A PERFORMANCE AND STORAGE EVALUATION OF LIGHTWEIGHT
CONTAINERIZATION WITH NIXOS

By

Matthew Kenigsberg

Thesis
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

Master of Science
in
Computer Science

May 14, 2021

Nashville, Tennessee

Approved:

Aniruddha Gokhale, Ph.D.

Yogesh Barve, Ph.D.

ACKNOWLEDGMENTS

Thank you to my advisor, Aniruddha Gokhale, for walking me through every step
of writing this thesis.

Thank you to Yogesh Barve for being my second reader.

Thank you to Matthew Leon for indulging my never-ending desire to talk about
containerization and for being willing to work with me. I miss you.

Thank you to Waldek Kozaczuk for helping me so much with OSv.
Thank you to everyone who suggested improvements and edits to this paper.

Results presented in this paper were obtained using the Chameleon testbed supported
by the National Science Foundation.

i

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS o it ittt e e ii
LIST OF TABLES ittt ittt et e e v
LIST OF FIGURES i it ittt iiee vi
1 Introduction e 1
2 Problem Requirements, ..., 3
21 UseCases 3
2.2 Minimal Multitasking Architecture. 5

3 Solutions e e e e e e e e e 7
3.1 Layer-based Containerization: Podman 7
3.2 Unikernel: OSv 9
3.3 Graph-based Containerization: Nix 10

4 Experiment o e e e 13
4.1 Performance Procedure 14
4.2 Performance Results. L. 15
421 Nginx 15

422 Redis 17

423 MySQL 18

4.3 Performance Analysis L 19
4.4 Storage Procedure 20
4.5 Storage Results 22
4.6 Storage Analysis 23

5 Related Work e 25

il

6 Future Work @ @ @ i i e e e e e e e e e e e e e e e 29
6.1 Lightweight Init 29
6.2 Lightweight Kernel 30
6.3 Baremetal Unikernel 31

7 Conclusion @ 0 i i i e e e e e e e e e e e e e e e e 33

References o o i i i i e e e e e e e e e e e e e e e e e e 34

A Results for Additional Tester Parameters 37
Al Nginxo 37
A2 Redis 38
A3 MySQL 40

v

Table

4.1
4.2
4.3
4.4
4.5
4.6

5.1

LIST OF TABLES

Page
Server Specifications 13
Linux Kernel Tuning Parameters 14
OSv Kernel Tuning Parameters 15
Test Framework Parameters 16
Storage Consumption (MB) 22
Comparison to Podman Image Size 22
Related Work 26

Figure
2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

6.1

Al
A2
A3
A4
A5
A6
AT
A8
A9

LIST OF FIGURES

Page
Minimal Multitasking Architecture 5
Layer-based Containerization Approach 8
Unikernel Architecture 9
NixOS Containerization Architecture 12
Nginx Performance 17
OSv Performance Dropping when C=512 after 100,000 Requests . 18
Redis Performance 19
MySQL Performance 20
MySQL Performance Few Threads 21
Light Kernel 30
Podman Performance 37
OSv Performance, 37
Nix Performance 38
Podman Comparison of Best Performance for Each T-value 38
OSv Comparison of Best Performance for Each Stable T-value . . 39
Nix Comparison of Best Performance for Each T-value 39
Podman Performance 40
OSv Performance, 40
Nix Performance 41

vi

CHAPTER 1

Introduction

The philosophy of containerizing software could be summarized as follows: put all
the tools (“dependencies”) you might need to run a piece of software in a box (“con-
tainer”). Make as many copies of that box as needed. Send that box anywhere
anyone wants to run the software (“cloud computing” or “HPC?”).

This approach lacks elegance. Sometimes unnecessary dependencies are included
in a container, or two different containers include the same dependency. Even in a
best case scenario, containers duplicate tools most operating systems already have
installed. Every time a container with extra dependencies is copied, resources are
wasted.

Recent research has presented unikernels as a lightweight alternative to con-
tainerization, but unikernels suffer from some of the same weaknesses as containers.
Unikernels attempt to eliminate overhead by only supporting the functions required
by a single application, which makes them extremely small. Although this does elim-
inate overhead when compared to traditional virtual machines (VMs), unikernels
compound the overhead induced by containers; unikernels include not only depen-
dencies but also the kernel needed by an application. Although unikernels are more
lightweight than VMs, they waste even more resources than containers.

Containerization and unikernels do solve some of the primary challenges of cloud
computing and high performance computing (HPC). In both of these fields, software

must be decoupled from hardware, allowing it to run on whatever hardware is avail-

able. Containers and unikernels both enable such portability, because containers and
unikernel images can easily be copied and can be run on any platform that supports
containerization or virtualization. Since containers and unikernels provide all the
dependencies an application needs to run, behavior on any server will be the same.
As already stated, however, both approaches sacrifice storage efficiency in order to
allow portability.

This paper examines an experimental form of containerization based on the Nix
package manager and NixOS operating system. NixOS containerization provides
scalability and dependability just like normal containerization and unikernels, but it
eliminates the duplication inherent in those approaches. More specifically, this paper

shows the following. NixOS containerization:

« satisfies the requirements of cloud computing and HPC for portability and

reproducibility
o guarantees the smallest possible container image size
e matches or exceeds performance of containerization and unikernels

o reduces deployment size for commonly used applications by 30% to 90%

CHAPTER 2

Problem Requirements

2.1 Use Cases
This paper focuses on deployment requirements for cloud computing and HPC, which
are both driven by a need for portability and reproducibility. Prior research com-
paring unikernels to containerization has focused on cloud computing, but since con-
tainerization is commonly used in HPC, HPC would benefit from an improvement
to containerization architecture as well. Many current containerization solutions are
tailored to fit either cloud computing or HPC, but other solutions have begun to
cater to both fields. For example, Podman, the containerization platform used in
this paper, was originally designed for use in the cloud, but it has become more pop-
ular in HPC due to its support for rootless containers and Message Passing Interface
[1]. Ideally, a good software deployment solution would provide the features needed
for both use cases.

Cloud computing and HPC do have slightly different requirements, which are as

follows:

o Cloud: An administrator runs software, typically microservices, on abstracted
hardware. The hardware could be a combination of servers in different ge-
ographical locations, and computing power must be elastic, allowing rapidly
increasing or decreasing usage of physical resources. Both cloud providers and

consumers must be able to monitor the amount of resources consumed [2].

Scalability is achieved through orchestration.

o HPC: An untrusted user needs access to servers to run a workload [3]. Appli-
cations and user data must be portable so they can be migrated to different
hardware, and applications must run in isolation from other untrusted appli-

cations [1]. The amount of resources given to the user must be controlled.

Although cloud and HPC have differing requirements, different solutions are un-
necessary. Regarding node-specific operating system requirements, the primary dif-
ference between cloud and HPC containerization is whether or not a trusted user
starts the container. HPC containerization solutions, such as Singularity, give this
as one of the main reasons for their development [3]. Cloud computing solutions
like Podman, however, now support rootless containers, which would make having a
separate HPC solution unnecessary [1].

Note that this analysis is restricted to the requirements for running a program on
a worker node; this paper does not address larger architectural requirements for net-
working and coordination. For example, cloud computing needs an orchestrator like
Kubernetes, and HPC needs a scheduler such as SLURM. Assuming a node supports
networking and remote administration, it should be able to support orchestration or
workload management.

At the node level, cloud computing and HPC have very similar requirements:
they both need to easily run an application on any hardware, while monitoring its
resource usage and isolating it from other applications. Cloud computing and HPC

would both benefit from a lightweight architecture that meets these needs.

2.2 Minimal Multitasking Architecture

The software requirements of cloud computing and HPC must be met by a platform
compatible with current computer architecture. A high-level view of the most mini-
mal architecture possible with a multitasking kernel is shown in Figure 2.1, and this
will be referred to as minimal architecture.

Figure 2.1: Minimal Multitasking Architecture

Application

Minimal architecture has only five components:

e The application is ultimately the goal of software deployment.
o Libraries provide functions needed by the application.

o A kernel provides resource usage monitoring and isolation by managing shared

usage of the same hardware by multiple applications.
e The installer both installs and starts the application.

o Hardware is needed to run any software at all.

Installer is used in a very general sense, and it refers to the entirety of the com-
ponent running the application; for example, it could refer to an entire OS that

includes a package manager to install applications and an init system to start them.

In cloud computing, the installer role is fulfilled by the node agent. For Kubernetes,
this would be kubelet, which spawns and manages containers. Currently, in most
cases, the kernel installer is separate from the library and program installer.

Although there could be scenarios in cloud computing or HPC where a multitask-
ing kernel would not be necessary, truly elastic scalability would allow subdividing a
server between multiple applications. For this reason, all the solutions considered in
this paper assume a single physical server should be able to run multiple isolated ap-
plications. Running a single application per physical server is considered in Section
6.3.

As already mentioned, while this analysis does not address networking, it is
compatible with networking. For example, the installer component can be compared
to components of orchestration. In Kubernetes, kubelet is the node agent responsible
for communicating with the orchestrator, and it starts containers on the local node.
This corresponds to the installer in Figure 2.1. The only other additional component
on a node in Kubernetes is k-proxy, which is responsible for networking [4]. So long
as the kernel supports networking, a node using the architecture of Figure 2.1 would
be compatible with orchestration.

A lightweight architecture for cloud computing and HPC would provide portabil-
ity without adding components other than those necessary for a multitasking server:

the application, libraries, kernel, installer, and hardware.

CHAPTER 3

Solutions

Although current solutions enable portable software deployment using the compo-
nents of the minimal architecture of Figure 2.1, they add unnecessary components.
NixOS containerization allows the same portability but uses only the minimal com-

ponents and guarantees the smallest possible application image size.

3.1 Layer-based Containerization: Podman

The most common current deployment approach for microservices in the cloud is
layer-based containerization. Each component of the software stack is provided in a
layer, where each layer provides an all-purpose foundation for any possible software
layered on top as shown in Figure 3.1. Most of the layers have a one-to-one corre-
spondence to components in minimal architecture, although the OS layer provides
both the kernel and the installer. Layers are shared between different containers
whenever possible, but they can only be shared when multiple containers need the
exact same layer.

Layer-based containerization adds extra components to minimal architecture in
three possible ways. First, unneeded libraries can be included in the library layer.
Because container layers can contain multiple libraries, it is possible to use a con-
tainer layer to provide one dependency and indirectly include other libraries. Second,
libraries can be duplicated across the library layer for multiple containers when those

containers contain the same package. Even if both containers use the exact same

Figure 3.1: Layer-based Containerization Approach

Application 1 Application 2
_ Layer 2 ~
S| B fwngs Package Manager | (Utils E
5 Distro: (Init)(Package Manager |(Utils]
| Kernel: (Scheduling)(Memory (Storage)(Nevwork)
Hardware: (CPU | RAM | Disk) NIC]

version of a dependency, the dependency could be provided by two different layers,
because those layers might contain other non-identical information. Third, libraries
can be duplicated between the library and installer components. Any shared de-
pendencies between containers and the host OS are duplicated, because layer-based
containerization does not share layers with the host OS. As shown in Figure 3.1, at a
minimum this will result in having a copy of a package manager and utilities in both
the library component and the installer. Containerization does not manage libraries
efficiently, duplicating or even adding completely unneeded libraries.

For the experiments in this paper, Podman was chosen as the containerization
platform because it is daemonless and allows rootless containers. Docker enabled
rootless mode only recently (December of 2020) and still requires a daemon [5]. Elim-
inating a daemon allows a more lightweight architecture, and rootless mode allows

running as an untrusted user, which is needed for HPC. For these reasons, Podman

better satisfies the goal of a lightweight architecture for both cloud computing and
HPC.

3.2 Unikernel: OSv

Another solution in recent research is unikernels. Unikernels are minimalist kernels
that get packaged with an application, which provide the isolation and scalability of
VMs without the overhead of running a large guest kernel such as Linux. Unikernel

architecture is shown in Figure 3.2.

Figure 3.2: Unikernel Architecture

- (Apphcation 1) .
E =/ AN E
E Library 1) (Library 2 E
k= / >< =
))
8 __
Kernel: [Scheduling] [Memory] [Storage]
Hardware: (CPU | RAM | Disk) NIC]

Compared to minimal architecture, unikernels have multiple kernel components
instead of one. Although unikernels eliminate the bloat of a second full-featured
kernel, they still introduce duplication since every application must start another
kernel. Hypothetically, a unikernel could be written to run on bare-metal, but current
stable implementations require running on top of a hypervisor, which must perform

kernel features such as scheduling and memory management.

9

Unikernels fit into two categories [6]. The first is library operating systems, where,
for example, the operating system is a C++ library that can be included in a C++ file
and compiled into the resulting program. Since they are compiled with a program,
library operating systems are language specific, and some examples are IncludeOS
(C/C++), MirageOS (OCaml), and HaLVM (Haskell). The second type of unikernels
are much more generalized and can run any ELF executable. Some examples include
RumpRun, Nanos, and OSv. Supporting any ELF executable eliminates the need
to compile the unikernel into the program being run, so these unikernels are not
language specific.

For the experiments in this paper, OSv was chosen as the unikernel platform.
Library operating systems can be difficult to use, and OSv had all of the applications
used for benchmarking prepackaged [6]. OSv was chosen over Rumprun because of
superior performance in recent research [7].

OSv runs programs in kernelspace, which eliminates the need for context switch-
ing. It is single process, but supports threading, and it only includes drivers for
virtual hardware. Both of these characteristics cut down on image size, as IPC

support and many drivers are not required in the kernel.

3.3 Graph-based Containerization: Nix

The final solution benchmarked in this paper is NixOS containerization. Nix is a
functional package manager that ensures reproducibility by running software with
exact versions of its dependencies, unlike most software installations, which allow
system state to change their operation [8]. For instance, software on most Linux

distributions would use a different version of a library depending on what was already

10

installed, or a program might completely crash if a library was not installed. Nix
eliminates the indeterminacy of system state, and it applies this to all three steps of
the software lifecycle: development, testing, and deployment. NixOS is an operating
system that uses Nix to manage software, generating the entirety of the system from
configuration files [9]. This declarative approach allows managing system state in
the same way as code with techniques like version control.

NixOS provides an experimental form of containerization based on systemd-
nspawn. A known weakness is that NixOS containerization exposes all software
installed on the system to running containers, although it is exposed read only.
Although Nix itself has been evaluated for use in HPC, Nix containerization was not
used [10]. From here on, NixOS containerization will be referred to simply as Nix.

The key difference between Nix and layer-based containerization is that Nix man-
ages dependencies using graphs, and it shares dependencies not only between con-
tainers, but also between containers and the host operating system. For example,
two Nix containers and NixOS itself could all share the same version of libc. Nix
architecture is shown in Figure 3.3.

Nix has no more components than those in minimal architecture, although it
does run multiple instances of the same init program. A dependency graph contains
exactly the dependencies an application needs to run, so having fewer libraries is
not possible. Although Nix does not technically use a container image, the size of
the application itself and its libraries can be thought of as the size of a container
image, so this will be referred to as image size. Dependencies are shared between

containers and the host operating system, so there is no duplication. Nix uses exactly

11

Figure 3.3: NixOS Containerization Architecture

Application 1 (Application 2)

\

CLibrary 1> Library 2>(Library 3>
Distro: m[@ Utils

one installer and one kernel. NixOS, which performs the role of installer, could be

made more lightweight; it could, for example, include fewer utilities. Nevertheless,
it is still a single installer component, even if it is more complex than necessary. Nix
containers run an extra init process, which is a component of the installer, but the
init process is the same as used by the host OS, so this does not cause overhead in
storage. Removing this overhead is discussed in Section 6.1. Because Nix manages
libraries with dependency graphs, it guarantees the smallest possible container size,

and it does so using exactly the components of minimal architecture.

12

CHAPTER 4

Experiment

Podman, OSv, and Nix were compared by measuring throughput and container or
image size for three common pieces of server software: Nginx, Redis, and MySQL.
Nginx is a webserver, targeting networking performance. Redis is an in-memory key
value store, more heavily testing memory. MySQL is a database, stressing disk and
processing.

All of the benchmarks used a single server and a single client machine, which were
identical servers with specifications shown in Table 4.1. The servers were deployed
using Openstack on Chameleon Cloud, which is described in [11]. Nixops was used
to declaratively manage the deployment of each piece of software needed on both the
server and client, and the Nixops configuration as well as code to run the experiments

is available at [12].

Server PowerEdge R740

Processor 2x Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz
RAM 192 GiB

Storage THNSF8240CCSE 240 GB SSD

Network Adapter BCMb57412 NetXtreme-E 10Gb RDMA

Table 4.1: Server Specifications

For every benchmark, both the server and client were running NixOS 20.09 and

Linux kernel 5.4.72. NixOS was used as the OS for all three platforms in order to

13

isolate the performance of the deployment solution used. Kernel tuning parameters

were set using the values in Table 4.2, the values given for network stack optimization

in [13].
Setting Parameter Value
boot.kernel.sysctl fs.file-max 20000
net.core.somaxconn 1024
net.ipv4.ip_ local port_range 1024 65535
net.ipv4d.tcp_ tw_ reuse 1
net.ipvd.tcp_keepalive time 60
net.ipv4.tcp_keepalive intvl 60
security.pam.loginLimits nofile soft 20000
nofile hard 20000

Table 4.2: Linux Kernel Tuning Parameters

The OSv kernel was likewise tuned with the parameters in Table 4.3, which were

also taken from [13].

4.1 Performance Procedure

Tests were run using standard benchmarking tools for Nginx, Redis, and MySQL:
weighttp, redis-benchmark, and sysbench, respectively. Each benchmarking tool
was run with different parameters for number of threads (T), clients (C), and requests
(R), which are shown in Table 4.4. Every possible combination of parameters was
used, although for Nginx, the number of clients had to be greater than or equal to the
number of threads. Each set of parameters was used for four consecutive iterations,

and the results presented are averages.

14

File Parameter Value

bsd/sys/netinet /in.h IPPORT EPHEMERALFIRST 1024

[PPORT_HIFIRSTAUTO 1024
bsd/sys/netinet/tcp_timer.h TCPTV_KEEP_INIT 60*hz

TCPTV_KEEP_INIT 60*hz
bsd/sys/sys/socket.h SOMAXCONN 1024
include/api/sys/socket.h SOMAXCONN 1024
include/osv/file.h FDMAX 0x30D40
libe/libe.cc RLIMIT NOFILE 20000

Table 4.3: OSv Kernel Tuning Parameters

Additionally, for Nginx running on Podman and Nix, benchmarks were run once
with multiple processes and once with a single process. Nginx is specifically designed
to take advantage of using multiple processes, but OSv only runs a single process
[14]. For this reason, a fair comparison between platforms required limiting Podman
and Nix to only using a single worker process. This was done by leaving the default
value of worker processes = 1 in the Nginx configuration for one set of trials,
although trials were also run with worker_processes = auto to compare Podman
and Nix when more optimally configured. Since the server had 32 CPU cores and 64

threads, this allowed much higher performance.

4.2 Performance Results
4.2.1 Nginx
Performance for Nginx is shown in Figure 4.1. For each platform, the results are

shown for only the fastest set of tester parameters. Both Nix and Podman achieved

15

Nginx Redis MySQL

Threads 1, 32, 64, 128 1, 32, 64, 128 1,2, 3,4, 32, 64, 128
Clients 64, 128, 512, 1024 16, 64, 512 NA
Requests 1,000; 100,000; 1,000,000 1,000; 100,000 1,000; 100,000; 1,000,000

Table 4.4: Test Framework Parameters

maximum throughput with weighttp making 1,000,000 requests and running 64
threads. When configured with worker_processes = 1, both Podman and Nix
performed better when the client was running a single thread. OSv performance
dropped significantly after 100,000 requests, so Figure 4.1 shows OSv performance
for a single iteration (i = 1) rather than averaging performance for four iterations.
OSv was unstable when the number of client threads was more than 512. For most
numbers of tester threads, performance decreased drastically for the second iteration
when the number of requests was 100,000. Figure 4.2 shows OSv performance re-
mained consistent for small numbers of clients, but with 512 clients, performance was
always low on the second iteration. This indicates OSv cannot handle high numbers
of requests when many requests are sent in parallel. Although an initial investigation
was made into why performance drops, tracing the exact cause would likely require
further kernel debugging, which was outside the scope of this experiment. OSv did
have unusually high performance for the first 100,000 requests - with a single pro-
cess, it outperformed Podman configured with worker processes = auto. Likewise,
finding an explanation for this was judged beyond the scope of this experiment.
Overall, Nginx performed best when run using Nix. For both values of worker_processes,

Nix outperformed Podman. OSv on average had the worst performance, although it

16

Figure 4.1: Nginx Performance

-10°

req/s

0.5

0 100 200 300 400 500 600 700 800 900 1,0001,100
Clients

—e— Podman T=64; R=1,000,000

—e— Nix T=64; R=1,000,000

-#-Podman worker_processes=1; T=1; R=1,000,000
-#-Nix worker_processes=1; T=1; R=100,000

—+ OSv i=1; T=64; R=100,000

did have high performance for the first 100,000 requests using 512 clients.

4.2.2 Redis

Redis performance with fastest tester parameters is shown in Figure 4.3. redis-
benchmark reports speed for completing a number of different operations, all of which
are shown. Nix and Podman had the best performance for different test parameters:
Nix performed best with 32 tester threads and 64 clients, while Podman performed
best at 1 thread and 16 clients. Results for both platforms are included with each set

of parameters. OSv had its best performance with 32 threads and 16 clients. Once

17

Figure 4.2: OSv Performance Dropping when C=512 after 100,000 Requests
-10°

——i=1; T=1; R=100,000
—e—i=2; T=1; R=100,000
-=-i=1; T=32; R=100,000
-#-i=2; T=32; R=100,000
——i=1; T=64; R=100,000
——i=2; T=64; R=100,000
-+-i=1; T=128; R=100,000
-+-i=2; T=128; R=100,000

160 260 360 460 560
Clients
again, OSv performance was unstable for a high number of clients. With 64 or more
clients, throughput for consecutive iterations differed by more than 1000% in some
cases. At other times, the server completely crashed.
For almost every Redis operation benchmarked, Nix had the highest performance,

although with 1 tester thread and 16 tester clients, Podman was faster. OSv had the

slowest performance for almost every benchmark.

4.2.3 MySQL

OSv could not support more than two client thread connections at the same time,
so MySQL performance is split into Figure 4.5 for low numbers of tester threads
and Figure 4.4 for all numbers of tester threads. Nix and Podman had highest
performance with R=1,000,000, while OSv performed better with R=100,000.

18

Figure 4.3: Redis Performance

-10°

1 | __ __ M 1 1 I 1 __ __ [l M M 1 |
- |
g
0.5 i
«z»
%
Ry

O FOSSGRS RIS QQ PN,
N GQ% SIS, %cj% &
e Vo © % o @
&< [fPodman T=1.0=16 FEISS

lINix T=1,C=16

1 Podman T=32,C=64
lINix T=32,0=64
I10Sv T=32,C=16

Just as for Redis, Nix had maximum performance, but Podman had better per-
formance for certain tester parameters (7' > 64). OSv had the slowest performance

for all numbers of supported threads.

4.3 Performance Analysis
Containers clearly outperformed OSv, but Podman and Nix performed comparably.
Although Nix did have the best performance running Nginx, either Podman or Nix
performed better for Redis and MySQL depending on tester parameters.

It is not clear whether OSv’s inferior performance stemmed from architectural
differences or instability. For test parameters OSv ran successfully, the difference

in performance between OSv and the slower container platform was similar to the

19

Figure 4.4: MySQL Performance

-10°
I
1, |
" —eo— Podman
? —— Nix
" oo0sf | [O5v
O, |
| | | |

0 20 40 60 80 100 120 140
Threads

difference in performance between the two container platforms. This suggests OSv
may eventually be able to compete with containerization, even if it can never out-
perform it. For pieces of software designed like Nginx to take advantage of multiple
cores, however, using OSv does not make sense. Containers far exceeded OSv’s Nginx
performance when using multiple cores.

Based on these results, Podman and Nix have similar performance in most cases.
OSv tends to be slower but could still reasonably be used for applications that do

not require multiple CPUs and expect low numbers of concurrent clients.

4.4 Storage Procedure
To compare storage efficiency, the deployment sizes of Nginx, Redis, and MySQL were

measured on each platform. Storage for Podman was analyzed using podman images

20

Figure 4.5: MySQL Performance Few Threads

10%
T
25| |
2 [|
» —e— Podman R=1,000,000
§ 1.5} 1 |-~ Nix R=1,000,000
= —e— OSv R=100,000
1 | |
0.5} |
| | | | | |

|
1 1.5 2 2.5 3 35 4
Threads

and podman history, which allow finding both the total size of the container image
and the size of the application specific layers added on top of a base image. OSv
was analyzed by using du to find the size of the virtual disk image. The disk image
was then mounted, and du was used to find the size of the entire filesystem. Nix
was analyzed by using the nix-store command to query all dependencies needed
by a container and summing the size of all dependencies with du. The size of unique
dependencies of the container was then found by using nix-store to find which
dependencies were required by the operating system and excluding those from the

total.

21

4.5 Storage Results

Podman, OSv, and Nix manage dependencies very differently, and this was reflected

in the amount of storage each platform used. Storage consumption for each platform

is shown in Table 4.5.

Podman OSv Nix
Total Base Image Image Mounted Total Unique
Nginx 137 72.5 8.3 1.9 728.3 12.6
Redis 109 72.5 9.9 4.7 728 12.3
MySQL 551 72.5 44.6 199.6 1087.5 365.8

Table 4.5: Storage Consumption (MB)

Additionally, Table 4.6 compares the storage cost of OSv and Nix to two different

components of Podman storage consumption. First, OSv and Nix deployment size

is shown as a percentage of total Podman image size. Second, the size of the base

image used by Podman is subtracted from the size of the entire container image,

giving the size of each application and extra libraries that application installed. OSv

and Nix usage is then shown as a percentage of just the size of the application and

extra libraries.

OSv Nix
% of Total % of App+Libs % of Total % of App+Libs
Nginx 6 12.8 9.2 19.5
Redis 9.1 27.1 11.2 33.6
MySQL 8.1 9.3 66.4 76.5

Table 4.6: Comparison to Podman Image Size

22

4.6 Storage Analysis

Podman has storage overhead in all three of the ways identified in Section 3.1.
First, the container base image includes unused libraries. All three applications
use buster-slim as their base image, which contains 84 packages, 49 of which are
libraries. Not all of the libraries included are used by Nginx, Redis, or MySQL.
Second, dependencies are not shared between containers. Nginx, Redis, and MySQL
all install the package ca-certificates, and Redis and MySQL both install gnupg
and wget. These packages are embedded in container layers that also contain other
dependencies, so they cannot be shared across the three different containers. Third,
packages with the same function are duplicated between the host OS and the con-
tainers. buster-slim includes libraries like 1ibstdc++, the package manager apt,
and coreutils. NixOS already contains libstdc++, the package manager Nix, and
coreutils, so this is unnecessary duplication.

OSv has the smallest storage consumption, but this may not necessarily be caused
by better dependency management. First, OSv disk images are in a format that can
either contain more or less data than indicated by the disk image size. This is due to
the fact that virtual disk images can be compressed, which would save space on the
host, but they can also contain free space within the image, which would waste space
on the host. Additionally, OSv applications are compiled in a way that minimizes
space but has fewer features. For example, Nginx compilation has a number of flags
to control what features are supported. OSv builds Nginx with only three of these
options enabled, while Nix, depending on a few parameters, enables around twenty

to thirty. Because OSv uses a different storage format than containerization and OSv

23

applications have fewer features than containerized applications, it is difficult to draw
conclusions about whether OSv has better storage efficiency than containerization.

Nix consumes far more total space than Podman, but the size of unique dependen-
cies is much smaller than the size of the application and library layers for Podman,
ranging from only 20% to 77% of Podman size. In other words, the operating system
already contains many of the dependencies needed to run each container, so the size
of additional dependencies installed is very low. This eliminates all three types of
overhead caused by Podman.

When starting a piece of software on an already running server, the storage cost
of deployment is the size of every piece of additional software that must be installed
on the server. For this reason, although Nix has the largest total size, it has a much
lower deployment cost than Podman once shared dependencies with the host OS are
taken into account. OSv also consumes significantly less space than Podman, but
this is not due to better dependency management; OSv attains smaller image size
by compiling applications with options that minimize size. Considering deployment
size for a single application, OSv consumes as little as 6% of the space needed by

Podman, and Nix consumes as little as 9.2%.

24

CHAPTER 5

Related Work

In general, prior work has drawn similar conclusions when comparing containeriza-
tion to unikernels. In 2014, one of the first papers to introduce OSv described it as
“a more suitable operating system for virtual machines in the cloud than are tradi-
tional operating systems such as Linux” [15]. This original claim has been confirmed
by benchmarking comparing unikernels and VMs, and it is an accurate description
of the purpose of unikernels: replacements for full-featured guest VMs with ker-
nels like Linux. Since the introduction of unikernels, many papers have compared
them to containers instead of VMs, and most have found that containers outperform
unikernels as would be expected.

Prior work on comparing performance of containerization and unikernels has
primarily taken two approaches. One approach is running benchmarking tools to
stress specific computing components. Examples of this include running Netperf to
test networking or running Memcached to test memory. The second approach is to
benchmark real world applications, such as webservers or databases.

In addition to performance benchmarking, research has been done on more spe-
cific topics, ranging from provisioning time [16], to PHP applications [17], to Software-
Defined Security [18]. The focus of this paper, however, is on performance and de-
ployment size, so a summary of papers focused on benchmarking is given in Table
5.1. Some of these papers also address memory consumption, which is beyond the

scope of this paper, so it is not presented.

25

Platforms Benchmark Results Paper Year
Docker, LXC, noploop, Linpack, Containers fastest Morabito [19] 2015
OSv, VM STREAM,
Netperf
Docker, OSv, VM Netperf, Containers fastest Enberg [20] 2016
Memcached,
Mutilate
Docker, LXD, Webserver, Redis Unikernels fastest Plauth [13] 2017
OSv, Rumprun, on hypervisor
MirageOS, VM
Docker, OSv REST service, Unikernels faster ~ Goethals [21] 2018
heavy workload for REST service
Docker, rkt, OSv, SysBench, Containers fastest Acharya [22] 2018
Rumprun, VM STREAM, Iperf
Docker, Webserver, Containers fastest Mavridis [7] 2019
LinuxKit, OSv, MySQL throughput,
IncludeOS, unikernels lowest
Rumprun latency

Table 5.1: Related Work

Across all papers, the containerization platforms considered are Docker, LXC,
LXD, LinuxKit, and rkt; and the unikernels considered are OSv, Rumprun, Mira-
geOS; and IncludeOS. The final platform is a full-fledged Linux guest VM running
on KVM. In most cases, the unikernels are run on KVM, although some papers also
use Xen.

Most papers found that containers outperformed unikernels, with only two excep-

tions. First, Plauth et al. found, “Regarding application throughput, most unikernels

26

performed at least equally well as or even better than containers” [13]. Based on data
presented in the paper, it appears this claim is based on comparing containers run-
ning on a KVM Linux guest with unikernels running on KVM. Results from the
paper about bare-metal containers indicate comparable or better performance than
unikernels on KVM.

Second, Goethals et al. claimed lack of context switching gives unikernels an
advantage over containers, but this does not make sense since the host OS must still
perform context switches [21]. The benchmarks presented by Goethals et al. found
unikernels performed better than containers for a REST benchmark, from which it
is argued, “Unikernel performance for the REST service stress test can be explained
by the fact that this test relied heavily on kernel functions and thus context switches
from user space to kernel space. These do not exist in a unikernel, giving unikernels
a large advantage over containers in situations where context switches happen very
often.” Although it is true that unikernels eliminate a context switch when comparing
Linux VMs to unikernels, the REST benchmark compares bare-metal containers to
unikernels. The explanation given by Goethals et al. is flawed, because unikernels
running on top of KVM must make context switches just like a container.

KVM makes these context switches for both memory management and I/0. It
allocates memory just like a normal userspace process with malloc and mmap [23].
For 1/0O, KVM uses virtio, which either requires context switching, or a packet for-
warding framework or device passthrough [24]. The same techniques to avoid context
switching are available for containers [25][26]. Since hypervisors must make context

switches when running VMs, context switching does not give unikernels an advan-

27

tage when compared to bare-metal containers. Benchmarks in most papers confirm
this claim, and so do the results found in this paper comparing Podman and OSv.
Overall, current research suggests that kernels without context switches outper-
form kernels with context switches, but total number of running kernels and total
number of context-switching kernels both impact performance. Containers outper-
form unikernels because they have fewer total kernels, while unikernels can outper-

form VMs because they run fewer context-switching kernels.

28

CHAPTER 6

Future Work

Although using Nix would eliminate some of the overhead of layer-based container-

ization, there is still room to optimize in many other areas.

6.1 Lightweight Init

Minimizing the architectural overhead of containerization requires viewing it as a
core part of the operating system, not as an additional component added on top of
the operating system. At a high level, microservices are just like any other system
service, except they are run in a permissions sandbox. One area shifting towards this
mindset would be an improvement is the init system. Podman has already begun to
encourage this shift, because it is daemonless. Docker runs the Docker daemon to
manage container startup, while Podman relies on systemd, which is already present
on most Linux systems, to start containers [27].

Nevertheless, Nix runs an additional init process inside every container, and Pod-
man starts an additional init process if systemd features are desired [27]. Running
an init process for every container increases startup time and memory consump-
tion. A more optimized solution would be to let the host OS init system control the
startup for the container. This would make startup for single application containers
extremely fast, while still supporting more complicated containers with multiple ser-
vices. Although it is not currently possible to replace a container’s init process with

the init process of the host OS, if containerization could be improved to allow this,

29

containers would operate more like sandboxed system services and less like guest

operating systems with unnecessary overhead.

6.2 Lightweight Kernel
An advantage of unikernels is how much smaller they are than Linux. One of the
primary reasons Linux is so much larger is how much hardware Linux supports.
While Linux must provide drivers for many different types of hardware, unikernels
only have to support a few virtual devices. Many of the drivers Linux provides are
not necessary for cloud computing.

Applying the graph-based dependency approach of Nix to kernel modules could
break up the kernel into dependencies as shown in Figure 6.1 and lead to much
smaller kernels.

Figure 6.1: Light Kernel

/ ~ =/ 1\
(Library 1 Library 2 (Library 3)

Scheduling "

Hardware:\{ CPUI\RAMJ(f)iSk)(NfC}

Hardware could be viewed as having kernel dependencies, so that only kernel
modules for installed hardware were included. Alternatively, software could have

kernel dependencies, so that only needed functions would be provided by the kernel.

30

Most microservices, for example, would only need drivers for processing, memory,
storage, and network, and all other 1/O drivers could be excluded.

While current NixOS containerization eliminates layering for libraries and base
images, the kernel is still provided as a layer. Using graph-based kernel module
dependencies would eliminate another layer in architecture, leaving only hardware

as a layer that cannot be broken into individual dependencies.

6.3 Baremetal Unikernel

Both Linux and hypervisors allow sharing resources between different processes,
which is necessary for running multiple isolated processes on the same computer.
For any application where multiple users must be supported this is necessary, and
in HPC or cloud computing this is necessary for running multiple workloads on the
same node. This is not necessary, however, in any case where a single service needs
at least all the resources of a single server, in which case it would make sense to run a
single application per physical server. Running a single application per server would
likely be much faster if a bare-metal unikernel was used.

Bare-metal provisioning allows remote installation of an operating system and
would make using bare-metal unikernels practical for running single applications. For
example, the experiments for this paper used Openstack Ironic, which has support
for many different types of hardware [28]. The bare-metal provisioner could fulfill
the role of the installer in minimal architecture.

Some microservices, like Redis, are designed to require multiple instances, so run-
ning a bare-metal unikernel would not make sense. Others, like Nginx, are designed

to take advantage of multiple processes on the same server [14]. Unlike most current

31

unikernels, this would require a bare-metal unikernel to support multiple processes.

Although a bare-metal unikernel would run an application in kernelspace, it could
still support running applications for untrusted users like needed for HPC. Instead of
the kernel performing sandboxing, the bare-metal provisioner would be responsible
for supervising nodes. An untrusted user could not permanently gain control of a
node because as soon as a certain time limit was reached, the provisioner would
completely erase the operating system on the node.

Since platforms with one context switching kernel perform better than platforms
with two, it is likely that having zero context switches would significantly boost
performance. Deploying bare-metal unikernels would cause some overhead since the
kernel would have to be reinstalled each time a program was updated. Currently OS
provisioning takes significantly longer than starting a container, but if the OS was a
unikernel, this would be much faster. Alternatively, updates could be performed by
the kernel, in which case a server would function similar to a current cloud node, but
the microservice would run in kernelspace. Currently, it does not appear that stable
software exists to use bare-metal unikernels in either of these ways, but eliminating
a context switch might boost performance enough to make bare-metal unikernels

worth developing.

32

CHAPTER 7

Conclusion

Containerization is a Linux kernel technology that allows isolating processes from
each other, which some have even explained as, “Containers are Linux” [29]. Despite
this fact, current containerization approaches do not treat containerized software like
Linux treats software. Linux operating systems share libraries between processes,
and they share libraries between applications and the operating system. Popular
container images for Nginx, Redis, and MySQL do not share libraries in either of
these ways, while also adding unnecessary libraries to container images. NixOS
containerization, on the other hand, allows sharing libraries like Linux.

By sharing dependencies whenever possible, NixOS containerization has the most
minimal architecture that satisfies the requirements of cloud computing and HPC for
software deployment, which leads to significant savings in software deployment size.
At the same time, it performs just as well as current containerization solutions in
benchmarking tests. Although unikernels also have small image size, they do not per-
form as well as containers in benchmarks. For this reason, unikernels may be a good
alternative to VMs, but containers should be used when application performance
is desired. Nix achieves both small image size and high performance by providing
efficient dependency management for containers. Nix provides exactly the libraries
needed by an application, and it shares libraries not only between containers but
also between containers and the host OS. By doing so, Nix guarantees the smallest

possible size for a container.

33

References
Y. Fisher, Podman paves the road to running containerized hpc applications on
exascale supercomputers, 2020. [Online]. Available: https://www.redhat.com/
en/blog/podman-paves-road-running-containerized-hpc-applications-exascale-
supercomputers.

P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud computing,”
Gaithersburg, MD, USA, Tech. Rep., 2011.

About singularity, Mar. 2021. [Online]. Available: https://singularity.lbl.gov/
about.

Kubernetes components, Aug. 2020. [Online]. Available: https://kubernetes.io/
docs/concepts/overview /components.

Docker engine release notes, Feb. 2021. [Online]. Available: https://docs.docker.
com/engine/release-notes)/.

M. Leon, The dark side of unikernels for machine learning, 2020. arXiv: 2004.
13081 [cs.DC].

I. Mavridis and H. Karatza, “Lightweight virtualization approaches for software-
defined systems and cloud computing: An evaluation of unikernels and con-

tainers,” in 2019 Sizth International Conference on Software Defined Systems
(SDS), 2019, pp. 171-178. pot1: 10.1109/SDS.2019.8768586.

E. Dolstra, The purely functional software deployment model. Utrecht Univer-
sity, 2006.

E. Dolstra and A. Loh, “Nixos: A purely functional linux distribution,” in Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Functional
Programming, ser. ICFP ’08, Victoria, BC, Canada: Association for Computing
Machinery, 2008, pp. 367-378, 1SBN: 9781595939197. po1: 10.1145/1411204.
1411255. [Online]. Available: https://doi.org/10.1145/1411204.1411255.

B. Bzeznik, O. Henriot, V. Reis, O. Richard, and L. Tavard, “Nix as hpc pack-
age management system,” in Proceedings of the Fourth International Workshop
on HPC' User Support Tools, ser. HUST’17, Denver, CO, USA: Association for
Computing Machinery, 2017, 1SBN: 9781450351300. por: 10.1145 /3152493.
3152556. [Online]. Available: https://doi.org/10.1145/3152493.3152556.

34

https://www.redhat.com/en/blog/podman-paves-road-running-containerized-hpc-applications-exascale-supercomputers
https://www.redhat.com/en/blog/podman-paves-road-running-containerized-hpc-applications-exascale-supercomputers
https://www.redhat.com/en/blog/podman-paves-road-running-containerized-hpc-applications-exascale-supercomputers
https://singularity.lbl.gov/about
https://singularity.lbl.gov/about
https://kubernetes.io/docs/concepts/overview/components
https://kubernetes.io/docs/concepts/overview/components
https://docs.docker.com/engine/release-notes/
https://docs.docker.com/engine/release-notes/
https://arxiv.org/abs/2004.13081
https://arxiv.org/abs/2004.13081
https://doi.org/10.1109/SDS.2019.8768586
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/3152493.3152556
https://doi.org/10.1145/3152493.3152556
https://doi.org/10.1145/3152493.3152556

[11]

[16]

[17]

[18]

K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Cevik, J.
Colleran, H. S. Gunawi, C. Hammock, J. Mambretti, A. Barnes, F. Halbach,
A. Rocha, and J. Stubbs, “Lessons learned from the chameleon testbed,” in
Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC
’20), USENIX Association, Jul. 2020.

M. Kenigsberg. [Online]. Available: https://github.com /mkenigs /research-
deploy.

M. Plauth, L. Feinbube, and A. Polze, “A performance survey of lightweight
virtualization techniques,” Sep. 2017, pp. 34-48, 1SBN: 978-3-319-67261-8. DOTI:
10.1007/978-3-319-67262-5_ 3.

O. Garrett, Inside nginz: How we designed for performance & scale, Jun. 2015.
[Online]. Available: https://www.nginx.com /blog/inside-nginx-how- we-
designed-for-performance-scale.

A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and V. Zolotarov,
“Osv—optimizing the operating system for virtual machines,” in 2014 USENIX
Annual Technical Conference (USENIX ATC 14), Philadelphia, PA: USENIX
Association, Jun. 2014, pp. 61-72, 1SBN: 978-1-931971-10-2. [Online]. Available:
https://www.usenix.org /conference /atcl4 /technical-sessions / presentation /
kivity.

B. Xavier, T. Ferreto, and L. Jersak, “Time provisioning evaluation of kvm,
docker and unikernels in a cloud platform,” in 2016 16th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016,
pp. 277-280. poI: 10.1109/CCGrid.2016.86.

T. Pasquier, D. Eyers, and J. Bacon, “Php2uni: Building unikernels using
scripting language transpilation,” in 2017 IEEE International Conference on
Cloud Engineering (IC2E), 2017, pp. 197-203. por: 10.1109/IC2E.2017.13.

M. Compastié, R. Badonnel, O. Festor, R. He, and M. Kassi-Lahlou, “Unikernel-
based approach for software-defined security in cloud infrastructures,” in NOMS
2018 - 2018 IEEE/IFIP Network Operations and Management Symposium,
2018, pp. 1-7. por: 10.1109/NOMS.2018.8406155.

R. Morabito, J. Kjallman, and M. Komu, “Hypervisors vs. lightweight virtual-
ization: A performance comparison,” in 2015 IEEE International Conference
on Cloud Engineering, 2015, pp. 386-393. por: 10.1109/1C2E.2015.74.

P. Enberg, “A performance evaluation of hypervisor, unikernel, and container
network i/o virtualization,” 2016.

35

https://github.com/mkenigs/research-deploy
https://github.com/mkenigs/research-deploy
https://doi.org/10.1007/978-3-319-67262-5_3
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale
https://www.nginx.com/blog/inside-nginx-how-we-designed-for-performance-scale
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://doi.org/10.1109/CCGrid.2016.86
https://doi.org/10.1109/IC2E.2017.13
https://doi.org/10.1109/NOMS.2018.8406155
https://doi.org/10.1109/IC2E.2015.74

[27]

28]

[29]

T. Goethals, M. Sebrechts, A. Atrey, B. Volckaert, and F. De Turck, “Uniker-
nels vs containers: An in-depth benchmarking study in the context of microser-
vice applications,” Nov. 2018, pp. 1-8. por: 10.1109/SC2.2018.00008.

A. Acharya, J. Fanguede, M. Paolino, and D. Raho, “A performance bench-
marking analysis of hypervisors containers and unikernels on armv8 and x86

cpus,” in 2018 European Conference on Networks and Communications (Eu-
CNC), 2018, pp. 282-9. por: 10.1109/EuCNC.2018.8443248.

Feb. 2010. [Online]. Available: https://www.linux-kvm.org/page/Memory.

E. P. Martin, Virtio devices and drivers overview: The headjack and the phone,
Jun. 2020. [Online]. Available: https://www.redhat.com /en /blog / virtio-
devices-and-drivers-overview-headjack-and-phone.

Virtio__user for container networking. [Online]. Available: https://doc.dpdk.
org/guides/howto/virtio_user_for_container networking.html.

About single root i/o virtualization (sr-iov) hardware networks, 2021. [Online].
Available: https://docs.openshift.com /container-platform /4.7 /networking /
hardware_networks/about-sriov.html.

V. Roth and D. Walsh, Improved systemd integration with podman 2.0, 2020.
[Online]. Available: https://www.redhat.com /sysadmin /improved-systemd-
podman.

Drivers, hardware types and hardware interfaces, Oct. 2020. [Online|. Available:
https://docs.openstack.org/ironic/latest /admin /drivers.html.

J. Fernandes, Containers are linux, Apr. 2017. [Online]. Available: https://
www.openshift.com/blog/containers-are-linux.

36

https://doi.org/10.1109/SC2.2018.00008
https://doi.org/10.1109/EuCNC.2018.8443248
https://www.linux-kvm.org/page/Memory
https://www.redhat.com/en/blog/virtio-devices-and-drivers-overview-headjack-and-phone
https://www.redhat.com/en/blog/virtio-devices-and-drivers-overview-headjack-and-phone
https://doc.dpdk.org/guides/howto/virtio_user_for_container_networking.html
https://doc.dpdk.org/guides/howto/virtio_user_for_container_networking.html
https://docs.openshift.com/container-platform/4.7/networking/hardware_networks/about-sriov.html
https://docs.openshift.com/container-platform/4.7/networking/hardware_networks/about-sriov.html
https://www.redhat.com/sysadmin/improved-systemd-podman
https://www.redhat.com/sysadmin/improved-systemd-podman
https://docs.openstack.org/ironic/latest/admin/drivers.html
https://www.openshift.com/blog/containers-are-linux
https://www.openshift.com/blog/containers-are-linux

Appendix A
Results for Additional Tester Parameters

A.1 Nginx
Figures A.1, A.2, and A.3 show average Nginx throughput over four iterations for
every set of tester parameters.

Figure A.1: Podman Performance

- —— R=10000,T=1
- 1 |-=- R=10000,T=32
—— R=10000,T=64
| |-+- R=10000,T=128
—— R=100000,T=1
-=- R=100000,T=32
1 | R=100000,T=64
-+- R=100000,T=128
1 |- R=1000000,T=1
\ \ \ \ \ -=- R=1000000,T=32

0 200 400 600 800 1,000 —+— R=1000000,T=64
Clients -+-R=1000000,T=128

Figure A.2: OSv Performance

—e— R=10000,T=1
| |-=- R=10000,T=32
—+ R=10000,T=64
~+- R=10000,T=128
—e— R=100000,T=1
1 |-=- R=100000,T=32
—+ R=100000,T=64
~+- R=100000,T=128
—e— R=1000000,T=1
| | | | | = R=1000000,T=32
100 200 300 400 500 | . R—1000000.T=64

Clients -+-R=1000000,T=128

37

Figure A.3: Nix Performance

—— R=10000,T=1
1 |-=- R=10000,T=32
—— R=10000,T=64
-+- R=10000,T=128
—— R=100000,T=1
-»- R=100000,T=32
<4 | R=100000,T=64
-+- R=100000,T=128
—+— R=1000000,T=1
! ! ! ! ! -=- R=1000000,T=32
0 200 400 600 800 1,000 —+ R=1000000,T=64
Clients -+-R=1000000,T=128

req/s

A.2 Redis

Figures A.4 and A.6 show Redis performance for each value of tester threads with
whatever number of clients resulted in maximum performance. Figure A.5 also only
shows results for the fastest number of clients, but OSv was only stable for T" = 1
and T = 32, so only those results are shown.

Figure A.4: Podman Comparison of Best Performance for Each T-value

10°

S ¥ @& FFF S S P> QQ’ ENESEIEIE) &Q
\@}Cf)@ & @ Qf@@@»«g@é&\) éﬁ»g@e@ @Q
IS [l T=1.0=512 IS Q,»V’ Q?’ <z,3’
S 00 T=32,C=64
00 T=64,C=64
I T=128,C=16

38

Figure A.5: OSv Comparison of Best Performance for Each Stable T-value

10°

<
& liT=1, C=512 \33’\)
l1T=32, C=16

Figure A.6: Nix Comparison of Best Performance for Each T-value

10°

L FL O T RSP F S DD S
ST O E IS T IS
Q@C’Q}% 00 T=1,C=512 FEFS
10 T=32,C=64
10 T=64,0=64
1IT=128,C=16

39

A.3 MySQL

Figures A.7, A.8, and A.9 show average MySQL throughput over four iterations for

every set of tester parameters.

Figure A.7: Podman Performance

60 80 100 120 140
Threads

40

Figure A.8: OSv Performance

1 1.2

N e

| |
1.4 1.6
Threads

1.8

40

—e— R=10000
—e— R=100000
—e—R=1000000

—— R=10000
—e— R=100000
—+-R=1000000

Figure A.9: Nix Performance

—e— R=10000
—e— R=100000
<1 |-+ R=1000000

0L \ \ \ \ \ \ \ Bl
0 20 40 60 80 100 120 140

Threads

41

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Problem Requirements
	2.1 Use Cases
	2.2 Minimal Multitasking Architecture

	3 Solutions
	3.1 Layer-based Containerization: Podman
	3.2 Unikernel: OSv
	3.3 Graph-based Containerization: Nix

	4 Experiment
	4.1 Performance Procedure
	4.2 Performance Results
	4.2.1 Nginx
	4.2.2 Redis
	4.2.3 MySQL

	4.3 Performance Analysis
	4.4 Storage Procedure
	4.5 Storage Results
	4.6 Storage Analysis

	5 Related Work
	6 Future Work
	6.1 Lightweight Init
	6.2 Lightweight Kernel
	6.3 Baremetal Unikernel

	7 Conclusion
	References
	A Results for Additional Tester Parameters
	A.1 Nginx
	A.2 Redis
	A.3 MySQL

