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CHAPTER 1 

 

INTRODUCTION 

 

Below average mathematical ability at the beginning of school is associated with an 

increased risk of poorly developed mathematical competencies at the end of school, above and 

beyond the influence of family background, social-emotional functioning, intelligence, and 

reading ability (Duncan et al., 2007; Every Child a Chance Trust, 2009; Geary, 2011). Poorly 

developed mathematical competencies are associated with lower rates of full-time employment, 

higher rates of unemployment, and limited financial security in adulthood (Geary, 2011; Ritchie 

& Bates, 2013).  

Given the long-term consequences of low mathematical skills, a pressing need exists to 

identify children at risk of mathematics disability and provide early intensive interventions 

designed to ameliorate deficits before they become lifelong struggles. These intensive 

interventions often result in significant and substantial effects for intervention over control group 

students. Yet, follow-up studies reveal that effects diminish, or fade out, over time (e.g., Bailey 

et al., 2020; Clarke et al., 2016; Hallstedt et al., 2018; Smith et al., 2013). 

 In the present study, we assessed third-grade outcomes of students who had been 

randomly assigned to a control group or to participate in a first-grade mathematics intervention. 

Effects were strong at the end of first grade; however, in light of the fadeout literature on early 

mathematics intervention, we anticipated fadeout effects two years later. The purpose of the 

present study was to investigate whether a brief booster lesson, designed to reactivate student 

knowledge on one key component of the first-grade intervention, mitigates commonly observed 



 

 2 

fadeout effects. In other words, we explored whether intervention effects persist but reside in a 

deactivated state. The intervention component focused on calculation strategies for deriving 

answers to simple addition and subtraction problems.  

In this introduction, we discuss potential explanations for fadeout and summarize prior 

research on the fadeout of mathematics intervention in the early elementary grades. We then 

discuss factors believed to support the persistence of intervention effects and outline how 

difficulty in transferring learned skills may lead to deactivation of those skills. Finally, we state 

the study's research question and outline the study's structure. 

 

Causes of Fadeout 

Too often, academic interventions demonstrating significant positive impacts at the end 

of the intervention fail to reveal significant effects at follow-up. The term fadeout is often used to 

refer to the pattern of diminishing academic effects following a generally effective intervention. 

The fadeout of intervention effects has not been a major focus in math intervention research, and 

the reasons for diminishing intervention effects are not well understood (Bailey et al., 2018, 

2020).  

One explanation for fadeout is catch-up. That is, children who received intervention do 

not experience a net skill loss; rather, the control group catches up in the posttreatment period 

(Clements et al., 2013). Such a phenomenon may occur when school instruction is repetitive for 

students who received intervention, but novel for students in the control condition.  

A second explanation for fadeout involves the loss of skill within the intervention group. 

This may occur in the absence of sustained instructional support. That is, after intervention ends, 

students stop accessing and practicing the concepts and procedures they learned, and the 
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strategies and knowledge they learned become deactivated (Bailey et al., 2018, 2020). This is of 

particular concern within the realm of mathematics due to the periodic shifts to novel topics 

within the mathematics curriculum (e.g., shifting from additive to multiplicative concepts over 

time). If intervention students are not provided support during these shifts, focused on applying 

the skills and strategies they mastered during intervention in the context of more complex skills, 

students will likely stop using the intervention strategies they previously learned. This may result 

in a performance decrease on the skills they learned during intervention.  

A third explanation for fadeout is the cyclical nature with which schools select and 

implement intervention instruction for struggling students (Bailey et al., 2018). Typically, 

students are selected to receive intervention instruction based on poor mathematics performance. 

When students successfully complete an effective intervention, they are unlikely to receive 

continued school-based intervention, whereas control group students are identified for school-

provided intervention. Thus, study control group students receive subsequent intervention while 

study intervention students do not. Control group receipt of an intervention proximal to the 

measurement of fadeout effects may explain fadeout.  

 

Prior Work Examining Persistence of Mathematics Intervention Effects 

 In a systematic search of the literature, we identified four studies that examined the 

persistence of intervention effects in elementary students who had previously participated in a 

mathematics intervention (Bailey et al., 2020; Clarke et al., 2016; Hallstedt et al., 2018; Smith et 

al., 2013). Table 1 outlines each study, including the students' grade level and the intervention's 

instructional focus and duration. Table 2 presents the timeline for follow up testing, the measures 

used within each study, effect sizes between intervention and control groups immediately 
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following intervention, and effect sizes at each follow-up occasion. Despite the follow-up 

timeframe for assessment, ranging from six months to two years across studies, diminishing 

intervention effects were found in each study. 
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Table 1 
 
Prior Studies of Persistence of Mathematics Intervention Effects  
 

Author Grade N Intervention Focus Weeks Hours 
Group 
Size 

Adaptive 
Instruction 

        
Bailey et al. (2020) 1st 639 Explicit instruction on the conceptual and procedural 

bases for first-grade arithmetic. Emphases were 
numeral identification, quantities, number relations, 
arithmetic principles, number families, and 
decomposition of sets.   

16 24 1:1 No 

Clarke et al. (2016) KG 290 Focus on developing procedural fluency with and 
conceptual understanding of whole-number concepts 
and skills. Emphases on: (a) counting and cardinality; 
and (b) operations and algebraic thinking.  

10 17 2:1 
5:1 

No 

Hallstedt et al. (2018) 2nd 283 Tablet-based intervention with a focus on increasing 
fluency on basic arithmetic (addition and subtraction 
facts to 12), number knowledge, and word problems.   

20 24 1:1 Yes 

Smith et al. (2013) 1st 775 Building aspects of early number knowledge, including 
strategies for solving early number tasks, counting, 
backward counting, numeral identification, base ten 
arithmetic strategies, and number decomposition.   

12 24-30 1:1 Yes 

Note. KG = kindergarten.  
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Table 2 
 
Prior Studies of Persistence on Mathematics Intervention Summary of Outcomes 
 

Author 

Follow Up 
Timeline Post-

Intervention Measures Immediate Effects 
Follow Up  

Time 1 
Follow Up  

Time 2 
      
Bailey et al. (2020) 12 months 

24 months  
(P) Facts Correctly Retrieved 
(D) Number Sets 
(D) WRAT Arithmetic 
(D) Number Line Estimation 
(D) KeyMath – Numeration 
 

d = 0.24* – 0.42* 
d = 0.20* – 0.33* 
d = 0.29* – 0.30* 
d = 0.06 – 0.14 
d = 0.06 – 0.14* 

d = 0.09 – 0.16 
d = 0.03 – 0.16 
d = 0.01 – 0.08 
d = 0.11 – 0.12 
d = 0.00 – 0.00 

d = –0.01 – 0.04 
d = 0.12 – 0.12 
d = 0.03 – 0.08 
d = –0.02 – 0.02 
d = 0.08 – 0.08 

Clarke et al. (2016) 6 months (D) SESAT / SAT-10 
 

d = 0.18 d = –0.02 N/A 

Hallstedt et al. (2018) 6 months 
12 months 

(P) Addition 0-12 
(P) Subtraction 0-12 
(P) Addition 0-18 
(P) Subtraction 0-18 
 

d = 0.67* 
d = 0.53* 
d = 0.13 
d = 0.50* 

d = 0.18 
d = 0.28* 
d = –0.11 
d = 0.04 

d = 0.03 
d = 0.13 
d = 0.02 
d = 0.07 

Smith et al. (2013) 12 months (P) Math Recovery Proximal 
(D) WJIII Math Fluency 
(D) WJIII Applied Problems 
(D) WJIII Quantitative Concepts 
 

d = 0.29* 
d = 0.15* 
d = 0.28* 
d = 0.24 

d = -0.02 
d = 0.09 
d = 0.00 
d = 0.06 

N/A 

Note. All effects are reported as Cohen’s d. * = significant effect. (P) = proximal; (D) = distal; WRAT = Wide Range Achievement 

Test; SESAT = Stanford Early Achievement Test; SAT-10 = Stanford Achievement Test – Tenth Edition; WJIII = Woodcock Johnson 

III Achievement Test. 
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Clarke et al. (2016) assessed the longitudinal effects of ROOTS, an intervention designed 

to develop procedural fluency and conceptual understanding of whole number concepts. After 10 

weeks of small-group intervention, significant effects favored students who received intervention 

over control on proximal measures of early numeracy skills (ES = 0.16 to 0.75) as well as distal, 

standardized measures of problem solving and procedures (ES = 0.18). By January of first grade, 

however, there were no significant differences between conditions on the Stanford Achievement 

Test (SAT-10; Harcourt Educational Measurement, 2002), a distal measure of mathematics 

ability.  

 Hallstedt and colleagues (2018) examined the immediate effects of a second-grade 

mathematics intervention as well as the follow-up effects at six- and 12-months post-

intervention. The adaptive intervention program, which was administered entirely on a tablet, 

focused primarily on addition and subtraction fact fluency with a secondary focus on problem 

solving. After 20 weeks of intervention, significant effect sizes (0.50 to 0.67) favored 

intervention over control on proximal measures of addition and subtraction fact fluency, also 

administered using a tablet. Six months post-intervention, effect sizes on these same measures 

had diminished (–0.11 to 0.28). At 12 months post-intervention, effect sizes were further reduced 

(0.02 to 0.13) and were no longer significant.  

Smith et al. (2013) used both proximal and distal measures when evaluating Math 

Recovery, a one-to-one intervention designed to improve the outcomes of first-grade students 

who are struggling in mathematics with a 12-week intervention. Math Recovery divides 

instructional time among six aspects of early number knowledge that are believed to support 

arithmetic: strategies for solving early number tasks, forward number word sense, backward 

number word sense, numeral identification, base ten arithmetic strategies, and combining and 
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decomposition strategies. Immediately following intervention, significant effect sizes (0.15 to 

0.30) favored the Math Recovery over control on arithmetic, concepts and applications, 

quantitative concepts, and math reasoning measured using various subtests from the Woodcock-

Johnson III Achievement Test (Woodcock et al., 2001). However, by the end of second grade, 

differences between conditions were no longer significant, with effect sizes ranging from –0.02 

to 0.09 on these same measures. 

  In the most recent and comprehensive study, Bailey et al. (2020) used proximal and distal 

measures to examine the persistence of intervention effects one-year post-intervention and again 

two-years post-intervention. The original first-grade intervention targeted the conceptual and 

procedural bases that support early arithmetic (i.e., numeral identification, quantities, number 

families, and decomposition of sets). After 16 weeks of intervention, significant effects favored 

intervention over control, with effect sizes ranging from 0.20 to 0.90 on measures of arithmetic 

and numeracy. Yet, by the end of second grade, these effects on some of the same but also more 

advanced measures had diminished (ES = –0.03 to 0.16) and were no longer significant; by the 

end of third grade, effects were further reduced (ES = –0.01 to 0.12) on the same follow-up 

measures administered in second grade.  

The diminishing results observed across these studies is sobering. It is critical for students 

with or at-risk of math disability to maintain the positive effects of intensive interventions. Given 

the growing body of evidence demonstrating that fadeout is common after successful 

interventions, it is important to consider factors that may support the persistence of intervention 

effects.  

 

Factors that Support the Persistence of Intervention Effects 
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As framed by Bailey et al. (2020), promoting persistence of effects requires intervention 

to target skills that are: (a) malleable, (b) fundamental for later more complex skills, and (c) 

unlikely to develop in the absence of intervention. Malleable skills can be developed via explicit 

instruction (as opposed personality traits, such as conscientiousness; Bailey et al., 2017). Skills 

that are fundamental for future success equip students to benefit from subsequent classroom 

instruction. This is important in mathematics, because foundational skills are necessary for 

success with later curricular units (e.g., intervention consolidates understanding of whole-

number knowledge, which is invoked during fractions instruction). Beyond targeting malleable 

and fundamental skills, interventions should avoid skills that at-risk children likely develop in 

the absence of intervention.  

Bailey et al. (2020) referred to skills that meet these three criteria as trifecta skills. An 

example of a trifecta skill in first-grade mathematics intervention is simple arithmetic. In the 

early grades, although typically developing children often show rapid development with this skill 

(Bailey et al., 2016), children at-risk for mathematics disabilities struggle to develop arithmetic 

competence without intervention (Fuchs et al., 2013, 2021). Instead, they tend to rely on 

immature counting strategies to solve basic arithmetic problems, which are time-consuming and 

error-prone strategies. Reliance on such strategies weaken the association between problem 

stems and correct answers, reducing the ability to rely on math fact retrieval (Geary, 1993). 

Given its malleability, its fundamental nature for use in a variety of subsequent mathematics 

topics, and evidence that it is unlikely to develop without explicit instruction (Fuchs et al., 2019; 

Geary et al., 2007; National Research Council, 2001), arithmetic skill is a strong example of a 

trifecta skill to target in mathematics interventions for young children at-risk for mathematics 

disability.  
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 Nevertheless, as demonstrated in four studies assessing persistence of effects, fadeout 

still occurs when interventions focus on trifecta skills. Each of the prior studies of fadeout 

(discussed above) used an intervention whose primary aim was to increase arithmetic skill 

(Bailey et al., 2020; Clarke et al., 2016; Hallstedt et al., 2018) or increase early number 

knowledge, which is believed to support early arithmetic (Smith et al., 2013). Each study found 

significant effects favoring intervention over control on proximal measures of arithmetic or early 

numeracy. Although each study targeted a trifecta skill and found significant positive effects 

immediately following intervention, fadeout occurred in the following months and years. This 

pattern indicating fadeout motivated our focus in the present study on another possible 

explanation, in which the learned knowledge is still present but becomes deactivated because 

students are unable to transfer this knowledge to novel situations and contexts. 

 

Deactivation Does Not Equal Forgetting 

 Students can acquire a substantial amount of knowledge during an intensive academic 

intervention (e.g., Fuchs et al., 2021; Gersten et al., 2020; Kroesbergen & Van Luit, 2003; 

Stevens et al., 2018). However, there is no guarantee students will remember and continue to use 

this information over the long term. This may occur because, as evidenced in studies examining 

summer learning loss (see Cooper et al., 1996, for a meta-analytic review), students rapidly 

forget information and strategies when they use them infrequently. 

Although some may characterize this as simple forgetting, this may not be the case. Basic 

memory theory (Herrmann, 1996) posits that learned knowledge may be available (stored in 

memory) but not readily accessible (retrievable; Butler et al., 2020). New retrieval cues, such as 

visual or verbal prompts to stimulate the original memory, may cue or reactivate a seemingly 
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forgotten memory or skill (Gisquet-Verrier & Riccio, 2012; Tulving & Pearlstone, 1966). 

Knowledge that is stored in memory but not retrievable has been referred to as marginal 

knowledge (Berger et al., 1999).  

Cue-induced reactivation of marginal knowledge can have many benefits. Reactivation of 

a memory has been shown to induce malleability of the original memory and facilitate the 

integration of new information (Gisquet-Verrier & Riccio, 2012). When acquiring new 

knowledge, individuals must reactivate prior knowledge for integration to occur. In studies 

where participants were re-presented with previously learned material before learning new 

material, the integration and some of the new material was detected as early as a few minutes 

after initial reactivation (Gisquet-Verrier & Riccio, 2012; Hupbach et al., 2007). Reactivation 

also increases the long-term accessibility of the original memory. It does not strengthen the 

original memory. Rather, it increases the likelihood of accurate retrieval in subsequent prompts 

(Gisquet-Verrier & Riccio, 2012). Yet, if students are not provided with ample opportunities to 

reactivate marginal knowledge, it may become deactivated and inaccessible.  

It is highly unlikely that a single intensive academic intervention would provide complete 

inoculation against later academic difficulties for students at risk. Rather, these intensive 

interventions could be better conceptualized as the first in a series of necessary steps in an 

ongoing effort to remediate academic difficulty (National Research Council, 1998). This is why 

explicit instructional support after intervention ends is likely needed to support the persistence of 

effects. As mentioned, a sustaining environment is particularly important in mathematics because 

of the frequent shift to new topics within the curriculum. A typical first-grade curriculum shifts 

topics to counting strategies, addition and subtraction strategies, geometry, time, and money, all 

within the span of a few months. Without explicit instruction, at-risk students struggle to 
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navigate these shifts and are often unable to apply previously learned skills to a new topic 

(Kroesbergen & Van Luit, 2003). A struggling first-grade student may have difficulty applying 

the counting strategies learned during a number sense intervention to the novel topic of counting 

coins or regrouping for double-digit computation without explicit transfer instruction. In 

addition, specifically, without frequent review of the strategies learned during intervention, 

students may forget the skills they had previously mastered. In this vein, distributed practice 

offers potential for improving the retention of learned material. 

 

Does Distributed Practice Make Perfect? 

Most people have heard the adage "practice makes perfect." When trying to learn 

something well, such as arithmetic facts or procedures, a single exposure is usually inadequate 

for long-term retention. Having subsequent review spaced out over time generally leads to 

superior learning (Kang, 2016). This phenomenon is called the spacing effect (sometimes 

referred to as the benefit of distributed practice or spaced practice). Repeating an item or skill 

during distributed practice potentially reminds the participant of its previous occurrence and 

prompts retrieval of the previous presentation from memory (Kang, 2016; Wahlheim et al., 

2014).  

An extensive literature examines the spaced practice effect in cognitive and educational 

psychology. Cepeda et al. (2006) analyzed more than 400 studies using distributed practice to 

increase the retention of learned material. When comparing massed versus spaced practice on the 

later recall of verbal information, distributed practice resulted in higher verbal recall at all 

retention intervals. However, a vast majority of these studies focused on the recall of information 

at very short time periods (i.e., minutes to hours after initial instruction). Of the 400 studies 
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included in the review, only a dozen studies looked at retention one day after the initial 

instruction. Only six studies looked at retention longer than a week after initial instruction.  

One of these studies (Bahrick et al.,1993) assessed retention across the largest interval 

(56 days) and found promising results when examining the effects of distributed practice during 

novel foreign language vocabulary instruction with four adult participants. Participants were 

randomly assigned to receive booster instruction at 14-, 28-, or 56-day intervals for one to five 

years (to equate total instructional time across conditions). Results showed that intervals of 56 

days produced higher foreign vocabulary recall compared to other spacing intervals. 

While those results, along with the findings of the larger meta-analysis, suggest 

distributed practice may be effective for learning new information, the viability of distributed 

practice for long-term retention (i.e., greater than 2 years) has yet to be explored. Further, a vast 

majority of the distributed practice literature focuses on the retention of a small amount of 

material (such as a list of words or facts) learned on one occasion. Multi-week academic 

interventions that rely on distributed practice to teach skills that are malleable, fundamental, and 

unlikely to develop in the absence of intervention should produce persistent, long-term effects. 

However, the available literature examining the persistence of mathematics intervention effects 

indicates this is not the case (e.g., Bailey et al., 2020; Clarke et al., 2016; Hallstedt et al., 2018; 

Smith et al., 2013).  

What if the fadeout of intervention effects is not a result of students forgetting the learned 

material? What if the learned material is still there but lying dormant because students have not 

received sustained instructional support that explicitly teaches them how to transfer the learned 

knowledge to new skills? On one hand, given the intensive nature of one-on-one mathematics 

interventions (sometimes receiving up to 25 hours of one-on-one instruction) and their reliance 
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on distributed practice, the literature indicates knowledge maintenance should persist. On the 

other hand, the nature of transfer difficulty among students with mathematics difficulties 

(Brownell et al., 1993; Kang et al., 2019; Watts et al., 2017) indicates they may require periodic 

contextual prompting to strategically utilize that knowledge.  

 

The Role of Transfer in the Persistence of Intervention Effects 

 The deactivation of knowledge learned during an intervention may occur if students are 

unable to transfer this knowledge to new tasks and situations and, therefore, do not access and 

use the knowledge, causing it to become deactivated. The ability to transfer learning to new tasks 

and in varying contexts is dependent on the extent to which the student can recognize the 

similarities between the original task and the new task (Haskell, 2001; Kang et al., 2019). When 

novel learning tasks share many similarities, both perceptually and structurally, with the original 

learning task, an automatic transfer (known as near transfer, reflexive transfer, or low road 

transfer) is likely (National Research Council, 1999; Perkins & Salomon, 1992). As novel 

learning tasks become more dissimilar from the original taught learning task (known as far 

transfer, mindful transfer, or high road transfer), automatic transfer is less likely (Kang et al., 

2019; National Research Council, 1999). 

Unfortunately, individuals with learning disabilities struggle to transfer learning to novel 

tasks and situations (Brownell et al., 1993). These students often fail to identify the salient task 

features in different situations, struggle to organize and coordinate information in novel 

problems, and often focus on isolated or irrelevant details. Additionally, the language and 

instructional strategies used during interventions often diverges from those used in classrooms 
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(Claessens et al., 2014), making it even more difficult for individuals with learning disabilities to 

transfer knowledge.  

In the months and years following an intervention, students with a learning disability may 

require explicit instruction on how to transfer their learned knowledge to more complex tasks 

that rely on the foundational skills learned during intervention, even as they are required to apply 

those learned skills in different contexts. They may also require instruction on how to recognize 

salient features in dissimilar tasks that allow for the application of the knowledge learned during 

intervention. Without this explicit transfer instruction, it is possible students do not recognize 

novel tasks as an opportunity to apply the knowledge and skills learned in intervention. Not 

accessing this knowledge for a prolonged period may cause this information to become 

deactivated marginal knowledge. 

 

Purpose of the Present Study 

The present study was designed to increase understanding of the fadeout phenomenon by 

testing the possibility that intervention effects may persist following intervention but reside in a 

deactivated state. This deactivation may occur because post-intervention educational 

environments do not provide periodic contextual prompting that encourages students to use their 

learned knowledge and do not explicitly teach students how to transfer this knowledge to novel 

learning tasks.  

Our hypothesis, therefore, was that a brief booster lesson that reviewed the skills and 

strategies taught in the original intervention would reactivate intervention student's marginal 

knowledge. Such a claim would be demonstrated by stronger post-booster performance for 

intervention over control students while controlling for the students' pre-booster lesson scores. 
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Specifically, in the present study, we first administered a follow-up assessment of arithmetic skill 

to third graders. Two-thirds of the students had received mathematics intervention in first grade; 

one-third were in the control group. After the follow-up assessment, we provided a brief booster 

lesson to all students, regardless of condition in the first-grade study. This booster lesson 

addressed the strategies taught during the first-grade intervention for solving addition and 

subtraction problems. After the booster lesson, students were re-tested on the same measures.  
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CHAPTER 2 

 

METHOD 

 

 The sample of students for the present study was derived from the final cohort of a larger, 

field-based randomized controlled trial (referred to as parent study; Fuchs et al., 2021) 

investigating the effects of embedding language comprehension instruction within word-problem 

intervention designed to increase the word-problem solving ability of first-grade students 

identified as at-risk (AR) for mathematics disability. Effects on arithmetic skill were also 

examined.  

 

Background Information on Parent Study 

In the parent study, a latent class approach was used to identify children as AR by 

combining screening scores across the First-Grade Test of Computational Fluency and the First-

Grade Test of Mathematics Concepts and Applications (Fuchs et al., 1990) into a latent factor. 

The two-subtest Wechsler Abbreviated Scales of Intelligence (WASI; Wechsler, 2011) was also 

administered. Because the parent study's intervention was not designed to address the needs of 

students with intellectual disability, students scoring below the 10th percentile on both subtests 

were excluded. 

AR students were randomly assigned to four conditions. One was a control group; the 

other three involved mathematics intervention delivered for 15 weeks in one-to-one format three 

times per week; each session was 30 min. One condition focused on number knowledge, another 

on word problems, and the other on word problems with embedded language instruction.  
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All three conditions taught strategies to solve basic addition (e.g., 3 + 8 = ___) and 

subtraction (e.g., 9 – 3 = ___) problems. Specifically, students were taught to know the answer 

right away (i.e., retrieve the answer from memory if confident of the answer) or use the efficient 

counting strategy that was taught during intervention. In all lessons, students were required to 

use this strategy to solve arithmetic problems either in the context of or outside of word 

problems.  

The efficient counting procedures are as follows. For addition, students use a counting-in 

strategy. They open their hand to show the smaller number, say the bigger number aloud, and 

count the smaller number into their hand, pushing in one finger at a time until all fingers are in 

the hand. The answer is the last number counted aloud. For subtraction, students close their fist 

where they "hold" the "minus" number and count up to the larger number while putting up one 

finger for each number counted. The answer is the number of raised fingers after counting. 

To promote quick responding and encourage the use of efficient counting strategies, the 

parent study provided speeded practice each session in the form of a game. During this game 

("Meet or Beat Your Score"), students have 1 min to solve as many math problems as possible. If 

students do not know the answer right away, they use the efficient counting strategy for the 

operation. At the end of the allotted time, students graph the number of problems they solved 

correctly.  

 At the end of the first-grade intervention, all three intervention conditions demonstrated 

significantly stronger arithmetic performance over the control group on the First-Grade 

Mathematics Assessment Battery (Hedges' g 0.59 – 0.79), when controlling for pretest arithmetic 

scores (Fuchs et al., 2021). The parent study also conducted annual follow-up to investigate 

maintenance effects in spring of second grade and spring of third grade. Follow-up assessments, 
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which assessed word reading, single-digit addition and subtraction fluency, double-digit addition 

and subtraction fluency, word problem solving, and fluent number processing, occurred in two 

sessions on consecutive days.  

 

Participants in the Present Study 

For the present analysis, which occurred when students were in third grade, 95 of the 102 

final-cohort students who completed posttesting were located. However, due to the COVID-19 

pandemic, schools closed before all the located students were tested. As a result, complete data 

were obtained for 40 students. Of these, 28 students had received intervention as part of the first-

grade parent study; the remaining 12 students had served in the parent study's control group. 

Students in this sample of 40 students were from 25 third-grade classrooms in 10 schools. 

Frequencies for gender, race, socioeconomic status, special education category, and English 

learner status for the sample are presented in Table 3. 
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Table 3 
 
Demographics of Participant Sample (n = 40) 

 

Variable n % 

Sex   

 Female 26 65 

 Male 14 35 

Race   

 African American 15 38 

 Asian 2 5 

 Caucasian 12 30 

 Hispanic 10 25 

 Othera 1 2 

Special Education Diagnosis   

 None 37 93 

 Developmental Delay 1 3 

 Occupational Therapy 1 3 

 Speech/Language 1 3 

English Language Learner 6 15 

Subsidized Lunch 20 50 

 
Note. a One student identified as mixed race, African American and Caucasian. 
 
 
 
 

Table 4 shows demographic variables by condition. We conducted chi-square tests of 

independence to check for relations between first-grade intervention status (i.e., received 

intervention vs. control) and demographic variables. Yates’ continuity corrections were applied 

to account for possible overestimation when using a 2 x 2 table (Yates, 1934). No significant 
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associations were revealed for sex, χ!(1, n = 40) = 0.884, p = .347; race, χ!(1, n = 40) = 2.063, p 

= .724; special education status, χ!(1, n = 40) = 5.251, p = .154; English language learner status, 

χ!(1, n = 40) = 0.458, p = .499; and subsidized lunch status, χ!(1, n = 40) = 1.071, p = .301.  

 

Table 4 
 
Demographics of Participants by Condition 

 

 

Intervention 
(n = 28) 

 Control 
(n = 12) 

 

Variable n % 
 

n % (df) "! 

Sex      (1) 0.884 

 Female 20 71.4  6 50  

 Male 8 28.6  6 50  

Race      (4) 2.063 

 African American 12 42.9  3 25  

 Asian 1 3.6  1 8.3  

 Caucasian 8 28.6  4 33.3  

 Hispanic 6 21.4  4 33.3  

 Other 1 3.6  0 0  

Special Education Diagnosis      (3) 5.251 

 Developmental Delay 0 0  1 8.3  

 Occupational Therapy 0 0  1 8.3  

 Speech/Language 1 3.6  0 0  

English Language Learner 3 10.7  3 25 (1) 0.458 

Subsidized Lunch 16 57.1  4 33.3 (1) 1.071 

 
Note. No Chi square results were significant. Outliers included.  
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Table 5 presents frequencies for gender, race, socioeconomic status, special education 

category, and English learner status for the students (n = 40) who were tested before schools 

closed due to COVID-19 and those who were not (n = 62). Chi-square tests for independence 

(with Yates Continuity Corrections, when needed) revealed no significant associations between 

students who were tested prior to COVID-19 closure with respect to sex, χ!(1, n = 102) = 0.426, 

p = .514; race, χ!(4, n = 102) = 4.601, p = .319; special education category, χ!(6, n = 102) = 

5.138, p = .526; and socioeconomic status, χ!(1, n = 102) = 0.000, p = 1.0. There was, however, 

a significant association between booster receipt and English learner status, χ!(1, n = 102) = 

8.642, p = .003. Examination of adjusted residuals indicated English language learners were less 

likely to have been tested before school closures due to COVID-19.  
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Table 5 
 
Demographics of Tested and Not Tested Students 

 

 

Tested Students 
(n = 40) 

 Not Tested Students 
(n = 62) 

 

Variable n % 
 

n % (df) "! 

Sex      (1) 0.426 

 Female 26 65  35 56  

 Male 14 35  27 44  

Race      (4) 4.601 

 African American 15 38  18 29  

 Asian 2 5  2 3  

 Caucasian 12 30  12 19  

 Hispanic 10 25  28 45  

 Other 1 2  2 3  

Special Education Diagnosis      (6) 0.514 

 Developmental Delay 1 3  1 3  

 Occupational Therapy 1 3  0 0  

 Speech/Language 1 3  4 7  

 Learning Disability 0 0  2 3  

 Learning Disability + Speech 0 0  1 2  

 Learning Disability + OT 0 0  1 2  

English Language Learner 6 15  28 45 (1) 8.642* 

Subsidized Lunch 20 50  30 48 (1) 0.000 

 
Note. *significance at p = .003 
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Measures 

Screening Measures from Parent Study Relevant to the Present Study 

 The parent study screened students for study entry to include AR students for subsequent 

random assignment to four intervention conditions. Screening measures included the following.  

The First-Grade Test of Mathematics Concepts and Applications (Fuchs et al., 1990) 

samples the typical first-grade concepts/applications curriculum (i.e., numeration, concepts, 

geometry, measurement, applied computation, money, charts/graphs, and word problems) with 

25 items. Each item that involves words is read aloud by the testers. For 20 items, students have 

15 s to respond; for five items, 30 s. On a previous sample of students who were the same age 

and of similar demographics, # was .94 (Fuchs et al., 2013). 

The two-subtest Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 2011) 

was also administered. WASI-Vocabulary requires students to identify objects in pictures (3 

items) and construct definitions for words (remaining items). At ages 6-11, test stability is .85. 

WASI-Matrix Reasoning measures a student's nonlinguistic reasoning abilities. For each item, 

students select 1 of 5 items that complete a visual pattern. At ages 6-11, test stability is .79.  

Outcome Measure from Parent Study Relevant to the Present Study 

The present analysis relied on the parent study's arithmetic measure used in first grade: 

the four arithmetic subtests from the First-Grade Mathematics Assessment Battery (Fuchs et al., 

2003), combined into a single score. Addition comprises 25 addition problems with answers 

from 0 to 12, presented vertically on one page, and 25 addition problems with answers from 0 to 

18, presented vertically on one page. Subtraction comprises 25 subtraction problems with 

answers from 0 to 12, presented vertically on one page, and 25 subtraction problems with 
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answers from 0 to 18, presented vertically on a second page. Students have 1 min to write 

answers on each page. In the current study, # was .97.  

 

District Classroom Calculations Instruction in Grades 1-3 

 The school district in which the parent study was conducted provides teachers with a 

detailed scope and sequence to guide instruction that aligns with the state's mathematics 

standards. The scope and sequence is supplemented with lessons from the Go Math curriculum 

(Houghton Mifflin Harcourt, 2015), which is also based on the state's mathematics standards. In 

first grade, a primary academic focus is placed on adding and subtracting within 20 using 

strategies such as counting on, making sets of 10, using fact families, and 

composing/decomposing numbers to make 10. In second grade, instruction is focused on fluently 

adding and subtracting with 30 using multiple strategies. By the end of second grade, students 

are expected to know from memory all sums of two one-digit numbers and the related 

subtraction facts. In third grade, addition and subtraction instruction is focused on understanding 

place value to add and subtract within 1,000.  

 

Booster Lesson Administered for the Present Analysis 

All students who were tested before schools closed due to the COVID-19 pandemic also 

received the booster lesson. The goal of the booster lesson was to provide a brief review of the 

counting strategies provided during the parent study's intervention to assess whether it produced 

a differential boost for students who received intervention over students in the control condition; 

that is, whether a booster session may reactivate prior knowledge. The lesson, which was written 

to mimic the original counting strategy instruction intervention students received during first 



 

 26 

grade, was designed with sufficient explicitness to remind tutored students of the skills they 

learned to solve addition and subtraction problems while in first grade, but without enough 

review and practice to consolidate the arithmetic solution strategies in control group students 

who were not otherwise taught these strategies.  

The booster lesson lasted 10-15 minutes, with longer duration for students with less 

attentiveness. The booster used instructional posters and language from the parent study's 

intervention. See Appendix A for the full scripted booster lesson, which was divided into five 

parts: (1) review of the two ways to solve a math problem; (2) review of the counting-in strategy 

for addition problems; (3) review of the counting-up strategy for subtraction problems; (4) 

guided practice; and (5) speeded practice.  

 The booster lesson began by reviewing the two ways to solve a math problem. Students 

were shown a poster with visuals to remind them of these two methods. The research assistant 

(RA) then reviewed steps for counting in to add, modeled how to solve one addition problem 

using this strategy; students practiced solving one addition problem using the strategy. This same 

process was followed to review the counting up strategy for subtraction. Next, students solved 

four problems, two addition and two subtraction, with guidance from the RA as needed. Finally, 

students played the parent study's speeded practice game (see description above) for 30 s. 

 

Fidelity of Testing and Booster Session Administration 

 Examiners were trained Ph.D. and master's-student RAs, who demonstrated fidelity (i.e., 

> 90% accuracy) during a mock assessment and booster lesson administration. All testing 

sessions and booster lessons were audio recorded. Twenty percent of testing sessions and 30% of 

booster lesson recordings, stratified by RA, were randomly selected to evaluate the fidelity of 
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testing administration and booster lesson implementation. Three RAs independently listened to 

tapes while referencing a checklist of essential components. For testing sessions, fidelity was 

99.34% (SD = 1.48) across RAs. For booster lessons, fidelity was 100% across RAs. See 

Appendix B for the full fidelity checklist for the booster lesson. 

 

Procedure 

Students completed the First-Grade Mathematics Assessment Battery in the first follow-

up test session. In the second follow-up session, the 10-15-minute booster lesson was delivered. 

Immediately following the booster instruction, the four subtests from the First-Grade 

Mathematics Assessment Battery were re-administered. All testers were blind to study condition 

during test administration and scoring. All assessments were double scored for accuracy, with 

agreement exceeding 99%. All data were double entered into databases for verification.  
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CHAPTER 3 

 

DATA ANALYSES AND RESULTS 

 

Data Analyses 

 One-way ANCOVAs were applied to the data. Before running the model, data were 

checked to ensure all statistical assumptions of the ANCOVA were met. To test our hypothesis 

that a brief booster lesson might mitigate the commonly observed fadeout effect by reactivating 

marginal knowledge, we conducted a one-way between-groups ANCOVA. First-grade 

intervention status was the independent variable (i.e., intervention vs. control); the post-booster 

session composite arithmetic performance (on the four subtests of First-Grade Mathematics 

Assessment Battery) was the outcome variable; pre-booster session composite arithmetic 

performance was the covariate. We also conducted a parallel, supplemental one-way between-

groups ANCOVA to assess the extent to which students attempted applied intervention strategies 

before and after the booster lesson. This was indexed indirectly using a composite percentage 

correct score across the four subtests of attempted problems answered correctly.  

Table 6 displays means and standard deviations on the outcome variable on pre- and post-

booster lesson arithmetic performance by condition (i.e., first-grade intervention vs. control). 

Effect sizes (ESs), reported as Hedges' g, were calculated by subtracting the adjusted means and 

dividing them by the unadjusted standard deviations (Institute of Education Sciences, 2017).  
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Table 6 
 
Pre- and Post-Booster Performance on Outcome Measures 

 
  Intervention 

(n = 28) 
 Control 

(n = 12) 
 Across Groups 

(n = 40) 
Variable M (SD)  M (SD)  M (SD) 

Raw Score         
 Addition, 0-12: Pre 13.21 (4.97)  10.5 (8.2)  12.4 (6.13) 
 Addition, 0-12: Post 13.75 (6.36)  11.17 (7.78)  12.98 (6.82) 
 Addition, 0-18: Pre 10.39 (4.06)  10.33 (7.25)  10.38 (5.12) 
 Addition, 0-18: Post 10.32 (4.68)  9.58 (8.05)  10.10 (5.79) 
 Subtraction, 0-12: Pre 6.75 (3.12)  7.08 (6.65)  6.85 (4.39) 
 Subtraction, 0-12: Post 6.71 (3.35)  7.42 (6.63)  6.93 (4.50) 
 Subtraction, 0-18: Pre 5.64 (3.31)  5.67 (6.11)  5.65 (4.26) 
 Subtraction, 0-18: Post 6.21 (3.24)  6.08 (5.88)  6.18 (4.13) 
 Composite Score: Pre 36.00 (13.32)  33.58 (27.37)  35.28 (18.31) 
 Composite Score: Post 37.00 (15.22)  34.25 (27.21)  36.18 (19.26) 

Percent Correct of Problems Attempted       
 Addition, 0-12: Pre 93.77 (11.46)  86.39 (28.99)  91.56 (18.43) 
 Addition, 0-12: Post 93.32 (20.06)  89.29 (29.29)  92.11 (22.90) 
 Addition, 0-18: Pre 91.92 (15.66)  96.33 (7.71)  93.24 (13.81) 
 Addition, 0-18: Post 89.98 (17.20)  89.26 (27.11)  89.77 (20.30) 
 Subtraction, 0-12: Pre 85.26 (14.99)  66.92 (39.26)  79.76 (25.74) 
 Subtraction, 0-12: Post 84.31 (24.27)  72.73 (30.56)  80.83 (26.46) 
 Subtraction, 0-18: Pre 84.62 (26.24)  60.34 (42.59)  77.34 (33.39) 
 Subtraction, 0-18: Post 87.42 (24.21)  66.53 (36.13)  81.15 (29.46) 
 Overall Average: Pre 90.28 (12.29)  80.29 (22.93)  87.28 (16.57) 
 Overall Average: Post 90.01 (17.83)  80.51 (27.39)  87.16 (21.24) 

Note. Outliers included. 
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Results 

 We tested the following ANCOVA assumptions to evaluate the reliability of the 

covariate, within-group outliers, the linearity of relation between the outcome variable and 

covariate, homogeneity of regression slope, and homogeneity of variance (Tabachnick & Fidell, 

2020). When these assumptions are met, we can be confident that the ratio of the mean square of 

the effect over the mean square for error is distributed as F under the null hypothesis. To test the 

assumption of reliability of the covariate, Cronbach's alpha was computed to index internal 

consistency on the four-subtest First-Grade Mathematics Assessment Battery measured prior to 

the booster lesson. For the current sample, # was .965, reflecting reliability.  

To locate potential outliers in the dataset, boxplots were created for the covariate and 

dependent variable separately for the first-grade intervention and first-grade control groups. Data 

points were deemed outliers when the score was less than the minimum value (i.e., Q1 – 

1.5*IQR) or greater than the maximum value (i.e., Q3 + 1.5*IQR). When examining the boxplot 

on the composite outcome score, two outliers were located. One control group student’s score 

was 94 (control group mean 34.25, SD = 27.21). One intervention group student’s score was 80 

(intervention group mean 37; SD = 15.22). On the composite covariate score, one significant 

outlier was located. The same intervention student's score was 73 (intervention group mean 36, 

SD = 13.32). Scores were double-checked in the original databases to confirm these outliers were 

not the result of an error in recording. The decision was made to remove these two cases from 

the present analyses. However, analyses with outliers included are presented in the Supplemental 

File.  

Linearity among the covariate and outcome variable was assessed by inspecting a 

bivariate scatterplot. See Figure 1 for the scatterplot of the covariate on the outcome variable by 
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group. Visual analysis of the scatterplot concluded there was a linear relationship among the 

covariate and the outcome variable. To check for homogeneity of regression slopes, a 

multivariate analysis of variance (MANOVA) was conducted. The interaction between the 

covariate and the independent variable was nonsignificant, F(5, 8) = 0.527, p = .751, indicating 

the slope of the DV-CV regression line was the same across groups and that the assumption of 

homogeneity of regression slopes was met.  

 

Figure 1 
 
Scatterplot of covariate and outcome variable by condition 

 

 
 

Note. Scatterplot of covariate (pre-booster raw score) and outcome variable (post-booster raw 

score) by group.  
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To test the assumption of homogeneity of variance on our outcome measure and 

covariate, we conducted Levene's test for homogeneity of variance. On our outcome measure, 

Levene's test was non-significant, F(1, 36) = 2.752, p = .106, indicating homogeneity of 

variances between our two groups. On our covariate, Levene's test indicated significant 

heteroscedasticity in our variances and a violation of the assumption of equal variances, F(1, 36) 

= 5.219, p = .028. The larger variance was associated with the control group, the group with the 

smaller n (control n = 12; intervention n = 28). A larger variation in the group with the smaller n 

causes the F test to be too liberal, leading to an increased Type I error rate. Due to this violation, 

we chose to use a more stringent # level (# = .025) when testing main effects, as suggested by 

Tabachnick and Fidell (2020).  

 The ANCOVA on the main study outcome, number of correct problems completed post-

booster session, revealed no significant difference between conditions, F(1, 35) = 0.177, p = 

.677, partial eta squared = .005, ES = 0.08. There was a strong relation between pre-booster 

composite scores and post-booster composite scores, as indicated by a partial eta squared value 

of .766. Estimated marginal means are presented in Table 7.  

The supplemental ANCOVA on the post-booster percent correct of attempted problems 

also revealed no significant difference between the two groups on post-booster accuracy of 

problems attempted, F(1, 35) = 0.126, p = .725, partial eta squared = .004, ES = –0.08. There 

was a strong relation between pre-booster accuracy of problem attempted, and post-booster 

accuracy of problem attempted, as indicated by a partial eta squared value of .643. Estimated 

marginal means are presented in Table 7.  
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Table 7 
 
Estimated Marginal Means on Dependent Variable by Group 

 

   95% Confidence Interval 

Group Adjusted Mean S. E. Lower Upper 

Post-Booster Raw Score 

   Control  32.676 2.315 27.976 37.376 

   Intervention 33.836 1.467 30.858 36.814 

Post-Booster Percent Correct of Attempted 

   Control 86.455 4.047 78.240 94.671 

   Intervention 84.726 2.524 79.602 89.850 
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CHAPTER 4 

 

DISCUSSION 

 

The purpose of this study was to increase understanding of the academic intervention 

fadeout phenomenon by testing the possibility that intervention effects persist following 

intervention but reside in a deactivated state. This deactivation of knowledge may occur because 

the subsequent instructional environment does not provide periodic contextual prompting to 

utilize the skills or because the transfer of skills learned during intervention fails to occur in 

contexts outside of the intervention. As a result, students do not access and use the learned skills, 

which become deactivated marginal knowledge. This deactivation may lead to the observed 

fadeout of effects that are common in follow-up studies of mathematics interventions (e.g., 

Bailey et al., 2020; Clarke et al., 2016; Hallstedt et al., 2018; Smith et al., 2013).  

To test the hypothesis that skills learned during an intervention are stored in memory but 

are not readily accessible, we provided a brief arithmetic booster lesson to 40 third-grade 

students who had participated in a successful 15-week intervention study in first grade (Fuchs et 

al., 2021). Two-thirds of the sample had received an intensive mathematics intervention that 

included arithmetic instruction while in first grade, and one-third were in the control group.  

 The goal of the booster lesson was to provide a brief review of the counting strategies to 

solve addition and subtraction problems used in the parent study's intervention and assess 

whether the booster lesson produced a differential boost for students who received intervention 

over control students. Therefore, the booster lesson was designed with sufficient explicitness to 

remind previously tutored students of the skills they learned to solve addition and subtraction 
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skills in first grade, but without enough review and practice to consolidate these skills in the 

control group. Because the booster lesson was designed to mimic the original counting strategy 

instruction students received during the first-grade intervention, we hypothesized the booster 

lesson would reactivate marginal knowledge in students who received intervention instruction 

while in first grade. We thus anticipated a stronger post-booster performance for intervention 

over control on timed arithmetic tasks while controlling for students' pre-booster lesson scores.  

 Contrary to this expectation, the brief booster lesson did not produce stronger arithmetic 

performance for intervention over control students on either index of arithmetic outcome. In this 

section, we discuss plausible explanations for the nonsignificant differences in post-booster 

performance between groups, including that the nonsignificant findings are likely explained by 

arithmetic skills developing in the counterfactual condition or result from the prolonged interval 

of time between the end of the first-grade intervention and the administration of the booster 

lesson. We then discuss the limitations that should be considered when interpreting student 

results, and we suggest directions for future research.  

 For first-grade students at-risk of MD, arithmetic skill seems like a strong trifecta skill 

that would be resistant to fadeout: Arithmetic is readily malleable through instruction; it is 

fundamental to later and more complex mathematical skills; and it is unlikely to develop in at-

risk children in a typical classroom without explicit intervention. Even so, arithmetic skill may 

not meet the criteria for a trifecta skill in later grades. Relative to typically achieving children, 

children with MD struggle to commit basic facts to long-term memory or accurately retrieve 

them once they are learned (Andersson, 2010; Chan & Ho, 2010; Geary, 1993; Geary et al., 

2012b). Yet, most children with MD do eventually acquire mastery of these basic facts without 

intervention, but one to several years behind their typically achieving peers (Andersson, 2010). 
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To catch up with their typically achieving peers, children with MD continue to show growth in 

retrieval of basic facts, especially in first through third grades (Geary et al., 2012b).  

 Given that at-risk students continue to improve their arithmetic skills between first and 

third grades, the field conceptualizes arithmetic skill as a delayed rather than deficit skill for 

students at-risk for MD (Andersson, 2010; Fletcher et al., 2019; Geary et al., 2012a; Jordan et al., 

2003). It is thus possible the control group experienced delayed development of arithmetic skill, 

possibly combined with classroom or intervention instruction with a focus on fluent retrieval of 

basic facts in second and third grade. By contrast, intervention students maintained the arithmetic 

skill level they had demonstrated immediately after first-grade intervention. Given this potential 

for catch-up, simple arithmetic may not meet the third criterion for trifecta skill past first grade.  

This raises the following question: If arithmetic skill is a delayed skill that eventually 

develops in at-risk students, can we save time and money by waiting to provide mathematics 

intervention until the later grades? We believe the answer to this question is no. This is because 

arithmetic interventions may represent a foot-in-the-door process (see Bailey et al., 2017). These 

interventions, if delivered at an opportune time, equip a child to develop more complex skills. 

Foot-in-the-door interventions may help a child speed up what would otherwise represent 

delayed skill development, thereby allocating cognitive resources, such as working memory or 

processing speed, to other subdomains of mathematics.  

The effects of foot-in-the-door processes may not be permanent, and it may not be 

necessary for a student to retain the immediate target skill of the intervention to continue to 

benefit from the intervention and transfer the skills learned during intervention to novel and more 

complex skills. When developing a new skill, individual’s mental processing is highly 

controlled, requiring active attention and high cognitive demands (Strayer & Kramer, 1994). 
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With increased practice, the processes used to perform the task become stronger and more 

efficient, requiring less active attention and reduce the demand on cognitive resources. This 

increased efficiency leads to a greater degree of automaticity of the skill and facilitate transfer of 

this skill to new situations and tasks. For example, in the parent study, at-risk students who 

received intervention had significantly stronger performance over control (Hedges' g 0.59 – 0.79) 

on arithmetic fluency measures following intervention (Fuchs et al., 2021). Repeatedly solving 

an arithmetic combination, even when using a counting strategy, strengthens the association 

between the problem stem and the answer. This strengthened association allows the arithmetic 

combination to become a routine fact that can be recalled at a later time (Siegler & Shrager, 

1984). An increased reliance on automatic retrieval of basic facts can support students in later, 

more complex calculations (Fletcher et al., 2019) and help students develop procedural and 

conceptual knowledge of abstract mathematical principles such as decomposition, 

commutativity, and the associative law (Gersten et al., 2005). For example, if a child can easily 

retrieve some basic facts from memory (e.g., 6 + 6 = 12), then they can use this information to 

solve unknown problems (e.g., 6 + 7 = __), using other strategies such as decomposition (e.g., 6 

+ 6 + 1 = 13; Gersten et al., 2005; Jordan et al., 2003).  

This is in line with other work showing that even mathematically proficient adults use 

multiple mental strategies instead of automatic retrieval to solve some arithmetic combinations 

(LeFevre et al., 2003). Although the original counting strategy may not be the student's primary 

method for solving arithmetic combinations, the student still benefits from the intervention 

because the counting strategy may have facilitated the automatic retrieval of some basic facts. 

While this shift toward automatic retrieval may be difficult and delayed in students at-risk for 
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MD (Geary et al., 2012b), it is a critical step toward the mastery of later subjects such as high 

school algebra (National Mathematics Advisory Panel, 2008).  

The prior work examining the possibility that arithmetic interventions serve as a foot-in-

the-door process has produced mixed results. In this study's parent study, Fuchs and colleagues 

(2021) found that improvement in arithmetic skill did not translate into stronger word-problem 

solving ability. Students who received 15 weeks of number knowledge intervention performed 

significantly better than at-risk students in the control group on arithmetic tasks (ES = 0.59); 

however, the benefits from the number knowledge intervention were not seen on word-problem 

solving tasks (ES = 0.09). By contrast, in a correlational study that included students with and 

without risk for MD, Fuchs and colleagues (2016) found that every unit increase in automatic 

retrieval in fourth grade was associated with an increase of 0.09 standard deviation units in word-

problem solving.  

This suggests that the foot-in-the-door process may work better for not-at-risk classmates 

than for students with MD. Because the fluent and accurate retrieval of basic facts requires the 

use of mature strategies (Gersten et al., 2005), students with MD may need more direct 

instruction and guidance in strategy use than their not-at-risk classmates. Future work should 

further examine the possibility that arithmetic interventions act as a foot-in-the-door process to 

support the automatic retrieval of arithmetic facts and also examine the potential influence of 

added transfer instruction. Studies should also examine moderators of the foot-in-the-door 

process, such as a history of difficulty with mathematics. 

 A second explanation as to why the booster lesson did not produce a significantly 

stronger post-booster performance for intervention over control students is the extended interval 

of time between the intervention and the delivery of the booster lesson. While an extensive 
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literature supports the use of distributed practice to support retention, much of the published 

literature has examined retention only hours or days after the initial exposure. For example, 

Bahrick et al. (1993) found that distributed practice delivered in 56-day intervals produced 

superior recall of information compared to distributed practice delivered in 14- or 28-day 

intervals.  

By contrast, the present study's interval between intervention completion and the booster 

lesson was two years. This is a lengthy period to reactivate a multi-step counting strategy, 

especially if the student has not frequently used the strategy during this time. If the subsequent 

educational environment did not provide frequent contextual prompting to encourage students to 

practice their learned strategies and explicit instruction to transfer those strategies to more 

complex tasks, it is probable these skills were actually forgotten in the two-year follow-up 

period. Had the booster lesson been delivered at 8-week intervals (as in the Bahrick et al., 1993 

study), we may have observed superior retention. The possibility that more frequent booster 

lessons are needed to support the retention of skills learned during intervention opens the door 

for future research to identify optimal spacing to support retention of learned skills among 

students with MD.  

To evaluate the long-term effectiveness of an intervention, it is necessary to examine the 

subsequent progress of students who took part in the intervention to determine if students who 

initially benefitted from receipt of the intervention continue to benefit from the intervention and 

what degree of subsequent instructional support is required to maintain initial gains. Although 

the present study’s booster lesson did not provide a differential boost for intervention over 

control, it is possible that booster lessons provided earlier and at more frequent intervals would 

produce a differential boost. For example, in a recent study (Nelson et al., 2020), students who 
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received an intensive early reading intervention were provided with brief (2 – 3 min), weekly 

follow-up opportunities to practice intervention targets with feedback on their performance 

(Nelson et al., 2020). Students who received the initial intervention plus weekly practice 

opportunities were more likely to meet end-of-year benchmarks than students who received the 

initial intervention but did not receive the follow-up practice opportunities. These brief 

additional practice opportunities may have facilitated the retention of learned material because 

they provided students with frequent and contextual prompting to use the learned skills.  

 To understand how brief practice lessons can support intervention maintenance, future 

research should aim to determine the optimal delivery interval needed to maintain skills and 

determine if these intervals vary by skill or grade level. Given the significant fadeout seen in the 

months and years following mathematics interventions (e.g., Bailey et al., 2020; Clarke et al., 

2016; Hallstedt et al., 2018; Smith et al., 2013), it seems a worthwhile investment to determine 

the optimal spacing of delivery (e.g., weekly, monthly) needed to support persistence of effects.  

 Before concluding, we note several study limitations that should be addressed in future 

research. First, we were unable to include all students who previously participated in the parent 

study. While we originally intended to include 95 students, we located and delivered the booster 

lesson to only 40 students before schools closed due to the COVID-19 pandemic. Unfortunately, 

this resulted in unequal sample sizes between our two study conditions (i.e., intervention n = 28; 

control n = 12). While the ratio intervention to control group sample size met the recommended 

4:1 ratio when running an ANCOVA (Tabachnick & Fidell, 2020), the group with the smaller n 

(control group) had larger variation in the data. This heteroscedasticity combined with our 

overall small sample size causes the F test to be too liberal, leading to an increased Type I error 

rate. We adjusted for this increased Type I error rate by applying a more stringent alpha level 
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when testing main effects; however, future work should address larger samples with relatively 

equal group sizes. 

 Second, our study did not account for preexisting differences in student demographics or 

home environments. Prior work has found that approximately 72% of mathematics intervention 

fadeout is attributable to differences in student-level variables such as socioeconomic status and 

parent education level (Bailey et al., 2016). It is possible these variables affect the reactivation of 

marginal knowledge after a booster lesson. Unfortunately, due to this study's small sample size, 

we did not have the power to examine these variables. Future work should examine demographic 

variables as potential moderators of booster lesson effects.  

Third, our accuracy variable, the composite percentage correct of attempted problems 

across the four subtests, was constrained in the context of our fluency measure. That is, the 

accuracy variable was computed based on the number of problems the student attempted during 

the timed test. This may not represent an accurate portrayal of arithmetic accuracy. Future work 

should continue to investigate the use of booster lessons on accuracy and fluency, using a more 

precise measure of accuracy. 

 A final limitation is the absence of information regarding school intervention support 

during the study's follow-up period. Students may have received school-based mathematics 

interventions as part of their school's tiered support system in the months and years following the 

first-grade intervention. It is possible the nonsignificant effect of the booster lesson is a result of 

schools providing arithmetic intervention to the parent study's control group students but not to 

the parent study's intervention students. This might occur because students who received first-

grade intervention likely demonstrate stronger mathematics performance between start of second 
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grade and end of third grade. Future work should obtain information on school-provided 

intervention during the follow-up period, including instructional focus and intensity.  

Finally, future research should continue to investigate the role of booster lessons in 

reactivating marginal knowledge by exploring the use of distributed practice on skill retention 

and activation not only for arithmetic but also for other interventional focal skills. The goal is to 

help schools plan efficient and effective post-intervention services to optimize the maintenance 

of intervention effects.  
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Appendix A 
Counting Strategies Booster Lesson Script 

 
 
Posters:   Open Hand with Plus Sign and Closed Hand with Minus Sign 
   Know It or Count! 
   Count IN to Add 
   Count UP to Subtract  
 
Worksheets:  Booster - 1  

Booster - 2 
 MOBYS Graph  
   
Materials: Flashcards 

Timer 
Pencil 

 Crayons 
 
 

INTRODUCTION 

 
When you were in 1st grade, your teacher was ______. You learned a lot about solving 
math problems with ______.  
 
You may have also had intervention in your school or tutoring with a Vanderbilt tutor on 
a math program called Pirate Math or Galaxy Math.  
 
Today we'll review some of the things you learned about math in 1st grade. At the end 
we'll play a game called Meet or Beat Your Score. You may remember playing this game 
with your Vanderbilt tutor or your school interventionist. If you work hard and follow 
directions, you can earn a prize from my prize box (point to prize box). 
 
 

COUNTING STRATEGY REVIEW 

 
(Display Know It or Count poster and Booster worksheet 1. Use cover sheet so 
that only the top row of problems on worksheet is displayed.) 
 
 

There are two ways to get the answer to a math problem like this (point to 1 + 1). 
The first way is to know it (point to #1 on Know It or Count poster). If you know it 
right away, pull the answer right out of your brain. Like this: I know the answer to 
1 + 1 right away. 1 plus 1 equals 2 (write 2 on worksheet). I pulled the answer right 
out of my brain. You try. What's the answer to 2 + 2 (point)? (Student.) Right! 2 plus 
2 equals 4. (Student writes 4 on worksheet.) You just pulled the answer out of your 
brain (point to Know It or Count poster). You can put your pencil down. 
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But if you don't know the answer right away, you figure out the answer by 
counting (point to #2 Know It or Count poster). To add, you count in.  
 
 

Display Open Hand with Plus Sign and Closed Hand with Minus Sign poster. 
Fold poster so that only the Open Hand side is displayed.  
 
 
 

Look at this picture of an open hand (point to picture of open hand on poster), it has 
a plus sign on it. This reminds you to start adding with your hand open.  

 
 (Display Count IN to Add poster.) This poster reminds you how to count in 
to add.  
 
 
 

Slide cover sheet down to display next row of problems on Booster worksheet 1. 
 
Let's practice with this problem (point to each part of problem as you read): 8 plus 7.  
 

If the student quickly blurts out the answer, say: It's great you knew the answer 
right away! Let's pretend you don't know the answer. That way, you can 
practice how to find answers when you don't know the answer right away. 

 
This problem has a plus sign (point to plus sign on worksheet). It's addition. So you 
count in. Step 1 (point to poster) says, "Open hand." Open your hand to show the 
smaller number. In the problem, 8 plus 7, what's the smaller number (point to 8 and 
7)? (Student.) Yes, 7 is the smaller number. So, I open my hands, and I show 7 
fingers. (Open both hands and hold up 7 fingers. Leave fingers up while continuing with 
next step.) 
 
Step 2 (point to poster) says, "Count in." Start counting with the bigger number. 
The bigger number is 8. So, I start counting with 8 and I push one finger into my 
hand for each number I count. Watch how I count in: 8 (bump fist to wrist), 9 (push 
down 1st finger), 10 (push down 2nd finger), 11 (push down 3rd finger), 12 (push down 4th 
finger), 13 (push down 5th finger), 14 (push down 6th finger), 15 (push down 7th finger). 
 
(Point to step 3 on poster.) The answer is the last number I say. The last number I 
said was 15. So I write 15 here (write 15). 8 plus 7 equals 15. 
 
Now you try (point to next problem). Read this problem. (Student.) Right! 5 plus 9. 
It's addition so start with your hand open. Now show me how you count in to add. 
Allow student to complete the problem aloud using the steps discussed. If student 
makes an error, help as shown below.  
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If needed: That's not quite right. Remember Step 1 (point to poster), open 
your hand and show the smaller number. The smaller number is 5. Hold up 
5 fingers to show the smaller number. (Student holds up 5 fingers.) 
 
If needed: Remember Step 2 (point to poster), count in to add. Start counting 
with the bigger number. The bigger number is 9. Start counting with 9. 
Push one finger into your hand for each number you count.  
 
If needed: That's not quite right. You start at 9 (bump fist to wrist). Now count 
10 (push down 1st finger), 11 (push down 2nd finger), 12 (push down 3rd finger), 
13 (push down 4th finger), 14 (push down 5th finger).  
 
If needed: What's the last number you said (model the counting if needed). 
(Student.) Write your answer. (Student writes.)  
 

Yes! 5 plus 9 equals 14. Remember. When you add, open your hand to show the 
smaller number and then start counting with the bigger number. The answer is 
the last number you say.  
 
Now let's talk about subtraction. You also use your hand to subtract. But when 
we subtract we count up. This is different from counting in to add.  
 

Display Open Hand with Plus Sign and Closed Hand with Minus Sign poster. 
Fold poster so that only the Closed Hand side is displayed. 
 
 
 

Look at this picture of a closed hand (point to picture of closed hand on poster), it 
has a minus sign on it. This reminds you to start subtracting with your hand 
closed.  
 

 (Display Count UP to Subtract poster.) This poster reminds you how to 
count up to subtract. 
 
 
 

Slide cover sheet down to display final row of items of Booster worksheet 1.  
 
Let's practice with this problem (point to each part of problem as you read): 11 
minus 3. This problem has a minus sign (point to minus sign on worksheet). It's 
subtraction. So you count up.  
 
Step 1 (point to poster) says, "Close hand." Close your hand to hold the minus 
number. What's the minus number? (Student.) Yes, 3 is the minus number. So I 
close my hand and hold the minus number, 3. (Close hand to make a fist. Leave 
hand in first while continuing with next step.) 
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Step 2 (point to poster) says, "Count up." Start counting with the minus number. 
So, I start counting at 3 and count up to the other number, 11. Watch how I count 
up: 3 (close hand), 4 (hold up 1 finger), 5 (hold up 2 fingers), 6 (hold up 3 fingers), 7 
(hold up 4 fingers), 8 (hold up 5 fingers), 9 (hold up 6 fingers), 10 (hold up 7 fingers), 11 
(hold up 8 fingers). 
 
Point to step 3 on poster. The answer is the number of fingers you used to count 
up. I used 8 fingers to count up (show hands). So, the answer is 8. (Write 8.) 11 
minus 3 equals 8.  
 
Now you try (point to next problem). Read this problem. (Student.) Right! 13 minus 
8. Is this addition or subtraction? (Student.) Yes, it's subtraction. Is your hand 
open or closed? (Student.) Right. Now show me how to count up to subtract. 
 
Allow student to complete the problem aloud using the steps discussed. If student 
makes an error, help as shown below.  
 

If needed: That's not quite right. Remember Step 1 (point to poster), close 
your hand to hold the minus number. The minus number is 8 (point). Close 
your hand and hold the minus number, 8. (Student makes fist.) 
 
If needed: Remember Step 2 (point to poster), count up to subtract. Start 
counting with the minus number. So, I start counting at 8 and count up to 
the other number, 13.  
 
If needed: That's not quite right. You hold the minus number, 8, in your 
hand (close hand) and count 9 (hold up 1 finger), 10 (hold up 2 fingers), 11 
(hold up 3 fingers), 12 (hold up 4 fingers), 13 (hold up 5 fingers).  
 
If needed: How many fingers did you use to count? (Student.) Write your 
answer. (Student writes.) 

 
Yes, 13 minus 8 equals 5. Remember. When you subtract, start with a closed 
hand to count up. Close your hand to hold the minus number and then count up 
to the other number. The answer is the number of fingers you used to count. 
 
That was good work! Now let's practice using Count IN and Count UP to solve 
some addition and subtraction problems.  
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Display Booster worksheet 2. RA and student work through problems together. For 
each problem, RA should: 

1. Ask student to read problem aloud. 
2. Ask "Do you know it right away or should you count?" If student knows 

answer right away, allow them to write answer and move on to next problem.  
3. Ask "Is this addition or subtraction?" 
4. Ask "Should you use an open hand or closed hand?" 
5. Guide student through Count IN or Count UP steps as needed (see table below). 

 
 

Count In to Add Count Up to Subtract 
If needed: That's not quite right. 
Remember Step 1 (point to poster), 
open your hand to show the smaller 
number. The smaller number is XX. 
Hold up fingers to show the smaller 
number. (RA and student hold up 
fingers.) 

 
If needed: Remember Step 2 (point to 
poster), count in. Start counting with 
the bigger number. The bigger 
number is XX. Push one finger into 
your hand for each number you 
count.  

 
If needed: That's not quite right. You 
start at XX (bump fist to wrist). Now 
count in. (Model Counting In for 
student).  

 
If needed: What's the last number you 
said (model the counting if needed). 
(Student.) Write your answer. (Student 
writes.)  
 
RA read entire problem with answer 
aloud.  
 

If needed: That's not quite right. 
Remember Step 1 (point to poster), 
close your hand to hold the minus 
number. The minus number is XX 
(point). Close your hand to hold the 
minus number. (RA and student make 
fist.) 

 
If needed: Remember Step 2 (point to 
poster), count up to subtract. Start 
counting with the minus number. So, 
I start counting at XX and count up to 
the other number, XX.  

 
If needed: That's not quite right. You 
hold the minus number in your hand 
(close hand) and count. (Model 
Counting Up for student).  

 
If needed: How many fingers did you 
use to count? (Student.) Write your 
answer. (Student writes.) 
 
 
RA read entire problem with answer 
aloud.  
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GAME 
 
Display Open Hand with Plus Sign and Closed Hand with Minus Sign, Count IN to Add, 
and Count UP to Subtract posters. 
 
Now let's play a game! It's called Meet or Beat Your Score. You may have played 
this with your Vanderbilt tutor or with your school interventionist. (Show flash 
cards.) Each card has one math problem on it. I'll show you one card at a time. 
Look at the problem and tell me the answer as fast as you can.  
 
For each problem, there are two ways to get the answer. You know it or you count 
like I just showed you. If you don't know the answer right away, count IN or count 
UP to find the answer (point to both posters).  
 
If you get the right answer, I put it in a pile on the table. If you don't get it correct, 
I'll show you how to count to get the answer. Then, I show you the next card. 
 
You have 30 seconds to answer as many math problems as you can. I hold up a 
problem. You give me the answer. 
 
Let's practice. (Hold up flash card.) What's the answer? If you don't know the 
answer, count. (Student.) 
 

If student answers problem correctly: 
Say to student, That's correct! 
 
If student answers incorrectly or pauses 3 sec: 

 Model the counting strategy on the back of flashcard.  
 
That was good practice! Now I'll set the timer for 30 seconds and you'll try again. 
At the end of 30-seconds, we'll count the number of cards in the pile. 
 
Are you ready? Let's try. (Set timer and show flash cards for 30 seconds.) 
 

If student answers problem correctly: 
1. Place card in a pile on the table. 
2. Present next card to student. 
3. Continue until timer beeps. 

 
If student answers incorrectly or pauses 3 sec: 
Model the counting strategy on the back of flashcard and place card in pile. 
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When the timer beeps: Great job! Let's count the cards in the pile. (Count cards.) 
You answered XX math problems correctly.  
 
Now, let's graph your score. Since you answered XX math problems correctly, we 
are going to color your graph to XX. (RA outline total number of correct problems on 
graph and allow student to color.)  
 
Thank you for working so hard! Now let's move on to our last activity. 
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Appendix B 
Counting Strategies Booster Lesson Fidelity Checklist 

 
Scoring Code: Yes Behavior Demonstrated 
 No Behavior Omitted 

 
Introduction   

1. RA states student ID and date aloud on recorder. Yes No 

2. RA reads from script to introduce tutoring session. Yes No 

Counting Strategy Review   

3. RA explains the two ways to solve a math problem: Know it or 
Count.  Yes No 

4. RA explains that to add, you start with your hand open. Yes No 

5. RA models Count In to Add, referencing steps on poster. Yes No 

6. RA has student Count In to Add, providing assistance as needed. Yes No 

7. RA reminds student to begin with an open hand to add and start 
counting with the bigger number when adding. Yes No 

8. RA explains that to subtract, you start with your hand closed. Yes No 

9. RA models Count Up to Subtract, referencing steps on poster. Yes No 

10. RA has student Count Up to Subtract, providing assistance as 
needed. Yes No 

11. 
RA reminds student to begin with a closed hand to subtract, to start 
counting at the minus number, and to count up to the other number 
when subtracting. 

Yes No 

12. RA and student use Count In to Add and Count Up to Subtract to 
complete problems on Booster worksheet 2. Yes No 

13. RA uses appropriate corrective feedback throughout lesson.  Yes No 

Game   

14. RA introduces and explains how to play Meet or Beat Your Score. Yes No 

15. RA has student practice solving one math problem, providing 
assistance if needed. Yes No 

16. RA and student play Meet or Beat Your Score for 30 seconds. Yes No 

17. RA uses appropriate corrective feedback (from back of flashcard), if 
needed. Yes No 

18. RA and student graph score. Yes No 
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Upon completion of lesson: 
2 = Highly 
Effective 

1 = Moderately 
Effective 0 = Ineffective N/A = Not 

Applicable 

________ Rate the tutor's effectiveness in explaining the lesson's concepts and 
strategies. 

________ Rate the tutor's effectiveness in providing feedback for correct and 
incorrect responses to extend student understanding. 

________ Rate this lesson's consistency with the lesson script, while maintaining 
lesson flow.  
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Appendix C 
Outliers Included Analyses 

 
With outliers included, the ANCOVA on the main study outcome, number of correct 

problems completed post-booster session, revealed no significant difference between conditions, 

F(1, 37) = 0.024, p = .878, partial eta squared = .001. There was a strong relation between pre-

booster composite scores and post-booster composite scores, as indicated by a partial eta squared 

value of .850. Estimated marginal means are presented in Table S1. The ANCOVA on the 

supplemental score post-booster percent correct of attempted problems also revealed no 

significant difference between the two groups on post-booster accuracy of problems attempted, 

F(1, 37) = 0.130, p = .721, partial eta squared = .003. There was a strong relation between pre-

booster accuracy of problem attempted and post-booster accuracy of problem attempted, as 

indicated by a partial eta squared value of .655. Estimated marginal means are presented in Table 

S1.  

 
Table C1 
 
Estimated Marginal Means on Dependent Variable by Group with Outliers Included 

 

   95% Confidence Interval 

Group Adjusted Mean S. E. Lower Upper 

Post-Booster Raw Score 

   Control  35.890 2.206 31.421 40.360 

   Intervention 36.297 1.443 33.373 39.221 

Post-Booster Percent Correct of Attempted 

   Control 87.107 3.739 79.532 94.682 

   Intervention 85.476 2.405 80.603 90.350 

 


