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CHAPTER 1

Introduction

According to the United States Energy Information Administration (EIA), the world

energy consumption is expected to increase by nearly 50%1 by 2050. To meet growing

energy demands, further development of alternative energy sources is required. Solar

energy is particularly promising as the energy from sunlight striking the earth for one hour

exceeds all human energy consumption from one year2. Due to the varying availability of

sunlight throughout the day, efficient energy storage methods are a necessary component

for viable solar energy3. One such method is through the use of electrochemical energy

storage devices, such as batteries, Electric Double Layer Capacitors (EDLCs), and fuel

cells. EDLCs, or supercapacitors, were first patented by Howard Becker of General

Electric in 19574. By 1992, significant improvements were made and Maxwell

Technologies was producing supercapacitors for commercial use5. However, work

remains to improve supercapacitor performance to a level necessary for widespread

application. To achieve these improvements, a molecular-level understanding of the

electrolyte and electrode behavior is required. This includes the structure, transport, and

thermodynamics of electrolytes in the bulk phase, at interfaces with electrode materials,

and under confinement.

The work presented here focuses on the use of molecular simulation, mainly classical

molecular dynamics, to better understand supercapacitor-related systems at the molecular

level. The molecular simulations have mainly been performed to provide a better

understanding of results obtained by our experimental collaborators which are also

presented here. In other cases, the simulations are conducted to predict behavior and

trends that are later studied through experimental probes. Chapter 2 provides a

background of capacitive energy storage devices as well as molecular simulation. In
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Chapter 3, a scalable screening study of ionic liquid and organic solvent mixtures is

reported. Chapter 4 presents a study of fluids through the Van Hove Function to better

understand the microscopic dynamics of these systems. Chapter 5 explores the properties

of electrolytes at interfaces, and under confinement of MXenes. Efforts to improve

reproducibility in molecular simulation are described in Chapter 6. Lastly, the presented

results are summarized in Chapter 7.
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CHAPTER 2

Background

2.1 Capacitive Energy Storage

Electrochemical energy storage will play an important role in meeting the growing

demands of energy6 as efficient storage is required for alternative energy sources,

including solar and wind2,3. Batteries have certainly achieved widespread use in

consumer electronics due to their high energy densities7, although they are not without

limitations. These devices store energy through diffusion-controlled Faradaic reactions

which result in longer charging times (low power density) and limit the lifetime of these

devices to the order of a thousand cycles8. This is among the major reasons preventing the

widespread adoption of electric vehicles. Further, batteries are currently cost-prohibitive

in other applications, such as in the electricity sector9.

The charge storage mechanisms of EDLCs, or supercapacitors, are fundamentally

different, involving no Faradaic reactions. Rather, the process involves the adsorption of

ions at interfaces under an applied potential8. Because this mechanism is absent of

chemical reactions, supercapacitors often exhibit much longer cycle lifetimes and are free

of reaction kinetic limitations, allowing for faster ion dynamics8,12–14. However, typical

supercapacitors comprising of porous graphene display energy densities lower than those

of batteries due to low specific capacitance and low operating voltage windows. The

trade-off between energy and power density is presented in Fig. 2.1. In the context of

electric vehicles, the use of a supercapacitor would allow for much shorter charging times

but would have a much shorter range than any vehicle currently on the market15.

Supercapacitors have thus been relegated to applications such as regenerative braking,

memory backups in personal computers, solar arrays, and wind turbines14.

For supercapacitors to reach more widespread use, substantial increases in energy density
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Figure 2.1: Ragone Plot displaying the trade-off between energy density and power density
for common energy storage devices10,11.
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and/or power density must be achieved. Guidelines for improving these properties is given

by the following equations:

E =
1
2

CV 2 (2.1)

P =
V 2

4R
(2.2)

where E is energy density, C is DC capacitance, V is the voltage, R is the resistance, and P

is power density16. Further, the capacitance of an interface is defined by:

C =
σA
4πt

(2.3)

where σ is the dielectric constant, A is the effective surface area, and t is the thickness of

the electrical double layer15. Both energy and power density can be improved with an

increased operating voltage window. Energy density can be improved with increased

capacitance (decreased thickness, increased surface area), while power density can be

improved with lower resistance.

2.2 Solvents

Supercapacitor performance is greatly influenced by the choice of electrolyte. Guided by

the equations above, an ideal electrolyte should exhibit a high operational voltage window

(high energy density), low resistivity (high power density), high ionic conductivity, low

toxicity, among other characteristics17–19. Electrolytes can be classified into three

categories: aqueous, organic, and ionic liquid18. This thesis mainly focuses on ionic

liquid electrolytes, although aqueous electrolytes are investigated as well. Aqueous

electrolytes are mixtures of ions and water which display high ionic conductivities, low

cost, and are relatively safe6,20,21. However, aqueous electrolytes display relatively low

operational voltage windows (Up to 1.2 V), which limits the energy density of a device19.

Popular organic electrolytes include acetonitrile and propylene carbonate as solvents6,22.
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These electrolytes typically display lower conductivities, higher cost, higher resistivity,

and higher toxicity than aqueous electrolytes6,23. Nevertheless, organic electrolytes

display operational voltage windows up to 2.7 V19.

Aqueous and organic electrolytes are considered classical solutions in which ions are

solvated in a molecular solvent24. In contrast, an ionic liquid is a salt in the liquid state at

ambient conditions in the absence of a molecular solvent24. Ionic liquids that are liquid at

room-temperature are aptly referred to as room-temperature ionic liquids (RTILs)24. Ionic

liquids were first discovered in the early 1900s, although research interest did not become

more widespread until the end of the century. By this time, ionic liquids started to become

much more commercially available and the concept of ionic liquids as ”designer solvents”

provided the possibility of engineering ideal fluids for specific applications25.

Ionic liquids generally consist of bulky, asymmetrical ions which results in poor

molecular packing and decreased melting points24,26. They exhibit strong electrostatic

interactions, which results in high cohesive energy densities and low vapor pressures.

Due to these unique properties, ionic liquids have shown promise in many applications,

including catalysis27, gas separation28–30, and lubrication31,32. Perhaps the most

promising application for ionic liquids is their use as electrolytes in electrical energy

storage19,24,33–36. In comparison to aqueous and organic electrolytes, ionic liquids boast

much higher operational voltage windows. Theoretical operational voltage windows up to

6 V37 have been observed, while practical voltages exist between 3-3.5 V38. Considering

the equation for energy density described above, the energy density of a device

quadratically scales with the operating voltage window. As a result, the notable increase in

operating voltage window for ionic liquids can result in greatly increased energy densities.

Several drawbacks exist for ionic liquids as electrolytes. Due to strong electrostatic

interactions and high molecular weights, ionic liquids exhibit slower transport properties,

including lower diffusion coefficients, higher shear viscosity, and lower ionic conductivity

in comparison to other electrolytes39–44. Because conductivity is inversely related to
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resistance, slower transport properties result in a drop in power density.

Ion pairing in ionic liquids is difficult to define due to their ionic makeup45–47 and has

been a topic of debate in the field48,49. At a macroscopic level, ion pairing can be

evaluated through the concept of ionicity50–53:

I =
σimp

σNMR
(2.4)

where σimp is the conductivity measured from experiments and σNMR is the conductivity

estimated from NMR. σNMR is defined by:

σNMR =
NAe2

kT
(D++D−) (2.5)

where NA is Avogadro’s Number, e is the electron charge, k is the Boltzmann constant, T

is temperature, and D represents the diffusion coefficients of the ions. Watanabe et al.50

found the ionicity of ionic liquids to be lower than one, indicating the measured

conductivity is lower than the value estimated from the diffusion coefficients of the ions.

This is attributed to correlated motions of the counterions, suggesting the presence of ion

pairing negatively impacts the conductivity of ionic liquids.

An approach to mitigate the slow transport properties is to mix ionic liquids with organic

solvents54, which improves the transport properties while maintaining many of the

desirable ionic liquid properties55–57. Solvation of ionic liquids may also reduce the ion

correlations, positively impacting the ionic conductivity. The effect of solvation on ionic

liquid transport properties and ion pairing is investigated both with molecular simulation

and experimental methods in Chapter 3.

2.3 Electrode Materials

Supercapacitors store charge through the mechanism of ion adsorption at the surface of a

charged electrode. The equation above defines the relationship in which capacitance
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scales with increased surface area due to the increased adsorption sites for ions. For this

reason, porous materials have traditionally been studied in supercapacitor research.

Specifically, carbon-based materials are ideal for capacitive energy storage due to a high

specific surface area (SSA), and a wide operational voltage window in a variety of

electrolytes6,58. Versatility is another key benefit of carbon materials as various structures

can be synthesized, and properties such as porosity can be tuned. Examples of some

carbon structures include onion-like carbon (OLC), carbon nanotubes, carbide-derived

carbons (CDC), and graphene6,59. OLCs and carbon nanotubes have SSAs on the lower

end of carbon materials (up to 500-600 mg−1 and 1000 mg−1 respectively), although

these areas are highly accessible to ion adsorption. Despite low capacitances, these

materials exhibit high electrical conductivities and are suitable for high power density

applications6. CDCs are synthesized through a reaction that selectively etches metals

from carbides. This process allows for highly tunable pore sizes by changing synthesis

conditions. These structures result in high capacitance with SSA between 1000-3000

mg−1. Thompson et al. developed an atomistic model of CDCs for use in molecular

simulation60. Graphene has been widely studied61–63 due to a highly accessible SSA up

to 2670 mg−1 as well as high conductivity6.

Carbon materials are often modeled as slit pores in contact with an electrolyte in

molecular simulation64 Chapter 6 briefly discusses the use of a Python package to

programmatically construct carbon slit pores for molecular simulation.

MXenes are a family of two-dimensional metal carbide/nitride materials which were first

synthesized by Naguib et al. in 201165. Since then, scientific research on MXenes has

greatly increased for numerous applications including water purification66,67,

catalysis68,69, and energy storage70–73. The MXene name is derived from the chemical

composition Mn+1AXn, a so-called MAX phase which they are derived from: M stands for

an early transition metal such as Ti or Mo, A is an element typically from group 13 or

group 14 such as Al or Si , and X is carbon, nitrogen or a combination of the two74.
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Through selective etching, due to weaker M-A bonds, the A phase is lost and the resulting

product is a crystalline 2D metal carbide/nitride composed of alternating layers of metal

and carbon/nitrogen75. MXenes have exhibited high capacitances due to

pseudocapacitance from fast redox-reactions at the surface76,77. Simultaneously, MXenes

have been shown to exhibit high power densities because of high conductivity and the

ability to intercalate various ions.72,74. Chapter 5 focuses on molecular simulation work

related to MXenes.

2.4 Molecular Simulation

Molecular Dynamics (MD) is a computational method in which atoms are handled

through the classical equations of motion. The total energy of a system is dependent only

on the position and momenta of the particles. Interactions between particles are handled

through a set of potential functions, referred to as force fields78. Force fields vary in

complexity and modeling interactions including, but not limited to: bonded, angle,

dihedral, Van der Waals, and Coulombic interactions. More complex force fields may take

into account bond order, many-body interactions, and polarizability. This thesis primarily

focuses on classical molecular dynamics (CMD) which calculates the total energy of a

system through pairwise interactions using the following equation:

φtot = ∑
bonds

kb(r− r0)
2 + ∑

angles
kθ (θ −θ0)

2 + ∑
dihedrals

kχ [1+ cos(nχ−δ )]

+ ∑
impropers

kω(ω−ω0)
2 +

N−1

∑
i=1

N

∑
j>i

[4εi j
σi j

ri j

12
−

σi j

ri j

6
]+

qiq j

ri j

(2.6)

The k terms refer to force constants, n and δ in the dihedral term refers to periodicity and

phase shift, σ and ε is the distance at particle-particle interaction energy is 0 and depth of

the potential well, q is the partial charge of a particle, and ri j is the distance between

particles. The terms in order correspond to the energies of bond rotations, angle bending,

rotations around four adjacent bonded particles, improper dihedral rotations, Van der
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Waals interactions, and Coulombic interactions. Bond and angle energies are widely

modeled as harmonic springs, while the functional form for dihedral terms varies by force

field. Van der Waals interactions are largely modeled through Lennard-Jones (LJ),

although other potentials such as Buckingham79,80 and Mie81 are also utilized in MD.

To accurately model a system through MD, a force field should reproduce a desired

property/properties measured from experiments or Ab initio calculations. Common

properties to fit include densities, energies, and torsional profiles. SPC/E82 and TIP3P83

are simple, 3-site water models in which bonds and angles are held rigid. Thus bonded

interactions are absent in these models. Further, the Van der Waals interactions for the

hydrogen are generally excluded, leaving only σ and ε parameters for the oxygen, and the

partial charges to be tuned. More complex classical force fields include optimized

potentials for liquid simulations (OPLS)84 developed by Jorgensen for organic molecules.

This force field includes bonded interaction terms (bonds, angles, dihedrals) in addition to

the non-bonded terms which were fitted to a combination of densities, heats of

vaporization, and gas-phase torsional profiles. Extensions of OPLS for ionic liquid

molecules are discussed and utilized in Chapters 3 and 5. Results of various water models

are discussed in Chapter 4.

Because the energetics are computed through the equations of motion, MD is particularly

useful for calculating transport properties such as self-diffusion coefficients, viscosities,

and conductivities42,85–87. However, MD simulations can be slow to equilibrate and can

be susceptible to being trapped in local energy minima. Special care must be taken to

ensure that the system has sufficiently reached equilibrium. In these cases, Monte Carlo

(MC) methods may be more suitable. One published study showed that MC simulation

was 2-2.5 times faster folding polypeptides compared to MD simulation88.

MC simulation methods are less of a focus in this thesis, although some work from

collaborators is discussed in Chapter 6. MC simulations utilize the same force fields as

MD to define interactions between particles in a system. Rather than generating new

10



configurations through the equations of motion, this is done in MC by randomly selecting

a particle to perturb89. A Markov chain of states is generated to sample configurations

from the probability distribution associated with the statistical mechanical ensemble. To

generate a new configuration in the Markov chain, a trial configuration is first attempting a

random perturbation to the current configuration. Then, the trial configuration is either

accepted or rejected by a defined acceptance criterion, typically Metropolis. In the

Metropolis sampling algorithm, acceptance depends on the probabilities of a trial

configuration and the energy difference between the current and trial configurations90.

Because MC is not bound by the classical equations of motion, this method is not suitable

for computing transport properties. However, MC is generally more efficient at reaching

system equilibration78,89 and thus not as susceptible to getting stuck in local energy

minima like MD methods. MC is also the more suitable method for simulating a system

without a fixed number of particles. Grand canonical Monte Carlo (GCMC) simulations91

are run at a fixed chemical potential, temperature, and volume in which insertion/deletion

moves are attempted in addition to the standard translation and rotation moves. This

method is particularly useful for equilibrating a system to the correct density and

calculating adsorption/desorption isotherms92,93.

2.5 Software

Reproducibility remains a challenge in scientific research. From a 2016 survey consisting

of 1,576 researchers, over 70% of those have tried and failed to reproduce another

scientist’s experiments94. Despite the lack of external variables present in experiments,

reproducibility remains a challenge in molecular simulation. Molecular simulations are

rather sensitive to specific details, including but not limited to: interaction parameters

(also referred to as a force field), integrators, combining rules, and initial structures. For

systems with complex chemistries, construction routines are often intricate and many

force field parameters are required. These steps often contain a combination of tools such

11



as graphical user interfaces (GUIs), stand-alone scripts, and ad hoc edits, further adding to

the complexity of system initialization. Although documentation is often provided in the

supporting information, and in some cases on a public domain such as GitHub, important

details are unavoidably excluded.

Another barrier to reproducibility in molecular simulation is the difficulty of producing

identical results of a chemical system from different simulation engines. In theory,

simulating the exact chemical system in two different simulation engines should produce

the same results. In reality, this is a non-trivial task as each software package often

employs unique input file formats, unit sets, and functional forms. In some instances, the

simulation software is developed in-house or commercially, and thus the source code,

underlying algorithms, and other details cannot be easily viewed. To provide an example,

a disagreement related to phase transitions in supercooled water stemmed from

differences in simulation software. The disagreement in results was only recently settled

when the two sets of codes were shared with others to determine the inconsistency95. By

opening code to the public, users can gain a greater understanding of algorithm

implementation and the chance of catching bugs is increased. As a result, open-source

software has a clear advantage in improving reproducibility in molecular simulation.

The Molecular Simulation and Design Framework (MoSDeF) is a Python-based

open-source software library that aims to address the issues of reproducibility in

molecular simulation. The library comprises of mBuild96,97 for programmatic system

construction, and foyer98–100 for encoding and application of force field parameters.

Recent integration with the signac framework101,102, developed by the Glotzer

group at the University of Michigan, provides data and workflow management especially

necessary for large-scale computational screening. MoSDeF has been utilized in various

published studies103,104, including the work discussed in Chapter 3. In Chapter 6, the use

and development of MoSDeF to develop transferable, extensible, usable by others, and

extensible (TRUE) workflows for molecular simulation of systems relevant to capacitive
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energy storage is discussed.
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CHAPTER 3

Structure, Dynamics, and Thermodynamics of Ionic Liquid and Organic Solvent

Mixtures

3.1 Introduction

Ionic liquids have shown promise as electrolytes for electrical energy storage due to their

wide operational voltage windows.19,24,33–36. However, ionic liquids display slow

transport properties (high viscosities, low conductivities, slow diffusion) due to their

strong electrostatic interactions and high molecular weights which can negatively impact

device performance39–44. One approach to improve ionic liquid dynamics is to solvate

them in organic solvents. Prior research has shown that solvation of ionic liquids improves

dynamics while maintaining a relatively high voltage window55,57,105–107.

1 2 3 4 5

Inspired by work done by Osti et al.54, this chapter focuses on a computational screening

study of the ionic liquid, 1-Butyl-3-methylimidazolium

bis(trifluoromethanesulfonyl)imide ([BMIM+][Tf2N−]), in organic solvents at various

concentrations. The dynamics, structure, and thermodynamics of the ions in these

solutions are investigated in great detail through the use of MD simulations.

3.2 Background

The main disadvantage of using ionic liquids in energy-storage devices is their slow

transport properties24,52,53,112–114. Ionic liquid dynamics can be improved through the

1Portions of this work reprinted with permission from the works below:
2M. W. Thompson, R. Matsumoto, R. L. Sacci, N. C. Sanders, and P. T. Cummings, Journal of Physical

Chemistry B 123, 1340 (2019), ISSN 15205207, Copyright 2019 American Chemical Society.
3R. Matsumoto, M. W. Thompson, and P. T. Cummings, Journal of Physical Chemistry B 123, 9944

(2019), ISSN 15205207, Copyright 2019 American Chemical Society.
4N. C. Osti, R. A. Matsumoto, M. W. Thompson, P. T. Cummings, M. Tyagi, and E. Mamontov, J. Phys.
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solvation in organic solvents. Pech et al. synthesized supercapacitor devices based on

OLC and an ionic liquid solvated in propylene carbonate (PC). These devices showed

significant increases in capacitance, energies per volume, and discharge rates over

conventional supercapacitors. With solvation, some concern exists over decreased

operational voltage windows. Numerous publications demonstrated that voltage windows

remain relatively wide upon solvation of ionic liquids in solvents55,57,106,107.

Previously, Osti et al.54 investigated the effect of solvation on ionic liquid dynamics

through MD simulations and QENS experiments. Specifically, the ion dynamics of

[BMIM+][Tf2N−] in four different organic solvents were studied. Both simulation and

experiment showed a positive correlation between ion diffusion and solvent dipole

moment. Further, free energy calculations suggested solvents with higher dipole moments

better screen ion-ion interactions, leading to better dynamics. Although an initial trend

was established between ion dynamics and solvent properties, the parameter space of this

study was limited to four solvents.

The self-interactions in ionic liquids are the sum of many complex interactions ranging

from strong electrostatic, dispersive, and hydrogen-bonding interactions to more subtle,

complex interactions such as polar and π−π stacking effects. While decades of research

employing rigorous and diverse experimental and simulation techniques have increased

our understanding of these effects for particular ionic liquids, the picture gets increasingly

complicated when also considering solvation effects. As a result, the parameter space to

study ionic liquid and solvent mixtures should be increased to better understand the effects

of solvation.

In this chapter, a screening study of a single ionic liquid, [BMIM+][Tf2N−], solvated in

23 various organic solvents at 18 different concentrations is discussed. This work has been

published as four peer-reviewed journal articles108–111.
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3.3 Methods

3.3.1 Scope of Study

The original study of Osti et al. looked at [BMIM+][Tf2N−] solvated in four organic

solvents: acetonitrile (ACN), dichloromethane (DCM), methanol (MeOH), and

tetrahydrofuran (THF). Solutions with ionic liquid concentrations of 0.25, 0.50, 0.75, and

1.0 mass fraction were considered.

For the computational screening study, 23 different organic solvents at 18 ionic liquid

concentrations were studied. The solvents were grouped into five different classes and

represent a range of structures and physiochemical properties. The list of organic solvents

studied is shown in Table 3.1.

Table 3.1: Solvents used in this study.

Nitriles Alcohols Halocarbons Carbonyls Glymes
Acetonitrile Methanol Dichloromethane Ethylene carbonate Tetrahydrofuran
Butyronitrile Ethanol 1,2-dichloroethane Propylene carbonate Glyme
Adiponitrile Butanol Chlorobenzene Acetone Diglyme
Benzonitrile Octanol Cyclohexanone 1,4-Dioxane

Dimethylsulfoxide
NN-dimethylformamide

Dimethylacetamide

3.3.2 Simulation Methods

3.3.2.1 Force Fields

In this chapter, [BMIM+][Tf2N−] interactions are defined by the Canongia Lopes &

Padua (CL&P) force field115–118. These force field parameters were derived from the

OPLS-AA force field by Jorgensen, in which additional Ab initio calculations were

performed to determine force constants, partial charges, torsion energy profiles, etc. The

resulting parameters were validated through matching experimental liquid densities. By

basing the ionic liquid parameters on the OPLS framework, the two sets of force field

parameters share the same functional forms, scaling factors, and mixing rules. Therefore,
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the CL&P and OPLS-AA parameters can be combined in a single simulation in which we

can expect reasonable agreement with experiment. Here we take advantage of the

common design choices of CL&P and OPLS-AA. The organic solvent interactions are

described through the OPLS-AA force field and the ionic liquid interactions are described

through the CL&P force field; the pairwise interactions between the organic solvents and

ionic liquids are handled through Lorentz-Berthelot mixing rules.

3.3.2.2 Computational Screening with MoSDeF

The work in this chapter employs MoSDeF designed to automate the screening of soft

matter systems. The workflow is comprised of four primary steps, detailed below, which

include components of the MoSDeF software suite and extensions of it. First, systems are

initialized with mBuild96,97, which places ionic liquid and solvent molecules in a

simulation box at random positions without overlapping. This particular mBuild

function makes use of PACKMOL119. Force fields, including all intermolecular and

intramolecular interactions, are then applied with foyer98–100. With all necessary inputs

generated, all simulations are run and managed with the signac framework101,102.

Lastly, analyses are done with various open-source tools, heavily relying on MDTraj120

and packages in the SciPy ecosystem.

3.3.2.3 Classical Molecular Dynamics

All simulations were performed with GROMACS 5.1.4121–125. After systems are

initialized with mBuild and atom-typed with foyer, energy minimization simulations

were conducted to avoid energetic clashes arising from unfavorable initial configurations.

This proceeded using 2000 steps of the steepest descent algorithm. The remaining

simulations were all molecular dynamics simulations, in which, unless otherwise noted,

similar parameters were used throughout. Electrostatics were treated with the Particle

Mesh Ewald (PME) method126, employing a real-space cutoff of 1.1 nm and in the inverse

space a minimum grid spacing of 0.16 nm. Non-bonded van der Waals interactions were
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also truncated at 1.1 nm. The Bussi thermostat127 and, in the case of NPT simulations,

Parrinello-Rahman barostat was used to keep systems at a reference state of 1 bar and 300

K. A timestep of 1 fs was used and all bonds were constrained using the LINCS128

algorithm. First, to further relax systems out of unfavorable initial configurations, a 100 ps

NVT simulation was performed. Then, to drive systems toward equilibrium liquid

densities and not explode into a gaseous state, a 1 ns NPT simulation was performed at a

reference pressure of 10 bar and followed up by a similar simulation with a reference

pressure of 1 bar. Then, systems were further equilibrated in the NVT ensemble for 10 ns.

Finally, systems were sampled for 30 ns in the NPT ensemble, writing configurations

every 1.5 ps. In these sampling runs, the timestep was increased to 1.5 fs and long-range

dispersion corrections were applied for energy and pressure.

3.3.2.4 Ionic Liquid Correlations

To evaluate the pairing and caging of ions in these systems, we wrote a Python package,

pairing129, and published it on GitHub under the MIT open-source license. It

implements the cluster statistics algorithm developed by Sevick et al.130. This algorithm

involves the calculation of a ”direct correlation matrix”, which determines which

molecules are directly connected. Direct connection or pairing of ions was determined

through the use of a distance criterion of 0.8 nm, roughly the center-to-center distance of

the first valley in a typical RDF between BMIM+ and Tf2N−. The [BMIM+][Tf2N−]

radial distribution functions (RDFs) are shown in the Appendix. The direct connection of

the ions is stored as a NxN matrix, where N is the number of ions in the system. If two

ions are directly connected, the value of the corresponding index in the matrix is 1.

Otherwise, the value of the index is zero. The process of calculating the direct matrices for

all systems was implemented with Python’s built-in multiprocessing module. Use

of this module allowed for individual processors of our in-house computer cluster to

calculate the direct matrices at various time points of a system trajectory in a parallelized
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manner. Once the direct matrix was computed for each frame of a trajectory, the ratio of

paired ions to the total number of ions was plotted against time. This decaying function

was then fitted with a stretched exponential function to obtain the value, τpair, a measure

of how long the ions stay paired in solution in units of nanoseconds.

In addition to pairing, the direct correlation matrix could also be utilized to quantify ”ion

caging” in each system. Ion cages are considered to be broken when a counterion leaves

or enters an existing cage, and thus the direct connectivity of ions at time t was compared

to the direct connectivity at time zero. To calculate the cages in each system, we compare

the rows of the direct connectivity matrix at time t from the rows at time zero, as the rows

indicate the pairs for an individual ion. If a row at time t differs from that at time zero,

then the cage is considered to be broken. As with ion pairing, the ratio of caged ions to the

total number of ions was plotted versus time and was fitted with a stretched exponential

function to obtain τcage, a measure of how long ions stay caged in solution in units of

nanoseconds.

3.3.2.5 Computation of Ionic Conductivity

A simple estimate of the ionic conductivity of a solution can be attained from the

Nernst-Einstein (NE) equation:

σNE =
N

V kBT
(q2

+D++q2
−D−) (3.1)

where N is the number of ion pairs, kB is Boltzmann’s constant, T is absolute temperature,

q+,q− are molecular charges of and D+,D− the diffusivities of the positive and negative

ions, respectively. This is typically a computationally inexpensive and simple calculation

that can be done in one step once diffusivity values are known. However, this formula

implicitly treats ions as fully dissociated and, while reasonable for aqueous electrolytes

involving metal ions and strong acids, is less valid for ionic liquids.

A more rigorous method for computing the ionic conductivity is the Einstein-Helfand
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(EH) equation:

σEH =
1

6V kBT
lim
t→∞

d
dt
〈[ ~MJ(t)− ~MJ(0)]2〉 (3.2)

where translational dipole moment is defined as:

~MJ(t) = ∑
i

qiri(t) (3.3)

and ri is the center of mass (COM) position of ion i and qi is the charge of ion i.

Furthermore, 〈[ ~MJ(t)− ~MJ(0)]2〉 is equal to ∑i [ ~MJ(t)− ~MJ(0)]
2

N , where N is the number of

frames in the trajectory. Unlike the NE equation, the EH equation considers the effects of

correlated ion motion on conductivity.39,42,131. It is also useful to compare conductivities

measured by each equation. Others50–53,114 have defined a ratio α as

α =
σEH

σNE
(3.4)

which quantifies the effects of correlated ion motions on conductivity. α is qualitatively

similar to the ionicity that is reported by experimentalists. The ideal case, not typically

found for ionic liquids, of unity indicates a lack of any ion correlations. This value is

frequently reported to be less than unity, in the range 0.5 to 0.8.50–53,114, indicating that

the effect of τpair is relevant but not overwhelming.

3.3.2.6 Potentials of Mean Force

The accelerated weight histogram (AWH) simulations were handled similarly to the

equilibrium simulations described above, utilizing the MoSDeF suite of tools and

signac framework. Using mBuild, solvent molecules were placed in a box with

dimensions of 5.5 nm x 5.5 nm x 8.5 nm. A single [BMIM+][Tf2N−] molecule was then

placed in the box. The CL&P and OPLS-AA force fields were once again applied with

foyer to parametrize each system. GROMACS 2018.5 was used instead of version 5.1.4

because this version contains AWH capabilities132. Once systems were initialized and
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atom-typed with mBuild and foyer, steepest-descent energy minimization was

performed to relax any unfavorable initial configurations for 2000 time steps. Afterwards,

equilibration in the NPT ensemble was performed for 1 ns with a 1 fs timestep. The

v-rescale thermostat was used to control the temperature at 300 K, and the Berendsen

barostat was to control the pressure at 1 bar. Position restraints of 1000 kJmol−1 nm−2 in

x,y, and z coordinates were applied to a central nitrogen of the immidazolium ring in

BMIM+ and to the central nitrogen in Tf2N− to ensure that the ionic liquids generally

remain in the specified coordinates of the simulation box. The addition of external forces

from position restraints can lead to instabilities in the simulations with the use of the

Parrinello-Rahman barostat, the other barostat option available in GROMACS; hence, the

Berendsen barostat is chosen. Once the system was sufficiently equilibrated, the AWH

sampling run was performed for 50 or 100 ns with a 1 fs time step, the time being

dependent on how long it took for the PMF curves to converge. Position restraints of 1000

kJmol−1 nm−2 in x,y, and z coordinates were again placed on the central nitrogen of the

BMIM+ imidazolium ring to keep the molecule in the specified coordinates. Positions

restraints of 1000 kJmol−1 nm−2 in x and y coordinates were placed on the central

nitrogen in [T f2N−] to keep the molecule in the specified coordinates in the x and y

direction while allowing movement in the z-direction. The v-rescale thermostat and

Berendsen barostat were once again used to control the temperature and pressure at 300 K

and 1 bar respectively. The pull code was used to allow for the Tf2N− molecule to be

sampled along the z-axis, the reaction coordinate of these MD simulations. The force

constant was chosen to be 100,000 kJmol−1 nm−2. To generate the PMF curves, the

built-in GROMACS functions were used to extract the AWH data, with PMF curve data

written for each time frame. The curves were then shifted to go to 0 as distance r goes to

infinity. To do so, the PMF was plotted as a function of 1/r to obtain the slope. The curve

fit was then obtained by plotting the slope over distance r. For each system, the PMF

curves for each time frame were initially plotted to visualize the time evolution and
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determine that the PMF curve has converged. Once convergence has been confirmed, the

PMF curves were plotted using Matplotlib’s pyplot133.

3.3.3 Experimental Methods

3.3.3.1 Conductivity Measurements

Conductivity measurements were performed by Nicolette Sanders and Robert Sacci of

Oak Ridge National Laboratory (ORNL). Conductivity was measured on a two-port 1/4”

Teflon Swagelok cell with the electrodes spaced 1.3 mm apart at 296.35 K. The electrodes

were 1.6 mm diameter Au disks embedded in PEEK as supplied by CHI Instruments. The

cell constant was calculated to be 6.56 cm−1 and the constant as determined using a KCl

standard solution was 6.54 cm−1. Conductivity was taken as the real part of the 10 kHz

data point in the impedance measurements recorded on a SP-200 Biologic potentiostat.

3.3.3.2 Quasielastic Neutron Scattering

QENS measurements were performed by Naresh Osti and Eugene Mamontov of ORNL.

Experiments were specifically performed at National Institute of Standards and

Technology (NIST), Center for Neutron Research (NCNR) and backscattering silicon

spectrometer (BASIS)134 at ORNL, spallation neutron source (SNS). At a high-level,

neutron scattering involves the shooting of neutron beams at a sample. The neutron beams

interact with the nuclei of the sample, and the energy transfers can be calculated from the

differences of incident and final wave vectors135. The quasielastic scattering region is

when the energy transfer is near zero, and can be utilized to measure the self-diffusion

coefficients of samples. Due to the difference in neutron scattering cross-sections,

deuterium can be used to focus on the dynamics of particular atoms in a sample.

3.3.3.3 Nuclear Magnetic Resonance

Pulsed Field Gradient Nuclear Magnetic Resonance (PFG-NMR) measurements were

performed by Cui et al. at the Ames Laboratory. Briefly, PFG-NMR is performed by first
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applying a gradient pulse with a specified intensity and duration. During this time,

molecules of the sample are allowed to diffuse. Then, a second gradient pulse of the same

intensity and duration with an opposite ”effective sign” allowing the spins to dephase. The

diffusion coefficient can then be determined by fitting an exponential equation to the signal

as a function of the gradient136. Additional details of methods are presented in Ref. 111.

3.4 Results of Computational Screening

The initial study of Osti et al. provided valuable insight into the properties ionic liquids

when mixed with organic solvents. Both MD and QENS results showed agreement in

which solvent polarity influences the dynamics of ions in these solutions. However, the

scope of this study was limited to four solvents and four ionic liquid concentrations. The

study of these systems in an expanded chemical space should be conducted to determine

whether the established property trends remain true.

The portion of chemical space encompassed by systems containing ionic liquids is vast

and largely unexplored. The number of neat ionic liquids - those with one cation, one

anion, and no other components - was estimated on the order of billions almost two

decades ago137 and estimates of as high as 1018 have been suggested35. Consideration of

mixtures of ionic liquids with other ionic liquids or solvents grows this figure by many

orders of magnitude35. Unsurprisingly, most existing literature, even review papers,

covers an extremely small subset of this space. For example, most cations studied in the

literature are based on 1-alkyl-3-methylimidazoliums. This scale necessitates

computational approaches; even modest ventures into this space are not feasible to do with

experiments alone. Synthesis at high purities can be difficult for novel ionic liquids, and

only a small fraction of possible ionic liquids have been synthesized. Additionally, the

amount of characterization necessary to understand their structure, dynamics, and

thermodynamics via experiments is virtually intractable. Computational screening can

provide preliminary searches through this space, providing predictions of molecular and
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macroscopic physical properties that experiments can later examine. Efforts in this

direction have already begun.138–142

The scope of this computational screening study was much larger than the previous study

of Osti et al.54, and to our knowledge, greater than anything in the existing literature.

Here, the same variables of solvent chemistry and ionic liquid compositions are studied,

but for a greatly expanded data set. We consider compositions in the range 0.1 to 0.95

mass fraction in increments of 0.05 for a total of 18 values compared to the four originally

studied. A total of 23 solvents, which includes the original four, were studied. The

parameter space explored here was infeasibly large to be studied using the QENS

experiments previously used. Oppositely, MD simulations are relatively inexpensive by

comparison, in which it is possible to accurately sample hundreds, and even thousands of

independent103 systems through screening. The goal is to evaluate previously established

trends related to ionic liquid and organic solvent mixtures through MD screening.

Through a more comprehensive analysis of these systems, new insights guided by

screening can then be further investigated and validated by experimental methods.

To automate each step in the process of screening (initializing a system, running

simulations, and performing analysis), MoSDeF and the signac framework101,102 were

used.

3.4.1 Ion Diffusivities as a Function of Ionic Liquid Concentration

Bulk diffusivities were computed from mean squared displacements (MSDs) using the

classical Einstein relation, which for a isotropic fluid is

〈(r(t)− r(0))2〉 → 6Dt as t→ ∞ (3.5)

where r(t) is the position of the ion at time t, 〈...〉 indicates ensemble average, and D is

diffusivity. It is useful to evaluate the individual components of each system. Therefore, in

addition to the mixture as a whole, we consider the solvent, each ion, and the overall ionic
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liquid as selections. The cation dynamics were previously isolated from our molecular

dynamics simulations because the QENS experiments exclusively track the cations (the

Tf2N− anion has no hydrogens but the BMIM+ cation has several). For the case of

[BMIM+][Tf2N−], which was used in both that study and this one, the cation and anion

exhibit nearly identical bulk diffusivities. Therefore, the cation, anion, and overall ion

dynamics can be interpreted interchangeably with each other, though this relationship

should not be regarded as a general feature of ionic liquids. Here we will consider the

overall ion dynamics.

Two diffusivities were computed for each selection: one from an MSD of the entire 30 ns

trajectory and another when slicing it into 20 sections, every 1.5 ns slice comprising a

shorter MSD, and averaging the diffusivities from each slice. This was done to gather

statistics on the sampling error for each diffusivity. The two methods produce similar

results and are further discussed in the Appendix.

First, one of the two major conclusions from the work of Osti et al. is revisited, which is a

monotonic increase in cation diffusivity as the composition of solvent is increased. This

result is consistent with intuition given the slow dynamics of neat ionic liquids relative to

the pure organic solvents, but the structural and energetic complexity of these interactions

should cast doubt on how strongly such physiochemical relationships should hold. That

being said, we observe, using our larger parameter set, the same trend as before,

summarized in Fig. 3.1.

It is worth noting that this trend is monotonic over the entire composition range, and no

plateaus or discontinuities are observed. Given the tendency for many ionic liquids to

phase separate into nanostructural domains143–145, this observation implies that the

transition from dilute ions and/or ion pairs to neat ionic liquids is smooth and lacks any

discontinuous transitions, i.e. there is no critical composition at which pairs move from

dense ionic liquid phases to dissociated ion pairs.
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Figure 3.1: Ion diffusivity as a function of mixture composition. Error bars are included as
vertical lines, though many are smaller than the width of the dots. Straight line segments
are drawn connecting data points with common solvents. Grey star is shown to indicate the
diffusivity of the neat ionic liquid.

3.4.2 Ion Diffusivities as a Function of Solvent Polarity

Next, the relationship between solvent polarity and ion diffusivity is revisited, which was

the main focus of the prior study of Osti et al.54. Previously, acetonitrile, methanol,

dichloromethane, and tetrahydrofuran were considered, in which it was found that

solvents with greater solvent polarity produced mixtures that exhibited greater ion

diffusivity. A more rigorous summary of our larger data, which considers 22 solvents, set

is presented in Fig. 3.2.

While a general trend of increasing solvent polarity as a function of dipole moment is

observed for subsets of the data, there exists no strong correlation when considering the

entire data set. Mixtures with acetonitrile (D = 3.92) exhibited the largest diffusivity of all

solvents, but mixtures with DMSO (D = 3.96) and propylene carbonate (D = 4.94) each

exhibited slower diffusivity than acetonitrile despite their similar and higher molecular
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Figure 3.2: Ion diffusivity as a function of solvent polarity. Data points are arranged from
top to bottom in order of increasing ionic liquid composition. The dashed line indicates the
ion diffusivity of the neat ionic liquid.

dipole moments, respectively. Further, mixtures with methanol (D = 2.87 D) and acetone

(D = 2.91 D) exhibited high diffusivity with lower polarity. These results imply that

solvent polarity is not the only contribution to ion transport in ion liquid mixtures and to

better inform the design of ionic liquid mixtures with enhanced transport properties, other

solvent properties must be considered.

3.4.3 Ion Diffusivities as a Function of Solvent Molecular Weight

Note that solvent polarity is only one solvent property; others could be better predictors of

the properties of the ionic liquid-solvent mixtures. We first chose to look at a simple

solvent property, molecular weight, for the possibility it correlates better with ion

diffusivity than polarity. As shown in Fig. 3.3, this relationship appears to be much

stronger: solvents with greater molecular weight tend to produce mixtures with slower ion

diffusivity.
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Figure 3.3: Ion diffusivity as a function of solvent molecular weight. Data points are
arranged from top to bottom in order of increasing ionic liquid composition. The dashed
line indicates the ion diffusivity of the neat ionic liquid.

3.4.4 Ion Diffusivities as a Function of Solvent Diffusivity

Next, we investigated the relationship between ion diffusivity and solvent diffusivity,

computed from pure solvent simulations. In Fig. 3.4, we observe a more robust trend

between ion diffusivity Dion and pure solvent diffusivity Dsolvent . Note that these solvent

diffusivities are extracted from independent simulations of pure solvent, not the solvent

component of the ionic liquid mixture simulations. This result is intuitively reasonable;

sluggish ionic liquid molecules are more likely to exhibit increased molecular diffusivity

in an environment of molecules with faster motion. The results are consistent with a

Stokes-Einstein picture of ion mobility. According to Stokes-Einstein theory, Dion should

scale as the inverse of the solvent viscosity ηsolvent - i.e., Dion ∼ η
−1
solvent . However, liquid

diffusivity generally scales inversely with viscosity, so in particular for these solvents,

Dsolvent ∼ η
−1
solvent , thus leading to Dion ∼ Dsolvent , as we observe from the simulation

results.
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Figure 3.4: Ion diffusivity as a function of pure solvent diffusivity. Data points are ar-
ranged from top to bottom in order of increasing ionic liquid composition. The dashed line
indicates the ion diffusivity of the neat ionic liquid.

3.4.5 Liquid Density

Next, the density of these ionic liquid-solvent mixtures as a function of composition.

Fig. 3.5 shows that these densities change monotonically as a function of composition.

They appear to roughly follow a simple mixing rule for all compositions outside of the

dilute ionic liquid range. All solvents have lesser bulk densities than the ionic liquid and

the densities of all mixtures fall between that of the pure solvent and ionic liquid

components. After converting from liquid density to specific volume (V̂ = 1/ρ), we

consider a simple mixing rule to define an ideal volume of mixing:

V̂expected = xILV̂IL + xsolventV̂solvent (3.6)

where V̂i and xi refer to the bulk liquid volume and composition of component i,

respectively. xi can be considered on a molar or mass basis. One can also define the excess
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volume of mixing:

V̂excess = V̂measured−V̂expected (3.7)

which characterizes deviations from ideal liquid behavior. Negative excess volumes can

be interpreted as thermodynamically favorable interactions between species and positive

values the opposite. These values are conventionally reported on a molar basis. We

present excess molar volumes of mixing for our data set in Fig. 3.6. For most mixtures,

the strongest deviation from ideal mixing is observed at intermediate compositions of

approximately 0.1 - 0.3 mol fraction. Numerical values are on the order of

1.000 cm3 mol−1 and similar to reported values of mixtures of ionic liquids in molecular

solvents.146–149 All mixtures exhibit a positive excess density of mixing (equivalent to a

negative excess volume of mixing) implying that their mixing is thermodynamically

favored.
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Figure 3.5: Density, ρ , as a function of [BMIM+][Tf2N−] a) mass fraction and b) mole
fraction

3.4.6 Radial Distribution Functions

Next we consider the local structure as defined by center of mass RDFs, focusing on pairs

of cations and anions (i.e., g+−(r)). In lieu of presenting hundreds of such curves, we

present the location and magnitude of the first peak of g+−(r), rpeak1 and

gmax = g+−(rpeak1), respectively in Fig. 3.7. These correspond to the common cation-ion
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Figure 3.6: Excess molar volume, V̂excess, as a function of [BMIM+][Tf2N−] mole frac-
tion. Excess volume is measured as the difference between the molar volume of any given
mixtures and a predicted value based on the composition and molar volumes of the pure
components.

pairing structure characteristically observed in ionic liquids. The distances in r where this

is observed, rpeak1, are largely insensitive to the properties of the solvent and appear to

mostly be a function of ion properties, which were held constant in this study. In contrast,

we observe that the heights of these peaks, gmax, depend strongly on the properties of the

solvent and the composition of the mixture. Most notably, these values spike in the limit

of low ionic liquid composition. While the numerical values are somewhat inflated by the

nature of normalizing RDFs to dilute components, they indicate strong structuring of ionic

liquid molecules. There is also considerable variance in this behavior among different

solvents. Mixtures in carbonyl-containing compounds (i.e. propylene carbonate, ethylene

carbonates, and dimethyl sulfoxide) display nearly identical gmax values overall

composition ranges and do not exhibit the aforementioned spike at low concentrations.

Mixtures in halocarbons and glymes together make up the most structured systems, and
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mixtures in nitriles, alcohols, and other glymes have this spike but of lesser magnitude.

This demonstrates that different chemical families of solvents give rise to substantially

different ion structures in these mixtures. In particular, halocarbons and glymes drive ions

to pair strongly whereas other solvents promote populations of free ions not bound to a

neighboring counter-ion. This is an indicator of the capacity of each solvent to screen

charges: halocarbons are ineffective while some carbonates robustly screen ion-ion

interactions.
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Figure 3.7: a) Location of the first peak of the RDF, gmax(rpeak1) as a function of ion
concentration, and b) magnitude of the first peak of the RDF, gmax(rpeak1) as a function of
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3.4.7 Coordination Numbers

The coordination number (NC) characterizes the molecular structure of a liquid by

quantifying the local structure around a molecule in terms of its average number of

neighbors as a function of intermolecular distance. It is defined as

NC(rC) = 4πρion

∫ rC

0
r2g+−(r)ρdr (3.8)

where NC is the coordination number of some interatomic pair at some cutoff distance rC,

ρion is the bulk number density of ions, g+−(r) is the corresponding radial distribution
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function, and r is the intermolecular separation. Throughout we use rC = 0.8nm, which

roughly corresponds to the location of the first well in a typical RDF, to focus on the

nearest-neighbor ions. We also consider only cation-anion pairs and no direct correlations

with solvent molecules. A summary of the coordination numbers of these systems is

presented in Fig. 3.8. In all solvents, there is a monotonic increase in NC as a function of

ionic liquid composition, which is characteristic of the nature of concentrated electrolytes.

Notably, however, at low concentration, all systems exhibit non-zero coordination

numbers, meaning ions are on average neighbored by 1 or 2 ions even in very dilute

systems. Similar to the solvents that displayed especially large gmax(r), NC varies greatly

among different solvents. At low concentrations, it is greater than 2 for some solvents and

closer to 0.5 for others. At high concentrations, solvent effects become less relevant and

these curves converge toward a bulk value near 5.
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Figure 3.8: Coordination Numbers, NC, as a function of [BMIM+][Tf2N−] mass fraction
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3.4.8 Ion Pairing as a Function of Ionic Liquid Composition

Ion correlations were computed for all state points. We first analyzed the pairing lifetimes

of ions in solution as the ionic liquid composition is increased, shown in Fig. 3.9. We

show ionic liquid composition in both units of mole fraction and mass fraction in order to

better highlight the trends with τpair. With the exception of octanol, which is one of the

most viscous solvents studied, τpair of most systems exhibit similar concentration

dependence. In general, as concentration increases from intermediate compositions

toward the neat regime, τpair increases. This is an intuitive result; given that ionic liquids

have strong self-correlations and inherently slow dynamics, it is not surprising that an

increase in ionic liquid composition results in longer pairing lifetimes. Furthermore, it

should be mentioned once more that we define two ions to be paired when their distance

from each other is less than a cutoff of 0.8 nm. Due to this distance criterion, we expect

ions to be fully paired as we reach the neat ionic liquid limit as ions are necessarily

surrounding each other. Recall that Zhang and Maginn found a strong correlation between

τpair and transport properties for a set of 29 neat ionic liquids at a range of temperatures.

There is, however, some degree of non-monotonic behavior at low compositions. In

particular, τpair increases dramatically in the dilute limit for chlorobenzene,

dichloromethane, dioxane, and cyclohexanone. These are among solvents we previously

noted as promoting strongly-structured ion pairs in solution. Other commonly-studied

solvents such as acetonitrile and propylene carbonate also exhibit this non-monotonic

behavior, but of much lower magnitude. We attribute this largely to the interplay between

strong ion-ion interactions and the ability of solvent molecules to screen them. In solvents

that are less able to screen these interactions, ions exist more often in a paired state,

whereas in solvents that effectively screen them, the ions are stable as free ions in solution.
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Figure 3.9: Ion pair lifetimes, τpair, as a function of a) mass fraction composition and
b) mole fraction composition. Straight line segments are drawn to connect data points of
common solvents

3.4.9 Ion Caging as a Function of Ionic Liquid Composition

Next, we analyze the lifetime of ion cages, τcage, over the range of ionic liquid

compositions, shown in Fig. 3.10. These values are qualitatively similar to τpair,

exhibiting a similar parabolic concentration-dependence. Like τpair, the majority of τcage

values have a minimum at intermediate compositions and increase toward both the limit of

dilute and neat ionic liquids. Their values are similar at low concentration, τcage ≈ τpair,

although differences between caging and pairing lifetimes are observed at other

concentrations. As composition increases, τcage increases at a slower rate, resulting in

τcage < τpair. Zhang and Maginn also observed this relationship for their set of neat ionic

liquids. This is largely a consequence of the definition of caging in a solvated system; in

the limit of infinite dilution, pairs and cages become equivalent. However, as more ions

are added to a system, cages are composed of more ions and there are more chances for a

cage to ”break” by losing a single ion.
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Figure 3.10: Ion cage lifetimes, τcage, as a function of a) mass fraction composition and
b) mole fraction composition. Straight line segments are drawn to connect data point of
common solvents

3.4.10 State of Ions in Pairs

While computing the pairing properties above, we can also extract information about the

paired states of ions, if they are in pairs or free ions. This was done by computing the

direct correlation matrices for each frame of the trajectory, and then calculating the ratio

of free ions to the total number of ions in the system. The ratio of free ions was then

averaged over all frames of the trajectory. Fig. 3.11 displays the fraction of ions that are

unpaired in each solvent as a function of [BMIM+][Tf2N−] mass fraction. We first

observe that each solvent displays a monotonic decrease in the fraction of free ions as the

composition of [BMIM+][Tf2N−] increases. We also observe that the differences in free

ions between solvents is greatest near the dilute regime of [BMIM+][Tf2N−]. As the ionic

liquid composition increases towards the neat limit, the fractions of free ions converge. In

solvents including dimethylsulfoxide, propylene carbonate, methanol, and acetonitrile,

most ions exist in a dissociated state at low concentrations of [BMIM+][Tf2N−] as

indicated by the higher fraction of free ions. This result provides further evidence that

these solvents are effective at screening ion-ion interactions, resulting in a lower

prevalence of ion pairing. Furthermore, the ions in solvents such as chlorobenzene,
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dichloromethane, 1,4-dioxane, and octanol are largely associated at low

[BMIM+][Tf2N−] concentrations. These solvents, which display a lower fraction of free

ions in solution, are suspected to be less effective at screening ion-ion interactions.

Through these structural analyses, we suspect that some solvents such as

dimethylsulfoxide, methanol, and acetonitrile are effective at screening ion-ion

interactions, resulting in a lower prevalence of ion pairing. Consistent with this view, these

solvents also exhibit a higher fraction of free ions. Furthermore, the solvents suspected to

be less effective at screening ion-ion interactions such as octanol, chlorobenzene,

dichloromethane, and 1,4-dioxane, display a lower fraction of free ions in solution.
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Figure 3.11: The fraction of free ions in each solvent as a function of [BMIM+][Tf2N−]
composition.

3.4.11 Free Energy Calculations

To supplement existing transport and structural characterization of these systems, we next

investigate the origins of τpair in ion-ion interactions in these solutions by computing

PMFs between BMIM+ and Tf2N−. Here, a PMF is defined as the reversible work
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required to bring two molecules to separation r from infinite distance. The general

formalism of a PMF is

φ(ε) =− ln
∫

π0(x)δ (ε− ε(x))dx,

where π0 is the equilibrium distribution of the system and ε is the reaction coordinate.

Here, the reaction coordinate is the intermolecular separation r. The PMFs of a single ion

pair in each solvent are displayed in displayed in Fig. 3.12. The minima of these free

energy curves are also summarized in Table 3.2. The free energy curve of 1,4-dioxane is

the most negative free energy curve, meaning it requires more energy to separate a pair of

[BMIM+][Tf2N−] in this solution. In other solvents (octanol, dichloromethane,

tetrahydrofuran, and benzonitrile) the free energy curves also suggest that the interactions

between [BMIM+][Tf2N−] ions are poorly screened. Recall that these solvents exhibited

characteristics of strong ion pairing when looking at pair lifetimes (Fig. 3.9) and

coordination numbers (Fig. 3.8), which we attributed to the inability of these solvents to

screen ion-ion interactions. By comparison, the PMFs of propylene carbonate, ethylene

carbonate, acetonitrile, among several other solvents, are much less negative, showing that

these solvents are more effective at screening ion-ion interactions. Overall, the ion-ion

PMFs in solvents at infinite dilution provides further evidence that the ability for solvents

to screen ion-ion interactions significantly impacts the prevalence of ion pairing, which

drives many structural and dynamical properties of these mixtures.

3.4.12 Dielectric Constants

We next compare ion pairing with the dielectric constants of the solvents. Consistent with

the general picture of screening coulombic interactions, trends between the molecular

polarizability of solvents and various properties of solvated ionic liquids have previously

been reported. For instance, Osti et al. suggested solvent dipole moment as being an

accurate predictor of ion dynamics for [BMIM+][Tf2N−] solvated in 4 various solvents54.

From our previous study, we reported from a greatly expanded parameter space that
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Figure 3.12: PMFs of [BMIM+][Tf2N−] in various solvents at infinite dilution. The curves
have been adjusted to decay to zero energy. A zoomed inset has been added to help visual-
ize a subset of the PMFs.

solvent diffusivity is a more accurate predictor of ion dynamics in comparison to solvent

dipole moment, which was subsequently confirmed by additional experiments110.

McDaniel and Son similarly looked at ion pairing and the dielectric constant of solvents

for solutions of [BMIM+][BF−4 ] in 4 different solvents. It was reported from this study

that solutions containing solvents with with lower dielectric strength exhibit longer ion

pair lifetimes. To investigate the relationship between these two properties, we used the

built-in tools of GROMACS121 to estimate the dielectric constants for each of the 22

unique solvents studied. Specifically, the dielectric constants are estimated by computing

the dipole-dipole correlation function which determines the total dipole moment of the

system150. Using the total dipole moment, the dielectric constants are calculated with the

following equation:
ε−1

3
2εr f +1
2εr f + ε

=
〈M2〉

9ε0V kBT
(3.9)
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Table 3.2: Table of solvents and PMF peak minima values (kJmol−1). Solvents are listed
from least negative minima to most negative minima.

Solvent PMF Minimum (kJmol−1)
Ethylene carbonate -2.35
Dimethylsulfoxide -4.16

Propylene carbonate -5.49
Ethanol -12.48

Acetonitrile -12.85
Methanol -12.99
Acetone -14.91
Butanol -15.78

NN-dimethylformamide -16.28
Dimethylacetamide -16.31

Glyme -17.46
Butyronitrile -22.39

1,2-dichloroethane -23.12
Diglyme -25.82

Adiponitrile -33.13
Cyclohexanone -38.29
Tetrahydrofuran -40.53

Benzonitrile -42.05
Octanol -49.32

Dichloromethane -58.67
Chlorobenzene -70.62

1,4-dioxane -164.50

where ε0 is the vacuum permittivity, V is the volume, kB is Boltzmann’s constant, T is

temperature, 〈M2〉 is the total dipole moment, and εr f is the dielectric permittivity of the

continuum, which in these summations is taken as εr f → ∞ (i.e., tinfoil boundary

conditions). In this case, Eq. 3.9 simplifies to:

ε =
1+ 〈M2〉
3ε0kBT

(3.10)

The ion pair lifetimes are plotted as a function of solvent dielectric constants in Fig. 3.13.

Examining the set of solutions simulated by McDaniel and Son, the trend between ion pair

lifetime and solvent dielectric constants holds well. 1,2-dichloroethane has the lowest

dielectric constant out of the three solvents McDaniel and Son tested, and exhibits the
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highest τpair. Following the trend, acetonitrile has the highest dielectric constant and has

the lowest τpair. Additionally, there are other solvent systems with chlorobenzene and

diglyme that follow this trend. The relationship between dielectric constant and τpair is

less clear however when the entire chemical space of solvents is considered. Octanol has a

higher dielectric constant compared to chlorobenzene, but the ions in these systems have a

much higher τpair. This is similarly the case for systems containing dimethylesulfoxide,

propylene carbonate, and ethylene carbonate. Overall, the monotonic decrease in τpair for

systems containing 1,2-dichloroethane, acetone, and acetonitrile indicate that solvent

dielectric constants play a relevant role in ion pairing. Despite this, other systems do not

fit this trend, signifying there are additional solvent properties and competing interactions

within these systems that influence ion pairing.
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Figure 3.13: Ion pair lifetimes, τpair, of [BMIM+][Tf2N−] solvent solutions as a function
of solvent dielectric constant
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3.4.13 Conductivity Measurements

We next consider the conductivities of these mixtures and investigate how they are

affected by solvent properties. In accordance with previous works, we first estimated the

conductivity by using the ideal ionic conductivity as a proxy. This can be computed from

known values via the NE equation. Ionic conductivity is easily estimated through the NE

equation due to elf-diffusivity being a single-particle property, which allows for it to be

averaged over all ions in the system. A summary of the relationship between NE ionic

conductivity and mixture compositions presented in Fig. 3.14. In agreement with prior

works, including that of Osti et al.54, the maximum conductivity is observed at

intermediate compositions. This is due to the counterplay between faster ion dynamics

resulting from greater solvation and, by definition, the decrease in ionic density that

results in fewer charge carriers: neat ionic liquids exhibit moderate conductivity; however,

in the limit of infinite dilution, ion dynamics approach bulk solvent dynamics, but the

capacity to carry charge is inherently lost. In most solvents, conductivity maxima are

observed near equimass compositions of ionic liquid and solvent. Notable here is that

acetonitrile-based mixtures exhibit the greatest conductivity of any mixture over the entire

range. This implies that acetonitrile should remain a popular solvent for electrochemical

applications. However, these results indicate the existence of viable alternatives if

acetonitrile is to be avoided.

Next the ionic conductivities were estimated through the EH formalism (Fig. 3.15), which

better takes into account the correlated motions of ions. The EH conductivities follow the

same trend, with maxima being located roughly in the range of 0.3-0.6 mass fraction

[BMIM+][Tf2N−]. The solvent mixtures with the highest ionic conductivity as calculated

by EH are those containing acetonitrile, methanol, and acetone. Looking once again at

Fig. 3.18, these mixtures have the shortest ion pairing lifetimes. Conversely, the mixtures

containing octanol and adiponitrile display the lowest EH conductivties and the longest

ion pair lifetimes. Thus it seems that the longer the ions stay paired in solution, the lower
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Figure 3.14: NE ionic conductivity as a function of ionic liquid composition. NE ionic
conductivity is highest at intermediate ionic liquid compositions.

the conductivity estimated through EH is. This is understandable as EH conductivity

accounts for correlated motions of ions.

We now compare the conductivities computed through EH and NE using the ionicity ratio.

Consistent with similar studies, this ratio is less than 1.0 for most systems; equivalently,

σNE > σEH . The Einstein-Helfand formalism is considered more rigorous and is believed

to produce more accurate estimates of ionic conductivity. Therefore we conclude that the

Nernst-Einstein equation overestimates the real ionic conductivity for most of these

systems. This error is typically attributed to the assumption that ion motion is

decorrelated; we earlier in this manuscript and elsewhere in the literature others have

established this to be unreasonable for ionic liquid - solvent systems.

Beginning in the regime of dilute [BMIM+][Tf2N−], mixtures containing solvents such as

dichloromethane, 1,4-dioxane, and chlorobenzene display low α values. A low α implies

the effects of ion correlations on conductivity are particularly strong. Notably, many of the
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Figure 3.15: Einstein-Helfand conductivity as a function of ionic liquid composition. Like
Nernst-Einstein, the Einstein-Helfand conductivity is highest at intermediate compositions

solvents with small α also have strong pairing as described in earlier sections. However

there are other mixtures, such as those including octanol and cyclohexanone, that have

intermediate conductivity ratios despite exhibiting generally strong pairing properties.

This result suggests there are other competing effects influencing the conductivity as

calculated by EH. Near the neat ionic liquid limit, the α values appear to be highest,

indicating that the NE approximation for conductivity is most valid for these solutions.

Once again this is broadly consistent with the structural properties evaluated previously.

There are a small number of mixtures in Fig. 3.16 with α > 1. While this is not commonly

observed in ionic liquids, Salanne et al. found α > 1 in viscous mixtures of the molten

salts LiF and BeF2
39. They attributed this observation to cooperative motion in which the

ions moved in the same direction as promoted by channel-like structures formed in the

solvent. Rather than hindering their motion, this view implies that the correlated nature of

ions can actually improve conductivity. Although the σEH data, and therefore α values,
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are somewhat noisy, it is evident that the most common cases of α > 1 occur with two of

the most viscous solvents, adiponitrile and diglyme. This is consistent with the

interpretation of Salanne et al., however given the inherently slow dynamics of these

mixtures it is difficult to take advantage of this effect in viscous solvents compared to

solvents with lesser viscosity.
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Figure 3.16: A ratio of Einstein-Helfand conductivity and Nernst-Einstein conductivity

These conclusions from computational screening were evaluated by, and supported by,

experimental conductivity measurements. A comparison between simulation predictions

and experimental results for a subset of the studied solvents is presented in Fig. 3.17. We

selected acetone, dichloromethane, and methanol, which were among the solvents that

produced mixtures with the highest conductivity. The trends observed in experiment are

consistent with our simulation results: a moderate composition of approximately 0.4 to

0.6 mass fraction ionic liquid produces mixtures with the highest conductivity. In

addition, the relative conductivity of [BMIM+][Tf2N−] in acetone, dichloromethane, and

methanol at low mass fractions, derived from the computational studies,

(σinacetone > σinmethanol > σindichloromethane is also seen experimentally. Interestingly, in the
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simulations there is a crossover from σinacetone > σinmethanol to σinacetone < σinmethanol

occurring at an ionic liquid mass fraction of 0.4; the experiments also suggest a similar

crossover, though occurring at higher mass fraction.
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Figure 3.17: Comparison between simulation predictions (solid lines) and experimental
measurements (dashed lines) of the ionic conducivity of select mixtures as a function of
composition.

3.4.14 Connecting Structure and Dynamic Properties

To better understand the implications of the pairing and caging properties τpair and τcage,

we attempt to connect these structural properties to transport properties.

Previously-computed ion diffusivities are plotted against τpair in Fig. 3.18. As with ionic

liquid composition, two distinct trends are observed between ion diffusivity and pair
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lifetimes. The same solvents that showed a more monotonic trend between τpair and ionic

liquid composition, such as acetonitrile and propylene carbonate, show a roughly

monotonic decrease in ion diffusivity as τpair increases. As such, it appears that ion

pairing in these solutions negatively affects the ion dynamics. Similar trends have been

observed by Zhang and Maginn for various ionic liquids using non-polarizable force

fields85 and by McDaniel and Son for [BMIM+][BF−4 ] in four solvents at various

concentrations using the SAPT polarizable forcefield151. Also shown in Fig. 3.18 is that

solutions with solvents that have the shortest ion pair lifetimes also exhibit the highest ion

diffusivities. For example, we previously reported that acetonitrile solutions exhibited the

highest diffusivites from this data set108; ion pairing analyses now indicate that the same

acetonitrile solutions also exhibit the shortest ion pair lifetimes. Consistent with previous

structural analyses, from screening over many solvents we observe that some solutions,

such as those containing 1,4-dioxane and chlorobenzene, do not follow this monotonic

trend in Fig. 3.18. When revisiting Fig. 3.9, the systems with strongly non-monotonic

curves also experienced the highest initial decrease in τpair as a function of ionic liquid

composition. The ions in these systems are paired in large quantity and for long times at

low ion compositions, but this pairing does not appear to affect the diffusivity of these

ions. In general, however, we would expect the longer ion pairing lifetimes of these

systems to negatively impact conductivity.

3.5 Additional Insights from QENS

After completion of the computational screening study, a disagreement existed with the

original work of Osti et al.. To resolve this, we discussed these results with our

experimental collaborators at ORNL, Naresh Osti and Eugene Mamontov, who were the

main authors of the initial study of ionic liquids in organic solvents. To investigate the

conflict, they designed an experiment to isolate the effects of solvent diffusivity and

solvent polarity110. Four organic solvents of nearly identical dipole moments but greatly
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Figure 3.18: Average ion diffusivity of [BMIM+][Tf2N−] as a function of ion pair life-
times, τpair

Table 3.3: Solvents analyzed in QENS study.

Solvent dipole moment (d, Debye) diffusivity (D,10−10m2s−1)
dichloromethane 1.60 15.7

octanol 1.68 0.4
butanol 1.66 2.7

tetrahydrofuran 1.75 8.5

different dynamic properties were chosen and are highlighted in Table 3.3. If the

relationship with solvent diffusivity established through screening were to hold true,

QENS would show a similar trend between ion diffusivity in solution and bulk solvent

diffusivity for the four solvents. If solvent polarity was the dominant influence on ion

dynamics however, we would see little correlation between the diffusivities. Based on

Fig. 3.19, the diffusivity of the ions in solution show a monotonic relationship with the

bulk diffusivity of the solvents similar to that of Fig. 3.4. This provides further evidence,

and validation from experiments, that the diffusivity of bulk solvents is a strong predictor

of the diffusivity of ions in ionic liquid and organic solvent mixtures.
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Figure 3.19: Symbols: experimentally obtained diffusivity values for BMIM+ cation in
50 wtpct [BMIM+][Tf2N−] (IL-rich domains), plotted as a function of diffusivity of the
organic solvent in the corresponding solution (as obtained from MD simulation). Data
taken from Ref. 110

3.6 Insights from PFG-NMR

At this point, the trend regarding ion diffusivity and bulk diffusivity in ionic liquid and

organic solvent mixtures was partially validated through additional QENS measurements.

Although further insight was gained, only a fraction of the solvents studied through

screening were investigated. Although it is unfeasible to measure diffusivities for a large

number of systems through QENS, these values can be computed through PFG-NMR at a

lower cost. Our collaborators, Jinlei Cui, Takeshi Kobayashi, and Marek Pruski of The

Ames Laboratory, provided an additional follow-up to our screening study by measuring

the diffusivities of ionic liquids in 10 solvents111. Concentrations of 10%, 30%, and 60%

ionic liquid mass fraction were considered. Robert Sacci from ORNL also provided
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Solvent ξ coordination number, n
acetonitrile 0.59 0.12
adiponitrile 0.98 0.13

methanol 0.83 0.67
octanol 0.29 2.09

1,2-dichloroethane 0.58 1.11
acetone 0.45 0.59

dimethylsulfoxide 0.54 0.23
glyme 0.35 0.42

diglyme 0.50 0.49

Table 3.4: Solvents analyzed in PFG-NMR study. Data taken from Ref. 111.

further conductivity measurements. The solvents studied are listed in Table 3.4.

Ion diffusivity as a function of neat solvent diffusivity measured by PFG-NMR is

displayed in Fig. 3.20. Similar to the results of Fig. 3.4 and Fig. 3.19, a positive

correlation exists between the diffusivity of BMIM+ in solution and the diffusivity of the

bulk solvent. This provides further validation for the trend originally predicted from the

MD simulations. Additionally, it was found that the solvent diffusivity is roughly double

the BMIM+ diffusivity in solution, Dsolvent
DBMIM+

˜2. This ratio can be analyzed along with the

diffusivity defined by the Stokes-Einstein equation:

D =
kBT

cπηrs
(3.11)

where kb is Boltzmann’s constant, T is the absolute temperature, η is the dynamic

viscosity, rs is the Stokes radius, and c is a constant equal to 4 in the case of the slipping

boundary limit. In the case of the ionic liquid-solvent mixtures, c and η are consistent and

thus the diffusivity ratio corresponds to the ratio of Stokes radii:

Dsolvent

DBMIM
=

rBMIM

rsolvent
≡ ρBMIM (3.12)

In the case of these mixtures, the Stokes radius of the diffusing particle involving BMIM+
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Figure 3.20: Ion diffusivity as a function of neat solvent diffusivity measured by PFG-
NMR. Data taken from Ref. 111.

is roughly twice that of the solvent molecule.

Similar to the ionicities calculated from the MD simulations through the NE and EH ionic

conductivities, the ionicity was calculated through the NE conductivities estimated from

PFG-NMR, and the conductivities experimentally measured, σobs. The conductivities and

ionicities are displayed in Fig. 3.21. Methanol and adiponitrile display high ionicities

while octanol displays the lowest ionicity. The ionicities can be used to estimate the

hydrodynamic size of diffusing particles and the coordination number of solvent

molecules. The Stokes radius of BMIM+ in solution is defined by the equation:

r̄BMIM = rneat
BMIMξ +(rneat

BMIM + rneat
T f2N)(1−ξ ) (3.13)

where rneat
BMIM and rneat

T f2N are the Stokes radii of ions in a neat ionic liquid.
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The coordination number, NC, can then be estimated from the equation:

ρBMIM =
r̄BMIM +NCrneat

solvent
rneat

solvent
(3.14)

The values of NC suggest BMIM+ contains less than one solvent molecule in its first

neighbor shell. The rarity of the solvent-ion interactions may explain the significant

influence of viscosity of the neat solvent on the ion diffusivities. For instance, the smaller

diffusivity of neat ions versus the diffusivity of solvent in the octanol mixture may be

explained by the low ionicity. Additionally, the high ionicity and low solvent coordination

number in adiponitrile may explain why the ratio of diffusivity of ions to solvent is much

closer to one.

Figure 3.21: a) Comparison of ionic and molar conductivities for 0.1 IL mass fraction of
[BMIM+][Tf2N−] and b) ionicity. Data taken from Ref. 111.

3.7 Conclusions

In this chapter, the initial study of Osti and coworkers was first introduced in which

[BMIM+][Tf2N−] was studied in four organic solvents. Two trends in relation to ion

diffusivity were established: (1) ion diffusivity decreases as a function of ionic liquid
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composition and (2) ion diffusivity increases as a function of solvent polarity. To expand

upon this work, a computational screening study was conducted in which the parameter

space was increased to 23 organic solvents and 18 concentrations. These results predicted

that bulk solvent diffusivity, not solvent polarity, is the primary solvent property that

influences ion dynamics. Conductivity was found to be highest at intermediate

concentrations of ionic liquids. Summaries of ion pairing and caging, RDFs, coordination

numbers, and ratios of paired to free ions provide a deeper understanding of ion structure:

pairing is strongest at very low composition and in solvents that poorly screen ion

interactions. Conversely, pairing effects are most mitigated at intermediate compositions

and in some solvents, such as acetonitrile and carbonates, that screen ion interactions. We

investigated a relationship between the dielectric constant of solvents and pairing lifetimes

of the corresponding ionic liquid mixtures. While a trend exists for a portion of the data

space, the screening of many solvents better informs us that this trend is not applicable

over the enter parameter space; dielectric screening appears to be an important factor, but

the overall screening of ion-ion interactions depends on other factors as well. To this end,

we obtained from free energy calculations a series of PMFs that describe the

thermodynamics of pulling apart an ion pair in each solvent. We observe large variation

among the solvents in accordance with the structural and dynamic properties observed.

From these results, we conclude that the ability of solvents to screen ion-ion interactions,

as manifested by the strength, frequency, and duration of ion pairing, is partially

responsible for the enhanced transport properties of these mixtures.

To provide validation for the predictions of computational screening, ion diffusivity of

[BMIM+][Tf2N−] in four solvents with nearly identical dipole moments but different

diffusivities were measured through QENS. A similar monotonic trend between ion

diffusivity in solution and bulk solvent diffusivity was observed for the four solvents

studied, showing agreement with our predictions. Further validation was provided from

our collaborators at the Ames Laboratory, in which ion diffusivity in 10 organic solvents
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was measured through PFG-NMR. Similar to the results of MD simulation and QENS, a

positive correlation was shown for ion diffusivity and bulk solvent diffusivity. Additional

insights on the solvent-ion interactions were provided. The ionicity and ratio of Stokes

radii between solvent molecules and ions indicated that ions are weakly solvated in these

mixtures. The lack of solvent-ion interactions provides a possible explanation as to why

bulk solvent diffusivity is the dominant factor on ion dynamics of these systems.

Altogether, a comprehensive view of the structural, transport, and thermodynamic

properties of mixtures of ionic liquids in organic solvents, over a wide range of

compositions and solvents, provides unique insight into the connections of these

properties. We hope these results can inform the design of new ionic liquid-based

electrolytes for a range of energy applications.

3.8 Future Work

There are several possible directions in which to continue research of ionic liquid and

organic solvent mixtures. First, the same ionic liquid, [BMIM+][Tf2N−], can be further

studied with MD simulation using more recent and/or more complex force fields. The

CL&P force field with scaled partial charges does a good job at predicting ion transport

properties. However, Schroder et al.152 showed that the local coordination of ions in

scaled partial charge models deviates from more accurate polarizable models. As a result,

these systems could be further studied through the force fields of Koddermann et al., in

which certain force field parameters of CL&P were reparameterized to avoid partial

charge scaling while obtaining accurate transport properties153. Goloviznina, Lopes,

Gomes, and Padua also published a polarizable force field for ionic liquids in 2019154,

which may also provide new insights on the interactions between ions and solvents.

Special care must be taken however to select a polarizable force fields for solvents that is

compatible with the polarizable ionic liquid force field.

To fulfill the name of ”designer solvents”, the properties of many more ion combinations
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should be understood. An additional avenue of research is to study additional

combinations of cations and anions which comprise ionic liquids.

Discussed in much more detail in Chapter 4, the Van Hove Function can be computed for

a system of ionic liquids and solvents to analyze the correlated dynamics. This may allow

us to further understand the local dynamics between cations and anions, and between ions

and solvents.

Lastly, the properties of these solutions should be analyzed under confinement of

energy-relevant materials, such as porous carbon and MXenes. Work in this area has

already begun. Yu Zhang investigated the capacitance values of ionic liquid and

acetonitrile electrolytes under confinement of various porous carbons155. Xuehang Wang

et al. also investigated the charge storage of various organic electrolytes under

confinement of MXenes156. From these experiments, electrolytes containing acetonitrile

or dimethylsulfoxide result in lower overall charge storage capability in comparison to

those with propylene carbonate. These studies show that the selection of electrode

material and confinement effects play a major role in the properties of electrolytes and

must be considered. A better understanding of the interplay between ions, solvents, and

electrodes may allow for the design of more efficient supercapacitors.
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CHAPTER 4

Understanding the Microscopic Dynamics of Fluids through the Van Hove Function

4.1 Introduction

To design more efficient supercapacitors, we must fully understand the dynamics of

electrolytes at a molecular level. The behavior of electrolytes is strongly dependent on the

ion and solvent selection and has been widely researched23. In Chapter 3, the effects of

solvation on ionic liquids are discussed in great detail. While we believe solvent selection

has an immense impact on on dynamics, the microscopic mechanism remains unclear. In

particular, the description of collective and correlated dynamics of electrolytes is still not

fully understood, which is important to understanding macroscopic properties.

Experimentally, the structure of fluids have been extensively studied through the pair

distribution function (PDF) through x-ray and neutron scattering techniques157–161.

Further, the dynamics have been studied through QENS and NMR, although these

techniques are limited to the self-motion of fluids. Recently our experimental

collaborators have been able to measure the time-dependent PDF, known as the Van Hove

Function (VHF), at a high enough resolution through inelastic x-ray scattering (IXS) to

study the correlated motions of water. 1

In this chapter, we describe the comparison of the VHF of water through various

molecular simulation methods and IXS. This work is currently in preparation163. Then, a

method at which to investigate the microscopic dynamics of electrolytes through an

integrated study of experimental scattering techniques and molecular simulation is

discussed162.
1Aqueous Electrolyte work reprinted with permission from Y. Shinohara, R. Matsumoto, M. Thompson,

C. Ryu, W. Dmowski, T. Iwashita, D. Ishikawa, A. Baron, P. Cummings, and T. Egami, Journal of Physical
Chemistry Letters 10 (2019), ISSN 19487185, Copyright 2019 American Chemical Society.

56



4.2 Background

Electrolytes for energy storage have been well-described through many modes of analysis,

including but not limited to, the calculation of self-diffusion coefficients, PDFs, and

viscosity. Despite the immense progress made, there is still much to be understood

regarding electrolytes and the molecular origins of their properties. This is partly due to

the limitations of current analysis methods. For instance, the PDF describes the

distribution of the distance between two atoms at the same time. However, it is a thermally

averaged snapshot of the distribution which does not provide information on the dynamics

of such correlations. MD simulations, PFG-NMR, and QENS have been utilized to

measure diffusivity, as shown in Chapter 3, although these techniques are limited to the

self-motion of particles. The correlated motion of particles can be analyzed through the

calculation of the time-dependent PDF, also known as the VHF. The VHF was first

introduced in 1954164, which can be obtained through IXS and inelastic neutron scattering

(INS) and by taking the double Fourier Transform of the dynamic structure function. It

has been difficult however to measure the dynamic structure factor over a wide enough

range of momentum and energy transfer until recently. In 2017, Iwashita et al.165,166

reported the first VHFs of water through the use of IXS in which water molecules were

found to be correlated in both space and time. Egami and coworkers have since reported

subsequent studies which analyze water and aqueous electrolytes through the VHF167,168.

The VHF can be used to study the correlated dynamics of water and various electrolytes.

For several decades, molecular simulation has accompanied experiments towards

advances in energy storage169–171, biology172–176, materials177–179, etc., with the ability to

provide a thorough description of the microscopic behavior of molecules. One limitation

of the VHF obtained through x-ray scattering experiments is being a statistical average

over all atoms of a system, making it difficult to determine which pairwise elemental

interactions most strongly influence macroscopic behavior162. Molecular simulation can

interrogate individual components of the overall VHF due to the knowledge of all atomic
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positions at each point in time, serving as a complement to experimental techniques.

Other properties of fluids including diffusivity, viscosity, and shear modulus, can

additionally be calculated through molecular simulation, allowing for a more rigorous

analysis. For these reasons, molecular simulation is a powerful tool alongside x-ray and

neutron scattering in studying the microscopic behavior of soft-matter. To study fluids

with molecular simulation through the VHF, the computational models should be

validated to ensure that the experimental response is sufficiently replicated.

In this chapter, comparison and validation of various water models through the VHF is

discussed. This work is in collaboration with Yuya Shinohara, Takeshi Egami, Paul Kent,

Van Quon Vuong, and Stephan Irle of ORNL, and Weiwei Zhang and Adri van Duin of

Pennsylvania State University.

Numerous models of varying types and complexity exist to describe the interactions of

water. Classical and reactive models are empirical and are generally fitted to experimental

or density functional theory (DFT) data. Perhaps the most widely used CMD models to

describe water are rigid, point-charge models such as SPC/E82 and TIP3P83 due to their

relative accuracy in reproducing experimental properties in a computationally efficient

manner. Though these models are computationally cheap and relatively accurate, a

common downside is a lack of accuracy at conditions in which the model was not

parametrized180. Polarizable models such as the Gaussian charge polarizable model

(GCPM)79 and BK3181–183, while more computationally expensive, aim to more

accurately represent the interactions of water through Gaussian charge distributions

instead of point charges and the inclusion of a polarizable term. In addition to classical

models, reactive methods such as ReaxFF184 include additional terms that allow for the

chemical reactions of a system to be modeled. The CHON-2017 weak ReaxFF

parameters, in particular, show good agreement with experimental values of bulk

water185. Semi-empirical quantum mechanical (QM) methods are more computationally

expensive than classical methods, but attempt to provide a more accurate representation of
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a system with the inherent inclusion of certain phenomena such as chemical

reactions186,187.. Density-functional tight-binding (DFTB)188,189 belongs to this class of

semiempirical QM methods, as it is an approximation to DFT based on the two-center

approximation and the use of a minimal basis set for construction of the valence electron

Hamiltonian. Its approach to replace the computation of expensive integrals derived from

DFT allows routine large-scale simulations on nanosecond time scales. Its 3obw

parametrization was partially obtained by the technique of iterative Boltzmann inversion

and reproduces many of the properties of bulk water, including bulk RDFs190. Ab initio

MD is the most complex and computationally expensive method discussed here, in which

electronic structure calculations are calculated on the fly to generate the forces for

dynamics. Ab initio models benefit from being unbiased to a given state, a specific

downside of empirical force fields191,192. Though this generally means these models are

not fit to experimental data. Transferability is less of an issue with Ab initio models which

proves useful in the study of novel systems with little reference data. The optB88

functional is based on the non-local Van der Waals density functional (vdW-DF)

developed by Dion et al.193. Specifically, optB88 includes new exchange functionals

which improve the interaction energies of the original vdW-DF formalism194 and show

reasonable structure and vibrational properties for liquid water195. Each class of models

and methods has its own set of strengths and weaknesses which will provide valuable

insight when studying the local dynamics and correlations of a system through the VHF.

Up to this point, the VHF of water analyzed through molecular simulations has been

limited to CMD using the widely used rigid, point-charge models. Iwashita et al. reported

the VHF of water from the SPC/E, TIP3P EW, TIP4P EW, and TIP5P EW models165.

The VHF observed by SPC/E was later reported and further analyzed by Shinohara et

al.167,196 Camisasca et al. reported the VHF of the TIP4P water model to study the local

dynamics of water in high-density and low-density environments197. Shinohara et al.

additionally reported the VHF of aqueous solutions through IXS and the use of the MD
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simulations and the SPC/E model, demonstrating how the pairwise components of the

VHF obtained from MD aid in the understanding of separate atomic correlations162.

Despite some quantitative differences, each of these studies reported reasonable

qualitative agreement for these rigid, point-charge models. To the best of our knowledge,

the VHF of water has yet to be studied through reactive, polarizable, and QM methods.

Once the VHFs of water models are discussed, analysis of aqueous electrolytes through

the VHF is explored. The total VHF of these electrolytes is characterized through IXS and

CMD simulations. Then, the partial VHFs are calculated through CMD. The partial VHFs

can be used to analyze in detail specific pairwise interactions in these systems.

4.3 Methods

Table 4.1: System Information for computational methods. N intervals is defined as the
number of 2 ps intervals averaged to obtain the final VHF result.

Model Simulation Method Number of Molecules Cell Volume (nm3) Simulation Time (ns) N intervals
SPC/E Classical MD 1000 29.98 2 3000

TIP3P EW Classical MD 1000 30.01 2 3000
BK3 Classical MD 1000 29.98 2 3000

CHON-2017 weak Reactive MD 512 15.31 2 10000
3obw DFTB MD 250 7.49 2 15000

optB88 Ab initio MD 128 3.83 0.1 10000

4.3.1 Water

Outlined below are the simulation parameters and steps for each computational method.

To maintain consistency among the computational methods, each simulation was run in

the canonical (NVT) ensemble of constant temperature, number of molecules, and volume.

Because the methods investigated span multiple time and length scales, the system sizes

and simulation times are different depending on the method. An overview of the system

size and simulation times are shown in Table 4.1.
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4.3.1.1 CMD

Three classical water models were employed in this study: SPC/E, TIP3P EW, and BK3.

SPC/E and TIP3P EW are both non-polarizable, 3-site, point charge models which utilize

12-6 LJ potentials to describe non-bonded interactions. Both SPC/E and TIP3P EW are

the most widely used water models due to their relative accuracy and computational

efficiency. In contrast, BK3 attempts to model polarizability through the use of drude

oscillators. Like the GCPM model that precedes it, BK3 utilizes Buckingham non-bonded

potentials and gaussian charge distributions instead of point charges. Both GCPM and

BK3 have shown to accurately predict various properties of water over a wide range of

conditions.79,80.

The CMD simulations were set up through the use of the molecular simulation and design

framework198,199 (MoSDeF), comprised of mBuild96,97 and foyer98–100. Using

mBuild, water molecules were initialized and placed into a cubic simulation at random

positions with the use of PACKMOL119. Once each box of water was initialized,

parametrization was handled using two different routines. For the BK3 polarizable water

model, the GROMACS parameter files written by Sega et al.200 were used for defining the

system’s potentials. For the TIP3P EW and SPC/E water models, the specific atom-types

defining the system were automatically applied through the use of foyer.

The non-polarizable simulations were performed with GROMACS 2018.5121–125. In these

simulations, electrostatics were handled with the particle mesh Ewald126 method with a

real-space cutoff of 0.9 nm, and a minimum grid spacing of 0.12 nm in the inverse space.

A cutoff of 0.9 nm was also used for the non-bonded Van der Waals interactions.

Temperature was controlled with the Nosé-Hoover201,202 thermostat at 300 K, and

pressure was controlled with the Parrinello-Rahman barostat at 1 bar. All angles and

bonds were constrained with the LINCS algorithm128, and a 1 fs timestep was used. Each

system was first equilibrated in the NPT ensemble for 1 ns, equilibrated in the NVT

ensemble for 100 ps, and then sampled in the NVT ensemble for 2 ns. During the sampling
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run, configurations were written out every 10 fs. The BK3 polarizable simulations were

performed with a modified version of GROMACS 4 by Kiss et al.203, which supports

gaussian charge distributions and drude oscillators. For these specific MD simulations, the

electrostatics were handled with particle mesh Ewald method with a real-space cutoff of

1.1 nm and a minimum grid spacing of 0.12 nm in the inverse space. Non-bonded Van der

Waals interactions were also cutoff at 1.1 nm. Temperature was controlled at 300 K with

the nose-hoover thermostat, and pressure was controlled at 1 bar with the

Parrinello-rahman barostat. A 1 fs timestep was used for all simulations. To equilibrate

the system, a 1 ns NPT simulation was run, followed by 100 ps NVT simulation.

Following, a 2 ns NVT sampling run was performed, writing configurations every 10 fs.

4.3.1.2 Reactive MD

The ReaxFF simulations were performed by Weiwei Zhang and Adri van Duin of

Pennsylvania State University. The ReaxFF reactive force field is a bond-order-dependent

force field which can describe the bond formation and breaking during chemical

reactions184. As such, the connectivity between every pair of atoms should be updated at

every MD time step. The ReaxFF potential is expressed as204:

Esystem = Ebond +Eangle +Etors +Eover +Evdw +Ecoul +Especi f ic (4.1)

where Ebond , Eangle, Etors, and Eover, are bond, angle, dihedral contributions and an energy

penalty preventing the over-coordination of atoms, respectively. All four of these terms

are bond-order dependent. The dispersive and electrostatic contributions between atoms,

Evdw and Ecoul , are bond-order independent. Especi f ic represents specific terms generally

not included. In this case, a hydrogen bonding term is added for bulk water.

In this work, we used the CHON-2017 weak ReaxFF force field to simulate bulk water,

which has been demonstrated to predict density, structural, and dynamical properties of

water185,205. During our simulation, a cubic simulation box containing 512 water

62



molecules with a low density (i.e. 0.2 gcm−3) was first built using Monte Carlo

techniques. Then, the system was minimized and compressed to a density of 1.00 gcm−3.

Finally, a 2.5 ns NVT/MD simulation was run at room temperature using the ADF

simulation package206 with the last 1.5 ns of the trajectory data used for analysis. In our

ReaxFF MD simulations, the time step was set to 0.25 fs and the Berendsen thermostat

was employed with a damping constant of 100 fs.

4.3.1.3 Density-Functional Tight-Binding

DFTB simulations were performed by Van Quan Vuong of the University of Tennessee.

DFTB is an approximation to DFT in which its energy is based on a Taylor expansion of

DFT energy E[ρ] around a reference electron density ρ0 with respect to a difference

electron density207. Here, the third-order DFTB3 method is used as it is the superior

method for modeling covalent and noncovalent interactions208. The 3obw parameter

set,190 which was specifically tuned for studying water and hydration effects, was

employed to simulate bulk water. The empirical γ-damping hydrogen-bond correction and

D3(BJ) dispersion correction were included to improve description of noncovalent

interactions. An NVT MD simulation of 250 water molecules in a a cubic simulation box

with a density of 0.997 gcm−3 was carried out at room temperature. The temperature was

controled by the Nose-Hoover thermostat and timestep of 0.5 fs were used. The system

was equilibrated for 100 ps and following a 2 ns sampling run for production,

configurations were collected every 10 fs.

4.3.1.4 Ab initio MD

AIMD simulations were performed by Paul Kent of ORNL. Simulations were performed

with the use of the optB88 vdW-DF which yields reasonable structure and vibrational

properties for liquid water. In addition to a production run at a temperature of 300 K, a

simulation was performed at 330 K. This is a well-known temperature correction for this

model to obtain less-structured liquid water systems. Additional simulation details are
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outlined in Ref. 163.

4.3.1.5 Inelastic X-ray Scattering

The experimental VHF of water was obtained by carrying out the double Fourier

transformation of the dynamic structure factor S(Q,ω). S(Q,ω) was measured with

inelastic x-ray scattering at BL43LXU, SPring-8 (Japan)209. The details of experimental

and data reduction procedure are described in the previous studies165,167,210. The sample

thickness was 1 mm and the energy resolution function was estimated by using the

S(Q,ω) of borosilicate glass of 1 mm thick. The sample temperature was kept at 303 K.

4.3.2 Aqueous Electrolytes

4.3.2.1 CMD

The MD simulations were carried out with 1500 water molecules and 40 ion pairs. The

simulation was initialized and atom-typed with the molecular simulation and design

frame-work (MoSDeF) suite of tools. The SPC/E force field82 and the monovalent ion

parameters of Joung and Cheatham211 were used to describe the water interactions and the

ion interactions, respectively. All simulations were run with GROMACS 2018.5.121–125

The VHFs for each system were computed as the weighted sum of individual partial

VHFs. To compare these correlations with the X-ray results, these are scaled by a

coefficient cαcβ fα fβ . Here, the x-ray form factor fα was approximated as atomic

numbers.

4.3.2.2 IXS

The experimental VHF of water was obtained by carrying out the double Fourier

transformation of the dynamic structure factor S(Q,ω). S(Q,ω) was measured with

inelastic x-ray scattering at BL43LXU, SPring-8 (Japan)209. The details of experimental

and data reduction procedure are described in the previous studies165,167,210. The sample
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thickness was 1 mm and the energy resolution function was estimated by using the

S(Q,ω) of borosilicate glass of 1 mm thick. The sample temperature was kept at 303 K.

4.3.3 Analysis

The VHF212 for a monatomic fluid is defined as

G(r, t) =
1

4πρNr2 ∑
i, j

δ (r−|ri(0)− r j(t)|) (4.2)

where ρ is the average number density of particles, N is the number of particles in the

system, r j(t) is the position of the jth particle at time t, and δ (R) is Dirac’s delta function.

For fluids containing polyatomic molecules, the total VHF is defined as a weighted sum of

the specific pairwise components of the VHF, which we will refer to as the partial VHF

Gαβ (r, t) =
V

4πNαNβ r2 ∑
i∈{α}

∑
i∈{β}

δ (r−|ri(0)− r j(t)|) (4.3)

where α is the atoms of species {α} and Nα is the number of atoms of species {α}. To

measure G(r, t) in a scattering experiment on a polyatomic fluid, whether pure or part of a

mixture, the measured VHF is given by

G(r, t) =
Nα

∑
α=1

Nβ

∑
β=1

xαxβ b̄α b̄β Gαβ (r, t) (4.4)

In Eq. 4.4, xα is the mole fraction of total atoms that are of type α and b̄α is the atomic

scattering density for an atom of type α . For x-ray scattering, for example, b̄α is

proportional to the number of electrons in atom α , so that the higher the mass of an atom

the higher the b̄α . Experimentally, G(r, t) is obtained by double Fourier inversion of the

directly measured dynamic structure function S(Q,ω) with respect to Q and ω , where Q is

the momentum transfer and E = h̄ω is the energy transfer in scattering. All simulation

trajectories were analyzed with the use of the scattering package213. The
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scattering package is made freely available and distributed under the MIT license on

GitHub and contains a set of Python functions to perform structure analyses on molecular

simulation trajectories, including the VHF. This package utilizes MDTraj120 to calculate

the distance of two atoms as a function of time. The total VHFs were calculated from

oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen partial VHFs using the

weighting factors described by Iwashita et al.165. Note that due to the weighting factors,

the total VHF is dominated by the oxygen-oxygen interactions. Averaging was enhanced

by calculating G(r, t) in 2 ps intervals at random starting points through each trajectory

using NumPy. The number of averaged intervals is displayed in Table 4.1. Additional

details of the VHF calculations are contained in the Appendix.

4.4 Water Results

4.4.1 System Size and Duration Comparison

Before discussing G(r, t), the use of simulations of varying size and length must be

validated. Comparison across different system sizes and simulation lengths is necessary

because of the computational limitations of more complex methods. For example, it is not

reasonable with current hardware to run an AIMD simulation of 512 water molecules for

2 ns, whereas a CMD simulation of this size and duration can be completed in a matter of

minutes. System size effects may be strong in smaller simulations, while sampling may be

inadequate in shorter simulations. To justify this comparison, simulations of SPC/E water

of varying size and duration were compared. System size effects are investigated in

Fig. 4.1a which displays the height of the first peak as a function of time, G1(t), for

simulations of SPC/E water of varying size. All system sizes display good agreement up to

∼0.55 ps. Up to ∼0.35 ps, the agreement is nearly perfect while small differences are seen

beyond this time, which could partly be due to greater noise as t increases. It is concluded

here that no significant system size effects are introduced in the smaller systems - 128

water molecules is sufficient for this property. Effects due to simulation lengths were then
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investigated for a system of 128 water molecules shown in Fig. 4.1b. Similar to the system

size comparison, the simulations run at various lengths show good agreement, albeit with

greater noise at higher t. Because G(r, t) is nearly identical at all simulation lengths, the

validity of comparing simulations with different system sizes and durations is confirmed.

This is an important finding, since it demonstrates that AIMD simulation can be used to

compute G(r, t) with acceptable accuracy despite the small system sizes and trajectory

lengths accessible to AIMD methods compared to the computationally cheaper models.

Figure 4.1: Comparison of the first peak height as a function of time, G1(t), for SPC/E
water simulation of a) varying size sampled for 2 ns and b) varying lengths of time with a
system size of 128 SPC/E water molecules. Each system has been averaged over 10,000 ps
intervals.

4.4.2 Analysis of the Total Van Hove function

The total Van Hove functions, G(r, t), for the IXS data and each molecular simulation are

shown in Fig. 4.2a. The total G(r, t) is defined as the weighted sum of the pairwise

(partial) G(r, t) for the oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen pairs,

as described by Eq. 4.4. G(r, t) comprises of a self-part that represents the correlations of a

single atom at time t, and the distinct-part that represents the collective motions of distinct

atom pairs. G(r,0) directly corresponds to the weighted pair distribution function (PDF)

of water. The first peak of G(r,0) for each curve is roughly located at 0.28 nm and the
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second peak is located at 0.4 - 0.5 nm, which is consistent with previous work165.

Additionally, each curve evolves towards unity with increasing time.

G(r, t) observed from the various models show qualitative agreement with the result from

IXS, with the exception of the optB88 AIMD model at 300 K. While the positions of the

peaks match those of IXS, the system is over structured as shown by the distinct first and

second peaks that remain after 2 ps. This is further shown in the heatmap, Fig. 4.2b, where

the water molecules are in distinct first and second peaks. While none of our models

explicitly include nuclear quantum effects (NQE), all of the empirically fit models must

compensate for the NQE present in the experimental data. Previous studies show optB88

yields better agreement for both PDFs and for self-diffusion at increased temperatures of

+30 K195. With this temperature correction, the optB88 model at 330 K shows much

better agreement with the IXS result. While this temperature correction can account for

multiple sources of error in the DFT simulations, we expect that the majority of this error

is due to the missing NQE. (Use of the path integral approach that would account for the

quantum nuclear degrees of freedom214–216 and resultant NQE is beyond the scope of the

present work.).

Several quantitative differences exist across the models. The first minimum around ∼0.20

ps displays a higher magnitude in the models, particularly in TIP3P EW and 3obw.

Further, the self-part of G(r, t) decays at a faster rate with time in TIP3P EW and 3obw,

and decays at a slower rate in BK3 and optB88. Discrepancies between the second peak

around ∼0.45 nm, G2(t), are also observed in the heatmaps. G(r, t)−1 from IXS is

roughly 0.1 up to 1 ps. In contrast, G2(0) produced from TIP3P EW and 3obw results in

lower magnitudes at all times. The magnitude of the second peak produced by SPC/E is

also lower at higher t, though it is closer in agreement with IXS. BK3 and

CHON-2017 weak appear to show the best agreement with IXS in regards to G2(t),

mainly due to the correct magnitude of G2(0). At 330 K, the magnitude G2(t) of optB88

remains too high in comparison with the IXS response. The behavior of G2(t) is further
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investigated below.

Figure 4.2: (a) Total Van Hove function, G(r, t), measured from x-ray scattering and cal-
culated from molecular simulations. Colorbar represents the time in picoseconds. (b)
Heatmap of Van Hove function, G(r, t)−1, colorbar represents intensity from -0.1 to 0.1.

4.4.3 Decay of First Peak

The height, G1(t), and area under the curve, A(t), of the first peak as a function of time are

shown in Fig. 4.3a,b. A vertical line at 0.1 ps is drawn to show that the IXS data at shorter

times contains termination effects and should not be meaningfully compared to the

simulation data as a result165. The definition of the peak area is taken from Ref. 167,

which is:

A(t) =
∫ Rii

1

Ri
1

[G(r, t)−1]dr (4.5)
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where G(r, t) > 1 and Ri
1 < r < Rii

1 around R1. R1 is defined as the distance corresponding

to the first peak, G1(t), Ri
1 is the local minima left of R1, and Rii

1 is the local minima right

of R1. The first peak height at t = 0, G1(0), corresponds to the first peak of a static PDF,

and slightly differs for each model. G1(0) show the following trend: optB88 > SPC/E >

BK3 > 3obw > ReaxFF. These values agree with previous studies comparing static PDFs

from experimental and simulation data87,157,181,185,190

G1(t) when t ≤ 0.2 ps is believed to correspond to the ballistic or phononic motions of

water molecules and represents the first-step decay of the first peak. The simulation data

up to this time is in good agreement with IXS, suggesting that each model accurately

captures the ballistic motion of water. When t > 0.2 ps, the CMD, ReaxFF, and DFTB

methods begin to overestimate the rate of decay. In contrast, the optB88 model at 300 K

decays much slower than the IXS data, consistent with the increased structuring observed

in Fig. 4.2. Similar trends are observed in the calculation of A(t). A(t) at t ≤ 0.28 ps can

be fit to a compressed exponential function taken from Ref. 167:

A(t) = A1e(−t/τ1)
γ1
+A2e(−t/τ2)

γ2 (4.6)

where τ1 and τ2 represent the relaxation times of the first-step and second-step decay.

A(0) is roughly consistent across all models and IXS indicating that local coordination of

water molecules at t = 0.0 is consistent. The fitting results are displayed in Table 4.2 and

the compressed exponential equations plotted as a function of time are contained in the

Appendix. The values of IXS and SPC/E are in good agreement with the values originally

reported in Ref. 167. τ1 from 3obw shows the best agreement with IXS with a value of

0.153 ps. The values of τ1 SPC/E, TIP3P EW, BK3 and CHON-2017 weak are slightly

lower than IXS, while τ1 from optB88 at 300 K and 330 K are the lowest at 0.125 ps and

0.122 ps respectively. As a whole, each model shows sufficient agreement with IXS in

regards to τ1.
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The largest differences between the methods are observed in the second-step of A(t). This

step describes the configurational changes in the bond network, and τ2 corresponds to the

time required to break a hydrogen bond. The fit from IXS produces a value of 0.475 ps for

τ2. SPC/E, BK3, TIP3P EW, 3obw, and CHON-2017 weak display a faster rate of decay

at these times shown by lower values of τ2. At 300 K, optB88 displays a much slower

change in G1(t) as indicated by τ2 = 1.53 ps. Interestingly, optB88 at 330 K shows the

best agreement with IXS with a value of τ2 = 0.449 ps, and suggests that the DFT is

potentially capturing interactions at this timescale more accurately than the empirically fit

models.

An interesting characteristic of G1(t) produced from the simulations occurs at t < 0.1 ps.

Because of termination effects in the IXS data previously mentioned, the behavior of

water dynamics at t < 0.1 ps is relatively unknown. All simulation methods however

display a shoulder in the first peak decay, which corresponds to the first neighbor shell

staying intact for times less than 0.1 ps before the motion of water occurs. The shoulder

can be explained by the time reversal symmetry of the VHF:

G(r, t) =
1

4πρNr2 ∑
i, j

δ (r−|ri(0)− r j(t)|) (4.7)

=
1

4πρNr2 ∑
i, j

δ (r−|ri(−t)− r j(0)|) (4.8)

=
1

4πρNr2 ∑
i, j

δ (r−|ri(0)− r j(−t)|) (4.9)

which results in:

dG(r, t)
dt

∣∣∣
t=0

= 0 (4.10)

This equation produces a shoulder and can be modeled by the Debye model for phonons.
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The first peak decay at these times less than 0.1 ps should be further investigated as this

may allow for a better understanding of the local dynamics of water.

Figure 4.3: a) Height of first peak, G1(t) and b) A(t) as a function of time measured from
x-ray scattering and calculated from simulation methods.

Table 4.2: Fitting results of the first peak area for the first-step decay, A(t), of the Van Hove
function. Simulation method displayed in parentheses.

Model A1 τ1 γ1 A2 τ2 γ2
IXS 0.330 0.153 2.119 0.128 0.475 1.360
SPC/E (CMD) 0.343 0.132 1.831 0.140 0.347 1.274
TIP3P EW (CMD) 0.310 0.131 1.915 0.155 0.264 1.478
BK3 (Polarizable CMD) 0.378 0.134 1.946 0.114 0.336 1.334
CHON-2017 weak (ReaxFF) 0.343 0.138 1.960 0.136 0.314 1.451
3obw (DFTB) 0.436 0.153 1.646 0.067 0.415 1.399
optB88 (AIMD) 0.428 0.125 1.916 0.059 1.532 3.848
optB88 at 330 K (AIMD) 0.380 0.122 2.022 0.062 0.449 1.401

4.4.4 Decay of Second Peak

The height of the second peak, G2(t) is compared and shown in Fig. 4.4a. G2(0) produced

from the simulations display different heights of the second peak, which has been

documented by previous studies83,87,180. As reported originally by Shinohara et al.167,

G2(t) for all methods show a more gradual decay compared to G1(t), suggesting a
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prominent role of the second neighbor shell on water dynamics. To account for the

differences at t = 0, the height of the second peak as a function of time has also been

normalized through min-max scaling, displayed in Fig. 4.4b. The simulation methods

produce a qualitative agreement with IXS in regards to G2(t), which decreases as a

function of time. However, G2(t) computed from the simulations decays at a faster rate

than the result computed from IXS, similar to the first peak. Revisiting the heatmaps

shown in Fig. 4.2b, TIP3P EW and 3obw initially appeared to show poor agreement with

IXS in regards to G2(t). Looking at the normalized result, however, this largely results

from lower values of G2(0) as the decay of G2(t) is comparable to SPC/E, TIP3P,

CHON-2017 weak, and BK3. Similarly, BK3 and CHON-2017 weak originally appeared

to show the highest agreement with G2(t) produced from IXS, although this is mainly due

to the agreement at t = 0.0. The optB88 model at 300 K displays the greatest differences

from the IXS result, where G2(t) decays rapidly up to ∼0.5 ps and stays constant

afterwards.

Figure 4.4: a) Height of second peak, G2(t) and b) normalized height of second peak as a
function of time measured from x-ray scattering and calculted from simulation methods.
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4.4.5 Analysis of the Partial Van Hove functions

Our simulations allow for the analysis of pairwise elemental components of the total Van

Hove function, which we refer to as the partial Van Hove function. In the case of pure

water, the oxygen-oxygen correlations are dominant in the total Van Hove function.

Regardless, it is worth investigating the oxygen-hydrogen and hydrogen-hydrogen

correlations for each model. The oxygen-oxygen, oxygen-hydrogen, and

hydrogen-hydrogen Van Hove functions are presented in Fig. 4.5, Fig. 4.7, and Fig. 4.6

respectively. Additionally, GOH(r, t) focusing on the first hydrogen bond peak (GOH1(t)) is

shown in Fig. 4.8. The decay of the first hydrogen bond peak, GOH1(t) is shown in

Fig. 4.9a. Due to the different heights at t = 0, the normalized decay is also shown in

Fig. 4.9b. Generally, the models are in good agreement regarding the decay of this peak as

shown by normalization. CHON-2017 weak shows the slowest decay of the hydrogen

bond peak which could possibly be attributed to the inclusion of the hydrogen bonding

term in the energetic interactions. The decay of the first hydrogen-hydrogen peaks,

GHH1(t) is shown in Fig. 4.9c,d. The normalization of GHH1(t)−1 indicates the correlated

dynamics of the hydrogen atoms is similar for all models studied. As a result,

discrepancies of G(r, t) between the models seem to largely originate from the

oxygen-oxygen correlations. This may provide further justification for models that do not

define non-bonded interactions for the hydrogen atoms, at least in the context of pure,

bulk water. AIMD models that explicitly account for NQE, as well as path-integral

methods, should be pursued to investigate the differences of the oxygen-hydrogen

correlations with the models studied here.

4.4.6 Comparison of Simulation Models

The results of G(r, t) and how they relate to the details of each model will be discussed.

The SPC/E model was parametrized to experimental values of density and potential

energy, resulting in a reasonable static structure and self-diffusion coefficient. Despite
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Figure 4.5: Oxygen-oxygen partial Van Hove function, GOO(r, t), for all simulation meth-
ods. The top panels shows the one-dimensional slice at 0 < t < 2 ps, the bottom panels
show the heat map of GOO(r, t)−1.

being a classical, three-site model, SPC/E shows relatively good agreement of G1(t) with

IXS in regards to τ1 and τ2. TIP3P EW is a modified version of the original The

non-bonded parameters were chosen to reproduce the density and heats of vaporization

from experiments. The self-diffusion coefficient is overestimated, which could explain

why the value of τ2 and decaying rate of the self-part of G(r, t) show large deviations from

IXS. Though 3obw includes additional parameters that account for QM effects, this model

suffers from similar issues to TIP3P EW. The potential interaction between the oxygen

and hydrogen of water have been tuned to the experimental oxygen-hydrogen G(r)

through iterative Boltzmann inversion. This leads to remarkable agreement with G(r,0)

with IXS, but overestimated dynamics at longer times and in the self-part. The
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Figure 4.6: Hydrogen-hydrogen partial Van Hove function, GHH(r, t), for all simulation
methods. The top panels shows the one-dimensional slice at 0 < t < 2 ps, the bottom
panels show the heat map of GHH(r, t)−1.

GCPM-derived BK3 model includes additional terms over SPC/E and TIP3P EW as

Drude-oscillators are used to model polarizability, a Buckingham repulsive potential is

used in place of a Lennard-Jones repulsive potential, a fourth site is added, and Gaussian

charges are used instead of point charges. At 300 K and 1 bar, these additional terms don’t

appear to have a significant effect on the agreement with IXS, as the decay of G1(t) and

G2(t) is similar to the classical methods. The CHON-2017 weak ReaxFF model includes

additional terms over the classical models that account for hydrogen bonding and

coordination with other atoms. This model produces remarkable agreement of G(r,0) to

IXS but also overestimates the rate of decay similar to the classical models. The optB88

ab initio model is unique as it is the only non-empirical model studied here, allowing these

76



Figure 4.7: Oxygen-hydrogen partial Van Hove function, GOH(r, t), for all simulation meth-
ods. The top panels shows the one-dimensional slice at 0< t < 2 ps, the bottom panels show
the heat map of GOH(r, t)−1.

Figure 4.8: Oxygen-hydrogen partial Van Hove function, GOH(r, t), highlighting the first
hydrogen bond peak around 0.18 nm.
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Figure 4.9: a) Height of first hydrogen bond peak of oxygen-hydrogen Van Hove function
GOH1(t), b) Normalized height of first hydrogen bond peak of oxygen-hydrogen Van Hove
function, GOH1(t)− 1 c) height of first peak of hydrogen-hydrogen Van Hove function
GHH1(t) and d) normalized height of first peak of hydrogen-hydrogen Van Hove function
GHH1(t)− 1 for all simulation methods. Normalization is performed through min-max
scaling.

systems to be unbiased to a given state. Most notably, the second-step decay of G1(t) is

much slower in comparison with IXS as indicated by τ2 = 1.36 ps. Running at an elevated
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temperature of 330 K improves the agreement, as τ2 is much closer to the value of IXS.

Shinohara et al. previously discussed the shortcomings of CMD models, namely the lack

of QM calculations to accurately describe the intermolecular fluctuations and hydrogen

bond lifetimes. Specifically, the degree of freedom for the tunneling action of protons has

to be treated at the same level as the electronic degree of freedom. This is because a

hydrogen bond is characterized by proton tunneling strongly coupled to electronic

fluctuation. Because density functional theory assumes electrons are in the ground state,

DFTB and ab initio models are expected to be insufficient at describing this behavior. The

results of G(r, t) from 3obw and optB88 corroborate this idea based on the quantitative

differences from IXS. Morrone and Car previously demonstrated how incorporation of

NQE through path-integral AIMD simulations improves the structure of water over AIMD

simulations with classical nuclei217. New ab initio models that explicitly incorporate

NQE, as well as path-integral MD simulations, should be investigated to determine if

these methods improve the agreement to IXS.

It is worth nothing that the improved accuracy of G(r, t) through added complexity is not

fully investigated in this study. SPC/E and TIP3P EW perform well at room temperature

but we expect deviation from the experimental response at different conditions. More

complex models, such as BK3 and optB88 may show improved agreement with

experiment over these models over a wider range of conditions. Further, the inert systems

of bulk water do not fully take advantage of the bond order terms included in ReaxFF to

model chemical reactions. QM methods may be more appropriate in modeling complex

systems containing water, as additional effects are intrinsically modeled186,187. Moreover,

QM methods are more suitable for systems in which atomic interaction parameters do not

yet exist187. Overall, improved performance should be expected over the classical, 3-site

models when studying water at different conditions, and more complex systems such as

confined water.
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4.5 Aqueous Electrolytes Results

In this section, the VHF results of aqueous electrolytes are discussed. The VHFs have

been measured through IXS and calcaluted from CMD. While the intrinsic broad width of

correlation functions of liquids makes it difficult to separate each individual water-ion

correlation a priori, the water-ion correlations can be identified when the partial VHFs

show a peak at a distance that is different from the water-water correlation as clearly seen

in the aqueous solutions of NaBr and NaI. Similar to the previous section looking at pure

water, the use of MD simulation allows us to identify the element-specific correlated

motions through the VHF. This work demonstrates the capability of the VHF to study

aqueous electrolytes, which will be effective for determining the molecular-level

mechanisms of water dynamics in the presence of salts.

4.5.1 Total VHFs of Aqueous Electrolytes

The VHFs of pure water and aqueous electrolytes (NaCl, NaBr, NaI) with the molality m

= 1.5 molkg−1 determined from IXS (upper two panels) and MD (lower two panels) are

shown in Fig. 4.10. Regardless of the salt, the first peak is found at 0.28 nm which

corresponds to the nearest oxygen-oxygen correlations. With the addition of salt, that first

peak decreases at t = 0. Another peak appears at larger R for the NaBr and NaI

electrolytes, and a shoulder appears for NaCl. The positions of these peaks and shoulder,

0.321 nm, 0.336 nm, and 0.360 nm for the NaCl, NaBr, and NaI electrolytes, respectively,

correspond to the sum of the ionic radii of individual particles such as Cl−, Br−, and I−

and O2−. When t > 0.5 ps, the addition of salt induces a qualitative change in the first and

second neighbor peaks. At these times, the peak intensity from the water-anion peak is

much higher than that of the water-water peak. These results demonstrate that the

correlations between various pairwise components can be clearly identified based on the

ionic radii and distance R of the corresponding peak.

The third-neighbor peak around 0.68 nm shows little change with the addition of salt,
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Figure 4.10: VHFs, G(r, t), of pure water and aqueous electrolytes of NaCl, NaBr, and
NaI with m = 1.5 molkg−1, measured from IXS measurements (first and second rows)
and calculated from MD simulations (third and fourth rows). From left to right: pure
water, aqueous NaCl solution, aqueous NaBr solution, aqueous NaI solution. The panels
in the first and third rows show the intensity map of G(r, t)− 1, the color scales of which
are shown on the right. The narrow color scales are used to highlight the small changes
and the temporal evolution at a longer time scale. The panels in the second and fourth
rows show their one-dimensional slice at 0 < t < 1 ps (from blue to red). The solid lines,
dashed lines, and dashed-dotted lines in the figures in the second and fourth rows represent
R = RO2−+RA, R = RO2−+RC, and R = 2RO2− , respectively, where RO2− , RC, and RA are
the effective ionic radii of oxygen, the cation, and anion, respectively. Figure taken from
Ref. 162.
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Figure 4.11: Partial VHFs, Gαβ (R, t), of aqueous NaI with m = 1.5 molkg−1, calculated
from the molecular trajectories obtained by the MD simulation. From left to right: to-
tal VHF including the self-correlations, oxygenoxygen correlation, oxygencation (Na+)
correlation, and oxygen anion (I) correlation. The top panels show the intensity map of
G(r, t)1, the color scale of which is shown on the right. The bottom panels αβ show their
one-dimensional slice at 0 < t < 2ps (from blue to red). Figure taken from Ref. 162.

indicating that the dynamics of these solutions is similar at longer distances. It should be

noted that the higher-order peaks of the VHF correspond to multiple molecule-molecule

correlations218, and as a result, the decay time of the higher-order peaks is not directly

comparable to the first-neighbor peak.

the VHFs calculated from CMD are shown in the lower two panels of Fig. 4.10. Though

quantitative differences exist with the IXS result, the overall qualitative features are

reproduced. That is, the additional peaks (NaBr and NaI) or shoulder (NaCl) exist at the

distance corresponding to the sum of ionic radii of O2− and the anion. Mentioned in the

previous section, the static PDF, G(r), is a common benchmark for molecular simulations

of soft matter, but does not account for correlated dynamics. The VHF results of aqueous

electrolytes again demonstrate that the VHF is a more rigorous method of analysis over

the static PDF.
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4.5.2 Partial VHFs of Aqueous Electrolytes

Similar to what was done for pure water, the element-specific analyses for the aqueous

electrolytes are provided via the partial VHFs, shown in Fig. 4.11. It should be noted that

the contributions of the oxygen-ion is small due to the small number of oxygen-ion pairs

compared to the number of oxygen-oxygen pairs. Regardless, the oxygen-Na+ VHF

shows that the first-neighbor peak at 0.24 nm is of higher magnitude and exists at a longer

timescale compared to the other peaks.

4.5.3 Decaying Behavior of Aqueous Electrolytes

The decaying behaviors of the peaks corresponding to ion correlations, IOA(t) are

calculated, similar to the analysis performed for bulk water. The peak decays were

calculated in the range of 0 < t < 0.75 ps by using a two-step relaxation similar to what

was used for pure water:

IOA(t) = α1exp(−(t/τA1)
2)+α2exp(−t/τA2) (4.11)

where τA1 < τA2. The results are shown in Fig. 4.12. The first term represents the ballistic

motion of the anions caged by surrounding water molecules. The differences of this term

across the three solutions is attributed to the differences in interactions between the anion

and water molecules. The second term is attributed to the decay of correlation between the

water molecules and anions. The decaying behavior of the second term is similar

regardless of anion selection, which suggests the molecular connectivity between water

and anions is independent of anion type. Fig. 4.12D displays a relationship between τA1

and the square root of the atomic weight of the anion,
√

Manion.

The second term represents the anion translating away from the first-neighbor shell of

water, which dominates the decaying behavior of the oxygen-anion peak. The differences

of this term are much smaller between the various aqueous electrolytes, suggesting this

motion is less dependent on the type of anion.
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Figure 4.12: (a,b) Normalized decaying behavior of the peak height at around the wateran-
ion peak, IOA(t)/IOA(0), determined from a) the IXS and b) the MD simulation: aqueous
solutions of (squares) NaCl, (triangles) NaBr, and (diamonds) NaI. The solid lines show
the results of fitting (see main text). c) Results of fitting: (triangles) τA1 and (circles) τA2.
Closed symbols correspond to the MD results and open symbols to the IXS results. d)
Relationship between τA1 and

√
Manion. The error bars correspond to two standard errors

of the mean. Figure taken from Ref. 162.

84



4.6 Conclusion

In this chapter, various water models were analyzed through the calculation of the VHF.

While applying a well-known temperature correction for optB88, each model showed

qualitative agreement with G(r, t) computed from IXS, displaying a two-step decay of the

first peak and similar behavior of the second peak. Quantitative differences with IXS were

identified, namely in the second-step decay of the first peak, G1(t), and A(t), as well as in

the overestimation of the decay of the second peak, G2(t). In general, all models show

good agreement with IXS at t = 0, but deviate at longer times. optB88 was the only

non-empirical model studied here and showed the most quantitative differences from the

results of the other models and IXS data as a result. Overall, each of these models studied

reproduces the experimental response well enough to further investigate the local

correlations of aqueous systems in future studies.

Next, the correlated dynamics of aqueous electrolytes were studied through both IXS and

CMD simulations. Through the calculation of the total VHF, specific correlations could be

identified based on the distance of the peaks and ionic radii. Further, calculation of the

partial VHFs through CMD allows for confirmation and further analysis of the individual

pairwise correlations of these electrolytes. The methods outlined allow for further study of

various electrolytes.

Overall, the VHF is a powerful method to analyze the correlated dynamics of electrolytes

for energy storage applications. By gaining a deeper understanding of the connection

between particle dynamics and macroscopic properties, we hope to design more optimal

electrolytes.

4.7 Future Work

There are many possible avenues for research regarding the VHF. The next step in terms

of bulk systems is to study more complex electrolytes. Water is a relatively simple fluid to

study through the VHF as there are only three pairwise correlations to consider:
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oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen. Aqueous electrolytes are

slightly more complex, with the consideration of cation and anion correlations. However,

consideration of a different solvent, such as acetonitrile, adds a great amount of

complexity to the interpretation of the VHF. Not only are there additional atoms, but there

are duplicate elements (carbon atoms) on a single acetonitrile molecule to consider. These

complications are exponentially increased when considering ionic liquids. Our

collaborators at ORNL have recently performed IXS experiments on mixtures of

[EMIM+][Tf2N−] and acetonitrile. Perhaps more so than in the case of aqueous

electrolytes, molecular simulation will be a useful technique alongside IXS in analyzing

these systems. For example, if we were to analyze the correlations between the terminal

carbon of the EMIM+ cation and the nitrogen on acetonitrile, the terminal carbon could be

uniquely named in the input files to separate it from the other carbon atoms in the system

with relative ease.

The VHF analysis should also be extended to confined fluids. Our collaborators, Yuya

Shinohara and Takeshi Egami, are beginning to calculate the VHF of water and MXenes.

Using a flexible MXene model, the correlations between the MXene atoms and water can

be investigated through CMD. To investigate the confinement effects on water alone, a

simpler approach may also be to calculate the 2-D VHF of water while keeping the MXene

atoms rigid. Here, the area of a circle is considered rather than the volume of a sphere.

There is still much to be understood regarding the properties of fluids used for energy

storage applications. The analysis of the VHF provides an exciting avenue of research to

better understand these properties and ultimately design more efficient electrolytes for

energy storage.
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CHAPTER 5

Properties of Electrolytes Under MXene Confinement

5.1 Introduction

MXenes are a class of 2D transitional metal carbides and/or carbonitrides65,71,75. The

name originates from the MAX phases65,71, in which M refers to an early transition metal

(such as Ti or Mo), A is a group 13 or 14 element, and X is carbon and/or nitrogen. To

synthesize MXenes, the A phase can be selectively etched away due to the weaker M-A

bonds through a chemical etchant such as hydrofluoric acid. The resulting product is a

crystalline 2D metal carbide with alternating layers of metal and carbon/nitrogen. Strong

covalent bonds exist between the M and X atoms while hydrogen bonding or van der

Waals interactions exist between the sheets219,220.

Over the past decade, our group and collaborators have primarily studied porous carbons

as electrode materials for supercapacitors64,169. These materials generally induce charge

storage through the formation of an EDLC, which exhibit volumetric capacitances up to

300 Fcm−3 221,222. Ghidiu et al. reported MXene supercapacitor electrodes in H2SO4

reporting up to 900 Fcm−3 73. Due to a flexible interlayer, many ions of differing size and

chemistry can be inserted into MXenes, resulting in vastly different behavior between the

electrolyte and MXene surface chemistries220. As a result, MXenes have exhibited

various charge storage mechanisms which must be understood to design more efficient

energy storage devices. Lukatskaya et al. reported the intercalation of several cations in

Ti3C2 MXene layers in which the resulting cyclic voltammetry (CV) curves were mostly

rectangular, indicating capacitive behavior74. Hu et al. studied the charge storage

mechanisms of Ti3C2 MXenes in H2SO4, (NH4)2SO4, MgSO4
223. Through CV curves

and Raman spectroscopy, it was demonstrated that the system containing H2SO4 exhibited

pseudocapacitive behavior while the other two electrolytes formed EDLCs.
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Since the first report of MXenes in 2011, research on these materials has significantly

increased224. Not only is vast research being conducted to understand their charge storage

mechanisms, but new classes of MXenes are still being discovered and synthesized69,225.

Simulation is being utilized alongside experiments to better understand the properties of

these materials226,227. Due to the novelty of MXenes, they are well-suited to be studied

with Ab initio MD simulations as no empirical interaction parameters are required.

However, simulations through CMD do require interaction parameters fitted to

experimental data or DFT, which has been a challenge for studying MXenes. In this

chapter, the process of implementing MXene force field parameters from Lukas Vlceck

into MoSDeF is described156. Then, CMD simulations of tetraalkylammonium (AA), and

1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM+][Tf2N−]) in

Ti3C2OH2 MXenes are discussed. This work is currently under preparation for

submission.

5.2 Background

Because MXenes are a relatively new material, a limited number of CMD studies

involving MXenes have been published to date. The mechanical properties of MXenes

have been studied with MD228, and the effect of metal ion intercalation on the structure of

MXenes have been studied with ReaxFF54. Ghidiu et al. studied the intercalation of AA

ions in Ti3C2OH2 MXenes with DFT and CMD using the universal force field229.

Although the universal force field yields acceptable properties of MXenes, the next step is

the development of force field parameters tailored for the material.

Our collaborator, Lukas Vlceck at ORNL, recently developed a MXene force field based

on target data from Ab initio MD performed by Yu Xie of ORNL. This force field was first

used in the work of Wang et al. in which the intercalation of organic electrolytes in

MXenes was studied156. We implemented this model into MoSDeF as a package named

MXenes. Using mBuild and the Lattice class, Ti3C2 MXenes with varying
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functional groups can be constructed in just a few lines of code. The force field

parameters and specific pairwise interactions have been implemented into XML and TXT

files and are applied with foyer. The resulting chemical systems initialized from

MXenes have been validated previously in the dissertation of Matthew Thompson230.

In this chapter, a study of MXene and ionic liquid systems are discussed. As previously

discussed in Chapter 3, aqueous electrolytes display high conductivities but limited

operational voltage windows. Microporous Ti3C2 MXene films with sulfuric acid aqueous

electrolytes have shown to deliver up to 210 Fg−1 capacitance at a 10 Vs−1 scan rate77,

but the narrow voltage window limits the energy density. Ionic liquids display much wider

voltage windows, although the size of cations is generally much larger than those used in

aqueous electrolytes. Thus, the larger size limits the accessibility and dynamics of ions

under confinement of MXenes Studies investigating systems of ionic liquids and MXenes

show that capacitances are generally lower than those of aqueous electrolytes for this

reason231–233. Our collaborators, Michael Naguib and Kun Liang of Tulane University,

hypothesize that the d-spacing of MXenes can be optimized for specific ions. They tested

this hypothesis by studying the effect of d-spacing on the electrochemical performance of

MXene electrodes in ionic liquids. To support their findings, MD simulations of systems

relevant to the experiments are performed and discussed here. This work is currently

submitted and under review234.

5.3 Methods

The ionic liquid [EMIM+][Tf2N−] is studied in the interlayer spacings of Ti3C2 MXenes.

The MXenes are first intercalated with AA ions to widen the interlayer spacings. In the

CMD simulations, dodecyltrimethylammonium (C12) and hexadecyltrimethylammonium

(C16) AA cations are studied. Hexyltrimethylammonium (C6), octyltrimethylammonium

(C8), decyltrimethylammonium (C10) are also studied in the experiments. Experimental

methods are briefly outlined, although further details are discussed in 234.
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5.3.1 Classical MD

MD simulations were performed in an attempt to provide a molecular perspective on the

experimental findings. All simulated systems were initialized with mBuild and were

parametrized with foyer, a set of Python packages that belong to MoSDeF. Ti3C2OH2

MXenes with repeat units of 20x20x1 were constructed with 20 AA cations in each pore.

A bulk region of [EMIM+][Tf2N−] extending 10 nm away from the MXene sheets was

initialized. 65 EMIM+ and Tf2N− ions were placed in each pore and 625 EMIM+ and

Tf2N− ions were placed in the bulk region of the Ti3C2-C12 system. 75 EMIM+ and

Tf2N− ions were placed in each pore and 737 EMIM+ and Tf2N− ions were placed in the

bulk region of the Ti3C2-C16 system. Spacings between the MXene sheets of 1.31 nm and

1.63 nm were used for the Ti3C2-C12 and Ti3C2-C16 systems, respectively, to match the

∆d determined from the XRD data. Details of the interlayer spacing calculation are

provided in the Appendix. To account for the net-positive charge due to the

alkylammonium cations, the partial charges of the carbon atoms on the MXenes were

adjusted to make the overall system electrically neutral. The set of parameters derived by

Vlceck156 were used to parametrize the MXene atoms. The [EMIM+][Tf2N−] atoms

were modeled by a force field reported by Koddermann et al.153, and the AA atoms were

modeled by a force field reported by Tsuzuki et al.235. Both sets of parameters originate

from the OPLS-AA force field, and have been further refined to better reproduce various

properties of ionic liquid ions. Thus, all parameters utilize the same functional form for

non-bonded and bonded interactions and 1-4 scaling factors. Pair interactions were

handled through geometric mixing rules as these are applied for the ion parameters.

Simulations were run with GROMACS 2020121–125. The MXene atoms were frozen in

place, and bonds containing hydrogen atoms were constrained to have fixed bond lengths

through the use of the LINCS128 algorithm. Van der Waals and Coulomb interactions

were cutoff at 1.2 nm, and long-range Coulomb interactions were computed with the Fast

Smooth Particle-Mesh Ewald method126. Additionally, the number of k-space vectors to
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compute the long-range Coulomb interactions was set by a Fourier spacing of 0.12 nm.

The temperature was controlled with the Bussi thermostat127 with separate groups for the

MXene atoms and ion atoms. Steepest descent energy minimization was first run for 5000

steps to remove any unfavorable interactions due to initial packing. Equilibration was

performed in the canonical ensemble (fixed molecule number N, volume V and

temperature T) using a 1 fs timestep. During equilibration, the system was first run at a

temperature of 303 K for 1 ns. The temperature was then slowly increased to 700 K over

the course of 2 ns, in which the system was further equilibrated for 18 ns. The temperature

was then slowly cooled to 393 K over 4 ns, and then was further equilibrated at 393 K for

25 ns. Each system was then sampled in the canonical ensemble for 50 ns using a 1 fs

timestep. All files to run the simulations are contained within the

mxene polymer emim236 repository contained on GitHub.

5.3.2 Electrochemical Tests

Electrochemical measurements were performed by Kun Liang of Tulane University. All

tests were performed in Swagelok three-electrode T-cells with AA-Ti3C2 as the working

electrode, activated carbon as the counter electrode, and Ag wire as the reference

electrode. Glassy carbon electrodes were used as the current collectors, and glassy fibers

were used as separators between the working and counter electrodes. [EMIM+][TF2N−]

and 1 M [EMIM+][TF2N−] in ACN were chosen as electrolytes.

CVs and electrochemical impedance spectroscopy (EIS) tests were performed by Kun

Liang of Tulane University. EIS was performed to study the kinetics of the TI3C2

electrodes.

5.3.3 X-ray Diffraction

Ex-situ x-ray diffraction (XRD) measurements were conducted by Kun Liang of Tulane

University using pristine Ti3C2 and Ti3C2-C12 free-standing electrodes after fully

discharging to -1.8 V vs. the Ag wire and recharging back to 1.0 V vs. the Ag wire. These
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measurements were performed to estimate the d-spacing of the MXenes.

5.4 Results

The experimental results are first presented as motivation for the CMD simulations.

Afterwards, the results of the CMD simulations are presented.

Figure 5.1: XRD curves for systems of AA cations intercalated in Ti3C2 electrodes with 1
M [EMIM+][TF2N−] in ACN. Data taken from Ref. 234.

5.4.1 Experimental Results

Fig. 5.1 shows the XRD curves of the Ti3C2 MXenes in various electrolytes. As the length

of the alkyl chain of the AA cations increase, the 002 peaks shift to lower angles which

indicates a larger interlayer spacing. Therefore, addition of AA cations with longer alkyl
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Figure 5.2: Specific Capacitance at different scan rates for systems of AA cations inter-
calated in Ti3C2 electrodes with 1 M [EMIM+][TF2N−] in ACN. Data taken from Ref.
234.

chains increase the interlayer spacing.

To investigate the effect of increase interlayer spacing on electrochemical performance,

CV curves were conducted with pristine and AA-Ti3C2 MXene electrodes. The specific

capacitance as a function of scan rate is shown in Fig. 5.2. The Ti3C2-C6 MXene only

shows a marginal increase in capacitance over the pristine MXene electrode, suggesting

the increased interlayer spacing of 0.328 nm is not sufficient to allow for the ions to

intercalate. As the alkyl chain length of the AA cation is increased from C8 to C10 to

C12, the capacitance dramatically increases. This trend could be explained by wider

interlayers for the EMIM+ ions to intercalate. However, when increasing the alkyl chain
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length from C12 to C16, a drop in capacitance is observed. The C16 cation could affect

the capacitance through longer diffusion pathways, charge-transfer resistances, etc. The

explanation for this drop in capacitance from C12 to C16 is the fundamental question to

be explored through CMD.

5.4.2 Classical MD Results

(a) (b)

Figure 5.3: Snapshots from MD simulations of (a) Ti3C2OH2-C12 (spacing between the
sheets of 1.31 nm) and (b) Ti3C2OH2-C16 (spacing between the sheets of 1.63 nm) systems
displaying AA (green), EMIM+ (red), and Tf2N− (blue). MXene atoms include oxygen
(red), hydrogen (white), titanium (cyan), and carbon (pink). The simulation is replicated in
all three directions via periodic boundary conditions.

To investigate the structure of ions within the MXene interlayers, orientation distribution

profiles were calculated through the use of MDAnalysis237. Number density profiles of

the ions were calculated with MDTraj120. Additional details of these calculations are

contained in the appendix. Snapshots of the Ti3C2OH2-C12 and Ti3C2OH2-C16 systems

are shown in Fig. 5.3. Note that although the AA ions were initially placed within the

interlayer spacing of the MXenes, several AA ions exited during equilibration.

Orientation distribution profiles between the normal vector of the MXene walls and

vectors drawn for the following groups of atoms are shown in Fig. 5.4a and b: the ring on

EMIM+, the ethyl chain on EMIM+, and the alkyl chain on the AA cation (Schematics

shown in the appendix). In the interlayers of Ti3C2OH2-C12, the rings of EMIM+ display

a wide distribution of angles with the surface normal from 30◦ to 150◦. The broad

distribution of angles suggests a non-specific orientation of the rings within the

interlayers. The alkyl tails of EMIM+ form a distribution of angles with the surface
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normal around 0, 90, and 180◦, suggesting the tails are both parallel and perpendicular to

the walls. The C12 vectors primarily display angles at 90◦, with much smaller

distributions of angles around 45 and 135◦. These angles indicate the C12 ions are mostly

parallel with the wall, while sometimes also existing in kinked conformations relative to

the walls. The orientation of ions within the Ti3C2OH2-C16 interlayers shows clear

differences from Ti3C2OH2-C12. While the EMIM+ rings show a broad distribution of

angles from 30 to 150◦, a distribution of angles also exists at 0 and 180◦ corresponding to

the rings laying flat relative to the surface. The alkyl tails of EMIM+ show a similar

distribution of angles around 0 and 180◦, corresponding to the alkyl chains laying

perpendicular to the surface normal. The C16 ions are arranged in three main orientations

at 70, 90, and 110◦. The broader orientation profiles within Ti3C2OH2-C16 are likely due

to the wider interlayer spacing.

Number density profiles of the ions inside the pores are shown in Fig. 5.4c and d. In

Ti3C2OH2-C12, EMIM+ and C12 ions are almost exclusively positioned near the walls,

while T f2N− is positioned in two layers in the middle of the pore. Due to the wider

interlayer spacing, the structure of ions inside Ti3C2OH2-C16 differs from that of

Ti3C2OH2-C16. While EMIM+ is located near the walls, an additional layer of cations

also exists in the middle of the pore. As a result, alternating layers of EMIM+ and Tf2N−

exist, suggesting increased ordering of the ions in this system. To further investigate the

structure of the AA ions inside the pores, the number density profiles of the nitrogen,

terminal carbon, and branch carbon atoms of the AA ions are shown in Fig. 5.4g and h. In

Ti3C2OH2-C12, two distinct layers of branch carbons exist near each pore wall. In the

middle of these two layers of branch carbons are peaks corresponding to nitrogen and

terminal carbon atoms. This result suggests the C12 ions are mostly arranged in two

layers parallel with the wall, with the d-spacing large enough to allow for the alkyl chains

to move somewhat freely as indicated by the broader peaks of the terminal carbon atoms.

While a similar structure exists near the walls in Ti3C2OH2-C16, the C16 atoms also exist
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Figure 5.4: Normalized orientation profiles of (a) Ti3C2OH2-C12 and (b) Ti3C2OH2-
C16, number density profiles of EMIM+, AA, and Tf2N− in (c) Ti3C2OH2-C12 and (d)
Ti3C2OH2-C16, number density profiles of specific atoms of (e) Ti3C2OH2-C12 and (f)
Ti3C2OH2-C16.

in the middle of the pores. These distributions in the middle of the pore are broader than

those near the wall, suggesting more disorder of the C16 ions in this region due to a wider

d-spacing and longer alkyl chain length. Because the C16 ions have a higher affinity to

stretch across the length of the pore, this may increase the length of the diffusion pathway

for EMIM+ ions resulting in slower diffusivity.

In Ti3C2OH2-C12, the densities of EMIM+ and Tf2N− are 323.2 kg/m3 and 731.9 kg/m3,

while the densities of EMIM+ and Tf2N− in Ti3C2OH2-C16 are 360.3 kg/m3 and 840.5

kg/m3. This corresponds to 51.1 EMIM+ ions and 45.9 Tf2N− ions in each

Ti3C2OH2-C12 pore and 70.7 EMIM+ ions and 65.4 Tf2N− ions in each Ti3C2OH2-C16
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pore over the course of the sampling simulation. The higher densities in Ti3C2OH2-C16

may result in slower dynamics in comparison to the Ti3C2OH2-C12 system. However, we

cannot make any conclusions about the capacitive performance between the two systems.

Nonetheless, there are clear, striking structural differences whose relationship to

capacitance and dynamics should be investigated in a subsequent study. Here we speculate

based on the structural results. In particular, the density profiles of EMIM+ in

Ti3C2OH2-C12 (Fig. 5.4e) and Ti3C2OH2-C16 (Fig. 5.4f) suggest that the EMIM+ is

more structured/ordered in the larger pore, due to the presence of oscillations in the

density of EMIM+. By contrast, in the smaller pore, the EMIM+ are present only at the

wall, and not in the middle of the pore. This difference in structure provides another

possible explanation for the unexpectedly lower diffusivity of EMIM+ in the larger pore.

5.5 Conclusions

In this chapter, the use of force field parameters derived by Vlceck was used to investigate

the structure of ions within the interlayer spacings of Ti3C2 MXenes. Experimentally,

pristine Ti3C2 MXenes and Ti3C2 MXenes intercalated with AA cations in solutions of 1

M [EMIM+][Tf2N−] in ACN were studied. XRD results revealed that the interlayer

spacings increased as the alkyl chain length of the AA cations was increased. From C6 to

C12, the increase in interlayer spacing resulted in a greater capacitance. Despite a further

increase in interlayer spacing, the C16 cation resulted in a drop in capacitance. This

phenomenon was further investigated through CMD simulations. Orientation profiles and

number density profiles suggest that increased ordering and density may influence the

capacitance of the Ti3C2-C16 systems. Further work should be done to better understand

the dynamics of the ions within the MXene interlayers. Nevertheless, this work

investigates the promising hypothesis that MXene electrodes can be tuned to specific ions

for increased performance. Further pursuit of this idea may lead to the development of

improved supercapacitors.
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5.6 Future Work

Due to the novelty of MXenes and recent research interest, it is safe to say that the work

on MXenes has just begun. The research described in this chapter looked at the structural

properties of the ions within the MXene interlayers, and the next step is to investigate the

dynamic and electrochemical properties. Using the current simulation step in which

Ti3C2OH2 sheets are exposed to a bulk region of ions, an algorithm should be developed

to selectively measure the MSDs of only the ions within the interlayer spacings. With a

better understanding of the density of ions within the interlayer, diffusivity measurements

could perhaps be simplified by constructing a system in which only the Ti3C2 sheets and

ions within the interlayer are considered.

Another logical next step is to study these systems with applied external potentials, in

order to gain a better understanding of the electrochemical properties. The simplest

method in which to model applied potentials in CMD is to apply a fixed uniform charge to

an electrode, known as the constant charge method. The limitation of this approach is the

failure to take into account local charge fluctuations.64,238,239. An alternative approach is

to explicitly account for these charge fluctuations through the constant potential

method240. In the constant potential method, the external potential is fixed by constraining

the electric potential on each electrode atom every time step238 Wang et al. conducted a

comparison of both methods through simulations of LiClO4 and acetonitrile electrolytes

under the confinement of graphite forming an EDLC. The results showed the constant

charge method displays good agreement with the constant potential method in regards to

number density profiles when the potential difference was less than 2 V. Although the

constant potential method should provide more accurate results241,242, the method is only

publicly available through an external library for LAMMPS243 to the best of our

knowledge. Other implementations of the constant potential method are developed

in-house and are unavailable to the public. Further, the constant charge method still yields

relatively accurate results and is more computationally efficient than the constant potential
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method. As a result, it would be beneficial to model MXenes under an applied potential

through both methods.

Modeling an applied potential through constant charges for porous carbon is relatively

simple, as partial charges can be uniformly applied to the surface atoms. However, MXene

surfaces are not homogeneous making it difficult to determine how to apply fixed charges.

Because this procedure for MXenes is unclear, it is necessary to develop a process in

which to model MXenes through constant charges that yields similar results to the

constant potential method.

As previously mentioned in this chapter, aqueous electrolytes have been well-studied with

MXene electrodes and have shown to exhibit intercalation capacitance74, a fundamental

understanding of the fluid behavior in the MXene interlayers should be pursued. One

aspect is to determine the density of pure water within the MXene layers under a variety

of conditions, including surface group functionalization, temperature, and presence of

ions. This can be achieved through GCMC simulations in which insertion/deletion moves,

alongside the standard MC moves, would equilibrate water within the MXene interlayer to

the correct density.

While Ti3C2Tx MXenes have been most commonly studied to this point224, new variants

are continuing to be discovered69,225. mBuild and the MXenes package have been

designed with modularity in mind, and should allow for other MXenes to be constructed

without too much additional effort. Without a dedicated force field for newer MXenes, a

logical starting point is likely the Universal Force Field. Close collaboration with

experiments and/or DFT should be done to ensure these ”off-the-shelf” force field

parameters are sufficient to describe these systems.
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CHAPTER 6

Improving Reproducibility of Molecular Simulation

6.1 Introduction

The field of molecular simulation is not immune to the challenge of reproducibility in

science. The workflows of initialization for molecular simulations, from system

construction to force field application, are often complex and involve methods utilizing

GUIs, in-house code, and ad hoc edits. The instructions for these workflows are often

documented in the methods or supplementary information of a paper. Often, important

details are omitted making it difficult for other researchers to reproduce and ultimately

extend the original work. Further, each molecular simulation engine uses a unique

combination of units, functional forms, input files, and algorithm implementation. As a

result, it is a non-trivial task to achieve agreement of results between different simulation

engines. 1 2 3

MoSDeF began development almost a decade ago to address the problems outlined above.

In this chapter, the development of a Python package, Pore-Builder, to initialize

systems of carbon slit pores is discussed. This work is featured in two journal

articles244,246 that demonstrate how TRUE workflows can be implemented with MoSDeF.

The development of a package that acts as a MoSDeF interface for the Cassandra MC

package247, named MoSDeF-Cassandra, is also discussed. This work is currently

submitted and also utilizes Pore-Builder to demonstrate the functionality of the

package.

1Portions of this work reprinted with permission from the works below:
2P. T. Cummings, C. McCabe, C. R. Iacovella, A. Ledeczi, E. Jankowski, A. Jayaraman, J. C. Palmer,

E. J. Maginn, S. C. Glotzer, J. A. Anderson, et al., AIChE Journal (2021), ISSN 0001-1541, Copyright 2021
American Institute of Chemical Engineers.

3R. S. DeFever, R. A. Matsumoto, A. W. Dowling, P. T. Cummings, and E. J. Maginn, Journal of Compu-
tational Chemistry (2021), Copyright 2021 Wiley Periodicals LLC.
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6.2 Background

MoSDeF was originally developed at Vanderbilt University in collaboration with the

Institute for Software Integrated Systems (ISIS) to aid in thecomputational screening of

monolayer lubrication. The software library consists of mBuild for programmatic system

construction and foyer for automatic force field parametrization. MoSDeF is

open-source and has been developed with software best practices in mind. As such, all

code is hosted and version-controlled on GitHub. On GitHub a pull request model is used

to make modifications to the code which allows for code review and continuous

integration (CI) to ensure the software works as intended and standards are enforced.

Microsoft’s Azure Pipelines is the specific service used for automated builds and testing,

whereas Codecov is used to ensure additions to the codebase are covered by testing.

New versions of mBuild and foyer are periodically released on the conda-forge

channel of Anaconda Cloud.

mBuild contains a set of functions that can be used, extended, and/or combined to

construct various chemical systems96,246. Systems are designed to be constructed

hierarchically from smaller, interchangeable pieces. To achieve this, the main data

structure of mBuild is the Compound, a general purpose ’container’ to describe any

object within a given system such as an atom, a molecule, a collection of Compound

objects, etc. Compound objects can include Ports to define the locations and

orientations at which connections with other Compound objects can occur. Two

Compound objects can then be connected through functions within mBuild which

creates a new composite Compound. This allows users to programmatically construct

their chemical systems from scratch. Alternatively, Compound objects can be constructed

through common structure file formats (mol2, pdb, etc.) and SMARTS language strings.

mBuild uses a recipe architecture to construct specific chemistries and systems.

Contained within the library are a set of base recipes, such as the Polymer class to

construct alkane Compound objects. We encourage users to construct more complex or

101



specific systems as recipes as standalone Python packages. Others can then download

and install these recipes to call them directly through mBuild. In this chapter, the

development and usage of the Pore-Builder248 package are discussed.

The foyer98–100 library within MoSDeF is designed to apply force field parameters to

chemical systems. To do so, force field parameters and rules are defined in an XML format

which is an extension of the file format designed by OpenMM249. Force field rules are

defined by the SMARTS language and overrides that determine rule precedence.

DOIs can also be encoded into the force field XML further allowing for reproducibility.

The force field XML files are designed to be loaded as a Forcefield object.

Forcefields can easily be applied to mBuild.Compound objects to define the

interaction parameters of a system.

A main goal of MoSDeF198,199 is to integrate with numerous open-source molecular

simulation engines to provide more seamless interconversion between the different input

formats required by each. The GROMACS121–125 MD software has been tightly integrated

with MoSDeF since the early development of the project, leveraging ParmEd250,251 to

write the necessary input files to disk. MoSDeF has since enabled screening studies of

diverse soft matter systems103,108 that would have been otherwise difficult. LAMMPS252,

another open-source MD simulation engine, has also been supported since early

development with custom readers and writers implemented in mBuild. Recently efforts

have yielded tight integration with Cassandra253, an open-source MC code developed by

the Maginn Group of Notre Dame. MoSDeF-Cassandra254 is a python wrapper for

Cassandra that utilizes MoSDeF for system setup and force field application and calls

Cassandra to run MC simulations. Cassandra is developed by the Maginn Group at the

University of Notre Dame and is released under the GNU General Public License. The

general workflow of running a MC simulation in Cassandra can be viewed in Fig. 3.1 of

its user manual, Ref. 255. As discussed in the following section, the use of

MoSDeF-Cassandra greatly simplifies the process of initializing and running a
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simulation with Cassandra. Ongoing development efforts also include the integration of

GPU-Optimized Monte Carlo (GOMC)256 and the CP2K quantum chemistry package257.

Integrating numerous simulation engines with MoSDeF enables comparisons of

simulation results from different codes in a reproducible fashion. In the first section of this

chapter, we replicate portions of the calculations of water in carbon slit pores performed

by Keith Gubbins and colleagues92 with five modern simulation software packages244.

Using in-house code, Striolo et al. reported grand canonical Monte Carlo (GCMC)

simulations of SPC/E water in carbon slit pores of various widths and reported water

adsorption isotherms and the water structure within the pores. In this section, we first

describe the development of the Pore-Builder mBuild recipe to construct systems of

carbon slit pores for simulation. Then, we calculate the water adsorption isotherms with

GCMC in GOMC and Cassandra. Once we determined the equilibrium number of water

molecules in the pores at prescribed external pressures, the structure of water inside the

pores was calculated using the following: MC simulations in the canonical (NVT)

ensemble with GOMC and Cassandra, force-field-based NVT MD simulations with

GROMACS and LAMMPS, and first-principles NVT MD simulations with CP2K.

In the following section, the development of MoSDeF-Cassandra is described in more

detail245. Further, an example of a MC-MD workflow of an aqueous solution in a carbon

slit pore is demonstrated.

6.3 Replicating work of Striolo et al.

6.3.1 Methods

The Pore-Builder recipe package248 was developed through the use of mBuild and

foyer. Specifically, the carbon crystal structure is initialized through the

mbuild.Lattice class. The lattice vectors are a =0.2456 nm, b =0.2456 nm, and

c =0.335 nm, and the Bravais angles are 90◦, 90◦, and 120◦. These parameters produce

carbon slit pores identical to those simulated by Striolo et al.92. The layers of graphene
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have interlayer spacings of 0.335 nm with a carbon-carbon distance of 0.142 nm. The

carbon atoms of these systems are designed to be fixed during the simulations. The details

of each system are provided in Table 6.1 and snapshots of each system are provided in

Fig. 6.1. Periodic boundary conditions were applied in all three spatial dimensions.

Vacuum space was added in the direction normal to the pore. Simulation details specific to

each simulation package are given below. The methods performed by collaborators are

briefly summarized here, although a more detailed outline is presented in Ref. 244.

6.3.1.1 Force-field-based simulation details

Water was described by the SPC/E82 model. The carbon-carbon LJ parameters were taken

from Table 1 of Striolo et al., and Lorentz-Berthelot258,259 combining rules were used to

define the carbon-water LJ interactions. LJ and Coulomb interactions were truncated at

0.9 nm (unless otherwise noted in Table 1), with long-range Coulomb interactions

computed via an Ewald summation or grid-based counterpart. 4 No analytical tail

corrections were applied to the LJ potential. There are technical details that differ between

the original simulations of Striolo et al. and the work repeated here. Thus, our goal is less

to reproduce the original work of Striolo et al., and instead demonstrate the power of

MoSDeF to show consistency between different simulation engines (GROMACS and

LAMMPS for MD, Cassandra and GOMC for MC) and different simulation approaches

(MD vs. MC).

6.3.1.2 GOMC

GOMC simulations were performed by Brad Crawford at Wayne State University. GOMC

was first used for adsorption and desorption simulations in which the equilibrium density

of water was determined as a function of chemical potential. GOMC was also used to

perform Gibbs Ensemble Monte Carlo (GEMC), in which the water saturation pressure

4Striolo et al. appears to have used no long-range electrostatics solver, likely in conjunction with a group-
based cutoff scheme. We have chosen to proceed with long-range electrostatics since this is now the de-facto
standard and many modern codes do not support group-based cutoff schemes.

104



Table 6.1: Systems evaluated in this study. Dimensions are provided in nm.

System Pore width Box dimensions Cutoff NGraphene Nwater NVT

large-1.0 1.0 2.947×2.978×6.0a 0.9 6 -
large-1.6 1.6 2.947×2.978×6.0a 0.9 6 -
large-2.0 2.0 2.947×2.978×6.0a 0.9 6 485
small-1.0 1.0 0.982×1.063×2.0 0.49 2 24
small-1.0 1.0 0.982×1.063×2.0 0.49 2 1
a GOMC dimensions differed in z-direction. See section 6.3.1.2 for details.

(a) (b) (c) (d) (e)

Figure 6.1: Snapshots of systems simulated in this work (the numbers refer to the pore
width in nm): (a) small-1.0, (b) large-1.0, (c) large-1.6, (d) large-2.0, and (e) large-2.0 after
pore filling. Carbon, oxygen, and hydrogen are shown as gray, red, and white spheres.
Periodic boundaries are indicated by the blue lines. Figure taken from Ref. 244.

was determined. Finally, GOMC simulations were performed in the NVT ensemble to

calculate structure properties of water inside the carbon pores.

6.3.1.3 Cassandra

Cassandra simulations were performed by Ryan DeFever of Notre Dame University.

Similar to GOMC, GCMC simulations were performed in Cassandra to determine the

equilibrium density of water as a function of chemical potential. Once these densities
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were determined, simulations in the NVT ensemble were performed to calculate structure

properties of water. Simulations were performed with MoSDeF Cassandra version

0.2.2 and Cassandra version 1.2.5.

6.3.1.4 GROMACS

The equations of motion were integrated with the leap-frog algorithm for 50 ns (200 ns for

the small-1.0 nm/1 water system) using a time step of 1 fs. Water bonds and angles were

constrained via LINCS128 and the carbons atoms were held in place with freezegrps.

Long range electrostatics were handled through the Fast Smooth Particle-Mesh Ewald

method126, with the ewald-rtol parameter set to 10−5. Note that long-range

electrostatics were turned off for the small-1.0 nm slit pore containing 1 water molecule.

The number of k-space vectors in the large-2.0 system was set by a Fourier spacing of

0.12 nm, and was directly set to 16, 27, and 18 in Cartesian coordinates for the small-1.0

nm systems. The water molecules were thermostatted to 298 K with the Bussi

thermostat127 and a time constant of 1 ps. Simulations were performed with the 2020

version of GROMACS. Other than the small-1.0 nm/1 water molecule system, analysis is

performed on the last 45 ns of each simulation trajectory.

6.3.1.5 LAMMPS

The equations of motion were solved with the equations of Shinoda et al. for 20 ns using a

1 fs time step.260 The carbon atoms were excluded from the MD integration, rendering

them fixed. Water bonds and angles were constrained with SHAKE261. Long range

electrostatics were handled through the particle-particle-particle-mesh solver262 with the

relative force tolerance set to 10−5. Temperature was controlled with the Nosé-Hoover

chain thermostat at 298 K with the time constant set to 1 ps and chain length set to 3.

Simulations were performed with the June 5, 2019 version of LAMMPS. Analysis is

performed on the last 18 ns of the simulation trajectories for the small-1.0 nm system and

the last 15 ns for the large-2.0 nm system.
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6.3.1.6 CP2K

CP2K simulations were performed by Ramanish Singh of University of Minnesota. The

simulations performed by CP2K are unique as its the only non-classical method studied

here. More specifically, NVT ensemble first-principles molecular dynamics (FPMD)

simulations were performed in the CP2K software version 7.0. Due to the added

computational cost of FPMD, the small-1.0 nm and small-2.0 nm were simulated

specifically for comparison with CP2K. Additionally, a system containing a single water

molecule is simulated to further investigate the QM effects. Each system was equilibrated

for 30 ps, and then sampled for 120 ps using a 0.5 fs timestep.

6.3.2 Results

6.3.2.1 Water Adsorption

Adsorption and desorption isotherms were computed for 1.0 nm and 1.6 nm slit pores with

GCMC (large-1.0 nm and large-1.6 nm slit pore systems run with both GOMC and

Cassandra, small-1.0 nm system run with Cassandra to determine number of water

molecules for Section 3.2 below). Adsorption simulations were initialized with an empty

pore. Desorption simulations were initialized with a pre-filled pore, where the number of

water molecules in the pore at the start of the simulation corresponded to the pore loading

at high pressure as determined from the GCMC adsorption simulations.

6.3.2.2 Relating µ to P/Psat

Prior to completing the adsorption and desorption calculations a series of gas-phase

simulations of SPC/E water were performed to establish a mapping between chemical

potential and pressure. The ideal gas law was used to select the simulation box sizes such

that there were a minimum ∼ 30-60 water molecules present. A comparison of GOMC

and Cassandra results is shown in Fig. 6.2. Note that the two software packages employ a

different definition of the chemical potential. In the case of SPC/E water the conversion

from GOMC to Cassandra is µ ′ = µGOMC +3kBT ln(Λ), where µ ′ is the Cassandra

107



chemical potential, kB is the Boltzmann constant, T is the temperature, and Λ is the

thermal de Broglie wavelength in units of angstroms.
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Figure 6.2: Computed pressure as a function of chemical potential (µ ′) for SPC/E water
with Cassandra and GOMC. Data taken from Ref. 244.

The saturation pressure (Psat) of water using the PC/E water model was computed at 298

K with Gibbs ensemble Monte Carlo (GEMC-NVT) in GOMC. Water’s saturation

pressure was employed to create a baseline in many of the analyses in this study (i.e.,

pressure divided by the saturation pressure or P/Psat). This type of baseline, (P/Psat),

allows the simulation data to estimate the real-world pressure by merely plugging in the

experimental saturation pressure. Grand Canonical Monte Carlo (GCMC-NVT)

simulations are transferable to experimental conditions via the chemical potential (µ ′) and

simulation pressure (P), which can be easily be determined in these simulations. The

relationship between µ ′ and log(P) is approximately linear up to P/Psat = 10, a linear fit

between µ ′ and log(P) was used to relate a given chemical potential, µ ′ to P/Psat.

6.3.2.3 Comparison with Striolo et al.

An equation of state method was used to relate the activity (ζ = Λ−3 exp(µ/kBT )) to

P/Psat in Ref. 92. P/Psat was given by:

P
P0

=
2ζ ζ 2

0 +(ρ0−ζ0)ζ
2

(ρ0 +ζ0)ζ
2
0

(6.1)

The method263 requires the activity at saturation (ζ0) and vapor density at saturation (ρ0).
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Neither the values themselves nor method used to compute them were explicitly provided

in Ref. 92, and the resulting P/P0 is extremely sensitive to these values. A future

publication264 from the same authors indicate that their procedure was most likely as

follows: perform GCMC of water vapor in a box with a 3.0 nm side length and gradually

increase the chemical potential until the system condenses to the liquid phase, then take ρ0

and ζ0 as the values just prior to condensation. In order to compare our results to Ref. 92,

we repeated this same procedure to estimate the values used for ρ0 and ζ0. Our

calculations yielded ζ0 = 2.15×10−6 Å−3 and ρ0 = 2.58×10−6 Å−3. The figures from

Ref. 92 were digitized and equation 6.1 was used to estimate the activities at which the

original simulations were performed. We caution the reader that our comparison of the

adsorption/desorption isotherms are imperfect and that a rigorous quantitative comparison

between our results and Ref. 92 is not our objective. As already noted we chose to

proceed with long range electrostatics solvers that were absent in the original work, and

our simulations contain other small differences (e.g., carbon-carbon distances, 2D vs. 3D

periodic boundary conditions, etc). Nevertheless, as shown below, it appears that we are

able to achieve semi-quantitative agreement between the results of Ref. 92 and the

simulations performed here.

6.3.2.4 Adsorption and desorption isotherms

Adsorption and desorption simulations were performed at a range of µ ′ that corresponded

to 10−3 < P/Psat < 101. The results are reported in Fig. 6.3, where the amount of water in

the pore is reported as the number of water molecules per unit of pore surface area. The

results from Cassandra and GOMC show good agreement with regards to the loading of

the pore at different pressures. There is satisfactory agreement for the adsorption and

desorption pressure. We suspect the slight discrepancies between Cassandra and GOMC

may have two possible causes: (1) the use of the MEMC-2 move and surrogate water

molecules in GOMC (see section 6.3.1.2) and (2) the use of restricted insertion volume in
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Cassandra (see section 6.3.1.3).

0
5

10
15

1.0 nm slit

Striolo - adsorb
Striolo - desorb
Cassandra - adsorb

Cassandra - desorb
GOMC - adsorb
GOMC - desorb

10 3 10 2 10 1 100 101

P/Psat

0
10
20
30

   
   

  
 (N

o.
 w

at
er

s /
 n

m
2 )

1.6 nm slit

Figure 6.3: Adsorption and desorption isotherms for Cassandra, GOMC and the Striolo et
al. data.92 The Psat value was obtained from GEMC-NVT water simulations. The Striolo et
al. data was re-scaled as described in the text to match the P/Psat definition in this work.92

Data taken from Ref. 244.

6.3.2.5 Structure of Water

6.3.2.6 Calculation of Number Density and Order Parameter S

The number of water molecules inside of the pores were selected based upon the water

adsorption results calculated from GCMC. All simulations used to compute the water

structure in the pores were performed in the NVT ensemble. Fig. 6.4a and Fig. 6.4b report

the number density profiles in the large-2.0 nm slit pore with 485 water molecules

(P/Psat = 1.6). The results from Cassandra, GOMC, GROMACS, and LAMMPS show

nearly perfect agreement in terms of both oxygen and hydrogen number density inside of

the slit pore, showing two fluid layers near each graphene wall. Additionally, all number

density profiles are in good agreement with Fig. 9b from Ref. 92.

The orientational S order parameter used in Ref. 92 is defined as:

S =
3〈cos2θ〉−1

2
(6.2)
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Figure 6.4: a) Oxygen-atom and b) Hydrogen-atom number density profiles, and c) S order
parameter across the large-2.0 nm slit pore with 485 water molecules (P/Psat = 1.6). z
denotes the direction normal to pore walls, where z = 0 is set to the center of the pore.
Uncertainties in the number density are on less than or equal to the line width.

where θ is the angle between the vector normal to the graphene walls and the vector

drawn from the midpoint of the hydrogen atoms through center of the the oxygen atom

(i.e. along the dipole). The S order parameter was calculated for the large-2.0 nm slit pore

and is presented in Fig. 6.4c. Near the pore wall, the dipoles of the water molecules have a

tendency to orient in a parallel fashion as indicated by the negative S order parameter. The

water molecules near the middle of the pore are more bulk-like as shown by the random

orientations. Overall, the results between the simulation engines are in good agreement

with one other, and with Fig. 10b in Ref. 92.

Figure 6.5: a) Oxygen-atom and b) hydrogen-atom number density profiles, and c) S order
parameter across the small-1.0 nm slit pore with 24 water molecules (P/Psat = 1.6). z
denotes the direction normal to pore walls, where z = 0 is set to the center of the pore.
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The number density profiles for the small-1.0 nm slit pore are displayed in Fig. 6.5a and

Fig. 6.5b. This system contains 24 water molecules and has been constructed to be smaller

than the large-2.0 nm slit pore system to allow for a direct comparison with first-principles

simulations. The number density profiles computed from all four simulation codes using

the SPC/E-water/LJ-graphene model (Cassandra, GOMC, GROMACS, LAMMPS) are in

agreement with each other as well as with the result in Fig. 11 of Ref. 92. The oxygen

atoms are arranged in a distinct layer near each pore wall. The hydrogen atoms also form

a distinct layer neat each pore wall along with a small layer in the middle of the pore. The

results from the FPMD performed in CP2K show some differences. The hydrogen number

density peaks computed from CP2K are lower and broader when compared with the force

field-based simulations. The oxygen number density profiles also display subtle

differences that become more pronounced at low loading (see below).

The S order parameter for the small-1.0 nm slit pore is displayed in Fig. 6.5c. The error

bars in the middle of the pore are larger as a result of the small system size and small

probability of finding a water molecule in that region (see Fig. 6.5a). Similar to the

large-2.0 nm pore, the water molecules near the walls are oriented parallel to the walls.

Towards the middle of the pore, the water molecules are once again more randomly

ordered. Simulations performed with the SPC/E-water/LJ-graphene model yield near

perfect agreement for S across four simulation engines (Cassandra, GOMC, GROMACS,

LAMMPS). The results reported here also show good agreement with Fig. 11b of Ref. 92.

To further investigate the differences in the density and orientational profiles observed

between the SPC/E-water/LJ-graphene model and the KS-DFT description, both types of

simulations were conducted for the small-1.0 nm slit pore system with just one water

molecule. The symmetrized number density profile, the symmetrized S order parameter

profile, and the normalized distribution of the angle θ for the one-molecule system are

shown in Fig. 6.6. θ is again defined as the angle between the dipole moment vector of

the water molecule and the surface normal vector (Note that for the angle distribution
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Figure 6.6: a) Oxygen-atom and b) hydrogen-atom number density profiles, c) S order
parameter across the absolute value of a small-1.0 nm slit pore with a single water molecule,
d) θ distribution across the pore. z denotes the direction normal to pore walls, where z = 0
is set to the center of the pore and θ is the angle between the dipole moment vector of the
water molecule and the graphene surface normal vector.

profiles, the surface normal vector is chosen based on nearest proximity to a given water

molecule). For the FPMD simulation, a peak in the hydrogen number density is observed

at |z|= 0.24 nm, i.e., a distance of 0.26 nm from the graphene surface. The θ distribution

exhibits a peak at θ = 0 degrees with a relatively extended tail. These two observations

suggest a favorable electrostatic interaction of the water dipole with the π-electrons of the
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graphene sheet. This favorable electrostatic interaction also leads to a strong localization

of the oxygen atom about 0.32 nm away from the graphene sheet with negligible density

in the central region of the pore. In the force-field-based simulations, however, no peak is

observed in the hydrogen number density near the graphene surface. Such a behavior of

the hydrogen number density is expected as the water-graphene surface interactions only

comprise of LJ interactions between the water oxygen and the graphene carbon atoms, and

partial charges are not used to represent the charge distribution of the graphene sheet. As a

result, the water-graphene interactions are inherently isotropic and a uniform distribution

is observed for θ . Therefore, the strength of interactions between water molecules and

graphene surface is different between force-field-based and first-principles simulations

which causes the differences in the density and S profiles for the two types of simulations.

As an aside, it should be noted that S = 0 can reflect either a uniform orientation or a

strong preference for the magic angle of 54.74◦ that is roughly half of the H-O-H angle of

water. However, the θ distribution does not indicate a propensity for ‘hydrogen-bonded’

configurations in which one of the hydrogen atoms of a water molecule is perpendicular

with the graphene surface.

6.4 Development of MoSDeF Cassandra

6.4.1 Methods

MoSDeF Cassandra is a Python package independent of Cassandra that fully

interfaces with MoSDeF. The package has been designed to make the process of system

initialization for Cassandra simple and intuitive. The original initialization tools within

Cassandra will continue to be developed, and MoSDeF Cassandra provides another

interface for users to perform system setup for MC simulations.

To run a MC simulation, the following are required in initialization: an initial structure,

definition of molecular interactions (Application of a force field), specified perturbations

to attempt, and the desired probability distribution to sample. MoSDeF Cassandra
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Figure 6.7: Overview of MoSDeF Cassandra interface. The System and MoveSet
are created and passed to the run function, along with additional keyword arguments as
necessary. Taken from Ref. 245.

handles these obligations through the System and MoveSet Python objects. The

System object defines the chemical system (including box information and initial

configurations) and energetic interactions. The MoveSet objected defines the

perturbations, or MC moves, attempted in the simulation. This includes the type of move

(e.g., translation, rotation), the probabilities of each move, and parameters that define each

move (e.g., maximum translation distances, maximum number of molecules, etc.). A

schematic of these two objects can be viewed in Fig. 6.7.

6.4.1.1 System

To avoid rewriting code already available in other Open-Source packages, the System

object takes advantage of data structures from ParmEd250,251 and mBuild96,97 to store

chemical system information in memory. A System object can be created with a

minimum of three arguments: the initial configuration, force field information, and the

number of molecules of each species. Optionally, the number of molecules for Cassandra

to add can also be specified. The initial configurations are specified through a list of

mBuild.Box classes and/or Compound classes. Similarly, the force field parameters

are specified through a list of ParmEd.Structure objects. The number of molecules

in the initial configuration and the number of molecules for Cassandra to insert into the

system are defined by lists as well.
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6.4.1.2 MoveSet

The MoveSet object handles MC move information in the Cassandra simulation and

requires two arguments: the chemical topology information and statistical mechanical

ensemble. Similar to System, the chemical topologies are defined by a list/s of

Structure objects from ParmEd.

The run function is used to run the MC simulation in Cassandra once the System and

MoveSet objects have been initialized. This function writes the information from these

objects to disk, generates input files, and calls Cassandra to generate the fragment

libraries, and run the simulation. run requires the following arguments: the System

object, MoveSet object, the run type (”equilibration” or ”production”), the length of the

simulation, and temperature. Additionally, the pressure or chemical potential must be

specified if in the isothermal-isobaric or grand canonical ensembles. Additional keyword

arguments may be passed as a Python dictionary.

6.4.1.3 Interoperability with other simulation software

MoSDeF provides much of the ”glue language” necessary for interoperability between

Cassandra and other simulation software. In mBuild, Compound objects can be created

through several methods: defining a molecular structure through SMILES language265,

loading common structure file formats (xyz, pdb, mol2), and converting from data

structures in other open-source simulation software like MDTraj120. ForceField

objects in foyer can also be applied to Compound objects which returns a fully

parameterized ParmEd.Structure. This allows us to take advantage of the built-in

writers available in ParmEd as well as in mBuild.

We demonstrate interoperability in the following section, where GCMC simulations of

aqueous electrolytes under the confinement of graphene slit pores are first performed in

Cassandra to determine the equilibrium densities. Using the same initialization routines in

Python, simulations are then performed in GROMACS to determine the lateral diffusion
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coefficients of the electrolyte species.

6.4.1.4 Specifying units

One unfortunate source of errors in molecular simulation is providing a value in the

incorrect units. Different publications and simulation software packages use a plethora of

different units for the same physical quantities. Inevitably, oversights and unit conversion

mistakes occur. As a community, we should make every effort to eliminate these mistakes

from molecular simulations. In MoSDeF Cassandra, we require that all physical

quantities containing units be specified with units using the unyt library. unyt is a Python

library that allows physical units to be attached to quantities. For example, specifying the

pressure: pressure = 3.0 * unyt.bar. The pressure can then be converted to

another valid unit, e.g., kPa, with: pressure.to(unyt.kPa). The benefits of this

approach are threefold: (1) the user no longer needs to know the default units of

Cassandra since they can specify each quantity in any (dimensionally-valid) unit they

wish, (2) the units associated with each quantity are abundantly clear to anyone reading a

MoSDeF Cassandra script, and (3) it substantially reduces the likelihood of a unit

conversion error by the user. Since the unyt package is mature and easy to use, the

overhead of this requirement is minimal in comparison with its benefits.

6.4.2 Results

The importance of carbon materials to energy storage has been previously outlined.

Because transport properties such as self-diffusivity and conductivity are important in the

context of energy storage, MD is often used to simulate these systems. However, it is

difficult to determine the correct fluid density in the pore with MD. Most experiments are

performed under constant pressure, but the calculation of pressure in simulations for these

systems becomes questionable as the pore walls are often kept rigid. Alternatively, GCMC

can be used to determine the density of a fluid within a pore at a given chemical potential.

The relationship between the pure fluid pressure and chemical potential is then used to
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establish the effective pressure in the pore. However, the combined MD-MC approach is

not without challenges. Running both MC and MD simulations often requires a separate

set of input files for each simulation engine, increasing the likelihood of introducing errors

into the simulations. MosDeF helps overcome these challenges by making it easy to

generate input files for many simulation engines.

Here we demonstrate a simple MC-MD workflow with MoSDeF Cassandra and

GROMACS wherein we compute the lateral diffusivity of water, sodium ions, and

chloride ions in graphene slit pores as a function of pore width and salt concentration. Our

goal is to highlight how the integration of Cassandra with the MoSDeF tools substantially

lowers the barriers to performing combined MC-MD workflows, allowing users to take

advantage of the benefits of both MC and MD. Once again, the workflow is comprised of

a few pieces of Python code. In this example, we also take advantage of the fact that our

workflow is written within a programming language to create reusable and importable

functions for certain sections of the workflow. For example, we write a reusable

create system function that returns the starting configuration as an

mbuild.Compound. The function arguments include the pore width, number of ions in

the pore, number of water molecules in the pore, and identities of the positive and negative

ions. Each simulation uses this single function to construct the initial system. We also

define a reusable run gcmc function that performs two serial MC simulations, a short

NVT MC simulation to equilibrate the ions and a small number of water molecules placed

within the pore, followed by a GCMC simulation to determine the equilibrium number of

water molecules in the pore. As a result, performing the simulations only requires two

simple function calls. The different systems are simulated by providing different

arguments to the same two functions. This implementation demonstrates the construction

of extensible workflows.246 While we only report the results for 3 pore widths, 3 salt

concentrations, and Na+/Cl− ion pairs, other researchers can easily re-use the

create system function to perform simulations with different pore widths,
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concentrations, or types of ions. Not only are the reported simulations easy to reproduce,

but a researcher interested in understanding the sensitivity of the reported results to certain

choices or investigating similar systems can quickly and easily perform the necessary

simulations. These considerations make the simulations TRUE246. Additional simulation

details are outlined in the Ref. 245.

Each system initially comprises a graphene slit pore of some width, 75 water molecules,

and 0, 4, or 8 NaCl ion pairs. A small amount of water is placed in the initial pore system

to ensure that the pore saturates within reasonable simulation lengths; the goal of this

work is not to investigate adsorption/desorption behavior in these systems. MoSDeF

Cassandra is used to determine the equilibrium number of water molecules in each

pore with GCMC following a brief NVT MC simulation to equilibrate the initial

configuration. Insertion and deletion moves are only attempted for water molecules to

maintain the number of ions in the pore and the charge neutrality of the system. The

chemical potential of water is selected to correspond to the saturation condition for SPC/E

water model at 298 K. Upon performing GCMC, the pores quickly fill with water, and the

number of water molecules in the pore proceeds to equilibrate over several million MC

moves (not shown). The average number of waters in the pore is computed for each

system once the number of waters in the pore stabilizes. Representative snapshots after

pore filling are shown in Fig. 6.8(a). Once the average number of water molecules in each

pore has been determined with MC, pore-filled systems are constructed and simulated

with NVT MD in GROMACS for 100 ns. The lateral diffusivity of the Na+, Cl−, and

water atoms are calculated from the mean square displacement and reported in Fig. 6.8(b).

As expected, the lateral diffusivity of all components is lower in the case of narrower

pores and larger number of ion pairs.
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(a)

(b)

Figure 6.8: (a) Snapshots of systems simulated in this work, from left to right: 1.0 nm, 1.5,
2.0 nm pore width with 8 NaCl ion pairs. Oxygen, hydrogen, carbon, sodium, and chloride
are shown in red, white, gray, blue, and green, respectively. (b) Water and ion diffusion
as a function of pore width and the number of ion pairs. 0, 4, and 8 ion pairs shown with
purple, blue, and green markers, respectively. Figure taken from Ref. 245.
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6.5 Conclusions

In this chapter, the development and use of MoSDeF are described in order to make

molecular simulation workflows more reproducible. The interoperability enabled by

MoSDeF was first demonstrated by our study in which the work of Striolo et al. was

replicated through five open-source simulation packages. The MC packages, GOMC and

Cassandra were utilized to first determine the equilibrium densities of water in carbon slit

pores using GCMC techniques. Then, simulations of water in the slit pores were

performed in the NVT ensemble using GOMC, Cassandra, GROMAC, LAMMPS, and

CP2K. Reasonable agreement was achieved between the original work and the various

simulation packages.

Next, the motivation, design principles, and development of MoSDeF Cassandra were

discussed in detail. MoSDef Cassandra has been designed to be user-friendly,

interoperable with other software packages, and reproducible. We believe this is

accomplished through clearly defined and robust data structures, comprehensive unit

testing, and other features such as integration with Unyt. The functionality of MoSDeF

Cassandra is demonstrated through a MC-MD workflow of simulating aqueous

electrolytes in graphene slit pores. In particular, this example exemplifies how TRUE

simulations can be performed with MoSDeF Cassandra.

Overall, this work demonstrates the functionality of the current tools of MoSDeF as well

as adds to the growing list of MoSDeF tools. Hopefully, this work will lead to further

adoption of MoSDeF in the molecular simulation community.

6.6 Future Work

To conclude, future work in regards to MoSDeF will be discussed. The current and future

work around MoSDeF is mainly focused on adding and improving the functionality of the

tools through the development of the General Molecular Simulation Object (GMSO).266

One of the main current limitations of MoSDeF is that foyer leverages the
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ParmEd.Structure as the core data structure for chemical topologies. ParmEd itself

is a robust software package that supports a variety of force field functional forms and file

formats from a number of software packages. It was designed primarily with the

biomolecular field in mind and as a result, focuses on a specific type of atomistic CMD

with two-body interactions, 12-6 LJ interactions, and point-charges defining Coulombic

interactions. MoSDeF plans to support simulations that go beyond this scope, including

but not limited to many-body interactions, Mie potentials, and polarizable models As a

result, a new set of core data structures must be developed to support these features.

MoSDeF has made significant strides at reproducibility in molecular simulation,

especially in regards to CI and unit testing. These tests ensure the accuracy of input files

for molecular simulation, including sanity checks for correct initial configuration, force

field parameters, input files, etc. Despite these efforts, errors and discrepancies can still be

introduced into a simulation. One reason is due to the small details and differences

between molecular simulation packages that can have profound effects on the results.

When replicating the work of Striolo et al., we initially had difficulties getting agreement

between the adsorption/ desorption isotherms between GOMC and Cassandra. The source

of this discrepancy turned out to be different definitions of chemical potential for the two

packages. Additionally, we had difficulty matching the number density profiles of water in

certain pore systems between GROMACS and LAMMPS. Upon much debugging, the

source was revealed to be how each package defines the relative accuracy of the Ewald

summation for long-range electrostatics. Perhaps the most direct method to check for the

accuracy of a simulation is to perform single-point energy calculations. In this process, a

single step of a simulation is performed to calculate the total potential energy of a system.

If a system is accurately implemented, the total potential energy will be consistent across

multiple simulation packages. These validations were previously explored by Alex Yang

through the coMMMParE package267 in which energies are evaluated for various

simulation packages through ParmEd. To further improve the reproducibility and
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accuracy of molecular simulation, MoSDeF should strive to implement these checks in its

suite of tools.
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CHAPTER 7

Conclusions

Though a greater understanding of capacitive energy storage has led to performance

improvements, much work remains to make supercapacitors commercially successful.

Novel electrode materials and electrolytes are constantly being developed, and we must

further strive to understand the underlying mechanisms that lead to improved device

performance. In the field of molecular simulation, improved models partly due to

constantly evolving hardware will lead to more accurate representations of these systems.

Additionally, a greater emphasis on reproducibility will allow others to build off current

work and hopefully lead to new insights at a faster rate. Improved experimental probes

will similarly allow samples to be studied at greater resolutions. It was demonstrated in

this work how a combination of computational and experimental methods can lead to a

greater understanding of how electrolytes behave in bulk and under confinement of

electrode materials. Improvement of methods as well as a continued emphasis on

combined simulation and experimental approaches should yield a more comprehensive

understanding of capacitive energy storage.

The previous chapters describe work to better understand systems related to capacitive

energy storage at the molecular level. In Chapter 3, the effect of organic solvents on ionic

liquid dynamics was rigorously examined through MD screening. It was found that

solvents with greater diffusivities, and to a lesser extent, solvents that better screen ion-ion

interactions result in the highest ionic liquid dynamics. Chapter 4 outlined the analysis of

correlated dynamics of water and aqueous electrolytes through the VHF. Despite some

quantitative differences, the various water models studied sufficiently reproduce the VHF

produced from IXS. Chapter 5 examined the structural differences of ionic liquids in

Ti3C2 MXenes with different interlayer spacings resulting from AA intercalation. In
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Chapter 6, examples of reproducible workflows for molecular simulation are presented

through the use of MoSDeF.
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Figure A.1: Comparison of ion self-diffusivities obtained from a single MSD and values
obtained from averaging over MSDs obtained from smaller sub-trajectories of the same
trajectory. The diagonal line at y = x is to guide the eye.
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Figure A.2: Comparison of BMIM+ and Tf2N− self-diffusivities in all mixtures of ionic
liquids and organic solvents.
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wtpct 14dio ace adpn benzonitrile bucn butanol ch3cn ch3oh clbenzene cy6one dce thf
0.05 1027.7 810.9 951 960.8 777.9 820.3 758.1 787.3 1114.9 959.2 1236.3 874
0.1 1045.8 832.3 969.5 1006.2 799.4 840.8 780.1 807.7 1134.6 977.9 1249.8 895.3
0.15 1063.8 854.7 988.3 1017.6 821.6 862 802.5 829.2 1150.9 997.2 1262.1 916.9
0.2 1083 878.2 1008 1045.2 845 884.4 826.4 851.8 1166.4 1016.8 1274.8 939.5
0.25 1102.5 902.8 1028.5 1070.1 869.6 907.7 851.7 875.5 1186.9 1037.5 1287.3 963.3
0.3 1122.7 928.3 1049.8 1097.7 895.5 932.4 877.7 900.5 1197.1 1058.8 1299.7 987.6
0.35 1143.6 955.2 1072 1119.8 922.6 958.1 905.3 926.7 1216.2 1081.1 1312.5 1013
0.4 1165.2 983.5 1094.8 1141.3 951.5 985.1 934.8 954.5 1232.7 1104.1 1324.6 1038.7
0.45 1187.3 1013.1 1118.9 1163.4 981.9 1013.9 965.9 984 1250.1 1128.2 1336.8 1067.2
0.5 1209.9 1044.2 1143.9 1186.8 1014 1043.8 998.8 1015.2 1268.3 1152.9 1349.7 1096.4
0.55 1233.1 1077 1170.1 1211.5 1048 1075.6 1033.9 1048.1 1287.4 1179.1 1361.9 1126.5
0.6 1256.9 1111.6 1197.8 1236.6 1084.3 1109.7 1071.2 1083.4 1306.8 1205.8 1374.4 1157.6
0.65 1280.8 1148.2 1226.4 1262.9 1122.5 1145.2 1110.7 1120.9 1326.9 1234.5 1386.7 1190.9
0.7 1306 1186.8 1256.9 1290 1162.9 1182.9 1152.6 1160.9 1347.2 1264.1 1399 1225.3
0.75 1331.4 1228.1 1288.3 1318.1 1206.6 1223.6 1198 1203.3 1367.5 1294.7 1411.5 1261.3
0.8 1357.7 1270.9 1321.5 1347.3 1252.8 1266.5 1245.7 1249.5 1388.2 1327.3 1423.5 1299.5
0.85 1384.9 1316.8 1356.4 1377.1 1302.3 1312.7 1296.9 1298.8 1408.7 1361.1 1435.4 1339.7
0.9 1412.6 1366.3 1393 1408.1 1355.2 1362.1 1352 1351.6 1430.1 1396.2 1448 1381.6
0.95 1442.5 1417.7 1431.9 1439.7 1411.7 1414.5 1410.1 1409.2 1451.2 1433.6 1460.3 1426

wtpct dcm diglyme dma dmf dmso ec etoh gly glyme octanol pc
0.05 1237.5 964.9 937.1 928.7 1105.6 1317.3 809.1 882.5 845.8 1227.5
0.1 1256.1 984.3 956 947.9 1120.2 1324.9 829.9 1260 903.7 865.1 1238.3
0.15 1268.4 1004.8 975.6 967.6 1135.2 1332 851.3 1267.4 925.7 885.5 1249.4
0.2 1284.2 1025.4 995.8 988.1 1150.5 1339.7 874 1277.5 948.5 906.5 1260.7
0.25 1299.1 1046.6 1017 1009.3 1166.3 1347.4 897.6 1287.7 972 928.8 1272.1
0.3 1313.9 1068.9 1038.9 1031.7 1182.9 1354.9 922.5 1296.4 996.4 952.4 1283.8
0.35 1327.1 1091.3 1061.8 1054.9 1199.5 1362.6 948.4 1306.9 1021.6 976.9 1295.5
0.4 1340.3 1114.7 1085.4 1078.9 1216.9 1370.4 975.9 1317.2 1047.9 1002.9 1307.5
0.45 1354.3 1139 1110 1104 1234.6 1378.6 1004.6 1328.4 1075.2 1030 1320.1
0.5 1367.9 1164 1135.8 1130.1 1253 1386.4 1035.2 1339 1103.6 1058.9 1332.4
0.55 1380.4 1189.8 1162.6 1157.3 1271.8 1394.4 1067.3 1350 1133.3 1089.6 1345.3
0.6 1392.4 1216.7 1190.7 1186 1291.4 1402.7 1101.3 1361.9 1164.4 1122 1358.5
0.65 1404.5 1244 1220.4 1216.1 1311.6 1411.2 1137.2 1374 1196.5 1156.3 1371.8
0.7 1415.8 1273 1251 1247.5 1332.3 1419.8 1175.8 1386.5 1230.1 1193.1 1385
0.75 1426.4 1303.2 1283.3 1280.4 1353.9 1428.5 1216.9 1399.7 1265.9 1231.6 1399
0.8 1436.8 1334.1 1317.3 1315 1376.3 1436.8 1260.6 1412.5 1302.6 1273.7 1413.2
0.85 1446.2 1366.6 1353.4 1351.3 1399.2 1446 1307.7 1426.1 1342.3 1318.2 1427.4
0.9 1455.5 1400.4 1391 1389.7 1422.9 1454.6 1358.2 1440.9 1383.5 1365.4 1442.3
0.95 1464.1 1435.6 1430.9 1430.4 1447.6 1463.5 1412.4 1455.9 1426.5 1417 1457.8

Table A.1: Liquid densities (kgm−3) for all mixtures over the range of concentrations in
units of mass fraction.
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Figure A.3: Radial distribution function between BMIM+ and Tf2N− in octanol at various
concentrations.
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Figure A.4: Ratio of paired ions fitted with a stretched exponential function for all CH3OH
mixtures
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Figure A.5: Ratio of caged ions fitted with a stretched exponential function
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Figure A.6: Comparison of dielectric constants computed by simulation and from experi-
mental values. Black line with slope of 1 displayed for comparison purposes.
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Appendix B

Appendix to Chapter 4

Model A1 τ1 γ1 A2 τ2 γ2
IXS 0.338 0.153 2.097 0.120 0.500 1.452
SPC/E (CMD) 0.337 0.129 1.866 0.144 0.345 1.384
TIP3P EW (CMD) 0.292 0.127 1.971 0.172 0.257 1.545
BK3 (Polarizable CMD) 0.369 0.132 1.984 0.122 0.327 1.423
CHON-2017 weak (ReaxFF) 0.335 0.136 1.987 0.143 0.309 1.499
3obw (DFTB) 0.436 0.153 1.646 0.067 0.415 1.399
optB88 (AIMD) 0.424 0.124 1.935 0.063 4.158 1.169
optB88 at 330 K (AIMD) 0.379 0.122 2.020 0.063 0.445 1.320

Table B.1: Fitting results of the first peak area for the first-step decay, A(t), of the Van Hove
function. Fits calculated up to 0.7 ps for all methods
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Figure B.1: Position, r (nm) of g1(t) and g2(t) for IXS and simulation data.

Figure B.2: a) Height of first peak, g1(t) and b) A(t) as a function of time calculated from
x-ray scattering and simulation methods. Time, t, is shown up to 1.25 ps.
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Figure B.3: A(t) and fit to compressed exponential function for IXS and simulation data.
Fits calculated up to 0.7 ps for all methods.

Figure B.4: A(t) and fit to compressed exponential function for IXS and simulation data.
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Figure B.5: Fitting results of first-step of A1(t) calculated from x-ray scattering and simu-
lation methods.

Figure B.6: Fitting results of second-step of a) A1(t) and b) A1(t)/A1(0) calculated from
x-ray scattering and simulation methods.
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Appendix C

Appendix to Chapter 5
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Figure C.1: COM RDF of butyltrimethylammonium (C4) AA and Tf2N− ions. Used to
validate implementation of ionic liquid force field of Tsuzuki et al.235.
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Figure C.2: Bulk density of ions in C12-MXene system.
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Figure C.3: Bulk density of ions in C16-MXene system.

156



Figure C.4: Pore densities of ions in C12-MXene system.
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Figure C.5: Pore densities of ions in C16-MXene system.
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