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CHAPTER I

Introduction

I.1 Motivation

By minimizing intracorporeal access, minimally invasive surgery sacrifices surgeons’ dexter-

ity and situational awareness in the surgical environment in favor of reducing bodily trauma

to patients. The desire to marry surgical robotics with surgical image guidance can there-

fore be seen as a natural response to the limitations imposed by minimally invasive surgery.

Compared to the human hand, surgical robots can offer reduced size, increased precision,

increased flexibility, increased dexterity, and increased strength. Meanwhile, surgical im-

age guidance provides tools to enable anatomical visualization and spatial context beyond

what a surgeon can achieve by direct visualization. This dissertation explores several novel

technologies at the intersection of these two fields, with the overall goal of developing and

validating novel approaches to image-guided interventions that are specifically enabled by

the use of surgical robotics.

This dissertation will address two distinct clinical applications: (i) an envisioned neuro-

surgical procedure for incisionless, transforamenal hippocampotomy to treat temporal lobe

epilepsy; and (ii) robot-assisted partial nephrectomy to treat renal cell carcinomas. While

seemingly far apart in the clinical realm, neurological surgery and urologic surgery have

historically been among the most technophilic clinical disciplines, making these two applica-

tions prime candidates for exploring new technology. More importantly, however, these are

areas of large clinical significance.

Epilepsy is a debilitating, potentially fatal, seizure-causing neurological disorder that

will affect approximately 1% of people worldwide in their lifetimes [1]. Up to 40% of the

patient population is refractory to medical treatment [1, 2], putting them at risk of sudden,

unexplained death in epilepsy (SUDEP) at a rate of 1% per patient, per year [3]. While
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surgical removal of the hippocampus (commonly the origin of epileptic seizures) successfully

and permanently cures epileptic seizures in about 70% of cases [4], 50-90% of eligible patients

forgo surgery due to perceived risks associated with highly-invasive brain surgery [4, 5, 6].

Renal cell carcinoma exhibits the highest mortality rate among all genitourinary cancers,

being fatal in roughly 33% of patients [7]. Alarmingly, both the incidence and mortality

of renal cell carcinoma are on the rise: from 1971 to 2008, the incidence increased by an

estimated 400% and mortality increased by an estimated 100% [8]. With early detection,

however, surgical intervention can successfully treat the disease with low chance of recurrence.

Some cases require radical nephrectomy, in which the entire kidney is removed; however, for

patients with clinically localized tumors, the American Urological Association and the Eu-

ropean Association of Urology recommend nephron-sparing partial nephrectomy, in which

only part of the kidney is removed, as the standard treatment [9, 10]. Compared to radical

nephrectomy, partial nephrectomy leads to improved long-term patient outcome by allowing

the patient to retain some kidney function and reducing the risk of chronic kidney disease

[11, 12]. Robot-assisted partial nephrectomy (RAPN) using the da Vinci Surgical System

(Intuitive Surgical, Inc., Sunnyvale, CA, USA) has become the second most commonly per-

formed robotic surgery [13]; however, the procedure is still considered underutilized, likely

due to the extreme technical challenges associated with the procedure, especially when per-

formed minimally invasively [14, 15].

By contributing to new technologies that enable image-guided interventions using mini-

mally invasive surgical robots, the work in this dissertation represents a small step toward

increasing the accessibility of life-saving medical treatments to both patients and clinicians.

I.2 Background

This section provides the broad, historical context for placing this dissertation relative to the

interests and objectives of the related clinical fields. More specific context for placing this

work within the scientific literature is provided in the introductory sections of subsequent
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chapters.

I.2.1 Surgical Image Guidance

The basic premise of surgical image guidance is to relay to surgeons visual and spatial in-

formation that provides enhanced anatomical context of the surgical environment, i.e. the

location of surgical tools relative to critical, frequently subsurface, anatomical features. Fun-

damental to this objective is determining the registration—the best estimated mapping—

between a tomographic image space and the physical anatomy of a patient. Image regis-

tration can be understood more generally as matching multiple views of the same object

or feature in order to transfer information apparent in one view (e.g. the location of a

subsurface tumor in a tomographic volume) to the other view (e.g. the endoscopic video

during surgery). The mathematical means for determining the registration can vary widely

depending on the information used to determine the match, e.g. corresponding anatomical

features, extrinsic fiducials, extracted surfaces, tomographic image intensities, among oth-

ers. Reference [16] provides a recent survey of image registration methods used in medical

applications.

I.2.2 Image-Guided, Incisionless, Transforamenal Hippocampotomy

The fact that the skull envelops the brain makes access to and visualization of therapeutic

targets a fundamental challenge in neurosurgery. Furthermore, neurosurgical targets fre-

quently lie near the brain’s center, obscured from external access by large tracts of healthy,

potentially eloquent brain tissue. This issue is particularly relevant to epilepsy cases, given

that the hippocampi (the epileptogenic foci) are located deep within the medial temporal

lobe, as illustrated in Fig. I.1 [17].

A desire to address these general challenges in neurosurgery led directly to the develop-

ment of stereotactic neurosurgery—the early progenitor of modern surgical image guidance—

more than 100 years ago [18, 19]. By rigidly affixing a stereotactic frame, such as the one

pictured in Fig. I.2, to a patient’s skull, clinicians could accurately direct the tip of a long,
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Figure I.1: Classical illustration showing the location of the hippocampus, deep inside the
medial temporal lobe [17]. Note that this illustration shows the left hemisphere of brain; the
second hippocampus is located symmetrically in the right cerebral hemisphere

thin, straight probe directly to areas in the center of the brain without directly visualizing

the surgical target in order to perform a number of procedures, including biopsies and abla-

tions. While early practitioners of stereotactic surgery relied solely on the (dubious) relative

consistency of brain anatomy from patient-to-patient in order to locate internal anatomical

features, current state-of-the-art navigation systems for stereotactic interventions enable im-

age guidance by registration between surgical tools and preoperative, 3D volumetric images,

namely computed tomography (CT) and magnetic resonance (MR) imaging.

In addition to anatomical visualization, MR technology can measure other volumetric

data, such as tissue temperature. Advances in MR thermometry within the last decade

have enabled new minimally invasive, image-guided, stereotactic treatments for temporal

lobe epilepsy that use laser ablation to destroy the hippocampus [21, 22, 23, 24, 25, 26].

Fig. I.3 shows a commercially available example of a neurosurgical laser ablation system

[27]. Current data show these laser ablation treatments to be curative in approximately

54% of cases [26]. Though not as effective at curing seizures as traditional, open-skull

hippocampectomy, image-guided ablation has gained significant favor due to its minimally

invasive nature. As with all stereotactic procedures, however, existing image-guided ablation
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Figure I.2: A modern example of a stereotactic frame for neurosurgery: Leksell Stereotactic
System (Elekta AB, Stockholm, Sweden) [20]

interventions share two fundamental limitations: (i) they require drilling access holes in the

skull; and (ii) they can achieve only linear trajectories, limiting their ability both to reach

targeted volumes and to avoid intervening critical structures.

Addressing these limitations motivated the research efforts of former Vanderbilt student

David Comber, whose work is the direct predecessor of some work contained in this disser-

tation [28]. Comber proposed an incisionless, transforamenal hippocampotomy procedure

enabled by helically curved, concentric-tube, steerable needles with MR-compatible robotic

actuation. Fig. I.4 illustrates the transforamenal approach: using typical stereotactic meth-

ods, a straight outer cannula is percutaneously inserted into the center of the brain via the

foramen ovale (a small natural orifice in the base of the skull), and then the helical needle

(robotically actuated at its proximal end) is steered along the natural curvature of the hip-

pocampus to more effectively deliver ablation therapy to the entire organ volume. Fig. I.5

shows Comber’s pneumatically actuated prototype robot, which can be placed alongside a

patient in the bore of an MR scanner. In addition to precisely controlling the nonlinear tra-
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Figure I.3: An example of a stereotactic neurosurgical laser ablation system: the NeuroBlate
System (Monteris Medical, Inc., Winnipeg, Manitoba, Canada) [27]

jectory of the helical needle, the MR-compatible actuation unit enables real-time MR-image

feedback to correct the needle path in case of any misalignment in the initial stereotactic

registration.

I.2.3 Robot-Assisted Urologic Surgery

When the United States Food and Drug Administration (FDA) first cleared the da Vinci

Surgical System (Intuitive Surgical, Inc., Sunnyvale, California, USA) for clinical use in 2000,

urologic surgery was among the short list of approved clinical disciplines. Figure I.6 shows

the most recent generation of the da Vinci Surgical System. With multiple arms and highly

dexterous, 7-degree-of-freedom manipulators, the da Vinci System rapidly gained popularity

in urologic surgery, especially for prostatectomy, where the small surgical target and con-

stricted access through the pelvis make localization particularly challenging [29]. Compared

to traditional laparoscopic procedures, robot-assisted prostatectomy showed significant clin-

ical advantages for patients (reduced blood loss, faster healing times, lower complication

rates) and ergonomic improvements for clinicians [30]. Use of the da Vinci system quickly
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Figure I.4: The transforamenal hippocampotomy concept [28]

Figure I.5: An MR-compatible, pneumatically actuated robot for driving steerable needles
[28]. This prototype also features a traditional stereotactic device (affixed to the patient by
a bite block) for manual aiming and insertion of straight outer cannula
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Figure I.6: Intuitive Surgical’s da Vinci Xi, the latest generation of da Vinci Surgical System

spread to other urologic procedures, with the first robot-assisted nephrectomy being per-

formed in 2001 [31].

Despite its significant dexterity benefits over traditional laparoscopic surgery, robot-

assisted surgery has not yet overcome another significant challenge of laparoscopic surgery:

minimally invasive surgery still relies primarily on direct visualization via an endoscopic

camera for surgical navigation, as pictured in Fig. I.7 [32]. This results in a limited field of

view that inhibits surgeons’ ability to intuit the anatomical context of the surgical environ-

ment, i.e. the location of surgical tools relative to critical, frequently subsurface, anatomical

features.

This challenge is particularly salient during two critical steps of a partial nephrectomy

procedure: first, during the identification of the delicate renal vasculature (which must be

dissected from encapsulating fat in order to be clamped prior to cutting the kidney); and

again, when identifying the margins around the tumor (which is at least partially endo-

phytic). In the former step, surgeons currently refer to visible anatomical landmarks to
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Figure I.7: Endoscopic camera view of a robot-assisted nephrectomy [32]. The limited field
of view makes intuiting anatomical context challenging for surgeons

identify a safe area to begin dissection and slowly work toward the general direction of the

vasculature—being extremely cautious to avoid accidentally impinging upon the vessels—

until the vasculature becomes apparent [32, 33]. In the latter step, intraoperative ultrasound

can assist surgeons in identifying tumor margins [32, 33]; however, tissue resection requires

use of both hands, leaving surgeons without a hand to manipulate the ultrasound probe.

Preoperative tomographic imaging can provide surgeons with additional spatial and

anatomical information to aid in identifying these hidden features; however, in current

practice, surgeons must rely on their ability to recall previously viewed images and then

mentally register their recollection to the surgical view. The difficulty of this mental reg-

istration process, coupled with the potentially disastrous results of inadvertent damage to

kidney structures, dissuades many surgeons from attempting partial nephrectomy, despite its

known long-term benefits. By translating information from preoperative 3D images directly

into the surgical scene, however, an image guidance system for partial nephrectomy promises

to aid surgeons’ spatial understanding of subsurface anatomy, thereby making identification

of critical features easier and more accurate. With more surgeons confidently able to perform
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the surgery, partial nephrectomy should see wider utilization.

I.3 Dissertation Contributions

The work proposed for this dissertation touches on disparate clinical applications while

pursuing unifying goals of design, implementation, and validation of technologies that enable

image-guided interventions using minimally invasive surgical robots. The identified clinical

needs inform the nature of this work in each area. In the neurosurgical domain, where image

guidance is a mature clinical practice, this dissertation focuses on developing new robotic

tools that could revolutionize existing image-guided procedures. In the urologic domain,

where surgical robots are a key enabling technology, this dissertation seeks to endow these

systems with image guidance capabilities that could give surgeons superhuman sight. The

remainder of this dissertation proposal is organized into three content chapters, the key

contributions of which are described below.

Chapter II first explores the feasibility of creating helical steerable needles whose geomet-

ric properties are tailored to conform to the brain anatomy of individual epilepsy patients

during transforamenal hippocampotomy. Additional work in this chapter covers novel con-

trol methods and hardware designs that enable the smooth, robotic deployment of such

helical needles in the brain. The key contributions of this chapter include:

• Demonstrating the feasibility of using a concentric tube robot to access the hippocam-

pus through the foramen ovale to deliver thermal therapy,

• Validating control methods for accurate follow-the-leader (FTL) deployment of a heli-

cal, steerable needle using a pneumatically actuated, MRI-compatible robot,

• Validating a fail-safe method for deploying and retracting helical needles using manual

actuation.

Chapter III presents the design and validation of an accurate, clinically practical im-

age guidance system for partial nephrectomy that leverages the inherent capabilities of the

10



da Vinci robot to achieve image registration using only hardware commonly available in

operating rooms. The key contributions of this chapter include:

• Creating a system to implement “touch-based” image-to-physical space registration by

using the instruments of the da Vinci robot to digitize anatomical surfaces,

• Analyzing statistical distributions of registration error for this surface-based registra-

tion technique,

• Demonstrating the clinical utility of the new image guidance system for localizing

subsurface anatomical features.

Chapter IV proposes a new method for implementing image guidance that uses intraoper-

ative, tracked ultrasound to extract anatomical surfaces to enable image guidance registration

during robot-assisted partial nephrectomy. The contributions of this work include:

• Determining the feasibility of image registration to a kidney surface reconstructed from

ultrasound images acquired through perirenal fat,

• Demonstrating a method to segment sufficient surface information from intraoperative

ultrasound to ensure accurate image correspondence in surface-based image registration

using kidney and tumor surfaces,

• Evaluating clinical efficacy of ultrasound-based image guidance for robot-assisted par-

tial nephrectomy in phantom studies involving surgeons of various skill levels.
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CHAPTER II

Enabling Minimally Invasive, Image-Guided Transforamenal Hippocampotomy

through Robotically Actuated Steerable Needles

II.1 Preface

Text sections of this chapter previously appeared in the publications below and have been

reproduced here with the permission of co-authors and publishers:

D. B. Comber, E. B. Pitt, H. B. Gilbert, M. W. Powelson, E. Matijevich, J. S. Neimat,

R. J. Webster, III, and E. J. Barth, “Optimization of Curvilinear Needle Trajectories

for Transforamenal Hippocampotomy,” Operative Neurosurgery, vol. 13, no. 1, pp.

15-22, 2017.

E. B. Pitt, D. B. Comber, Y. Chen, J. S. Neimat, R. J. Webster, III, and E. J. Barth,

“Follow-the-Leader Deployment of Steerable Needles Using a Magnetic Resonance-

Compatible Robot with Stepper Actuators,” ASME Journal of Medical Devices, vol.

10, no. 2, 2016.

E. B. Pitt, P. J. Swaney, H. B. Gilbert, Y. Chen, R. J. Webster, III, and E. J.

Barth, “Enabling Helical Needle Trajectories with Minimal Actuation: A Screw-Based

Approach to Concentric Tube Needle Deployment,” in Hamlyn Symposium on Medical

Robotics, pp. 56-57, 2017.

II.2 Optimization of Curvilinear Needle Trajectories for Transforamenal Hip-

pocampotomy

II.2.1 Introduction

Epilepsy has a point prevalence of about 0.6% globally and accounts for 1% of the global

burden of disease in terms of disability-adjusted life years [34, 35]. Forty-seven percent of

patients are seizure-free with their first anti-epileptic drug (AED), and an additional 13%
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are seizure-free with their second AED [1]. Thus, about 40% of patients are refractory to

medical therapy, and many of these are potential surgical candidates. Although epilepsy

surgery outcomes reflect seizure-free rates of 70 to 80% [36, 37, 38], only a small fraction

of potential surgical candidates are referred for treatment, due in part to physician bias

against the highly invasive surgery [6, 5]. Furthermore, the invasiveness of current surgical

procedures likely causes many otherwise eligible patients to forgo surgery, despite the high

likelihood of a seizure-free outcome.

In recent years, needle-based thermal ablation has been investigated as a minimally-

invasive alternative to selective amygdalohippocampectomy (SAH). An SAH resection is less

aggressive than standard anterior temporal lobectomy (ATL) but has demonstrated equiv-

alent or near-equivalent outcomes [37]. Parrent and Blume reported amygdalohippocam-

potomy by MRI-guided radiofrequency ablation (RFA); seizure outcomes were worse than

ATL [39]. However, more recent clinical trials using MRI-guided laser ablation systems have

more positively indicated the efficacy of percutaneous thermal ablation for epilepsy. Curry et

al. reported seizure freedom at 3-month follow up for 5 pediatric patients treated using the

Visualase Thermal Therapy System [23]. For a small series of procedures using the Visualase

laser, Willie et al. reported 6-month seizure freedom for 7 of 13 patients and substantial

improvement for an additional 3 patients [26]. Hawasli et al. effectively treated one case

of medically-refractory epilepsy using the Monteris Neuroblate System [40]. Despite some

promising results, these ablation procedures to date have not matched the success of SAH.

One of the primary limitations of current laser-induced thermal therapy (LITT) procedures

is that the laser probes used with currently available devices are restricted to linear trajec-

tories, which cannot lesion the entire hippocampus, even with directionally-aiming probes.

Additionally, these procedures still require full operating room preparation for twist-drilling

the skull.

This paper investigates a novel approach for accessing the hippocampus through the

foramen ovale using helical concentric tube needles. We address the question of whether
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concentric tube needles with this geometry can, in principle, guide an ablator along the

curved shape of the hippocampus when delivered through the foramen ovale. Through

medical image analysis and computer simulation, we determine optimized, curvilinear nee-

dle trajectories specific to the anatomy of 20 patients. This is the first paper to consider

optimal design of concentric tube needles for a transforamenal approach for accessing the

hippocampus and the first paper to consider variations in patient anatomy when considering

helical needle design.

II.2.2 Methods

II.2.2.1 The Transforamenal Ablation Concept

Our transforamenal approach is enabled by nonlinear probe trajectories that can also traverse

the natural curvature of the hippocampus. These trajectories may offer more complete

lesioning than linear trajectories, potentially improving seizure outcomes to equivalency

with SAH. The proposed procedure accesses the mesial temporal lobe by cannulation of

the foramen ovale. This would eliminate the need for twist-drilling the skull and allow for

real-time course correction as the needle insertion is performed in the MRI.

The curvilinear trajectories required are realized using a concentric tube needle. This

device consists of nested tubes of superelastic nitinol. Controllable, curvilinear motion is

realized when axial translations and rotations are applied to the tube bases. For an overview

of this technology, see [41, 42, 43, 44]. A photograph of the concentric tube needle as

designed for transforamenal ablation is shown for Fig. II.1. The technique used for creating

this prototype needle is discussed in [45]. Deploying this needle through a soft tissue media

in a helical trajectory requires precise coordination of both insertion and axial rotation of

the component tubes, as was recently described in [46], and is hence typically achieved

by attaching motors to tube bases to enable computer control of tube motions. Several

particular MRI-compatible robot designs have recently been proposed to accomplish this

motion control [47, 48, 49]. Gilbert et al. also explored in simulation the potential benefits
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Figure II.1: Photograph of concentric tube needle concept for transforamenal ablation.

of using helical trajectories with a concentric tube needle to access the hippocampus from

a burr hole in the rear of the skull [46], but did not consider transforamenal deployment or

variation in patient anatomy, both of which we investigate in this paper.

Cannulation of the foramen ovale is often performed for placement of foramen ovale elec-

trodes to monitor the mesial temporal structures [50, 51]. Several research groups have also

performed frameless stereotactic cannulation of the foramen ovale for trigeminal rhizotomy

[52, 53]. Similarly, for diagnosis and surgical treatment of drug-refractory epilepsy, Ortler et

al. reported an optically-tracked aiming device and non-invasive maxillary fixation system

called the Vogele-Bale-Hohner (VBH) head holder [54, 55]. This setup facilitates placement

of foramen ovale depth electrodes and also mitigates the risk of entering no-go zones like the

carotid artery during cannulation.

To enable the transforamenal ablation concept, we envision a robotic, MRI-guided system

(see Fig. II.2). The system comprises an MR-compatible actuation unit, a concentric tube

robot, an ablation probe, and MRI guidance. We anticipate the procedure could take place
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from start to finish in a radiology suite and not require use of a surgical suite. In our

envisioned procedure, a robot actuation unit is positioned within a standard MRI scanner

with the patient under general anesthesia. The robot is suspended above the patient’s torso

using an arch-shaped frame affixed to the scanner gantry. The needle in the system is

made up of two parts: a docking tube and a robotically actuated concentric tube needle,

as shown in Fig. II.1. The docking tube (a 14-gauge needle–—a size typically available in

trigeminal rhizotomy kits) is an outer cannula manually placed by the neurosurgeon under

fluoroscopic guidance to cannulate the foramen ovale prior to transferring the patient to the

MRI scanner. The concentric tube needle—consisting of an ablation probe contained within a

helically curved superelastic tube—is withdrawn inside the docking tube during cannulation

of the foramen ovale. After cannulation of the foramen ovale, the concentric tube needle

is deployed by the robot actuation unit (under surgeon control) and guided using real-time

MRI for visualization. The helical tube (with the ablation probe retracted inside) passes as

close as possible along the medial axis of the hippocampus towards its tail. The ablation

probe is then extended a short distance beyond the tip of the helical tube to deliver thermal

therapy. Spatial thermal energy deposition is monitored using MR thermal imaging. When

sufficient thermal dose is reached at this first position, the ablator is retracted within the

helical tube, the helical tube is retracted a short distance along its entry trajectory, and

the ablator is re-deployed. This process can be repeated as many times as desired by the

physician to achieve desired thermal dose to the hippocampus. The amygdala can also be

lesioned if desired by fully retracting the concentric tube robot into the docking tube and

then re-inserting along a second trajectory targeting the amygdala.

Previously, we have developed a fail-safe, pneumatic, MRI-compatible robot actuation

unit [48]. Figure II.3 shows a photograph of our current prototype assembled for a benchtop

simulation of the procedure using an anatomically accurate skull model. Insets in Fig. II.3

show the deployed helical tube inside the skull and the 3D printed bellows mechanism inside

the actuation unit. This prototype fits inside a 60 cm MRI scanner bore. During needle
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Figure II.2: Illustration of robotic transforamenal ablation system concept.

deployment, the pneumatic robot actuators grasp both the helical tube and the ablation

probe at their proximal ends, and apply necessary insertion and axial rotation motions to

deliver the helical tube and ablation probe along the desired trajectory. Detailed information

on the design, control, and performance of the robot actuation unit can be found in [48].

We note that some aspects of this system concept are not yet fully integrated. In par-

ticular, we have developed the MRI compatible robotic hardware and the concentric tube

device, and conducted initial experiments to verify MRI compatibility, but we have not yet

integrated MRI thermometry or demonstrated use of MRI images to guide the needle to

desired points. We also have not yet tested our envisioned procedure in cadaveric or animal

models. These are elements of future work.

II.2.2.2 Medical Image Analysis

To characterize the required workspace and constraints for the concentric tube robot, a

medical image analysis was conducted. As a retrospective study with exemption approval
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Figure II.3: MRI-compatible robot actuation unit prototype in benchtop mockup of trans-
foramenal ablation procedure.

from the Vanderbilt University Institutional Review Board, dual CT/MR image volumes

were obtained and de-identified. Image sets for 10 patients were selected based only on

whether a sufficient amount of mandible and maxillary bone were included in the CT scan.

This was to ensure adequate information to inform the design of cannula orientation angles

for cannulation of the foramen ovale. No prior indication as to whether the hippocampus

would be convenient to reach through the foramen ovale influenced patient selection.

Visualization and analysis of the image volumes were performed using the open source 3D

Slicer software (www.slicer.org). The CT and MR image volumes were registered by a rigid

transformation plus scaling using Slicer’s BRAINSFit module [56]. The skull was segmented

from the CT volume using an automated threshold. The hippocampi and amygdala were

segmented manually from the MRI volume and reviewed and confirmed by an experienced

neurosurgeon (Dr. Neimat, who is a co-author on this paper.
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II.2.2.3 Concentric Tube Needle Design

The skull, hippocampus, and foramen ovale models were used to design a concentric tube

needle trajectory for each patient. Our design objective was to cause the ablator to pass

as close to the medial axis as possible. The medial axis is the locus of the centers of all

maximal spheres inscribed within the object, where maximal spheres touch more than one

point on the object boundary [57]. The rationale for this approach is that if the ablator

radiates heat evenly in all directions, it will be most likely to achieve uniform coverage of the

hippocampus if it travels along the medial axis. However, we note that the ablator need not

travel perfectly along the axis, as there are examples of successful ablations being performed

substantially away from the medial axis [23, 26, 40].

In this application, the concentric tube needle trajectory is fully defined by seven param-

eters: helix curvature, helix torsion, helix maximum insertion length, helix initial rotation,

ablation probe maximum insertion length, and the two orientation angles of the docking

tube. Note that the curvature and torsion define the geometry of the helical tube whereas

the other five parameters describe the needle and ablator placement. To achieve our design

objective, we performed a numerical optimization to determine the set of seven parameters

that minimized the mean distance from each point on the medial axis of the hippocampus

of each patient to the closest point on the concentric tube needle’s backbone. The seg-

mented anatomical models were imported to MATLAB so that they could be overlaid with

possible trajectories of the concentric tube needle. The medial axis was computed using

the skeletonizing method of [57]. To generate an initial set of parameters for the numerical

optimization, a needle trajectory capable of closely following the medial axis was manually

designed using the forward kinematic equations of the helical concentric tube robot. An

example of this manual design is shown for Patient 4 in Fig. II.4. Numerical optimization of

the trajectory parameters was then performed using the well-established Nelder-Mead sim-

plex method, which was implemented with the MATLAB fminsearch function [58]. During

optimization, a limitation was placed on the helix curvature to ensure that the needle would
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Figure II.4: (a) Initial transforamenal trajectory before numerical optimization. (b, c) Dock-
ing tube range of allowable motion.

not plastically deform when straightened inside the docking tube. A maximum of 8% strain

was allowed for helical tube curvature; this is the often-quoted recoverable strain limit for

nitinol in the literature. Additional constraints were placed on the orientation angles of the

docking tube to ensure that the needle trajectory did not exceed the safe insertion region.

Specifically, using the skull model, we defined a coordinate frame for the docking tube such

that its central axis lies in a plane of maximum adjustability in the space between maxilla

and mandible. This plane is approximately sagittal and the corresponding range of motion

is illustrated by the larger circular sector in Fig. II.4(c). This range of allowable motion was

constrained in the optimization to ±10◦, and for the orthogonal plane shown in Fig. II.4(b),

a constraint of ±5◦ was imposed. All parameter limits were enforced via cost conditions in

the numerical optimization.
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II.2.3 Results

The optimized concentric tube robot design for Patient 4 is shown in Fig. II.5. A comparison

of initial (Fig. II.4) to optimized designs shows a substantial improvement in the accuracy

of the trajectory to traverse the medial axis of the hippocampus. A summary of all 20

optimized designs is provided in Fig. II.6 and Tbl. II.1. Figure 6 shows the medial axis

of each hippocampus and each trajectory at its maximum path distance from the foramen

ovale. Across all 20 cases, the mean distances (error) between hippocampus medial axis

and backbone of the needle were 0.55, 1.11, and 1.66 mm for best, mean, and worst case,

respectively. For each case, a helical curvature was found that resulted in strains less than

the recoverable limit.

Considering the summary of the optimized design parameters given in Tbl. II.1, there

are several reasons why patient-specific designs were required to achieve sufficient accuracy.

First, the helical tube torsion is positive for the left hippocampus and negative for the right

hippocampus, so at least two different needles are required. Second, optimized torsion varied

by ±25% from the mean (89.1 m−1rad−1) for the set of right-handed helices and by ±19%

from the mean (107.3 m−1rad−1) for the left-handed helices. If a generic shaped needle

were used instead, this amount of variation from optimal torsion would result in additional

trajectory error of 3 to 5 mm.

It is feasible to rapidly and accurately fabricate patient-specific needles using shape set-

ting of superelastic nitinol. For this work, we used a laboratory-grade electric heating method

developed by our lab [45] to rapidly prototype a concentric tube needle for Patient 1, using

a superelastic nitinol tube of outer and inner diameters 1.14 and 0.97 mm, respectively. The

fabricated prototype had a curvature of 41.2 m−1 and a torsion of 84.8 m−1. The geometry

of this prototype deviates slightly from the optimized geometry given in Table II.1; however,

we note that this deviation results from current limitations of the rapid prototyping tech-

nique. Albeit more expensive, industrial methods for shape setting of nitinol would be able

to achieve desired geometry with substantially greater accuracy on appropriate timescales
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Table II.1: Concentric tube robot design parameters and corresponding error predictions

Helically Pre-curved Tube Ablation Probe

Patient
Max. Length

(mm)
Curvature

(m−1)
Torsion
(m−1)

Max. Length
(mm)

Mean Error
(mm)

2 Left 56.2 78.3 107.0 71.2 0.81
2 Right 56.0 83.9 -118 65.0 1.26
3 Left 52.8 49.7 94.9 60.6 0.74
3 Right 42.6 44.9 -112.9 51.9 1.14
4 Left 46.3 50.6 84.1 63.1 0.59
4 Right 50.0 55.1 -102.8 61.1 0.55
5 Left 33.8 43.6 92.5 57.4 0.86
5 Right 45.5 57.0 -111.3 58.9 1.26
6 Left 48.3 39.9 102.7 58.1 1.49
6 Right 47.2 29.9 -101.5 54.9 1.62
7 Left 58.7 32.4 72.2 64.8 1.43
7 Right 56.5 34.1 -84.7 62.0 0.90
8 Left 58.2 39.5 77.8 63.6 1.17
8 Right 48.5 48.9 -114.0 62.3 1.64
9 Left 58.4 62.3 102.1 64.9 1.59
9 Right 52.6 59.0 -125.8 62.4 1.66
10 Left 55.0 32.9 62.9 63.5 0.90
10 Right 55.2 36.8 -91.2 63.3 1.03

Figure II.5: Optimized concentric tube robot design for Patient 4.
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Figure II.6: Optimized concentric tube robot designs for 20 hippocampi, axial view.

Figure II.7: Optimized trajectory using measured curvature and torsion of prototype.

for our envisioned procedure. Using the measured geometry of the prototype needle, we re-

peated the optimization to find an optimal set of five insertion parameters for the prototype

needle. In simulation, this new trajectory follows the medial axis of the hippocampus at a

mean error distance of 1.80 mm and is illustrated in Fig. II.7.

II.2.4 Discussion

This paper has described a novel approach to access the hippocampus through the foramen

ovale using a concentric tube robot for the purpose of hippocampotomy by ablation. We

have presented a computer simulation of optimized helical needle trajectories for accurate

traversal of the curvilinear medial axis of 20 hippocampi. This is the first paper to consider

optimal design of concentric tube needles for a transforamenal approach for accessing the
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hippocampus. This is also the first paper to address variations in patient anatomy when

considering helical tube optimization. A prototype needle with sufficiently accurate pre-

curvature for this application was also manufactured. These trajectories potentially enable

ablation of tissue—in particular, in the tail of the hippocampus—that cannot typically be

reached by linear trajectories. In light of correlation between higher resection volume and

better clinical outcomes [59], the potential to achieve more complete ablation could improve

the efficacy of hippocampotomy by ablation for the treatment of epilepsy. Though significant

additional testing is necessary to confirm the feasibility of this procedure, the results of this

study preliminarily suggest that MRI-guided transforamenal ablation could be a less-invasive

alternative to current ablation treatments for epilepsy and may ultimately provide a more

complete ablation.

The eventual realization of our envisioned procedure will require much future work in

both technical and clinical aspects. One area of work in concentric tube robots is to explore

the effects of friction between tubes, especially in light of the relatively long transmission

length required for our approach. One prior paper on this topic suggests modelling friction

as an axial torque located at the end of the straight transmission section of the tubes [60].

This friction model can be integrated into the mechanics-based model of the tubes [42, 43],

and we expect that it will be straightforward to compensate for friction with our actuators,

or to mitigate it with stiffer straight transmissions [61] and/or with low-friction coatings.

Further areas of technical work for our system include evaluating imaging protocols for MR

thermometry and integrated of MRI guidance for our robot. A variety of ablation technolo-

gies are possible, and additional work will also be needed to choose the best technology for

this application. An important clinical concern to be addressed in future design work is the

ability to extract a concentric tube needle in the event of a failure of the robotic actuation

system after insertion in the temporal lobe. Many other clinical aspects of our envisioned

procedure will also need to be extensively evaluated in future cadaver and animal studies.
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II.3 Follow-the-Leader Deployment of Steerable Needles Using a Magnetic Resonance-

Compatible Robot with Stepper Actuators

II.3.1 Background

Epilepsy is a debilitating, potentially fatal, seizure-causing neurological disorder that will af-

fect approximately 1% of people worldwide in their lifetimes [1]. Medication-based treatment

is ineffective for an estimated 40% of epilepsy patients [1]. As an alternative to medication,

surgical removal of the hippocampus (commonly the origin of epileptic seizures) successfully

cures epileptic seizures in about 70% of cases [4]; however, 50-90% of eligible patients forgo

surgery due to risks associated with highly-invasive brain surgery [4, 5].

Magnetic resonance image-guided (MRI-guided) laser ablation of the hippocampus is a

promising avenue for minimally invasive surgical treatment of epilepsy. Recent clinical trials

using various needle-based, MRI-guided laser ablation systems to treat epilepsy have reported

positive results; however, seizure outcomes were worse than those of epilepsy surgery [26].

These ablation systems exhibit one major limitation: linear needle trajectories are unable

to traverse the entire curved structure of the hippocampus.

Steerable needles—–comprising concentric tubes of pre-curved superelastic nitinol—–

address this limitation by enabling curvilinear needle trajectories in soft tissue. The potential

benefits of curvilinear trajectories are twofold: (1) they enable therapy delivery to a larger

region of the hippocampus; and (2) they enable accurate needle placement while avoiding

sensitive, untreated tissue that might otherwise obstruct a typical linear trajectory [46]. To

achieve curvilinear trajectories without shearing tissue, however, steerable needles must be

deployed in a “follow-the-leader” (FTL) fashion, whereby the needle backbone follows the

path created by the needle tip [46]. Precise coordination of needle insertion and rotation

required for FTL deployment necessitates robotic actuation.

Research on MRI-compatible robotic needle-actuation systems has focused primarily on

straight needle placement (see, e.g., [62]; for a more general review of MRI-compatible

robotics, see [63]). To enable use of steerable needles for MRI-guided epilepsy surgery,
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Figure II.8: Robot with Helical Steerable Needle

we previously developed a compact, pneumatically-actuated, additively manufactured, fail-

safe, MR-compatible robotic needle-driving system [48]. This paper presents a joint-level

trajectory coordinator for FTL deployment of a steerable needle using our MRI-compatible

robot. FTL deployment is validated experimentally.

II.3.2 Methods

Our MRI-compatible robot system, pictured in Fig. II.8, uses a 2 degree-of-freedom pneu-

matic stepper actuator to drive a helical steerable needle. The actuator is an additively

manufactured monolithic structure comprising both a linear and a rotary flexible fluidic

actuator (FFA). Actuation is achieved by inflation of the FFAs, causing translational or

rotational deformation, respectively. Flat diaphragm grippers are inflated around clamshell

inserts to grasp a transmission tube at the needle base. Detailed design, operation, and

low-level nonlinear position control are presented in [48].

During operation, the superelastic needle deploys from a fixed, straight outer cannula

(not pictured in Fig. II.8), and the distal end of the needle returns to its helical shape as it

exits the cannula. Since a portion of the needle remains straightened inside the cannula, the

26



displaced arc length and rotation of the deployed helix respectively equal the translation, x,

and rotation, θ, of the needle base at the actuator. During FTL deployment, x and θ must

be coordinated such that they follow the geometric relationship between helix arc length and

rotation:

x = θ
√
r2 + p2, (II.1)

where r and p are the helix radius and pitch, respectively.

To achieve FTL deployment using the stepper actuator, a joint-level trajectory coordina-

tor determines the desired translation and rotation of the actuator (denoted by subscript des)

during each actuation step. The trajectory coordinator accepts final desired displacements

as inputs. For each actuation step (denoted by superscript k), the coordinator increments

the desired rotation by a fixed step size, θstep, which may be any fraction of the maximum

rotational step size,

θkdes = θk−1
des + θstep, (II.2)

and the desired translation is incremented according to (II.1),

xkdes = xk−1
des + θstep

√
r2 + p2, (II.3)

until the desired displacements are saturated at their respective final values. The updated

desired displacements are sent as inputs to the low-level position controller during each ac-

tuation step. The present actuator design is not capable of simultaneous translation and

rotation, so each actuation step consists of a rotational substep followed by a translational

substep. Beyond enforcing FTL conditions, this technique differs from previous implemen-

tations in that trajectory tracking by the low-level controller occurs during each step of the

desired trajectory (not just in the vicinity of the final desired displacement).

To validate this trajectory coordinator for FTL needle deployment, a helical needle of

radius 3.65 mm and pitch 10.53 mm/rad was deployed through a straight outer cannula into

a gelatin-based phantom. Actuation substeps were performed at a frequency of 0.5 Hz (0.25
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Figure II.9: Rotational Displacement Tracking

Hz full step frequency), and θstep = 1◦. Needle position was measured using optical encoder

hardware described in [48].

II.3.3 Results

Figures II.9 and 3 show successful tracking of both the desired translational and rotational

trajectories. The measured final translation error was 0.046 mm, and the measured final

rotational displacement error was 0.072◦. The small overshoot (at most 0.41◦) seen in each

rotary substep is negligible for the intended application (see [48] for detailed performance

specifications based on the intended clinical application). Furthermore, note that since the

low-level position controller operates continuously during each actuation step, tracking errors

do not accumulate from step-to-step, even as the desired displacement increments.

Figure II.11 demonstrates the adherence to FTL conditions. The “reference” signal was

calculated according to (II.1), using the measured angular displacement and helix geometric

parameters. Small deviation from the FTL trajectory is observed at each substep due to the
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Figure II.10: Translational Displacement Tracking

discrete rotational and translational substeps. The maximum deviation of the translational

displacement from the FTL value was 0.25 mm, which is likely sufficiently small for the

intended application. The final deviation of the translational displacement from the FTL

value is zero within the resolution of encoder hardware.

II.3.4 Interpretation

This technical brief presented a joint-level trajectory coordination technique for follow-the-

leader deployment of a helical steerable needle using a previously developed MRI-compatible

robotic system with stepper actuators. Experimental results using the proposed trajectory

coordinator demonstrated follow-the-leader needle deployment that is sufficiently accurate

for the intended clinical application of needle-based surgical treatment of epilepsy. Future

work will include ex vivo targeting experiments with MRI guidance.
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Figure II.11: FTL Deployment

II.4 Enabling Helical Needle Trajectories with Minimal Actuation: A Screw-

Based Approach to Concentric Tube Needle Deployment

II.4.1 Introduction

The clinical need for needle-based therapies capable of accessing tissues unreachable by

conventional needles has motivated substantial research into steerable needles (see [64] and

[65] for a review of these technologies). In particular, it has been observed that curved paths

can be useful in percutaneous procedures [66]. Gilbert, et al., showed that helically pre-

curved concentric tube nitinol needles can be deployed in a follow-the-leader (FTL) fashion,

such that the needle shaft follows the path traced out by the tip [46]. Further information

on concentric tube robots and the mechanics-based models that govern their motion can be

found in [42] and [43].

The motivating application for helical needles in [46] was minimally invasive treatment of

epilepsy—a neurological disorder that causes debilitating seizures. We have been developing
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Figure II.12: Minimally invasive, helical needle-based treatment of epilepsy. A helical needle
(red) deployed from an outer cannula (blue) delivers therapy to the hippocampus (green)

a needle-based procedure for this application that involves delivering thermal energy to the

hippocampus with both guidance and thermometry from magnetic resonance imaging (MRI)

[46, 48, 67]. Figure II.12 illustrates this application, in which a helical concentric tube needle

is used to deliver therapy to the curved structure of the hippocampus through an occipital

burr hole in the skull.

A principal challenge to executing FTL deployment of a helical concentric tube needle

in soft tissue is the requirement for precise coordination of needle rotation and translation

necessary to achieve a smooth “corkscrew-like” motion. To address this, Comber, et al.,

developed an MRI-compatible needle-driving robot for the aforementioned epilepsy applica-

tion [48], and Pitt, et al., demonstrated the same robot’s ability to accurately achieve FTL

deployment of a helical needle [67].

The motivation for our current paper comes from the observation that FTL deployment

requires the two actuation degrees of freedom to move at a fixed rate relative to one another,

meaning that deployment is actually a single degree-of-freedom operation. Thus, in this

paper we mechanically couple the two traditional actuation degrees of freedom through a

screw mechanism. The benefit of this approach is that one actuator can be eliminated from
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Figure II.13: Experimental setup for characterizing deployment of a helical needle using a
screw mechanism

the robotic system, making it simpler and less expensive. A further benefit of the approach

is that manual insertion of a helical concentric tube robot becomes straightforward, allowing

a human operator to deploy the needle in a FTL path by pushing linearly on the back of

the screw mechanism. This paper is the first to demonstrate FTL deployment of a helical

concentric tube needle by manual actuation.

II.4.2 Materials and Methods

Figure II.13 shows the screw mechanism and helical needle, assembled in the experimental

setup. The prototype screw was manufactured by fused deposition modeling of acrylonitrile

butadiene styrene (ABS) using a Stratasys Dimension 768SST. The process of shape setting

the helical needle is described in [45].

The superelastic nitinol helical needle is grasped at its base by a collet in the tip of the

screw mechanism. The needle is deployed through a fixed, straight, rigid outer cannula.

When retracted within the cannula, the needle straightens; however, as the needle deploys

from the end of the cannula, the deployed portion of the needle returns to its pre-curved he-

lical shape due to the superelastic properties of nitinol. Achieving FTL deployment requires
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that the base of the needle be rotated (simultaneously with translation) at a rate equal to the

needle’s pre-curved torsion [46]. A simple screw mechanism is ideally suited to maintain the

required constant relationship between translation and rotation. For the system presented

here, the helical needle had radius 4.84 mm and pitch 62.38 mm, and the screw mechanism

had pitch 69.39 mm.

To assess the quality of the FTL trajectory during insertion and retraction, the path

of the needle tip through 3D space was compared to the helical pre-curved shape of the

needle. A total of 20 experiments (10 insertions and 10 retractions) were performed in free

space. Needle behavior in soft brain tissue should not be expected to differ significantly

from behavior in free space, given the high relative stiffness of the needle compared to

brain tissue. In all experiments, actuation of the screw mechanism was performed manually.

Needle tip position was measured with a Northern Digital, Inc. Aurora magnetic tracking

system; insertion distance (deployed arc length) was measured using digital calipers and an

aluminium probe mounted to a linear slide (see Fig. II.13). During each experiment, needle

tip position was measured at 5 mm increments of deployed arc length. To determine the

position and orientation of the needle’s known (i.e. pre-shaped) helical curve in the robot’s

base frame, a point based registration was carried out between all measured data points and

the points at corresponding arc length locations on the needle curve.

II.4.3 Results

Figure II.14 shows the results of one insertion experiment and one retraction experiment. In

an ideal FTL deployment, the position of the needle tip would lie exactly on the curve at all

times. For a given arc length, the distance between the measured tip position and the point

on the curve at the same arc length is a measure of FTL error. Figure II.15 shows the FTL

error as a function of arc length.
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Figure II.14: Point-based registration between measured needle tip positions and the pre-
shaped needle curve

Figure II.15: FTL error versus arc length for insertion and retraction. Reported values rep-
resent mean FTL error for all experiments. Error bars represent average absolute deviation
from the mean for all experiments.
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II.4.4 Discussion

The results presented here demonstrate that follow the leader deployment of a helical concen-

tric tube robot can be achieved manually using a screw mechanism to mechanically couple

the translational and rotational degrees of freedom. These results provide for the first time

a straightforward method to manually insert helical concentric tube needles through a FTL

trajectory. Additionally, these results enable a reduction in the cost and complexity of a

robot designed to achieve FTL deployment of a helical concentric tube needle by eliminating

one actuator.

II.5 Postface

Following the initial design and characterization of the manual actuation mechanism, addi-

tional work investigated the feasibility of using a helical needle to deliver thermal therapy

in tissue, along a desired path [68]. This work confirmed the hypothesis that the shape of

ablation volume can be predicted from the needle geometry.
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CHAPTER III

Toward Practical and Accurate Touch-Based Image Guidance for Partial

Nephrectomy using the da Vinci Surgical System

III.1 Preface

Text sections of this chapter previously appeared in the publication below and have been

reproduced here with the permission of co-authors and publishers:

James. M. Ferguson∗, E. Bryn. Pitt∗, Nicholas. L. Kavoussi, Andria. A. Remirez,

Michael. A. Siebold, Alan Kuntz, Eric. J. Barth, S. Duke. Herrell, and Robert. J.

Webster III, “Toward Practical and Accurate Touch-Based Image Guidance for Partial

Nephrectomy using the da Vinci Surgical System,” IEEE Transactions on Medical

Robotics and Bionics, vol. 2, no. 2, pp. 196-205, May 2020. ∗Co-first author

III.2 Introduction

Treatment of renal cell carcinoma typically requires surgically removing the tumor and sur-

rounding kidney tissue. Some cases require radical nephrectomy, in which the entire kidney is

removed. However, for patients with localized tumors, the American Urological Association

and the European Association of Urology recommend nephron-sparing partial nephrectomy,

in which only part of the kidney is removed [9, 10]. Compared to radical nephrectomy, par-

tial nephrectomy leads to improved long-term patient outcomes by allowing the patient to

retain some kidney function and reducing the risk of chronic kidney disease [11, 12]. Partial

nephrectomy remains underutilized, however, likely due to the extreme technical challenges

associated with the procedure, especially when performed minimally invasively [14, 15].

Robot-assisted partial nephrectomy (RAPN) performed using the da Vinci Surgical Sys-

tem (Intuitive Surgical, Inc., Sunnyvale, CA, USA) can help mitigate many challenges of

minimally invasive partial nephrectomy [13], but RAPN does not inherently address the

challenge of relying primarily on direct visualization via an endoscopic camera for surgical
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Figure III.1: Our image guidance display, as seen from the surgeon console of a clinical da
Vinci Si. As the surgeon lightly traces the kidney surface with the robot instrument tip, our
system collects surface data (red dots, downsampled for visualization) that can be used to
register segmented preoperative image data to the organ surface. This provides the surgeon
with the locations of critical subsurface anatomical structures.
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navigation. This results in a limited field of view that inhibits surgeons’ ability to intuit the

anatomical context of the surgical environment, i.e. the location of surgical tools relative to

critical, frequently subsurface, anatomical features. Locating these anatomical features, such

as large blood vessels and the tumor itself, is critical to safely and successfully performing

RAPN. Surgical image guidance can help surgeons locate these features, providing additional

anatomical context by accurately registering 3D anatomical volumes (typically generated by

segmentation of preoperative computed tomography (CT) or magnetic resonance (MR) im-

ages) to the surgical environment and displaying this information to the surgeon during the

procedure (see Fig. III.1). Accurate image guidance has the potential to improve patient

outcomes by making localization, dissection, and isolation of critical vascular and organ

structures, as well as correct margin selection, easier for surgeons.

It has been suggested that the da Vinci robot’s kinematics could be used to achieve

accurate registration for image guidance [69, 70]. In this work, we create such a system,

quantify its performance, and demonstrate its ability to improve an experienced surgeon’s

performance. Our image guidance system uses the instruments of the da Vinci robot itself

as 3D localizers for digitizing anatomical surfaces. By lightly tracing an instrument tip

over the surface of the target anatomy while recording the robot’s joint values, our system

generates a set of points on the surface of the anatomy. Our system computes a surface-based

registration between the preoperative images and the patient’s anatomy during the surgery.

Using this registration, we then display a 3D model of the patient’s anatomy segmented

from the preoperative imaging to the surgeon in the da Vinci’s surgeon console, enabling the

surgeon to visualize the location of subsurface anatomy that is not visible via the endoscope

(see Fig. III.1). By using the inherent capabilities of the da Vinci for registration, our system

provides an image guidance approach that is well suited to the clinical workflow.

This paper presents our touch-based image guidance system and analyzes its accuracy.

We also describe practical steps for deploying it in the operating room using a clinical

da Vinci Si system. We present a series of phantom experiments to provide a thorough
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accuracy analysis of a touch-based registration for image guidance. Finally, we present a

phantom experiment demonstrating the utility of our image guidance system for improving

an experienced surgeon’s ability to localize subsurface anatomical features important in

partial nephrectomy. By providing practical and accurate image guidance, our method has

the potential to improve surgeons’ ability to accurately accomplish partial nephrectomy.

Success in achieving this has the potential to increase utilization of partial nephrectomy,

thereby providing enhanced health outcomes to many more patients.

III.3 Related Work

Image guidance has previously been recognized as potentially useful in facilitating partial

nephrectomy, and numerous research groups have sought to implement such image guidance

systems. One approach to image guidance in laparoscopic partial nephrectomy involved

inserting fiducial markers on barbed needles directly into the kidney [71, 72]. The kidneys

and fiducials were then imaged and segmented intraoperatively to enable registration by

direct point-to-point correspondence between the fiducials in the segmented images and those

same fiducials in the endoscopic video. While providing highly accurate, real-time guidance,

these fiducial-based methods increase the risk and complexity of surgery by requiring foreign

objects to be manually inserted into the kidney by the surgeon. Furthermore, the need

for intraoperative imaging and segmentation represents a time-intensive interruption of the

surgical workflow. Indeed, the robotic system is not compatible with intraoperative CT, and

thus one would have to fully remove the robot to register the image set.

A less invasive approach to registration is fiducial-free manual registration. In manual

registration, the surgeon is tasked with visually aligning 3D images or models to the surgical

field. In [73] and [74], preoperative MR and CT images and 3D anatomical models were

displayed alongside endoscopic video in the da Vinci’s surgeon console, and surgeons could

manually adjust the orientation of the images to match the endoscopic view. Ukimura et.

al. [75] and Nakamura et. al. [76] presented augmented reality systems in which surgeons
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manually aligned translucent 3D anatomical models directly overlaying the image feed from

a laparoscopic endoscope. These studies found that surgeons benefited from having preop-

erative imaging information more readily available with respect to the live camera images.

However, this approach increases cognitive burden on surgeons and provides no accuracy

guarantees. Indeed, relying on human hand-eye coordination and spatial reasoning to per-

form registration makes accuracy highly dependent on an individual user’s skill, resulting

in low registration precision, as evidenced by large variations in registration accuracy from

trial-to-trial in these studies.

To enhance precision and facilitate objective accuracy, others have sought to employ

stereo endoscopes for instrument tracking and registration to patient anatomy. Su et. al. [77]

proposed a multi-step CT-to-endoscope registration method where the segmented kidney

surface was first manually aligned with the stereoscopic video. Surface-based video tracking

techniques were then used to refine and stabilize the registration during system operation.

Pratt et. al. [78] utilized an augmented endoscope overlay by first identifying a matching

feature in both of the stereo images and the preoperative scans to align the translational

degrees of freedom and then using a rolling-ball interface to manually align the rotational

degrees of freedom. We direct the reader to [79] for a thorough overview of research aimed at

using computer vision algorithms to automatically detect and track the da Vinci instruments

in the stereo endoscope video. These vision-based approaches are limited by a requirement

for persistent, direct line of sight between the endoscope camera and either the anatomi-

cal surface or the surgical instruments. During surgery, line of sight is often obstructed by

blood, smoke, and other surgical tools. Furthermore, endoscope-based methods typically

require accurate tracking of the endoscope position itself to localize tracked objects in the

surgical field. Accurate endoscope tracking usually requires an external tracking system and

a calibration process to determine the rigid transformation from the tracked frame to the

camera frame, such as the method presented in [80]. Some researchers have sought to aug-

ment camera-based tracking methods by combining them with either geometric or kinematic
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information to improve accuracy [81, 82, 83]. These results show promise and warrant fur-

ther investigation, but have yet to fully address the above limitations of endoscope-based

methods.

The kinematic information inherently available in the da Vinci surgical system represents

a means of 3D localization that relies neither on intraoperative use of external trackers nor

on processing endoscopic video. Previous research found that the da Vinci’s active joints

(which control motion of the laparoscopic instruments during operation) can be localized

with sufficient accuracy for image guidance; however, the accuracy of the passive setup

joints (used for gross manipulator positioning) was not suitable [84, 85, 86]. Kwartowitz

et. al. [86] proposed to address this shortcoming by using a “hybrid” tracking scheme that

combines two tracking modalities (specifically kinematic tracking and optical tracking) to

more accurately track the multiple manipulators of the da Vinci in a common coordinate

system. In this hybrid tracking scheme, the base frames of the active kinematic chains are

registered to external, optically tracked frames attached to the base of the da Vinci. Thus,

all base frames can be localized within the coordinate system of the optical tracker and the

manipulator tips can then be kinematically tracked relative to their respective base frames.

Fiducial localization experiments in [87] later validated the accuracy of hybrid tracking with

the da Vinci for image guidance applications. In this paper, we implement this hybrid

tracking approach as part of a new calibration method that also simultaneously estimates

kinematic parameters of the da Vinci system.

Kinematic tracking of the da Vinci instruments has also shown particular promise in

combination with “drop-in” ultrasound probes. In [88], registering the image frame of the

ultrasound to the kinematic frames of the robot enabled the ultrasound plane to be displayed

in the live endoscopic video. Researchers also combined automatic detection of the robot

instruments in ultrasound images [89] with kinematic tracking to produce semi-autonomous

ultrasound guidance that tracked instrument motions [90]. Later work in [91] demonstrated

registration between kinematically tracked ultrasound and preoperative CT images for appli-
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cation to partial nephrectomy. The feasibility of this ultrasound-based registration technique

in the context of the operating room is, however, inherently coupled to the accuracy of intra-

operative segmentation of the ultrasound images, and represents a skill- and time-intensive

addition to the surgical workflow. As an alternative, the touch-based method examined in

this work uses the da Vinci’s kinematically tracked instruments directly to digitize anatom-

ical surfaces to enable registration.

The idea of a touch-based registration for image guidance with the da Vinci system was

first introduced by Ong et. al. [69]. During a partial nephrectomy case, the instrument tool

tip was lightly traced over the kidney surface while recording the robotic joint values; the data

was processed postoperatively to generate a sparse set of surface points that were used for

a standard surface-based registration. The concept showed qualitative merit; however, the

authors noted they were unable to perform quantitative analysis of the touch-based method

due to the unavailability of a ground truth comparison during the human trial. Building

upon this concept, we have further assessed surface-based registration with the da Vinci using

rigid phantoms [92]; however, thorough analysis of registration error for this touch-based

method using anatomically accurate phantoms has thus far remained unstudied. In this

paper we take essential steps toward practical and accurate deployment of this touch-based

registration concept by presenting a system that is suitable for deployment in a real-world

operating room and accomplishes registration in real time. We also rigorously evaluate the

accuracy of touch-based registration on anatomically accurate soft-tissue phantom models,

and demonstrate its ability to improve the localization accuracy of an experienced surgeon.

III.4 System Overview

III.4.1 Preoperative System Setup and Calibration

Preoperative calibration of the da Vinci Si system is necessary to achieve sufficient kinematic

tracking accuracy to enable our touch-based registration. Figure III.2 shows a clinical da

Vinci Si deployed for preoperative calibration, which takes place as the da Vinci system

42



is draped prior to surgery. Additively manufactured reference frames designed to interface

with the da Vinci system are clamped rigidly to the distal ends of the setup arms (Fig. III.2,

upper right). These reference frames are equipped with reflective optical tracking markers.

To maintain the sterile field, the reference frames are first clamped without reflective spheres

before deploying the sterile drapes. After draping the robot, sterile, disposable, commer-

cially available spheres are attached to mounting posts through the sterile plastic drapes.

This process ensures a sterile barrier between the clamping system and the sterile surgical

environment.

As shown in Fig. III.2 (lower right), the da Vinci instruments grasp sterile, optically

tracked calibration tools. Each calibration tool is previously pivot-calibrated so that the

position of the interface with the instrument tip is accurately known relative to the opti-

cal markers. This enables measurement of the instrument position relative to the optically

tracked reference frames at the base of each serial chain. Our system uses a Polaris Spec-

tra (Northern Digital Inc., Waterloo, Ontario, Canada) optical tracking system, which is

currently available for use in many operating rooms, including any operating room at our

institution. The Polaris system has a reported tracking accuracy of 0.25 mm, and for this

work, we consider measurements with the optical tracker to be ground truth [93].

To collect calibration data prior to surgery, a robot operator simply moves the calibration

tools throughout the robot workspace while recording data. In our current implementation,

the operator momentarily pauses at discrete locations to ensure synchronization of optical

tracking and robot encoder data streams. This is necessary only because we did not have

direct access into the robot software to enable synchronization between the data streams of

the optical tracker and robot. In future clinical implementations, the markers can simply be

waved in front of the optical tracking system to collect calibration data. This data collection

process is repeated for each da Vinci manipulator and each instrument to be used during

surgery.

Our system employs a hybrid tracking technique [86] for calibration that enables the

43



Figure III.2: Hybrid tracking implemented with the da Vinci Si in the operating room.
Optically tracked markers (top right) are rigidly clamped to the base of each manipulator,
and sterile tracking spheres are attached to the markers over the robot drapes ensuring
sterility. Calibration is achieved by gripping sterile calibration objects (bottom right) in the
manipulators (or pressing them onto the endoscope) and waving them in front of the tracker
preoperatively.

da Vinci’s manipulators to be kinematically tracked relative to external, optically tracked

reference frames (rather than the internal base frames of the da Vinci system). Using hybrid

tracking bypasses the comparatively inaccurate setup joints of the da Vinci system, short-

ening the effective kinematic chain and improving tracking accuracy beyond the inherent

capabilities of the da Vinci system. Our calibration process also simultaneously calibrates

the parameters of the kinematic model using standard techniques [94, 95, 96]. The result

of calibration is that each robotic instrument can be accurately tracked with respect to the

location of the reference frames attached at the base of the active serial chain.

III.4.2 Touch-Based Registration

Our touch-based registration method aligns two sets of data: a densely sampled point set

describing the organ surface in image space and a sparsely sampled point set of surface data

describing the organ surface in physical space. The dense image space point set is obtained

preoperatively from volumetric imaging. For the experiments presented in this paper, the

44



kidney surface was manually segmented from CT images using 3D Slicer, an open-source

medical image computing and visualization software platform [97]. In the future, however,

when an image guidance system like ours is developed into a commercial product, it is

likely that manual segmentation would be replaced by an automatic segmentation algorithm.

Any existing or future segmentation algorithm would be straightforward to incorporate into

the framework described in this paper, since our system assumes only the existence of a

segmentation without regard for how the segmentation was accomplished.

The physical space point set is obtained intraoperatively by lightly tracing the surface

of the patient’s organ with the tip of the da Vinci’s instrument. We track the instrument’s

tip position in physical space during this process using the previously calibrated kinematics.

Surface tracing is quick and non-disruptive to surgical workflow: acquiring a sufficient num-

ber of surface points for accurate registration requires only about 30 seconds. After tracing,

the data are automatically downsampled to exclude data points within 2 mm of neighboring

points to eliminate variations in point cloud density caused by variable tracing speed. This

results in a set of points in physical space that lie on the surface of the patient’s kidney.

Previous work concluded that the physical-space data used for surface-based registration

should include at least 28% of the anterior surface area of the kidney to ensure accurate

registration [98]. Therefore, once surface tracing is complete, our system automatically

analyzes the tracing data to verify that the tracing covers a sufficient area. Our system

determines the surface area corresponding to a tracing by constructing a surface mesh from

the tracing data using the ball-pivoting surface reconstruction algorithm [99] (illustrated in

Fig. III.3). The area of the reconstructed surface is compared to the kidney’s surface area,

which is determined from the preoperative CT images.

Registration between the image space point set with the physical space point set is

computed using the globally optimal iterative closest point (GoICP) algorithm [100]. GoICP

does not require user initialization and as such is not subject to suboptimal initialization

concerns associated with standard ICP algorithms. The resulting registration between the
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image space and the physical space relates knowledge of the patient’s anatomy present in

the preoperative images to the current position of the robot with respect to the patient.

III.4.3 Real-Time Data Streaming and Visualization

Using the computed registration, we display the position of anatomical structures segmented

from preoperative imaging to the surgeon in real time directly in the da Vinci surgeon console

(see Fig. III.1).

We built our image guidance system as a submodule of 3D Slicer, an open-source med-

ical image computing and visualization platform that enables patient image segmentation,

preoperative planning, and real-time model rendering for image guidance [97]. Our sys-

tem interfaces with the clinical da Vinci Si application programming interface (API) [101]

through a data acquisition module built with the open-source Plus Toolkit [102] that streams

kinematic data output by the API to 3D Slicer using the standardized OpenIGTLink mes-

saging protocol [103]. This enables the endoscope camera view and graphical models of the

da Vinci’s manipulators in the image guidance display to track the movement of the physical

instruments in real time. Our image guidance (see Fig. III.1) is displayed directly in the da

Vinci surgeon console through the console’s TilePro interface.

III.5 System Validation Experiments

We first evaluate the efficacy of our calibration method to improve the overall kinematic

accuracy of the da Vinci robot. We then evaluate the accuracy of our touch-based registration

method.

III.5.1 Calibration Accuracy

We wish to determine the number of measurements that must be collected during preop-

erative setup to ensure good calibration results. In the context of robot calibration, this

number is generally difficult to predict, as it varies from system to system and also depends

on the measurement method used [104]. We performed a series of trials to determine the
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Figure III.3: Surface reconstruction from surface tracing data. A. Original point set from an
example robotic instrument tracing. B. Reconstructed surface for surface area computation
to ensure adequate model coverage.

relationship between tracking accuracy and the number of measurements used in calibration,

as described below.

For our touch-based application, the da Vinci instrument tip serves as the localizer.

Given that surface-based registration relies only on discrete points of position data, only the

positional (not rotational) accuracy of the localizer needs to be considered. Therefore, the

accuracy of our system can be quantified by the fiducial localization error (FLE) of the da

Vinci instruments, i.e. the distance between the model-predicted tip location and the true

tip location:

FLE =
∥∥probot

model − probot
true

∥∥ . (III.1)

In practice, the FLE cannot be directly measured because our model-predicted position

is measured in a different coordinate frame from our “true” position (as measured by the

optical tracker). However, it is possible to indirectly estimate the expected value of the FLE

from these data, as described below. The transformation between the two coordinate frames

(the robot and the optical tracker) can be estimated from a standard, rigid, point-based
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registration between the model-predicted positions and the true measured positions [105].

The error associated with such a registration can be quantified by the fiducial registration

error (FRE), which is the root-mean-square error in the alignment of the registered points.

Performing numerous registrations using different sets of point samples provides a good

estimate for the expected value of the FRE for registrations between the two frames. The

expected value of the FRE can be used to estimate the expected value of the FLE, according

to the following relationship derived in [105]:

〈FLE2〉 =
〈FRE2〉

(1− 2/N)
, (III.2)

where N is the number of points used in the registration and the angle bracket opera-

tor denotes the expected value of a random variable. This formulation relies on standard

assumptions that the components of FRE are independent, isotropic, 3D normal random

variables.

Our evaluation data set comprised 130 calibration measurements, collected at distinct

poses representing a sparse sampling of the entire da Vinci Si active workspace. Each

calibration measurement consists of a set of robot joint values and a corresponding Cartesian

position, measured in the optical tracker’s workspace. All data was collected using the da

Vinci’s EndoWrist Large Needle Driver instrument.

To determine the relationship between the model-predicted position accuracy and the

number of data points used in model calibration, we performed a Monte Carlo cross-validation

analysis of the evaluation data set. Each iteration of the cross-validation was performed as

follows:

• A number M ∈ {10, 15, 20, . . . , 95, 100} of “training points” were selected uniformly at

random from the complete set of 130 points.

• The kinematic model was calibrated using the training points.

• K = 30 “validation points” were selected uniformly at random from the remaining
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130−M points.

• A number N ∈ {5, 6, 7, . . . , 19, 20} of “registration points” were selected uniformly at

random from the validation points. This process was repeated 1000 times for each value

of N , resulting in a total of 16, 000 distinct sets of registration points per iteration.

• Using each set of registration points, a rigid point-based registration between the (cal-

ibrated) model-predicted positions and the measured “true” positions was performed.

• The mean value of FLE for the calibrated system was computed from the average FRE

of each registration according to Eq. (III.2).

This process was repeated a total of 1000 times for each value of M . Figure III.4 shows the

results of this analysis, which indicates that using more than 60 data points to compute the

hybrid tracking calibration offers only marginal improvements to localization accuracy.

Figure III.5 shows the accuracy improvement of the calibrated da Vinci model compared

to the nominal model from [86]. The mean and standard deviation of the calibrated sys-

tem’s FLE are 0.95 mm and 0.14 mm, respectively, representing a 34% reduction in mean

localization error. While no well-defined localization accuracy threshold exists for image

guidance applications, it is clear that increased accuracy is always desired. Our calibrated

system accuracy is comparable to prior methods used to track the absolute position of the

da Vinci’s instrument tips (1.31 mm in [85] and 1.39/1.95 mm for PSM1/PSM2 in [86]).

We wish to emphasize that the accuracy values reported here reflect only the deviation

between the model-predicted position of a robot manipulator and the measured position (i.e.

where the robot “thinks” the manipulator is versus where it truly is). These accuracy results

do not describe the accuracy with which a surgeon can direct the da Vinci manipulators

during teleoperation (i.e. where the surgeon wants the manipulator to be versus where it

truly is). While touch-based image guidance relies on a highly accurate model-predicted

position, teleoperation with visual feedback and a human in the loop does not.
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Figure III.4: Fiducial localization error (FLE) of the da Vinci Si vs. the number of measure-
ments used for calibration of the hybrid tracking model. The red area indicates the standard
deviation for each respective trial. Only marginal improvements to accuracy can be seen
past M = 60.

50



34% Error 
Reduction

Figure III.5: Distribution of RMS errors between the model-predicted robot tip position
using hybrid tracking and the ground truth, optically tracked tip position. A significant
decrease in error is seen when using our calibration method (red) over using the nominal
robot parameters (blue). Results are for 1000 calibration trials with M = 60 measurements
per trial.

51



III.5.2 Registration Accuracy

We evaluated the accuracy of our touch-based registration method in a series of experiments

using a commercially available synthetic kidney model (SynDaver Labs, Tampa, FL, USA)

that accurately reflects the geometry and mechanical soft-tissue properties of a human kidney.

For our experiments, the model was fixed to an optically tracked platform, as shown in Fig.

III.6.

Prior to experiments, the entire platform was CT scanned using an xCAT ENT Scanner

(Xoran Technologies LLC, Ann Arbor, MI, USA) using a section thickness of 0.3 mm. The

kidney surface as well as the optical tracking markers were manually segmented from the

CT images using 3D Slicer [97]. The kidney surface segmentation was used to produce the

required image space point set for registration. The segmentation of the optical tracking

markers was used to compute the ground truth pose of the kidney model relative to the

makers, which were optically tracked in the operating room.

To acquire data in physical space, an experienced urologic surgeon thoroughly traced

the entire anterior surface of the kidney phantom using a Large Needle Driver instrument

in a calibrated da Vinci Si while our system recorded tool tip position data. The resulting

data set comprised 1241 evenly spaced position measurements. From this large data set, we

randomly generated 700 smaller continuous tracing intervals. The size of each sub-interval

was randomly chosen from a discrete, uniform distribution to be between 200 and 400 position

measurements. All of the 700 tracings met or exceeded the minimum surface area threshold.

For each of the 700 tracings, we performed registration using GoICP, mapping the seg-

mented kidney model into the robot’s workspace. We then compared the registration to the

ground truth pose of the kidney phantom, as measured using the optically tracked exper-

iment platform. To evaluate the quality of each computed registration, we compared the

vertex positions of the registered kidney model to the corresponding vertex positions in the

tracked, ground truth model. The target registration error (TRE) at each vertex of the

registered model was computed as the distance between that vertex and the corresponding
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Figure III.6: Optically tracked phantom platform used for evaluating registration accuracy.
Surface data for registration is acquired by tracing the phantom surface (illustrated as red
dots). The location of the phantom relative to the tracked platform is known, enabling
evaluation of our touch-based registration technique.

vertex of the ground truth model.

Figure III.7 shows an example registration with the TRE visualized as a heat map over

the entire surface. The red lines shown in the figure represent the tracing (comprising 276

points in this example) of the physical kidney surface used for registration. In the region

of the kidney where surface data was collected with the robotic instrument tip, TRE is

approximately 2 mm while RMS TRE over the entire kidney surface is 2.75 mm. The

TRE tends to increase as the distance from the data collection area increases, as should be

expected.

To evaluate the overall consistency and reliability of our registration technique, we com-
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Figure III.7: An example registration result using our touch-based registration technique.
The heat map shows the TRE over the entire model surface. Red points represent the surface
tracing used for registration.

puted the RMS TRE over the entire kidney surface for all 700 tracings, as shown in Fig.

III.8. The average RMS TRE over all of the 700 registrations was 3.69 mm with standard

deviation 0.61 mm. Note that while we performed registration using only a small number

(200–400) of data points collected on the anterior kidney surface, we have reported RMS

TRE over the entire kidney surface (at ∼175,000 mesh vertices). As opposed to considering

TRE at a few points in the vicinity of the surface tracings, these results more realistically

depict errors that can be expected over the surgical work volume when using touch-based

registration.
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Figure III.8: Distribution of RMS TRE (computed over the entire kidney surface) for 700
trials of our touch-based registration method. In each trial, tracings covered at least 28% of
the anterior kidney surface.
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Figure III.9: Experimental setup to measure a surgeon’s accuracy in localizing subsurface
features with and without our image guidance system. Targets embedded in a phantom
kidney model were localized using our system with a clinical da Vinci Si. The display
presented to the surgeon during the procedure is shown in the right column.

Figure III.10: Error in localizing embedded endophytic and exophytic targets in a phantom
kidney model. Localization was performed with and without image guidance while fat par-
tially obscured the kidney surface (including all exophytic targets). Localization was then
performed without image guidance and without the fat layer (allowing direct visualization
of the full kidney surface, including exophytic targets). Results indicate that our system
increases surgeon accuracy in localizing subsurface features (p� 0.001).

III.6 Image Guidance Phantom Experiment

To demonstrate the utility of our system in the operating room, we performed a phantom

experiment comparing the surgeon’s accuracy in localizing subsurface features both with and

without the image guidance provided by our system. Figure III.9 shows the setup for this

experiment.
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A challenge of many robotic surgical procedures is the localization of subsurface anatomy,

making it difficult for the surgeon to know where to cut to remove lesions or avoid vessels.

This is especially true in robot-assisted partial nephrectomy. During removal of perirenal

fat surrounding the patient’s kidney, the surgeon must identify the locations of the renal

artery, the renal vein, the ureter, and the tumor. All of these features are hidden beneath

the fat layer. The fat must be carefully dissected, and the anatomical features must be

uncovered while avoiding unnecessary damage which could result in blood loss or positive

tumor margins.

We manufactured a soft, realistic silicone kidney phantom based on patient CT imaging.

Eight acrylic spheres approximately 12 mm in diameter were set in the silicone material

as it cured to serve as localization targets for experiments. Four targets were completely

endophytic while the remaining 4 targets were at least partially exophytic. The model was

fixed to the same optically tracked platform used in our registration experiments. The entire

platform was CT scanned and segmented as before in Sec. III.5.2. Optical tracking of the

phantom platform was used solely to determine the ground truth positions of the embed-

ded targets in the operating room to enable post hoc analysis of the surgeon’s localization

accuracy.

During the experiment, the phantom was partially covered in a 10 mm thick layer of

SynDaver synthetic fat. The fat completely covered all exophytic targets such that none

of the localization targets were directly visible to the participating surgeon. Approximately

40% of the anterior surface of the phantom was left uncovered to simulate the results of fat

dissection required at the beginning of a partial nephrectomy procedure.

Prior to the experiment, the participating surgeon reviewed CT images of the phantom

to develop a “mental map” of the locations of subsurface targets. The surgeon was allowed

to reference the CT images throughout each phase of the experiment.

In the first phase of the experiment, the surgeon attempted to localize the subsurface

targets based solely on his interpretation of the CT images. To localize a target, the surgeon
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was instructed to point (using the calibrated da Vinci instrument) to the perceived location

of the center of each of the 8 targets. Each time the surgeon pointed to a target, our

system recorded the transformation from the instrument tip to the system’s world coordinate

frame to use for analysis. The surgeon repeated this pointing task 5 times for a total of 40

measurements.

In the next phase of the experiment, the surgeon repeated the subsurface localization

task using our image guidance system. The surgeon first lightly traced the exposed portion

of the kidney surface to collect surface data for our touch-based registration protocol. With

the image guidance enabled by the registration, the surgeon repeated the above process of

identifying target locations with the robotic instrument.

The final phase of the experiment served to establish a baseline accuracy for the target

localization task. The image guidance was disabled, and the fat layer was completely removed

from the phantom. With direct visualization of the entire kidney surface through the da

Vinci’s endoscope, the surgeon then repeated the target localization process as before. Note

that with direct visualization of the kidney surface, 4 of the target spheres were at least

partially visible while the remaining 4 targets were completely concealed beneath the surface.

For all phases of the experiment, localization accuracy was evaluated by comparing target

locations identified by the surgeon to the corresponding optically tracked, ground truth

locations. For a particular surgeon-identified location and ground truth pair, the localization

error was taken as the minimum distance between the Z axis extracted from the end effector

tip transform (the pointing direction of the instrument tip) and the ground truth target

position (see the inset in Fig. III.10). Figure III.10 summarizes the localization accuracy

results for each phase of the experiment.

Performing a pairwise t test on the set of all errors with image guidance and the set of

all errors without image guidance showed a significant reduction in error. Mean error was

reduced by 67% (from 9.2 mm to 3.0 mm) by using image guidance (p� 0.001).

For brevity, references to measurements made “with image guidance” or “without image
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guidance” in this discussion will refer specifically to those measurements made with fat par-

tially obscuring the kidney surface. The term “direct visualization” refers to measurements

made with all fat removed from the kidney surface (and no image guidance).

The measurements made with direct visualization provide helpful context for interpreting

the localization accuracy results with and without image guidance. Direct visualization did

not improve the surgeon’s localization accuracy of endophytic tumors when compared to the

scenario without image guidance. This result indicates that increasing the visible surface

area of the kidney did not help the surgeon form a more accurate mental registration between

the CT images and the surgical scene. Using image guidance, on the other hand, enabled a

substantial improvement of localization accuracy for endophytic targets when compared to

both the scenario without image guidance and that with direct visualization. Taken together,

these results demonstrate the utility of our image guidance system for enabling accurate

localization of subsurface features, specifically indicating that image guidance improved the

surgeon’s localization ability beyond natural human ability.

With regards to the exophytic targets, direct visualization unsurprisingly resulted in

substantially improved localization accuracy when compared to localization without image

guidance (when the exophytic targets were completely obscured by fat cover), but direct

visualization offered only slightly better accuracy than using image guidance. It is crucial

to note, however, that direct visualization of exophytic tumors is very unlikely in a true

clinical scenario. Surgeons rarely remove fat covering a tumor during partial nephrectomy

for two reasons: (i) the fat provides a safe grasping point for manipulating and removing

the tumor, and (ii) dissecting fat attached directly to the tumor dramatically increases the

risk of unintentionally puncturing the tumor. Thus, image guidance was nearly as accurate

as direct visualization while potentially being much safer.

While these results show great promise for our image guidance system, the current study

was limited to one surgeon subject. Future work will be needed to explore whether the

ability to accurately trace the kidney surface or to accurately identify subsurface features
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varies from subject to subject. Anecdotally, we have not observed large differences in these

skills among either engineer or physician co-authors of this paper, but quantification of this

anecdotal observation will be necessary in the future.

III.7 Conclusion and Future Work

In this paper, we presented a practical and easily implemented image guidance system for

the da Vinci family of robotic systems. Specifically, we proposed and tested a new method

of accurately estimating required tracking parameters through calibration, achieving submil-

limetric absolute kinematic tracking accuracy for the first time with any da Vinci robot. We

then presented the first quantitative accuracy evaluation of touch-based registration with the

da Vinci, using an anatomically accurate SynDaver kidney model. We presented a system

that incorporates these advancements to bring this concept toward real-world use. Finally,

we demonstrated the utility of our system in the operating room in the first validation of

touch-based image guidance to improve a surgeon’s ability during a subsurface target local-

ization experiment.

The results of this work indicate a promising application for robotic partial nephrectomy

which may increase the adoption of this underutilized alternative to total kidney removal;

however, several significant challenges remain to be addressed before touch-based image guid-

ance with the da Vinci can be fully realized in the operating room. The ex vivo experiments

in this work provide a valuable proof of concept, but moving forward, it is crucial to perform

in vivo evaluation of our image guidance system. In particular, we believe it may be useful

to examine the effect of external forces applied to the da Vinci manipulators by the patient

body wall and the insufflation system on kinematic tracking accuracy. Additionally, as prior

works have noted, factors including patient positioning [106, 107], peritoneal insufflation

[108], arterial clamping [109], and kidney dissection [69], potentially cause organ deforma-

tion that can negatively affect registration accuracy when using preoperative images. Future

work will be needed to address the effects of organ deformation that occurs throughout the

60



surgical procedure. Substantial progress on these topics has been made (e.g., [69, 70, 110])

and can potentially be incorporated into our system in the future, particularly when accurate

algorithms become computationally efficient enough for real-time use in a system like ours.

Nonetheless, our results show that even rigid registration alone improves the ability of a sur-

geon to localize unseen subsurface objects in partial nephrectomy. Localizing these objects

with confidence before cutting may, in the future, help to shift clinical decision making so

that many more patients can receive the lifelong benefits of partial nephrectomy.

III.8 Postface

The Vanderbilt Institutional Review Board recently approved initial human studies for eval-

uating the image guidance system. These studies are organized as “bystander studies,”

involving two surgeons—an operating surgeon and a bystander surgeon—to enable eval-

uation of the image guidance system without influencing surgical decision-making. The

operating surgeon will perform all surgical tasks without access to the image guidance. At

specific points throughout the procedure, the bystander surgeon will briefly take control of

the surgical robot in order to make evaluative measurements of the image guidance accuracy;

however, the bystander surgeon will not attempt any surgical tasks.
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CHAPTER IV

Intraoperative Ultrasound-Based Image Guidance for Robot-Assisted Partial

Nephrectomy: A New Surface-Based Implementation and Initial Clinical

Evaluation

IV.1 Introduction

As discussed in the previous chapter, image guidance is most needed during two critical

steps of the partial nephrectomy procedure: first, during the identification of the delicate

renal vasculature (which must be dissected from encapsulating fat in order to be clamped

prior to cutting the kidney); and again, when identifying the margins around the tumor

(which is at least partially endophytic). Given that tumor removal is the ultimate surgical

goal of partial nephrectomy, the image guidance systems proposed by the literature for

partial nephrectomy to date (including the touch-based system introduced in Chapter III)

have focused almost exclusively on assisting in tumor resection. Despite this fact, however,

vessel identification represents the most technically challenging and time-intensive aspect

of a typical partial nephrectomy. Expanding image guidance capabilities to be able to aid

initial vessel identification and dissection promises to significantly reduce the overall length

and complexity of surgery.

Safety considerations dictate that dissection of perirenal fat to expose the kidney cannot

begin until after the renal vasculature has been identified [32, 33]. The presence of perirenal

fat visually obscures most of the critical anatomy around the surgical site, severely limiting

the amount of anatomical information that can be discerned and used as a basis for regis-

tration prior to fat dissection. In particular, inability to directly visualize renal parenchyma

precludes many of the previously discussed surface-based registration methods.

Intraoperative ultrasound imaging represents a potential means to acquire anatomical

surface information without disturbing surrounding tissue or first removing perirenal fat.
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Currently, intraoperative ultrasound sees widespread clinical use in numerous surgical spe-

cialties because it is inexpensive, safe (i.e. nonradiative), fast, and compact compared to

using other imaging modalities, such as CT and MR, intraoperatively. In partial nephrec-

tomy specifically, laparoscopic ultrasound is commonly used to assist in exploring anatomy

around the surgical site and identifying tumor margins below the kidney surface [32, 33].

Unlike other imaging modalities, however, ultrasound is a reflective imaging modality, and as

such, the image quality of an anatomical target will vary depending on factors such as the di-

rection from which the beam approaches the target and the coupling between the ultrasound

transducer and the tissue surface [111]. Controlling these factors in order to obtain clear

and accurate images relies heavily on the the surgeon user’s skill in manipulating ultrasound.

Furthermore, the surgeon must be able to simultaneously interpret live 2D cross-sectional

ultrasound video to discern useful 3D anatomical information.

Use of intraoperative ultrasound to acquire anatomical surface information could circum-

vent the obstacles posed by impeded access to target surfaces while the ability to register

intraoperative ultrasound images to preoperative volumetric images also promises to alleviate

the user burden of ultrasound imaging by decoupling the processes of image acquisition and

image interpretation. Achieving 3D image registration with ultrasound requires some method

of relating 2D image planes to a spatial reference frame containing the target anatomy. While

some advanced ultrasound devices can generate 3D image volumes by electronically steering

the direction of acoustic waves emitted by the ultrasound [112], a simpler and more common

approach has been to track the 3D location of an ultrasound probe by external means. The

method of generating volumetric image data from ultrasound is often referred to as “freehand

3D ultrasound.” Numerous approaches to 3D image reconstruction from freehand 3D ultra-

sound have been examined in the literature; however, these approaches are often limited by

various issues pertaining to computational intensity, image artifacts, low voxel resolution, or

sensitivity to image acquisition orientation and trajectory (see References [113] and [114] for a

review of these approaches). Furthermore, these approaches do not address the fundamental
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problem of establishing a spatial relationship between the volumetric image and the surgical

workspace. This work will focus instead on image registration between externally tracked,

intraoperative ultrasound and preoperative volumetric images. Various approaches to this

type of ultrasound-based image guidance have been widely demonstrated in the literature,

including examples in orthopedic surgery [115, 116, 117], neurologic surgery [118], hepatic

surgery [119, 120], and prostate surgery [121, 122]. In the case of robot-assisted surgery, the

inherent kinematic tracking capabilities of the robot system provide a convenient means for

tracking a robotically manipulated ultrasound probe, as several papers have demonstrated

[88, 91, 122]. Reference [91] specifically suggested applying ultrasound-based image guidance

to vessel identification in partial nephrectomy and then demonstrated registration between

robotically tracked ultrasound and CT images in phantoms.

This dissertation addresses two meaningful gaps in the literature related to ultrasound-

based image guidance. The first gap pertains to the method of extracting surface data for

registration from ultrasound images. In order to achieve robust registration, existing liter-

ature has focused on identifying either rigid, geometrically distinct landmarks (e.g., bones)

or highly vascular structures (e.g., the brain and the liver) to ensure accurate correspon-

dence with preoperative images. For application to partial nephrectomy, the literature has

suggested similarly using renal vessels as registration targets [91]; however, other research

has shown that the renal vasculature is prone to significant deformation resulting from dif-

ferences in patient positioning during preoperative imaging versus during surgery whereas

the kidney parenchyma remains relatively rigid (though experiencing bulk translation and

rotation) [106, 107]. This chapter introduces a new approach to ultrasound-based image reg-

istration that uses intraoperative points derived directly from the kidney surface while still

capturing adequate feature variation to ensure image correspondence. The image-guidance

system presented in Chapter III was extended to enable this new approach using freehand 3D

ultrasound with a clinical da Vinci Xi surgical robot. This chapter presents an analysis of the

accuracy of the ultrasound-based registration method. Using the extended image guidance
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system, this chapter next addresses a second gap in the literature by evaluating for the first

time the clinical utility of ultrasound-based image guidance in the context of robotic partial

nephrectomy. This chapter presents a series of experiments that compares the performance

of surgeons of various skill levels when using freehand ultrasound versus ultrasound-based

image guidance to perform simulated surgical tasks related to partial nephrectomy. The

results demonstrate the ability of image guidance to significantly improve several markers of

surgical quality when used by less experienced surgeons.

IV.2 Ultrasound-Based Image Guidance System Overview

IV.2.1 Ultrasound Transducer Selection

Freehand 3D ultrasound is an attractive option for enabling ultrasound-based image guidance

systems because the approach can be implemented using any standard ultrasound system.

Commercially available “drop-in” ultrasound probes designed for robotic surgery can be

passed through standard laparoscopic trocars and feature grasping interfaces that enable

manipulation using standard robotic graspers. Such drop-in ultrasound probes have largely

replaced traditional laparoscopic ultrasound units in robotic surgery because they enable

the operating surgeon to directly handle the probe rather than requiring coordination with

a surgical assistant. Figure IV.1(a) shows a BK X12C4 drop-in ultrasound transducer (BK

Medical Holding Company, Inc., Herlev, Denmark), one such probe that is specifically mar-

keted for use with the da Vinci Surgical System. Adapting one of these commercially available

probes would be a natural starting point for developing a commercially viable ultrasound-

based image guidance system; however, for the purposes of this initial investigation, the

image guidance system was built around the much more budget- and research-friendly Mi-

crUS LV8-4L65S-3 PC-based ultrasound transducer (Telemed Joint Stock Company, Ltd.,

Vilnius, Lithuania), shown in Fig. IV.1(b). The LV8-4L65S-3 transducer has an adequately

similar overall form factor to drop-in transducers for the current work; however the probe

is significantly larger (130 mm length, 18.3 mm diameter versus 72.75 mm length, 9.9 mm
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Figure IV.1: Ultrasound Probes for Robot-Assisted Surgery. (a) BK X12C4 drop-in ultra-
sound transducer, marketed for use with the da Vinci Surgical System [123]. (b) Telemed
LV8-4L65S-3 veterinary ultrasound probe, as used in this work, with custom adapters for
robotic grasping and optical tracking.

diameter) and heavier (220 g vs. 25 g) than the commercially available drop-in probe. As

shown in Fig. IV.1(b), the probe was outfitted with an external grasping attachment to

enable manipulation with the da Vinci EndoWrist ProGrasp instrument as well as optical

tracking markers for external tracking.

IV.2.2 Ultrasound Calibration and Tracking

Implementing freehand 3D ultrasound requires determining the spatial relationship between

the image plane of the ultrasound transducer and an external reference frame, a process

commonly referred to in the literature as ultrasound calibration. The choice of external

reference frame can be arbitrary as long as changes in the pose of the ultrasound plane can be

tracked within that frame. For the purposes of ultrasound-based image guidance with the da

Vinci robot, however, it is necessary to track the location of the ultrasound image plane with

respect to an internal frame of the robot system in order to register preoperative images to

the same frame. As previously mentioned, prior literature demonstrated accurate ultrasound

tracking using a kinematic model to directly compute the pose of an ultrasound pose grasped

by the robot [91]. Direct kinematic tracking proved infeasible for the current work due to the

increased size and weight of the selected ultrasound probe. As such, ultrasound calibration

and tracking were implemented in a two step process as described below.
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Figure IV.2: Intermediate coordinate frames used for ultrasound calibration and tracking.
{I} is the frame of the ultrasound image; {U} is the local optically tracked frame attached
to the ultrasound transducer body; {T} is the frame of the robot manipulator; {P} is the
internal frame of the Polaris optical tracker; {R} is the internal base frame of the robot,
which is used as the “world” reference frame in this application.
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Fig. IV.2 illustrates all of the intermediate coordinate frames involved in ultrasound cal-

ibration and tracking method implemented in this work. Standard ultrasound calibration

was performed to determine the (constant) transform TU
I from the image space of the ul-

trasound to an optically tracked frame attached to the case of the ultrasound probe (as

shown in Fig. IV.1). A Polaris Vega (Northern Digital Inc., Waterloo, Ontario, Canada)

optical tracking system was used throughout this work. The standard process of ultrasound

calibration requires visualizing the tip of a tracked stylus (submerged in a suitable acoustic

coupling medium, typically water) at various points throughout ultrasound image while si-

multaneously tracking both the ultrasound probe and the stylus. As a result, the location

of identified points is known in both the image frame {I} and the ultrasound frame {U}. A

simple point-based registration can then compute an optimal value for the transformation

TU
I .

It is critical to note that any difference between the speed of sound in the acoustic

coupling medium and the speed of sound value used by the ultrasound software will cre-

ate displacement artifacts that distort spatial information inferred from ultrasound images.

Subsequent images collected after calibration can be further distorted by variations in the

coupling media compared to the coupling medium used during calibration. The problem of

speed-based displacement artifacts poses a common challenge in clinical application of ul-

trasound given the variation of the speed of sound in different human tissues (e.g. 1440 m/s

in fat and 1560 m/s in kidney parenchyma) versus the standard speed of sound assumed

by clinical ultrasound machines (1540 m/s)[124]. As such, best practice dictates that ultra-

sound calibration be performed using a coupling medium with similar acoustic properties

to the intended coupling media for later imaging. For this study, the stylus tip was sub-

merged in a gelatin mixture matching the phantom fat material used in later experiments

(see Sec. IV.3). Additionally, the transform TU
I was also computed as a similarity transfor-

mation, rather than a rigid transformation, to compensate for errors in distance calculations

caused by any difference between the speed of sound in the gelatin medium and the assumed
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speed of sound used by the ultrasound software.

Once in the operating room, a standard hand-eye calibration procedure was preformed

to register the internal coordinate frame of Polaris optical tracker, {P}, to the internal

coordinate frame of the da Vinci robot, {R} [125]. An optically tracked calibration object was

grasped in the robot gripper and moved to numerous poses throughout the robot workspace.

In each pose, the location of the calibration object was measured with the Polaris while the

tip location of the robot end effector was kinematically tracked relative to the robot base

frame. The resulting data allows for computation of the transformation TR
P . Subsequently,

the previously calibrated ultrasound probe was tracked directly by the optical tracker such

that the image coordinate system could the be transformed into the robot’s coordinate frame

for generating image registration data.

IV.2.3 Ultrasound-Based Registration for Image Guidance

The most straightforward approach to obtain physical surface data from tracked ultrasound

is to manually segment points on the target surface from individual ultrasound images.

When trying to generate a sufficient quantity of data for surface based image registration,

however, this approach is naturally limited by the planar, cross-sectional nature of ultrasound

images, which makes inferring a meaningful surface topology from a reasonable number of

images challenging. In the context of kidney surgery, this problem is further exacerbated

by the fact that the smooth surface of the kidney generally exhibits only small changes

in curvature over localized regions. On the whole, these factors present an impediment to

ensure accurate correspondence in registration—i.e. that the registration transformation

actually aligns image points to the same points in physical space.

Many previous implementations of ultrasound-based registration have addressed this

challenge by focusing on obtaining physical space data corresponding to complex, branching

venous structures. By focusing on features of distinct geometry, this approach adequately

constrains registration calculations to ensure correspondence. Such an emphasis on vessel

69



structures is not favorable to application in the kidney, however, for two reasons in partic-

ular: (1) vessels around the kidney are known to deform significantly between preoperative

imaging and surgery due to patient motion, and (2) the renal vessels are typically far from

the region of surgical interest. In light of these facts, an approach to ultrasound-based

registration that uses data from the surface of the kidney was developed for this work.

Figure IV.3: Examples of segmented ultrasound images used to acquire kidney surface data
for image registration. In each image, several surface points were manually identified, then
additional surface information was approximated by interpolating a spline between the an-
chor points.

The current approach was motivated by the conclusions of Ref. [98], which specifically

studied surface registration with the kidney, and found that registration accuracy improved

as more and more disparate “patches” of surface data were used for registration. Ultrasound

is ideally suited to acquiring sparse, disconnected clusters of surface points spread over a

large area. To acquire data of this character, the ultrasound image was swept along the

length of the kidney. Qualitative analysis found that registration results were best when the

plane was swept normal to the long axis of the kidney; however, this result was not rigorously
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validated. From recorded ultrasound video, several points on the surface of the kidney were

manually identified in several image slices taken along the entire length of the kidney, as

shown in Fig. IV.3. Additional surface information was automatically approximated my

interpolating a spline between the manually identified anchor points [126]. Registration

was then calculated from the collected points using the globally optimal iterative closest

point (GoICP) algorithm [100]. Figure IV.4 shows an example registration computed using

this technique. Qualitative findings during this work suggest that segmenting 8 ultrasound

image cross-sections distributed along the length of the kidney was adequate to ensure good

correspondence. More detailed analysis of registration accuracy follows below.

Figure IV.4: An example registration result from ultrasound-based registration. Green
spheres indicate surface points manually segmented from ultrasound images; the kidney
and tumor models were segmented from preoperative CT images.
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IV.3 Dual Ultrasound- and CT-Compatible Phantoms

The experimental objectives of this work required creation of new anatomical phantoms that

satisfy several competing criteria, namely: (i) mechanical semblance of live tissue, especially

during dissection; (ii) CT imaging compatibility; and (iii) ultrasound imaging compatibility.

Furthermore, the phantoms required that different tissue components (fat, renal parenchyma,

and renal tumor) be mutually distinguishable in both imaging modalities.

All phantom components were gelatin based. Renal parenchyma was made from an

aqueous solution of 10% m/m gelatin powder and 4% m/m psyllium husk powder. The

inclusion of psyllium husk powder increased ultrasound scattering relative to other phantom

components. Renal tumors were made from an aqueous solution of 15% m/m gelatin and

2% m/m barium sulfate. The increased concentration of gelatin made the renal masses

stiffer than the renal parenchyma, mimicking the properties of corresponding human tissues;

low concentration barium sulfate created adequate CT contrast between renal mass and

parenchyma without distorting ultrasound imaging of the renal mass. Phantom fat tissue

was made from an aqueous solution of 7% m/m gelatin and 6% m/m mineral oil. The

inclusion of mineral oil helped simulate the slick and friable qualities of human fat while also

improving CT contrast relative to other phantom materials. Water-based food dyes were

added to each mixture to achieve desired coloring.

Phantom molds were additively manufactured based on 3D models of kidneys segmented

from abdominal CT scans. In phantom construction, the renal mass was poured first and

allowed to congeal completely. The renal mass was then registered inside the mold for renal

parenchyma (which also contained a renal artery and a renal vein) and then the mold was

filled with parenchyma phantom mixture. The temperature of the parenchyma mixture

was controlled during pouring to achieve good adhesion between the renal mass and the

parenchyma, ensuring that the mass would not naturally separate from the parenchyma

during phantom dissection. The parenchyma mold was allowed to fully congeal before being

covered in fat solution. The volume of fat solution was measured such that the closest point
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of the kidney surface lay 8–10 mm below the surface of the fat after setting. Figure IV.5

shows a completed phantom, mounted to an optically tracked platform used in experiments

throughout this work.

Figure IV.5: Anatomical phantoms for ultrasound experiments. (top) A kidney phantom
with renal mass mounted to a rigid platform with optical tracking markers prior to encap-
sulation in fat. (bottom) Completed phantom in use in the operating room.
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IV.4 Registration Accuracy

The accuracy of the ultrasound-based registration system was analyzed in a similar manner

to the analysis of the touch-based registration system, described in Sec. III.5.2. Experiments

to analyze the accuracy of the ultrasound-based registration system were conducted using a

custom phantom, constructed as described above; the phantom used for these experiments

did not contain models of renal vasculature. The phantom was fixed to an optically tracked

platform, as shown in Fig. IV.5. Prior to experiments, the entire platform was CT scanned

using an xCAT ENT Scanner (Xoran Technologies LLC, Ann Arbor, MI, USA) using a

section thickness of 0.3 mm. The kidney surface as well as the optical tracking markers

were manually segmented from the CT images using 3D Slicer [97]. The kidney surface

segmentation was used to produce the required image space point set for registration. The

segmentation of the optical tracking markers was used to compute the ground truth pose

of the kidney model relative to the markers, which were optically tracked in the operating

room.

To acquire physical space data, an experienced urologic surgeon used the tracked and

calibrated ultrasound transducer, grasped by a ProGrasp Forceps instrument in a clinical

da Vinci Xi system. Ultrasound video was recorded as the surgeon swept the image plane

between the upper and lower poles of the kidney several times. Kidney surface points were

extracted from individual frames of the ultrasound video according to the method described

in Sec. IV.2.3. A total of 48 ultrasound images, spaced approximately evenly along the long

axis of the kidney, were segmented for this experiment; each image contained 12–30 anchor

points for spline interpolation. One hundred (100) smaller, 10-image sets were generated by

randomly selecting images from the larger image set.

For each small image set, registration was computed using the GoICP algorithm to map

the kidney model segmented from preoperative CT images to the robot’s workspace. The

pose of each registered kidney image was then compared to the ground truth pose, as mea-

sured using the optically tracked phantom platform. The quality of each computed registra-
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Figure IV.6: An example registration result using the ultrasound-based registration tech-
nique. The heat map shows the TRE over the entire model surface.

tion was evaluated by comparing the vertex positions of the registered kidney model to the

corresponding vertex positions in the tracked, ground truth model. The target registration

error (TRE) at each vertex of the registered model was computed as the distance between

that vertex and the corresponding vertex of the ground truth model.

Figure IV.6 visualizes an example ultrasound-based registration as a heat map of the

TRE over the entire kidney surface. Registration error is lowest in areas with high feature

density and large variations of surface curvature, approximately 2–3.5 mm in the region

immediately surrounding the tumor. Registration error is highest in areas of low curvature

variation. This general trend was observed in many registrations performed throughout this

work. Figure IV.7 shows the distribution of root-mean-square (RMS) TRE, computed over

the entire kidney surface, for all 100 registrations included in this experiment. The average

RMS TRE was 4.25 mm with a standard deviation of 1.12 mm.

IV.5 Phantom-Based Evaluation of Clinical Efficacy

For this work, the clinical motivation behind ultrasound-based image guidance is to enable

image guidance at an early stage of the partial nephrectomy procedure, prior to fat dissection.

Dissecting fat and locating underlying fragile renal vessels represent the most technically
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Figure IV.7: Distribution of RMS TRE (computed over the entire kidney surface) for 100
trials of the ultrasound-based registraion method.

challenging aspect of partial nephrectomy—especially for inexperienced surgeons. A series

of phantom experiments were designed to evaluate the clinical utility of ultrasound-based

image guidance when used by “surgeons” of three skill levels: novice (no medical training1),

trainee (senior surgical resident), and expert (senior surgical fellow).

Each surgeon participated in two experiments in which they completed a set of simulated

clinical tasks, using drop-in ultrasound in one experiment and ultrasound-based image regis-

tration in the other. The choice of whether to start with the image registration experiment

or the drop-in ultrasound experiment was made at random for each surgeon. Two different

kidney phantoms—created from different patient CT images—were prepared for each sur-

geon (one per experiment) according to the method described in Sec. IV.3. The choice of

which phantom was used was also made at random at the beginning of each experiment.

Using a different phantom in each experiment was intended to prevent potential bias caused

by familiarity with the kidney anatomy gained after completing the first experiment. Each

kidney phantom contained a partially endophytic renal mass approximately 45 mm in di-

ameter. Each phantom also possessed a renal artery and a renal vein. Both phantoms had

1An engineer familiar with the da Vinci robot was chosen to act as the novice “surgeon” in these ex-
periments. This selection was intended to minimize confounding effects caused by inexperience with the da
Vinci interface.
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the same RENAL score, which is a standardized scoring system for evaluating the surgical

complexity of partial nephrectomy cases [127]. The renal score of the phantoms (7a) suggests

that both represented an intermediate level of difficulty for performing partial nephrectomy.

To enable post hoc analysis of surgeon accuracy, the posterior surface of each kidney

was fixed to an optically tracked phantom platform. In order to simulate effects of vessel

motion and deformation, however, the renal vessels were not adhered to the rigid platform.

Each kidney phantom (including the platform) was CT scanned prior to encapsulation in

fat. These CT images were treated as preoperative scans and segmented to generate 3D

models for image guidance. Kidney phantoms were then encapsulated in fat, which fixed the

location of the renal vasculature (potentially in a different location than in the preoperative

scans). The phantoms with fat were CT scanned again. These CT images were segmented

to generate “ground truth” models for later accuracy evaluation. For these experiments, fat

was colored deep black to ensure complete opacity.

For experiments using only drop-in ultrasound, surgeons had access to live ultrasound

video displayed in the surgeon console through the da Vinci’s TilePro display system while

performing experimental tasks. For experiments with ultrasound-based image registration,

surgeons used drop-in ultrasound to perform image registration according to the method

described in Sec. IV.2.3 prior to starting assigned tasks; surgeons then had access to the

image guidance display in TilePro (but not ultrasound video).

In each experiment, the surgeon completed three simulated clinical tasks. First, the

surgeon attempted to place the tip of a tracked needle probe in the center of each renal

vessel. This task was repeated a total of three times by each surgeon in each experiment.

Next, the surgeon attempted to place the tip of the needle probe at the centroid of the renal

mass. This task was also repeated a total of three times by each surgeon in each experiment.

Finally, the surgeon was asked to resect the renal mass. Figure IV.8 shows the experimental

setup in the operating room.

Surgeon performance in each experiment was evaluated on three criteria: (1) vessel local-

77



Figure IV.8: Experimental setup to evaluate clinical efficacy of ultrasound-based image guid-
ance. (top) External view of needle placement activity using drop-in ultrasound. (bottom)
Surgeon console view of tumor resection using image guidance.
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ization accuracy, (2) tumor localization accuracy, and (3) volume of resection margin. Vessel

localization error was calculated as the linear distance between the location of the needle tip

and the closest point on the center line of the target vessel in the ground truth location (as

measured by optically tracking the phantom platform). Similarly, tumor localization error

was calculated as the linear distance between the measured location of needle tip and the

ground truth location of the tumor centroid. All phantom material removed during tumor

resection was collected and CT scanned postoperatively. The volume of kidney parenchyma

removed from the phantom was calculated from the CT images and taken as the resection

margin volume. Figures IV.9, IV.10, and IV.11 show the computed performance metrics for

each surgeon during each experiment.

In both localization tasks, the ultrasound-based image guidance enabled a statistically

significant decrease in localization error for both the novice and trainee surgeons but did not

affect the expert surgeon’s performance in a statistically significant way (though presented

data might seem to imply that image guidance decreased vessel localization error and in-

creased tumor localization error for the expert surgeon). In both cases the novice surgeon

saw the largest decrease in error when comparing performance using ultrasound to that using

image guidance; however the relative improvement of the novice surgeon’s performance was

only slightly greater than that of the trainee surgeon. These preliminary results support the

dual hypotheses that (1) the clinical utility of intraoperative ultrasound depends heavily on

user skill and (2) image guidance can improve the accuracy of inexperienced surgeons when

attempting to locate subsurface anatomical features.

Image guidance significantly reduced the volume of healthy tissue removed by each sur-

geon during tumor resection. In contrast to the results from localization tasks, the expert

surgeon saw the greatest improvement when using image guidance even though the expert

surgeon achieved the lowest resection margin volume among all three surgeons using both

feedback modalities. Understanding the manner in which surgeons use ultrasound to guide

tumor resection is key to interpreting this result. In common practice, surgeons use the drop-
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Figure IV.9: Vessel localization error for each surgeon when using drop-in ultrasound versus
image guidance. (bottom) The percent reduction in localization error was computed from
the average of all ultrasound-guided localization error and the average of all image-guided
localization errors for each surgeon. Image guidance reduced localization error for the novice
and trainee surgeons. The difference in localization errors was not statistically significant
for the expert surgeon.

in ultrasound to help identify the (subsurface) endophytic boundary of the renal mass before

beginning resection. The task of resection generally requires use of both manipulators, and

as such, surgeons rarely use intraoperative ultrasound after resection has begun. In effect,

the surgeon attempts to project a mental map of the tumor anatomy from memory onto

the surgical scene during resection. Image guidance, on the other hand, provides real-time

80



Figure IV.10: Tumor localization error for each surgeon when using drop-in ultrasound versus
image guidance. (bottom) The percent reduction in localization error was computed from
the average of all ultrasound-guided localization error and the average of all image-guided
localization errors for each surgeon. Image guidance reduced localization error for the novice
and trainee surgeons. The difference in localization errors was not statistically significant
for the expert surgeon.

spatial information to the surgeon throughout resection. Thus, the benefit of image guid-

ance during surgery is relative to the surgeon’s intuitive spatial reasoning rather than the

surgeon’s ability to interpret ultrasound images. As such, image guidance has the potential

to provide significant benefit to surgeon’s during tumor resection, regardless of the surgeon’s

skill level.

81



Figure IV.11: Volume of tumor resection margin when using drop-in ultrasound versus image
guidance. Image guidance reduced resection volume for surgeons of all three skill levels.

IV.6 Conclusions and Future Work

This chapter presented an approach to ultrasound-based image registration that promises

to make image guidance more feasible and more reliable during early stages of the partial

nephrectomy procedure, specifically prior to dissection of perirenal fat and identification

of renal vasculature. Using intraoperative ultrasound enables acquisition of kidney surface

data through a layer of intervening fat. This work presented a method for extracting sur-

face data from ultrasound images that uses spline interpolation to increase the amount of

curvature information captured from the images. Analysis showed this approach to be on
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par with other image registration results reported in the literature in terms of accuracy and

repeatability. Finally, a series of studies with surgeons of varying skill levels demonstrated

the potential of ultrasound-based image guidance to significantly improve surgeon’s ability

to localize subsurface anatomy compared to using intraoperative ultrasound. The results

of this work indicate that incorporation of ultrasound-based image guidance has the poten-

tial to make robotic partial nephrectomy faster, safer, more accurate, and more accessible to

inexperienced surgeons. By increasing the number of surgeons qualified and confident to per-

form robotic partial nephrectomy, ultrasound-based image guidance could increase patients’

opportunity to receive underutilized nephron-sparing surgery.

Many open questions regarding surgical image guidance still remain, especially those re-

lated to organ movement and deformation, as discussed in Sec. III.7. Several opportunities

also exist for improving the ultrasound segmentation method presented in this work, includ-

ing automated surface detection, which would significantly increase the speed registration

during ultrasound-based image guidance in the operating room. Furthermore, broader evalu-

ation of the clinical efficacy of ultrasound-based image guidance will be necessary to develop a

more nuanced and statistically powerful understanding of the advantages of ultrasound-based

image guidance. Nonetheless, this preliminary work shows the promise of image guidance to

empower surgeons to more accurately and confidently locate critical anatomy during deli-

cate portions of the partial nephrectomy procedure, and ultimately, ultrasound-based image

guidance promises to make the surgery more broadly accessible in the future.
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CHAPTER V

Conclusions

Surgical robotics and medical image guidance are naturally complementary technologies.

Together, they promise to act as the hands and the eyes of skilled surgeons and to extend

the reach of their healing touch beyond their natural human limits. This dissertation has

explored several innovative new approaches to surgical procedures that marry these tech-

nologies in the operating room to address major clinical needs.

Chapter II introduced a neurosurgical procedure enabled by a novel MRI-compatible

robot and real-time MRI feedback that could cure temporal lobe epilepsy without ever

requiring an incision in the skull. By designing concentric tube steerable needles tailored to

the anatomy of individual patients and then demonstrating a “follow-the-leader” approach

to atraumatically deploying curved needles in tissue, this work introduced a new means of

safely and accurately accessing geometrically complex deep brain structures through the base

of the skull, potentially enabling numerous therapies that previously would have been too

invasive to attempt.

Chapters III and IV focused on bringing image guidance to the commercially success-

ful da Vinci Surgical System, specifically to address existing clinical needs in robot-assisted

partial nephrectomy. This work leveraged the inherent tracking accuracy of the da Vinci’s

kinematic chain to enable a touch-based method of acquisition of kidney surface data for

image registration. This innovation enabled creation of a practical image guidance system

that could be deployed in the operating room without requiring additional hardware and

without compromising the accuracy of the image guidance. Initial experiments with an

experienced urologic surgeon demonstrated the potential for image guidance to improve sur-

geon accuracy during partial nephrectomy. Next, this dissertation integrated intraoperative

ultrasound with the image guidance system to enable image guidance during vessel dissec-
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tion, one of the first steps of a partial nephrectomy procedure. Given that novice surgeons

commonly encounter significant challenges with both interpreting intraoperative ultrasound

and vessel dissection itself, a series of experiments examined the utility of ultrasound-based

image guidance (in lieu of standard intraoperative ultrasound) in the hands of surgeons of

various skill levels. Initial results showed significant improvements among less experienced

surgeons using ultrasound-based image guidance, suggesting that this technology could serve

to accelerate surgical training and improve safety in the future.
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