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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Modern societies around the world use written characters as tools to visually represent 

spoken communication. Besides words written in script(s) used in one’s native language, much 

of our waking lives are also governed by Arabic (or Hindu-Arabic) digits 0 to 9, such as in 

reading and writing time, date, phone numbers, addresses, as well as making measurements and 

performing arithmetic computations related to discrete quantities, length, mass, capacity, time, 

and money. Although numbers can be represented by characters of the script of any language 

(e.g., the concept of five can be written as “five” or “V” using the Roman script, “五” using the 

Chinese script, “ׁחָמֵש” using the Hebrew script), the Arabic numeral system has been adopted 

almost universally for representing numbers, due in part to its efficiency in allowing numbers of 

any size to be easily represented and manipulated (J. Zhang & Norman, 1995).  

The ability to read Arabic numerals and understand what they represent has critical 

consequences throughout lifespan. Such basic numeral understanding bridges preschooler’s 

informal mathematical knowledge (e.g., counting, comparing collections of objects, solving 

verbal/story problems) to formal mathematical knowledge (e.g., algorithmic calculations) 

(Purpura et al., 2013), predicts later academic achievement in both math and reading (Duncan et 

al., 2007), and are associated with individual differences in mathematical competencies across 

lifespan (Schneider et al., 2017, 2018). In turn, low mathematical competencies are associated 

with lower likelihood of high school graduation and college attendance (Bynner & Parsons, 

1997; Parsons & Bynner, 2005), lower employment opportunities and advancement, and income 
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(Bynner & Parsons, 1997; Parsons & Bynner, 1997, 2005; Rivera-Batiz, 1992), poorer decision-

making related to personal finances and health care (Gerardi et al., 2013; Hibbard et al., 2007; E. 

Peters, 2012), poorer physical and psychological well-being (Parsons & Bynner, 2005), as well 

as huge annual economic costs to societies (Gross et al., 2009; R. Martin & Hodgson, 2014). 

Despite the importance of Arabic numeral reading, we know much less about how we 

read numerals than we do about words. Over the past three decades, we have learned how 

learning to read words in a particular script transforms the perceptual pathways in our brains (for 

an in-depth review, see Dehaene et al., 2015). Of particular interest here is the experience-driven 

development of a left-lateralized neural circuit that connects early visual cortices to spoken 

language regions via the so-called ventral temporal “Visual Word Form Area” – the region 

where the brain first automatically recognizes that “READ” and “read” are the same word even 

though they look different (L. Cohen & Dehaene, 2004; Dehaene & Cohen, 2011; McCandliss et 

al., 2003). The “Visual Word Form Area” is thought to represent the orthographic knowledge of 

the script(s) that we are familiar with, and is a powerful biomarker of reading fluency or 

difficulty (Dehaene-Lambertz et al., 2018; Dehaene et al., 2010; Olulade et al., 2015; van der 

Mark et al., 2009, 2011). Does learning to read numerals use part of the same perceptual pathway 

that has been sculpted for words, or does it carve out its own pathway? In other words, do our 

brains develop pathways that automatically distinguish “15” and “IS”? The goals of this thesis 

are to search for a numeral-supporting perceptual pathway, and probe the functional and 

representational properties of its key perceptual nodes.  

How Does the Brain Process Numerals? The “Visual Number Form” Hypothesis 

 Many of the conjectures about how the brain supports Arabic numeral reading stem from 

neuropsychological findings from patients with brain lesions and split brains. In particular, 



 3 

Cohen and Dehaene (1991) introduced a cognitive module called “Visual Number Form” in the 

case study of patient YM who had a left temporal lobectomy. YM made many errors when asked 

to read aloud in French a list of 1- to 8-digit numerals. The reading errors YM made were mostly 

substitution errors that maintained the string length and syntax, and tended to be perseveration of 

the digit in the same relative position in the preceding numeral (e.g., “78, 233, 6534, 52, 6453” 

read as “78, 733, 7534, 73, 7453”). The errors also affected the leftmost digit more frequently 

than other digit positions even though YM showed no clinical signs of a general left visual 

hemifield neglect. As the perseverations still respected the place value of the affected digit (e.g., 

digit 7 could be perseverated with “sept” (seven) or “soixante-dix” (seventy)), an impairment at 

the level of extracting the verbal labels was ruled out. Errors were predicted by visual similarity 

predominantly, but also partially by numerical distance (e.g., digit 3 is more likely to be 

substituted by 4 than by 9), and affected digits 0 and 1 substantially less than other digits. Taken 

together, the observations suggest that the impairment was at the level of digit representations 

and their visuo-spatial properties.  

Interestingly, the deficit was specific to reading aloud of numerals, and not when 

comparing their magnitudes or performing calculations on them, thereby ruling out a deficit at 

the level of visual input or attentional mechanisms. To account for the patterns of findings, 

Cohen and Dehaene (1991) hypothesized a visual buffer or workbench called the “Visual 

Number Form” that is accessed twice during numeral reading (Figure 1-1): First, information 

about string length and special digit identities serving as syntactic markers (e.g., 0 and 1) are 

extracted to create a syntactic frame, and then a word frame; Second, the remaining digit 

identities are accessed to fill the word frame and to retrieve their phonological representations. 

The functional locus of YM’s deficit was in the second access of the “Visual Number Form” 
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because his construction of the syntactic and word frames was intact. 

In summary, Cohen and Dehaene (1991) hypothesized that the “workbench storing the 

input data for number reading is visual rather than semantic in nature… [it] encodes several 

visuo-spatial characteristics of the stimulus, including the shape and the relative positions of the 

digits, presumably in a stimulus-centred co-ordinate system… We propose to name this store 

visual number form, by analogy to the visual word form, which is at the level at which a string of 

characters is identified as an orthographic entity” (p. 54). Although it is unclear whether YM had 

similar patterns of errors with alphabetic reading, it appears that the “Visual Number Form” is 

assumed to be conceptually distinct from the “Visual Word Form”. 

 

 

 

Figure 1-1. Cohen and Dehaene's (1991) cognitive model of Arabic numeral-to-word 

transcoding 

Reprinted from Cohen & Dehaene (1991) with permission from Taylor and Francis.  

 

 

Beyond the “Visual Number Form”: Triple-code Model of Number Processing 

 Incorporating the “Visual Number Form” hypothesis with other neuropsychological 
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findings from a variety of numerical tasks, Stanislas Dehaene and Laurent Cohen put forth a 

cognitive-anatomical “triple-code model” of number processing (Dehaene, 1992; Dehaene & 

Cohen, 1995). In the triple-code model, as illustrated in Figure 1-2, Dehaene and Cohen 

hypothesized three types of mental representations of number, and their corresponding neural 

substrates (Dehaene, 1992; Dehaene & Cohen, 1995). 

Depending on the external format in which numbers are presented to us – collection of 

objects, Arabic numerals, or spoken and written number words – and what we do with them, 

different combinations of any of three distinct mental (and neural) representations could be 

recruited: First is the visual number form code in which numbers are “represented as strings of 

digits on an internal visuo-spatial scratchpad” (Dehaene & Cohen, 1995, p. 85) (e.g., 53 as [5][3] 

instead of [3][5]). This code is thought to be subserved by the bilateral ventral occipitotemporal 

cortices (Dehaene & Cohen, 1995) that comprise a mosaic of sub-regions thought to be 

specialized for the recognition of different object categories including letter strings (Allison et 

al., 1994; Grill-Spector & Malach, 2004; Grill-Spector & Weiner, 2014; Kanwisher, 2010). 

Second is a verbal code (or verbal word frame) in which numbers are represented lexically, 

phonologically, and syntactically as organized sequences of words (e.g., 485  Hundreds[4] 

Tens[8] Ones[5]  “four hundred eighty-five”). The verbal code also supports verbally encoded 

arithmetic facts (e.g., “four times five is twenty”), and is thought to be subserved by left-

lateralized regions implicated in general-purpose language processing, including the left inferior 

frontal, middle and superior temporal gyri, that extend to the inferior parietal lobule, comprising 

the angular and supramarginal gyri (Dehaene et al., 2003; Dehaene & Cohen, 1995). Evidence of 

a dissociation between reading number words and non-number words in patients with aphasia, 

however, suggest that the verbal code may be domain-specific (Cohen et al., 1997; Dotan & 
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Friedmann, 2015; Marangolo et al., 2004, 2005; for reviews, see Messina et al., 2009; Piras & 

Marangolo, 2009). Third is an analogue magnitude code in which numbers are represented by 

distributions of activation on a “mental number line” (Dehaene & Changeux, 1993). This code 

allows us to estimate, compare, and manipulate numerical magnitudes, and is thought to be 

subserved primarily by the bilateral intraparietal sulci, with support from the posterior superior 

parietal cortices for attentional orientation on the mental number line (Dehaene et al., 2003; 

Dehaene & Cohen, 1995).  

The extent to which the visual, verbal, and magnitude codes are recruited depends on the 

stimulus input and task. The visual number form code is thought to be recruited as an “input 

stage common to any task involving number manipulations, including reading, magnitude 

comparison, calculation, etc.” (L. Cohen & Dehaene, 1991, p. 54, emphasis mine). Comparing 

whether “42” or “39” is greater is hypothesized to also recruit the magnitude code. The verbal 

code is not thought to be critical because patients with alexia who could not read aloud numerals 

could nonetheless compare their magnitudes with perfect accuracy (L. Cohen & Dehaene, 1995, 

1996). In contrast, reading aloud multi-digit numerals not for the purpose of quantity 

manipulation is predicted to also recruit the verbal code, but not the magnitude code. 
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Figure 1-2. Triple-code model of number processing 

Three types of mental representations of numbers and their corresponding hypothetical neural 

substrates. Adapted from Dehaene & Cohen (1995). 

 

 

A considerable proportion of numerical cognition research has focused on the magnitude 

and verbal codes, and have found consistent empirical support for neural circuits underlying 

these two representational codes (for reviews and meta-analyses, see Ansari, 2008; Arsalidou & 

Taylor, 2011; Cohen Kadosh et al., 2008; Dehaene et al., 2003; Houdé et al., 2010; Kaufmann et 

al., 2011; Moeller et al., 2015; Sokolowski et al., 2017; Zamarian et al., 2009). However, there 

has been a lack of robust and convergent evidence of any high-level visual brain regions that 

appeared to be functionally specialized for processing Arabic numerals. The neural circuits 

underlying the visual number form code has therefore received less attention. 

Do The “Visual Number Form” and “Visual Word Form” Systems Share Neural 

Resources? 

Functional magnetic resonance imaging (fMRI) has made possible the discovery of a 

mosaic of brain regions in the ventral occipitotemporal cortex (vOT) that appear to be the key 

perceptual nodes of functionally specialized circuits for high-level visual recognition of different 

object categories, such as faces, scenes, body parts, and written words (for a review, see 

Kanwisher, 2010). Typically, a category-preferring vOT region is functionally defined based on a 

statistically greater blood-oxygenation-level-dependent (BOLD) response for the preferred 

category than non-preferred categories. For instance, a region preferring words would show a 

greater BOLD response to words than to line drawings of objects, false fonts, consonant strings, 

and Arabic numerals (e.g., Baker et al., 2007). At the spatial resolution enabled by fMRI, it is 
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more common that a BOLD preference for a particular category is not all-or-nothing, but a 

matter of degree (L. Cohen & Dehaene, 2004; Kanwisher, 2010). Importantly, compared to other 

brain recording techniques such as positron emission tomography and intracranial 

electroencephalogram, fMRI has been a highly effective and preferred method for the functional 

localization of cognitive processes due to its combination of being non-invasive and non-

restrictive in the types of populations that can be studied, as well as allowing whole-brain 

coverage with high spatial resolution. 

Over the past two decades, the use of fMRI has led to the discovery and an extensive 

study of a highly localized neural correlate of the visual word form called the "Visual Word 

Form Area” (VWFA) (for reviews, see Cohen et al., 2000, 2002; Cohen & Dehaene, 2004; 

Dehaene & Cohen, 2011; McCandliss et al., 2003; C. J. Price & Devlin, 2003, 2011). The 

VWFA, found in the mid-fusiform gyrus and along the left occipitotemporal sulcus (see Figure 

1-3), is thought to represent letter strings as “an ordered set of abstract letter identities” (L. 

Cohen et al., 2002, p. 1054), and it fulfils three criteria for a functionally specialized region (L. 

Cohen & Dehaene, 2004; Dehaene & Cohen, 2011). First, the VWFA is functionally specialized 

for word reading in that it is tuned to processes required for reading in a specific script (e.g., 

invariance to size, letter case, and font). Second, the VWFA responds more to words and 

pronounceable pseudowords than to consonant strings, digit strings, and other object categories, 

suggesting some degree of regional selectivity. Third, the VWFA has a reproducible location 

across individuals, and across cultures with vastly different scripts (e.g., alphabetic versus 

ideographic) (L. Cohen & Dehaene, 2004; see Dehaene et al., 2015, for a review; Dehaene & 

Cohen, 2011). In alphabetic readers, the VWFA is also found to be the terminal stage of a 

hierarchical perceptual processing system that shows sensitivity to increasingly larger fragments 
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of alphabetic strings along the posterior-to-anterior gradient of the vOT – from strings of 

infrequent letters, to strings of frequent but rare bigrams, to strings of frequent bigrams and rare 

quadrigrams, and to real words (Vinckier et al., 2007). 

Digit strings, however, do not seem to be represented in the VWFA to the same extent as 

words do. Not only is the VWFA less engaged by digit strings than by words, pseudowords, and 

consonant strings (Baker et al., 2007; James et al., 2005), but it also shows equivalent 

engagement to digit strings and words in an unfamiliar script (e.g., Hebrew words to non-

Hebrew readers), which suggests that the VWFA does not care about numerals more than it does 

about non-meaningful characters (Baker et al., 2007). Moreover, Arabic digits do not form 

frequent combinations analogous to bigrams, trigrams, or quadrigrams that can leverage the same 

processing hierarchy as words do. Hence, although single digits and letters may be processed by 

a common representational system during the earlier stages of visual processing such as the 

identification of character features and allographs (McCloskey & Schubert, 2014), they likely 

diverge in their processing pathways at the level of character strings (Dotan & Friedmann, 2019). 

Given that the VWFA can easily be localized using fMRI, and that digits are at least as 

ubiquitous as characters used for word reading (e.g., letters), it is reasonable to assume that an 

analogous “Visual Number Form Area” (VNFA) can also be detected using the same method. 

However, many fMRI studies failed to find a numeral-preferring region in the vOT, despite 

many of them having sufficient sensitivity to localize word-preferring or letter-preferring regions 

within the same sample or individual (e.g., Baker et al., 2007; James et al., 2005; Polk et al., 

2002). Even when evidence of a numeral-preferring region along the ventral visual stream is 

reported in some studies, they do not appear to have a reproducible location in each hemisphere, 

spanning from the fusiform gyrus (e.g., Holloway et al., 2013; Pinel et al., 2001; Vogel et al., 
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2015), to the inferior temporal gyrus (e.g., Amalric & Dehaene, 2016; Grotheer, Herrmann, et 

al., 2016), to the lateral occipital cortex (e.g., Park et al., 2012; L. Peters et al., 2015). This is 

particularly puzzling given that the location of the VWFA is consistent even between visually 

distinct alphabetic and logographic scripts (Bolger et al., 2005; Szwed et al., 2014; A. C. N. 

Wong et al., 2009), but Arabic digits being the most common script for numerals appear not to 

recruit a region that is as highly localized as the VWFA. Thus, if reproducible localization is one 

of the key criteria for defining a functionally specialized region (L. Cohen & Dehaene, 2004; 

Dehaene & Cohen, 2011), the question of whether a VNFA exists in the vOT remains open. 

A VNFA Can Be Reproducibly Localized, but fMRI May Not Be Optimal 

Initial intracranial electrophysiological recordings in epilepsy surgery patients found 

numeral-selective N200 (a negative-going event-related potential typically associated with visual 

processing around 200 ms post-stimulus onset) in several sites across the fusiform and inferior 

temporal gyri, but letter string N200 was also recorded from the same sites (Allison et al., 1994). 

These findings led the authors to conclude that processing of letter strings and numerals may be 

less spatially and functionally distinct (Allison et al., 1994). More recent intracranial stimulation 

and electrophysiological work in epilepsy surgery patients suggests that the most likely location 

of a numeral-preferring region may be within the posterior inferior temporal gyrus (pITG). Roux 

and colleagues (2008) stimulated many intracranial sites across the cerebral cortex, and found 

sites in the left pITG, inferior frontal gyrus, and supramarginal gyrus, in which stimulation 

selectively impaired reading aloud of multi-digit numerals, but not number words and sentences. 

Their findings thus suggest that the pITG is causally involved in the processing of Arabic 

numerals, and is a likely location of a VNFA. The fact that stimulation of any one of the three 

regions impaired numeral reading also suggests that although each of them is necessary for 
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numeral reading, they are clearly not sufficient alone.  

 Using intracranial electroencephalogram (iEEG) in epilepsy surgery patients, Shum and 

colleagues (2013) also found a circumscribed set of sites in the right pITG (but also in a much 

limited set of electrodes in the left pITG of some patients) that were more responsive to single 

Arabic digits than to characters with similar curvilinear features (letters, scrambled digits and 

letters, and numerals from a foreign script), as well as to single- and double-digit numerals than 

to semantically similar number words (e.g., “twenty”) and phonologically similar non-number 

words (e.g., “plenty”). Their findings thus suggest that the region may be tuned specifically to 

the overall visual forms or configurations of Arabic digits, rather than driven by the mere 

presence of constituent visual features, or by phonological or semantic processing. Importantly, 

this was the first study to provide a precise location of the candidate VNFA in a standardized 

stereotactic space: MNI 51, -54, -24 (see Figure 1-3).  

 

 

 
Figure 1-3. “Number Form Area”, “Visual Word Form Area”, and “Letter Form Area” 
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Candidate location of each area on the lateral temporal and ventral occipitotemporal cortices in 

the left hemisphere. STG: Superior temporal gyrus. MTG: Middle temporal gyrus. ITG: Inferior 

temporal gyrus. STS: Superior temporal sulcus. ITS: Inferior temporal sulcus. OTS: 

Occipitotemporal sulcus. CoS: Collateral sulcus. toi: Temporo-occipital incisure. FG: Fusiform 

gyrus. PHG: Parahippocampal gyrus. LG: Lingual gyrus. LOG: Lateral occipital gyrus. ECoG: 

Electrocorticography. fMRI: Functional magnetic resonance imaging.  

 

 

Similar numeral-preferring sites were subsequently reported in other iEEG studies from 

the same research group (Daitch et al., 2016; Hermes et al., 2017; Pinheiro-Chagas et al., 2018), 

but because they relied on overlapping cohorts of subjects, its spatial reproducibility with 

different samples, particularly neurotypical ones, was not clear. 

 Based on its location being more lateral to the word- and letter-preferring fusiform 

regions, Shum and colleagues (2013) hypothesized that previous fMRI studies were not 

successful in localizing a VNFA because of its proximity to the air-bone interface of the auditory 

canal and venous sinus, and is thus susceptible to complete magnetization dephasing and BOLD 

signal attenuation. This insight led to a set of fMRI studies that adopted various advanced 

acquisition and post-acquisition methods to mitigate signal loss, and were all successful in 

localizing a VNFA in the left and/or right pITG (Abboud et al., 2015; Amalric & Dehaene, 2016; 

Grotheer, Herrmann, et al., 2016). 

Interestingly, the first fMRI study to functionally localize a “visual” NFA proper in the 

pITG following the revelation of possible signal dropout around the region was in congenitally 

blind individuals (Abboud et al., 2015). Based on emerging evidence that category-preferring 

regions such as the VWFA can develop in the vOT even in individuals without visual experience 

(Reich et al., 2011; Striem-Amit et al., 2012), Abboud and colleagues (2015) examined the 

hypothesis that the VNFA is not involved in the computation of visual form per se, but to 
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“decipher [the shapes of] symbols for the purpose of connecting them to a quantity 

representation” independent of the sensory modality (p. 2). To test this hypothesis, they trained 

congenitally blind participants to associate auditory soundscapes with the shapes I, V, and X (the 

time, frequency, and intensity dimensions of sounds are isomorphically mapped to the visual 

features), which could then be decoded as letters or Roman numerals (e.g., V as five). They 

found a region in the right pITG (MNI 53, -44, -12)1 that responded more when participants 

identified each soundscape as a specific numeral than as a letter. They also found a region in the 

left occipitotemporal sulcus close to the canonical VWFA site that responded more when the 

same soundscapes were identified as letters than as numerals. In other words, the regions were 

sensitive to abstract categories (numeral or letter) based on the same sensory form, indicating 

some degree of top-down control on which region was recruited for the task. They further 

showed using resting-state functional connectivity analyses in blind subjects and healthy controls 

that the meta-modal NFA had greater intrinsic connectivity with parietal regions implicated in 

quantity processing compared to the letter-preferring region, which had greater intrinsic 

connectivity with regions implicated in language processing. Such intrinsic functional 

connectivity biases were further replicated in children, and were found to be present even prior to 

formal schooling (Nemmi et al., 2018). Hence, these findings suggests that the NFA location 

may be constrained by structural connectivity biases between the vOT and quantity processing 

regions to link numerals to quantity representations (Hannagan et al., 2015). 

To mitigate signal dropout, Abboud and colleagues (2015) used a novel statistical 

algorithm to detect voxels containing attenuated BOLD signals (Peer et al., 2016) and exclude 

 

 
1 A left pITG cluster was observed in a symmetric location (MNI -56, -50, -8) at an uncorrected threshold, but did 

not survive correction for multiple comparisons. 
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them prior to analyses. However, the authors did not compare their results with and without 

signal-intensity thresholding. Hence, their study could not confirm that signal attenuation would 

have led to a failure to localize an NFA in the first place; it was simply assumed to be the case.  

Despite the sparse evidence available from only two studies with neuro-atypical 

populations as described above (i.e., epilepsy and congenitally blind), Hannagan and colleagues 

(2015) concluded that “the VWFA and the NFA are always localized and highly reproducible in 

the occipitotemporal cortex across subjects, fonts, and even sensory modalities” (p. 374). 

However, it cannot be ruled out that there could be neural reorganization in neuro-atypical 

populations that may not generalize to neuro-typical populations. Compared to the VWFA, there 

was also a lack of rigorous testing of the stimulus properties that the NFA is invariant to or 

sensitive to. 

Nonetheless, subsequent fMRI studies provided evidence that an NFA in the pITG can 

also be localized in neurotypical individuals. In a study with neurotypical adults, Grotheer and 

colleagues (2016) went to great lengths to mitigate signal loss. For scan acquisition, they used a 

64-channel head coil to enhance signal-to-noise ratio (SNR), parallel imaging acceleration factor 

of 3 to reduce susceptibility-based image distortion, high spatial resolution of 1-mm isotropic 

voxels to reduce intravoxel magnetization dephasing, and localized shimming to improve 

magnetic field homogeneity. They also used liberal spatial smoothing (8 times the voxel size) to 

increase the SNR. Using a 1-back repetition detection task with Arabic numerals and control 

categories that included letters and scrambled alphanumeric characters, they succeeded in 

localizing NFAs in the bilateral pITG (MNI -60, -57, -17 and 61, -45, -17), and also in the 

fusiform gyri (MNI -46, -57, -15 and 42, -49, -17). For unknown reasons, the authors focused on 

the pITG regions for further analyses, and ignored the findings of the fusiform regions as 
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additional candidate NFAs. Using a region-of-interest (ROI) analysis focusing specifically on the 

pITG regions, they also found that the preference for numerals in the pITG held for single digits, 

which suggests that single digits are sufficient to engage the NFAs and are not exclusive to 

multi-digit numerals. The authors then used the pITG peak voxels as ROIs in a separate 

experiment to compare the quality of the BOLD signals in the regions across different scan 

sequences that varied in voxel resolution (1 mm vs. 3 mm) and shimming method (standard vs. 

localized). The combination of a high-resolution scan and liberal spatial smoothing was most 

effective in mitigating signal attenuation in the pITG. However, because a priori regions were 

used, the authors did not directly demonstrate that the low-resolution scans failed to localize the 

NFAs in the first place. 

 Amalric and Dehaene (2016) also used a repetition detection task with Arabic numerals 

and control categories that included words and math formulas, and were successful in localizing 

NFAs in the bilateral pITG (MNI -56, -51, -19 and 62, -39, -17) in neurotypical adults. The 

authors attributed their successful localization of the NFAs to their “fast high-resolution fMRI 

sequence”, which included a multiband factor of 4, parallel imaging acceleration factor of 2, and 

1.5 mm isotropic voxel resolution (Amalric & Dehaene, 2016, p. 4915). Nonetheless, without 

comparing their sequence with a slower and standard 3-mm resolution sequence, there was no 

direct evidence supporting their claim. 

In sum, none of the studies above provided convincing evidence that directly supports the 

hypothesis that the prior lack of fMRI reports of an NFA was primarily due to signal dropout. 

Moreover, a retrospective inspection of fMRI studies revealed that some studies found numeral-

preferring regions in the ITG (Cui et al., 2013; Cummine et al., 2015), and some in the fusiform 

gyrus (Grotheer, Herrmann, et al., 2016; Pinel et al., 2001). Hence, while the recent set of studies 
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offered a qualitative sense of a reproducible location of an NFA (see Figure 1-3), whether it lies 

within the pITG or fusiform gyrus, spans both gyri, or has different locations in each hemisphere 

remains to be settled. If signal dropout did not affect all studies equally, there could be more 

evidence of the existence of an NFA in the extant fMRI literature, but such evidence might not 

have been highlighted because functional localization in the vOT was not a primary aim of those 

studies. Therefore, an immediate outstanding question is “Where is the most probable 

reproducible location of the putative NFA?”. Knowing more confidently where in the vOT to 

look for numeral preference can then allow targeted investigations of its role in numeral 

processing. 

Potential Hemispheric Asymmetries in the Recruitment of the Bilateral NFAs 

Another factor that could affect a robust and consistent localization of an NFA in either 

hemisphere is the possibility that the left and right NFAs may not be engaged to the same extent 

across tasks. Although evidence from split-brain patients suggest that the visual systems in both 

hemispheres are capable of processing single Arabic digits (Cohen & Dehaene, 1996; Colvin et 

al., 2005; see Dehaene & Cohen, 1995, for a review; Sergent, 1990; Seymour et al., 1994; Teng 

& Sperry, 1973), studies in patients with left vOT lesions (L. Cohen & Dehaene, 1991, 1995, 

2000; Miozzo & Caramazza, 1998) or split brains (L. Cohen & Dehaene, 1996; Gazzaniga & 

Smylie, 1984; Seymour et al., 1994) suggest that the bilateral NFAs are neither a single 

functional unit, nor functional duplicates working in parallel, but are functionally dissimilar and 

independent depending on the task contexts. For instance, left vOT lesions affected reading 

aloud of numerals and retrieval of verbally encoded arithmetic facts, but spared numeral 

magnitude comparison and some types of mental calculation (L. Cohen & Dehaene, 1991, 1995, 

2000). Such neuropsychological evidence led Cohen and Dehaene (1995) to propose that we 
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possess “two number identification systems, possibly residing in different hemispheres, and 

which may be separately called upon depending on the task” (p. 123). In particular, the left 

hemispheric number identification system is hypothesized to be necessary for tasks that rely on 

verbal processes (e.g., multi-digit numeral reading and retrieval of verbally encoded arithmetic 

facts) due to its co-lateralization with the left-lateralized language system (L. Cohen & Dehaene, 

1995; Dehaene & Cohen, 1997; Pinel & Dehaene, 2010) (see Figure 1-2). 

Although there is now a significant body of evidence supporting the existence of bilateral 

NFAs in adults, a non-systematic and non-exhaustive review in Table 1-1 shows that 

lateralization of numeral processing is not uncommon. One possibility is that the left NFA could 

be more variable in its location than the right NFA, possibly resulting from competition for 

neuronal space by spatially varied left-lateralized letter- and word-preferring regions (Glezer & 

Riesenhuber, 2013). Another possibility is that varied task demands involving the left-

hemispheric language system may recruit the left NFA to different extents across studies. 

Among the fMRI studies that observed a bilateral engagement of the numeral 

identification systems in Table 1-1, some found no hemispheric differences in the response 

profiles of the bilateral NFAs to different object categories including letters and novel characters 

(Grotheer et al., 2018; Grotheer, Herrmann, et al., 2016), while others do report evidence of 

hemispheric asymmetry in certain functional properties of the bilateral NFAs (Amalric & 

Dehaene, 2016; Pollack & Price, 2019). Therefore, it remains unclear when the left and/or right 

NFA is recruited, and whether they represent numerals differently. Knowing this can not only 

shed light on why localization of the NFAs has been elusive with fMRI, but also how we should 

approach the study of their specialization(s) (i.e., whether we should treat the left and right 

regions interchangeably or distinctly). 



 18 

Table 1-1. Evidence of lateralization of numeral processing in the ventral occipitotemporal 

(vOT) in adult fMRI, EEG and MEG studies 

Left lateralization Right lateralization Bilateral 
Fernandes et al. (2005): fMRI 

Fias et al. (2007): fMRI 

Holloway et al. (2013): fMRI 

Vogel et al. (2015): fMRI 

Vogel et al. (2017): fMRI 

Pollack & Price (2019): fMRI 

 

 

Pinel et al. (1999): fMRI 

Pinel et al. (2001): fMRI 

Knops et al. (2006): fMRI 

Gullick & Temple (2011): fMRI 

Park et al. (2012): fMRI 

Cui et al. (2013): fMRI 

Park et al. (2014): EEG 

Carreiras, Monahan, et al. (2015): MEG 

Cummine et al. (2015): fMRI 

Abboud et al. (2015): fMRI 

Carreiras, Quiñones, et al. (2015): fMRI 

Park et al. (2018): EEG 

Lochy & Schiltz (2019): EEG 

Goffin, Vogel, et al. (2019): fMRI 

Goffin, Sokolowski, et al. (2019): fMRI 

Conrad et al. (2020): fMRI 

Dehaene (1996): EEG 

Basso et al. (2003): fMRI 

Grotheer et al. (2016): fMRI 

Amalric & Dehaene (2016): 

fMRI 

Grotheer et al. (2018): fMRI 

Bugden et al. (2019): fMRI 

Aurtenetxe et al. (2020): 

MEG 

Note. EEG: electrical encephalography. MEG: magnetic encephalography. fMRI: functional magnetic 

resonance imaging. For EEG and MEG, vOT involvement is often characterized by event-related potentials 

within the first 200 milliseconds of stimulus onset (e.g., N170 component) or by frequency tagging. 

Intracranial recording studies were excluded as the constraint of electrode placements precluded any 

inference about lateralization. 

 

Overview of Current Studies 

The current state of knowledge leaves several questions unanswered. In particular, where 

are the most probable locations of the NFAs, if they do exist? What information do they 

represent? Are the left and right NFAs functionally equivalent? In this thesis, I present three 

studies that aimed to fill these gaps by further characterizing the spatial, functional, and 

representational aspects of the bilateral NFAs in neurotypical individuals using fMRI.  

In Chapter 2, we asked: In the extant literature, is there quantitative evidence of a 

reproducibly localized NFA in the vOT in either hemisphere of neurotypical adults? We 

conducted a systematic review of the literature, followed by a coordinate-based meta-analysis of 

studies that did find numeral preference somewhere in the brain to ask whether there is spatial 

convergence in the vOT that would provide evidence for the existence of an NFA. We were 
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additionally interested in elucidating other regions outside of the vOT that could be part of a 

network of brain regions that supports numeral processing. To foreshadow our results, we found 

evidence for a reproducibly localized NFA in the right pITG. 

Even though an NFA may exist, it remains unclear whether it is sensitive to or represents 

the visual form of numerals. The case for its role in shape processing (Hannagan et al., 2015) has 

been made by ruling out processing of curvilinear features, semantics, or phonology as 

alternative explanations (Shum et al., 2013). In other words, there is no direct evidence of shape 

processing thus far. Evidence for an NFA has also only been demonstrated with tasks that require 

attention to a character’s shape in order to identify or categorize it (e.g., 1-back repetition 

detection, familiarity categorization, and naming). It is thus unknown whether the NFA is truly 

sensitive to numeral shapes, independent of decision-making processes that depend on a 

character’s shape. Another related question is whether the NFA exhibits an experience-driven 

processing bias for its preferred category, like other category-selective regions in the ventral 

visual stream (e.g., Dehaene et al., 2001, 2004; Gauthier et al., 1999, 2000). If the NFA is 

functionally specialized for numerals, it should automatically process numerals (but not non-

numerals) even when they are not irrelevant for the task. So, in Chapter 3, we investigated 

whether the NFA is sensitive to visual form and whether it distinguishes numerals from other 

character categories automatically during passive viewing. Using representational similarity 

analysis (Kriegeskorte, Mur, & Bandettini, 2008), we compared the similarity of multivoxel 

patterns evoked by individual digits, letters and novel characters within the candidate NFA to 

describe how the neural representations of the individual characters were organized in a multi-

dimensional stimulus space. For instance, the neural representations could be organized based on 

category membership with distinct clusters for digits and for non-digits, or they could be 
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organized based on shape similarity (e.g., 5 may be represented more similarly to S than to 4), or 

both. 

Finally, findings of lateralization in numeral processing, as well as our findings from 

Chapters 2 and 3, suggest that the bilateral NFAs may not be functionally identical. A recent 

study by Pollack and Price (2019) found an intriguing dissociation between the left and right 

NFAs – the left pITG region (but not the right) showed sensitivity to digits when a digit was 

detected among letters, and the digit sensitivity of the right pITG region (but not the left) 

correlated positively with symbolic calculation skills. However, the study left us wondering how 

the left and right NFAs are similar or different in their functions and the information they 

represent, especially within individuals. This next step is crucial because it can inform us about 

whether we can generalize the inferences we make about the left NFA to the right NFA, and vice 

versa. So, in Chapter 4, we re-analyzed Pollack and Price's (2019) dataset with a comprehensive 

set of region-of-interest-based univariate and multivariate pattern analyses to probe the extent to 

which the bilateral NFAs are functionally dissimilar. Against the backdrop of studies finding 

positive associations between reading ability and responses to words in the VWFA (e.g., 

Dehaene et al., 2010; Feng et al., 2020), we also asked whether the functional and 

representational properties of the bilateral NFAs and their hemispheric asymmetries are related 

to individual differences in calculation skills. 

In summary, Chapter 2 focused on whether there is reproducible localization of an NFA 

across samples and paradigms in neurotypical adults; Chapters 3 and 4 then probed the 

functional and representational properties of candidate bilateral NFAs when numerals are 

passively viewed or actively processed, respectively; and Chapter 4 further investigated the 

relation between numeral representations in the NFAs and symbolic calculation skills.  
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Taken together, findings from the studies not only address whether the NFAs satisfy 

certain criteria for functional specialization, but also speak to the potential of NFAs as 

biomarkers of Arabic numeral reading fluency. The findings will lay the groundwork for a more 

complete understanding of how our brains support efficient reading of numerals, when and how 

that neural architectural transformation begins, and what happens when the numeral reading 

system does not develop typically. More broadly, whether a specialized perceptual system for 

reading numerals exists will add to the growing knowledge base of perceptual systems 

specialized for reading different culturally defined symbol sets, such as words based on different 

writing systems and scripts (e.g., Liu et al., 2007; L. Martin et al., 2019; Nelson et al., 2009; 

Perfetti et al., 2007), and music notation (e.g., Bouhali et al., 2017, 2020; Mongelli et al., 2017; 

Y. K. Wong et al., 2014; Y. K. Wong & Gauthier, 2010). Given the youth of these symbol sets 

relative to the existence of modern humans, these specialized systems are unlikely to have 

evolved by natural selection. The collective effort in investigating these specialized systems can 

therefore contribute to a broader and deeper understanding of how human culture interacts with 

our neurobiology. In particular, they inform how our brains assimilate or accommodate the 

learning of multiple culturally defined symbol sets for similar or distinct representational 

purposes (Dehaene & Cohen, 2007), and the behavioral implications when a brain struggles to do 

so.  
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CHAPTER 2 

 

 

THE SEARCH FOR THE “NUMBER FORM AREA”: A FUNCTIONAL NEUROIMAGING 

META-ANALYSIS 

 

 

This chapter is adapted from “The search for the number form area: A functional neuroimaging 

meta-analysis” published in Neuroscience & Biobehavioral Reviews, and has been reproduced 

with the permission of the publisher and my co-authors, Eric D. Wilkey, and Gavin R. Price.  

Yeo, D. J., Wilkey, E. D., & Price, G. R. (2017). The search for the number form area: A 

functional neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 78, 145–160. 

https://doi.org/10.1016/j.neubiorev.2017.04.027 

 

Introduction 

If a “Number Form Area” exists in the vOT that is specific to Arabic numerals rather than 

written symbols in general, particularly because of its sensitivity to the digit shapes (Hannagan et 

al., 2015; Shum et al., 2013), it should evidence functional specialization by a greater 

engagement for Arabic numerals than for other meaningful character categories, across a range 

of task contexts. Although recent studies suggest a candidate NFA in the pITG (Abboud et al., 

2015; Amalric & Dehaene, 2016; Grotheer, Herrmann, et al., 2016; Roux et al., 2008; Shum et 

al., 2013), there have been reports of numeral-preferring regions in the fusiform gyrus as another 

candidate NFA location (Grotheer, Herrmann, et al., 2016; Pinel et al., 1999, 2001). Indeed, 

previous coordinate-based meta-analyses of neuroimaging studies of number processing in 

neurotypical adults have revealed convergence of functional activation in the left fusiform gyrus, 

but not in the ITG (Arsalidou & Taylor, 2011; Sokolowski et al., 2017).  

However, there are methodological limitations to those meta-analyses that preclude 

associating the left fusiform gyrus region with Arabic numerals specifically. In the meta-analysis 
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by Arsalidou and Taylor (2011), the authors grouped both Arabic numerals and nonsymbolic 

(e.g., dot arrays) numerical stimuli under an umbrella term “numbers”, rendering it impossible to 

claim that any meta-analytic convergence in the fusiform gyrus was specific to Arabic numerals. 

In a more recent meta-analysis that examined symbolic and nonsymbolic numerical stimuli in 

separate meta-analyses, Sokolowski and colleagues (2017) did not find spatial convergence 

anywhere in the vOT when they meta-analyzed studies that included contrasts of only Arabic 

numerals. Nonetheless, they found spatial convergence across contrasts from passive-viewing 

paradigms that included either Arabic numerals or number words (i.e., “symbolic numbers”, 

collectively) in the left fusiform gyrus, but this spatial convergence could be driven by contrasts 

that included number words that recruit the mid-fusiform letter- and word-preferring regions.  

Besides the possibility that some studies did suffer from signal dropout in the pITG, the 

general lack of meta-analytic convergence in the pITG may also be due to the fact that previous 

meta-analyses included contrasts in which the cognitive subtraction approach would have 

eliminated any activation associated with the perceptual processing of Arabic numerals per se. 

For instance, a common contrast included in prior meta-analyses is “number comparison: near 

distance > far distance” (e.g., 4 vs. 5 compared to 4 vs. 9), in which the activation of interest is 

the effect of numerical distance. The common recruitment of an NFA in both distance conditions 

would be excluded via cognitive subtraction. 

Another potential limitation of prior meta-analyses is the inclusion of contrasts with very 

different cognitive demands between the numeral and non-numeral conditions, such as 

comparing the magnitude of a target digit to 5 versus single letter naming. These may not seem 

problematic if the primary aim of the meta-analysis is to uncover all brain regions that are 

involved in a task, regardless of whether they are specific to the task or not, and if the numeral 
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condition is presumed to be more cognitively demanding than the non-numeral condition. 

However, it is difficult to be certain that a lower-level control condition (e.g., mere fixation) 

always involve fewer neural resources across the whole cortex (C. J. Price et al., 2005). 

Moreover, of concern in any investigation of functional specialization for a particular visual 

stimulus category is the extent to which the cognitive subtraction involved in a contrast reflects 

only the difference in stimulus category per se (hereafter referred to as “contrast specificity”). 

Hence, a contrast such as “comparing digit to 5 > letter naming” (e.g., Chochon et al., 1999) may 

not reflect only a difference in stimulus category, but also the different mental computations 

performed in each task (e.g., working memory involved in one, but not another). In fact, low 

contrast specificity may include unnecessary noise (i.e., activations of non-interest) in a meta-

analytical procedure and decrease its statistical sensitivity to the activations of interest (C. J. 

Price et al., 2005). For instance, in an object-naming meta-analysis, Price and colleagues (2005) 

found enhanced sensitivity to activation in regions associated with semantic processing, visual-

speech integration, and response selection with high-level baseline conditions (e.g., object 

naming > face orientation) that controlled for speech and perceptual processing than with low-

level baseline conditions that did not control for those (e.g., object naming > fixation). It is thus 

unclear if we would observe a meta-analytic convergence in an NFA when we consider all 

relevant contrasts, or only when we restrict the analyses to numeral and non-numeral conditions 

with comparable task demands.  

In sum, whether or not the extant body of functional neuroimaging literature does in fact 

support a reproducible localization of an NFA in the ITG or fusiform gyrus requires further 

quantitative investigation with careful selection of contrasts to be included in the meta-analysis. 

Current Study 
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We conducted two coordinate-based Activation Likelihood Estimation (ALE) meta-

analyses of neuroimaging studies that contrasted the visual presentation of Arabic numerals with 

other meaningful written symbols across a variety of tasks in healthy, neurotypical individuals. 

In the first meta-analysis, we used a maximally inclusive approach by adopting liberal 

inclusion criteria with varying degrees of contrast specificity as long as Arabic numerals were 

contrasted with at least one other written symbol category (e.g., magnitude comparison > letter 

naming). We predicted that a liberal set of contrasts would increase the chances of revealing a 

convergence of activation in an NFA, especially if its activation was weakened by signal loss.  

It is however possible that the inclusion of less specific contrasts in the meta-analysis 

may lead to ‘noisy’ results (C. J. Price et al., 2005), potentially masking any convergence in an 

NFA. The inclusion of less specific contrasts may also reveal regions other than the NFA that are 

related to differential cognitive demands between the numeral and non-numeral conditions rather 

than to the stimulus category per se. This would render our interpretation of the role of these 

other regions in supporting numeral processing challenging. To address both of these concerns, 

we conducted a second meta-analysis that included only contrasts with equivalent task demands 

between the numeral and non-numeral conditions (e.g., digit matching versus letter matching). 

Methods 

Literature Search and Article Selection 

We used a multi-step approach to identify relevant articles. First, a literature search was 

made in the following databases in October 2016: PsycINFO (1806 – 2016), PubMed (1950 – 

2016), Web of Science (1965 – 2016), ScienceDirect (1823 – 2016), and Google Scholar. To 

identify journal articles and book chapters that have empirically examined processing of Arabic 

numerals relative to other meaningful symbols, or have reviewed the empirical evidence for 
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visual number form processing, search terms included (“number form” OR “visual Arabic” OR 

“visual number” OR “numeral” OR “digit” OR “symbolic number” OR “number symbol” OR 

“Arabic digit”) AND (“fMRI” OR “functional magnetic resonance imaging” OR “PET” OR 

"positron emission tomography"). 

A study was included in the systematic review if it met the following criteria: (1) 

published in English peer-reviewed journals, (2) sample comprised healthy, neurotypical human 

adults, (3) conducted whole-brain, within-group analyses using fMRI or positron emission 

tomography to minimize any bias towards predefined regions of interest, (4) employed tasks that 

contrasted the visual processing of Arabic numerals with at least one other category of written 

symbols that are orthographically and semantically familiar to the participants (e.g., letters of the 

Latin alphabet for English speakers (including their usage as Roman numerals), scripts of foreign 

languages such as Chinese and Japanese characters for Chinese or Japanese speakers 

respectively, and presumably universally known non-alphanumeric symbols such as $, %, &, 

etc.), and (5) reported the coordinates of activation maxima in standardized stereotaxic space 

such as the Talairach (Talairach & Tournoux, 1988) or Montreal Neurological Institute (MNI) 

templates.  

For criterion (4), the control categories against which Arabic numerals were compared to 

may also include nonsymbolic categories (e.g., Arabic numerals > letters, false fonts and 

objects), as long as response profiles were provided to illustrate significantly greater activation of 

the regions of interest to Arabic numerals than to all other symbolic and nonsymbolic control 

stimuli (e.g., Amalric & Dehaene, 2016; Grotheer, Herrmann, et al., 2016). In other words, the 

control conditions could include nonsymbolic stimuli, but they could not be the only control 

categories in the contrast (e.g., only false fonts, nonsymbolic dot arrays, shapes, body parts, or 
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fixation/rest), otherwise those contrasts were excluded.  

Moreover, to be as comprehensive as possible, identifying an NFA did not have to be one 

of the aims of a study to be included in the meta-analyses. As a main goal of this study was to 

search for a convergence of studies in an NFA, we were also liberal in selecting studies that had 

a non-numerical control task with cognitive demands different than the numerical task, as long as 

the control stimuli used were meaningful written symbols. 

Next, we crosschecked the reference lists of all the relevant empirical papers, review 

articles, meta-analyses, and book chapters, to identify additional studies that were not captured 

by the database searches. We also performed forward citation searches on the relevant studies 

that cited Shum and colleagues (2013), and studies that those articles cited in relation to an NFA. 

Finally, we excluded reviews, meta-analyses, case studies, studies that only presented auditory 

stimuli (e.g., Abboud et al., 2015, who also used Roman numerals instead of Arabic numerals), 

and studies that presented auditory and visual stimuli separately, but reported only supramodal 

contrasts for digits versus letters (e.g., Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003). An 

exception are studies that presented auditory and visual stimuli simultaneously, and required 

conscious processing of the visual symbols presented (e.g., Fernandes, Moscovitch, Ziegler, & 

Grady, 2005; Holloway, van Atteveldt, Blomert, & Ansari, 2015). Table 2-1 shows all the 

studies included in the systematic review. 

Subsequently, for the coordinate-based meta-analyses, we further excluded studies in 

which no supra-threshold activation was found for Arabic numerals relative to other meaningful 

symbols (see Table 2-1) because the ALE approach assesses spatial convergence across studies 

given that there is some supra-threshold activation somewhere in the brain. For studies in which 

the relevant contrasts were performed, but did not report the full list of coordinates, attempts 
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were made to obtain the necessary data, if available; otherwise, they were excluded (e.g., Knops 

et al., 2006).  

Lastly, to be as inclusive as possible, and to avoid further subjective thresholding, all 

reported activation foci were included, regardless of whether they were global peaks or subpeaks 

(i.e., local peaks within an activation cluster), and corrected or uncorrected for multiple 

comparisons. The non-independence of these foci within a study was accounted for by the use of 

updated ALE algorithms for the meta-analyses (Turkeltaub et al., 2012). 

A final set of 30 studies (from Table 2-1), all of which used fMRI, met the inclusion-

exclusion criteria for the ALE meta-analyses. The sample in Gullick and Temple (2011) was 

split into two independent studies or subject groups as a between-subjects design was used, 

resulting in a total of 31 studies with 50 contrasts, 388 foci, and 510 subjects. Details of those 

studies are presented in Table 2-2. All meta-analyses conducted in the current study met the 

recommended minimum number of studies (i.e., 20) required to avoid results that are strongly 

influenced by individual studies and for sufficient power to detect moderate effects (Eickhoff et 

al., 2016).
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Table 2-1. fMRI studies that contrasted Arabic numerals with other meaningful written symbols 

Excluded from current meta-analyses Included in current meta-analyses 

No numeral-specific activation found 

anywhere in the brain 

Numeral-specific activation within the vOT Numeral-specific activation only 

outside the vOT 
1. Anderson et al. (2015)  

2. Baker et al. (2007) 

3. Cantlon et al. (2011) 

4. Cohen Kadosh et al. (2007) 

5. Fulbright et al. (2003) 

6. James et al. (2005) 

7. Koul et al. (2014) 

8. Polk & Farah (1998) 

9. Polk et al. (2002) 

10. Reinke et al. (2008) 

11. van der Ven et al. (2016) 

1. Amalric & Dehaene (2016) – Bilateral ITG 

2. Basso et al. (2003) – Bilateral FG 

3. Coderre et al. (2009) – Left FG 

4. Cui et al. (2013) – Right ITG 

5. Cummine et al. (2015) – Right ITG 

6. Fernandes et al. (2005) – Left FG 

7. Fias et al. (2007) – Left FG 

8. Grotheer, Herrmann, et al. (2016) – Bilateral 

ITG and bilateral FG 

9. Gullick & Temple (2011) – Right ITG 

10. Knops et al. (2006)a – Right FG 

11. Pinel et al. (2001) – Right FG 

12. Pinel et al. (1999) – Right FG  

 

1. Andres et al. (2012) 

2. Andres et al. (2011) 

3. Attout et al. (2014) 

4. Cappelletti et al. (2010) 

5. Carreiras et al. (2015) 

6. Chochon et al. (1999) 

7. Cummine et al. (2014) 

8. Holloway et al. (2015) 

9. Libertus et al. (2009) 

10. Park et al. (2012) 

11. Peters et al. (2015) 

12. Pinel et al. (2004) 

13. Price & Ansari (2011) 

14. Stanescu-Cosson et al. (2000) 

15. Wu et al. (2009) 

16. Yin et al. (2015) 

17. Zago et al. (2008) 

18. Zarnhofer et al. (2012) 

19. Zhang et al. (2012) 

Note.  vOT: ventral occipitotemporal cortex; includes inferior temporal, fusiform, and parahippocampal gyri (Grill-Spector & 
Malach, 2004; Grill-Spector & Weiner, 2014). FG: fusiform gyrus. ITG: inferior temporal gyrus. 

aExcluded from the meta-analyses as stereotaxic coordinates were not provided for the contrast of interest. 
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Data Analyses 

Two separate meta-analyses were conducted with different inclusion criteria based on 

contrast specificity. Contrast specificity was defined by the extent to which the contrast has the 

potential to reveal activation specific to stimulus category after controlling for task demands. 

Hence, all the relevant contrasts were categorized into three groups: (1) less specific contrasts, in 

which the numerical tasks had different cognitive demands than the non-numerical control tasks 

(e.g., multiplication > letter naming) (47.9% of foci), (2) suitably specific contrasts, in which the 

numerical tasks and non-numerical control tasks had equivalent or closely-matched task 

demands (e.g., digit naming > letter naming) and the main difference lies in the stimulus 

category (48.2% of foci), and (3) overly specific contrasts that controlled for all neural 

activations related to visual perceptual processes pertaining to number form, leaving only the 

higher-order effect of interaction between stimulus category and task demands (e.g., [Arabic 

digit calculation – Arabic digit identification] > [Roman numeral calculation – Roman numeral 

identification]) (5.7% of foci). A small number of contrasts were simultaneously less specific 

and overly specific based on our criteria, such as [Number magnitude comparison – Number 

dimming detection] > [Letter ordinal comparison – Letter dimming detection] (1.8% of foci).  

Meta-analysis I: All Relevant Contrasts 

In the first meta-analysis, all 31 studies with 50 contrasts, 388 foci, and 510 subjects were 

included as we wanted to be as liberal as possible in our search for an NFA. As the bulk of the 

less specific contrasts had more cognitively demanding numerical tasks than non-numerical ones, 

their inclusion should potentially increase the probability of finding a convergence in an NFA.  

Meta-analysis II: Suitably Specific Contrasts Only  

In the second meta-analysis, a subset comprising 20 studies with 28 contrasts, 187 foci, 
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and 351 subjects was analyzed to control for task demands and degree of contrast specificity by 

excluding the less specific contrasts and the overly specific contrasts, respectively. Thus, only 

suitably specific contrasts were included.  

Activation Likelihood Estimation Procedure 

Before analyzing the data, all foci were converted into a common stereotaxic space. Due 

to the variability in the templates used by various software for spatial normalization to MNI 

space (e.g., SPM, FSL, etc.), and that there is no reason to favor one template over another, we 

opted to transform all foci reported in MNI space to Talairach space using the various best-fit 

Lancaster transformation options ( i.e., "icbm2tal"; Laird et al., 2010; Lancaster et al., 2007) 

implemented for different software, such as icbm2tal for SPM or icbm2tal for FSL. Studies that 

performed spatial normalization in MNI space in SPM99, SPM96, and SPM2, and reported those 

coordinates in Talairach space were assumed to have applied the Brett transformation ( i.e., 

"mni2tal"; Brett et al., 2002). An exception were studies by Stanescu-Cosson and colleagues 

(2000) and Chochon and colleagues (1999), in which the published coordinates are believed to 

be in MNI (SPM) space instead of Talairach space as reported (verified with BrainMap’s Sleuth 

2.4 database; Laird et al., 2005). For those studies that applied the Brett transformation, we 

adopted the recommended approach to “un-Brett” the coordinates using the “Brett: Talairach to 

MNI” transform followed by the Lancaster “MNI (SPM) to Talairach” transform (Fox et al., 

2013; Laird et al., 2010). After the transformations were made, 3 foci (0.89%) in the dorsal, 

middle frontal region fell outside of the smaller, more conservative mask, which is typically used 

for meta-analyses of functional imaging studies (Fox et al., 2013). Typically, one would expect 

less than 3% of the foci to fall outside of the mask, and outlying foci that are close enough to foci 

within the mask still contribute to the ALE calculations (Fox et al., 2013). 
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To quantitatively assess the concordance of brain regions that support the functional 

specialization of visual processing of Arabic numerals across different tasks and subject groups, 

coordinate-based meta-analyses were conducted using the ALE approach with GingerALE 

version 2.3.6 (Eickhoff et al., 2009, 2012, 2017; Turkeltaub et al., 2012). The ALE algorithm 

first modeled foci from contrasts within each study as centers of three-dimensional Gaussian 

probability distributions. Taking into consideration between-template variances, and the relation 

between study sample size and inter-subject localization uncertainty, studies with larger sample 

sizes were weighted such that they would have a narrower full width at half maximum and 

higher peaks (Eickhoff et al., 2009).  

For each contrast, the maximum probability associated with any one Gaussian 

distribution at a given voxel would be used to generate a probabilistic map of modeled activation 

(MA) (i.e., an MA value represents the probability of an activation in a particular voxel). Taking 

the maximum probability allows for the inclusion of foci that are in close proximity within a 

contrast (e.g., global peak and local peaks of a cluster) without inflating the MA values 

(Turkeltaub et al., 2012). To minimize studies with multiple non-independent contrasts (e.g., 

target condition versus control condition A, and target condition versus control condition B) 

from having a greater influence on the results compared to studies with only one contrast, we 

collapsed all contrasts within a study, essentially treating them as stemming from a single 

contrast. Therefore the ALE approach described above determines an above-chance convergence 

of activation probabilities between studies, rather than between foci (Eickhoff et al., 2012). It 

should be noted that the above approach became feasible only with a revised ALE algorithm in 

2012 (Turkeltaub et al., 2012). Prior to the availability of this revised algorithm, previous meta-

analyses (Arsalidou & Taylor, 2011; Houdé, Rossi, Lubin, & Joliot, 2010; Kaufmann, Vogel, 
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Starke, Kremser, & Schocke, 2009) had to select only one contrast per study to ensure statistical 

independence between sets of foci. Not only would limiting to a single contrast per study 

introduce selection bias that might influence the results, but also preclude the uncovering of 

potentially informative findings that would have only been possible with a more inclusive 

approach to contrast selection.  

An ALE map was then computed as the voxel-wise union of the MA maps across all 

studies from the meta-analysis dataset. The ALE values thus represent the likelihood that at least 

one study activated a given voxel. Next, a random-effects significance test was performed on the 

ALE scores against a null distribution of ALE scores under the assumption of spatial 

independence (see Eickhoff et al., 2012, for detailed descriptions of the concept and algorithm). 

The parametric map with associated p-values obtained from the significance test was then 

subjected to the recommended cluster-level family-wise error (FWE) correction for multiple 

comparisons, which was found to provide optimal compromise between sensitivity and 

specificity (Eickhoff et al., 2016). Using the Monte-Carlo based approach with 1,000 

permutations, the cluster-level FWE thresholding was performed with an uncorrected, cluster-

forming threshold of p < .001, followed by a cluster-level threshold of p < .05. Crucially, this 

cluster-thresholding step is dependent on a random distribution of all the foci in the dataset, 

which potentially influences the ultimate cluster-size threshold, such that a larger number of 

studies included in a meta-analysis is likely to result in higher p-values for the same ALE scores 

(Eickhoff et al., 2016). This may account for any differences in the findings between the two 

meta-analyses conducted here.  

Other than reporting the ALE global peaks within each cluster, local peaks were also 

provided to illustrate the spatial extent of each cluster. To be consistent with previous meta-
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analysis, anatomical labels were assigned to the ALE peak locations within each cluster using the 

Talairach Daemon (talairach.org) that is native to GingerALE. Supplementary anatomical labels 

were assigned using cytoarchitectonic maximum probability maps in the Anatomy Toolbox 

v2.2c (Eickhoff et al., 2005) after transforming the Talairach peak coordinates to MNI (SPM) 

space. Besides providing sulci labels, which Talairach Daemon does not, the Anatomy Toolbox 

also provides additional anatomical specificity, such as gyri and sulci subdivisions.  
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Table 2-2. Participant demographics, tasks, contrasts, foci of interest, and statistical threshold for the fMRI studies included in 

meta-analyses 

Study Reference N Task(s) Selected contrast(s) Foci Statistical 

Threshold 
  

Included in both meta-analyses 

 
1 Amalric & 

Dehaene (2016) 

30 1-back same/different judgment Decimals > Checkers, faces, bodies, 

tools, houses, mathematical formulas, 

and words 

16a p < .001 uncorrected 

and p < .05 cluster-

corrected 

 

2 Cappelletti et al. 

(2010) 

22 Conceptual judgment (quantity 

and non-quantity related) vs. 

Perceptual color judgment 

Decimals > Object names 

(conceptual) 

14 p < .05 FWE 

corrected, or p < 

.001 uncorrected 

    Decimals > Object names 

(conceptual) 

12b  

    Decimals > Object names (quantity 

only) 

14  

    Decimals > Object names (non-

quantity only) 

14  

    Decimals (Conceptual – Perceptual) > 

Object names (Conceptual – 

Perceptual)# 

13  

 

 

 

3 Carreiras et al. 

(2015) 

21 1-back same/different judgment Digit strings > Consonant stringsc 7 p < .001 

uncorrected, or p < 

.05 peak/cluster-

level FWE/FDR 

corrected 

    Digit strings > Nonalphanumeric 

symbol stringsc 

2  

 

 

4 Coderre et al. 

(2009) 

9 Number identification (Arabic > Japanese Kana) and (Arabic 

> Japanese Kanji) 

3 p < .03 uncorrected 

and p < .05 cluster-

corrected 

    Arabic > Japanese Kanji 4  
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5 Chochon et al. 

(1999)e 

8 Digit naming/Magnitude 

comparison/Multiplication/ 

Subtraction vs. Letter naming 

Digit naming > Letter naming 2 p < .001 uncorrected 

and extent threshold, 

k = 16 voxels (432 

mm3, p < .05 

corrected) 

    Magnitude comparison > Letter 

naming* 

13  

    Multiplication > Letter naming* 12  

    Subtraction > Letter naming* 14  

    Numerical tasks > Letter naming* 14  

 

6 Cui et al. (2013) 18 Semantic distance judgment Digits > Chinese characters (Numeral 

classifiers) 

9 p < .001 uncorrected 

and k = 10 voxels 

(270 mm3) 

    Digits > Chinese characters (tool 

nouns) 

18  

 

 

7 Cummine et al. 

(2015) 

15 Rapid automatized naming Digits > Words 5 p <.001 uncorrected 

and p < .05 cluster-

corrected 

    Digits > Nonwords 2  

 

8 Cummine et al. 

(2014)  

15 Rapid automatized naming Digits > Letters 9 p < .001 uncorrected 

and p < .05 cluster-

corrected 

 

9 Grotheer, 
Herrmann, et al. 

(2016) 

22 1-back same/different judgment Digits > False digits, noise digits, 
letters, false letters, noise letters, and 

objects 

6 p < .05 FWE 
corrected and k = 20 

voxels (20 mm3) 

 

10 Holloway et al. 

(2015) 

18 Passive simultaneous viewing 

and listening 

Visual digits and audio number word 

> Visual letters and audio letter 

sounds/names 

1 p < .005 uncorrected 

and p < .05 cluster-

corrected 

 

11 Libertus et al. 14d 2-back same/different judgment Digits > Letters and faces 6 p < .01 uncorrected, 
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(2009) p < .05 cluster-

corrected, and k = 8 

voxels (64 mm3) 

 

12 Park et al. (2012) 20 Simultaneous same/different 

judgment task 

Digit strings > Consonant strings 1 p < .005 uncorrected 

and k = 20 voxels 

(540 mm3, p = .01 

cluster-corrected) 

 

13 Peters et al. 

(2015) 

12 Subtraction Digits > Number words 2 p < .05 FDR- 

corrected 

 

14 Pinel et al. (2001) 9 Magnitude comparison Digit strings > Number words 6 p < .05 corrected 

 

15 Pinel et al. (1999) 11 Magnitude comparison Digits > Number words 1 p < .001 uncorrected 

 

16 Pinel et al. (2004) 15 Physical size comparison Digits > Letters 1 p < .01 uncorrected 

and p < .05 cluster-

corrected 

 

17 Price & Ansari 

(2011) 

19 Oddball target detection (passive 

viewing) 

(Digits > Letters) and (Digits > False 

digits) 

1 p < .005 uncorrected 

and p < .05 cluster-

corrected 

 

18 Yin et al. (2015) 11f Memory (ordinality) Digit/digit strings > Letters 

(encoding) 

1 p < .001 uncorrected 

and k = 100 voxels 

(normalized voxel 

size not reported) 
    Digit/digit strings > Letters (recall) 3  

 

19 Zarnhofer et al. 

(2012) 

42 Arithmetic verification Digits > Number words 5 p < .001 uncorrected 

and p < .05 FWE 

cluster-corrected 

 

20 Zhang et al. 

(2012) 

20 Semantic distance judgment Numerals > Chinese characters 22 p <.008 uncorrected 

and k = 50 voxels 
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(1350 mm3) 

  

Excluded from Meta-analysis II 
 

21 Andres et al. 

(2012) 

18 Arithmetic vs. Letter naming Arithmetic > Letter naming* 5 p <.05 FDR-

corrected and k = 

100 voxels (800 

mm3) 

 

22 Andres et al. 

(2011) 

10 Arithmetic vs. Letter naming (Subtraction > Letter naming) and 

(Multiplication > Letter naming)* 

8 p < .001 

uncorrected, or p < 

.05 FWE cluster-

corrected, k = 150 

voxels (1200 mm3) 

 

23 Attout et al. 

(2014) 

26 Numerical order judgment vs. 

Letter luminance judgment 

Numerical order > Letter luminance* 5 p < .05 FWE-

corrected 

 

24 Basso et al. 

(2003) 

5 Digit verification (working 

memory and temporal 

production) vs. Letter 

verification 

Number working memory > Letter 

verification* 

5 p < .0001 

uncorrected, k = 10 

voxels (360 mm3), 

and peak-level 

corrected at p = .01 

    Number temporal production > Letter 

verification* 

8  

 

 

25 Fernandes et al. 

(2005) 

12 Parity judgment vs. Animacy 

judgment [Divided attention 
(DA) with auditory word list 

recognition] 

Full attention (FA) auditory 

word list recognition/ visual 

number parity/ visual animacy 

judgment 

(DA digits – FA auditory recognition) 

> (DA animacy – FA auditory 
recognition)* 

17 p < .005 uncorrected 

and k = 50 mm3 

    (DA digits – FA digits) > (DA 

animacy – FA animacy) #* 

3  
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    (DA digits – Auditory baseline) > 

(DA Animacy – Auditory baseline)*c 

13  

 

 

26 Fias et al. (2007) 17 Comparison (number magnitude 

vs. letter ordinality) vs. 

Dimming detection 

(Number comparison – Number 

dimming) > (Letter comparison – 

Letter dimming) #* 

3 p < .005 

uncorrected, masked 

with main effect 

results at p < .05 

uncorrected, and k = 

5 voxels (135 mm3) 

 

27 Gullick & 

Temple (2011)g 

16 Ordinality comparison vs. 

passive viewing of 

nonalphanumeric 

symbols/nonwords 

(Years as events – Symbols) > (Event 

Words – Nonwords)*  

1 p < .001 

uncorrected, p <.05 

FDR cluster- 

corrected, and k = 20 

voxels (540 mm3) 

    Years as events > Symbols*c  23 p < .0001 

uncorrected, p < .05 

FDR cluster-

corrected, and k = 10 

voxels (270 mm3) 

 

28 Gullick & 

Temple (2011) g 

16 Magnitude comparison vs. 

passive viewing of 

nonalphanumeric symbols 

Numbers > Symbols*c 8 p < .0001 

uncorrected, p < .05 

FDR cluster-

corrected, and k = 10 

voxels (270 mm3) 

    Years as numbers > Symbols*c  10  

 
29 Stanescu-Cosson 

et al. (2000)e 

7 Exact and approximate 

calculation vs. Letter-matching 

Digits (1 – 9) > Letters* 16 p < .001 

uncorrected, and p < 

.05 cluster-corrected 

    Small digits (1 – 5) > Letters* 7  

 

30 Wu et al. (2009) 18 Arithmetic verification vs. 

Symbol identification (contained 

both numerals and 

(Arabic Calculation – Arabic 

Identification) > (Roman Calculation 

– Roman Identification) # 

2 p < .01 uncorrected 

and p < .01 extent 

threshold 
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nonalphanumeric symbols)  

 

31 Zago et al. (2008) 14 Manipulation (addition vs. noun 

generation) vs. Memory task 

(Numbers Manipulation – 

Maintenance) > (Syllables 

Manipulation – Maintenance) #* 

1 p < .001 uncorrected 

and p < .05 cluster-

corrected 

Note.  FWE: Familywise Error. FDR: False Discovery Rate. Unless otherwise stated, the statistical threshold reported was applied to all 

contrasts within a study. In some cases, a mixture of uncorrected and corrected findings may be reported for a particular contrast (e.g., p < .05 

FWE corrected, or p < .001 uncorrected). #These contrasts were excluded from Meta-Analysis II to control for the influence of overly-specific 

contrasts. *These contrasts were excluded from Meta-Analysis II to control for the influence of differential task demands between the 

numerical and non-numerical tasks. 
aIncludes unpublished foci provided by Amalric & Dehaene (2016). 

bResponse times modeled over both number and object names were factored out from the main effect of stimulus for this specific contrast. All 

other contrasts had response times modeled separately for numbers and object names.   

cFrom supplementary data. 
dChild sample in this study was excluded from the meta-analysis. 

eOriginal coordinates were believed to be in MNI (SPM) space instead of the reported Talairach space. 
fA superior memorist as a case study subject (n = 1) was excluded from the meta-analysis. 
gThis study is split into two independent samples here as a between-subject design was used.  
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Results 

Meta-analysis I: All Relevant Contrasts 

The all-inclusive meta-analysis revealed two bilateral parietal clusters and one right 

frontal cluster that are functionally specialized for symbolic number processing (Table 2-3 and 

Figure 2-1). The right parietal cluster comprised the intraparietal sulcus extending to the inferior 

parietal lobule, precuneus, and posterior superior parietal lobule. The left parietal cluster 

comprised the intraparietal sulcus extending to the inferior parietal lobule, specifically the 

supramarginal gyrus. The right frontal cluster comprised the anterior cingulate and superior 

frontal gyrus, specifically, the premotor region. 

 

 

 Table 2-3. ALE results for functional specialization of symbolic number processing in studies 

with all relevant contrasts (Meta-analysis I) 

Anatomical labels Talairach 

coordinates 

   

Talairach Daemon Anatomy 

Toolbox 

x y z ALE 

value 

(×10-3) 

Volume 

(mm3) 

Studies with 

foci within the 

cluster* 
R. inferior parietal 

lobule (BA 40) 

hIP2 40 -48 44 32.75 7680 1, 2, 3, 5, 6, 8, 

10, 11, 20, 21, 

22, 24, 25, 28, 29 

R. inferior parietal 

lobule (BA 40) 

hIP3 34 -46 38 31.33   

R. precuneus (BA 7)  28 -64 38 25.46   

R. precuneus (BA 7)  Area 7P 14 -74 48 23.33   

R. precuneus (BA 19) hIP3 28 -58 38 22.26   

L. supramarginal 

gyrus (BA 40) 

hIP1 -40 -44 36 34.44 3832 1, 2, 5, 6, 11, 22, 

23, 24, 25, 28, 

29, 31 

L. inferior parietal 

lobule (BA 40) 

hIP1 -36 -54 42 23.61   

R. anterior cingulate 

(BA 24) 

- 18 6 46 16.91 744 1, 6, 7, 8, 18 

R. superior frontal 

gyrus/premotor (BA 6) 

- 22 6 60 16.37   
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Figure 2-1. Visualization of ALE results in meta-analysis I 

ALE concordant clusters (blue blobs) and foci (dots) from all relevant contrasts in meta-analysis 

I (cf. Table 2-3), and from relevant studies excluded from the meta-analysis, overlaid on the 

Colin27 brain template. Top panel: left lateral hemispheric, top axial, and right lateral 

hemispheric views. Bottom panel: posterior coronal view. L: Left. R: Right. IPL: Inferior parietal 

lobule. IPS: Intraparietal sulcus. SPL: Superior parietal lobule. ACC: Anterior cingulate cortex. 

SFG: Superior frontal gyrus. ECoG: Electrocorticography.  

Note. BrainNet Viewer (Xia et al., 2013) was used to visualize the clusters and foci. While some 

foci appeared to fall outside the template used above, all but 3 foci in the middle frontal region 

were within the boundaries of the mask used in the meta-analysis. 

 

 

 

 

Note. BA: Brodmann Area. L: Left. R: Right. hIP: Horizontal segment of the intraparietal sulcus (with 

subdivisions 1, 2, and 3). Area 7P: Posterior subdivision of superior parietal lobule. Global peak of each 

cluster is in bold, and local peaks are not in bold.  *Although studies with foci that fall within the 

boundary of each cluster are listed, it is important to note that studies not listed could also contribute to 

the ALE scores if they lie on or close to the cluster boundary (Fox et al., 2013). 
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Meta-analysis II: Suitably Specific Contrasts Only 

Controlling for task demands and contrast specificity, we found in Meta-analysis II a 

frontoparietal network that overlaps with that observed in Meta-analysis I (Table 2-4 and Figure 

2-2): A right parietal cluster that comprised the precuneus, anterior superior parietal lobule, and 

intraparietal sulcus extending to the inferior parietal lobule; a smaller left parietal cluster that 

comprised the intraparietal sulcus extending to the inferior parietal lobule, specifically the 

supramarginal gyrus; and a right frontal cluster that comprised the superior frontal (specifically, 

the premotor region) and anterior cingulate gyri. 

Meta-analysis II additionally revealed a right lateral prefrontal cluster at the intersection 

of the precentral and inferior frontal gyri, specifically, the pars opercularis, and a right temporal 

cluster comprising the posterior inferior and middle temporal gyri (Table 2-4 and Figure 2-2). 

The peak of the inferior temporal cluster (TAL 50, -48, -10) is slightly superior to the NFA 

locations reported by Shum and colleagues (2013) (TAL2 47, -51, -21), as well as Hermes and 

colleagues (2015) (TAL2 52, -48, -15, and 52, -50, -21), but extremely close to those foci ( 3 

mm) along the left-right and anterior-posterior dimensions. However, the peak of our cluster is as 

superior to those found by Abboud and colleagues (2015) (TAL 53, -44, -12, and 50, -35, -12). 

To rule out the possibility that the convergence in the inferior temporal cluster was driven 

mainly by two recent studies (Studies 1 and 9) that employed advanced imaging and data 

preprocessing techniques to overcome signal loss (Amalric & Dehaene, 2016; Grotheer, 

Herrmann, et al., 2016), we re-ran the meta-analysis by omitting each of the seven studies that 

had numeral-specific activation in the fusiform and inferior temporal gyri (see Table 2-1 and 

 

 
2 Using the icbm2tal_spm.m transform (brainmap.org/icbm2tal) (Lancaster et al., 2007). 



     

 44 

Table 2-2). We confirmed that the omission of each of the five studies listed in Table 2-4 

eliminated the convergence in the inferior temporal cluster, which suggests that they were all 

critical contributors to the convergence.  

 

 

Table 2-4. ALE results for functional specialization of symbolic number processing in studies 

with suitably specific contrasts only (Meta-analysis II) 

Anatomical Labels Talairach 

coordinates 

   

Talairach Daemon Anatomy 

Toolbox 

X y z ALE 

value  

(×10-3) 

Volume 

(mm3) 

Studies with 

foci within 

the cluster* 
R. precuneus (BA 7) - 16 -74 48 22.23 5536 1, 2, 3, 6, 8, 

10, 11, 14, 20 

R. inferior parietal 

lobule (BA 40)  

hIP3 34 -46 38 21.63   

R. inferior parietal 

lobule (BA 40) 

hIP2 40 -50 44 21.58   

R. superior parietal 

lobule (BA 7) 

Area 7A 28 -68 46 18.20   

R. inferior parietal 

lobule (BA 40) 

hIP2 46 -40 40 17.05   

R. inferior parietal 

lobule (BA 39) 

hIP3 28 -56 38 16.15   

L. supramarginal 

gyrus (BA 40) 

hIP3 -38 -44 36 22.93 1400 1, 2, 6, 11 

L. inferior parietal 

lobule (BA 40) 

hIP3 -36 -50 42 15.21   

L. inferior parietal 

lobule (BA 40) 

hIP2 -48 -48 42 13.04   

L. inferior parietal 

lobule (BA 40) 

hIP2 -50 -44 42 11.94   

R. superior frontal 

gyrus/premotor (BA 6) 

- 22 6 60 16.13 1104 1, 6, 7, 8, 18 

R. anterior cingulate 

(BA 24) 

- 16 6 44 14.84   

R. inferior temporal 

gyrus (BA 37) 

- 50 -48 -10 13.95 728 1, 6, 7, 9, 15 

R. middle temporal 

gyrus (BA 20) 

- 56 -40 -14 13.86   

R. precentral gyrus 

(BA 6) 

- 42 2 34 16.07 696 1, 6, 20 

R. inferior frontal gyrus 

(BA 9) 

pars 

opercularis 

50 4 28 14.70  
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Figure 2-2. Visualization of ALE results in meta-analysis II 

ALE concordant clusters (blue and red blobs) and foci (dots) from suitably specific contrasts in 

meta-analysis II (cf. Table 2-4), and from relevant studies excluded from the meta-analysis, 

overlaid on the Colin27 brain template. The blue clusters overlapped with those observed in 

Meta-analysis I, and the red clusters are unique to Meta-analysis II. Top panel: left lateral 

hemispheric, top axial, and right lateral hemispheric views. Bottom panel: posterior coronal 

view. Inserts (left to right): Magnified coronal, axial, and sagittal views of the right inferior 

temporal lobe. L: Left. R: Right. IPL: Inferior parietal lobule. IPS: Intraparietal sulcus. SPL: 

Superior parietal lobule. ACC: Anterior cingulate cortex. SFG: Superior frontal gyrus. IFG: 

Inferior frontal gyrus. ITG: Inferior temporal gyrus. ECoG: Electrocorticography.  

(Area 44) 

R. inferior frontal gyrus 

(BA 9) 

pars 

opercularis 

(Area 44) 

48 4 24 12.75  

 

Note. BA: Brodmann Area. L: Left.  R: Right. hIP: Horizontal segment of the intraparietal sulcus (with 

subdivisions 1, 2, and 3). Area 7A: Anterior subdivision of superior parietal lobule. Global peak of 

each cluster is in bold, and local peaks are not in bold.  *Although studies with foci that fall within the 

boundary of each cluster are listed, it is important to note that studies not listed could also contribute to 

the ALE scores if they lie on or close to the cluster boundary (Fox et al., 2013). 
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Discussion 

The current study examined whether the extant neuroimaging literature supports the 

existence of a reproducibly localized “Number Form Area” in the vOT. By being maximally 

inclusive in Meta-analysis I, we predicted that we would find a convergence of activation in an 

NFA in the pITG, especially if its activation was weak due to signal loss complications. In Meta-

analysis II, we tested the hypothesis that the exclusion of less specific and overly specific 

contrasts in the meta-analysis may increase the statistical sensitivity of the convergence in an 

NFA. Only in Meta-analysis II did we observe such a numeral-preferring region in the right 

pITG. In addition to a candidate NFA in the right pITG, the bilateral inferior parietal regions, 

and a right-lateralized network of superior parietal, and superior and inferior frontal regions also 

appear to be functionally specialized for processing Arabic numerals. This “numeral processing 

network” possibly supports perceptual and cognitive processes engaged specifically by Arabic 

numeral processing, and not by differences in task demands between the numerical and non-

numerical conditions. To our knowledge, this is the first meta-analysis to quantitatively review 

the existence of a reproducibly localized NFA, and its associated network of brain regions. 

Reproducible Localization of an NFA in the Posterior Inferior Temporal Gyrus 

Previous meta-analyses (Arsalidou & Taylor, 2011; Sokolowski et al., 2017) suggest the 

involvement of a region in the fusiform gyrus for processing of numerical symbols, but the 

convergence in the fusiform gyrus may be driven not by Arabic numerals exclusively, but also 

by written number words or nonsymbolic quantities (e.g., dot arrays) included in the contrasts 

meta-analyzed. On the contrary, our findings are specific to Arabic numerals and thus provide 

some degree of support for the existence of a reproducibly localized NFA in the pITG that is 

spatially distinct from the VWFA, whose canonical location is more medial in the mid-fusiform 
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gyrus and along the occipitotemporal sulcus (Hannagan et al., 2015). This is consistent with a 

series of recent reports of pITG as a more plausible location of an NFA that were not included in 

the current meta-analyses (Abboud et al., 2015; Daitch et al., 2016; Hermes et al., 2017; Roux et 

al., 2008; Shum et al., 2013). 

Notably, only five out of 20 studies in Meta-analysis II contributed to the convergence in 

the pITG cluster. Out of those five, only two (Amalric & Dehaene, 2016; Grotheer, Herrmann, et 

al., 2016) employed advanced imaging and data preprocessing techniques to overcome signal 

loss. We also found that the meta-analytic convergence in the pITG was not driven solely by 

those two studies. Lastly, scrutiny of recent studies (Abboud et al., 2015; Amalric & Dehaene, 

2016; Grotheer, Herrmann, et al., 2016) suggest a lack of strong and direct evidence that an NFA 

in the pITG cannot be functionally localized. Hence, detection of an NFA in the pITG is not 

impossible with standard fMRI acquisition and data preprocessing. Our findings therefore 

suggest that while signal dropout might have contributed to some previous null findings using 

fMRI, it is not a reliable contributor and perhaps not the only factor influencing a study’s ability 

to detect an NFA in the pITG. 

A factor worth considering is the role that task contexts play in the detection of numeral-

specific activation. The fact that we observed a convergence of activation in the pITG only after 

controlling for task demands and contrast specificity suggests that the cognitive demands of the 

numerical condition and/or the non-numerical condition, as well as the choice of contrasts that 

researchers choose to analyze may influence whether an NFA can be detected at the study level.  

Alternatively, the statistical thresholding criteria used could also partly account for the 

mixed findings of an NFA. Among the 12 studies in Table 2-1 that observed numeral-specific 

activity in the vOT, equal proportions of studies did not employ correction for multiple 
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comparisons or apply an arbitrary spatial extent threshold (33.3%), or employed voxelwise 

familywise error (FWE) or false discovery rate (FDR) correction (33.3%), or employed cluster-

level correction (33.3%). However, among 19 studies that only observed numeral-specific 

activity outside the vOT in Table 2-1, there is a trend that more stringent cluster-level (52.6%) 

and voxelwise FWE/FDR correction techniques (31.6%) were employed.  

It is important to note that while the concordant activation in the right pITG in the present 

work suggests that there is reproducible localization of a region that shows a preference for 

numerals, it is still insufficient evidence to demonstrate that it is truly an NFA. Its validity as an 

NFA hinges on the fulfilment of the additional criteria of partial regional selectivity and 

functional specialization (L. Cohen & Dehaene, 2004; Dehaene & Cohen, 2011). Based on the 

hypothesis of the “Visual Number Form” being an input stage common to any task involving 

numerals (L. Cohen & Dehaene, 1991), it should also be task-independent.  

Partial Regional Selectivity 

There is evidence that the numeral-preferring region responds more to Arabic digits than 

to Roman letters and novel characters including scrambled digits and characters from a foreign 

script, and to double-digit numerals than to words (e.g., Grotheer, Herrmann, et al., 2016; Shum 

et al., 2013). However, the sampling space of character types as control categories is currently 

still limited, and it is not clear whether it also responds preferentially to other types of characters 

used in the mathematical domain. For instance, does it care about other non-alphanumeric 

symbols such as $, +, =, and % that are typically seen together with Arabic numerals? Polk and 

Farah (1995, 1998) hypothesized that letter and digit processing could be neural segregated 

merely on the basis of the frequency of their co-occurrence in our natural environments. That is, 

letters occur more frequently than digits (e.g., in this text), and a letter is seen more often with 
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other letters than with digits, both spatially and temporally. Hence, the frequency of co-

occurrence may underlie neural segregation via a Hebbian learning mechanism (Polk & Farah, 

1995, 1998). If so, it is possible that the so-called NFA could respond to other mathematical 

symbols as much as it does to Arabic numerals. For instance, Amalric and Dehaene (2016) found 

that the left NFA in professional mathematicians showed preferential response to mathematical 

formulas and expressions (e.g., 𝜁(𝑧, 𝑤) = ∑
1

(𝑤+𝑛)𝑧
∞
𝑛=1  ) in addition to Arabic numerals 

compared to non-mathematicians. 

Alternatively, the so-called NFA could even be a general “Symbol Form Area” that 

happens to prefer numerals more than letters, though not specialized for numerals. This is 

supported by a recent transcranial magnetic stimulation study by Grotheer, Ambrus, and Kovács 

(2016) in which they found that stimulation of the right NFA impaired the identification of both 

digits and letters, but not scrambled digits and letters. This led the authors to suggest that while 

the NFA plays a causal role in numeral processing, it might be more of “a flexible processing 

module for the early visual encoding of learned characters” than a numeral-specific one 

(Grotheer, Ambrus, et al., 2016, p. 317). Given the limited range of control stimuli considered 

within each study in our meta-analyses, and that four of five studies contributing to the pITG 

cluster only included letters as the only other learned character category, we believe that partial 

regional selectivity has not been adequately demonstrated across existing fMRI studies. 

Functional Specialization  

Originally conceived as analogous to the “Visual Word Form” (L. Cohen & Dehaene, 

1991), the “Visual Number Form” is thought to represent numerals at the level of character 

strings and “encodes several visuo-spatial characteristics of the stimulus, including the shape and 

the relative positions of the digits, presumably in a stimulus-centred co-ordinate system” (p. 54). 
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Therefore, similar to the tuning of the VWFA to the orthographic computational requirements of 

reading in a given script (L. Cohen & Dehaene, 2004; Dehaene & Cohen, 2011), an NFA should 

be attuned to the computational requirements of the Arabic numeral system. Beyond merely 

distinguishing numerals from non-numerals, an NFA should be sensitive to individual digit 

shapes, digit identities, numeral length, order of digits, and syntactic markers including 0 as a 

placeholder and 1 for teens (L. Cohen & Dehaene, 1991). A complete characterization of the 

NFA’s functional specialization for Arabic numerals has not been systematically investigated. 

Task-independent Recruitment 

The hypothesis that an NFA is tuned to the visual form or shape of Arabic numerals 

(Hannagan et al., 2015; Shum et al., 2013) suggest that the localization of an NFA should be 

task-independent, even when numerals are passively viewed. However, our results suggest 

otherwise. Hence, another issue which requires further empirical investigation is the role of task-

dependent, top-down, goal-directed processes in the preferential engagement of the NFA. 

For instance, using intracranial electrophysiology, Hermes and colleagues (2017) found 

that responses in the NFA were heightened by increased cognitive demands during active 

calculation relative to numeral reading and an oddball color detection task involving Arabic 

digits in the background. Interestingly, the modulation of the NFA responses was not numeral-

specific, but extended to calculation using number words, suggesting that cognitive demands of 

calculation, rather than visual perception alone, influenced the NFA activity (Hermes et al., 

2017). More recently, Daitch and colleagues (2016) found feedback-based functional coupling 

between the pITG and the anterior intraparietal sulcus (IPS). Specifically, they found that the 

NFA was involved in bottom-up coupling with the IPS during passive processing of Arabic 

numerals, and the IPS was involved in top-down coupling with the NFA during arithmetic 
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(Daitch et al., 2016). These findings suggest that the bottom-up, sensory processes of an NFA 

may be highly modulated by top-down, semantically related processes specific to the tasks.  

In sum, further research is necessary to characterize the regional selectivity, functional 

specialization, and the degree of task-independence of an NFA. The pITG cluster found here 

could serve as an a priori candidate region for attempts at such characterizations, especially if the 

functional localization of an NFA remains challenging due to reasons other than signal dropout. 

Beyond An NFA: The “Numeral Processing Network” 

In addition to a candidate NFA in the pITG, other brain regions also appear to exhibit 

preference for Arabic numeral processing, including the bilateral inferior parietal lobules (IPL) 

and intraparietal sulci (IPS), a right-lateralized collection of regions in the precuneus, superior 

parietal lobule (SPL), premotor region of the superior frontal gyrus (SFG), anterior cingulate, 

and inferior frontal gyrus (IFG). Given that we controlled for task demands in Meta-analysis II, 

and that digits are inherently easier to identify than letters even when perceptual information is 

limited (Starrfelt & Behrmann, 2011), our findings suggest that the frontoparietal network is 

possibly involved in additional semantic, syntactic, and lexical processing that single- and multi-

digit Arabic numerals may require beyond what other symbol sets do. 

As noted by Price and Ansari (2011), and Starrfelt and Behrmann (2011), single Arabic 

digits contain richer semantic associations than most other single characters do. Not only can 

single digits be associated with a nominal identity (e.g., jersey number “7”), they can also be 

associated with magnitude (e.g., “4” represents [::]) and ordinality (e.g., “3” is after “2”, and 

before “4”). In contrast, alphabetic characters (e.g., letters) are mostly only meaningful in strings. 

Furthermore, processing multi-digit Arabic numerals may involve a higher-order interaction of 

syntactic or ordinal, semantic, and lexical processing, possibly accounting for the greater 
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activation of a frontoparietal network. For instance, as noted by Pinel and colleagues (2001), the 

place-value rules of the base-10 decimal system render the order of digits in a digit string to be 

particularly important for the extraction of its semantic and lexical content (e.g., the digit “2” in 

“2”, “12”, and “21” require mappings onto different number words [“two”, “twelve”, or 

“twenty”] and magnitude representations [two ones or two tens]). Although alphabetic/syllabic 

number words (e.g., English and Japanese Kana), and logographic number words (e.g., Chinese 

and Japanese Kanji) may seem similar to Arabic numerals in their semantic, syntactic, and 

lexical content, each number word is less conceptually rich than Arabic digits. For instance, “23” 

is written in Chinese as “二十三”, which reads “two-ten-three”. Hence, “二” is always 

associated with just “two” regardless of its place value. Likewise, the word “twenty” is always 

associated with “two tens”. In other words, Arabic digits have one-to-many mappings, whereas 

number words mostly have one-to-one or one-to-few mappings. Moreover, recent behavioral 

findings by Hurst, Anderson, and Cordes (2016) suggest that preschool children may first map 

verbal number words onto nonsymbolic quantities, then map Arabic numerals onto verbal 

number words, such that the association between Arabic numerals and nonsymbolic quantities 

may be indirect. Such indirect mappings may inevitably require greater cognitive processing. 

Taken together, Arabic numerals may possibly require a greater degree of syntactic, semantic, 

and lexical processing than non-numerals do, and in doing so recruit frontal and parietal regions 

collectively to subserve various domain-specific and domain-general cognitive processes. Below, 

we speculate what specific processes might be subserved by the parietal and frontal regions. 

Parietal Regions 

The localization of an NFA in the pITG has been hypothesized to be a result of biased 

intrinsic anatomical and functional connectivity between the bilateral NFAs and magnitude 
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processing regions in the bilateral IPS (Abboud et al., 2015; Hannagan et al., 2015). As more 

than half of the studies that contributed to each IPS/IPL cluster involved numerical tasks that did 

not require explicit magnitude processing (e.g., repetition detection or naming), the convergence 

of activation in the bilateral IPS may reflect the possibility that Arabic numerals automatically 

activate magnitude representations more than non-numerical symbols do (Cohen Kadosh, Cohen 

Kadosh, Schuhmann, et al., 2007; Girelli et al., 2000; Henik & Tzelgov, 1982; Rubinsten et al., 

2002; although see Cohen, 2009; Naparstek & Henik, 2010; Price & Ansari, 2011 for caveats). 

In addition to magnitude processing, the bilateral IPS, particularly the anterior portion, 

may be involved in ordinal processing (Ansari, 2008). In fact, the other parietal and frontal 

regions in the “numeral processing network” have also been implicated in ordinal processing of 

Arabic digits (Fias et al., 2007; Fulbright et al., 2003; Ischebeck et al., 2008; see Lyons, Vogel, 

& Ansari, 2016, for a review). 

The left IPL, specifically the supramarginal gyrus, supports a myriad of cognitive 

processes such as orthographic-to-phonological conversion (Price, 1998), phonological working 

memory (Church et al., 2011; Paulesu et al., 1993), symbol-referent semantic associations 

(Grabner et al., 2013; K. K. Kim et al., 2011), as well as temporal order processing (Ortuño et 

al., 2002; Wiener, Hamilton, et al., 2010; Wiener, Turkeltaub, et al., 2010). The adjacent left 

angular gyrus is also often implicated in verbal and semantic processing of symbolic numbers 

(Dehaene et al., 2003; Price & Ansari, 2011; Seghier, 2012). All in all, the concordant activation 

in the IPL in the current study may reflect a confluence of lexical, semantic, and ordinal 

processing of Arabic numerals.  

The bilateral posterior SPL, including the precuneus, are possibly involved in attention 

and visuo-spatial orientation on an abstract “mental number line” (Cavanna & Trimble, 2006; 
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Dehaene et al., 2003; Hubbard et al., 2005; Lyons & Ansari, 2009). It is conceivable that similar 

mechanisms are involved in attending to the length of a digit string to extract the syntactic verbal 

frame, and then to the specific order of digits to fill the verbal frame (e.g., “243”  “two 

hundred forty-three”). Hence, the convergence of activation in the right SPL may reflect visuo-

spatial attention mechanisms related to ordinal and syntactic processing of Arabic numerals.  

Frontal Regions 

Along with the superior parietal regions, the SFG and IFG may also play a role in 

selective visuo-spatial attention (Anderson et al., 2007). The convergence of activation in the 

frontal regions may thus also reflect visuo-spatial attention mechanisms related to ordinal and 

syntactic processing of Arabic numerals.  

Alternatively, converging evidence from human and non-human primate studies, has led 

to the proposal that the IFG may be directly involved in number processing (Nieder, 2009). For 

instance, Diester and Nieder (2007) found that neurons in the prefrontal cortex of non-human 

primates (presumably homologous to Brodmann Area 44/45 in humans) are tuned to both 

symbolic and nonsymbolic numerical magnitudes after learning to associate Arabic digits with 

their corresponding quantities. These findings led the authors to hypothesized that the IFG may 

facilitate the associations between arbitrary shapes (e.g., Arabic digits) and quantities. Findings 

that the IFG is activated to a greater extent in children than in adults during notation-independent 

numerical magnitude processing also support its role during the formative stage of the symbol-

referent associations (Ansari et al., 2005; Cantlon et al., 2009; Kaufmann et al., 2006; Rivera et 

al., 2005). There is also growing evidence that the IFG may play a more fundamental role in 

magnitude processing (Damarla et al., 2016; Sokolowski et al., 2017; Tang et al., 2006). For 

instance, using a multi-voxel pattern analysis, Damarla, Cherkassky, and Just (2016) 
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demonstrated that several parietal and frontal regions, including the right IFG, support cross-

modality (dots and tones) classification of magnitude representations, which suggest the role of 

the IFG in an abstract code for magnitude. Additionally, the IFG, or prefrontal cortex more 

generally, may be critical for establishing syntactic representations in human symbol systems, 

such as grammar, ordinality, and place-value notational rules (Friederici, Bahlmann, Heim, 

Schubotz, & Anwander, 2006; Meyer, Obleser, Anwander, & Friederici, 2012; see Nieder, 2009, 

for a review). Therefore, in the current study, the observed convergence in the IFG may reflect 

its multiple roles in mapping Arabic digits to their magnitude representations, magnitude 

processing, and higher-order integration of the semantic, syntactic and lexical information. 

In summary, in combination with the extant literature, our current findings suggest that 

the bilateral parietal regions (IPS and IPL), and a right-lateralized collection of regions 

comprising the SFG, IFG, and pITG form a potential “numeral processing network”. We 

hypothesize that the pITG may be involved in asemantic shape processing of numerals; the 

bilateral IPS and IFG in magnitude processing; bilateral IPL in lexical, semantic, and ordinal 

processing; right SPL and SFG in visuo-spatial processing of the perceptual, syntactic and 

abstract ordinal relations among the symbols; and the right IFG in higher-order integration of all 

task-relevant information. Further empirical investigations are necessary to systematically 

dissociate the specific cognitive processes involved, their underlying mechanisms, the neural 

subdivisions supporting each function, and their interactions. 

Finally, although we use the term “numeral processing network” here, the extent to which 

this collection of regions constitutes a true interdependent network, as opposed to simply a group 

of simultaneously activated but functionally independent regions, is yet to be determined. Thus 

far, some degree of temporoparietal (Abboud et al., 2015; Daitch et al., 2016; Park et al., 2012) 
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and frontoparietal coupling have been demonstrated during numerical symbol processing 

(Diester & Nieder, 2007). However, it is still unclear how independent or interdependent those 

two networks are. Moreover, as shown in Table 2-1, the findings for functional specialization for 

Arabic numerals at large have been very inconsistent, and it is unclear why many studies did not 

find a single region that is numeral-selective. In sum, given the hypothesized complex interaction 

of semantic, syntactic, and lexical processing engaged by Arabic numerals, the careful selection 

of numerical and non-numerical tasks may be critical for characterizing the functional 

mechanisms underlying the different nodes of the “numeral processing network”.  

Limitations 

As with any ALE meta-analysis, the current study lacked the means to statistically 

control for differences in statistical thresholding methods across studies, spatial extent and 

magnitude of the activation foci, or confounding variables such as age. It is also important to 

note that unlike a conventional behavioral meta-analysis that addresses the question of whether 

there is an effect at all, ALE addresses the question of whether there is convergence across 

studies given the premise that there is some condition-specific activation somewhere in the brain. 

Hence, studies that did not find any numeral-specific activity anywhere in the brain (11 studies in 

Table 2-1) had to be excluded. This bias therefore warrants caution in interpreting our findings 

as definitive about the existence of an NFA.  

One limitation specific to this study is the inclusion of uncorrected foci (16% of total 

number of foci). However, this was deliberate as the primary goal of the study was to detect an 

NFA, which has supposedly been plagued by signal loss complications. With signal attenuation, 

any activation may be less likely to survive correction for multiple comparisons, and so liberal 

inclusion criteria were essential.  
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Conclusions 

The present findings suggest that if an NFA does exist, the most reproducible localization 

is in the right pITG. However, such meta-analytic convergence was only evident when we 

considered contrasts with tasks demands between the numerical and non-numerical control 

conditions that were appropriately controlled. Importantly, several of the studies contributing to 

this region did not employ methods designed to overcome signal dropout, suggesting that signal 

dropout was not the only factor underlying previous null fMRI findings. Given that only five 

studies out of more than 40 studies have foci within the pITG cluster boundary, more evidence is 

necessary to characterize the functional specialization, regional selectivity, and task 

independence of an NFA. In addition to an NFA, the current study revealed a candidate “numeral 

processing network” consistent with the extant literature. It comprises the bilateral parietal 

regions, and right-lateralized superior and inferior frontal regions. While they may be involved in 

numerical magnitude processing, and domain-general processes related to ordinality, syntax, 

lexicon, and symbol-referent associations, their roles specific to Arabic numeral processing 

require further empirical investigation. The present work thus provides insights for 

understanding the neurocognitive mechanisms that support the processing of Arabic numerals. 

Such insights are critical for future research as we seek to understand how such systems develop, 

and the role they play in the typical and atypical development of mathematical skills. 
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CHAPTER 3 

 

PROBING THE REPRESENTATIONAL CONTENT IN THE “NUMBER FORM AREA” 

DURING PASSIVE VIEWING: A REPRESENTATIONAL SIMILARITY ANALYSIS 

 

 

This chapter is adapted from “The “Inferior Temporal Numeral Area” distinguishes numerals 

from other character categories during passive viewing: A representational similarity analysis” 

published in NeuroImage, and has been reproduced with permission of the publisher and my co-

authors, Courtney Pollack, Rebecca Merkley, Daniel Ansari, and Gavin R. Price. 

Yeo, D. J., Pollack, C., Merkley, R., Ansari, D., & Price, G. R. (2020). The “Inferior Temporal 

Numeral Area” distinguishes numerals from other character categories during passive viewing: 

A representational similarity analysis. NeuroImage, 214, 116716. 

https://doi.org/10.1016/j.neuroimage.2020.116716 

 

Introduction 

Recent fMRI studies following the publication of the Chapter 2 (Yeo et al., 2017) 

provided support for our conjectures regarding the lack of strong evidence that signal dropout in 

the ITG underlies the lack of reliable localization of a putative NFA. Other contributing factors 

such as task demands may also underlie the mixed findings of an NFA. 

First, Grotheer and colleagues (2018) managed to localize the left and/or right numeral-

preferring pITG in most individual subjects in their study (means of 13 out of 15 subject-specific 

peaks: MNI -54, -59, -12, and 57, -54, -14, compared to the meta-analytically identified NFA 

peak in Chapter 2 (Yeo et al., 2017): MNI3 55, -50, -12) even after abandoning all of the 

advanced acquisition parameters4 that were believed to have contributed to the successful 

 

 
3 Using the tal2icbm_spm.m transform (brainmap.org/icbm2tal) (Lancaster et al., 2007). 
4 Compared to a 64-channel head coil with 1-mm isotropic voxel resolution, localized shimming, and liberal spatial 

smoothing 8 times the voxel resolution employed in Grotheer, Herrmann, et al. (2016), the more recent study 

employed a 32-channel head coil with 2.4 mm isotropic voxel resolution, no localized shimming, and no spatial 

smoothing. 
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localization in an earlier study by the same lead author (Grotheer, Herrmann, et al., 2016). They 

further showed that the NFA consistently falls posterior to, not within, the signal dropout zone in 

all of their participants. More recently, although Merkley and colleagues (2019) was 

unsuccessful in localizing a group-level NFA with a passive-viewing paradigm, they found 

minimal or no attenuation in temporal signal-to-noise ratio in the meta-analytically identified 

NFA (Chapter 2; Yeo et al., 2017) in individual subjects. In sum, in cases where there was signal 

attenuation in the ITG, they often lay anterior to the candidate NFA, so standard fMRI sequences 

should allow an NFA to be localized. 

If not signal dropout, what could underlie the previous lack of localization of an NFA in 

the pITG? Task demands for both the numeral and non-numeral control conditions appear to be a 

likely factor. Grotheer and colleagues (2018) replicated previous findings (Amalric & Dehaene, 

2016; Grotheer, Herrmann, et al., 2016) that, during a repetition detection (i.e., one-back) task, 

regions in the bilateral pITG demonstrated numeral preference. They probed the function of 

these regions and showed that, during an addition task using numerals (e.g., 2 + 3 = 5?), dice 

patterns, or finger representations, these very same regions were not more engaged during 

addition with numerals than addition with dice patterns and finger representations (Grotheer et 

al., 2018). The authors concluded that the “numeral-preferring” pITG regions initially identified 

are not involved in processing the visual form of the numerals because they should otherwise 

show consistent numeral preference regardless of the task. Instead, Grotheer and colleagues 

(2018) hypothesize that the neuronal populations in the pITG predominantly “ascribe numerical 

content to the visual input” (p. 188) (see also Abboud et al., 2015). However, there is also 

evidence that an NFA is involved in non-quantitative contexts, such as whether a character is 

familiar or novel (Grotheer, Ambrus, et al., 2016), whether a character is read aloud (Shum et al., 
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2013), or whether a character is repeated (Grotheer et al., 2018; Grotheer, Herrmann, et al., 

2016). So, associating numerical content with the stimulus input cannot fully account for the 

recruitment of a numeral-preferring pITG region. 

In another fMRI study, Pollack and Price (2019) found that a region in the left pITG 

(group-level peak: MNI -57, -52, -11) was preferentially engaged for numerals when participants 

had to detect a digit amongst a string of letters, but the same region showed no numeral 

preference when participants had to detect a letter amongst a string of digits (i.e., when the digits 

were task-irrelevant). Taken together, whether the candidate region for an NFA shows greater 

engagement for numerals than other visual object categories may be highly dependent on 

attention to the stimulus identity and/or category, as well as task contexts. Thus, the exact 

computational mechanisms subserved by an NFA remain opaque. Hereafter in this chapter, I will 

use the term “numeral-preferring pITG” instead of NFA to avoid making an assumption about its 

role in processing “number form”.  

In light of these new insights on the sensitivity of the numeral-preferring pITG region to 

task demands, we questioned whether some previous null findings for numeral preference in the 

pITG were a consequence of employing a passive-viewing paradigm, as was used in the first 

fMRI study to explicitly investigate the existence of an NFA (Price & Ansari, 2011). 

Specifically, Price and Ansari (2011) used a fixation-color change-detection task, in which 

participants were asked to respond when a white hash sign (#), turned red, but not when it turned 

to another character such as letters, digits, and novel characters (see Figure 3-1). Such a passive-

viewing paradigm is in some ways ideal, because it disentangles automatic, stimulus-driven 

sensory processing from any effortful, task-driven conceptual or semantic processing of the 

numerals (Kay & Yeatman, 2017). This study, as well as two replication attempts by the same 
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and additional authors (Merkley, Conrad, Price, & Ansari, 2019; Price & Ansari, unpublished 

data), found no evidence of a numeral-preferring region anywhere in the vOT using univariate 

activation analyses. Although it is possible that a passive-viewing paradigm may not be optimal 

for investigating the NFA’s role in sensory processing of numerals, it has been used successfully 

to reveal letter- and word-preferring regions in the vOT (e.g., Cantlon et al., 2011; Dehaene-

Lambertz et al., 2018; Glezer et al., 2009; Karipidis et al., 2017; Kay & Yeatman, 2017; 

Parviainen, 2006; Pleisch et al., 2019; Polk et al., 2002; Vinckier et al., 2007; B. Zhang et al., 

2018), and is recommended for understanding models of experience-driven neural coding in the 

vOT (Dehaene & Cohen, 2011). Moreover, having an explicit task requires participants to attend 

specifically to the visual form of the characters (e.g., repetition detection task) or to its category 

(e.g., whether a character is familiar or can be named, whether a digit or letter is present). This 

may bias the neural responses towards visual form and symbol category respectively through 

goal-directed modulation (Kay & Yeatman, 2017). Hence, stimulus type is confounded with task 

goal, rendering any interpretation of the neural representation of a stimulus difficult. In other 

words, an active task would not decisively inform us whether the region represents digit shapes. 

Despite the merits of a passive-viewing paradigm, neural responses to task-irrelevant characters 

may not be highly discriminable in terms of their categorical membership simply by examining 

the voxel-wise activation or response strength averaged across exemplars. Even if the overall 

response strengths across digits, letters, and novel characters do not differ in a candidate 

numeral-preferring pITG region, they may show distributed activation patterns that reveal 

categorical distinctions. Hence, multivariate pattern analyses may be more sensitive than 

univariate mean response analyses for examining the neural representations of task-irrelevant 

characters.  
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Current Study 

In this study, we amassed three passive-viewing datasets mentioned above (Merkley et 

al., 2019; Price & Ansari, 2011; Price & Ansari, unpublished data), and used multivariate 

representational similarity analysis (RSA) to probe the spontaneous (i.e., task-irrelevant) 

organization of neural representations of single digits, letters, and novel characters in a candidate 

numeral-preferring pITG region. This candidate region (hereafter, “pITG-numerals”) is derived 

from the meta-analysis of studies contrasting numerals and other symbols in Chapter 2 (Yeo et 

al., 2017). By examining how similar or dissimilar the neural representations of individual 

characters within and between categories are, we can characterize the organization of the 

representations, or the “representational geometry”, in a particular neural region, and assess 

whether the observed representational geometry can be described by hypothetical functional 

models (Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte & Kievit, 2013; Nili et al., 2014). 

If pITG-numerals is specialized for numeral processing, the representations of digits in the 

region should be similar to one another, but not to letters and novel characters, which ought to be 

similar amongst themselves (i.e., {digits} vs. {letters and novel characters}). If pITG-numerals is 

specialized for visual form processing, its representational geometry should be biased towards 

similarities in shape without any categorical distinctions. For instance, “5” and “S” may be 

represented similarly in this region, with “5” being more similar to “S” than it is to “4”. 

Alternatively, representations of shape and category may not be mutually exclusive in the vOT 

(Bracci, Ritchie, et al., 2017; Bracci & Op de Beeck, 2016), and both types of information may 

be coded in pITG-numerals. To synthesize findings from the three datasets, we also performed 

small-scale meta-analyses on the effect sizes. Finally, to distinguish between evidence of absence 

of an effect and the absence of evidence for an effect, we performed complementary Bayesian 
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analyses for the individual datasets as well as the meta-analyses. 

It is possible that pITG-numerals may not show greater numeral sensitivity, but it is still 

important to understand if the region is at least sensitive to some other distinctions between the 

character categories (e.g., distinguishing between numerals and novel characters, or numerals 

and letters) using RSA. If this region distinguishes numerals from novel characters, but not 

numerals from letters, the region is possibly sensitive to familiarity of the characters. If it is also 

capable of distinguishing numerals from letters, it suffices as evidence that this region responds 

to numerals and letters differentially even though prior univariate activation analyses had been 

unable to detect that. Hence, we also explored more nuanced representational geometries in the 

region (e.g., familiar vs. novel).   

Methods 

Task and Datasets 

Task 

In each study, participants completed an identical fixation-color change-detection task 

(see symbol sets and example trials in Figure 3-1). They were instructed to fixate on a centrally 

positioned white hash symbol (#) on a black background, and to press a button whenever the 

hash changed from white to red. Participants were also informed that the white hash could 

change into another character, which was always white, but no response was required for those 

changes. The order of the task-irrelevant characters and the change target (red hash) was 

randomized or pseudorandomized within each run. In each run, depending on the dataset, each 

character was presented either 2 or 4 times, and the target was presented either 6 or 8 times (see 

Table A-1 for more details). There are substantial differences in scan acquisition protocols and 

design parameters (e.g., additional factorial conditions examined) (see “Differences in 
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Experimental Contexts and Neuroimaging Acquisition Parameters” Section, and Table A-1). 

Dataset 1 (Price & Ansari, 2011)  

Participants were 19 right-handed adults (6 females, 𝑀𝐴𝑔𝑒 = 22.2 years, SD = 1.7, range = 

20.5 – 27.2). All participants gave informed consent and the research procedures were approved 

by the Health Sciences Research Ethics Board at the University of Western Ontario. 

 

 

 

Figure 3-1. Stimulus sets and a schematic of the fixation-color change-detection task 

The current study analyzed only the trials with these sets of stimuli that were only presented for 

500 ms. ITI: Inter-stimulus interval. Letters Set 1 was used in Datasets 1 and 2. Letters Set 2 was 

used in Dataset 3. 

 

 

 

Dataset 2 (Price & Ansari, unpublished data)  

Participants were recruited from a large-scale longitudinal study of mathematical 

development (Mazzocco & Myers, 2003). When the cohort reached Grade 12, a subset of the 

cohort was recruited to participate in a neuroimaging study that included the fixation change-

detection task reported here. Other tasks such as magnitude comparison and arithmetic 
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verification that were also conducted during this study have been reported elsewhere (Price, 

Mazzocco, & Ansari, 2013; Wilkey, Barone, Mazzocco, Vogel, & Price, 2017). A total of 32 

participants had usable data for the task reported here (13 females, 𝑀𝐴𝑔𝑒 = 17.8 years, SD = 0.4 

years, range = 17.1 – 18.8 years, handedness: 3 left, 28 right, 1 unknown). Seven additional 

participants were excluded due to head motion (see “Data Exclusion” Section). All participants 

gave informed consent and the research procedures were approved by the Institutional Review 

Board at Johns Hopkins University. 

Dataset 3 (Merkley et al., 2019) 

Participants were 37 right-handed adults (26 females, 𝑀𝐴𝑔𝑒 = 25.1 years, SD = 5.9, range 

= 18 – 39). All participants gave informed consent and the research procedures were approved by 

the Health Sciences Research Ethics Board at the University of Western Ontario. Based on an a 

priori right-handedness requirement for study eligibility – to be consistent with Price and Ansari 

(2011) – three participants were not included as they did not disclose in advance that they were 

left-handed. Three additional participants were excluded due to a lack of information about task 

performance as no button responses were recorded. Of the 37 participants in the final sample, 

data of one run each from two participants were excluded due to poor task performance, and data 

of one run each from three participants were excluded due to head motion (see “Data Exclusion” 

Section). In other words, 5 of 37 participants had usable data from only three runs. 

Data Exclusion 

Data were excluded based on two criteria – behavioral performance and head motion – 

and were applied uniformly to all 3 datasets. We excluded runs with less than 50% task accuracy 

based on errors of omission, which served as an indication of task engagement. Given our 

interest in the activation patterns evoked by each character, we also excluded runs with more 
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commission errors (i.e., making a button response to a non-target) than there were targets (e.g., 

in Dataset 3, two participants made 18 commission errors in one run even though there were only 

six targets). Table A-2 summarizes the frequency of omission and commission errors in each 

dataset. In all datasets, each character of interest had at least one usable trial for the estimation of 

beta weights. Runs in which the participant’s head movement exceeded a displacement of 3 mm 

over the course of the run and/or a volume-to-volume displacement of 1 mm were excluded from 

analyses. 

Stimulus Sets 

The stimuli were grayscale images with single white characters against a black 

background and were presented using E-Prime 2 (Psychology Software Tools, Inc., Pittsburgh, 

PA, USA) (Figure 3-1). There were four categories of characters, with nine exemplars each: (1) 

Digits: Arabic digits (1 – 9), (2) Letters: uppercase Roman letters (A, C, D, E, H, N, R, S, and T 

in Dataset 1 and Dataset 2 [hereafter, Letters Set 1]; C, D, E, G, L, N, P, R, and S in Dataset 3 

[hereafter, Letters Set 2]), (3) Scrambled Digits: scrambled counterparts of the digits set, and (4) 

Scrambled Letters: scrambled counterparts of the letters set. The intact symbol sets were in Arial 

font (size 40), and the scrambled digits and letters were obtained by segmenting and rearranging 

the parts into a unified, but novel curvilinear shape. The average visual angles for each condition 

are reported in Table A-3. Below, we provide further characterization of the stimulus sets so as 

to rule out other low-level visual differences between any of these categories that the pITG may 

be sensitive to. 

Based on previous work by Schubert (2017), we focused on two low-level visual 

parameters that may underlie any categorical differences between digits and letters: luminance 

and perimetric complexity. Luminance was chosen because Arial font is a proportional-width 
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font – its characters do not take up the same horizontal space. Hence, the digits set takes up less 

horizontal space than the letters set. Luminance was computed by summing the intensity values 

of all pixels in each grayscale image. As the scrambled characters appeared to be more visually 

complex than their intact counterparts, we wanted to quantify their complexity. Perimetric 

complexity is commonly used to measure the size-invariant visual complexity of individual 

characters (Pelli et al., 2006; Schubert, 2017; Shovman & Ahissar, 2006; Ziegler et al., 2010), 

and has been shown to be highly correlated with the efficiency of character identification and is 

mediated by the number of features (e.g., lines, curves, terminations, etc.) (Pelli et al., 2006). We 

computed the perimetric complexity of each character using the approach described by Pelli and 

colleagues (2006) with a custom MATLAB script: squared length of the inner and outer 

perimeter divided by “inked” area of each shape traced from the binarized version of the image. 

Pairwise comparisons of luminance and perimetric complexity showed that digits, letters and 

their scrambled counterparts did not differ substantially in their perimetric complexity, however, 

digits on average had lower luminance than letters in both Letters Sets 1 and 2 (see Table A-3 

and Table A-4). Given the difference in luminance between the digits and letters sets, we 

directly assessed whether the representational geometry in a region can be described by 

differences in luminance. 

Differences in Experimental Contexts and Neuroimaging Acquisition Parameters 

Besides practical differences in MRI acquisition parameters with different scanner 

models (see Table A-1), there are notable differences in the amount and nature of exposure to 

the stimuli.  

Additional Conditions Within Each Run  

Within each run in Dataset 1 (Price & Ansari, 2011), each character was presented twice 
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for a duration of 500 ms each, and twice for a duration of 50 ms. As the 50-ms condition evoked 

a much smaller signal change above a fixation baseline compared to the 500-ms condition across 

the character categories in Price and Ansari (2011), this condition was not included in the 

replication Dataset 2 and Dataset 3 (Merkley et al., 2019). In Dataset 3, the authors replaced that 

condition with a mirrored image condition, in which the intact digits and letters were flipped 

horizontally, also presented for a duration of 500 ms. In Dataset 2, the 50-ms condition was not 

replaced with a different condition, hence the run was the shortest among the three datasets. 

Analyses in this study were restricted to the 500-ms condition for intact digits and letters, and 

their scrambled counterparts, which were common to all three datasets.  

Number of Runs 

Dataset 1 had two runs, Dataset 2 had one run, and Dataset 3 had four runs.  

Inter-trial Interval 

The inter-trial interval (ITI) in Dataset 3 (1 – 3 s) was substantially shorter than that in 

Datasets 1 and 2 (4 – 8 s) due to the shorter acquisition time per volume (Merkley et al., 2019). 

Perceptually and cognitively, the task might appear very different between short and long ITIs. 

In terms of the analysis of neural responses, there is some evidence that ITIs less than 6s are sub-

optimal for modeling single-trial responses in multivariate pattern analyses (Abdulrahman & 

Henson, 2016; Visser et al., 2016; Zeithamova et al., 2017). Single-trial responses are more 

commonly analyzed for classification analyses, but less so for RSA, in which exemplar-level 

responses (modeled across multiple trials featuring the same exemplar) are more commonly 

analyzed. Moreover, it is not uncommon for multivariate pattern analyses to be applied 

successfully to event-related designs with ITIs shorter than 2 s (1.7 - 1.9 s in Borghesani et al., 

2016; 1.5 s in Bracci, Daniels, & Op de Beeck, 2017, and Bracci & Op de Beeck, 2016). To 
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mitigate this concern and to yield more reliable estimates of response patterns, we modeled each 

character with a single regressor across the repeated presentations across runs in a general linear 

model for all datasets (see Zeithamova et al., 2017). In other words, we modeled our stimuli at 

the exemplar level across all runs rather than the trial level. 

Preprocessing and Modeling of Neuroimaging Data 

Preprocessing of the structural and functional data from all three datasets was performed 

using the same preprocessing pipeline in BrainVoyager 20.4 (Brain Innovation, Inc., Maastricht, 

the Netherlands). Functional images were corrected for differences in slice time acquisition 

(cubic spline interpolation), head motion (trilinear-sinc interpolation), and high-pass filtered 

(Fourier basis, 2 cycles) to remove linear and non-linear trends. Functional data were then co-

registered to the structural data using boundary-based registration, normalized into Talairach 

space, and re-sampled to 3-mm isotropic voxels. Functional data were not spatially smoothed. 

For each participant, all included runs were modeled with a two-gamma hemodynamic response 

function and analyzed simultaneously using a single univariate General Linear Model (GLM), 

corrected for serial correlations with a second-order autoregressive method. The GLM includes 

one predictor for each condition (8 categories × 9 exemplars, 4 categories × 9 exemplars, and 6 

categories × 9 exemplars in Datasets 1 – 3 respectively; Table A-1), one predictor for the target 

(red hash) condition (with or without button presses, as well as non-target (e.g., digit) trials that 

were responded to similarly as to a target trial), six predictors of motion parameters (translational 

and rotational in x, y, and z axes) for each run, and one constant predictor for each run. Although 

there are different number of predictors across datasets, we focused only on the beta estimates 

and corresponding t statistics derived from 36 predictors (9 digits, 9 letters, 9 scrambled digits, 

and 9 scrambled letters) for the multivariate pattern analyses.  
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Regions of Interest 

Regions of interest (ROIs) were obtained from the meta-analysis in Chapter 2 (Yeo et al., 

2017) in which preferential activity to Arabic numerals relative to other familiar symbols (e.g., 

Roman letters for English speakers or Chinese characters for Chinese speakers) was found to be 

convergent across 20 studies. Numeral preference was localized in the right ITG (55 3-mm 

isotropic voxels), as well as bilateral parietal and right frontal regions (see Figure 3-2(a) and 

Appendix A for more details of the ROIs). For our a priori hypotheses, we focused on the cluster 

in the right ITG, as well as the left homologue region because the left ITG also exhibits numeral 

preference (Amalric & Dehaene, 2016; Bugden et al., 2019; Grotheer et al., 2018; Grotheer, 

Herrmann, et al., 2016; Pollack & Price, 2019; Roux et al., 2008), but is possibly less robust to 

varying task contexts or is spatially more variable. Moreover, Pollack and Price (2019) found 

that although the left (but not right) ITG showed, on average across participants, numeral 

preference when detecting digits among letters, individual differences in the activation of the 

right (but not left) ITG during digit detection correlated with calculation competence. To assess 

the specificity of the ITG findings independent of correlated signal and/or noise across regions, 

as well as for completeness, we also analyzed the representational geometries in the parietal and 

frontal regions and reported these exploratory findings in Appendix A. Individual differences 

and group means of the size and temporal signal-to-noise ratio in each ROI for each dataset are 

reported in Figure A-2.   
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Figure 3-2. Regions of interest (ROIs), and neural and candidate representational dissimilarity 

models (RDMs)  

(a) Numeral-preferring ROIs from the meta-analysis in Chapter 2 (Yeo et al., 2017), and an 

example neural RDM (using correlational distance) constructed from the activation patterns 

evoked by 9 Digits (D), 9 Scrambled Digits (sD), 9 Letters (L), and 9 Scrambled Letters (sL) 

within the right ITG. IPL: inferior parietal lobule. IPS: intraparietal sulcus. SPL: superior parietal 

lobule. PMC: premotor cortex. IFG: inferior frontal gyrus. ITG: inferior temporal gyrus. (b) 

Candidate RDMs (using Letters Set 1 from Datasets 1 and 2; see Figure A-5 for Letters Set 2 

from Dataset 3). All models presented were rescaled to [0, 1] for comparative visualization. (c) 

Multidimensional scaling plot of the correlational distance among the candidate models using 

Letters Set 1 (see Figure A-5 for Letters Set 2 from Dataset 3). 
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Representational Similarity Analyses 

Figure 3-2(a) shows a schematic overview of the approach taken for the RSA.  

Neural Representational Dissimilarity Matrices (RDMs) 

Within each ROI, activation patterns evoked by each of the 36 exemplars were 

characterized by the spatial distribution of t-values (Misaki et al., 2010) from exemplar vs. 

baseline contrasts, since t-values take into account the noise in the voxels (Misaki et al., 2010) 

and thus mitigate any differences in temporal signal-to-noise ratios across datasets. Subsequent 

analyses were performed in MATLAB using the Representational Similarity Toolbox (Nili et al., 

2014) and in-house scripts. For each ROI within each participant, we first excluded voxels that 

had no functional coverage or signal across all exemplars using intensity-based thresholding (100 

arbitrary units as a default threshold in BrainVoyager, and 1800 arbitrary units as a modified 

threshold for 15 participants in Dataset 3 whose raw intensities were about 15 – 20 times as high 

as a typical functional dataset). The activation patterns were then scaled by subtracting the mean 

activation pattern (across exemplars) from the exemplar-specific activation pattern (Diedrichsen 

& Kriegeskorte, 2017; Misaki et al., 2010; Op de Beeck, 2010; Walther et al., 2016). Finally, for 

each ROI, participant-specific dissimilarities between all 36 exemplar-evoked activation 

patterns, computed using correlational distance 1 – Pearson’s r, were summarized in a 36 × 36 

matrix (Figure 3-2(a)).  

Candidate Representational Models 

We constructed eight candidate model RDMs, two that characterize representational 

similarity based on visual form of the characters, four that characterize conceptual categories, a 

control model that characterizes letter sensitivity, and a confound model that characterizes 

luminance differences between digits and letters (Figure 3-2(b)).  
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Visual Form Models. We focused on two different measures to quantify lower-level and 

higher-level visual form similarity between each pair of characters. The Pixel Overlap model is 

based on the commonly used pixel-wise Euclidean distance between each pair of grayscale 

images. It is defined by djk=
1

√𝑁
√∑ [𝐼𝑗(𝑥) − 𝐼𝑘(𝑥)]

2𝑁
𝑥=1 , where N is the number of pixels in the 

image, and 𝐼𝑗(𝑥) and 𝐼𝑘(𝑥) are the pixel intensities at location x in images 𝐼𝑗 and 𝐼𝑘 (e.g., 

Chouinard, Morrissey, Köhler, & Goodale, 2008; Grill-Spector et al., 1999; Op de Beeck, Torfs, 

& Wagemans, 2008). The larger this index is, the greater the physical (retina) difference between 

each pair of characters. This model thus assesses whether the representational geometry in a 

region retains lower-level retinotopic overlap in the shape envelope of the characters. It is not 

invariant to font, size, and position. 

In contrast, although “5” and “S” may not have high pixel-to-pixel overlap, human 

observers may consider their abstract shapes to be highly similar. The Shape Distance model 

overcomes the limitation of the Pixel Overlap model by considering higher-level shape similarity 

based on a computational algorithm that relies on the “context” of a sampled point on a shape 

(i.e., how one point on a shape relates to all other points on the shape) (Belongie et al., 2002) 

(see Appendix A for computational details of this measure). Compared to the pixel-based 

measure above, the shape distance measure is invariant to translation and scaling (but not 

rotation, otherwise “6” and “9” will be highly confusable), and has been shown to outperform the 

pixel-based measure in recognition of several categories of objects, including handwritten digits 

(hence font-invariant too) (Belongie et al., 2002). Several studies have employed this measure in 

investigations of the role of abstract shape similarity in neural representations of object 

recognition (Bracci et al., 2015; Fairhall et al., 2011; Gotts et al., 2011; Mahon et al., 2007). 

Multidimensional scaling plots illustrating the dissimilarities of the 36 characters based on pixel 
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overlap and shape distance are shown in Figure A-3 and Figure A-4. 

Categorical Models. Four categorical models were constructed. Unless otherwise noted, 

description of high similarity between each pair of characters was coded as having a correlational 

distance (1 – Pearson’s r) of 0, and high dissimilarity was coded as having a correlational 

distance of 1. 

Figure 3-3 illustrates these four categorical models. The Familiar v. Novel model and 

Alphanumeric v. Novel model are based on the hypothesis that a region responds to all familiar 

characters (digits and letters) in a manner that is different from how it responds to novel 

characters (scrambled digits and letters). In the Familiar v. Novel model, digits and letters are 

indistinguishable. In the Alphanumeric v. Novel model, digits and letters are somewhat 

distinguishable, but are still more similar to one another than to novel characters (here we coded 

0 for high similarity, 2 for high dissimilarity, and 1 for in-between). The Alphabet v. Numbers v. 

Novel model is based on the hypothesis that digits, letters, and novel characters are equally 

distinguishable, and that one category is no more similar to any one of the other two categories.  

Although the Alphanumeric v. Novel and Alphabet v. Numbers v. Novel models suggest that 

digits are represented as a distinct category from letters and novel characters (i.e., a region is 

sensitive to the three character categories, but shows no greater sensitivity for any one category 

over the others), they do not indicate that a region is specialized for processing numerals. 

Numbers v. Others model is the strongest test for numeral sensitivity in pITG-numerals. It is 

based on the hypothesis that a region responds to digits in a manner that is different from how it 

responds to letters and novel characters, and importantly, it does not distinguish letters from 

novel characters. 
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Figure 3-3. Schematic of the categorical and control models 

 

 

Control Model. To rule out the possibility that the representational geometry in the 

pITG-numerals is simply categorical in nature, and non-specific, we also tested an Alphabet v. 

Others control model (i.e., shows greater letter sensitivity) (see Figure 3-3). Given the spatial 

dissociation found in previous work, this control model is highly unlikely to describe the 

representational geometry in pITG-numerals, and thus provides a strong test for the specificity of 

the other more plausible categorical models above. 

Confound Model. As the Letters Set has greater luminance than the Digits Set, the 

Luminance model was included to directly assess whether pairwise differences in luminance 

suffice to describe the representational geometry of the characters in a region. Pairwise 

dissimilarity in luminance was computed by taking the absolute difference in luminance between 

two images and rescaled to [0, 1]. 

It is critical to note that all eight models are neither mutually exclusive nor fully 

orthogonalized. In particular, the Familiar v. Novel, Alphanumeric v. Novel, and Alphabet v. 

Numbers v. Novel models show very subtle differences and are highly correlated with one 

another. These three highly correlated categorical models were included primarily to explore 

whether one model may be better than another in describing the representational geometry in a 
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region. Other than this family of highly correlated models, Figure 3-2(c) and Figure A-5(b) 

show that the models are sufficiently different from one another, with each group of models 

roughly occupying separate quadrants in a two-dimensional representational space (see Figure 

A-5(c) for the pairwise rank correlations between the models). 

Similarity Between Neural RDMs and Model RDMs 

To quantify the extent to which the representational geometry in an ROI is similar to that 

described by a candidate model, we compared the neural RDM with each model RDM (one-half 

of each symmetric matrix) using Kendall’s tau-a (𝜏𝑎) rank correlation (Nili et al., 2014). This 

was performed for each participant, and the participant-specific correlational coefficients were 

subjected to a one-sided Wilcoxon signed-rank test across participants to assess whether the 

mean neural-model similarity was significantly greater than 0. The use of ranked measures at 

both the participant and group levels ensures that our findings are robust to any outlying data 

points, but it necessarily comes with a loss of sensitivity to distinguish between models within 

participants because it does not exploit the continuous nature of the values in the neural RDMs 

(Diedrichsen & Kriegeskorte, 2017). For this and all other hypothesis tests, we used α < .05 as 

our threshold for false positives. Multiple comparisons across models within each ROI were 

accounted for by controlling for false-discovery rate (FDR) at q < .05 (Benjamini & Hochberg, 

1995). Given that some models were of no theoretical interest (e.g., luminance model) and that 

some candidate models tested are highly similar and their inclusion was primarily exploratory, 

FDR-correction might be too conservative. Hence, although we reported statistics that were 

corrected for FDR, inferences were made jointly from the uncorrected frequentist and Bayesian 

statistics (see below for details of Bayesian tests). 

To quantify the degree of between-participant variability in each dataset, we estimated 
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the mean correlation between the participant-specific neural RDM and an unknown true model 

RDM. This is indicated by the noise ceilings in Figure 3-4. The ceiling upper bound was 

computed by correlating participant-specific neural RDMs with a “central” neural RDM (that 

maximizes its correlation to the participant-specific neural RDMs), and averaged across 

participants (see Nili et al., 2014, for details). Hence, assuming that the experimental paradigm 

was meant to yield robust effects across participants with low measurement error, this upper 

bound is the highest correlation that any model RDM can achieve in a given dataset. The lower 

bound was computed by a “leave-one-participant-out” approach, such that each participant’s 

neural RDM was correlated with that of the remaining participants, and averaged across 

participants (Nili et al., 2014). The noise ceilings not only provide information of between-

participant variability across datasets to account for potential differences in our findings, but also 

allows us to examine whether the task was sensitive in detecting the effects of interest at the 

group level. 

For cases in which there is evidence that at least one categorical model described the 

representational geometry in a region, we probed the “unique” similarity of each categorical 

model using a semipartial correlation approach (i.e., controlling for visual form and luminance 

confound models only from the neural RDM). For the semipartial correlations computed using 

the ppcor R package (S. Kim, 2015), Kendall’s 𝜏𝑏 was used instead of 𝜏𝑎 because there is no 

statistical software to the best of our knowledge that implements the 𝜏𝑎 variant for semipartial 

correlations. Although 𝜏𝑎 has been found to favor simplified models (e.g., categorical) over 

detailed models less often than 𝜏𝑏 (Nili et al., 2014), we focused on comparing only among 

categorical models, so the bias is less critical here. Pairwise differences were also performed, and 

multiple comparisons across models within each ROI were FDR-corrected. 
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Visualization of Representational Geometry Within ROI 

To visualize the mean representational geometry within each ROI in two- and three-

dimensional spaces, we applied multi-dimensional scaling (MDS) to the group-averaged neural 

RDM using cmdscale function in R. All plots are made available at https://osf.io/jwgk8/. 

Complementary Frequentist and Bayesian Analyses 

Statistical inferences were made jointly based on both frequentist Type I error control of 

α < .05 (uncorrected for multiple comparisons) as well as Bayes factors as a more continuous 

measure of evidence in support of one hypothesis over another. Non-parametric frequentist 

analyses and Bayesian analyses were conducted in MATLAB (Nili et al., 2014), R (R Core 

Team, 2018) and JASP 0.10.0 (JASP Team, 2019). As the availability of Bayesian equivalent of 

non-parametric tests is currently limited, and to accommodate the assumptions of traditional 

parametric tests that also apply to Bayesian analyses, we first transformed Kendall’s τ to 

Pearson’s r using the formula r = sin(.5πτ) (Gilpin, 1993; Walker, 2003) (e.g., see Martin, 

Douglas, Newsome, Man, & Barense, 2018), and then performed Fisher’s z-transformation on 

Pearson’s r. These z-transformed r values (𝑟𝑧) were then used to estimate the Bayes factors (BF). 

In summary, we performed frequentist tests on raw Kendall’s τ values, and performed 

complementary Bayesian analyses on z-transformed r values. 

For all Bayesian analyses, we used the default “objective” priors (correlation: stretched 

beta prior width = 1; one-sample and paired-samples t-test: “medium” Cauchy prior width of 

0.707) because of a lack of literature to specify “informed” priors. Nonetheless, as Bayes factors 

are dependent on the priors used, we also conducted sensitivity analyses of the robustness of the 

BFs to different specifications of prior (“wide” and “ultrawide” Cauchy priors 1 and 1.414 

respectively), and any evidence that a specific finding may not be robust to the choice of the 

https://osf.io/jwgk8/
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priors was noted as a caveat. In general, BFs tend to decrease with wider Cauchy priors, hence, 

all reported BFs using the default prior (.707) were close to the highest attainable. 

For all one-sample t-tests, we report 𝐵𝐹+0 that expresses the likelihood of the data given 

H+ (one-sided, 𝑟𝑧 > 0) relative to H0 (𝑟𝑧 = 0) assuming that H+ and H0 are equally likely, to 

complement one-sided p-values. For post-hoc paired-samples tests, we report 𝐵𝐹10 that 

expresses the likelihood of the data given H1 (two-sided, 𝑟𝑧 difference ≠ 0) relative to H0 (𝑟𝑧 = 

0), to complement two-sided p-values. Although we note that BFs provide continuous measure 

of evidence, we used 𝐵𝐹+0 or 𝐵𝐹10 > 3 in support of the alternative hypothesis, and 𝐵𝐹+0 or 

𝐵𝐹10  < 1/3 in support of the null hypothesis as thresholds for deciding whether the evidence for 

either hypothesis was conclusive (Dienes, 2014; Dienes & Mclatchie, 2017).  

Small-scale Meta-analyses of Effect Sizes 

To provide a summary effect size of the three datasets for each model in each ROI, we 

performed a classical fixed-effects meta-analysis. It is valid and recommended to conduct a 

small-scale meta-analysis on a minimum of two studies to provide a quantitative summary of 

studies with similar methodology (Goh et al., 2016; Lakens & Etz, 2017; Valentine et al., 2010). 

These meta-analyses were conducted using JASP 0.10.0 (JASP Team, 2019) on the mean 

Fisher’s z-transformed Kendall’s 𝜏𝑎 values (𝑟𝑧) from each dataset as effect sizes of the similarity 

between the neural RDM and a model RDM, weighted by their inverse squared standard errors. 

In other words, each meta-analytic effect size is a weighted mean of the three datasets. A fixed-

effects approach assumes a common true effect size across studies, and that its variance is solely 

due to sampling variation. Here, we do not aim to generalize the findings from our specific task 

and stimulus sets to other studies, so a fixed-effects approach is appropriate. Tests of 

heterogeneity in the residuals in 45 out of 48 meta-analyses indicated no significant 
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heterogeneity in effect sizes across the datasets (all ps > .053), and that a fixed-effects model was 

justified in most cases. Multiple comparisons across models within each ROI were accounted for 

by controlling for FDR at q < .05. Finally, we also performed complementary Bayesian fixed-

effects meta-analyses with Cauchy prior width of 0.707 using the BayesFactor package (Morey 

& Rouder, 2018) as described in Rouder and Morey (2011). Specifically, a summative Bayes 

factor is computed using the t-statistics of each dataset (derived from a one-sided one-sample t-

test on the Fisher’s z-transformed Kendall’s 𝜏𝑎 values) and weighted by their sample sizes. The 

Fisher’s z values were then transformed back to Pearson’s r for presentation (Goh et al., 2016). 

Data and Code Availability 

Raw behavioral and MRI data from Datasets 1 and 2 are available upon direct request 

from the corresponding author. Dataset 3 is publicly available at OpenNeuro 

(https://openneuro.org/datasets/ds002033; doi: 10.18112/openneuro.ds002033.v1.0.0) (Merkley 

et al., 2019). The stimuli, model RDMs, neural RDMs from all datasets, RSA data and code 

necessary to reproduce all results reported are publicly available at Open Science Framework 

(https://osf.io/jwgk8/; doi: 10.17605/OSF.IO/JWGK8).    

Results 

Representational Geometry in Candidate Numeral-Preferring Regions in ITG 

Given the large number of tests conducted across all datasets, we summarize the data-

specific and meta-analytic findings visually in Figure 3-4, and provide the detailed statistics only 

for the meta-analyses in Table 3-1. We also report the statistics and describe the findings only 

for dataset-specific positive evidence from frequentist and/or Bayesian tests, but invite readers to 

refer to the complete results output in the format of JASP files at https://osf.io/jwgk8/ for all 

other statistical details. 

https://openneuro.org/datasets/ds002033
https://osf.io/jwgk8/
https://osf.io/jwgk8/
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Figure 3-4. Similarity between neural and model representational dissimilarity matrices (RDMs) 

in the candidate numeral-preferring regions in (a) left and (b) right inferior temporal gyrus (ITG)  

Blue bars indicate the estimated noise ceiling. Group means and standard errors of the similarity 

are indicated by the bar plots with error bars. Individual data points are shown as grey dots. 

Evidence of similarity is indicated by black asterisk: * p < .05, ** p < .01, *** p < .001, one-sided, 

uncorrected. Blue asterisks indicated results that remained significant with FDR correction. BF+0 

= Bayes Factor [𝑟𝑧 > 0 vs. 𝑟𝑧 = 0]. Lines in meta-analytic plots indicate the 95% confidence 

interval around the overall weighted r. 
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Table 3-1. Meta-analyses for the degree of similarity between each model RDM and neural 

RDMs in left and right ITG 

 Left ITG  Right ITG 

Model r 95% CI p 𝐵𝐹+0  r 95% CI p 𝐵𝐹+0 

Pixel Overlap .0014 [-.0052, 

.0079] 

.680 0.17  .0055 [-.00005, 

.0110] 

.052 1.56 

Shape Distance .0032 [-.0035, 

.0099] 

.347 0.28  .0029 [-.0039, 

.0097] 

.406 0.26 

Familiar v. Novel .0030 [-.0038, 

.0097] 

.386 0.28  .0112 [.0022, 

.0201] 

.015 3.30 

Alphanumeric v. 

Novel 

.0031 [-.0036, 

.0099] 

.365 0.29  .0140 [.0050, 

.0229] 

.002 11.52 

Alphabet v. Numbers 

v. Novel 

.0024 [-.0034, 

.0083] 

.415 0.26  .0140 [.0066, 

.0214] 

.0002 51.22 

Numbers v. Others -.0011 [-.0061, 

.0039] 

.667 0.09  .0084 [.0026, 

.0141] 

.005 13.64 

Alphabet v. Others .0021 [-.0035, 

.0078] 

.463 0.25  .0058 [-.0001, 

.0116] 

.055 1.27 

Luminance .0038 [-.0028, 

.0105] 

.260 0.33  .0045 [-.0029, 

.0119] 

.230 0.41 

Note. 95% CI: 95% confidence interval. BF+0 = Bayes Factor (r > 0 vs. r = 0) 

 

 

Left ITG 

Overall, there was conclusive meta-analytic evidence of a lack of similarity between the 

neural RDMs and any model RDM (Figure 3-4(a) and Table 3-1). Below we report whether the 

meta-analytic findings were also observed in each dataset. 

Visual Form Models. There was no evidence of similarity between the neural RDMs and 

Pixel Overlap or Shape Distance model RDM in any of the datasets, except for some weak 

evidence for the Shape Distance model for Dataset 1 (𝜏𝑎 = .0078, p = .044, 𝐵𝐹+0 = 1.97). 

Categorical, Control, and Confound Models. Across the three datasets, there was no 

evidence of similarity between the neural RDMs and any of the categorical, Alphabet v. Others 

model, and Luminance model RDMs. 

Right ITG 
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Overall, there was conclusive meta-analytic evidence of no similarity between the neural 

RDMs and Shape Distance model RDM, and conclusive meta-analytic evidence of similarity 

between the neural RDMs and models that distinguish numerals from letters (Alphanumeric v. 

Novel, Alphabet v. Numbers v. Novel, and Numbers v. Others) (Figure 3-4(b) and Table 3-1). 

The Bayes factor for the Familiar v. Novel model was not robust to varied priors as it decreased 

below 3 with a wide prior. The Alphanumeric v. Novel, Alphabet v. Numbers v. Novel, and 

Numbers v. Others models were, on average, at least 3 times more likely than the Familiar v. 

Novel model. Importantly, the Bayes factor for the Numbers v. Others model was 7.83 even with 

an ultrawide prior, suggesting that the similarity between the neural and the Numbers v. Others 

model RDMs was 7 to 13 times more likely under the hypothesis of a positive correlation than 

that of a null correlation. Moreover, for the Numbers v. Others model, a “Fail-safe N” analysis 

estimated that 8 studies with an effect size of 0 would have to be added to the meta-analysis to 

reduce the meta-analytic effect size to one with a false positive rate ≥ .05. The Numbers v. 

Others model still remained statistically significant when we controlled for false positives for the 

Numbers v. Others model across the three datasets (FDR-corrected ps < .05 in Datasets 1 and 3).  

Although evidence for the Alphabet v. Others control model RDM was inconclusive, it 

was much less likely to describe the neural RDMs than the Numbers v. Others model RDM. A 

comparison of the BFs for the Alphabet v. Others (𝐵𝐹+0 = 1.27) and the Numbers v. Others 

models (𝐵𝐹+0 = 13.64) indicates that the Numbers v. Others model was 10 times more likely to 

describe the neural RDMs than the Alphabet v. Others model, suggesting that novel characters 

are more similar to letters than to digits.  

Taken together, there was conclusive evidence that the candidate numeral-preferring ITG 

region processed digits and letters differently, and the fact that the Numbers v. Others model 
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could describe its representational geometry suffices as evidence supporting some degree of 

greater numeral sensitivity relative to the other categories. Below we report whether the meta-

analytic findings were also observed in each dataset. The dataset-specific results below are 

summarized in Table A-5. 

Visual Form Models. There was no evidence of similarity between the neural RDMs and 

Pixel Overlap or Shape Distance model RDM in any of the datasets. 

Categorical Models. For Dataset 1, there was evidence of similarity between the neural 

RDMs and the three categorical model RDMs that distinguish numbers as a distinct category 

from letters and novel characters (Alphanumeric v. Novel: 𝜏𝑎 = .0096, p = .016, 𝐵𝐹+0 = 3.36; 

Alphabet v. Numbers v. Novel: 𝜏𝑎 = .0100, p = .005, 𝐵𝐹+0 = 8.37; and Numbers v. Others: 𝜏𝑎 = 

.0098, p = .033, 𝐵𝐹+0 = 4.34). Although the evidence for the Alphabet v. Numbers v. Novel 

model was the strongest amongst the three models, post-hoc pairwise comparisons revealed no 

evidence of within-participant differences between these three categorical model RDMs in their 

similarity to the neural RDMs (all ps > .828, 𝐵𝐹10s < 0.25). There was also still evidence of 

similarity between the neural RDMs and these categorical model RDMs even after controlling 

for the visual form and confound model RDMs (Alphanumeric v. Novel: 𝜏𝑎 = .0121, p = .020, 

𝐵𝐹+0 = 3.28; Alphabet v. Numbers v. Novel: 𝜏𝑎 = .0143, p = .006, 𝐵𝐹+0 = 7.90; and Numbers v. 

Others: 𝜏𝑎 = .0145, p = .033, 𝐵𝐹+0 = 4.49). Similarly, post-hoc pairwise comparisons revealed 

no evidence of within-participant differences between these three categorical model RDMs in 

their unique similarity to the neural RDMs (all ps > .651, 𝐵𝐹10s < 0.31). Finally, it is important 

to note that the Bayes factors for the Alphanumeric v. Novel model in both zero-order and 

semipartial correlations were not robust to varied priors as they decreased below 3 with a wide 

Cauchy prior (≥ 1), whereas the Bayes factors for the Numbers v. Others model remained 
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relatively robust, and decrease to 2.95 (zero-order correlation) and 3.07 (semipartial correlation) 

only with an ultrawide prior (≥ √2). 

For Dataset 2, we found no evidence of similarity between the neural RDMs and any 

categorical model RDMs. Importantly, there was no evidence of null correlations either (𝐵𝐹+0s > 

1/3), suggesting that these results were not inconsistent with those of Dataset 1. 

For Dataset 3, there was evidence of similarity between the neural RDMs and only the 

Numbers v. Others model (𝜏𝑎 = .0083, p = .026, 𝐵𝐹+0 = 4.07). There was still evidence of 

similarity between the neural RDMs and Numbers v. Others RDM after controlling for the visual 

form and confound model RDMs (𝜏𝑏 = .0126, p = .021, 𝐵𝐹+0 = 4.97). The Bayes factors for the 

Numbers v. Others model in both zero-order and semipartial correlations were somewhat robust 

to varied priors and decreased to 2.47 and 3.05 respectively only with an ultrawide prior. 

Figure 3-5 illustrates the group-averaged dissimilarity matrix and representational 

geometry of the 36 characters in this region for each dataset. To further assess whether the three-

way distinction (numerals, letters, and novel characters) observed using a model-driven approach 

could also be observed using a data-driven approach, we performed a k-medoids clustering 

analysis (Kaufman & Rousseuw, 1990) for each dataset. Overall, evidence for a three-cluster 

structure was not strong in all datasets, but consistent with our findings above, there exists a 

cluster that showed a slight dominance of numeral representations in both Datasets 1 and 3 (see 

Table A-6 – Table A-8 and Figure A-6 – Figure A-8).  

Control Model. There was no evidence of similarity between the neural RDMs and 

Alphabet v. Others model RDM in any of the datasets.  

Confound Model. There was no evidence of similarity between the neural RDMs and 

Luminance model RDM in any of the datasets. 
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Figure 3-5. Group-averaged representational dissimilarity matrices and representational 

geometry of exemplars in right ITG  

Group-averaged representational dissimilarity matrices and representational geometry of the 36 

exemplars (D: Digits, sD: Scrambled Digits, L: Letters, sL: Scrambled Letters) in two-

dimensional space in the numeral-preferring right inferior temporal gyrus (ITG) in each dataset. 

Three-dimensional interactive plots are available at https://osf.io/jwgk8/wiki/home. 

 

 

https://osf.io/jwgk8/wiki/home
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Representational Geometry in Candidate Numeral-Preferring Parietal and Frontal 

Regions 

To assess how specific the above findings are to the ITG regions, as well as for 

completeness in exploring other candidate numeral-preferring regions, we performed identical 

analyses for the bilateral parietal and right frontal regions from the meta-analysis by Yeo and 

colleagues (2017) (Figure 3-2(a)). We found meta-analytic evidence of similarity between the 

Numbers v. Others model RDM and the neural RDM in the right parietal region, as well as 

similarity between all other category-sensitive categorical model RDMs and the neural RDMs in 

both left and right parietal regions (Figure A-9 – Figure A-10 and Table A-9). There was also 

meta-analytic evidence of similarity between the category-sensitive categorical model RDMs and 

the neural RDMs in the right inferior frontal region (Figure A-11 – Figure A-12 and Table 

A-10). 

Discussion 

The ventral occipitotemporal cortex (vOT) is known to include distinct neuronal 

populations that are tuned to different perceptual categories such as faces, body parts, scenes, 

and written words (for a review, see Kanwisher, 2010). Although it has long been known that 

regions in the left vOT show preference for single letters and letter strings relative to other 

character types including digits (L. Cohen & Dehaene, 2004; Flowers et al., 2004; James et al., 

2005; Park et al., 2012; Polk et al., 2002; Polk & Farah, 1998; Vinckier et al., 2007), letters are 

no longer that special. There is now a growing body of evidence that the vOT also has a region 

that shows preference for Arabic numerals, known as the “Number Form Area” (NFA) in the 

posterior inferior temporal gyrus (pITG) (Amalric & Dehaene, 2016; Grotheer et al., 2018; 

Grotheer, Herrmann, et al., 2016). In this study, we probed the organization of the neural 
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responses to task-irrelevant individual digits, letters and novel characters to better understand the 

functional boundaries of a candidate numeral-preferring region in the pITG (“pITG-numerals”). 

Evidence of Numeral Sensitivity in Right pITG-numerals During Passive Viewing 

Using multivariate representational similarity analyses (RSA), our results suggest that the 

pITG-numerals in the right hemisphere does distinguish between digits and letters in its 

distributed response patterns even when the characters are task-irrelevant. This is contrary to the 

univariate findings previously reported for the same datasets. Moreover, the right pITG-numerals 

was more likely to represent digits in its own category, and letters and novel characters 

indistinguishably in another category (Numbers v. Others model) than to represent letters in its 

own category, and digits and novel characters indistinguishably in another category (Alphabet v. 

Others model). Complementary to our model-driven approach, data-driven clustering analyses 

also support the presence of a digit-dominated cluster in Datasets 1 and 3, albeit weakly. These 

findings suggest the possibility of a greater numeral sensitivity in the right pITG-numerals. This 

is not surprising given that the region examined here is a region defined a priori from a meta-

analysis of numeral-preferring regions in Chapter 2 (Yeo et al., 2017). However, it resolves the 

crucial concern that passive-viewing paradigms may be ill-suited for the investigation of the 

putative NFA, and clarifies the need for different analytical approaches that go beyond mean 

activation levels and that are more sensitive to effects evoked by mere passive viewing. While 

we did find support for functional specialization using a multivariate approach, active tasks may 

still be better for investigating the function of this region given a recent finding that 

mathematical tasks with visually dissimilar stimuli (e.g., Arabic numerals, dice patterns, and 

finger representations) engage the pITG more consistently than the mere presence of Arabic 

numerals (e.g., Grotheer et al., 2018; see also Pollack & Price, 2019). Here we demonstrate that 
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digits and letters may evoke distinct distributed response patterns even though their overall 

response strengths may be similar. Hence, multivariate approaches may have greater sensitivity 

than univariate approaches when analyzing the processing of task-irrelevant characters. 

Although we found conclusive evidence of categorical distinctions in the right pITG-

numerals in Datasets 1 and 3, evidence was inconclusive in Dataset 2. One possibility for the 

inconclusive findings in Dataset 2 is the fewer trials per exemplar that were available for the 

estimation of the activation patterns in Dataset 2 (two trials per exemplar compared to four trials 

in Dataset 1 and eight trials in Dataset 3). This factor should not be specific to any ROI. Yet, we 

found conclusive findings in the parietal ROIs in Dataset 2 and inconclusive findings in the 

parietal ROIs in Dataset 3. Hence, number of trials seems unlikely to fully account for the 

difference in results. Although the mean temporal signal-to-noise ratio (tSNR) in the right pITG-

numerals was much higher in Dataset 3 than in Datasets 1 and 2, there was inconclusive 

evidence that the mean tSNRs differed between Datasets 1 and 2. This suggests that differences 

in tSNR also do not fully account for the differential results. Other possible factors may include a 

younger sample in Dataset 2 that has fewer years of experience with processing numerals and 

math instruction, but the small number of studies included here preclude any analysis of 

moderators in the meta-analyses. In any case, the inconclusive findings for Dataset 2 do not 

provide support for the null hypotheses either, and thus do not undermine the positive findings 

observed in the other two datasets. 

These results are also likely to be specific to the right pITG-numerals. We did not 

observe identical findings in most of the other candidate numeral-preferring parietal and frontal 

region or the left homologue of the pITG-numerals within each dataset, and thus the greater 

numeral sensitivity observed in the right pITG-numerals cannot be purely driven by noise in the 
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activation patterns or by intrinsic connectivity across these regions. The absence of a greater 

numeral sensitivity in the left homologue is also consistent with previous findings that the left 

pITG is involved in numeral processing, but does not show a preference for numerals when they 

are irrelevant for the task (Pollack & Price, 2019). Although a numeral-preferring region in the 

left pITG has been observed in several studies (Amalric & Dehaene, 2016; Bugden et al., 2019; 

Grotheer et al., 2018; Grotheer, Herrmann, et al., 2016), its specific role is still unclear, and may 

be engaged under different circumstances from its right counterpart or have different functional 

and structural connections to other brain regions. For instance, it has long been proposed that the 

bilateral NFA have connections to magnitude processing regions in the parietal cortex, but only 

the left NFA has connections to frontal language regions for number word transcoding (L. Cohen 

& Dehaene, 1995, 1996, 2000; Dehaene & Cohen, 1995). Findings from several lines of research 

support the hemispheric asymmetry account. Several event-related potential studies found right-

lateralization of digit-specific processing, in contrast to left-lateralization of letter-specific 

processing, in children in first grade through adolescence as well as in adults (Lochy & Schiltz, 

2019; Park et al., 2014, 2018). In a study comparing mathematicians and non-mathematicians 

(Amalric & Dehaene, 2016), a right numeral-preferring pITG region in non-mathematicians 

responded more to numerals than to words and mathematical formulas, but the left numeral-

preferring pITG region showed an attenuated preference for numerals. In mathematicians, 

however, both left and right numeral-preferring pITG regions responded to formulas and 

numerals to a similar degree, but only the left numeral-preferring pITG region was modulated by 

mathematical expertise. Recently, it was also found that individual differences in digit-specific 

activation in the right, but not left, pITG correlated positively with calculation competence 

(Pollack & Price, 2019). Alternatively, there may be a left numeral-preferring pITG region, but it 
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does not overlap with our candidate region-of-interest, possibly due to greater inter-individual 

variability in its localization as a function of other symbol-preferring regions, such as letter- and 

word-preferring regions (Glezer & Riesenhuber, 2013). Taken together, it is likely that the 

functional specialization for numeral processing in the right pITG may be more robust than its 

left counterpart for reasons yet to be known. 

To the extent that digits and letters are highly similar in their curvilinear features, it is 

conceivable that the ability of neuronal populations to categorize “S” as a letter and “8” as a digit 

is due mainly to the conceptual knowledge that “8” has a quantitative referent, but “S” does not 

(i.e., task-driven conceptual processing). Given that the characters are irrelevant for the task, 

there was no need for participants to distinguish digits from letters, or their individual identities. 

Hence, observing some degree of greater numeral sensitivity in the pITG-numerals in the current 

datasets suggests that there are automatic, stimulus-driven processing biases. Considering the 

broader question of how different perceptual categories seem to occupy different regions in the 

vOT, Gauthier (2000) proposed a “process-map” model, in which automatic processing biases 

arise from our (and the brain’s) experience in associating different recognition and computational 

goals with different categories of objects (for a recent review, see Op de Beeck, Pillet, & Ritchie, 

2019). It is therefore likely that literacy and numeracy lead to the association of letters and 

numerals with habitually different goals (numerical and mathematical relevance or not), which in 

turn lead to divergent neural processing pathways in the vOT that have a preparatory or biased 

response for stimuli that potentially have numerical relevance or not. From this perspective, not 

only does pITG-numerals encode subtle differences between visually similar objects, such as 

numerals and letters, it could even encode similarities between objects that are visually dissimilar 

(Gauthier, 2000), such as numerals, dice patterns, finger representations, mathematical formulas 



  

 92 

with Greek and Roman letters (Amalric & Dehaene, 2016; Grotheer et al., 2018), or even from a 

different sensory input, such as soundscapes associated with numerical content (Abboud et al., 

2015), and auditory mathematical statements (Amalric & Dehaene, 2016, 2018, 2019). In other 

words, it is likely that pITG-numerals is recruited whenever the brain “predicts” that the stimulus 

has numerical relevance, through automatic feedforward connections from posterior ventral 

(occipital cortex) regions and/or feedback connections from parietal and frontal regions. This is 

also consistent with the interactive account that the analogous “Visual Word Form Area” is 

involved in predictive coding through an experience-driven automatic interaction of forward and 

backward connections, rather than word form detection per se (Price & Devlin, 2011). In the 

current study, we are unable to disentangle the automatic, stimulus-driven feedforward and 

feedback contributions, but only seek to exclude any modulatory contribution of effortful, task-

driven processing that may bias or amplify the representations along a particular dimension (e.g., 

shape or conceptual domain). This exclusion is important because contemporary computational 

models of category selectivity in the vOT suggest that at least for faces versus words, 

categorically distinct representations can already be observed in category-selective vOT regions 

during passive viewing, and those representations are further amplified by task-driven conceptual 

processing (Kay & Yeatman, 2017). 

Relatedly, it is noteworthy that the candidate numeral-preferring region in the right 

parietal lobule is the only other region that showed evidence of greater numeral sensitivity. This 

observation is not only consistent with Price and Devlin's (2011) interactive account, but is also 

consistent with the hypothesis that the specific localization of the pITG-numerals is due to its 

biased connectivity with parietal regions thought to be involved in numerical magnitude 

processing (Abboud et al., 2015; Daitch et al., 2016; Hannagan et al., 2015; Nemmi et al., 2018). 
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Although intracranial electrophysiological recordings have begun probing the extent to which the 

numeral preference observed in the right pITG-numerals and right parietal lobe are dependent on 

each other, and in which direction, many of the findings are situated within an arithmetic context, 

which do not allow the dissociation of the contributions of sensory and conceptual processing 

(Baek et al., 2018; Daitch et al., 2016; Pinheiro-Chagas et al., 2018). With the surge in findings 

of relatively more robust pITG involvement during arithmetic and high-level mathematical tasks 

(Amalric & Dehaene, 2016, 2019; Baek et al., 2018; Bugden et al., 2019; Daitch et al., 2016; 

Grotheer et al., 2018; Hermes et al., 2017; Pinheiro-Chagas et al., 2018), there seems to be a shift 

in focus from a numeral-preferring ITG region to the surrounding “math-preferring” ITG region 

(Grotheer et al., 2018). However, even within the math-preferring ITG region, there is evidence 

for preference to Arabic numerals than to number words during an addition task (Baek et al., 

2018), which suggests that there is non-trivial neural specialization for numeral processing. 

Moreover, individual differences in digit-specific activation during a digit detection task (i.e., 

whether a digit is present in a letter string) in the right pITG correlated positively with 

calculation competence (Pollack & Price, 2019). The stimulus-driven specialization of the pITG 

region must therefore be a product of learning, and may have bidirectional relations with the 

development of math competence. Hence, processing of numerals in the pITG as a distinct 

perceptual object category should also be an active area of investigation that is complementary to 

the investigation of pITG in mathematical tasks. 

No Evidence of Abstract Shape Processing in Right pITG-numerals 

In addition to the biased connectivity hypothesis, it has been argued that the lateral 

localization of pITG-numerals is partly, but necessarily accounted for by its role in detecting 

gross shapes of objects (e.g., relative to faces and houses) (Hannagan et al., 2015). In the shape 
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hypothesis, shape is defined as “a representation of the adjacency of the component parts of an 

object, that is at least partially invariant to translation, reflection, rotation, distance, and other 

variations in the stimulus” (Hannagan et al., 2015, p. 379). So, is the spatial dissociation of 

numeral-preferring and letter-preferring regions simply due to clustering of digit-shape and 

letter-shape “neural detectors”? Direct evidence for numeral visual form processing specifically 

has been lacking because a preference for digit shapes has been inferred from their category 

rather than shape per se (Shum et al., 2013). In fact, both visual form models examined in the 

current study revealed that digits and letters tend to look more alike within than across categories 

despite sharing same curvilinear features. Univariate contrast analyses clearly cannot dissociate 

shape from character category, or examine subtle differences in the configuration of features. 

Multivariate RSA is therefore most suited for examining the shape of characters independent of 

their categories, because it allows us to consider both within- and between-category similarities 

in shape in describing the empirical representational geometry of a region. Although we found an 

absence of evidence that the right pITG-numerals discriminates low-level visual features (Pixel 

Overlap model), there is conclusive evidence that it does not discriminate abstract shapes (Shape 

Distance model). Therefore, the current study provides the first direct evidence against shape 

processing as a primary role of the right pITG-numerals, and that it likely encodes the abstract 

digit identity and/or category.  

Taking into account prior findings that the sensitivity of the right pITG-numerals may not 

be specific to Arabic digits – because it also respond more to soundscapes that represent “I”, 

“V”, and “X” as Roman numerals than as soundscapes that represent those same shapes as 

Roman letters (Abboud et al., 2015), and that it is equally responsive to Arabic digits, dice 

patterns, and finger representations (Grotheer et al., 2018) – we propose that this region is not 
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driven by visual form of Arabic numerals per se. In other words, in agreement with Grotheer and 

colleagues (2018), the selectivity observed appears to be to a numeral regardless of form, which, 

according to the Oxford Dictionary, is “a figure, symbol, or group of figures or symbols denoting 

a number”. Given that the region’s function is not constrained by visual form of numerals per se, 

and that its anatomical localization in the pITG is highly consistent across individuals and 

studies, we propose that researchers should refer to such a region as the “Inferior Temporal 

Numeral Area”. 

Limitations 

 The datasets examined in this study were not designed specifically with multivariate 

pattern analyses of individual characters in mind, but rather the univariate mean response to an 

entire character category. Hence, the number of instances per exemplar in each run was limited. 

Response pattern estimates tend to be less reliable if they are estimated with fewer trials of the 

same exemplar and/or when the inter-trial intervals (ITI) are short (< 6 s) (Visser et al., 2016; 

Zeithamova et al., 2017). To overcome these issues, we modeled across repetitions of an 

exemplar within and across runs to enhance the estimation of exemplar-level representations. 

Response pattern estimation directly by combining runs is not uncommon, especially for RSA 

(e.g., Kriegeskorte, Mur, Ruff, et al., 2008; Rothlein & Rapp, 2014). Compared to Dataset 2, we 

had up to four and eight instances of an exemplar in Datasets 1 and 3 respectively, which may 

partially explain why we found evidence of the Numbers v. Others model in Datasets 1 and 3, 

but inconclusive evidence in Dataset 2. It is also possible that an ITI of 1s in Dataset 3 might 

only have allowed for shallow encoding of the characters. Even if that were true, the fact that we 

found evidence of the greater numeral sensitivity suggests that the effect in the pITG-numerals is 

robust enough to be detected.  
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 Despite finding conclusive evidence of categorical distinction in the right pITG-

numerals, it is evident that the effect sizes estimated for the ITG were all very low (𝜏𝑎s < .02; 

overall weighted r = .008) (Figure 3-4). The small effect sizes may suggest that there is still 

substantial variance within each participant’s RDM that is not accounted for by all models tested. 

Moreover, the estimated “noise ceiling,” which is a measure of the inter-individual variability in 

participants’ neural RDMs, was also low (𝜏𝑎s < .17) for the right pITG-numerals. This is not 

unexpected given that participants could have processed the task-irrelevant characters to varying 

extents (e.g., whether a character is attended to, and processed asemantically or semantically). 

Given that numeral-preferring pITG regions are intrinsically connected to parietal regions 

thought to subserve magnitude processing (Nemmi et al., 2018), future research may want to 

assess the contribution of semantic models (e.g., Lyons & Beilock, 2018). Yet, even with high 

inter-individual variability, it is remarkable that group-level numeral sensitivity was observed. It 

is also apparent that the noise ceiling in Dataset 1 was much higher (i.e., lower inter-individual 

variability) than those in Datasets 2 and 3. Even though Dataset 1 had half as many trials 

contributing to the estimated response pattern of each exemplar as Dataset 3, it had a longer ITI 

of 4 – 8 s compared to an ITI of 1 – 3 s in Dataset 3. This suggests that ITIs rather than number 

of repetitions may reduce inter-individual variability in the neural RDMs, presumably by the 

indirect benefit of improving the deconvolution of the hemodynamic responses, and/or the direct 

benefit of providing more time to attend to and encode the task-irrelevant characters. Future 

studies should aim for greater number of repetitions of each exemplar and/or have longer ITIs, 

especially if group-level effects such as those examined here are of interest. 

Lastly, we used an a priori meta-analytic ROI, but there could be variability in the 

localization of the numeral-preferring region (e.g., see Glezer & Riesenhuber, 2013, for 
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variability in the localization of the “Visual Word Form Area”). Future work could therefore also 

investigate the representations in participant-specific ROIs. 

Conclusions 

Univariate analyses of task-irrelevant processing of numerals, letters, and novel 

characters have thus far not revealed evidence of any region in the vOT that showed a preference 

for numerals. In this study, we showed that a multivariate pattern analytic approach is more 

sensitive for uncovering categorical distinctions among written characters during a passive 

viewing task. Specifically, in a candidate numeral-preferring region in the pITG, we found that 

the organization of neural representations evoked by numerals, letters, and novel characters can 

be described by models that distinguish numerals and letters, and even a model that characterizes 

greater sensitivity for numerals. It is also less likely to be described by a model that characterizes 

greater sensitivity for letters, and unlikely by differences in abstract shapes (i.e., not visual form 

detection per se). It is likely that literacy and numeracy experiences may associate letters and 

digits with distinct processing goals (e.g., numerical relevance), and that the numeral-preferring 

pITG is part of a neural pathway that has been developed with automatic processing biases for 

stimuli with potential numerical relevance. In other words, “2” recruits the region because the 

brain predicts based on past experiences that this character is likely to be numerically relevant. 
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CHAPTER 4 

 

PROBING THE HEMISPHERIC ASYMMETRY OF FUNCTION AND REPRESENTATIONS 

IN THE BILATERAL “INFERIOR TEMPORAL NUMERAL AREAS” 

 

 

Introduction 

The findings in Chapters 2 and 3 suggest that the right “Inferior Temporal Numeral Area” 

(ITNA) is more reliable – spatially and/or functionally – in distinguishing numerals from other 

character types than its left counterpart. These findings of lateralization are not surprising against 

the backdrop of evidence of laterality in the literature (Table 1-1). This chapter aims to 

understand how the bilateral ITNAs may be functionally different, and explore whether 

functional and representational properties in each ITNA, and their asymmetry, are related to 

symbolic calculation skills. 

In a study by Amalric and Dehaene (2016), the authors examined the response profile of 

each ITNA using separate regions-of-interest analyses. Professional mathematicians, compared 

to non-mathematicians, had an enhanced sensitivity to well-known mathematical constants in 

Arabic numeral format (e.g., 3.14159 []) relative to non-symbolic object categories in the left 

ITNA (Amalric & Dehaene, 2016). Mathematicians also had an enhanced sensitivity to 

mathematical formulas in the bilateral ITNAs (Amalric & Dehaene, 2016). Although the authors 

did not speculate how mathematical expertise might underlie the left lateralization, the frequent 

use of well-known constants and formulas could have led to their lexicalization in 

mathematicians. Such lexicalization may rely on a left-lateralized verbal pathway. It is not clear, 

however, whether the left lateralization can be observed within individuals. Besides, professional 
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mathematicians typically work with algebraic mathematical proofs that involve Roman and 

Greek letters more than they do with Arabic numerals because the former can be 

decontextualized from their numerical referents. Hence, it is also unclear whether hemispheric 

asymmetry exists in non-mathematicians, although a trend for greater sensitivity and selectivity 

to Arabic numerals in the right ITNA relative to the left ITNA was observed (see Figure 8E in 

Amalric & Dehaene, 2016).   

Recently, an intriguing hemispheric asymmetry in the bilateral ITNAs was observed in a 

study by Pollack and Price (2019). In that study, adults performed a visual search task in which 

they had to detect whether a digit was present among a string of letters (e.g., ‘T S N 2 R’) or not 

(e.g., ‘A H T N R’). In a whole-brain localization analysis, they found that a region in the left 

(but not the right) ITG (MNI -57, -52, -11) was more engaged when a digit was present than 

when a digit was absent (i.e., [Digit Present > Digit Absent]; hereafter, we refer to this 

differential response as “digit sensitivity”) (Figure 4-1(a)). A brain-behavior correlational 

analysis revealed a homologous region in the right ITG (but not the left) (MNI 54, -52, -14) in 

which individuals with higher symbolic calculation skills showed greater digit sensitivity 

(Figure 4-1(a)). Both of these regions (with the left region mirrored in the right hemisphere) 

contained the peak coordinates of a meta-analytically identified right ITNA (MNI 55, -50, -12) 

from Chapter 2 (Yeo et al., 2017), suggesting that the regions could be considered ITNAs. 

Nonetheless, as with the findings by Amalric and Dehaene (2016), the hemispheric asymmetry 

of the bilateral ITNAs found by Pollack and Price (2019) was also based on separate group-level 

analyses – one localized by a contrast of two conditions, and another by a brain-behavior 

correlation. Whether the functional and representational properties of the bilateral ITNAs differ 

within an individual remains unexplored. 
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Using the triple-code model (Dehaene & Cohen, 1995) as a framework (see Figure 1-1), 

we speculated that the following three explanations might account for such a hemispheric 

asymmetry during visual search for digits observed by Pollack and Price (2019). The first 

possible explanation is that the left-hemispheric pathway may be recruited in most participants 

due to a reliance on the verbal system, possibly in retrieving the character names or identities as 

one scans the character string. Indeed, evidence from split-brain patients suggest a slight left-

hemispheric advantage for same-different judgements of digits (L. Cohen & Dehaene, 1996; 

Corballis, 1994; Seymour et al., 1994).  

The second possible explanation is that the right-hemispheric pathway may be less 

obligatory for a categorization task that does not require distinguishing between digits precisely 

(i.e., a digit was detected regardless of whether it was a 2 or a 7), but is almost always recruited 

in tasks in which the approximate quantitative meanings of numerals are necessary. It is 

therefore plausible that individuals who are more skilled in calculation would tend to 

automatically engage the right-hemispheric pathway to a greater extent. The latter hypothesis is 

plausible for several reasons. First, quantitative meanings of digits can be represented 

automatically even when they are task-irrelevant (e.g., during same-different or physical size 

judgements) (Dehaene & Akhavein, 1995; Henik & Tzelgov, 1982), and such automaticity 

develops with age, experience, and proficiency with a numerical symbol set (Girelli et al., 2000; 

Hochman Cohen et al., 2014; Rubinsten et al., 2002; Rubinsten & Henik, 2005). Second, the 

right hemisphere may be more efficient and reliable in representing analog or approximate 

quantities that are non-verbal in nature than the left hemisphere, which in turn may be more 

efficient and reliable in representing discrete or categorical processing of quantities that are more 

verbal in nature (Chassy & Grodd, 2012; Kimura, 1966; Kosslyn et al., 1989; Piazza et al., 
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2006). Parietal activation engaged by number comparison also tends to be higher in the right 

hemisphere than the left hemisphere (Chochon et al., 1999; Dehaene, 1996; Pinel et al., 1999), 

which suggests a right-hemispheric bias for abstract number representations (see also Dickson & 

Federmeier, 2017; Jang & Hyde, 2020 for numerical comparison in the context of arithmetic 

verification). A right-hemispheric bias is also supported by developmental studies showing right 

parietal lateralization during numerical magnitude processing in infants, and the emergence of 

bilateral parietal involvement later in development after substantial experience with symbolic 

representations of numbers (number words and Arabic numerals) (Cantlon et al., 2006; Edwards 

et al., 2016; Emerson & Cantlon, 2015; Hyde et al., 2010; Izard et al., 2008; Libertus, Pruitt, et 

al., 2009; Vogel et al., 2015). Using large-scale resting-state datasets, Nemmi and colleagues 

(2018) recently showed that the right ITNA has intrinsic functional connections with the right 

intraparietal sulcus as early as age 3.5, whereas connectivity between these regions in the left 

hemisphere only appear around age 10. These developmental trends are also consistent with 

evidence of a genetic basis for quantity representation in the right parietal lobe, but not in the left 

(Pinel & Dehaene, 2013). Third, the hypothesis of a right-lateralized automatic activation of 

magnitude representations is also consistent with the finding in Chapter 3 that both meta-

analytically defined right ITNA and right parietal region discriminate numerals from letters and 

novel characters during passive viewing, but evidence of a similar cross-regional pattern was not 

observed in the left hemisphere (Yeo et al., 2020). In sum, even though the involvement of the 

left hemisphere increases with experience in representing numbers symbolically, it may be 

related to the integration of the verbal code with the visual and magnitude codes. The evidence 

based on magnitude processing suggests that calculation skills independent of verbal processing 

may be associated with a right-hemispheric bias. 
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The third possible explanation is that intra-hemispheric interactions may be stronger than 

inter-hemispheric interactions, perhaps to increase efficiency of processing (Karolis et al., 2019; 

Ringo et al., 1994). Even though there could be inter-hemispheric informational exchange 

between the bilateral ITNAs, there is evidence suggesting that inter-hemispheric interaction 

impacts the efficiency of isolated hemispheres in identifying alphanumeric characters (Teng & 

Sperry, 1973). Such interference costs may underlie the need for separate numeral identification 

systems that Cohen and Dehaene (1995) proposed, rather than a unified one. 

Current Study 

In this study, we re-analyzed Pollack and Price's (2019) data with two aims. While 

Pollack and Price (2019) focused on localization of the ITNAs using mass-univariate voxel-wise 

analyses, our first aim was to use region-of-interest (ROI) based univariate analyses and within-

participant comparisons to further characterize the hemispheric asymmetries of the bilateral 

ITNAs in their digit sensitivities and their relation to symbolic calculation skills. Our second aim 

was to characterize any hemispheric asymmetries in the representational properties of the ITNAs 

indexed by multivoxel pattern analyses, and also to relate them to calculation skills. This in-

depth investigation of the functional and representational properties allows us to test and further 

inform models of numerical processing, such as the triple-code model. 

Is There Within-Individual Hemispheric Asymmetry in the ITNAs' Digit Sensitivity?  

 Due to the original univariate findings (Pollack & Price, 2019), we predicted that, on 

average, digit sensitivity would be greater in the left than in the right ITNA. We also predicted 

that higher calculation skills would be associated with less left lateralization5, or greater right 

 

 
5 Conditioned on the observed positive correlation with digit sensitivity in the right IT reported by Pollack and Price 

(2019), an association between calculation skills and greater left lateralization would imply a stronger relation 

between calculation skills and digit sensitivity of the left ITNA than with the digit sensitivity of the right ITNA. This 
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lateralization. 

Do the Multivoxel Patterns in the ITNAs Discriminate Between Digits and Letters? 

Although the right ITNA did not appear to be sensitive to digits in terms of its regional 

mean response amplitude, an analysis of multivoxel response patterns may reveal category 

discriminability (Yeo et al., 2020; Chapter 3). Specifically, the response patterns in the ITNAs 

evoked by each single target allowed us to examine the multi-dimensional organization of 

exemplar-level neural representations – commonly referred to as “representational geometry” 

within the representational similarity analytic (RSA) framework (Kriegeskorte, Mur, & 

Bandettini, 2008). The neural representations of detected digit and letter targets could form 

separate clusters. Based on the original univariate finding on digit sensitivity, we predicted that 

the left ITNA would show greater category discriminability than the right ITNA. However, 

based on prior meta-analytic and multivoxel pattern findings in Chapters 2 and 3 (Yeo et al., 

2017, 2020), category discriminability could also be greater in the right than in the left ITNA. 

We also predicted that higher calculation skills would be associated with greater category 

discriminability in both ITNAs, but we had no specific prediction for an effect of laterality. 

Do the Multivoxel Patterns in the ITNAs Discriminate Between Digit Exemplars? 

Regardless of whether category discriminability was evident in the ITNAs, it would be 

informative to assess whether digit discriminability was evident. This is because the identity and 

category of a character are thought to be represented in parallel rather than serially (McCloskey 

& Schubert, 2014; Taylor, 1978). We predicted that digit discriminability would be observed in 

both ITNAs, but it would be greater in the left than in the right ITNA. We also predicted that 

higher calculation skills would be associated with greater digit discriminability in both ITNAs, 

 

 
was, however, not the case. 
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but we had no specific prediction for an effect of laterality.  

Are Digit Representations Organized Similarly Between the ITNAs?  

Even if digit discriminability was not evident on average across participants, the relative 

pairwise dissimilarities between digits within participants could still reveal a meaningful 

organization6. Hence, it would be informative to explore whether a discernable representational 

geometry can be uncovered. Given the poor temporal resolution of fMRI and that the numeral 

identification systems function as an integrative intra-hemispheric network, the representational 

geometries being studied in the ITNAs would likely reflect both bottom-up and top-down 

influences from the visual, verbal, and magnitude codes within each hemispheric pathway (cf. 

Bar et al., 2006; Gwilliams & King, 2020; Kay & Yeatman, 2017; C. J. Price & Devlin, 2011). 

For instance, if response patterns in the left ITNA are influenced by phonological representations 

from the verbal code, we would expect characters with similar phonological form to evoke 

similar response patterns in the left ITNA. Likewise, if the response patterns in both ITNAs are 

influenced by the magnitude code (Grotheer et al., 2018), we would expect digits that are 

numerically closer (e.g., 8 vs. 9) to evoke more similar response patterns than digits that are 

numerically distant (e.g., 2 vs. 9) (Piazza et al., 2007; Vogel et al., 2015, 2017). Hence, at a 

coarse level, we predicted that the representational geometries of digits would be different 

between the bilateral ITNAs. We also predicted that higher calculation skills would be associated 

with greater dissimilarity in the representational geometries of digits in the ITNAs.  

Finally, we explored whether we could describe the representational geometries using 

 

 
6 Exemplar discriminability is typically indexed by the mean correlational distance between exemplar pairs (a single 

summary measure), whereas the representational geometry takes into account the rank order of the correlational 

distances of the exemplar pairs (a multivariate measure). In other words, even if the mean correlational distance 

were zero, the correlational distances could still be rank ordered to uncover an underlying structure. 



  

 105 

hypothetical representational models. We predicted that the representational geometries in both 

ITNAs would not be adequately described by visual form similarity (Yeo et al., 2020; Chapter 

3). Based on the triple-code model, we predicted that the representational geometry of digits in 

the left ITNA would reflect an organization based on phonological similarities of the verbal code 

more than the numerical distances of the magnitude code, whereas the representational geometry 

of digits in the right ITNA would reflect an organization based on similarities in the magnitude 

code more than the verbal code. 

Methods 

Participants 

 Thirty-two neurologically typical and right-handed adults (𝑀𝐴𝑔𝑒 = 19.38, SD = 1.50, 21 

females) were included in the current analyses. These are the exact same data that were analyzed 

in the initial univariate functional localization study by Pollack and Price (2019). The study was 

approved by the university’s Institutional Review Board, and all participants gave written 

informed consent. 

 As the current aims precluded a priori power analyses, we performed sensitivity analyses 

using G*Power 3.1.9.6 (Faul et al., 2009) to determine the minimal effect sizes we could detect 

with 80% power and N = 32. For  = .05, we expected to detect effect sizes that exceed the 

following critical values: Cohen’s |d| or |dz| = 0.449 and 0.511 for one- and two-tailed (one-

sample or paired) t-tests, respectively; |r| = .296 and .349 for one- and two-tailed correlation 

analyses, respectively. The critical ds are higher than the average d  .4 expected in 

psychological studies (see Brysbaert, 2019 for a review), so some true effects might be 

undetectable with the current data. However, the critical rs indicate that we would be able to 

detect effect sizes typical of non-circular, univariate brain-behavior correlations (modal r  .55) 
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(Vul et al., 2009), as well as of relations between vOT measures and perceptual expertise ( e.g., 

rs  .49 for word inversion sensitivity and multivariate "Visual Word Form Area" laterality 

measure in Carlos et al., 2019; rs  .49 for reading performance and bilateral fusiform gyri 

activation in Feng et al., 2020; rs  .38 for car expertise and right "Fusiform Face Area" 

activation in McGugin et al., 2014, 2015). To distinguish whether non-significant effects were 

true negatives or due to a lack of statistical power, we also reported Bayes factors. 

Tasks 

fMRI Tasks  

To localize digit-related vOT regions, participants completed visual search tasks 

involving alphanumeric characters in the MRI scanner. During digit detection, participants 

determined whether a digit was present among a string of letters (Figure 4-1(a)) by pressing one 

of two assigned buttons. During letter detection, participants determined whether a letter was 

present among a string of digits (Figure 4-1(b)). The single target digit or letter, which could be 

digits 1 – 9 and letters A, C, D, E, H, R, N, S, and T, was presented in either the 2nd, 3rd, or 4th 

position of a 5-character string. Each target digit/letter exemplar was presented in three unique 

strings per run (see Table B-1 for stimulus list). Each run comprised 16 s of fixation baseline at 

the start and the end of the run, and 54 trials (27 Target Present trials across all 9 digit/letter 

exemplars, and 27 Target Absent trials). On each trial, the character string was presented for 1 s, 

and the inter-stimulus interval was 2, 4, or 6 s (M = 4 s). Justifications for the design of the 

stimulus sets can be found in Pollack and Price (2019). 

All participants completed four runs each of digit detection and letter detection, hence, 

across all four runs, each target digit/letter exemplar was presented a total of 12 times. Based on 

pre-determined criteria for excessive motion (> 3 mm maximum displacement and/or three 
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degrees of volume-to-volume displacement), one digit run and one letter run from one 

participant, and one letter run from another participant, were excluded from the analyses in 

Pollack and Price (2019). All analyses reported here thus included at least three runs each of 

digit detection and letter detection for every participant. Mean accuracies for the conditions 

critical to our key analyses (Digit Present and Letter Present) were at least 92%. See Table B-3 

for full descriptive statistics of the task performance, and Pollack and Price (2019) for analyses 

on the behavioral measures. 

 

 

 

Figure 4-1. Regions of interest (ROIs) and a schematic of the key components of the 

representational similarity analyses (RSA)  

(a) Left and right IT ROIs from Pollack and Price (2019) derived from a random-effects analysis 

of [Digits Present > Digits Absent] contrast maps (yellow), and a correlational analysis of those 

contrast maps with calculations skills (green), respectively, and their overlap (blue). (b) Example 
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stimuli for letter detection task. (c) For each ROI, response patterns reliably evoked by correctly 

detected target across different character strings [Digit/Letter Present > Fixation] were correlated 

in a pairwise manner to construct participant-specific representational dissimilarity matrices 

(RDMs). 2D plots of the representational geometries in each ROI obtained by multidimensional 

scaling. Hemispheric asymmetry was assessed by correlating the (full or subset) RDMs of the 

left and right IT ROIs. (d) Candidate model RDMs. 

 

 

Standardized Cognitive Assessments  

Calculations skills were measured using the Calculation and Math Fluency subtests of the 

Woodcock-Johnson III Tests of Achievement (WJ III ACH; Woodcock et al., 2001). The 

Calculation subtest is an untimed test that assesses arithmetic (with natural and rational 

numbers), algebra, trigonometry, and calculus. The Math Fluency subtest assesses the ability to 

solve as many simple addition, subtraction, and multiplication problems with the numerals 0–10 

as possible within three minutes. A Calculation Skills cluster score was computed from a 

composite of Calculation and Math Fluency measures. As a proxy for domain-general symbol 

decoding, the Letter-Word Identification (ID) subtest of the WJ III ACH was used. The Letter-

Word ID subtest is an untimed test that assesses the ability to read aloud a list of letters and 

words accurately. See Table B-3 for descriptive statistics of these measures. For consistency 

with the original study, in all analyses involving the Calculation Skills cluster measure, we used 

scores that were residualized for Letter-Word ID scores (i.e., the residuals after regressing the 

Calculation Skills standard scores on Letter-Word ID standard scores). 

Neuroimaging Data Acquisition 

 Structural and functional brain images were acquired using a 3T Philips Intera Achieva 

scanner with a 32-channel head coil. High-resolution 3D anatomical scans were collected over 

approximately 6 min with TR/TE = 8.1/3.8 ms, flip angle = 5, field of view (FOV) = 256 mm, 
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and 1 mm isotropic voxels. T2*-weighted single-shot echo-planar imaging sequence functional 

images were acquired with TE = 25 ms, TR = 2000 ms, flip angle = 90, FOV = 240 mm, matrix 

size = 96  96 mm, 2.5  2.5  3 mm3 voxels, with 0.25 mm gap between the 3-mm thick slices, 

40 slices, and 151 volumes per run. Five additional dummy volumes acquired at the start of each 

run to allow for steady-state magnetization were discarded. 

fMRI Data Preprocessing 

 Structural and functional images were preprocessed and analyzed using BrainVoyager 

20.4 (Brain Innovation, Inc., Maastricht, the Netherlands). Functional images were corrected for 

differences in slice time acquisition (cubic spline interpolation), head motion (trilinear-sinc 

interpolation), and high-pass filtered (GLM approach with Fourier basis set, 2 cycles) to remove 

linear and non-linear trends. Functional data were co-registered to the structural data using 

boundary-based registration, normalized to MNI space, and re-sampled to 3-mm isotropic 

voxels. Univariate analyses were conducted on spatially-smoothed data with a Gaussian kernel 

of 6 mm at full-width half-maximum. Multivariate analyses were conducted on spatially 

unsmoothed data. 

Neuroimaging Statistical Modeling 

Univariate Analyses 

For each participant, all included runs were modeled with a two-gamma hemodynamic 

response function. The data were analyzed simultaneously using a random-effects multi-subject 

General Linear Model (GLM), corrected for serial correlations with a second-order 

autoregressive method. The GLM included a regressor for Digit Present (correct only), a 

regressor for Digit Absent (correct only), a regressor for Letter Present (correct only), a regressor 

for Letter Absent (correct only), one regressor for errors of commission and omission, and six 
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regressors of motion parameters (translational and rotational in x, y, and z axes) for each run. 

Multivariate Analyses 

Each of the nine target digit/letter exemplars were presented up to 12 times across all 

digit or letter detection runs. Given the presence of characters from the non-target category (e.g., 

letters in ‘T S N 2 R’ for digit detection) on each Target Present trial, we attempted to minimize 

the influence of the non-target characters in our analyses by modeling all instances of a target 

exemplar that was detected correctly across all runs (e.g., [‘H N 1 D C’, ‘R 1 D T E’, ‘T C S 1 

D’]  3 or 4 runs to estimate the voxel-wise response to a detected ‘1’). This approach ensured 

that the voxel-wise responses estimated from the [Target Present - Fixation] contrast would be 

reliably specific to the target exemplar common to the modeled trials (see Figure 4-1(c)). 

However, as the original study was not designed with exemplar-level representations in mind, 

some characters from the non-target category always co-occurred with some of the target 

exemplars, such as ‘D’ was always present in all Digit Present trials with the target ‘1’. As 

passive-viewing paradigms revealed that there could be bottom-up representations of unattended 

characters in our regions of interest (Yeo et al., 2020; Chapter 3), it is possible that what we 

assumed to be a reliable representation of a detected ‘1’ could in fact also be a reliable 

representation of an undetected ‘D’. Yet, the neural representations of attended stimuli or 

dimensions of a stimulus tend to be amplified or expanded, whereas unattended stimuli or 

dimensions tend to be attenuated or compressed (e.g., Castaldi et al., 2019; Çukur et al., 2013; 

Nastase et al., 2017). This led us to assume that the representation of the co-occurring non-target 

characters would not be reliably captured in our response estimates. Supplemental analyses 

(Table B-4) confirmed that co-occurring characters from the non-target category were not as 

reliably represented in our regions of interest as when they were from the target category.  
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To further ensure that we could reliably estimate the response patterns at the exemplar 

level for each participant, we used an arbitrary cut-off of 50% accuracy (i.e., at least 6 correct 

Target Present trials) per exemplar as an inclusion criterion for multivariate analyses. All 

participants but one had at least six correct trials per digit/letter exemplar to reliably estimate an 

exemplar-level response pattern. That one participant had only 1 to 5 correct trials for 7 out of 9 

letters. Hence, for all analyses involving letter exemplar representations, we excluded that 

participant. The mean number of remaining correct Target Present trials per exemplar was 11 for 

both digits and letters. 

For each participant, all included runs were modeled with a two-gamma hemodynamic 

response function and analyzed simultaneously using a fixed-effects single-subject GLM, 

corrected for serial correlations with a second-order autoregressive method. The GLM included a 

regressor each for the nine target digits (correct only), a regressor for Digit Absent (correct only), 

a regressor for each of the nine target letters (correct only), a regressor for Letter Absent (correct 

only), four regressors for errors of commission and for omission (separately modeled for digit 

and letter detection), and six regressors of motion parameters for each run.  

Regions of Interest (ROIs) 

Figure 4-1(a) shows the left and right IT ROIs from Pollack and Price (2019). A t-test of 

[Digit Present > Digit Absent] contrast maps revealed a left IT cluster, and a brain-behavior 

correlation of the same contrast maps and residualized calculations skills scores revealed a right 

IT cluster. The statistical thresholds used for both analyses were identical: voxel-level threshold 

of p < .005, and cluster-level threshold of p < .05 via Monte Carlo simulations. The peaks of the 

ROIs are within  3 mm (i.e., one functional voxel) along each dimension (left: MNI -57, -52, -

11 and right: MNI 54, -52, -14), but the spatial extents of the ROIs (left: 728 mm3; right: 670 
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mm3) are non-homotopic. Flipping one ROI onto the other hemisphere revealed that the spatial 

overlap is about 15% (105 mm3), which contains the meta-analytic peak of the ITNA from 

Chapter 2 (Yeo et al., 2017) (MNI 55, -50, -12) (see Figure 4-1(a)). Nonetheless, in terms of 3-

mm isotropic functional voxels, both ROIs have 59 voxels as features for the multivariate 

analyses. 

Statistical Analyses 

Univariate Analyses 

To fully characterize the IT ROIs in terms of their regional mean digit sensitivity (i.e., 

response amplitudes evoked by detected digits) beyond the findings reported by Pollack and 

Price (2019), we conducted the following post hoc analyses7: (1) We tested whether, on average, 

there was within-individual asymmetry in the left and right ITs’ digit sensitivity (i.e., mean beta 

values from the [Digit Present – Digit Absent] contrast) (paired samples t-test, two-tailed; 

Bayesian prior: Cauchy distribution, scale = 0.707); (2) We also probed whether the degree of 

right lateralization in the digit sensitivity was positively correlated with calculation skills. To 

compare the degree of lateralization across individuals normalized for individual differences in 

digit sensitivity, we computed a dissimilarity-like8 laterality index, LI = 
𝐿− 𝑅

max(|𝐿|,|𝑅|)
, where L and 

R are the mean digit sensitivity of the left and right ROIs, respectively (Seghier, 2019). A 

positive LI indicates left lateralization and a negative LI indicates right lateralization. The 

participant-specific LI scores were then correlated with the residualized Calculation Skills scores 

 

 
7 Although these analyses are post hoc and therefore non-independent from the analyses reported by Pollack and 

Price (2019), the authors did not compute a within-participant difference score to directly assess hemispheric 

asymmetry. 
8 A more widely used formula is LI = 

𝐿− 𝑅

|𝐿|+|𝑅|
 (for reviews, see Bradshaw et al., 2017; Seghier, 2008). This LI formula 

is typically used for classification purposes (left- or right-lateralized, or bilateral), but is problematic for analyses of 

individual differences because it lacked meaningful variation (Bradshaw et al., 2017; Jansen et al., 2006) and it is 

not a proper distance metric (Seghier, 2019). 
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(Pearson’s correlation, two-tailed; Bayesian prior: Stretched beta prior width = 1). 

As the effects for the [Digit Present – Digit Absent] contrast could be driven by the Digit 

Present and/or Digit Absent condition, we further explored whether these predicted effects also 

pertained to the condition versus baseline contrasts (i.e., [Digit Present – Fixation] and [Digit 

Absent – Fixation]). We also performed an identical set of analyses for the letter detection task to 

assess the category specificity of these findings. 

Representational Similarity Analyses 

Neural Representational Dissimilarity Matrices (RDMs). For each participant and 

each ROI, the response pattern evoked by each correctly detected digit or letter exemplar from 

the [Digit/Letter Present – Fixation] contrast was characterized by the spatial distribution of t-

values (Misaki et al., 2010) (Figure 4-1(c)). Non-informative voxels (i.e., t = 0 across all 

conditions due to intensity-based thresholding) were excluded from subsequent analyses. This 

resulted in 53–59 voxels (M = 58.09) per participant for the left IT ROI, and 58–59 voxels (M = 

58.97) per participant for the right IT ROI. We then computed the pairwise correlational 

distances (1 – Pearson’s r) to construct participant-specific 18  18 representational dissimilarity 

matrices (Full-RDMs) for the left and right IT ROIs (Figure 4-1(c)). For all key analyses, we 

focused on the 9  9 Digits-RDMs (i.e., digits subset of the Full-RDMs; N = 32). To assess 

category specificity as well as features applicable to both categories (i.e., phonology and shape), 

we also conducted control analyses on the 9  9 Letters-RDMs (i.e., letters subset of the Full-

RDMs; N = 31) and exploratory analyses on the Full-RDMs (i.e., including all digits and letters; 

N = 31), respectively.  

Category Discriminability. To assess the degree of category discriminability within 

each ROI, we computed a participant-specific category discriminability index (CDI) using the 
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formula CDI = 𝑀between−category dissimilarities – 𝑀within−category dissimilarities from the Full-

RDM. A higher CDI indicates greater category discriminability. We tested whether the mean 

CDI was statistically greater than zero (one-sample t-test, right-tailed; Bayesian prior: Cauchy 

distribution, scale = 0.707). To assess whether greater category discriminability in each ROI was 

associated with higher calculation skills, we correlated the participant-specific CDIs with the 

residualized Calculation Skills scores (Pearson’s correlation, right-tailed; Bayesian prior: 

Stretched beta prior width = 1). We also tested whether laterality of category discriminability (LI 

= 
𝐿− 𝑅

max(|𝐿|,|𝑅|)
) was associated with higher calculation skills (Pearson’s correlation, two-tailed; 

Bayesian prior: Stretched beta prior width = 1). 

Although both ROIs were either directly or indirectly localized using the contrast [Digit 

Present > Digit Absent] (and not [Letter Present > Letter Absent]), one might argue that 

univariate activation differences between digits and letters detected already presupposed 

category discriminability in these ROIs. However, these new analyses focused on the similarity 

of exemplar-level multivoxel response patterns for Target Present relative to baseline (e.g., how 

similar the response pattern for a detected ‘4’ was to a detected ‘N’). Moreover, their similarities 

were assessed using correlational distance, which standardizes the response amplitudes and 

therefore reduces the influence of mean amplitude differences. 

Exemplar Discriminability. To assess the degree of exemplar discriminability within 

each ROI, we first split each participant’s data into two halves (i.e., odd runs and even runs), and 

computed the reliabilities of the response patterns between the two halves. We then performed 

Spearman-Brown correction (Brown, 1910; Spearman, 1910; corrected r = 2r/(1+ r)) to estimate 

the reliabilities for the full dataset, and then computed the correlational distance to construct an 

adjusted split-data RDM. The cells along the diagonal of the split-data RDM are the within-
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exemplar dissimilarity estimates (e.g., how dissimilar was the response pattern of ‘2’ in the odd 

runs to that in the even runs), which reflects measurement noise (Nili et al., 2020). The off-

diagonal cells are the between-exemplar dissimilarity estimates. We then computed a participant-

specific exemplar discriminability index (EDI) using the formula EDI = 

𝑀between−exemplar dissimilarities – 𝑀within−exemplar dissimilarities (Nili et al., 2020). A higher EDI 

indicates greater exemplar discriminability. We then analyzed the EDI in an approach identical 

to that for CDI. A t-test is valid in practice as it provides adequate control of the false positive 

rates and is robust to assumption violations (Nili et al., 2020).  

We performed the EDI analyses for digits and letters separately. The letter analysis was 

included to assess category specificity. Two participants who did not have an equal number of 

even and odd runs for the digit and/or letter detection were excluded from the EDI analyses (N = 

31 for split-data Digits-RDMs, and N = 30 for split-data Letters-RDMs). 

Hemispheric Asymmetry of Representational Geometries. For each individual, we 

computed the similarity between the Digits-RDMs of the left and right IT ROIs using 

Spearman’s correlation, and transformed them using Fisher’s z transformation (z) to render 

them appropriate for parametric statistical tests. z > 0 indicates that the representational 

geometries of digits are similar between the hemispheres, whereas z  0 indicates hemispheric 

asymmetry in the representational geometries. To assess our prediction that, on average, there 

was hemispheric asymmetry in the representational geometries, we compared the alternative 

hypothesis that the mean similarity > 0 to the null hypothesis that the mean similarity  0 (one-

sample t-test, right-tailed; Bayesian prior: Cauchy distribution, scale = 0.707). Next, to assess 

whether greater hemispheric asymmetry (i.e., lower similarity) in the representational geometries 

of digits was associated with higher calculation skills, we correlated the participant-specific 
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similarity scores with the residualized Calculation Skills scores (Pearson’s correlation, left-

tailed; Bayesian prior: Stretched beta prior width = 1). 

Finally, to assess category specificity, we performed an identical set of analyses on the 

degree of hemispheric asymmetry in representational geometries of letters. 

Representational Content. To probe the representational content of each IT ROI, we 

constructed four candidate model RDMs that are characterized by similarity in phonology, 

numerical magnitude, and visual form (Figure 4-1(d)). 

Phonological Model. We constructed an 18  18 phonological model RDM from an 

empirically derived character-name confusion matrix that described the perceptual confusion of 

participants who were asked to identify a digit or letter aurally presented in noise (Hull, 1973). 

We converted the asymmetric similarity-based confusion matrix that comprises the frequencies 

of confusions between every stimulus-response pair (e.g., responding ‘8’ to stimulus ‘6’, or 

responding ‘A’ to stimulus ‘8’) into a dissimilarity matrix using the following approach: For 

each column (stimulus), we normalized its row values (frequencies for each response to a 

particular stimulus) by dividing them by the sum of the frequencies. This transformed the 

frequencies to proportions or the probability that one character tends to be confused for another. 

Next, we averaged the proportions in the upper and lower triangles of the asymmetric matrix to 

obtain a symmetric confusion matrix. Finally, we transformed the symmetric confusion matrix to 

a dissimilarity matrix by subtracting each value from the maximum similarity value.  

Numerical Models. Lyons and Beilock (2018) reported that in many brain regions 

including the ventral temporal-occipital junction, the representational similarity space of 

nonsymbolic quantities (e.g., sets of dots) could be predicted by the ratio of any two quantities, 

and the representational similarity space of Arabic digits could be predicted by the frequency of 
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their co-occurrence more so than ratio. A frequency-based account of digit representations is also 

consistent with behavioral work (Dehaene & Mehler, 1992; Kojouharova & Krajcsi, 2019; 

Krajcsi et al., 2016). In order to fully explore the nature of the representational geometry of 

digits in the IT ROIs, we constructed two 9  9 numerical magnitude model RDMs based on 

ratio and frequency, identical to those used by Lyons and Beilock (2018). The Ratio model was 

first constructed using the ratio between the quantities represented by a pair of digits ni and nj as 

a measure of similarity, where ratio = 
min(𝑛𝑖,𝑛𝑗)

max(𝑛𝑖,𝑛𝑗)
, and larger values indicate greater similarity. The 

RDM was derived using the inverse of the ratios such that larger values indicate greater 

dissimilarity. 

The Frequency model is based on the frequency of co-occurrence of any given pair of 

digits as a measure of similarity. According to Benford's (1938) law, the probability of 

encountering a given digit in the leftmost position of multi-digit numerals, P(n), is 𝑙𝑜𝑔10(n+1) – 

𝑙𝑜𝑔10(n) (also see Dehaene & Mehler, 1992). We then computed the probability of the joint 

frequency of each pair of digits using P(𝑛𝑖)  P(𝑛𝑗), where larger values indicate greater 

similarity (Lyons & Beilock, 2018). Likewise, the RDM was derived using the inverse of the 

probability of the joint frequency such that larger values indicate greater dissimilarity.  

Visual Form Model. We constructed an 18  18 Shape model RDM using a 

computational algorithm that is based on the similarity in the “context” of sampled points on a 

shape (i.e., how one point relates to all other points on a shape) and the degree to which one 

shape has to be deformed to map onto another shape (Belongie et al., 2002). The performance of 

this algorithm was validated on classification of handwritten digits (Belongie et al., 2002), and 

an identical model was used in an RSA study by Yeo and colleagues (2020; Chapter 3, see 

Appendix A for computational details). 
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Figure B-1 – Figure B-4 are multidimensional scaling plots that illustrate the 2D 

representational geometry of the digit and letter exemplars in each model. The bivariate rank 

correlations of the models are reported in Table B-2. No pairs of models are highly similar (s < 

.16), although the Ratio and Frequency models have a strong negative correlation ( = -.65). 

Hence, greater support for the Ratio model would likely indicate less support for the Frequency 

model, and vice versa. 

Similarity Between Neural and Model RDMs. The degree to which the 9  9 neural 

Digits-RDMs can be described by each model RDM was examined using the RSA toolbox (Nili 

et al., 2014). We correlated the neural and model RDMs (only one-half of each symmetric 

matrix) using Spearman’s rank correlation, and Fisher’s z-transformed the correlation 

coefficients for subsequent parametric statistical tests on those coefficients. For each model, we 

tested whether the mean correlation coefficient was statistically greater than zero (one-sample t-

test, right-tailed; Bayesian prior: Cauchy distribution, scale = 0.707). To estimate the upper and 

lower bounds of the maximum similarity that any model could achieve given the degree of 

between-participant variability, a “noise ceiling” was computed using the approach proposed by 

Nili and colleagues (2014). We also tested (a) within each ROI, whether the mean correlation 

coefficients between any pair of models were statistically different, and (b) for each model, 

whether the mean correlation coefficients between the left and right ROIs were statistically 

different (paired-sample t-tests, two-tailed; Bayesian prior: Cauchy distribution, scale = 0.707). 

As the Phonological and Shape model RDMs are not category-specific, we also examined 

whether the 18  18 neural Full-RDMs (i.e., the whole alphanumeric set; see Figure 4-1(c)) were 

similar to the full versions of the Phonological and Shape model RDMs (Figure 4-1(d)).  

We corrected for multiple comparisons separately for each group of tests (a) across 
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models within each ROI for group-level neural RDM-model RDM similarity (i.e., 5 tests), (b) 

across pairs of models within each ROI for within-participant model comparisons (i.e., 6 tests), 

and (c) across models for within-participant comparison of left and right ROIs (i.e., 4 tests), by 

controlling for false-discovery rate (FDR) at q < 0.05 (Benjamini & Hochberg, 1995). All p-

values reported in the Results section are uncorrected for multiple comparisons, and statistically 

significant ones were noted if they also survived an FDR-correction. 

Handling of Bivariate Outliers 

 To assess the robustness of the correlation analyses to bivariate outliers, we used the 

Minimum Covariance Determinant approach to estimate the bivariate location and scatter from 

75% of the data (i.e., assuming no more than 25% of outlying values), and a chi-square 

distribution (df = 2) with  = .001 (99.9% percentile) as an outlier criterion (Leys et al., 2018, 

2019). As there is no theoretical basis for deciding whether an outlier could rightfully belong to 

the distribution of interest, we reported the affected correlation coefficients with and without the 

outliers (i.e., “skipped correlation”; Rousselet & Pernet, 2012; Wilcox, 2004).  

Comparison of Correlation Coefficients 

As the difference between a pair of statistically significant and non-significant correlation 

coefficients may not be itself statistically significant (Gelman & Stern, 2006; Nieuwenhuis et al., 

2011; Rousselet & Pernet, 2012), whenever necessary, we used the R package ‘cocor’ 

(Diedenhofen & Musch, 2015) to conduct a suite of statistical tests to compare whether a pair of 

correlation coefficients differed significantly. The default suite of 10 tests for comparing two 

dependent correlations (i.e., 𝑟𝑗𝑘 vs. 𝑟𝑗ℎ, accounting for 𝑟𝑘ℎ) was used to make inferences. By and 

large, the data were likely underpowered to detect a difference between effect sizes, so we 

caution the inferences made about the null differences in effect sizes. 
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Bayesian Statistical Inferences 

To facilitate Bayesian inferences for each test, we report the Bayes factor in favor of the 

hypothesis supported using the following conventions in JASP (JASP Team, 2020): For a two-

tailed test, BF10 indicates the number of times the observed data are more likely to occur under 

the alternative hypothesis than under the null hypothesis, whereas BF01 indicates greater support 

for the null hypothesis. For a one-tailed test, BF+0 and BF-0 indicate the number of times the 

observed data are more likely to occur under the alternative (‘+’: right-tailed or positive 

correlation, or ‘–’: left-tailed or negative correlation) hypothesis than under the null hypothesis, 

whereas BF0+ and BF0- indicate greater support for the null hypothesis. Whenever the evidence 

in support of one hypothesis relative to another is less than 3 times, we inferred that the evidence 

is inconclusive, and that the data are insensitive to the hypotheses tested (Dienes, 2016; Dienes 

& Mclatchie, 2017). 

Results 

Regional Mean Digit Sensitivity 

Digits 

In Pollack and Price (2019), the left IT ROI was localized by its high digit sensitivity 

(i.e., [Digit Present – Digit Absent] contrast), whereas the right IT ROI was localized separately 

by the relation between individual differences in digit sensitivity and calculation skills. Here, we 

probed whether these hemispheric differences would hold when we directly compare them 

within participants. On average, there was no hemispheric asymmetry in the regional mean digit 

sensitivity (left: M = 0.17, SD = 0.22; right: M = 0.13, SD = 0.46, difference: M = 0.05, SD = 

0.42), t(31) = 0.62, dz = 0.11, p = .541, BF01 = 4.44 (Figure 4-2(a)). However, individuals with 

higher calculation skills had greater right lateralization in their mean digit sensitivity, r(30) = -
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.45, p = .009, BF10 = 5.69 (Figure 4-2(b)).   

Although individual differences in the [Digit Present – Digit Absent] contrast in the left 

IT did not correlate significantly with calculation skills in the original whole-brain correlational 

analysis reported by Pollack and Price (2019), we tested whether such a relation could be 

observed using an ROI approach. Digit sensitivity in the left IT was also positively correlated 

with calculation skills, r(30) = .42, p = .008, BF+0 = 6.77. However, the correlation coefficient in 

the left IT did not differ significantly from that of the right IT (r(30) = .62), ps > .206.  

In sum, there was, on average, no hemispheric asymmetry in digit sensitivity, and no 

evidence that digit sensitivity in the left and right IT differed qualitatively in their relation to 

calculation skills. However, consistent with our prediction, the within-individual difference in the 

digit sensitivity between hemispheres was related to calculation skills. 

As the [Digit Present – Digit Absent] contrast could be driven by Digit Present and/or 

Digit Absent, we wanted to understand the nature of involvement of the IT ROIs for each 

condition. Contrary to the findings above, the condition-wise regional mean response amplitudes 

(i.e., condition > fixation) were strongly right-lateralized for both Digit Present (left: M = 0.21, 

SD = 0.45; right: M = 0.88, SD = 0.78, difference: M = -0.67, SD = 0.72) [t(31) = -5.26, dz = -

0.93, p < .001, BF10 = 2061] and Digit Absent (left: M = 0.04, SD = 0.44; right: M = 0.75, SD = 

0.64, difference: M = -0.72, SD = 0.74) [t(31) = -5.48, dz = -0.97, p < .001, BF10 = 3642] (Figure 

4-2(c)). Individuals with higher calculation skills had greater response amplitudes for Digit 

Present in the right IT [r(30) = .48, p = .003, BF+0 = 16.93]. A similar relation was inconclusive 

in the left IT [r(30) = .25, p = .084, BF0+ = 1.01]. However, these correlation coefficients did not 

differ significantly (ps > .182). There was evidence that calculation skills were not positively 

correlated with the response amplitude for Digit Absent in the left IT [r(30) = .05, p = .393, BF0+ 
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= 3.64], but whether a positive correlation between calculation skills and response amplitude for 

Digit Absent in the right IT was inconclusive [r(30) = .14, p = .224, BF0+ = 2.24; 𝑟𝑠𝑘𝑖𝑝𝑝𝑒𝑑(28) = 

.37, p = .023, BF+0 = 2.98]. These correlation coefficients did not differ significantly between the 

left and right IT (ps > .704; after exclusion of outliers: ps > .179). In sum, there was only 

conclusive evidence of an association between calculation skills and Digit Present responses in 

the right IT, and a lack of association between calculation skills and Digit Absent (i.e., letters 

only) responses in the left IT. 

These correlation coefficients also differed significantly for Digit Present and Digit 

Absent in both regions (left IT: ps < .026; right IT: ps < .002, after bivariate outlier exclusion, ps 

< .020). In sum, these findings suggest that the relations between calculation skills and response 

amplitudes were specific to the detection of digits. 

Finally, there was weak to moderate evidence that individuals with higher calculation 

skills also had greater right lateralization in their mean response amplitudes for Digit Present 

[r(30) = -.36, p = .042, BF10 = 1.58; 𝑟𝑠𝑘𝑖𝑝𝑝𝑒𝑑(29) = -.48, p = .006, BF10 = 8.03]. There was 

evidence of a lack of a similar relation for Digit Absent [r(30) = -.09, p = .621, BF01 = 4.05] 

(Figure 4-2(d)). Critically, these correlation coefficients were significantly different regardless 

of outlier exclusion (ps < .011).  

Taken together, although there was no hemispheric asymmetry in digit sensitivity, there 

was a strong right lateralization of IT activity when the conditions were considered separately. 

Moreover, the relations between calculation skills and right lateralization in digit sensitivity were 

specific to only the detection of digits. 
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Figure 4-2. Hemispheric asymmetries of regional mean response amplitudes and their relation to 

calculation skills for digit detection 

(a, b) digit sensitivity ([Digit Present – Digit Absent] contrast), and (c, d) condition-wise activity 

([Digit Absent – Fixation] and [Digit Present – Fixation]). Error bars and bands are 95% 

confidence intervals. Dashed regression lines exclude bivariate outliers enclosed in . 

 

 

Letters 

An identical set of analyses with the letter detection task (see Appendix B) revealed no 

lateralization for the regional mean letter sensitivity (i.e., [Letter Present – Letter Absent] 

contrast) (BF01 = 5.00), but right-lateralized mean condition-wise response amplitudes for both 

Letter Present and Letter Absent conditions (BFs10 > 6689), similar to that observed for digit 

detection task. There was no conclusive or robust evidence that higher calculation skills were 

associated with greater response amplitudes in both regions evoked by the mere presence of 

digits, regardless of whether a letter was present or not (BFs0+ = 1.13 to 2.73; after outlier 
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exclusion: BF0+ = 11.22 for Letter Present in left IT to BF+0 = 73.22 for Letter Absent in right 

IT). There was also evidence that calculation skills were not associated with lateralization for 

Letter Present (r = -.14, BF01 = 3.39), or the [Letter Present – Letter Absent] contrast (r = .06, 

BF01 = 4.31). The relation between calculation skills and lateralization of responses for Letter 

Absent (i.e., only digits) was inconclusive (r = -.17, BF01 = 2.95; after outlier exclusion: r = -.24, 

BF01 = 2.03). In sum, the relations between digit sensitivity and calculation skills were largely 

category-specific, although the right-lateralization of condition-wise response amplitudes 

appeared to be related to the detection task in general, regardless of whether one was looking for 

digits or letters.  

Category Discriminability (Digits vs. Letters) 

Category discriminability between digits and letters was evident in both the left (M = 

0.19, SD = 0.07) [t(30) = 14.58, d = 2.62, p < .001, BF+0 = 3.351012] and right IT (M = 0.29, SD 

= 0.10) [t(30) = 16.19, d = 2.91, p < .001, BF+0 = 4.901013] (Figure 4-3). Moreover, category 

discriminability was higher in the right IT than in the left IT (difference: M = -0.10, SD = 0.11), 

t(30) = -5.51, dz = -0.99, p < .001, BF10 = 3646. 

 

 

 

Figure 4-3. Category discriminability in the left and right IT (N = 31)  
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Error bars are 95% confidence intervals. 

 

 

 There was inconclusive evidence that greater category discriminability was associated 

with higher calculation skills in the left IT [r(29) = .27, p = .070, BF+0 = 1.18] and the right IT 

[r(29) = .18, p = .166, BF0+ = 1.73; 𝑟𝑠𝑘𝑖𝑝𝑝𝑒𝑑(28) = .28, p = .069, BF+0 = 1.19] (Figure 4-4). 

There was also no relation between the degree of lateralization of category discriminability and 

calculation skills, r(29) = .01, p = .939, BF01 = 4.47; 𝑟𝑠𝑘𝑖𝑝𝑝𝑒𝑑(28) = -.07, p = .697, BF01 = 4.10]. 

 Taken together, not only was category discriminability robust in both ROIs, it was greater 

in the right IT than in the left IT, contrary to the pattern of results for regional mean digit 

sensitivity. Whether greater category discriminability was associated with higher calculation 

skills was inconclusive. However, lateralization did not matter for the association. 

 

 

 

Figure 4-4. Relation between calculation skills and category discriminability 

(a) in left IT, (b) in right IT, and (c) its lateralization (negative: left lateralization, positive: right 

lateralization) (N = 31). Error bands are 95% confidence intervals. Dashed regression lines 

exclude bivariate outliers enclosed in . 
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Exemplar Discriminability 

Digits 

There was inconclusive evidence of digit discriminability in the left IT (M = 0.02, SD = 

0.12) [t(30) = 0.99, d = 0.18, p = .166, BF0+ = 2.02], and moderate evidence of a lack of digit 

discriminability in right IT (M = 0.01, SD = 0.11) [t(30) = 0.60, d = 0.11, p = .275, BF0+ = 3.07] 

(Figure 4-5). However, there was no hemispheric asymmetry in digit discriminability 

(difference: M = 0.01, SD = 0.17), t(30) = 0.32, dz = 0.06, p = .751, BF01 = 4.98. 

 

 

 

Figure 4-5. Exemplar discriminability in left and right IT 

(a) digits (N = 31) and (b) letters (N = 30). Error bars are 95% confidence intervals. 

 

 

 Greater digit discriminability was, however, associated with higher calculation skills in 

the left IT [r(29) = .38, p = .018, BF+0 = 3.56], but evidence of a similar relation in the right IT 

was inconclusive [r(29) = .22, p = .115, BF0+ = 1.28] (Figure 4-6). These correlation coefficients 

did not differ significantly (all ps > .500). There was also no relation between the degree of 

lateralization of digit discriminability and calculation skills, r(29) = .13, p = .489, BF01 = 3.56.  

Even though we regressed out letter-word identification skills from calculation skills to 
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account for variance related to general symbol decoding, we wanted to confirm that digit 

discriminability was not also positively correlated with letter-word identification skills. We 

found no positive association between digit discriminability and letter-word identification skills 

(residualized for calculation skills) in the left IT [r(29) = -.04, p = .595, BF0+ = 5.34], but the 

evidence in the right IT was again inconclusive [r(29) = .10, p = .297, BF0+ = 2.80]. Digit 

discriminability had a significantly stronger positive association with calculation skills than with 

letter-word identification skills in the left IT [ps = .043 for two tests and ps = .056 – .060 for 

eight other tests], but not in the right IT [ps > .319].  

In sum, on average across participants, the right IT did not distinguish digit exemplars, 

but there was inconclusive evidence whether the left IT distinguished digit exemplars. However, 

greater digit discriminability in the left IT ROI – and possibly the right IT ROI too – were 

associated with higher calculations skills, and laterality did not moderate the brain-behavior 

relation. 

 

 

 

Figure 4-6. Relation between calculation skills and digit discriminability 

(a) in the left IT ROI, (b) in the right IT ROI, and (c) its lateralization (negative: left 

lateralization, positive: right lateralization) (N = 31). Error bands are 95% confidence intervals. 
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Letters 

To assess category specificity, we performed an identical set of analyses pertaining to 

exemplar discriminability on the Letters-RDMs. There was no letter discriminability in either 

ROI (BFs0+ > 6.34) (Figure 4-5(b)), and calculation skills were not positively associated with the 

degree of letter discriminability in either ROI (rs = -.22 to -.003, BFs0+ = 4.46 – 8.96) and their 

laterality (r = -.13, BF01 = 3.47) (see Appendix B). In sum, the associations between exemplar 

discriminability and calculation skills were specific to digits.  

Hemispheric Asymmetry of Representational Geometries 

On average, there was a small, but significant positive correlation between the 

representational geometries of digits (i.e., Digits-RDMs) in the left and right IT (mean z = .11, 

SD = .20), t(31) = 3.14, d = 0.56, p = .002, BF+0 = 20.51. There was inconclusive evidence that 

lower between-hemisphere similarity (i.e., greater asymmetry) in the representational geometries 

of digits was associated with higher calculation skills, r(30) = -.17, p = .172, BF0- = 1.80.  

A similar pattern of results was observed for the representational geometries of letters 

(see Appendix B). 

Representational Content 

Digits  

Although there was no evidence of digit discriminability in both IT ROIs, there could be 

a discernable organization among the exemplar representations regardless of how similar each 

exemplar pair was on average. Hence, we explored whether the representational geometries 

could be described by hypothesized models of phonological, numerical, and shape similarity. 

Left IT. The left IT Digits-RDMs were not similar to the RDMs of the Phonological 

model (Mean z = -.01, SD = .14) [t(31) = -0.59, d = -0.10, p = .719, BF0+ = 7.84], Ratio model 



  

 129 

(Mean z = -.01, SD = .22) [t(31) = -0.33, d = -0.06, p = .629, BF0+ = 6.70], and Shape model 

(Mean z = -.05, SD = .18) [t(31) = -1.38, d = -0.24, p = .910, BF0+ = 11.55] (Figure 4-7). There 

was, however, inconclusive evidence that the left IT Digits-RDMs were similar to the Frequency 

model RDM (Mean z = .09, SD = .29), t(31) = 1.69, d = 0.30, p = .051, BF+0 = 1.27.  

In terms of pairwise model comparisons, there was no evidence of within-participant 

differences between any pair of neural RDM-model RDM similarities, all ps > .052, BFs10 < 1.13 

(Table B-5). 

Right IT. The right IT Digits-RDMs were not similar to the RDMs of the Phonological 

model (Mean z = -.03, SD = .15) [t(31) = -1.09, d = -0.19, p = .858, BF0+ = 10.19], Frequency 

model (Mean z = -.06, SD = .20) [t(31) = -1.63, d = -0.29, p = .943, BF0+ = 12.74], and Shape 

model (Mean z = -.04, SD = .14) [t(31) = -1.63, d = -0.29, p = .943, BF0+ = 12.76] (Figure 4-7). 

There was, however, inconclusive evidence that the right IT Digits-RDMs were similar to the 

Ratio model RDM (Mean z = .05, SD = .19), t(31) = 1.42, d = 0.25, p = .084, BF+0 = 1.18.  

In terms of pairwise model comparisons, there was some evidence that the Digits-RDMs 

were more similar to the Ratio model RDM than to the Shape model RDM [t(31) = 2.61, d = 

0.46, p = .014, FDR-corrected p = .084, BF10 = 3.36], and no evidence of within-participant 

differences between any other pair of neural RDM-model RDM similarities [all ps > .076, BFs10 

< 0.84] (Table B-6).  

In sum, there was evidence that the models could not adequately describe the 

representational geometries in both ROIs. However, there was inconclusive evidence for the 

Frequency model in the left IT and Ratio model in the right IT. Replicating Yeo and colleagues 

(2020; Chapter 3), we found evidence of an absence of shape similarity in both regions. 
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Figure 4-7. Similarity between the model RDMs and Digits-RDMs of IT ROIs (N = 32)  

Error bars are 95% confidence intervals. Grey bars indicate the estimated upper and lower 

bounds of the expected similarity achievable by the unknown true model given the degree of 

between-participant variability. 

 

 

Left IT vs. Right IT. Neural RDM-model RDM similarities were not different between 

the left and right IT for the Phonological model [difference: M = 0.01, SD = 0.16, t(31) = 0.50, dz 

= 0.09, p = .624, BF01 = 4.73] and Shape model [difference: M = -0.005, SD = 0.22, t(31) = -

0.13, dz = -0.02, p = .900, BF01 = 5.26] (Figure 4-8). There was inconclusive evidence that the 

neural RDM-model RDM similarities were different between the left and right IT for the Ratio 

model [difference: M = -0.06, SD = 0.30, t(31) = -1.15, dz = -0.20, p = .259, BF01 = 2.90], and for 

the Frequency model [difference: M = 0.14, SD = 0.36, t(31) = 2.27, dz = 0.40, p = .030 (FDR-

corrected p = .120), BF10 = 1.75]. In sum, there was no hemispheric asymmetry in the degree to 

which the Phonological and Shape models described the representational geometries, but the 

evidence of hemispheric asymmetry was inconclusive for the Ratio and Frequency models. 
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Figure 4-8. Hemispheric asymmetry in similarity between the model RDMs and neural Digits-

RDMs (N = 32)  

Re-plotted from Figure 4-7. Error bars are 95% confidence intervals. 

 

 

Alphanumeric Set 

 The Full-RDMs of the left and right IT were not similar to the Phonological and Shape 

model RDMs, ps > .410, BFs0+ > 4.34 (see Appendix B). Taken together, phonological and 

shape information were not represented in either ROI regardless of whether digits were 

considered alone or simultaneously with letters. 

Discussion 

 The present study applied both univariate and multivariate region-of-interest analyses to 

Pollack and Price's (2019) data to probe the hemispheric asymmetry of various representational 

properties in the bilateral ITNAs during a digit detection task. We also probed the relation 

between those representational properties and calculation skills. Based on the findings of Pollack 

and Price (2019), we asked: Does the left ITNA show greater digit sensitivity than the right 

ITNA? Does the right ITNA relate to calculation skills in a way that the left ITNA does not? 

Here, we report that the left and right ITNAs did not actually differ in these properties, but they 
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did differ on other properties. Our findings thus suggest that the bilateral ITNAs are 

asymmetrically weighted in some functional responses and representations, but do not appear to 

be qualitatively different, at least during a digit detection task. However, until we have more 

convergent evidence from future studies, the field should err on the side of caution and not 

readily generalize findings about one ITNA to the other.  

Right ITNA is More Involved in Category Discrimination Than Left ITNA  

First, contrary to our prediction, we found that the right IT region showed no less digit 

sensitivity than the left IT region when we directly compared their sensitivities within 

individuals. This suggests that the successful localization of digit sensitivity in the left IT 

(statistically significant), but not in the right IT (statistically non-significant), reported in Pollack 

and Price (2019), are not statistically significantly different from each other (see Gelman & 

Stern, 2006; Nieuwenhuis et al., 2011; Rousselet & Pernet, 2012).  

However, using multivoxel pattern analyses, we found that both IT regions showed 

significant category discriminability between the alphabet and numerals, and the degree of 

category discriminability was greater in the right IT than in the left IT. Interestingly, further 

probing of the univariate analyses for each condition relative to the fixation baseline (e.g., Digit 

Absent > Fixation) revealed that the right IT region was substantially more engaged during 

visual search regardless of both the target category (i.e., digit or letter detection) and the presence 

or absence of a target. Taken together, these findings suggest that there may be an inherent task-

related hemispheric asymmetry, and that the right ITNA is no less involved, if not more, than the 

left ITNA in alphanumeric category discrimination. This right lateralization of alphanumeric 

category discrimination is consistent with the findings from Chapters 2 and 3 (Yeo et al., 2017, 

2020). In Chapter 3 (Yeo et al., 2020), using similar representational similarity analyses, we 
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found that a meta-analytic identified right ITNA (Chapter 2; Yeo et al., 2017) discriminates 

digits from letters and novel characters that were passively viewed, but such evidence was absent 

in its left homologue. However, it was unclear if a true hemispheric asymmetry exists because a 

direct comparison between the left and right ITNAs was not made in that study. Moreover, 

applying transcranial magnetic stimulation to the right ITNA has been found to disrupt both 

letter and digit detection when participants were asked to categorize between alphanumeric 

characters and novel ones, suggesting a causal role of the right ITNA in alphanumeric 

categorization (Grotheer, Ambrus, et al., 2016). Nonetheless, because Grotheer, Ambrus, and 

colleagues (2016) did not also stimulate the left ITNA, it is unclear whether the left ITNA plays 

a qualitatively similar, but weaker causal role in alphanumeric categorization. 

 The results of the present study suggest that multivoxel pattern analyses do confer greater 

sensitivity than traditional univariate analyses, and they might be a powerful tool as a 

localization technique (Kriegeskorte et al., 2006; Kriegeskorte & Bandettini, 2007), especially 

for character categories that differ only by arbitrary representational purposes rather than 

inherent visual features. For instance, 5-7 year-old children who do not have a putative 

“Fusiform Face Area” based on univariate activation contrasts already show adult-like 

multivoxel pattern discrimination between faces and other categories in the most probable 

location of the “Fusiform Face Area” (M. A. Cohen et al., 2019). Hence, future studies that are 

unsuccessful in functionally localizing an ITNA using traditional univariate analyses may 

consider using a multivoxel pattern searchlight instead (e.g., see Carlos et al., 2019 for an 

example on localizing the "Visual Word Form Area").  

Visual Search for Digits May Not Require Representations of Digit Identity in ITNAs 

Even though there was evidence of category discriminability in both IT regions, we found 
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no conclusive evidence of digit discriminability. This suggests that category representations may 

be independent of digit identity representations (i.e., one does not need to identify which 

character it is in order to categorize it). Such a category distinction could simply be due to the 

spatial segregation of digit sensitivity (i.e., ITNAs) and letter sensitivity (i.e., “Visual Word 

Form Area” and “Letter Form Area”) (Grotheer et al., 2018; Grotheer, Herrmann, et al., 2016; 

Pollack & Price, 2019). The dissociation between category identification and character 

identification is also consistent with existing behavioral evidence (McCloskey & Schubert, 2014; 

Taylor, 1978). McCloskey and Schubert (2014) showed that patient L.H.D., with alexia due to a 

left ventral lesion, was impaired in the ability to identify individual digits and letters, but was 

perfectly accurate in classifying digits and letters in mixed strings (e.g., ‘2VG5QS’). The authors 

concluded that “digit/letter category representations and character identity representations were 

computed separately but concurrently for all elements in the display, with the category 

representations providing the basis for present/absent judgements when the target and distractors 

differed in category” (McCloskey & Schubert, 2014, p. 458). Psychophysics evidence in 

neurotypical adults also suggest that identity and category are extracted in parallel (Taylor, 

1978).  

It is important to note that our results demonstrate an absence of evidence of digit 

discriminability in the left ITNA, and an evidence of an absence of digit discriminability in the 

right ITNA, but there was evidence of an absence of hemispheric asymmetry in digit 

discriminability. It could be that visual search tasks, at least in the version implemented here, are 

not robust in eliciting digit identity representations because task decisions may require only a 

basic level categorization (i.e., a digit or a letter) and not subordinate level categorization (i.e., 

which specific digit or letter). Nonetheless, it is possible that digit discriminability in the ITNAs 
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would be robustly evident in tasks in which digit identity is crucial. For instance, Wilkey and 

colleagues (2020) found above-chance decoding of the multivoxel response patterns evoked by 

digits in the left homologue of the meta-analytically identified right ITNA (Yeo et al., 2017; 

Chapter 2) across tasks involving single-digit identification (Is it a 2?) and comparison to a 

reference magnitude (Is it greater or less than ‘5’?)9. Moreover, we found that digit 

discriminability in the left IT region was associated with calculation skills, which suggests that 

the discriminability of digit representations in the ITNAs do have behavioral relevance. The 

numerically weaker digit discriminability in the right IT in the current study and the study by 

Wilkey and colleagues (2020) is compatible with the hypothesis that the magnitude 

representations downstream in the right parietal cortex (to which the right ITNA is connected to) 

are more approximate, or less discrete, in nature compared to its left counterpart (Chassy & 

Grodd, 2012; Kimura, 1966; Kosslyn et al., 1989; Piazza et al., 2006, 2007). Taken together, we 

speculate that the ITNAs may differ in how strongly they represent digit identity depending on 

the task context: When a task does not require discrimination between digits (e.g., category 

detection), digit identity is weakly represented in the ITNAs; when a task requires a digit to be 

discriminated from another digit (e.g., digit identification or magnitude comparison), digit 

identity is more strongly represented in the ITNAs, possibly by top-down modulation. The extent 

to which the right ITNA discriminates digits may also be slightly weaker than that in the left 

ITNA.  

Calculation Skills Are Associated with Hemispheric Asymmetry of Some Functional and 

Representational Properties 

 

 
9 Above-chance decoding was found in the left ITNA (M = 27.8%, chance level = 25%), but not in the right ITNA 

(M = 26.6%). However, paired samples t-test revealed inconclusive evidence of whether the decoding accuracies 

were significantly different between hemispheres, t(38) = 1.50, p = .143, BF01 = 2.05. 
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Using a region-of-interest analysis, we clarified that the mean digit sensitivity in the left 

IT region was also positively correlated with calculation skills, suggesting that the left IT region 

was not qualitatively different from the right IT region, despite indications to that effect in the 

results reported by Pollack and Price (2019). Importantly, consistent with our prediction, we 

found that higher calculation skills were also associated with greater right lateralization in digit 

sensitivity. Although our findings may not be consistent with Amalric and Dehaene's (2016) 

findings that the left (but not the right) ITNA’s response to numerals was modulated by 

professional mathematical expertise, it may be possible that a right lateralization in digit 

sensitivity is more robust within non-mathematicians, which can be observed in their data 

(Figure 8E). 

 Even though we found inconclusive evidence of digit discriminability in the left IT 

region (on average across participants), we found that greater digit discriminability was 

associated with higher calculation skills. Hence, here we show that individual differences 

analyses can provide information that would otherwise be obscured by group averages (cf. Fisher 

et al., 2018). This relation cannot be entirely explained by general symbol decoding because we 

regressed out letter-word identification skills from calculation skills. We also did not find a 

positive association between calculation skills and letter discriminability in both ROIs. 

Moreover, we found some evidence of stronger associations between digit discriminability and 

residualized calculation skills than residualized letter-word identification skills in the left IT. 

Taken together, there is some degree of specificity between digit discriminability and calculation 

skills that is worth replicating in future research with a larger sample. Future work should also 

consider controlling for general object recognition ability (that is independent of intelligence) for 

which reliable individual differences have been found that generalize across familiar and novel 
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object categories (Gauthier, 2018; Richler et al., 2017, 2019).  

Although evidence for a similar relation between digit discriminability and calculation 

skills in the right IT region was inconclusive, we found that its correlational strength did not 

differ statistically from that in the left IT region, and that greater hemispheric asymmetry in digit 

discriminability was also not associated with higher calculation skills. Hence, it is possible that 

digit discriminability in the right IT region is as important for calculation skills as the left IT. Our 

findings are in contrast with a recent study by Wilkey and colleagues (2020) that found weak to 

moderate evidence of a null relation between decoding accuracy of multivoxel pattern 

classification of digit representations and calculation skills. One explanation is that the difference 

in tasks may modulate the degree of inter-individual variability in the discriminability of digit-

specific representations. The digit detection task used here did not require discrimination 

between digits (i.e., whether the digit was a 2 or 3 did not matter), whereas Wilkey and 

colleagues (2020) used an identification task and a magnitude comparison task, for which 

discrimination between digits was necessary. It is possible that the digit detection task evoked 

spontaneous digit-specific representations with substantial inter-individual variability in the 

degree of discriminability. In contrast, in identification and comparison tasks, such inter-

individual variability in the degree of discriminability may be attenuated when the digit-specific 

representations were amplified. 

Finally, given the flexibility in the recruitment of either hemispheric number 

identification system depending on task contexts (L. Cohen & Dehaene, 1995, 1996, 2000), it is 

important to note that these findings may be specific to visual search tasks, and may not apply to 

other numerical tasks. Hence, more research would be needed to replicate and extend the current 

findings. 
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No Conclusive Evidence of Hemispheric Asymmetry in Representational Geometries of 

Digits in Both ITNAs 

 Based on the triple-code model, we predicted that intra-hemispheric information 

exchange among the verbal, magnitude, and visual codes would outweigh the inter-hemispheric 

information exchange, resulting in dissimilar representational geometries of digits between 

hemispheres. On one hand, we found that the representational geometries of digits were 

significantly correlated between the left and right IT regions. On the other hand, the correlation 

was small, so it is possible that the inter-hemispheric similarity was indeed attenuated by the 

intra-hemispheric interactions. Because it is statistically difficult to falsify the hypothesis simply 

by correlating the representational dissimilarity matrices, we further explored whether there was 

a discernable organization in representational geometry of digits in each IT region that could be 

described by models that characterize phonological, numerical, or shape similarity. None of the 

models were adequate in describing the regions’ representational geometries of digits. 

 The null findings of the neural-and-model comparisons can possibly be explained by the 

lack of exemplar discriminability, which could result in noisy representational geometries 

without any meaningful rank order for the neural-and-model comparisons. As argued above, the 

lack of exemplar discriminability could be an artifact of the visual search paradigm rather than 

an intrinsic property of the ITNAs. Given these caveats, we refrain from making any inferences 

about what the ITNAs represent. 

 Nonetheless, there was conclusive evidence that the representational geometry of digits 

could not be described by visual form, which replicates the finding in Chapter 3 (Yeo et al., 

2020). Hence, the prevalent label “Number Form Area” should be avoided since, to the best our 

knowledge, there is currently no direct evidence that numeral-preferring IT regions are sensitive 
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to visual form per se (i.e., the actual physical shape of the digit), nor that systematic differences 

in visual form between letters and digits even exist (Schubert, 2017). 

In sum, the insensitivity of the current data to disambiguate the various models suggests 

that more research needs to be conducted to examine hemispheric asymmetry or lack thereof in 

the representational geometries of digits in the ITNAs. 

Limitations 

First, it is possible the presence of other characters from the non-target category could 

have led to noisy exemplar-level representations. Although a single-character categorization task 

would be ideal to minimize the influence of characters from the non-target category, the present 

study was meant as a case study to probe a very specific hemispheric asymmetry reported by 

Pollack and Price (2019), so we were necessarily constrained by their experimental design. 

Future studies should consider designs with a single-stimulus presentation as well as a task that 

requires explicit digit discrimination to better understand the representational geometries of 

digits in the ITNAs. 

Second, the present study focused only on the ITNA rather than also on the regions 

subserving the verbal and magnitude codes. Lateralization has been shown to be a regional-level 

phenomenon (i.e, lateralization may manifest in some regions of a network, but not others; Pinel 

& Dehaene, 2010), so a focal analysis solely on the ITNAs is an appropriate first step for 

understanding the shared and distinct roles of the bilateral ITNAs. Besides, localization of 

regions underlying the verbal and magnitude codes is non-trivial without additional localizer 

tasks to isolate their respective representations. Given the hypothesized intra-hemispheric 

interaction between codes, future studies should also examine if hemispheric asymmetries in 

representational properties exist in the parietal regions subserving the magnitude code, and how 
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they relate to the asymmetries between the ITNAs. 

Third, we used group-level ROIs because the right IT ROI was localized using a 

correlational approach at the group level. However, such group-level ROIs are less optimal and 

sensitive than subject-specific ROIs because they do not account for anatomical variability 

between individuals (Nieto-Castañón & Fedorenko, 2012). This may partly explain the 

difference in conclusions drawn here and from previous studies that utilize subject-specific ROIs 

(Grotheer et al., 2018; Grotheer, Herrmann, et al., 2016) and found that the bilateral ITNAs do 

not have distinct functional profiles. Alternatively, it may be that task differences may underlie 

the extent to which the left and right ITNAs are functionally different. Future research free of 

such methodological constraints should consider using subject-specific ROIs instead and probe 

the functional and representational properties across different tasks that vary in their verbal and 

magnitude processing demands.   

Conclusions 

 To explore how the bilateral ITNAs are functionally dissimilar, we probed whether 

hemispheric asymmetry exists in an array of functional and representational properties of the 

ITNAs during a visual search task. In general, the ITNAs appear differentially weighted between 

hemispheres in their functional responses and representations, but there is no strong evidence 

that they are qualitatively different. We found that the bilateral ITNAs did not differ in their 

sensitivity to digits, and that digit sensitivity in both ITNAs correlated positively with calculation 

skills. The differences between these findings and those originally reported by Pollack and Price 

(2019) suggest that within-individual comparisons are a necessary follow-up to infer about 

hemispheric asymmetries. Nonetheless, we did uncover hemispheric asymmetry in other 

properties, such as activity in alphanumeric categorization in general, as well as category 
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discriminability. We also found certain properties that were associated with calculation skills, 

such as right-lateralization of digit sensitivity, and digit discriminability in the left ITNA. In light 

of these asymmetries and their relevance to behavior, future studies should not readily generalize 

findings about one ITNA to another. Given the hypothesis of flexible, task-dependent 

engagement of the bilateral ITNAs, our results are likely specific to visual search. Other 

numerical tasks may uncover hemispheric asymmetries in a similar or different set of functional 

and representational properties of the bilateral ITNAs as we have found here. Hence, further 

investigation may be worthwhile to probe the individual and joint contributions of both 

hemispheres in processing numerals. Finally, to better understand the nature of hemispheric 

asymmetry of cognitive functions in general, our study highlights the need to supplement 

traditional univariate group-averaged analyses with within-participant comparisons, multivoxel 

pattern analyses, and individual differences analyses. 
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CHAPTER 5 

 

GENERAL DISCUSSION 

 

Regardless of the writing scripts our native languages adopt, we almost certainly also 

have to master the Arabic numeral system comprising the digits 0 – 9 to function successfully in 

modern societies. As the foundational years of formal education typically have separate 

numeracy and literacy classes, the learning of the Arabic numeral system and native language 

writing systems tends to be highly contextualized. The repeated and predictable use of Arabic 

numerals mostly in numeracy contexts may influence how the visual systems in our brains are 

organized to identify and distinguish Arabic numerals from other character categories (Hannagan 

et al., 2015; also see Gauthier, 2000). The collection of studies in this thesis provided findings 

consistent with this hypothesis in that the recognition of numerals is supported by an inferior 

temporal region that is spatially distinct from the word- and letter-preferring fusiform regions. As 

the Hindu-Arabic numerals were only introduced to the Western word as late as the 12th century, 

and adopted worldwide only several centuries later (Chrisomalis, 2010; Smith & Karpinski, 

1911), it is unlikely that a specialized brain system for reading Arabic numerals evolved due to 

natural selection. Hence, the findings inform us how human culture interacts with neurobiology – 

particularly, how our brains assimilate or accommodate multiple culturally defined symbol sets 

learned for various representational purposes (e.g., words, numbers, or music) (Dehaene & 

Cohen, 2007). In this final chapter, I summarize the findings of the studies in this thesis, discuss 

the key limitations of the approaches taken here, and provide directions for further investigations 

of the bilateral numeral-preferring vOT nodes (so-called “Number Form Areas” (NFAs) and the 
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extended numeral recognition circuits. 

Summary of Findings 

Right Posterior Inferior Temporal Gyrus as the Most Probable Location of an NFA  

In Chapter 2, we used a coordinate-based meta-analytic approach to provide evidence of 

a numeral-preferring neural population in the right pITG that is spatially convergent across 

samples and paradigms. Although recent evidence offered a qualitative sense of a reproducible 

location of an NFA across studies, whether it lies within the pITG or fusiform gyrus, spans both 

gyri, or has a different location in each hemisphere remains unclear. For example, Grotheer, 

Herrmann, and colleagues (2016) found numeral-preferring regions in both pITG and fusiform 

gyri bilaterally, but did not consider the latter regions as candidate NFAs despite prior evidence 

suggesting the fusiform gyri as likely candidates (Pinel et al., 1999, 2001). Hence, the meta-

analysis contributes to the literature by providing the first quantitative evidence for the spatial 

reproducibility of a candidate NFA in the right pITG. Our finding also suggests that its spatial 

reproducibility is higher in the right hemisphere than in the left hemisphere. The absence of 

evidence of an NFA in the left pITG could be due to either spatial variability within and/or 

between samples, the reliability of its recruitment due to task demands, or both. The findings of 

group-level clusters in the left pITG in individual studies (Amalric & Dehaene, 2016; Grotheer, 

Herrmann, et al., 2016; Pollack & Price, 2019), however, indicate that there is some degree of 

spatial consistency. Hence, varying task demands likely underlie the unreliable recruitment of the 

left pITG region. The role of numeral-preferring fusiform regions observed in some studies 

remains unclear and their representational contents should be probed alongside the pITG regions 

when both sets of regions are localized within the same sample or individual.  

Our findings also cast doubt on signal dropout as the sole factor underlying the 
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unsuccessful localization of an NFA in previous fMRI studies. First, some of the studies 

contributing to the meta-analytic convergence in the pITG did not employ advanced acquisition 

and post-acquisition analytic methods to mitigate signal loss. Second, a more liberal inclusion of 

contrasts from additional studies that ought to reveal its preferential engagement for numerals 

(i.e., less specific contrasts in favor of the numeral condition) did not support such a 

convergence. Hence, we speculated that task demands for both the numerical and non-numerical 

control stimuli, and the cognitive subtraction underlying the contrasts, could have played a role 

in the mixed findings of an NFA. 

Following the publication of Chapter 2 (Yeo et al., 2017), other fMRI studies provided 

support for our conjectures by showing that the NFAs reliably fall posterior to the signal dropout 

zone (Grotheer et al., 2018; Merkley et al., 2019), and that localization of the NFAs is strongly 

modulated by what one is tasked to do with the Arabic numerals (Grotheer et al., 2018; Pollack 

& Price, 2019). Hence, the meta-analysis has already advanced the field by prompting a re-

direction of resources from a mitigation of signal dropout in the ITG to understanding the 

recruitment of the NFAs under different task conditions. Beyond the theoretical and 

methodological insights contributed by the meta-analysis, the meta-analytically defined NFA 

also provides an a priori region-of-interest (ROI) for focal analyses in studies for which 

functional localization is unsuccessful (such as in Chapter 3; Yeo et al., 2020) or not feasible 

(e.g., lack of control stimuli for contrast analyses, or lack of task such as resting-state scans) 

(e.g., Abboud et al., 2015; Nemmi et al., 2018; Wilkey et al., 2020). 

Besides the candidate right NFA, bilateral parietal and right frontal regions also showed 

convergent activation across studies and paradigms as part of the broader “numeral processing 

network”. As the convergence in each region could arise from different subsets of studies 



  

 145 

included in the meta-analysis, we could not conclude that they are co-activated, much less 

functionally connected. However, they offer a set of candidate regions that are more involved in 

processing Arabic numerals than other familiar symbol sets. Resting-state functional 

connectivity analyses with the NFA and VWFA as seed regions showed that they are indeed 

functionally connected to different set of regions – NFA with parietal and frontal regions 

implicated in magnitude processing, and VWFA with left-lateralized regions implicated in 

language processing (Abboud et al., 2015; Nemmi et al., 2018).  

So-called NFAs Are Numeral-Relevant, but Are Not Sensitive to Visual Form of Digits 

Although it was originally thought that the “Number Form Area” is particularly sensitive 

to the shapes of digits – visual or not (Abboud et al., 2015; L. Cohen & Dehaene, 1991; see 

Hannagan et al., 2015, for a review; Shum et al., 2013), our findings from Chapters 3 and 4 

suggest otherwise. In Chapter 3, using three datasets in which participants passively viewed 

digits, letters, and novel characters, we found that the right candidate NFA and its left mirrored 

homologue were not automatically sensitive to the global shape of digits. These suggest that the 

information readout from the NFAs by downstream regions is not digit shapes. However, the 

right candidate NFA still automatically distinguished digits from letters and novel characters, 

and even showed some degree of numeral preference, in which letters and novel characters were 

represented alike, but distinct from digits. We found parallel evidence of automatic categorical 

distinction and numeral preference also in the right parietal region that was meta-analytically 

identified. No other region of the meta-analytic network showed a similar pattern of results as the 

right candidate NFA. We interpreted these findings as suggestive that the NFAs may be part of a 

predictive pathway for stimuli that have potential numerical relevance for readout and feedback 

by downstream regions involved in quantity processing, particularly in the bilateral parietal 



  

 146 

cortices (Abboud et al., 2015; Daitch et al., 2016). The evidence of automaticity in numeral 

processing is also consistent with the “process-map” hypothesis that the organization of 

category-selective regions in the vOT may result from each region being best suited for the task 

or type of processing associated with each object category (Gauthier, 2000). Although the left 

parietal region also distinguished digits from other character categories, evidence of a numeral 

preference was inconclusive. There was, however, conclusive evidence of a lack of automatic 

categorical distinction in the left mirrored homologue of the candidate NFA. As in Chapter 2, the 

null finding of a left NFA could be due to the possibility that the ROI did not overlap with the 

left NFAs in most participants across three studies. Another possibility is that the left and right 

NFAs may be distinct in their representations.  

Critically, the nature of the task (i.e., fixation-color change-detection) allows us to rule 

out the possibility that differences in response patterns were entirely accounted for by one’s 

attention to a character’s shape, identity, or category. Hence, Chapter 3 provides the first direct 

test of visual form representations in the NFA. Evidence for a lack of shape representations in 

both NFAs was replicated in Chapter 4 even when participants had to attend to the digit shapes 

in a visual search task. Based on these new insights, we propose that this region ought not to be 

referred to as a “Number Form Area”, but as “Inferior Temporal Numeral Area” (ITNA) to 

specify its gross anatomical location and preferred stimulus category. I will use this 

nomenclature going forward in the rest of this chapter. 

One possibility is that instead of digit shapes, the ITNAs may instead represent abstract 

identities of digits, which is similar to the role of the letter case-invariant VWFA (L. Cohen & 

Dehaene, 2004; Dehaene & Cohen, 2011). Just like abstract letter identities are thought to be 

detected from activated stored sensory forms of allographs (e.g., “E” and “e”, or “4” and “4”) 



  

 147 

(McCloskey & Schubert, 2014), abstract digit identities can also be detected from the activated 

stored sensory forms used to represent the same number (e.g., “5”, “V”, 5 and  share an 

abstract identity) (Abboud et al., 2015; Grotheer et al., 2018). Critically, these representations of 

abstract character identities do not contain information about shape or phonology (Friedmann & 

Coltheart, 2018; Rothlein & Rapp, 2014), which may account for the lack of evidence of shape 

representations in Chapters 3 and 4, and phonological representations in Chapter 4. Future 

studies may consider testing whether dice and finger patterns recruit the ITNAs even in non-

numerical tasks (e.g., passive viewing), and whether they do so in individuals who have far less 

experience with Arabic numerals than with dice and fingers as visual representations of numbers 

(e.g., preschoolers). 

In general, our findings in Chapters 3 and 4 also revealed a contrast between univariate 

and multivariate approaches. In Chapter 3, we found some degree of automatic preference for 

numerals in the right ITNA during passive viewing that was evident when we examined the 

exemplar-level multivoxel response patterns. Such a categorical distinction was elusive when 

regional responses averaged across voxels and exemplars were examined instead (Merkley et al., 

2019; G. R. Price & Ansari, 2011). In Chapter 4, we found that the right ITNA exhibited greater 

category discriminability between digits and letters than its left counterpart during digit detection 

even though they showed equivalent digit sensitivities based on their regional mean responses. It 

is not surprising or novel that multivariate pattern analyses may be more sensitive than univariate 

analyses (Kriegeskorte et al., 2006; Kriegeskorte & Bandettini, 2007), which can even lead to 

qualitatively different and complementary conclusions (e.g., M. A. Cohen et al., 2019; Jimura & 

Poldrack, 2012; McGugin et al., 2015). It is, however, worth considering in future studies to 

include both approaches whenever possible to increase the richness of inferences we can make 
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from the same data. 

In sum, both Chapters 3 and 4 add to the literature evidence that the ITNAs do not 

represent visual form of Arabic digits per se even though they do distinguish digits from other 

character sets. This is important because it explains why the right ITNA is recruited by Roman 

numerals (via auditory soundscapes) in congenitally blind adults (Abboud et al., 2015), and the 

bilateral ITNAs are recruited by dice and finger patterns in neurotypical adults (Grotheer et al., 

2018). More broadly, it is consistent with findings beyond the numerical domain that indicate we 

may not have a separate region for different symbol sets used for similar representational 

purposes. For instance, English-Hebrew and Chinese-English bilinguals show overlap in the 

VWFAs involved in scripts of both languages (Baker et al., 2007; A. C. N. Wong et al., 2009). 

Hemispheric Asymmetry of ITNAs’ Functional and Representational Properties, and 

Relevance to Behavior 

Hemispheric asymmetry of the bilateral ITNAs has been observed in the literature and in 

the first two studies of this thesis. Specifically, it is not uncommon to observe unilateral 

recruitment of the left or right ITNA (or vOT more generally) in numeral processing. Using a 

case study approach, in Chapter 4, we re-analyzed the data reported by Pollack and Price (2019) 

to probe whether the bilateral ITNAs are functional different. We found that some functional 

responses and representations are asymmetrically weighted between hemispheres, but there was 

no strong evidence that they are qualitatively different. First, categorical distinction between 

digit and letter multivoxel response patterns was found in both ITNAs, but the right ITNA 

exhibited higher category discriminability than the left ITNA. Interestingly, a right lateralization 

in the regional mean response amplitudes was also observed for both digit detection and letter 

detection regardless of whether a target was present or absent. This suggests an inherent right 
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lateralization for alphanumeric categorization, or possibly categorization between numerals and 

other character categories more generally. These findings and those of Chapter 3 suggest that the 

right ITNA may be more consistently involved in distinguishing numerals and other character 

categories than its left counterpart, and may likely underlie the right-hemispheric bias in numeral 

processing that is not uncommon in the literature. 

Chapter 4 also adds to the sparse evidence base of the relation between individual 

differences in the functional and representational properties of the ITNAs and mathematical 

competencies. Although Chapter 4 is based on the same data as Pollack and Price (2019), we 

explored a richer set of brain-behavior relations including laterality indices, which no study of 

the ITNA has considered. First, in addition to the original finding that digit sensitivity of the 

right ITNA was positively correlated with calculation skills, we found a significant, but slightly 

weaker relation in the left ITNA. Critically, however, the degree of right lateralization in digit 

sensitivity was positively correlated with calculation skills. Second, digit discriminability was 

also positively correlated with calculation skills in the left ITNA, but the evidence was 

inconclusive in the right ITNA. Nonetheless, degree of laterality in digit discriminability was not 

associated with calculation skills, suggesting that laterality may not matter. Taken together, we 

provide evidence that the functional and representational properties of the ITNAs, as well as 

their laterality, are relevant for behavior such as calculation skills. 

One explanation for the brain-behavior associations is that the ITNAs possess innate 

functional and structural properties (e.g., fovea processing and connectivity to magnitude 

processing circuits) that support the learning of numerals and performance in manipulating them 

(Abboud et al., 2015; Grotheer et al., 2019; Hannagan et al., 2015; Nemmi et al., 2018). For 

example, Nemmi and colleagues (2018) found that higher resting-state connectivity of the right 
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ITNA with left intraparietal sulcus and right dorsolateral prefrontal cortex was associated with 

higher math competencies. Another explanation is that the ITNAs develop ontogenetically as a 

result of our experience with numerals as a distinct set of symbols from other symbol sets (e.g., 

the Roman alphabet), and our competence in manipulating them in stereotypical and constrained 

contexts. Nonetheless, how these explanations relate to lateralization requires further research. 

An investigation of the similarities and differences in structural connectivity between the left and 

right ITNAs will be highly informative in constraining hypotheses about their functions and 

lateralization. As the investigation of brain-behavior relations is still limited and the findings 

have been mixed (Amalric & Dehaene, 2016; Nemmi et al., 2018; Pollack & Price, 2019; Wilkey 

et al., 2020), more research needs to be conducted to better characterize the specific functional 

and representational properties of the ITNA that are associated with individual differences in 

experience and competence with numerals.  

In sum, our findings in Chapter 4 contribute to the field by highlighting the need to 

consider the individual and joint contributions of the left and right ITNAs to numeral processing 

and mathematical skills. Although we did not find evidence of a qualitative difference between 

the ITNAs, the quantitative asymmetries in some functional responses and representations cannot 

be ignored. Hence, future research should avoid generalizing findings about one ITNA to 

another. Our findings also speak to an ongoing debate about whether object representations are 

in fact distributed across both hemispheres but with connectivity-constrained asymmetric 

weightings that result in a graded (as opposed to categorical) lateralization for some categories 

(e.g., left-lateralized VWFA) (Behrmann & Plaut, 2013, 2015, 2020). Numeral representations 

do appear distributed across both hemispheres, but also show graded lateralization that are 

relevant for behavior (e.g., right lateralized digit sensitivity). 
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Taken together, the work in this thesis contributes to the literature by characterizing the 

so-called “Number Form Areas” in terms of their spatial reproducibility, their functional and 

representational properties, hemispheric asymmetry in those properties, as well as how those 

properties and their asymmetry relate to mathematical skills.  

Future Directions 

Although the ITNAs are involved in numeral processing, likely by virtue of their 

connections to parietal regions involved in magnitude processing, we are still far from 

understanding whether the ITNAs are truly specialized for the reading requirements specific to 

the Arabic numeral system, and what properties of numeral reading the ITNAs are tuned to as a 

result of our experience in reading and manipulating numerals: Are they mere abstract digit 

identity encoders? Or are they a visuospatial buffer of ordered digit identities as originally 

conceived by Cohen and Dehaene (1991)? Or do they support a collection of more specialized 

processes unique to numeral reading, especially of multi-digit numerals? Although the 

localization of the ITNAs has been demonstrated with both single- and multi-digit numerals 

(Amalric & Dehaene, 2016; Grotheer et al., 2018; Grotheer, Herrmann, et al., 2016; Shum et al., 

2013), no study has directly compared whether the same region is involved regardless of string 

length, or whether there are distinct regions that subserve single- or multi-digit numeral 

processing. The latter is not impossible because single letters and letter strings recruit different 

regions of the left fusiform gyrus (James et al., 2005). However, unlike letters, single digits are 

not categorically distinct from digit strings (e.g., in their lexical status). The ITNAs are also 

responsive to single Roman numerals, dice, and finger patterns that do not conform to the base-

10 place-value system (Abboud et al., 2015; Grotheer et al., 2018). Moreover, there is growing 

evidence that the neuronal populations surrounding or adjacent to the ITNAs are engaged by 
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meta-modal mathematical processing, such as mathematical statements presented aurally 

(Amalric & Dehaene, 2016; Baek et al., 2018; Bugden et al., 2019; Daitch et al., 2016; Grotheer 

et al., 2018; Hermes et al., 2017; Pinheiro-Chagas et al., 2018). To the extent that multi-digit 

numerals involve additive and multiplicative reasoning (e.g., 254 = 2  100 + 5  10 + 4), multi-

digit numeral reading likely engage the ITNAs and/or the neuronal populations adjacent to them. 

An immediate next step in this research program is to understand whether and how the ITNAs 

represent multi-digit numerals, and what specific stimulus characteristics they are tuned to. 

There is an emerging consensus that processing of digits and letters diverge at the level of 

character strings, and that the processing of letter strings and digit strings are separate and 

qualitatively different, even between analogous sub-processes, possibly because they have 

distinct syntactic structures that require different parsing mechanisms (Dotan & Friedmann, 

2019; Grainger & Hannagan, 2014). Although not necessary, these distinct mechanisms may 

require dedicated neural resources, and by extension, neural segregation for processing digit and 

letter strings (Dotan & Friedmann, 2019). Figure 5-1 shows a cognitive model for reading aloud 

numerals proposed by Dotan and Friedmann (2018) alongside a similar model of reading aloud 

words (Friedmann & Coltheart, 2018) (for a review, see Dotan & Friedmann, 2019). There are 

other models of reading that can better account for behavioral and neuroimaging data, such as 

connectionist models, in which word recognition and naming are supported by a convergence of 

distributed representations of orthography, phonology and semantic codes10 (Harm & 

Seidenberg, 2004; Seidenberg, 2005; Seidenberg & McClelland, 1989). I highlight the pair of 

 

 
10 It is plausible that a connectionist model can also better account for how we read numerals aloud or for meaning. 

For example, “2021” can be read as “two, zero, two, one”, “two thousand and twenty-one” or “twenty, twenty-one” 

to invoke a nominal label, a large numerical value, and a position on a timeline, respectively. How we parse the 

string and map the phonological code to the orthographic code depends on the context and semantic. 
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models by Friedmann and colleagues mainly because they are highly detailed in describing the 

parallel and non-parallel processes of the orthographic codes for letter and digit strings. Thus, 

they provide a starting point for developing focal hypotheses about the types of information the 

ITNAs may be tuned to relative to the VWFA. In contrast, a connectionist model in which 

information is distributed across codes lacks the specificity of processes involved within each 

code that can be empirically tested. As the goal here is to understand orthographic processing of 

numerals more specifically, I will focus on the components of the visual analyzer of digit strings 

(outlined in red in Figure 5-1(a)).  

 

 

 

Figure 5-1. Cognitive models of reading aloud numerals and words 

Cognitive model of reading (a) numerals (Dotan & Friedmann, 2018) and words (Friedmann & 

Coltheart, 2018). Reprinted and adapted from Dotan and Friedmann (2019) with permission from 

Elsevier. 

 

 

In the visual analysis of digit strings in Figure 5-1(a), the model postulates the existence 

of five distinct and dedicated processes, grouped into two sets. The first set includes three 

processes that serve to extract the decimal structure of a numeral. For instance, when presented 
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with the numeral 23706, the length of the numeral is detected (it has 5 digits), the numeral is 

parsed into triplets from right to left (23 and 706), and the positions of the digit 0 is detected (2nd 

from the right). Zero plays a special syntactic role as a placeholder in the base-10 system (e.g., 

zero is not semantically realized when there are no tens in 706). In most languages (with 

exceptions, e.g., Mandarin Chinese), zero is also not verbally realized in numeral-to-verbal 

transcoding (e.g., 23706  “twenty-three thousand seven hundred and six”). The second set 

comprises the processes that encode the digit identities and the relative order of the digits 

(Friedmann et al., 2010). Finally, the output of the digit identity and digit order encoders are 

hypothesized to be represented in a buffer of order digit identities, which allows for the binding 

of the number word frame with the digits, at least for verbal number word production (Dotan & 

Friedmann, 2018). Dotan and Friedmann (2019) argue that these processes are distinct from 

those of the letter-string visual analyzer in Figure 5-1(b), even between analogous processes 

such as those coding for identity and order. What seems truly unique about the digit-string visual 

analyzer that distinguishes it from the letter-string visual analyzer are the processes involved in 

extracting the numeral’s decimal structure. It would be worthwhile to investigate the sensitivity 

of the ITNAs to the decimal structure by systematically manipulating the different components. 

Given that we now know the probable locations of the ITNAs, another line of 

investigation that is ripe for exploration concerns the structural and functional connections to and 

from the ITNAs. Behrmann & Plaut (2013) argue that functional specialization is an emergent 

property of the interactions between multiple regions within and between hemispheres via their 

structural and functional connections, rather than an intrinsic property of the isolated 

representations and computations of individual vOT regions. Hence, a better understanding of 

how we process numerals, especially in different contexts, will require us to go beyond analyses 
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of the ITNAs in isolation. A rich description of the regions that the ITNAs are connected to 

intrinsically or as dictated by task contexts will help constrain inferences that can be made about 

types of representations and computations in the extended neural circuits within and across 

hemispheres. Future work should therefore examine individual differences in structural and 

functional connectivity of the left and right ITNAs within and between hemispheres, and 

compare the functional responses and representations between heterotopic and homotopic 

regions in the circuits involved (Behrmann & Plaut, 2020). Developmental research will also be 

necessary to disentangle the contributions of genetically and experience-driven connectivity to 

lateralization effects in numeral processing. 

A final line of possible investigation concerns the extent to which ITNAs that already 

exist to support Arabic numeral reading will support the learning of an alternative symbol set to 

represent numbers. The process-map account of category selectivity in the vOT suggests that 

category-selective regions arise because they support the processing goals required for specific 

categories (Gauthier, 2000). This account thus predicts that learning of multiple scripts for the 

same computational or representational purpose involves assimilation in the category-selective 

vOT nodes. For example, individual-subject analyses in bilinguals suggest that reading words in 

two different scripts (even between alphabetic and non-alphabetic) involve overlapping VWFAs 

(Baker et al., 2007; A. C. N. Wong et al., 2009). Training adults to read a novel alphabetic script 

comprised of images of houses also led to overlapping VWFAs of English and house-font 

orthographies, as well as learning-related increase in activity in pre-existing English-VWFA, 

which correlated with reading speed of the house-font (L. Martin et al., 2019). Finally, in 

Chinese-English bilinguals, greater proficiency in reading English was associated with higher 

multivoxel pattern similarity between English and Chinese words in the left mid-fusiform gyrus, 
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and a reverse relation was found in the right mid-fusiform gyrus that is less implicated in 

linguistic processing (Qu et al., 2019). Hence, assimilation within the key vOT nodes for reading 

different scripts for the same representational purpose can be evident in terms of spatial, 

functional, and representational properties. In the numerical domain, attempts have been made to 

study the neural changes in individuals who were trained to read multi-character Roman 

numerals (Masataka et al., 2007) and mapping abstract geometric patterns to approximate 

quantities (Lyons & Ansari, 2009). In general, these studies found that the new symbol set 

recruited regions that are commonly implicated in number processing, including vOT regions 

that span the ITG and fusiform gyri. However, because none of the studies included Arabic 

numeral processing for comparison, the degree of assimilation in the ITNAs and their extended 

networks, and how it relates to numeral reading competence remains unclear.   

To sum up, some outstanding questions that can be pursued in future are to better 

understand the orthographic properties of multi-digit numerals the ITNAs are tuned to, the 

structural and functional connections with the ITNAs, the extent to which visually and/or 

syntactically distinct symbol sets for representing numbers tap into the same neural system, and 

how all of these relate to individual differences in numeral reading fluency and other symbolic 

mathematical skills. 

Final Remarks 

Arabic digits 0 – 9 are highly flexible tools that not only represent quantities (cardinal 

numerals), but also the positions of ordered sequences (ordinal numerals), and as identity labels 

(nominal numerals) across varied contexts within our environments. As such, reading Arabic 

numerals is a fundamental and necessary activity that we engage in most of our waking lives. 

The current thesis addresses how our brains facilitate fluent reading of Arabic numerals. This 



  

 157 

work contributes to the numerical cognition and object recognition literatures with a 

programmatic characterization of the spatial, functional, and representational properties of the 

“Inferior Temporal Numeral Areas” that are hypothesized as the key vOT nodes of neural 

networks supporting numeral processing. More broadly, the findings provide insights on how 

cultural inventions shape our brains, and lay the groundwork for understanding the behavioral 

consequences when a brain struggles to incorporate the learning of arbitrary symbol sets within 

its existing neuronal architecture.
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APPENDIX A 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 3 

 

 

Supplementary Methods 

Comparison of Experimental and Neuroimaging Acquisition Parameters 

 

Table A-1. Notable experimental and neuroimaging acquisition comparisons among datasets 

Parameters Dataset 1 Dataset 2 Dataset 3 

Experiment parameters 

Run duration 16 min 9 min 11 min 

Stimulus 

presentation 

duration 

50 or 500 ms 500 ms 500 ms 

Number of 

categories 

8 (Ds, Ls, Scrambled Ds, 

Scrambled Ls for each 

presentation duration) 

4 (Digits (Ds), Letters 

(Ls), Scrambled Ds, 

Scrambled Ls) 

6 (Ds, Ls, Scrambled Ds, 

Scrambled Ls, Mirrored Ds, 

Mirrored Ls) 

Number of 

exemplars per 

category 

9 9 9 

Number of trials 

per exemplar per 

run 

2 2 2 

Number of runs 2 1 4 

Number of target 

trials/run 

6 8 6 

Inter-trial interval 4, 6 or 8 s (M = 6 s) 4, 5, 6, 7, or 8 s (M = 6 

s) 

1, 2 or 3 s (M = 2 s) 

fMRI acquisition parameters 
MRI scanner 

model 

3T Siemens Tim Trio 3T Phillips Achieva 3T Siemens Prisma Fit 

Head coil type 32-channel 8-channel 32-channel 

Functional runs    

Pulse sequence T2-weighted echo-planar Multislice 2D SENSE 

(factor 2) T2* 

gradient-echo, echo 

planar 

T2*-weighted single-shot 

gradient-echo planar 

(Multiband acceleration 

factor: 4) 

Echo time (TE) 30 ms 30 ms 30 ms 

Time to repetition 

(TR) 

2000 ms 2000 ms 1000 ms 
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Flip angle 90° 75° 40° 

In-plane 

resolution 

64 × 64 pixels 128 × 128 pixels 84 × 84 pixels 

Field of view 192 mm 240 mm 208 mm 

Slices per TR 38 axial 34 axial 48 axial 

Voxel resolution 3 mm isotropic 1.875 × 1.875 × 3 mm3 2.476 × 2.476 × 2.5 mm3 

Gap between 

slices 

0 mm 1 mm 0 mm 

Number of 

volumes/run 

488 276 335 
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Behavioral Results 

 

Table A-2. Number of errors of omission and commission across all runs in each dataset 

Study 
Omission 

errorsa 
Commission errors 

  
Digits 

(500 ms) 

Letters 

(500 ms) 

Scrambled 

Digits (500 

ms) 

Scrambled Letters 

(500 ms) 

Letters 

(50 

ms) 

Mirrored Digits 

(500 ms) 

Mirrored 

Letters (500 

ms) 

Dataset 

1 (N = 

19) 

 

5 (1 P with 3 

errors; 2 Ps 

with 1 error 

each) 

2 (2 Ps with 

1 error 

each) 

1 
2 (2 Ps with 

1 error each) 
0 1 N.A. N.A. 

Dataset 

2 

(N = 39) 

1 

3 (2 Ps with 

1 error 

each) 

0 0 0 N.A. N.A. N.A. 

Dataset 

3 (N = 

40) 

8 (2 Ps with 2 

errors each; 4 

Ps with 1 error 

each) 

7 (1 P with 

1 error; 3 

Ps with 2 

errors each) 

11 (1 Pb with 6 

errors; 1 P with 

2 errors; 3 Ps 

with 1 error 

each) 

4 (2 Ps with 

2 errors 

each) 

10 (1 Pc with 4 

errors; 1 P with 3 

errors; 3 Ps with 1 

error each) 

N.A. 

11 (1 P with 6 

errors; 1 P with 3 

errors; 2 Ps with 

1 error each) 

5 (1 P with 2 

errors; 3 Ps 

with 1 error 

each) 

Note. P = Participant. 

These data included all runs, independent of the motion-related exclusion. Three participants from Dataset 3 were excluded from the final 

sample as no button responses were recorded from them. 
a Number of target trials per run: Dataset 1 – 6 trials; Dataset 2 – 8 trials; Dataset 3 – 6 trials. 
b This participant made 18 commission errors in one run (Digits: 2; Letters: 6; Scrambled Digits: 2; Scrambled Letters: 3; Mirrored Digits: 3; 

Mirrored Letters: 1) and 1 omission error. This run was excluded from analyses. 
c This participant made 18 commission errors in one run (Digits: 2; Letters: 2; Scrambled Digits: 2; Scrambled Letters: 4; Mirrored Digits: 6; 

Mirrored Letters: 2). This run was excluded from analyses. 
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Properties of Stimulus Sets 

 

Table A-3. Visual properties of stimulus sets: Mean (SD) 

 

  

 Visual angle (width × height) Luminance Perimetric complexity 

 Intact Scrambled Intact Scrambled Intact Scrambled 

Digits Set 4.63 (0.55) × 

9.24 (0) 

6.18 (1.00) × 

8.25 (2.11) 

8165.22 

(1685.73) 

7941.78 

(1596.00) 

82.39 

(17.65) 

86.53 

(21.73) 

Letters Set 1 5.67 (0.44) × 

9.24 (0) 

6.72 (1.77) × 

10.83 (3.5) 

10255.97 

(1684.88) 

10058.69 

(1613.36) 

88.70 

(11.16) 

90.61 

(13.62) 

Letters Set 2 5.67 (0.44) × 

9.24 (0) 

6.72 (1.77) × 

10.83 (3.5) 

10163.85 

(1982.35) 

9987.63 

(1890.86) 

88.80 

(15.21) 

91.49 

(16.13) 

Note:  

Digits Set: Identical across all datasets 

Letters Set 1: Datasets 1 and 2 

Letters Set 2: Dataset 3 
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Table A-4 describes any substantial differences in luminance and perimetric complexity 

between the digits set and letters sets that may underlie any categorical differences. As we are 

not interested in making any inferences about the population parameters of the stimulus sets, 

frequentist hypothesis testing is inappropriate. Hence, we adopted Bayesian inferences (Bayesian 

Mann-Whitney in JASP 0.10.0 (JASP Team, 2019), 10,000 samples, with a Cauchy prior scale 

of 0.707) to quantify the degree of evidence for a difference between any two categories. By and 

large, albeit weak, there appears to be some evidence favoring a difference in luminance between 

the digits set and letters sets regardless of their intactness, and some evidence favoring a lack of 

difference in perimetric complexity between any two categories. These findings are consistent 

with those of Schubert (2017) for Arial font. Although the results suggested that luminance is not 

a huge issue (BFs < 3), it is still informative to assess the contribution of luminance as a 

confounding factor. 

 

Table A-4. Pairwise comparisons of luminance (above diagonal) and perimetric complexity 

(below diagonal) of stimulus categories for Digits Set, Letters Set 1, and Letters Set 2 (bold) 

 Intact digits Intact letters Scrambled digits Scrambled letters 

Intact digits 

– 

W = 13, 

BF10 = 2.44  

W = 14, 

BF10 = 1.88 

W = 47, 

BF10 = 0.48 

W = 13, 

BF10 = 2.55 

W = 14, 

BF10 = 2.03 

Intact letters W = 35, 

BF10 = 0.44 

W = 32, 

BF10 = 0.50 

– 

W = 9, 

BF10 = 3.21 

W = 12, 

BF10 = 2.37 

W = 47, 

BF10 = 0.48 

W = 45, 

BF10 = 0.44 

Scrambled digits 

W = 34, 

BF10 = 0.47 

W = 38, 

BF10 = 0.43 

W = 37, 

BF10 = 0.43 

– 

W = 11, 

BF10 = 3.01 

W = 13, 

BF10 = 2.08 

Scrambled letters W = 28, 

BF10 = 0.68 

W = 24, 

BF10 = 0.86 

W = 34, 

BF10 = 0.46 

W = 34, 

BF10 = 0.46 

W = 36, 

BF10 = 0.43 

W = 34, 

BF10 = 0.46 

– 

Note. W: Mann-Whitney U, two-sided. 
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Size and Temporal Signal-to-Noise Ratio of Participant-Specific Regions of Interest 

The meta-analysis by Yeo and colleagues (2017) found convergent preferential activity to 

Arabic numerals than to other familiar symbols (e.g., Roman letters for English speakers or 

Chinese characters for Chinese speakers) across 20 studies in five regions (see Figure 3-2(a)): 

right inferior temporal gyrus (ITG, 55 3-mm isotropic voxels11), left parietal lobule (PL; 

encompassing the inferior lobule and intraparietal sulcus, 114 3-mm isotropic voxels), right PL 

(encompassing both superior and inferior lobules, and the intraparietal sulcus, 362 3-mm 

isotropic voxels), right premotor cortex (PMC, encompassing both superior frontal gyrus and 

anterior cingulate cortex, 102 3-mm isotropic voxels), and right inferior frontal gyrus (IFG, 50 3-

mm isotropic voxels). Figure A-2 shows the group means and individual differences in the size 

of each region of interest (ROI) relative to the meta-analytic cluster in percentage, and the 

temporal signal-to-noise ratio (tSNR) per ROI. Apparent in Figure A-2, a participant in Dataset 

3 had only 48.1% voxels retained in the left ITG, and the same participant had a tSNR of 44.7 in 

that region. We replicated the analyses pertaining to the left ITG cluster with the exclusion of 

this participant, and the findings were qualitatively similar to that of the full sample. 

Of particular interest here is the tSNR in the ITG ROIs that are known to be susceptible 

to signal dropout. We thus provide a statistical comparison of the tSNR in these ROIs across the 

datasets as a potential factor that may explain any differences in dataset-specific findings. A one-

way analysis of variance of the tSNRs across datasets revealed that there were statistically 

significant differences in the mean tSNRs in the left ITG ROI across the datasets [F(2, 85) = 

 

 
11 The volume of the original meta-analytic cluster was computed based on a map with 2-mm isotropic resolution. 

For the current study, the clusters were imported to BrainVoyager for analysis, which required first resampling them 

to 1-mm isotropic voxels and then to 3-mm isotropic voxels. The resampling procedure thus resulted in more voxels 

than one would expect based on the original cluster volumes. 
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5.27, p = .007, 𝜂𝑝
2 = 0.11, 𝐵𝐹10= 5.50]. Post-hoc comparisons indicated conclusive evidence that 

the mean tSNR was much higher in Dataset 3 (M = 112.85, SD = 16.23) than in Dataset 1 (M = 

97.55, SD = 18.02) [t = 3.22, 𝑝𝑠𝑐ℎ𝑒𝑓𝑓𝑒  = .008, Cohen’s d = 0.91, 𝐵𝐹10= 16.22], but there was 

inconclusive evidence that mean tSNRs differed between Dataset 1 and Dataset 2 (M = 109.22, 

SD = 16.85) [t = 2.39, 𝑝𝑠𝑐ℎ𝑒𝑓𝑓𝑒  = .063, d = 0.68, 𝐵𝐹10= 2.49], or Dataset 2 and Dataset 3 [t = 

0.89, 𝑝𝑠𝑐ℎ𝑒𝑓𝑓𝑒  = .673, d = 0.22, 𝐵𝐹10= 0.35]. There were also statistically significant differences 

in the mean tSNRs in the right ITG ROI across the datasets [F(2, 85) = 17.83, p < .001, 𝜂𝑝
2 = 

0.30, 𝐵𝐹10= 41,766]. Post-hoc comparisons indicated conclusive evidence that the mean tSNR 

was much higher in Dataset 3 (M = 116.42, SD = 14.57) than in Dataset 1 (M = 89.88, SD = 

18.59) [t = 5.72, 𝑝𝑠𝑐ℎ𝑒𝑓𝑓𝑒  < .001, d = 1.66, 𝐵𝐹10= 41,084] and Dataset 2 (M = 101.15, SD = 

17.16) [t = 3.85, 𝑝𝑠𝑐ℎ𝑒𝑓𝑓𝑒  = .001, d = 0.97, 𝐵𝐹10= 146.66], but inconclusive evidence that mean 

tSNRs differed between Datasets 1 and 2 [t = 2.37, 𝑝𝑠𝑐ℎ𝑒𝑓𝑓𝑒  = .067, d = 0.64, 𝐵𝐹10= 1.97]. 
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Figure A-2. Size (a) and temporal signal-to-noise ratio (b) in each region of interest across three 

datasets  

ITG: inferior temporal gyrus; PL: parietal lobule; PMC: premotor cortex; IFG: inferior frontal 

gyrus. 
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Computational Details of Shape Distance Model 

The shape distance measure for any pair of images 𝐼𝑗 and 𝐼𝑘 was computed using the 

MATLAB code from 

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html (Belongie et 

al., 2002). For each image, the edges or contours of the character were first detected, and we 

sampled 100 approximately uniformly spaced points each along the inner and outer contours of 

the character. Then an iterative process finds the best one-to-one alignment between the 100 

sampled points in character 𝐼𝑗 and the 100 sampled points in character 𝐼𝑘. Specifically, for each 

sampled point in character 𝐼𝑗, the algorithm computed a “shape context” descriptor in the form of 

a histogram of that particular point to all other 99 points. This histogram is that point’s “shape 

context”. This was also computed for all the points in character 𝐼𝑘. By comparing the histograms 

(i.e., the shape contexts of the 100 points in character 𝐼𝑗 and the 100 points in character 𝐼𝑘), a 

point-to-point alignment between the two characters was determined. This alignment was then 

used to spatially warp or deform one image to fit the other that minimizes the amount of “work” 

necessary to transform character 𝐼𝑗 to align with character 𝐼𝑘. This was performed iteratively 

through six iterations in our case, which results in a rather stable solution (3 to 5 iterations were 

used in Belongie, Malik, & Puzicha, 2002). After the matching process, three separate distance 

measures were computed: (1) 𝐷𝑗𝑘
𝑆𝐶  is the summed shape context cost between the best-aligned 

“shape contexts” between characters 𝐼𝑗 and 𝐼𝑘; (2) 𝐷𝑗𝑘
𝐵𝐸  is a measure of the amount of spatial 

transformation (“bending energy”) needed to best align the characters; (3) , 𝐷𝑗𝑘
𝐴𝐶  is the 

appearance cost (sum of squared differences in pixel-by-pixel intensities in Gaussian windows 

around corresponding points in an image) between the warped character 𝐼𝑗 and the original 

character 𝐼𝑘. Finally, an overall dissimilarity index termed the “shape distance” is computed 

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sc_digits.html
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using a weighted sum Djk= 𝐷𝑗𝑘
𝑆𝐶  + 1.6𝐷𝑗𝑘

𝐴𝐶  + 0.3𝐷𝑗𝑘
𝐵𝐸 . The weights used here have previously 

been optimized using a large set of handwritten digits (Belongie et al., 2002), and have been 

applied for other object categories (e.g., Gotts, Milleville, Bellgowan, & Martin, 2011). 
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Representational Geometries Based on Pixel Overlap and Shape Distance 

 

 

Figure A-3. Representational geometry of the 36 exemplars in two-dimensional space based on 

pixel overlap and shape distance for Letters Set 1 
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Figure A-4. Representational geometry of the 36 exemplars in two-dimensional space based on 

pixel overlap and shape distance for Letters Set 2 
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Comparison of Candidate Models between Letters Sets 1 and 2 

 

 

Figure A-5. Comparison of candidate representational dissimilarity models (RDMs) between 

Letters Set 1 (Datasets 1 and 2) and Letters Set 2 (Dataset 3)  

(a) Candidate RDMs constructed from 9 exemplars per category: Digits (D), Scrambled Digits 

(sD), Letters (L), and Scrambled Letters (sL). All models presented were rescaled to [0, 1] for 

comparative visualization. (b) Multidimensional scaling plot of the correlational distance among 

the candidate models using Letters Set 2 (see Figure 3-2 for Letters Set 1). Both Letters Sets 

resulted in qualitatively similar representational geometry among the candidate representational 

models. (c) Pairwise rank correlations (Kendall’s 𝜏𝑎) between candidate models for Letters Sets 

1 and 2. 
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Supplementary Results 

Representational Geometry in Candidate Numeral-Preferring ITG Regions: Dataset-

specific Summary 

 Table A-5 below provide the mean similarity values for each model within each dataset 

as shown in Figure 3-4.  

 

Table A-5. Mean degree of dataset-specific similarity between model and neural RDMs in left 

and right ITG 

 Left ITG  Right ITG 

Model 𝜏𝑎 SE p 𝐵𝐹+0  𝜏𝑎 SE p 𝐵𝐹+0 

Dataset 1          

Pixel Overlap .0030 .0060 .461 0.36  .0039 .0054 .354 0.45 

Shape Distance .0078 .0041 .044 1.97  .0003 .0056 .414 0.25 

Familiar v. Novel .0010 .0037 .430 0.29  .0075 .0046 .078 1.35 

Alphanumeric v. Novel .0012 .0039 .369 0.31  .0096 .0043 .016 3.36 

Alphabet v. Numbers v. 

Novel 

.0013 .0035 .369 0.32  .0100 .0036 .005 8.37 

Numbers v. Others .0027 .0037 .311 0.45  .0098 .0041 .033 4.34 

Alphabet v. Others -.0011 .0035 .952 0.19  .0028 .0046 .340 0.40 

Luminance .0046 .0038 .091 0.77  .0035 .0052 .297 0.42 

Dataset 2          

Pixel Overlap -.0007 .0036 .570 0.16  .0052 .0039 .131 0.77 

Shape Distance -.0035 .0035 .865 0.10  .00003 .0034 .674 0.19 

Familiar v. Novel .0020 .0045 .482 0.28  .0064 .0050 .402 0.70 

Alphanumeric v. Novel .0024 .0044 .387 0.30  .0072 .0054 .474 0.75 

Alphabet v. Numbers v. 

Novel 

.0023 .0036 .332 0.33  .0063 .0046 .216 0.78 

Numbers v. Others .0009 .0028 .482 0.25  .0017 .0027 .387 0.34 

Alphabet v. Others .0016 .0029 .372 0.30  .0045 .0042 .346 0.53 

Luminance -.0012 .0038 .781 0.15  -.0020 .0039 .839 0.13 

Dataset 3          

Pixel Overlap .0014 .0029 .383 0.27  .0029 .0022 .091 0.70 

Shape Distance .0039 .0039 .327 0.48  .0042 .0034 .185 0.63 

Familiar v. Novel .0026 .0034 .306 0.36  .0074 .0056 .285 0.69 

Alphanumeric v. Novel .0023 .0033 .394 0.33  .0095 .0057 .154 1.19 

Alphabet v. Numbers v. 

Novel 

.0013 .0029 .406 0.25  .0096 .0044 .093 2.76 

Numbers v. Others -.0032 .0023 .909 0.08  .0083 .0035 .026 4.07 

Alphabet v. Others .0030 .0031 .296 0.45  .0036 .0024 .165 0.91 

Luminance .0037 .0036 .197 0.49  .0071 .0037 .075 1.67 

Note. 𝜏𝑎: Kendall’s Tau-a. SE: Standard error of the mean. BF+0 = Bayes Factor (𝜏𝑎 > 0 vs. 𝜏𝑎 = 0). 

Bold: Result remained significant with FDR correction for multiple comparisons. 
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Dataset-specific Clustering Analyses of Neural Representations in Candidate Numeral-

Preferring Right ITG Region 

 The multidimensional scaling plots in Figure 3-5 could only provide a subjective 

appreciation of any clustering of the right ITG representations for each dataset. Hence, it is 

unclear whether a three-way distinction (numerals, letters, and novel characters) observed using 

a model-driven approach could also be observed using a data-driven approach. We addressed this 

question with a k-medoids clustering analysis, which partitions the data in the group-averaged 

RDM into a pre-specified k number of clusters using the “Partitioning Around Medoids” (PAM) 

algorithm (Kaufman & Rousseuw, 1990) with the R package cluster. k-medoids clustering is 

similar to the more commonly known k-means clustering, but it uses medoids (actual data points) 

instead of centroids (possibly non-existent data points) as the most representative data point in a 

cluster. The PAM algorithm uses a dissimilarity matrix as input, and is less influenced by 

outlying data points compared to k-means. Thus, it is a more robust approach for clustering data 

points. Below, we focused on characterizing the 3-cluster structure observed in our primary 

analyses. 

Dataset 1 

As shown in Table A-6 and Figure A-6, digits have slight dominance in Cluster #2 

(45.5% digits, 36.4% novel, and 18.2% letters; medoid: digit), whereas novel characters have 

slight dominance in Cluster #1 (61.5% novel, 30.8% letters, 7.7% digits; medoid: novel) and 

Cluster #3 (50% novel, 25% letters, 25% digits; medoid: novel). 55.6% of digits are in Cluster 

#2, whereas no more than 45% of letters or of novel characters are found in any cluster. We then 

quantified the similarity between the cluster membership and the actual categorical membership, 

adjusted for chance, using the adjusted Rand Index [ranges from –1 (perfect disagreement)  to 1 
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(perfect agreement), with 0 being chance-level agreement, using the R package ClusterR]. The 

adjusted Rand Index is 0.00659, suggesting that the observed clustering is as good as random.  

Finally, we also used the average silhouette method to independently determine the 

optimal number of clusters k based on the quality of clustering. The silhouette method uses the 

average silhouette width, which is a measure of how close each data point is to other data points 

in its own cluster relative to how close it is to other data points in other clusters (Rousseeuw, 

1987). It ranges from –1 (poorly clustered, and no different from random assignments) to 1 

(well-clustered). By performing the PAM algorithm across a range of k values, the number of 

clusters that would maximize the average silhouette width is then selected as the optimal k. The 

silhouette method revealed that the number of clusters ranging from the least optimal to the most 

is 3, 2, and 4. The average silhouette widths range from 0.0154 to 0.0163, which are extremely 

low, and indicate that no substantial structure was found (i.e., the data points are very close to the 

decision boundaries). On the other hand, the adjusted Rand Indices for k = 2 and k = 4 are – 

0.00107 and – 0.0169, respectively, which suggest that the 2- and 4-cluster structures have 

slightly lower agreement with the actual category membership than a 3-cluster structure, and 

below that expected by chance. In a 4-cluster structure, digits have dominance in one cluster 

(50% digits, 20% letters, 30% novel among 10 exemplars; medoid: digit), and novel characters 

have dominance in the other three clusters (60%, 50%, and 62.5% novel among 10, 8, and 8 

exemplars, respectively; medoids: all novel). 
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Table A-6. Relation between k-medoids cluster membership in the right ITG in Dataset 1 and the 

actual category membership 

 

 

 

 

Figure A-6. k-medoids clustering of the neural representations of 36 exemplars in the numeral-

preferring right ITG region in Dataset 1 

Dimensions are identical to those in Figure 3-5. Circled exemplars are medoids of the clusters. 

  

 Cluster  

 1 2 3 Total 

Digits 1 5 3 9 

Letters 4 2 3 9 

Novel 8 4 6 18 

Total 13 11 12 36 
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Dataset 2 

As shown in Table A-7 and Figure A-7, novel characters have slight dominance in 

Clusters #1 (60% novel and 40% digits; medoid: digit) and #3 (58.3% novel, and 41.7% letters, 

medoid: novel), and co-dominance with digits in Cluster #2 (35.7% novel, 35.7% digits, 28.6% 

letters; medoid: novel). However, the 3-cluster structure is noticeably weak. The adjusted Rand 

Index is 0.0414, suggesting that the observed clustering is as good as random.  

The silhouette method revealed that the number of clusters ranging from the least optimal 

to the most is 3, 4, and 2. The average silhouette widths range from 0.0115 to 0.014, which are 

extremely low, and indicate that no substantial structure was found. The adjusted Rand Indices 

for k = 2 and k = 4 are 0.0273 and 0.0767, respectively. Taken together, these suggest that a 4-

cluster structure may have a slightly higher agreement with the actual category membership than 

a 3-cluster structure. In a 4-cluster structure, one cluster has slight digit-dominance (55.6% digits 

and 44.4% novel among 9 exemplars; medoid: digit), one cluster has slight letter-dominance 

(50% letters, 25% digits, and 25% novel among 8 exemplars; medoid: digit), and two clusters 

have slight novel character-dominance (70% novel, 20% digits, and 10% letters among 10 

exemplars in one cluster; medoid: novel; 55.6% novel and 44.4% letters among 9 exemplars in 

another cluster; medoid: novel). 

 

 

Table A-7. Relation between k-medoids cluster membership in the right ITG in Dataset 2 and the 

actual category membership 

 Cluster  

 1 2 3 Total 

Digits 4 5 0 9 

Letters 0 4 5 9 
Novel 6 5 7 18 

Total 10 14 12 36 
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Figure A-7. k-medoids clustering of the neural representations of 36 exemplars in the numeral-

preferring right ITG region in Dataset 2.  

Dimensions are identical to those in Figure 3-5. Circled exemplars are medoids of the clusters. 
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Dataset 3  

As shown in Table A-8 and Figure A-8, digits have slight dominance in Cluster #2 (50% 

digits, 33.3% novel, and 16.7% letters; medoid: digit), whereas letters have co-dominance with 

novel characters in Cluster #1 (41.7% letters, 41.7% novel, 16.7% digits; medoid: letter), and 

novel characters have dominance in Cluster #3 (75% novel, 16.7% letters, 8.3% digits; medoid: 

novel). 66.7% of digits are in Cluster #2, 55.6% of letters are in Cluster #1, and 50% of novel 

characters are in Cluster #3. The adjusted Rand Index is 0.0660, suggesting that the observed 

clustering is as good as random.  

The silhouette method revealed that the number of clusters ranging from the least optimal 

to the most is 2, 4, and 3. The average silhouette widths range from 0.0124 to 0.0159, which are 

extremely low, and indicate that no substantial structure was found. The adjusted Rand Indices 

for k = 2 and k = 4 are – 0.0297 and 0.0692, respectively, which suggest that a 4-cluster structure 

may have a slightly higher agreement with the actual category membership than a 3-cluster 

structure. In a 4-cluster structure, digits have dominance in one cluster (66.7% digits, 22.2% 

novel, 11.1% letters among 9 exemplars; medoid: digit), novel characters have dominance in two 

clusters (66.7% and 75% among 9 and 8 exemplars, respectively; medoids: all novel), and letters 

have co-dominance with novel characters in one cluster (40% letters, 40% novel, 20% digits 

among 10 exemplars; medoid: letter). Taken together, a clear digit-dominated cluster could be 

observed in both 3- and 4-cluster structures. 
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Table A-8. Relation between k-medoids cluster membership in the right ITG in Dataset 3 and the 

actual category membership 

 

 

 

 

Figure A-8. k-medoids clustering of the neural representations of 36 exemplars in the numeral-

preferring right ITG region in Dataset 3  

Dimensions are identical to those in Figure 3-5. Circled exemplars are medoids of the clusters. 

 

  

 Cluster  

 1 2 3 Total 

Digits 2 6 1 9 

Letters 5 2 2 9 

Novel 5 4 9 18 

Total 12 12 12 36 
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Representational Geometry in Candidate Numeral-Preferring Parietal Regions 

 
Figure A-9. Similarity between neural and model representational dissimilarity matrices 

(RDMs) in the candidate numeral-preferring regions in (a) left and (b) right parietal lobule (PL) 

Blue bars indicate the estimated noise ceiling. Group means and standard errors of the similarity 

are indicated by the bar plots with error bars. Individual data points are shown as grey dots. 

Evidence of similarity is indicated by black asterisk: * p < .05, ** p < .01, *** p < .001, one-sided, 

uncorrected. Blue asterisks indicated results that remained significant with FDR correction. BF+0 

= Bayes Factor [𝑟𝑧 > 0 vs. 𝑟𝑧 = 0]. Lines in meta-analytic plots indicate the 95% confidence 

interval around the overall weighted r. 
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Table A-9. Meta-analyses for the degree of similarity between each model RDM and neural 

RDMs in left and right parietal lobules (PL) 

 Left PL  Right PL 

Model r 95% CI p 𝐵𝐹+0  r 95% CI p 𝐵𝐹+0 

Pixel Overlap .0077 [.0011, 

.0142] 

.021 2.63  .0060 [.00003, 

.0120] 

.049 1.89 

Shape Distance .0030 [-.0041, 

.0102] 

.406 0.26  .0044 [-.0029, 

.0118] 

.239 0.40 

Familiar v. Novel .0113 [.0044, 

.0182] 

.001 15.19  .0199 [.0108, 

.0291] 

<.001 655.53 

Alphanumeric v. 

Novel 

.0127 [.0052, 

.0202] 

.001 25.06  .0207 [.0116, 

.0298] 

<.001 1448.55 

Alphabet v. Numbers 

v. Novel 

.0114 [.0041, 

.0187] 

.002 14.95  .0167 [.0092, 

.0242] 

<.001 1064.43 

Numbers v. Others .0070 [-.0002, 

.0141] 

.056 1.96  .0076 [.0020, 

.0132] 

.008 7.10 

Alphabet v. Others .0043 [-.0020, 

.0106] 

.180 0.40  .0042 [-.0020, 

.0103] 

.182 0.60 

Luminance .0048 [-.0031, 

.0128] 

.235 0.49  .0032 [-.0052, 

.0116] 

.457 0.24 

Note. 95% CI: 95% confidence interval. BF+0 = Bayes Factor (r > 0 vs. r = 0) 

 

 

Left Parietal Lobule (PL) 

Overall, there was strong meta-analytic evidence of similarity between the neural RDMs 

and categorical model RDMs that are merely category-sensitive (Familiar v. Novel, 

Alphanumeric v. Novel, and Alphabet v. Numbers v. Novel) and weak, inconclusive evidence of 

similarity between the neural RDMs and the Pixel Overlap model RDM (see Figure A-9(a) and 

Table A-9). Below we report whether the meta-analytic findings were also observed in each 

dataset. 

Visual Form Models. There was moderate evidence of similarity between the neural and 

Pixel Overlap model RDMs only in Dataset 2 (𝜏𝑎 = .0102, p = .008, 𝐵𝐹+0 = 5.13). There was no 

evidence of similarity between the neural and Shape Distance model RDMs in any dataset. 

Categorical Models. For Dataset 1, there was moderate evidence of similarity between 
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the neural RDMs and the Familiar v. Novel model RDM (𝜏𝑎 = .0101, p = .008, 𝐵𝐹+0 = 8.61), the 

Alphanumeric v. Novel model RDM (𝜏𝑎 = .0104, p = .013, 𝐵𝐹+0 = 5.78), and weak evidence for 

the Alphabet v. Numbers v. Novel model RDM (𝜏𝑎 = .0079, p = .048, 𝐵𝐹+0 = 1.53). There was 

still moderate to strong evidence of similarity between the neural RDMs and two of the three 

categorical model RDMs after controlling for the visual form and confound model RDMs 

(Familiar v. Novel: 𝜏𝑎 = .0149, p = .004, 𝐵𝐹+0 = 15.08; Alphanumeric v. Novel: 𝜏𝑎 = .0140, p = 

.007, 𝐵𝐹+0 = 9.26; Alphabet v. Numbers v. Novel: 𝜏𝑎 = .0118, p = .030, 𝐵𝐹+0 = 1.66). The 

evidence for the Alphabet v. Numbers v. Novel model was therefore inconclusive. Post-hoc 

pairwise comparisons of the three models revealed no evidence of within-participant differences 

between these model RDMs in their similarity to the neural RDMs (all ps > .225, 𝐵𝐹10s < 0.45 

for both zero-order and semipartial correlations). 

For Dataset 2, there was moderate to strong evidence of similarity between the neural 

RDMs and all three categorical model RDMs that are merely category-sensitive (Familiar v. 

Novel: 𝜏𝑎 = .0110, p = .042, 𝐵𝐹+0 = 3.49; Alphanumeric v. Novel: 𝜏𝑎 = .0137, p = .009, 𝐵𝐹+0 = 

9.72; Alphabet v. Numbers v. Novel: 𝜏𝑎 = .0138, p = .002, 𝐵𝐹+0 = 24.99). There was still 

moderate to strong evidence of similarity between the neural RDMs and these categorical model 

RDMs after controlling for the visual form and confound model RDMs (Familiar v. Novel: 𝜏𝑎 = 

.0145, p = .044, 𝐵𝐹+0 = 3.11; Alphanumeric v. Novel: 𝜏𝑎 = .0168, p = .011, 𝐵𝐹+0 = 8.00; 

Alphabet v. Numbers v. Novel: 𝜏𝑎 = .0192, p = .003, 𝐵𝐹+0 = 18.78). However, it is important to 

note that the BFs for the Familiar v. Novel model in both the zero-order and semipartial 

correlations were not robust to varied priors as they decreased below 3 with wider Cauchy priors 

(≥ 1). Post-hoc pairwise comparisons of these three models revealed no evidence of within-

participant differences between these three categorical model RDMs in their similarity to the 
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neural RDMs (all ps > .080, 𝐵𝐹10s < 2.28 for both zero-order and semipartial correlations).  

For Dataset 3, there was no evidence of similarity between the neural RDMs and any of 

the categorical model RDMs.  

Figure A-10(a) illustrates the group-averaged representational geometry of the 36 

characters in this region for Datasets 1 and 2.  

Control Model. There was moderate evidence of similarity between the neural and 

Alphabet v. Others model RDM only in Dataset 2 (𝜏𝑎 = .0071, p = .032, 𝐵𝐹+0 = 3.53), but the 

BF was not robust to varied priors as it decreased below 3 with wider priors (≥ 1). Moreover, the 

evidence of their similarity was weakened after controlling for the visual form and confound 

model RDMs (𝜏𝑎 = .0083, p = .092, 𝐵𝐹+0 = 1.74). 

Confound Model. There was no evidence of similarity between the neural RDMs and 

Luminance model RDM in any dataset. 

Right PL 

Similar to the left PL, there was moderate to extreme meta-analytic evidence of similarity 

between the neural RDMs and all categorical model RDMs, including the numeral-sensitive 

model (Familiar v. Novel, Alphanumeric v. Novel, and Alphabet v. Numbers v. Novel, and 

Numbers v. Others) and weak, inconclusive evidence of similarity between the neural RDMs and 

the Pixel Overlap model RDM (see Figure A-9(b) and Table A-9). Below we report whether the 

meta-analytic findings were also observed in each dataset. 

Visual Form Models. There was no evidence of similarity between the neural RDMs and 

Pixel Overlap or Shape Distance model RDMs in any dataset. 

Categorical Models. For Dataset 1, there was strong to very strong evidence of 

similarity between the neural RDMs and all four categorical model RDMs (Familiar v. Novel: 𝜏𝑎 
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= .0257, p = .001, 𝐵𝐹+0 = 54.00; Alphanumeric v. Novel: 𝜏𝑎 = .0262, p < .001, 𝐵𝐹+0 = 59.45; 

Alphabet v. Numbers v. Novel: 𝜏𝑎 = .0199, p = .002, 𝐵𝐹+0 = 36.09; Numbers v. Others: 𝜏𝑎 = 

.0156, p = .002, 𝐵𝐹+0 = 18.88). There was still strong to very strong evidence of similarity 

between the neural RDMs and these categorical model RDMs after controlling for the visual 

form and confound model RDMs (Familiar v. Novel: 𝜏𝑎 = .0358, p = .002, 𝐵𝐹+0 = 53.86; 

Alphanumeric v. Novel: 𝜏𝑎 = .0334, p < .001, 𝐵𝐹+0 = 63.29; Alphabet v. Numbers v. Novel: 𝜏𝑎 

= .0287, p = .001, 𝐵𝐹+0 = 39.22; Numbers v. Others: 𝜏𝑎 = .0232, p = .001, 𝐵𝐹+0 = 18.34). Post-

hoc pairwise comparisons revealed that within participants, the neural RDMs were more similar 

to the Alphanumeric v. Novel model RDM than to the Alphabet v. Numbers v. Novel model 

RDM (p = .008, 𝐵𝐹10 = 3.86), although the BF decrease to below 3 with an ultrawide prior. 

Evidence for this pairwise difference appeared less conclusive after controlling for the visual 

form and confound models (p = .029, 𝐵𝐹10 = 0.71). A somewhat similar trend was observed 

between the Alphabet v. Numbers v. Novel and Familiar v. Novel model RDMs, but the 

evidence appeared largely inconclusive (zero-order: p = .018, 𝐵𝐹10 = 0.85; semipartial: p = .040, 

𝐵𝐹10 = 0.58). Other than the trends for these pairs of models, there was no evidence of other 

within-participant differences between these categorical model RDMs in their similarity to the 

neural RDMs (all ps > .060, 𝐵𝐹10s < 0.90 for both zero-order and semipartial correlations). 

For Dataset 2, there was moderate evidence of similarity between the neural RDMs and 

three categorical model RDMs that are merely category-sensitive (Familiar v. Novel: 𝜏𝑎 = .0136, 

p = .044, 𝐵𝐹+0 = 3.32; Alphanumeric v. Novel: 𝜏𝑎 = .0146, p = .030, 𝐵𝐹+0 = 4.78; Alphabet v. 

Numbers v. Novel: 𝜏𝑎 = .0121, p = .006, 𝐵𝐹+0 = 7.19). There was still moderate evidence 

between the neural RDMs and two of these three these categorical model RDMs after controlling 

for the visual form and confound model RDMs (Familiar v. Novel: 𝜏𝑎 = .0183, p = .049, 𝐵𝐹+0 = 
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2.89; Alphanumeric v. Novel: 𝜏𝑎 = .0182, p = .030, 𝐵𝐹+0 = 4.20; Alphabet v. Numbers v. Novel: 

𝜏𝑎 = .0172, p = .007, 𝐵𝐹+0 = 6.49). Note that the evidence for the Familiar v. Novel model was 

relatively weak. It is also important to note that the BFs for the Familiar v. Novel model in both 

the zero-order and semipartial correlations were not robust to varied priors as they decreased 

below 3 with wide priors. Post-hoc pairwise comparisons revealed no evidence of within-

participant differences between these three categorical model RDMs in their similarity to the 

neural RDMs (all ps > .253, 𝐵𝐹10s < 0.40 for both zero-order and semipartial correlations).  

For Dataset 3, there was no evidence of similarity between the neural RDMs and any of 

the categorical model RDMs.  

Figure A-10(b) illustrates the group-averaged representational geometry of the 36 

characters in this region for Datasets 1 and 2. 

Control Model. There was no evidence of similarity between the neural RDMs and 

Alphabet v. Others model RDM in any dataset.  

Confound Model. There was no evidence of similarity between the neural RDMs and 

Luminance model RDM in any dataset. 
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Figure A-10. Group-averaged representational geometry of the 36 exemplars in two-dimensional 

space in the numeral-preferring (a) left and (b) right parietal lobules (PL) in Datasets 1 and 2 

Three-dimensional interactive plots are available at https://osf.io/jwgk8/wiki/home. 

  

https://osf.io/jwgk8/wiki/home
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Representational Geometry in Candidate Numeral-Preferring Frontal Regions 

 
Figure A-11. Similarity between neural and model representational dissimilarity matrices 

(RDMs) in the candidate numeral-preferring regions in the right (a) premotor cortex (PMC) and 

(b) inferior frontal gyrus (IFG) 

Blue bars indicate the estimated noise ceiling. Group means and standard errors of the similarity 

are indicated by the bar plots with error bars. Individual data points are shown as grey dots. 

Evidence of similarity is indicated by black asterisk: * p < .05, ** p < .01, *** p < .001, one-sided, 

uncorrected. Blue asterisks indicated results that remained significant with FDR correction. BF+0 

= Bayes Factor [𝑟𝑧 > 0 vs. 𝑟𝑧 = 0]. Lines in meta-analytic plots indicate the 95% confidence 

interval around the overall weighted r. 
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Table A-10. Meta-analyses for the degree of similarity between each model RDM and neural 

RDMs in right premotor (PMC) and inferior frontal (IFG) regions 

 Right PMC  Right IFG 

Model r 95% CI p 𝐵𝐹+0  r 95% CI p 𝐵𝐹+0 

Pixel Overlap .0006 [-.0057, 

.0068] 

.862 0.14  .0049 [-.0018, 

.0116] 

.154 0.60 

Shape Distance -

.0004 

[-.0067, 

.0060] 

.909 0.10  .0010 [-.0067, 

.0086] 

.806 0.14 

Familiar v. Novel -

.0055 

[-.0110, 

.0001] 

.056 0.05  .0142 [.0057, 

.0226] 

<.001 13.69 

Alphanumeric v. Novel -

.0051 

[-.0112, 

.0011] 

.106 0.05  .0143 [.0056, 

.0229] 

.001 10.17 

Alphabet v. Numbers v. 

Novel 

-

.0032 

[-.0092, 

.0027] 

.287 0.07  .0103 [.0028, 

.0177] 

.007 3.79 

Numbers v. Others -

.0005 

[-.0067, 

.0058] 

.883 0.12  .0045 [-.0016, 

.0105] 

.147 0.58 

Alphabet v. Others -

.0003 

[-.0058, 

.0052] 

.924 0.12  -

.0002 

[-.0054, 

.0051] 

.954 0.14 

Luminance .0011 [-.0050, 

.0072] 

.726 0.19  -

.0028 

[-.0086, 

.0030] 

.348 0.06 

Note. 95% CI: 95% confidence interval. BF+0 = Bayes Factor (r > 0 vs. r = 0) 

 

 

Right Premotor Cortex (PMC) 

Overall, there was moderate to strong meta-analytic evidence of a lack of similarity 

between the neural RDMs and any model RDM (see Figure A-11(a) and Table A-10). Below 

we report whether the meta-analytic findings were also observed in each dataset. 

Visual Form Models. There was no evidence of similarity between the neural RDMs and 

Pixel Overlap or Shape Distance model RDM in any dataset. 

Categorical Models. There was no evidence of similarity between the neural RDMs and 

any of the categorical model RDMs in any dataset.  

Control Model. There was no evidence of similarity between the neural RDMs and 

Alphabet v. Others model RDM in any dataset. 

Confound Model. There was no evidence of similarity between the neural RDMs and 
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Luminance model RDM in any dataset. 

Right Inferior Frontal Gyrus (IFG) 

Overall, there was moderate to strong meta-analytic evidence of similarity between the 

neural RDMs and categorical model RDMs that are merely category-sensitive (Familiar v. 

Novel, Alphanumeric v. Novel, and Alphabet v. Numbers v. Novel) (see Figure A-11(b) and 

Table A-10) However, the BF for the Alphabet v. Numbers v. Novel was not robust to varied 

priors as it decreased below 3 with wide priors. 

As there was also considerable variance across datasets in the effect sizes for the Familiar 

v. Novel model (test of residual heterogeneity p = .009; 𝜏2 (between-study variance) = 0.00023, 

and 𝐼2 (estimated proportion of variance across studies due to differences among true effect 

sizes) = 79.9%), Alphanumeric v. Novel model (test of residual heterogeneity p = .006; 𝜏2 = 

0.00026, and 𝐼2 = 81.2%), and Alphabet v. Numbers v. Novel model (test of residual 

heterogeneity p = .013; 𝜏2 = 0.00016, and 𝐼2 = 78.0%), we recomputed the meta-analyses using a 

random-effects approach with the Restricted Maximum Likelihood method. The overage 

weighted correlations were .0165, 95% CI [-.0026, .0356], p = .091, for the Familiar v. Novel 

model; .0165, 95% CI [-.0037, .0367], p = .109, for the Alphanumeric v. Novel model; and 

.0119, 95% CI [-.0041, .0280], p = .144, for the Alphabet v. Numbers v. Novel model. 

Nonetheless, these residual heterogeneities were model-specific and not about the neural data per 

se because the tests for 5 out of 8 models did not show significant residual heterogeneity (all ps > 

.236). It should be noted that such assessments of residual heterogeneity have low power when 

implemented with a small number of studies (< 20) (Huedo-Medina et al., 2006), so these results 

should be interpreted with caution. Below we report whether the meta-analytic findings were 

also observed in each dataset. 
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Visual Form Models. There was no evidence of similarity between the neural RDMs and 

the Pixel Overlap or Shape Distance model RDM in any dataset.  

Categorical Models. For Dataset 1, there was strong evidence of similarity between the 

neural RDMs and three categorical model RDMs that are merely category-sensitive (Familiar v. 

Novel: 𝜏𝑎 = .0222, p < .001, 𝐵𝐹+0 = 68.48; Alphanumeric v. Novel: 𝜏𝑎 = .0226, p < .001, 𝐵𝐹+0 = 

77.23; Alphabet v. Numbers v. Novel: 𝜏𝑎 = .0170, p = .002, 𝐵𝐹+0 = 29.50). There was still 

strong evidence of similarity between the neural RDMs and these categorical model RDMs after 

controlling for the visual form and confound model RDMs (Familiar v. Novel: 𝜏𝑎 = .0298, p < 

.001, 𝐵𝐹+0 = 49.00; Alphanumeric v. Novel: 𝜏𝑎 = .0280, p < .001, 𝐵𝐹+0 = 54.61; Alphabet v. 

Numbers v. Novel: 𝜏𝑎 = .0243, p = .005, 𝐵𝐹+0 = 22.75). Post-hoc pairwise comparisons revealed 

that within participants, there was some weak evidence the neural RDMs were more similar to 

the Alphanumeric v. Novel model RDM than to the Alphabet v. Numbers v. Novel model RDM 

(p = .045, 𝐵𝐹10 = 2.19). This pairwise difference was no longer statistically significant after 

controlling for the visual form and confound models (p = .080, 𝐵𝐹10 = 0.47). 

For Dataset 2, there was no evidence of similarity between the neural RDMs and any of 

the categorical model RDMs.  

For Dataset 3, between the frequentist and Bayesian approaches, there was some 

inconsistent evidence of similarity between the neural RDMs and the Familiar v. Novel model 

RDM (𝜏𝑎 = .0102, p = .064, 𝐵𝐹+0 = 3.34), but relatively more consistent evidence of similarity 

between the neural RDMs and the Alphanumeric v. Novel model RDM (𝜏𝑎 = .0105, p = .040, 

𝐵𝐹+0 = 3.22). There was somewhat more consistent evidence of similarity between the neural 

RDMs and these categorical model RDMs after controlling for the visual form and confound 

model RDMs (Familiar v. Novel: 𝜏𝑎 = .0143, p = .043, 𝐵𝐹+0 = 3.68; Alphanumeric v. Novel: 𝜏𝑎 



  

 190 

= .0135, p = .025, 𝐵𝐹+0 = 3.48). However, the BFs for both of these models in both the zero-

order and semipartial correlations were not robust to varied priors as they decreased below 3 

with wide Cauchy priors (≥ 1). Post-hoc pairwise comparisons revealed no evidence of within-

participant differences between these two categorical model RDMs in their similarity to the 

neural RDMs (all ps > .213, 𝐵𝐹10s < 0.22 for both zero-order and semipartial correlations). 

Figure A-12 illustrates the group-averaged representational geometry of the 36 characters in this 

region for Datasets 1 and 3. 

Control Model. There was no evidence of similarity between the neural RDMs and 

Alphabet v. Others model RDM in any dataset.  

Confound Model. There was no evidence of similarity between the neural RDMs and 

Luminance model RDM in any dataset. 

 

 

Figure A-12. Group-averaged representational geometry of the 36 exemplars in two-dimensional 

space in the numeral-preferring right inferior frontal gyrus (IFG) in Datasets 1 and 3 

Three-dimensional interactive plots are available at https://osf.io/jwgk8/wiki/home. 

 

  

https://osf.io/jwgk8/wiki/home
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APPENDIX B 

 

SUPPLEMENTARY MATERIALS FOR CHAPTER 4 

 

 

Supplementary Methods 

Details of Stimuli 

 

Table B-1. Stimulus list for a single run of digit detection and letter detection 

 

 

 

 

  

Digit Detection  Letter Detection 

Digit Present  Digit Absent  Letter Present  Letter Absent 

H N 1 D C  H N A D C  7 8 2 A 6  7 8 2 3 6 

R 1 D T E  R N D T E  8 A 9 6 1  8 3 9 6 1 

T C S 1 D  T C S E D  9 2 A 1 4  9 2 7 1 4 

C H 2 S D  C H T S D  5 C 4 7 3  5 9 4 7 3 

S 2 H N C  S R H N C  6 2 7 C 1  6 2 7 1 3 

T S N 2 R  T S N H R  7 3 C 6 9  7 3 1 6 9 

A H 3 N R  A H T N R  3 1 6 D 2  3 1 6 9 2 

E H T 3 C  E H T A C  5 D 2 9 6  5 3 2 9 6 

H 3 E R C  H T E R C  8 9 D 2 3  8 9 6 2 3 

D S T 4 A  D S T N A  2 E 7 3 8  2 9 7 3 8 

E R 4 C A  E R H C A  3 2 1 E 4  3 2 1 7 4 

R 4 D T A  R N D T A  7 3 E 6 9  7 3 8 6 9 

A E T 5 D  A E T H D  2 3 9 H 1  2 3 9 7 1 

D 5 C S A  D R C S A  8 H 5 3 7  8 6 5 3 7 

R C 5 H N  R C A H N  9 8 H 4 5  9 8 3 4 5 

C 6 S E H  C D S E H  1 5 3 N 2  1 5 3 6 2 

N R D 6 E  N R D A E  1 6 N 3 7  1 6 4 3 7 

T D 6 R H  T D E R H  3 N 5 9 6  3 4 5 9 6 

C R N 7 E  C R N D E  6 3 9 R 7  6 3 9 5 7 

N 7 H R E  N S H R E  7 R 9 4 1  7 5 9 4 1 

R H 7 D A  R H C D A  9 3 R 7 8  9 3 4 7 8 

A E 8 D R  A E T D R  5 1 S 9 3  5 1 7 9 3 

D H R 8 N  D H R C N  6 S 7 1 3  6 4 7 1 3 

H 8 C T A  H S C T A  7 5 9 S 4  7 5 9 2 4 

C R 9 A E  C R S A E  1 5 6 T 3  1 5 6 2 3 

E 9 H T R  E D H T R  4 T 7 6 8  4 1 7 6 8 

N C D 9 H  N C D E H  8 7 T 4 6  8 7 9 4 6 
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Representational Geometries of Candidate Models 

Figure B-1 – Figure B-4 illustrate the representational geometries based on 

phonological, ratio, joint frequency, and shape representations. 

 

 

 

Figure B-1. Representational geometry of the digit and letter exemplars in two-dimensional 

space based on phonological similarity 

 

 

 

Figure B-2. Representational geometry of the digit exemplars in two-dimensional space based 

on ratio 
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Figure B-3. Representational geometry of the digit exemplars in two-dimensional space based 

on joint frequency 

 

 

Figure B-4. Representational geometry of the digit and letter exemplars in two-dimensional 

space based on shape 

 

Pairwise Similarity of Candidate Model RDMs 

 

Table B-2. Spearman’s rank bivariate correlations of model RDMs (upper triangle: Digits only; 

lower triangle: Digits and letters combined) 

Model Phonological Ratio Frequency Shape 

Phonological – -.23 .16 .08 

Ratio  – -.65 .09 

Frequency   – -.12 

Shape -.03   – 
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Supplementary Results 

Descriptive Statistics of Task Performance Measures 

 

Table B-3. Mean, standard deviation, and range for in-scanner (included runs only) and 

behavioral measures 
Measure Mean SD Range 

In-scanner detection tasks    

Accuracy (%)    

Digit Present 92.93 8.94 69.44 – 100 

Digit Absent 92.42 11.16 53.70 – 100 

Letter Present 92.40 11.53 49.38 – 100 

Letter Absent 93.81 10.05 55.56 – 100 

Response time (ms)    

Digit Present 746 82 630 – 937 

Digit Absent 771 91 666 – 994 

Letter Present 766 104 638 – 1079 

Letter Absent 782 97 641 – 986 

Standardized assessments    

Calculation 120 11.58 98 – 146 

Math Fluency 114 14.36 87 – 149 

Calculation Skills (Cluster) 121 12.56 93 – 145 

Letter-Word ID 112 6.27 97 – 122 

Note. Behavioral measures are expressed as standard scores. Accuracy rates reflect overall accuracy, 

including both errors of omission and commission (N = 32) 
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Regional Mean Letter Sensitivity 

 To assess the category-specific of our results pertaining to digit sensitivity, we replicated 

the analyses with the letter detection runs. On average, there was no hemispheric asymmetry in 

the regional mean letter sensitivity (i.e., [Letter Present – Letter Absent] contrast) (left: M = 0.12, 

SD = 0.34; right: M = 0.10, SD = 0.36, difference: M = 0.02, SD = 0.35), t(31) = 0.35, dz = 0.06, 

p = .728, BF01 = 5.00 (Figure B-5(a)). The condition-wise response amplitudes was, however, 

strongly right-lateralized for both Letter Present (left: M = 0.14, SD = 0.43; right: M = 0.79, SD = 

0.67, difference: M = -0.65, SD = 0.64) [t(31) = -5.71, dz = -1.01, p < .001, BF10 = 6689] and 

Letter Absent (left: M = 0.02, SD = 0.52; right: M = 0.69, SD = 0.76, difference: M = -0.67, SD = 

0.66) [t(31) = -5.79, dz = -1.02, p < .001, BF10 = 8277] (Figure B-5(c)). 

We found no conclusive or robust evidence that individuals with higher calculation skills 

had greater response amplitudes in both regions for Letter Present [left IT: r(30) = .15, p = .203, 

BF0+ = 2.07; 𝑟𝑠𝑘𝑖𝑝𝑝𝑒𝑑(27) = -.34, p = .962, BF0+ = 11.22; right IT: r(30) = .24, p = .097, BF0+ = 

1.13; 𝑟𝑠𝑘𝑖𝑝𝑝𝑒𝑑(29) = .30, p = .051, BF+0 = 1.50] and Letter Absent [left IT: r(30) = .11, p = .283, 

BF0+ = 2.73; right IT: r(30) = .22, p = .111, BF0+ = 1.26; 𝑟𝑠𝑘𝑖𝑝𝑝𝑒𝑑(26) = .58, p < .001, BF+0 = 

73.22]. 

Consistent with the whole-brain correlation analysis conducted originally by Pollack and 

Price (2019), greater letter sensitivity was not associated with higher calculation skills in both 

regions [left IT: r(30) = .03, p = .426, BF0+ = 3.92; right IT: r(30) = -.03, p = .560, BF0+ = 5.09]. 

However, the evidence was less conclusive in the right IT after exclusion of an outlier 

[𝑟𝑠𝑘𝑖𝑝𝑝𝑒𝑑(29) = .19, p = .150, BF0+ = 1.59].  

There was also evidence of no relation between calculation skills and degree of 

lateralization in their mean letter sensitivity [r(30) = .06, p = .736, BF01 = 4.31] (Figure B-5(b)) 
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and Letter Present response amplitudes [r(30) = -.14, p = .434, BF01 = 3.39].  Evidence of any 

relation for Letter Absent response amplitudes was inconclusive [r(30) = -.17, p = .342, BF01 = 

2.95; 𝑟𝑠𝑘𝑖𝑝𝑝𝑒𝑑(29) = -.24, p = .199, BF01 = 2.03] (Figure B-5(d)). 

 

 

 

Figure B-5. Hemispheric asymmetries of regional mean response amplitudes and their relation 

to calculation skills for letter detection 

(a, b) letter sensitivity ([Letter Present – Letter Absent] contrast), and (c, d) condition-wise 

([Letter Absent – Fixation] and [Letter Present – Fixation]). Error bars and bands are 95% 

confidence intervals. Dashed regression lines exclude bivariate outliers enclosed in . 
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Validation of Assumption That Co-Occurring Characters from the Non-Target Category 

Are Not Reliably Represented 

As shown in Table B-1, some character(s) from the non-target category always co-occur 

with characters from the target category. For instance, the Digit Present trials with target ‘1’ 

always contain the letter ‘D’. Hence, the activation pattern that we assumed to be a reliable 

neural representation of the detected target ‘1’ likely also contain a reliable bottom-up 

representation of the non-target ‘D’ even if it was not the focus of detection. If that were true, the 

neural representation of detected target ‘1’ in the Digit Present Trials would be more similar to a 

detected target ‘D’ than to other detected letters in the Letter Present Trials due to the co-

occurrence. To examine this hypothesis, for all affected pairs of co-occurring characters, we 

examined within each ROI whether the representational similarity (RS) between co-occurring 

characters (e.g., Digit Present trials with target ‘1’ that also contains non-target ‘D’, and Letter 

Present trials with target ‘D’) was greater than the mean RS between non-co-occurring characters 

(e.g., Digit Present trials with target ‘1’ and Letter Present trials with all other target letters but 

‘D’). Specifically, we tested whether the difference in the Fisher’s z-transformed RS values (i.e., 

RSz of co-occurring characters – Mean RSz of non-co-occurring characters) was statistically 

greater than zero (one-sample t-test, right-tailed; Bayesian prior: Cauchy distribution, scale = 

0.707). 

Table B-4 below shows that in all cases, there was no evidence that a co-occurring 

character from the non-target category elicited a neural representation that was more similar to 

that when the said character was actually the target, relative to other target characters from the 

same category. Hence, our assumption that co-occurring characters from the non-target category 

are not as reliably represented as when they were from the target category is valid. 
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Table B-4. Fisher’s z-transformed representational similarity (RSz) between co-occurring 

characters from target and non-target categories 

  Left IT ROI  Right IT ROI 

Target 

character 

Co-occurring 

non-target(s) 

RSz of co-occurring characters 

– Mean RSz of non-co-

occurring characters 

 RSz of co-occurring 

characters – Mean RSz of 

non-co-occurring characters 

1 D M = -0.04, t(31) = -1.26, dz = -

0.22, p = .892, BF0+ = 11.02 

 M = 0.03, t(31) = 0.88, dz = 

0.16,  

p = .192, BF0+ = 2.32 

2 S M = -0.07, t(31) = -1.81, dz = -

0.32, p = .960, BF0+ = 13.61 

 M = -0.02, t(31) = -0.35, dz = -

0.06, p = .637, BF0+ = 6.80 

3 H M = -0.001, t(31) = -0.04, dz = -

0.01, p = .515, BF0+ = 5.45 

 M = -0.05, t(31) = -1.19, dz = -

0.21, p = .879, BF0+ = 10.68 

4 A M = -0.03, t(31) = -0.78, dz = -

0.14, p = .780, BF0+ = 8.75 

 M = 0.009, t(31) = 0.19, dz = 

0.03,  

p = .424, BF0+ = 4.54 

7 R M = 0.01, t(31) = 0.37, dz = 

0.07, 

p = .355, BF0+ = 3.88 

 M = -0.009, t(31) = -0.23, dz = -

0.04, p = .592, BF0+ = 6.27 

C 7 M = -0.04, t(31) = -0.99, dz = -

0.18, p = .834, BF0+ = 9.71 

 M = -0.01, t(31) = -0.33, dz = -

0.06, p = .628, BF0+ = 6.69 

D 2 M = 0.02, t(31) = 0.58, dz = 

0.10, 

p = .283, BF0+ = 3.19 

 M = 0.05, t(31) = 1.50, dz = 

0.27, 

p = .072, BF0+ = 1.04 

E 3 M = -0.02, t(31) = -0.55, dz = -

0.10, p = .708, BF0+ = 7.69 

 M = 0.07, t(31) = 1.40, dz = 

0.25, 

p = .085, BF0+ = 1.20 

N 3 M = -0.03, t(31) = -0.97, dz = -

0.17, p = .829, BF0+ = 9.61 

 M = 0.002, t(31) = 0.06, dz = 

0.01,  

p = .478, BF0+ = 5.07 

R 7 & 91 M = -0.05, t(31) = -1.66, dz = -

0.29, p = .946, BF0+ = 12.88 

 M = -0.04, t(31) = -1.35, dz = -

0.24, p = .906, BF0+ = 11.43 

T 6 M = -0.007, t(31) = -0.18, dz = -

0.03, p = .570, BF0+ = 6.03 

 M = -0.08, t(31) = -1.86, dz = -

0.33, p = .964, BF0+ = 13.82 

Note. 1 RSz of R and 7, and RSz of R and 9 were averaged as mean RSz of co-occurring characters.  
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Letter Discriminability 

 There was no letter discriminability in the left IT (M = -0.006, SD = 0.11) [t(29) = -0.30, 

d = -0.05, p = .615, BF0+ = 6.35] and right IT (M = -0.008, SD = 0.12) [t(29) = -0.38, d = -0.07, p 

= .645, BF0+ = 6.69] (Figure 4-5(b)). There was no hemispheric asymmetry in letter 

discriminability (difference: M = 0.002, SD = 0.18), t(29) = 0.08, dz = 0.01, p = .940, BF01 = 

5.13.  

 Greater letter discriminability was not associated with higher calculation skills in the left 

IT [r(28) = -.22, p = .881, BF0+ = 8.96] and right IT [r(28) = -.003, p = .507, BF0+ = 4.46] 

(Figure B-6). There was also no relation between the degree of lateralization of letter 

discriminability and calculation skills, r(28) = -.13, p = .479, BF01 = 3.47. 

 

 

 

Figure B-6. Relation between calculation skills and letter discriminability 

(a) in the left IT, (b) in the right IT, and (c) its lateralization (negative: left lateralization, 

positive: right lateralization) (N = 30). Error bands are 95% confidence intervals. 

 

  



  

 200 

Hemispheric Asymmetry of Representational Geometries of Letters 

On average, there was a small, but significant positive correlation between the 

representational geometries of letters (i.e., Letters-RDMs) in the left and right IT (mean z = .12, 

SD = .25), t(30) = 2.64, dz = 0.47, p = .006, BF+0 = 7.08. There was inconclusive evidence that 

lower between-hemisphere similarity (i.e., greater asymmetry) in the representational geometries 

of letters was associated with higher calculation skills, r(29) = -.12, p = .269, BF0- = 2.57. 

Representational Content in Digits-RDMs 

 

Table B-5. Pairwise difference in the similarity between the left IT Digits-RDMs and model 

RDMs (N = 32) 

Model 1 vs. Model 2 t dz p BF₁₀ 

Phonological - Ratio -0.02 -0.004 .983 0.19 

Phonological - Frequency -1.80 -0.32 .082 0.79 

Phonological - Shape 0.69 0.12 .498 0.24 

Ratio - Frequency -1.17 -0.21 .253 0.35 

Ratio - Shape 0.77 0.14 .447 0.25 

Frequency - Shape 2.02 0.36 .052 1.13 

Note. p-values are uncorrected for multiple comparisons. 

 

 

Table B-6. Pairwise difference in the similarity between the right IT Digits-RDMs and model 

RDMs (N = 32) 

Model 1 vs. Model 2 t dz p BF₁₀ 

Phonological - Ratio -1.84 -0.32 .076 0.84 

Phonological - Frequency 0.67 0.12 .511 0.23 

Phonological - Shape 0.31 0.06 .756 0.20 

Ratio - Frequency 1.58 0.28 .124 0.58 

Ratio - Shape 2.61 0.46 .014 3.36 

Frequency - Shape -0.35 -0.06 .726 0.20 

Note. p-values are uncorrected for multiple comparisons. 
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Representational Content in Full-RDMs (Alphanumeric Set) 

Left IT 

The left IT Full-RDMs were not similar to the RDMs of the Phonological model (Mean 

z = .0008, SD = .08) [t(30) = 0.50, d = 0.01, p = .479, BF0+ = 5.01] and Shape model (Mean z 

= -.03, SD = .12) [t(30) = -1.12, d = -0.20, p = .865, BF0+ = 10.20] (Figure B-7).  

In terms of pairwise model comparisons, there was no within-participant difference 

between the pair of neural RDM-model RDM similarities, t(30) = 1.01, dz = 0.18, p = .323, BF01 

= 3.29. 

Right IT 

The right IT Full-RDMs were not similar to the RDMs of the Phonological model (Mean 

z = .002, SD = .06) [t(30) = 0.23, d = 0.04, p = .410, BF0+ = 4.34] and Shape model (Mean z = 

-.01, SD = .06) [t(30) = -0.96, d = -0.17, p = .827, BF0+ = 9.43] (Figure B-7).  

In terms of pairwise model comparisons, there was no within-participant difference 

between the pair of neural RDM-model RDM similarities, t(30) = 0.91, dz = 0.16, p = .369, BF01 

= 3.56. 
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Figure B-7. Similarity between the alphanumeric model RDMs and Full-RDMs in the left and 

right IT ROIs (N = 31) 

Error bars are 95% confidence intervals. Grey bars indicate the estimated upper and lower 

bounds of the expected similarity achievable by the unknown true model given the degree of 

between-participant variability. 

 

 

Left IT vs. Right IT 

Neural RDM-model RDM similarities were not different between the left and right IT for 

both Phonological model [difference: M = -0.002, SD = 0.10, t(30) = -0.10, dz = -0.02, p = .924, 

BF01 = 5.20] and Shape model [difference: M = -0.01, SD = 0.14, t(30) = -0.59, dz = -0.11, p = 

.560, BF01 = 4.45] (Figure B-8). 

 

 

Figure B-8. Hemispheric asymmetry in similarity between the alphanumeric model RDMs and 

neural Full-RDMs (N = 31) 

Error bars are 95% confidence intervals. 
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