2016) and an indicator for state-mandated social distancing. Log(mean 

PM2.5 between 2001 and 2016) does not appear with county fixed effects because it is constant 

within county. 95% CI in parentheses, all standard errors are clustered at the state level. “All 

controls’ are 1) an indicator for state-imposed distancing measures, 2) quantiles of population 

density, 3) % of population aged above 65, aged 45-64 and aged 15-44, 4) % living in poverty, 

5) log median house value, 6) log median household income, 7) % black, 8) % Hispanic, 9) % 

of population with less than a high school education, 10) % of owner-occupied housing, 11) 

obesity, 12) smoking rate, 13) number of hospital beds per capita, 14) average summer 

temperatures, 15) average summer relative humidity, 16) average winter temperatures and 17) 

average winter relative humidity.  
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Table 2: Summary statistics 

 Morbidity sample Mortality sample 

Dependent variable Mean 

(Standard deviation) 

Mean 

(Standard deviation) 

Confirmed cases 

per 100000 

population 

128 

(352) 

236 

(501) 

COVID deaths per 

100000 

population 

5.10 

(15.2) 

12.2 

(21.6) 

Mean PM2.5 

(cross-sectional) 

8.40 

(2.52) 

8.40 

(2.52) 

Mean PM2.5 

(sample) 

8.78 

(2.42) 

9.46 

(2.21) 

Time since first 

confirmed case 

27.7 

(17.6) 

37.8 

(15.6) 

Time since first 

death 

9.31 

(14.5) 

22.0 

(14.7) 

n 152703 63926 

Counties 2876 1658 

States 49 49 

The morbidity (mortality) samples comprise all county-day observations with at least 1 confirmed 

case (death). The difference between the cross-sectional and panel PM2.5 means are due to more 

polluted places spending longer in the sample because they reported their first case earlier. 
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Table 3: Effect of historical PM2.5 exposure on morbidity and mortality rates using polynomial 

models 

 Log(Morbidity rate) 

Log(Mean PM2.5)  

 

.015 

(-.093, .124) 

-.010 

(-.082, .062) 

.081 

(.009, .153) 

.028 

(-.025, .082) 

Average elasticity of 

Mean PM2.5 on May 

18th 

.088 

(-.514, .690) 

-.055 

(-.439, .329) 

.558 

(.110, 1.01) 

.224 

(-.176, .625) 

m 2.22 

(2.03, 2.41) 

2.15 

(1.94, 2.35) 

2.38 

(2.09, 2.68) 

2.51 

(2.23, 2.79) 

 Log(Mortality rate) 

Log(Mean PM2.5)  

 

-.003 

(-.041, .035) 

.036 

(.008, .064) 

.064 

(.034, .093) 

.036 

(.010, .063) 

Average elasticity of 

Mean PM2.5 on May 

18th 

-.036 

(-.455, .383) 

.471 

(.122, .821) 

.897 

(.458, 1.34) 

.541 

(.479, .603) 

m 2.03 

(1.72, 2.33) 

2.17 

(1.86, 2.49) 

2.30 

(1.88, 2.72) 

2.39 

(1.98, 2.81) 

All controls Y Y  Y 

State fixed effects  Y Y Y 

Date fixed effects   Y Y 

Table shows results from estimating Equation 7. 95% CI in parentheses, all standard errors are 

clustered at the state level. The coefficients on log(Mean PM2.5), reported above the elasticities, 

are the effect of an increase in historical mean PM2.5 on the growth rate of cases/deaths. “All 

controls’ are 1) an indicator for state-imposed distancing measures, 2) quantiles of population 

density, 3) % of population aged above 65, aged 45-64 and aged 15-44, 4) % living in poverty, 

5) log median house value, 6) log median household income, 7) % black, 8) % Hispanic, 9) % 

of population with less than a high school education, 10) % of owner-occupied housing, 11) 

obesity, 12) smoking rate, 13) number of hospital beds per capita, 14) average summer 

temperatures, 15) average summer relative humidity, 16) average winter temperatures and 17) 

average winter relative humidity. Column 3 includes only quantiles of population density, 

average summer temperatures, average summer relative humidity, average winter temperatures, 

and average winter relative humidity as covariates. 
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Table 4: Effect of historical PM2.5 exposure on morbidity and mortality rates in control function 

polynomial models 

 Log(Morbidity rate) 

𝑣 interacted with: - Log(t+1) t 

Log(Mean PM2.5)  

 

-.010 

(-.070, .051) 

-.017 

(-.087, .053) 

-.003 

(-.061, .055) 

Average elasticity of Mean PM2.5 on 

May 18th 

-.073 

(-.526, .379) 

-.128 

(-.648, .392) 

-.023 

(-.452, .405) 

𝜌 .449 

(-.223, 1.12) 

.158 

(-.089, .405) 

.011 

(-.009, .031) 

Instrument strength (F-stat) 10.1 

 Log(Mortality rate) 

𝑣 interacted with: - Log(t+1) t 

Log(Mean PM2.5)  

 

.030 

(-.006, .066) 

.023 

(-.031, .077) 

.018 

(-.042, .077) 

Average elasticity of Mean PM2.5 on 

May 18th 

.440 

(-.071, .952) 

.341 

(-.438, 1.12) 

.259 

(-.597, 1.12) 

𝜌 .130 

(-.518, .778) 

.079 

(-.256, .413) 

.012 

(-.029, .054) 

Instrument strength (F-stat) 10.6 

All controls Y Y Y 

State fixed effects Y Y Y 

Date fixed effects Y Y Y 

Table shows results from estimating Equation 9. 95% CI in parentheses, all standard errors are 

clustered at the state level. The coefficients on log(Mean PM2.5), reported above the 

elasticities, are the effect of an increase in historical mean PM2.5 on the growth rate of 

cases/deaths. All standard errors are clustered at the state level.  “All controls’ are 1) an 

indicator for state-imposed distancing measures, 2) quantiles of population density, 3) % of 

population aged above 65, aged 45-64 and aged 15-44, 4) % living in poverty, 5) log median 

house value, 6) log median household income, 7) % black, 8) % Hispanic, 9) % of population 

with less than a high school education, 10) % of owner-occupied housing, 11) obesity, 12) 

smoking rate, 13) number of hospital beds per capita, 14) average summer temperatures, 15) 

average summer relative humidity, 16) average winter temperatures and 17) average winter 

relative humidity. 
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3.8 Appendix 

Table A.1: Goodness of fit of exponential, sub-exponential and logistic models and effect of 

historical PM2.5 exposure on morbidity and mortality rates. 

 Log(Morbidity rate) 

 Exponential  Sub-exponential Logistic  

Log(Mean PM2.5)  .017 

(.001, .032) 

.028 

(-.025, .082) 

.029 

(.009, .049) 

Shape parameter  

 

- 2.51 

(2.23, 2.79) 

68.0 

(51.1, 84.8) 

Adjusted 𝑅2 .592 .718 .679 

AIC 434458 377701 397482 

 Log(Mortality rate) 

 Exponential  Sub-exponential Logistic  

Log(Mean PM2.5)  

 

.046 

(.029, .063) 

.037 

(.010, .063) 

.051 

(.033, .069) 

Shape parameter - 2.39 

(1.98, 2.81) 

13.4 

(8.81, 18.0) 

Adjusted 𝑅2 .609 .691 .653 

AIC 154962 139923 147469 

All controls Y Y Y 

State fixed effects Y Y Y 

Date fixed effects Y Y Y 

95% CI in parentheses, all standard errors are clustered at the state level. The coefficients on 

log(Mean PM2.5) are the effect of an increase in historical mean PM2.5 on the growth rate of 

cases/deaths. “All controls’ are 1) an indicator for state-imposed distancing measures, 2) quantiles 

of population density, 3) % of population aged above 65, aged 45-64 and aged 15-44, 4) % living 

in poverty, 5) log median house value, 6) log median household income, 7) % black, 8) % Hispanic, 

9) % of population with less than a high school education, 10) % of owner-occupied housing, 11) 

obesity, 12) smoking rate, 13) number of hospital beds per capita, 14) average summer 

temperatures, 15) average summer relative humidity, 16) average winter temperatures and 17) 

average winter relative humidity.  

 

 


