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Chapter 1

Introduction

1.1 Motivation

Image-guided surgery provides surgeons, either robotic or human, the ability to incor-

porate patient-speci�c preoperative surgical plans intraoperatively in ways never before

imagined. Virtual �xtures or “no-�y zones” can be created around surgical boundaries to

prevent the surgeon from moving the robot into an unintended area, or they may be designed

to assist the surgeon in following the preoperative plan. Augmented or virtual reality can

give the surgeon visual access to subsurface features while performing complex operations.

Autonomous robotic systems can preoperatively plan entire portions of a procedure based

on three-dimensional medical images and then perform those plans in the operating room

on the patient.

The goal of this dissertation is to advance patient personalization of preoperative sur-

gical planning for image-guided robotic procedures. In particular, a method is proposed

for generating patient-speci�c three-dimensional surgical tool path plans for autonomous

robotic bone milling. Additionally, two algorithms are presented that allow a surgeon to

mitigate the danger posed by registration error to speci�c critical structures throughout an

image-guided procedure.

1.2 Background

1.2.1 Tool Path Planning in Autonomous Bone Milling

Tool path planning is a well studied problem in CNC machining [7–10]. Unfortunately,

these planners are mainly designed for machining homogeneous materials where the design

of the part may be modi�ed to facilitate the planned tool path. Many of these planners are
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designed to provide the highest feed rate possible given known material and cutter prop-

erties. These types of path planner are not well suited for autonomous bone milling. Not

only are the materials heterogeneous, but their densities vary from patient to patient. Work-

piece �xation is an issue that is relatively easily solved in machining, but is not as easily or

rigidly accomplished in surgery. One of the more common methods of securing the skull is

to use a May�eld Clamp. A May�eld clamp, while effective at securing the patient's head,

is relatively invasive and can lead to complications [11]. An added dif�culty is that bone

milling is often performed in close proximity to critical structures that, if damaged, could

leave the patient permanently disabled [12]. This is to say that while extensive literature

exists in CNC path planning, the application of that literature in surgery has been sparse

because the goals of CNC machining and the goals of autonomous surgical bone milling

are different.

Tool path planning for autonomous robotic bone milling has evolved signi�cantly since

1994 when Taylor et al. [13] published a paper describing the ROBODOC system. This

planner was initially designed to mill pockets that receive surgical implants for total hip

arthroplasty (THA) though that would later include total knee arthroplasty (TKA) as well.

The cutter (an end mill) is oriented parallel to the long axis of the implant. Bone is removed

one layer at a time by moving the cutter along successive linear paths whose separation

distance is determined in relationship to the diameter of the cutter. This kind of layer by

layer milling is commonly referred to as 2.5D milling because it achieves a 3D pocket

by partitioning the volume into a set of approximately planar subvolumes (layers). These

subvolumes are then milled in an ordered sequence from highest to lowest.

Several years later the world would see its �rst force controlled surgical robot for

otoneurosurgery, Federspil et al. [1]. While the path plans that were tested on this robot

were all 2.5D plans (Figure 1.1), the force exerted by the robot for several different 2.5D

strategies was measured and compared and an optimal strategy chosen. This ranking of the

path planning strategies by the magnitude of force required was an important step forward
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Figure 1.1: Several path planning strategies are seen in the �gure. (a) horizontal milling,
(b) vertical milling, (c) spiral horizontal milling, and (d) zigzag horizontal milling. Figure
from Federspil et al. [1].

in designing tool path plans speci�c to the force requirements of the bone being milled. It

should be noted that for this system the milling was carried out with a surgical spherical

cutting burr and the tool shaft approximately perpendicular to the test surface throughout

the milling process.

The next autonomous robotic milling path planner to be described is innovative in that

it is not actually an image-guided system, Abraham et al. and Wolf et al. [14, 15]. This

choice was made to simplify the preoperative planning. The path planner takes advantage

of the known geometric properties of the knee implants' design to mill the bone surfaces to

match those implants features. Another advance in this planner is that though it is a 2.5D

planner, it uses a cell based decomposition to break the volume of bone to be removed into

several smaller segments that more easily accommodate the simpler tool paths.

Sugita et al. presented a new innovation for total knee arthroplasty in the form of an

image-guided tool path planner [2] whose path is planned under the constraint that the

motion of the tool shaft is restricted to pass through a relatively small incision on the front

of the knee to perform its 2.5D milling path (Figure 1.2). This purpose of the restriction
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Figure 1.2: Minimally invasive total knee arthroplasty drilling strategy. From Sugita et al.
[2].

of the motion of the tool shaft is so that it can be used in minimally invasive total knee

arthroplasty. Note that though this planner restricts the movement of the shaft to pass

through a small incision, it does not model the drill shaft or interactions between it and the

patient.

At the same time as Sugita et al. a tool path planner that takes a different approach to

2.5D milling was created for the CRANIO robot by Cunha-Cruz et al. [3]. This planner

was designed to perform an autonomous craniotomy (later the project would move to a

cooperatively controlled system). Since the bone to be removed was a thin section of the

skull with a typically strong curvature, the standard 2.5D path planner had to be altered.

The planner is still a 2.5D planner, but its layers are curves approximating the exterior

surface of the skull (Figure 1.3). These curves are projected down into the skull and are

deformed to match the curvature of the interior of the skull as the planner approaches the

bottom layer. This modi�cation of the typical 2.5D layer by layer algorithm made milling

volumes with inherent curvatures far more ef�cient.
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Figure 1.3: The deformation of the curves used by the path planner proposed by Cunha-
Cruz et al. for milling a craniotomy. Figure from Cunha-Cruz et al. [3].

The limitation placed on a tool path planner by a 2.5D algorithm is that it must mill all

of the bone on the current layer before proceeding further down into the pocket. This layer

by layer approach makes checking for interactions between the tool shaft and the unmilled

bone fairly simple, because the only bone that needs to be checked for interaction with the

tool shaft is the boundary of the �nished pocket. If the milled pocket is relatively shallow

and the tool shaft stays close to perpendicular to the milled surface such interactions need

not be modeled at all. Moving layer by layer also means that when milling arbitrarily

shaped pockets, as is often required in robotic bone milling, the tool tip is prevented from

following a small segment of pocket boundary that leaves the current plane, and the planner

will have to come all the way back to that portion of the next layer down to remove that

bone. Another limitation is that a planner may be able to keep more of the cutting burr

engaged by leaving the current layer, but again it is prevented from doing so by the basic

milling strategy. Revisiting the idea of force control, it is possible to model the surgical

forces involved with bone milling as is often done in haptic simulations [16, 17]. If such

a simulation was incorporated in a 2.5D tool path planner and a point requiring a lower

force to access was available one layer below the current cutting depth, the planner could

not choose that point. These are some of the motivations for creating a 3D path planner.

The only true 3D path planner for autonomous robotic bone milling is the inspiration

for the work in Chapter 2. This planner was designed by Danilchenko et al. to perform

an autonomous mastoidectomy [4]. In this 3D planner, every voxel targeted for removal
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Figure 1.4: A visualization of a 2D slice of the “greedy” path planner's closest neighbor
behavior described by Danilchenko et al. From Danilchenko et al. [4].

by the planner is ranked by its distance from the starting voxel. The tool then proceeds in

a “greedy” manner from voxel to voxel always choosing to move to the next neighboring

targeted voxel that is closest to the tool's starting position (Figure 1.4). An additional in-

novation is that this planner also relies on preprocessing the segmented medical images to

account for the diameter of the spherical cutting burr used by the system. This preprocess-

ing step removes the need for mathematically computing the offset from the edge of the

planned pocket associated with the thickness of the cutter being used.

A preliminary version of the path planner presented in Chapter 2 appears in Dillon et

al. [18].

1.2.2 Quantifying Risk to Critical Patient Structures in Image-Guided Robotic Surgery in

the Presence of Rigid Registration Error

To use an example from the previous section, what if an autonomous bone milling

robot needed to work in close proximity to structures that were vital to the patient's quality

of life or survival? What assurance would the patient have that the structures would not

be damaged during the procedure? These are the types of questions that the algorithms
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described in this background section seek to answer.

While computing the spatial error associated with various registration modalities has

been extensively studied for the last several decades, relatively little work has been done to

allow the surgeon to specify the safety level of speci�c critical structures in the planning

stage of a surgery performed under image guidance. In fact, many times safety margins

used in image-guided surgery are uniformly thick margins whose dimensions are based on

intuition.

There have been two different types of answers given to questions posed at the begin-

ning of this section. The �rst solution was proposed by Haidegger et al. [5], that models

the error associated with an instantaneous position of the tip of a tracked tool in real time

via Monte Carlo simulation (Figure 1.5). This error distribution is used to determine the

probability that the tool tip is in violation of a virtual �xture put in place around a critical

structure (the eighth cranial nerve, the acoustic nerve, during a vascular decompression to

treat hemifacial spasm via a suboccipital approach). This result can be used to protect the

critical structure by informing the surgeon (robotic or human) when the danger of violating

that boundary reaches an unacceptable level. While an important �rst step toward specify-

ing the safety level of critical structures during a procedure, this method is limited by only

supplying instantaneous estimates of danger to the critical structures.

The second solution, extends the idea of a danger probability associated with a critical

structure from an instantaneous event to a probability associated with the duration of the

procedure. Noble et al. [19] created an algorithm that analyzes a linear bone drilling path in

close proximity to critical structures in the middle and inner ear. The probability of the drill

colliding with the critical structures is estimated by randomly varying the positions of the

start and end of the proposed drilling trajectory. These varied plans are then checked to see

if they collided with the critical structures. Probabilities of collision with the critical struc-

tures are computed from the collision counts. This is the �rst time a damage probability for

critical structures has been created that was valid for the duration of the procedure.
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Figure 1.5: This �gure from Haidegger et al. highlights the type of instantaneous probabil-
ity of violating virtual �xtures their algorithm provides [5]. “The POI [Point of Interest]
(tooltip) transformed to the coordinate space of the patient. Purple stars show where the
overall RMS error is larger than 0:2 mm and red squares mark the region where the error
is over 0:4 mm. The exact probability of the POI being beyond the VF [Virtual Fixture] is
0:438 and 0:214 for the 0:2 and 0:4 mm VF, respectively. Red dot shows the theoretical
position, black dot represents the effect of the registration errors.”

Building on these results, the algorithm created in Chapter 3 uses the combination of a

theoretical result from the �eld of �ducial registration error and Monte Carlo simulation to

create safety margins that envelop an arbitrarily shaped critical structure that are spatially

varying and that guarantee safety to the critical structure for the duration of the entire

surgery. After the publication of Chapter 3, that work was extended by Dillon et al. [6]

to include several additional error sources pertinent to the speci�c application of robotic

mastoidectomy performed by the Acoustic Neuroma Surgical Robot [18] (Figure 1.6). The

addition of these error sources highlights the value of the algorithm by giving the surgeon

the ability to set a statistical guarantee of safety to individual structures in a patient before

the surgery takes place.

1.3 Dissertation Contributions

The goal of this dissertation is to advance patient personalization of preoperative surgi-

cal planning for image-guided robotic procedures. This advancement is achieved by focus-

ing on two speci�c problems: (1) tool path planning for autonomous robotic bone milling,

and (2) the danger posed to speci�c critical structures by the registration error present in

image-guided robotic procedures over the duration of an invasive procedure.
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