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Chapter 1 CHAPTER 1 Chapter 1                                                                                                                

INTRODUCTION 

1.1. Overview and Specific Aims 

Organ-on-chip microsystems (OCMs) have proven useful to evaluate chemical toxicity in 

human cells cultured in appropriate 3D heterotypic microenvironments. These microsystems are 

often fabricated from polymeric materials such as polydimethylsiloxane (PDMS), which has high 

affinity for small hydrophobic molecules. When potential toxicants are tested in such 

microdevices, hydrophobic chemicals may partition into PDMS surfaces and diffuse into the bulk 

PDMS and reduce the dose that reaches the cultured cells, severely impacting dose-response 

curves. Such chemical-PDMS interaction and undesirable sequestration of chemicals by PDMS 

need to be investigated for the prediction of chemicals’ in-device toxicokinetics. 

OCMs are advantageous for their ability to recreate physiological functions of 

tissues/organ in response to chemicals. Just as important as the system platform itself, are the 

techniques that used to analyze the metabolic functions including consumption of oxygen, glucose, 

and glutamate and production of lactate. The ability to accurately measure cellular uptake within 

OCMs is essential for identifying changes in cellular metabolism through the measurement 

techniques. For doing so, OCMs are also needed to be coupled with improved measurement 

techniques. One of the detection techniques uses electrochemical sensors based on electrical 

measurement against the change in metabolite concentration1. Such electrochemical sensing 

techniques developed at the Vanderbilt Institute for Integrative Biosystems Research and 

Education (VIIBRE) are: 1) microphysiometer, with sensor electrodes embedded with cells in the 

same chamber allowing in situ detection, and 2) microclinical analyzer (µCA), sensor chamber 
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placed downstream of the cell chamber allowing downstream detection. For monitoring dynamic 

chemical-dependent changes in variety of organ-chip systems, its integration with downstream 

µCA show promises, but requires detailed understanding for the downstream metabolite detection. 

To address the research needs, computational approach has been taken to develop 

predictive models for 1) the in-device toxicokinetics of PDMS-based organ-on-chip microsystems 

and 2) the cellular metabolite detection using downstream microclinical analyzer. The specific 

aims of this work are summarized below: 

Aim 1: Investigating the impact of chemical-PDMS interaction on in-device toxicokinetics 

in PDMS-based organ-on-chip microdevices. An experimental technique was established to 

measure chemical binding kinetics with PDMS and transport kinetic parameters. These parameters 

were used to model the in-device toxicokinetics using realistic microdevice geometry. Predictive 

model will be validated by experimental set ups allowing real time chemical exposure to the 

PDMS-based microdevices. 

Aim 2: Evaluating the performance of microclinical analyzer in metabolite detection when 

located downstream of the organ-on-chip device. A detailed computational framework was 

developed for the detection of cellular metabolism using enzyme-based sensors. The goal is to 

model the stop-flow and continuous flow measurements with the microclinical analyzer developed 

at the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE). Details 

analysis of downstream detection will provide insights on the application of microclinical analyzer 

for assessing metabolic functions within organ-on-chip devices in response to toxic exposure. 
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1.2. Background and Significance 

1.2.1. Organ-on-chip microsystems 

Microfabricated microfluidic platform offers the opportunity to understand the cell 

behaviors and functionally in in vitro organ on chip system which allows precise control of the 

microenvironment surrounding the cells2–5. Study reveals small percentage of preclinical trials 

eventually approved by regulatory agencies due to the failing of the expensive late phases of 

clinical trials6. To overcome the problem of cell-based assays, organ on chip systems has gained 

increasing attention in pharmaceutical industries7.  

Advancements in organ-on-chip microsystems (OCMs) enable the recapitulation of the 

microarchitecture and functionality of the living organ tissue constructs to mimic human 

microenvironments8–11. The devices are fluidically interconnected microchambers with cultured 

cells and fluid medium reservoirs for drug supply, enables opportunity for drug toxicity studies. 

The transparent material used in manufacturing OCMs enables real-time imaging and monitoring 

of the cells. In order to identify the potential toxicity, drugs are allowed to flow through the micro-

channels of PDMS to observe its metabolic effect on cells within the microsystem. 

Such microsystems offer a platform for testing the beneficial and adverse effects of drugs, 

chemicals, and pharmaceuticals12. These microdevices include microchambers with in vitro on-

chip cell cultures and fluid medium reservoir for continuous perfusion of nutrient media (Figure 

1.1). Also, fluid flow in microfluidic channels in the vicinity of the cells allows nutrients to be 

delivered to the cells besides exposing them to physiologically relevant fluidic shear and flow 

dynamics similar to the microenvironment inside the human body. The microsystems maintain a 

minimum required fluid volume for tissue culture9,13 and is capable of delivering a controlled 

dosage of drug compounds with organ-organ interactions to better model the human drug response, 
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with the goal of eventually eliminating or greatly reducing the use of animal models in drug 

toxicity studies and drug development8,14. OCMs have been used to evaluate the effects of 

chemicals for a variety of biological systems: e.g., liver,15 fetal membrane,16 neurovascular 

model,17 lung,18 mammary gland,19  and multiorgan coupling.20  

 
Figure 1.1 (left) mammary gland on a chip prototype. the bioreactor was filled with blue and red 
dyes indicating microfluidic channels (blue) and the cell chambers (red); (right) OCM indicating 
major components with supply network.19 

Advances in microfabricated OCM devices have led to the design of interconnected PDMS 

devices that link organoids for toxicant assessment. However, the quantification of the drug or 

toxicant concentration, essentially exposed to the cells, are still an intrinsic challenge due to its 

significant adsorption onto PDMS channels21,22. It has several advantages including its porosity, 

biocompatibility, optical transparency, permeability to oxygen, and ease of fabrication.23,24 PDMS 

also provides relevant mechanical stability at the sub micro-level soft tissues.24 Devices using 

PDMS are becoming the preferred polymer for fabrication of microfluidic devices due to its optical 

transparency, gas permeability, molding properties, and ease of fabrication24. Additionally, rigid 

glass or plastic substrates do not accurately replicate the elastic environment cells encounter25,26. 
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PDMS forms a porous network of linked siloxane monomers that have been shown to allow small 

molecules to diffuse through the bulk and has even been used as a molecular sorting material27   

1.2.2. Chemical-PDMS interaction in organ-on-chip microsystems 

Despite the convenience in its use, one obvious downside of PDMS is its hydrophobicity 

– a well-known tendency to bind and sequester hydrophobic compounds19,21–23,28,29. Potentially 

toxic chemicals are largely hydrophobic small molecules which binds with PDMS material 

surfaces.30–32 This interaction of chemicals with PDMS results in alteration of chemical dose 

responses.33 The strengths of organ-on-a-chip systems and their ability to reproduce cellular 

microenvironments come with this potentially problematic issue when used in chemical toxicity 

screening. 

This potential problem is exacerbated by the small channel dimensions in such devices’ 

microfluidic perfusion systems, which yield high surface-area-to-volume ratios. These ratios are 

on the order of 1-10 cm-1 for well-plate systems, but can range from 100-1000 cm-1 for organ-on-

a-chip systems. The orders-of-magnitude larger relative surface area means that partitioning of a 

chemical into the PDMS surfaces of microfluidic channels can drastically change a chemical’s 

concentration in the perfusing solution34,35.  

Limited studies on the absorption of chemicals by PDMS have been published for a handful 

of chemicals by multiple research groups21,30,36. PDMS absorption was first investigated by Toepke 

et al. by qualitative examination of absorption with fluorescent molecules37. They demonstrated 

the absorption of hydrophobic molecules in microchannels, showing how the common fluorophore 

Nile Red absorbed into PDMS channel walls within minutes, accumulated in the channel walls 

when more Nile Red was added, and remained stable and irreversibly absorbed even after repeated 
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rinsing. Since then, Wang et al. established a potential relationship between small molecule 

absorption and the octanol/water partition coefficient (log P)36—a measure of hydrophobicity. Van 

Meer et al. established a related relationship between absorption and topological polar surface area 

(TPSA)30—considered a measure of a molecule’s ability to penetrate biological membranes. This 

major concern when using organ-on-chip devices based on PDMS is that absorption of small 

molecules could affect dose-response curves and estimation of Lowest Observed Adverse Effect 

Levels (LOAEL)30,36, and excessive absorption and adsorption of these molecules could lead to 

significant bias in the interpretation of drug toxicity results.  To interpret the results of toxicity 

studies using such chemicals, it is crucial to accurately predict their in-device toxicokinetics34,35.  

1.2.3. Computational modeling for organ-on-chip microsystems 

Microfluidic OCM devices, comprised of microfluidic channels, chambers containing cells 

of interest, fluidic medium, fluidic reservoirs, are gaining attention in human drug toxicology 

studies which appears promising to eliminate the necessity of the critical clinical trial phase with 

animal testing.  Computational Fluid Dynamics (CFD) simulation is becoming an invaluable tool 

to visualize and analyze the consequences of fluid flow and stresses on the cells. Moreover, 

computational models will hold great promise in terms of understanding the different parameters 

that influence cell behavior and make those more predictive. As fluid dynamic behavior, fluidic 

shear stresses within the micro-chambers have direct implications on cellular response and 

functionality, CFD has become potential candidate for the studies of microfluidic organ on chip 

system38. CFD simulation has been utilized to obtain residence time distribution of microfluidic 

mixers39 and to design optimize the alveolus analog body on a chip system5. It has been widely 

accepted the laminar flow from small channels contributes to lower sheer stress and better 
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differentiation in an organ chip model40. Details of fluid mechanics, nutrient transport, and drug 

interaction with cells can be achieved via the use of CFD simulation. 

Coupled with experimental validation, computational methods can potentially provide 

more realistic, predictive data sets for accurate cellular exposure within OCMs. Furthermore, 

prediction of fluid shear stress associated with such platform and measurements of velocity and 

pressure within micrometer dimensions that necessarily influence cell behavior can be 

theoretically analyzed; thereby, engineering design optimization can be possible at the early stage. 

Limited studies on modeling of chemical transport in the OCMs have been published by multiple 

research groups41,42, however, to properly interpret dose-response curves from organ-on-a-chip 

systems, it is critical that the modeling should include the chemical-PDMS interaction, enabling 

accurate prediction of the chemical’s in-device toxicokinetics34,43. This research gap was addressed 

in this dissertation. 

1.2.4. Chemical detection techniques for cellular metabolism 

Cellular metabolism is the process by which cells undergo nutrient uptake such as glucose 

and oxygen and convert these into energy and waste product. The waste products are, in general, 

acids such as carbonic acid and lactic acid. Experimental observations revealed that the rate of 

nutrient conversion and the rate of the acid and byproduct production are correlated. So, by 

studying the end-products, it is possible to monitor the nutrients. Cell metabolism consists of a 

large number of metabolic cycles. In the cells of mammals these include the three primary aerobic 

cycles: the phosphate cycle, the glycolysis cycle and the citric acid cycle1,44. In the glycolysis 

cycle, glucose and glutamine are converted to pyruvate based on the concentrations. Depending 

on the concentrations and reaction rates, part of the glucose is also converted to lactate. The other 
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two cycles involve the conversion of oxygen to water and waste products with the help of 

Adenosine tri-phosphate (ATP)44,45. The main waste products are lactic acid and carbonic acid. 

This dissertation will discuss the detection of two metabolites: glucose and lactate, relevant 

to the metabolite cycle described above. In addition, another metabolite, glutamate, which is the 

principal excitatory amino acid in the central nervous system46,47, will also be discussed. 

1.2.5. Electrochemical measurement of metabolites 

Since living organisms are not static systems, the ability of a measurement technique to 

render measurement of dynamic cellular processes in real-time is also highly desirable48,49. One 

method that is capable of meeting all these requirements is electrochemistry. Electrochemical 

measurements can be performed noninvasively, and for metabolites that are electrochemically 

active, or those that can be detected with chemically-modified electrodes, electrochemical 

measurements provide a relatively simplistic and rapid means with which to perform metabolic 

analyses50. 

Electrochemical biosensors provide a useful means to analyze the content of a living cells 

by the direct conversion of the chemical change into an electronic signal51. In the electrochemical 

detection technique, the measurement of electrical properties for the extraction of biological 

information is usually electrochemical in nature, where a bio-electrochemical component serves 

as the main transducing element. Although sensing devices employ a variety of recognition 

elements, electrochemical detection techniques use predominantly enzymes, due to their specific 

binding capabilities and biocatalytic activity, such as glucose oxidase (GOx) for glucose and 

lactate oxidase (LOx) for lactate detection1,52,53. 
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Typically, the enzymatic reaction generates a measurable current (amperometric) between 

electrodes that is proportional to the chemical changes. Since reactions are generally detected only 

in close proximity to the electrode surface, the electrodes themselves play a crucial role in the 

performance of electrochemical sensors. These electrodes should be both conductive and 

chemically stable. Therefore, platinum, gold, carbon (e.g., graphite) and silicon compounds are 

commonly used, depending on the analyte51. Sometimes surface modification is necessary for 

improved detectability and the prevention of biofouling1,44,51. 

Electrochemical sensing usually requires a combination of reference electrode/ counter 

(inert) electrode and a working electrode as sensing or redox electrode. The reference electrode, 

commonly made from Ag/AgCl, is kept at a distance from the reaction site in order to maintain a 

known and stable potential. The working electrode serves as the transducer for measuring the 

current changes due to the enzymatic reaction, while the counter electrode establishes a connection 

to the electrolytic solution so that a current can be applied to the working electrode. With such a 

three-electrode setup, the output of the electrochemical sensor is the current for an applied electric 

potential. 

One of the widely used electrochemical sensors are amperometric glucose sensors. In a 

glucose sensor, an enzyme acts as catalyst for recognizing the glucose molecules. These enzyme 

molecules are located on an electrode surface, acting as transducer. As soon as the enzyme 

recognizes the glucose molecules, it catalyzes to produce gluconic acid and hydrogen peroxide 

from glucose. The electrodes consume the electrons transferred due to hydrogen-peroxide oxygen 

coupling. The resulting electron flow is proportional to the peroxide concentration which is 

proportional to the glucose present in the fluidic phase. More detailed working principle of 

enzyme-based sensor will be discussed in Chapter 4. Such enzyme-based electrochemical sensors 
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offer capabilities to monitor metabolic dynamics in near real time with analytical data as a function 

of analyte concentration and exposure time. 

1.2.6. Microphysiometer vs microclinical analyzer 

Upon chemical exposure, cells inside the organ-on-chip devices undergo metabolic 

changes including consumption of oxygen and glucose, and production of lactate and glutamate.48 

Understanding of these complex biological processes can be gained through experimentally 

accessible electrochemical sensing devices.1,46,54  Microphysiometry provides a non-invasive 

means for electrochemically measuring the change in metabolite concentration in real time. In a 

microscale platform, small sample volume (few microliters) enhances the sensitivity of small 

metabolic changes.1,46,54 Examples of such analytical devices include electrochemical 

measurement technique using microphysiometer and microclinical analyzer. 

For real-time monitoring of the cellular responses, two different measurement devices can 

be coupled with cell chambers- 1) microphysiometer with sensor electrodes embedded with cells 

in the same chamber allowing in situ detection and 2) microclinical analyzer (µCA) with sensor 

chamber placed downstream of the cell chamber allowing downstream detection (Figure 1.2). A 

significant effort has been put forward to designing chemical sensors that can be integrated within 

the OCMs. In such microfluidic platform, microphysiometer is already well suited to the 

application of in-situ measurement techniques that can provide high resolution data due to change 

in cellular microenvironment within OCMs46,54–57. On the other hand, µCA is advantageous for 

being adjustable to variety of cell culture constructs with easy pumping and valve systems.1 

Therefore, in an effort to evaluate the performance of downstream measurement using µCA, a 

detailed computational approach has been taken. 
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Figure 1.2 Simple schematic of different arrangement for metabolite detection – a) in-situ 
detection: microphysiometer where cells and sensor electrodes are colocalized, yielding improved 
temporal and spatial resolution of detection; b) downstream detection: µCA where cells and sensor 
electrodes are located in adjacent separate chambers, providing flexibility of assembling with 
variety of cell types in microfluidic devices 

The microphysiometer is capable of real-time electrochemical analysis through the 

enzymatic modification of a sensor electrode that could be placed within a microfluidic chamber 

containing a cell-coated transwell48,54. This platform has the ability to plug in enzymatically 

modified electrodes to the microfluidic cell chamber – allowing for flexibility in analyte detection. 

While platform utilizing such in situ detection provide a high temporal and spatial resolution, their 

design and assembly can be complex and system specific dedicated to one cell-type chamber. 

Thus, the development of downstream detection platform compatible with variety of OCMs with 

different cell-types could provide versatility of chemical and metabolite detections. 

Downstream detection refers to real-time chemical analysis of an OCM by the direct 

connection of the OCM with the detection method. Some detection platforms, such as µCA, are 

designed to allow for integration with variety of OCM devices with easy pumping and valve 

systems1 (see Figure 1.3). The downstream electrodes can be easily accessible for enzyme 

modification, providing flexibility in analyte detection, such as, glucose, lactate, glutamate, etc. 
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the platform can be coupled with any microfluidic OCM device by the use of tubing systems to 

perfuse over the electrode within the OCMs. However, the metabolite detection downstream of the 

OCMs in this manner poses some challenges, as effluent may be affected by the diffusional mixing 

while perfusing with lower flow rates – compromising the resolution of the collected data. 

 

Figure 1.3 Microclinical analyzer with pump and valve together to flow 26 µL of buffer, calibrants, 
and/or sample into the sample chamber containing the electrodes. (inset) schematic of a screen-
printed electrode.[Courtesy of Davis et al (2017)1 

Despite its flexibility and ease of use, microclinical analyzer’s distant coupling between 

the sensor chamber and the cell chamber may hinder instantaneous detection, compromising the 

temporal and spatial resolution. To evaluate the time-dependent chemical detection using 

microclinical analyzer, it is critical to understand the chemical transport and kinetics around the 

cells and sensor electrodes. This investigation will guide whether we should consider 
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implementing a biosensor module with downstream detection instead of the conventional in situ 

one. 

Besides the development of cellular microenvironments of human tissue or organs using 

OCMs, its ability to monitor and analyze the real-time cellular responses to drug and toxicants are 

critical. For this reason, coupling of monitoring tools or devices with wide variety of OCMs are 

essential for the successful application of such organoid models. In this context, this dissertation 

focused on the implementation of miniaturized electrochemical sensors integrated in-line with the 

OCMs for the real-time measurement of cellular responses to the chemical exposure. 

1.3. Organization of the Dissertation 

Apart from this chapter, the remainder of the dissertation has been divided into four 

chapters. Chapter 2 presents both experimental approach and computational modeling for 

toxicokinetics of chemical-PDMS interaction and its impact on organ-on-chip microsystems. The 

experimental technique has been established to measure chemicals' PDMS-binding kinetics and to 

use these measured kinetic parameters to model chemical transport in PDMS- based devices for 

the prediction of time-dependent cellular exposures. 

Chapter 3 discusses how the toxicokinetic model can be developed further to validate the 

actual microsystem platform, including an extended modeling approach and its validation under 

different experimental conditions. This chapter also includes preliminary experimental observation 

and discusses about the lesson learned that would be useful for future experimental plans. 

Chapter 4 presents the details of the computational framework developed for modeling 

enzyme-based electrochemical sensors, including numerical technique to extract enzymatic kinetic 

parameters.  The modeling approach provide insights on how cells consumed chemicals inside and 
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chamber, and the change in concentration can be predicted by downstream chemical sensor 

microclinical analyzer. 

Finally, Chapter 5 summarizes the major conclusions of the study and also provides 

recommendations for the further study. Attempts are made to draw conclusions from various 

findings of the study and recommendations provide a basis of further study.
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Chapter 2 CHAPTER 2 Chapter 2                                                                                                       

PREDICTION OF TOXICOKINETICS IN ORGAN-ON-CHIP MICROSYSTEMS 

Published Article: 

Auner, A.W.*, Tasneem, K.M.*, Markov, D.A., McCawley, L.J., and Hutson, M.S., “Chemical-

PDMS binding kinetics and implications for bioavailability in microfluidic devices,” Lab on a 

Chip, 2019, *equally contributed first authors. This chapter presents both experimental approach 

and computational modeling for toxicokinetics of chemical-PDMS interaction and its impact in 

organ-on-chip microsystems. Part of the experimental work including majority of the chemical 

analysis and molecular property investigations were solely the contribution of Auner, A.W. 

2.1. Abstract 

Microfluidic organ-on-chip devices constructed from polydimethylsiloxane (PDMS) have 

proven useful in studying both beneficial and adverse effects of drugs, supplements, and potential 

toxicants. Despite multiple advantages, one clear drawback of PDMS-based devices is binding of 

hydrophobic chemicals to their exposed surfaces. Chemical binding to PDMS can change the 

timing and extent of chemical delivery to cells in such devices, potentially altering dose-response 

curves. Recent efforts have quantified PDMS binding for selected chemicals. Here, we test a wider 

set of nineteen chemicals using UV-Vis or infrared spectroscopy to characterize loss of chemical 

from solution in two setups with different PDMS-surface-to-solution-volume ratios. We find 

discernible PDMS binding for eight chemicals and show that PDMS binding is strongest for 

chemicals with a high octanol-water partition coefficient (LogP > 1.85) and low H-bond donor 

number. Further, by measuring depletion and return of chemical from solution over tens to 
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hundreds of hours and fitting these results to a first order model of binding kinetics, we characterize 

partitioning into PDMS in terms of binding capacities per unit surface area and both forward and 

reverse rate constants. These fitted parameters were used to model the impact of PDMS binding 

on chemical transport and bioavailability under realistic flow conditions and device geometry. The 

models predict that PDMS binding could alter in-device cellular exposures for both continuous 

and bolus dosing schemes by up to an order of magnitude compared to nominal input doses. 

2.2. Introduction 

Microfluidic organ-on-chip devices have proven useful in studying both beneficial 

and adverse effects of drugs, supplements, and potential toxicants through improved 

response times and reduced costs in bioactivity screens.58 Such devices have also been used 

to investigate chemical effects in models for a range of biological systems and processes: 

e.g., mammary glands;59 lungs;60 hepatotoxicity;61 renal differentiation;62 and multi-organ 

coupling.63 The primary polymer used to fabricate microfluidic devices has been 

polydimethysiloxane (PDMS). The advantages of PDMS range from its optical 

transparency to its gas permeability to its ease of fabrication.64 In addition, compared to 

rigid glass or plastic substrates, PDMS-based devices provide cultured cells with a more 

porous and less stiff mechanical environment – still artificial, but closer in mechanical 

properties to soft tissues.25,26 

Despite these advantages, one clear drawback of PDMS is its hydrophobicity. This 

disadvantage is particularly worrisome in chemical screening applications because 

hydrophobic compounds can bind to or become sequestered within PDMS. Such binding 

causes a discrepancy between the nominal inlet concentration and actual cellular exposures, 
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affecting dose-response curves.33 The aims of this study are to characterize those chemical 

properties that are predictive of PDMS binding, to present a simple protocol for 

experimentally measuring the on- and off-rate PDMS-binding kinetics, and to show how 

the measured kinetic parameters can be used to model chemical transport in PDMS-based 

devices to predict and/or design actual cellular exposures. 

The binding and sequestration of hydrophobic compounds by PDMS was first 

investigated qualitatively using fluorescent molecules.19,21 Subsequent quantitative studies 

suggested relationships between a compound’s degree of PDMS binding and its 

octanol/water partition coefficient (LogP) or its topological polar surface area (TPSA). One 

study suggested a LogP threshold – strong binding for highly hydrophobic compounds with 

LogP > 2.62.36 The follow-up, which only tested compounds above the LogP threshold, 

suggested a linear correlation of stronger binding with smaller TPSA.30 These two studies 

were limited to evaluation of just 5 and 4 compounds, respectively. To further investigate 

the link between molecular properties and chemical partitioning into PDMS, we have 

chosen a larger, more diverse sample of 19 test compounds. These chemicals have a range 

of uses – from pesticides to pharmaceuticals to the manufacture of consumer products – 

and were selected due to their use in current organ-on-chip toxicology studies. As detailed 

in Table 2.1, many of the test compounds have been linked to endocrine disruption and 

developmental or reproductive toxicity; others serve as negative controls with no known 

toxicity in mammals.11-39 To interpret the results of toxicology studies using these 

compounds in PDMS-based microfluidic devices, it is crucial that we can accurately predict 

their in-device bioavailability. 
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Table 2.1 Commercial use and toxicity references for chemicals tested here 
 

 Chemical name  Use  Toxicity in mammals  Ref. 

 Perfluorooctanoic acid (PFOA)  Teflon™ manufacturing endocrine disruptor  65–72 
 Bisphenol A  Plastic manufacturing endocrine disruptor 65,73–81 
 Diethylstilbestrol  Synthetic non-steroidal estrogen endocrine disruptor 82 
 Genistein  Pharmaceutical/supplement endocrine disruptor  83–86 
 Secoisolariciresinol diglucoside (SDG)  Pharmaceutical/supplement non-toxic  87 
 Doxorubicin  Chemotherapy cytotoxic  88 
 Docetaxel  Chemotherapy cytotoxic  88 
 Rhodamine B or 6G  Chemical dye cytotoxic 89,90 
 Propiconazole  Fungicide reproductive  65 
 Aminopyralid  Herbicide developmental  91 
 Molinate  Herbicide reproductive  65,92 
 Ethofumesate  Herbicide non-toxic  93 
 Imazaquin  Herbicide non-toxic  91 
 Hexazinone  Herbicide reproductive  91 
 Foramsulfuron  Herbicide non-toxic  91 
 Sulfentrazone  Herbicide reproductive  65 
 Acetamiprid  Insecticide reproductive  65 
 Formetanate  Insecticide neurotoxin  91 

 

Such predictions will rely on computational models. Here we provide a simple 

method for measuring the needed model parameters for reversible and irreversible PDMS-

binding kinetics. These include the forward and backward rate constants, as well as 

chemical-specific carrying capacities per unit of PDMS surface area. Previous approaches 

to this problem explicitly modelled diffusional transport of chemicals within PDMS;34 

however, we find that the combined effects of partitioning at the solution-PDMS interface 

and diffusion into the PDMS bulk are well described by rate constants and carry capacities 

over tens to hundreds of hours. For all but one tested compound, we used time-resolved 

UV-Vis absorption spectroscopy to monitor depletion (and later return) of chemical from 

(to) a solution in contact with either a PDMS disk or the walls of a PDMS microfluidic 

channel. The exception was perfluoorooctanoic acid (PFOA), which had insufficient light 

absorption within an accessible UV-Vis spectral window. As an alternative, we measured 

PFOA’s infrared absorption in attenuated total reflectance (ATR) mode to directly measure 
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its accumulation on PDMS surfaces. Once the binding parameters are measured, we then 

present a model that combines computational fluid dynamics (CFD) with PDMS-binding 

kinetics to predict chemical bioavailability in a simple microfluidic device. These 

predictions include temporally- and spatially-varying chemical concentrations in the 

perfusion media, as well as the effective surface density of bound chemical throughout the 

device. We use this model to highlight what typical PDMS-binding parameters imply for 

bioavailability. Our approach complements prior work that focused on microfluidic design 

considerations for minimizing the impact of sequestration in PDMS.34 These design 

considerations depended on the properties of the chemicals to be tested – e.g., partition and 

diffusion coefficients – and are thus not as useful when designing a single microfluidic 

system to test a wide range of drugs or potential toxicants. Explicitly modeling 

bioavailability for each chemical is thus a key step towards pharmacokinetics for organ-on-

chip or microphysiological systems. 

2.3. Experimental design 

2.3.1. PDMS preparation 

PDMS Sylgard 184 (Dow Corning, Auburn, MI) was mixed with a 1:10 weight ratio of 

curing agent to elastomer. For disk-soak experiments, PDMS was cast in a 5-mm thick layer, cured 

for 24 hours, and cut into cylindrical disks (6-mm in diameter). For channel-soak experiments, 

PDMS was cast in a 3-mm thick layer over a channel mould, which was fabricated using standard 

photolithography on a Si wafer with SU8-2050 photoresist. After curing the PDMS for 24 hours, 

inlets were formed by punching 1.5-mm diameter cylindrical reservoirs at both ends of the channel. 

To reversibly seal channels for long-duration chemical exposures, channel-containing PDMS 



20 
 

layers were sandwiched between two other 3-mm thick PDMS layers and subjected to continuous 

pressure from a weighted plate. Channel dimensions are given in Figure 2.1B. 

 

Figure 2.1 PDMS-binding and desorption experiments with example spectra for ethofumesate. (A-
left) UV-vis spectra showing depletion of ethofumesate from bulk solution as it partitions into a 
PDMS disk floating in the cuvette. (A-right) UV-vis spectra showing return of ethofumesate to 
bulk solution as it desorbs into fresh solvent from a pre-soaked PDMS disk. (B) Dimensions of the 
microfluidic channel used in channel-soak experiments. 

2.3.2. Chemical preparation 

All chemicals were purchased in powder form (except liquid molinate) from Sigma Aldrich 

(Saint Louis, MO). Chemicals to be tested were dissolved in either molecular biology grade water 

or a 1X phosphate buffered saline (PBS) solution with added dimethyl sulfoxide (DMSO) to 
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increase solubility of hydrophobic compounds (LogP >1). For most chemicals, the final DMSO 

fraction was 0.1%, but 10% was used for docetaxel. Chemicals were diluted in their respective 

solvent to starting concentrations that yielded a peak UV-Vis absorbance of one or as close as 

solubility allowed. Molecular properties cited here were from the EPA Chemistry Database,91 

Canadian Institute of Health Toxin Database,94 University of Hertfordshire Pesticide Properties 

Database,95 and select publications for genistein.96 For most chemicals, cited LogP values were 

from database-reported experimental measurements; for three chemicals (PFOA, formetanate, and 

SDG) experimental values were not available and we instead cite database-reported values for 

calculated LogP (cLogP). 

2.3.3. Assessing PDMS binding via UV-vis measurements 

For disk-soak experiments, we conducted both on- and off- rate experiments. On-rate 

experiments were designed to measure the rate at which each chemical partitioned out of solution 

and onto or into a PDMS disk. In brief, each sample solution was placed in a 4-ml quartz cuvette 

and a PDMS disk was carefully placed on the surface. Due to the relative densities of water and 

PDMS, such disks float with a reproducible volume above and below the surface. Cuvettes with 

disks were placed on an orbital shaker to keep solutions well mixed. Periodically, cuvettes were 

moved to a UV-vis spectrometer to have spectra measured with disks still floating above the 

spectrometer light beam (Figure 2.1A). Chemical binding to the floating PDMS disk was tracked 

via depletion of chemical from solution. At the end of an on-rate experiment, if there was evidence 

of chemical binding to the PDMS disk, then the disk was removed from its sample-solution 

cuvette, dried with gaseous nitrogen, and carefully floated on the surface of fresh solvent in a new 

cuvette (Figure 2.1A). Shaking and periodic UV-vis measurements were then performed as above 
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to conduct an off-rate experiment that tracked the rate at which surface-bound chemical partitioned 

back off the PDMS disk and into solution. 

UV-vis absorbance spectra for on- and off-rate experiments were measured against 

matched cuvettes with appropriate solvent using a Cary 5000 dual-beam UV-vis spectrometer 

(Agilent, Santa Clara, CA; scan rate = 24 nm min−1; resolution = 1 nm). To control for chemical 

stability, spectra were also measured periodically for positive control cuvettes containing sample 

solutions without PDMS disks. To correct for instrumental baseline drift, spectra were 

concomitantly measured for negative control cuvettes containing appropriate solvent only. 

For channel-soak experiments, each channel was filled with a chemical solution and 

pressure-sealed against other PDMS layers. After a predetermined soak time, the channel was 

opened, the chemical solution was pipetted out, and its UV-vis spectrum was measured using a 

Nanodrop 2000C spectrophotometer (Thermo Fisher, Waltham, MA). Time-resolved 

measurements were thus obtained by sealing individual channels for different periods of time. 

Each time-point measurement was repeated in triplicate. 

To convert UV-vis absorbance to chemical concentration, a clearly discernible peak of 

interest was selected from spectra of each chemical at several dilutions and used to construct a 

linear calibration curve (measured independently for each spectrometer and in triplicate for each 

chemical). 

2.3.4. Assessing PDMS binding via FTIR measurements 

The UV-vis absorption band for one tested chemical, PFOA, was too near the edge of UV 

detection for reliable measurement. As an alternative, we took IR spectra to measure PFOA bound 

to PDMS disks using a Nicolet IS5 FTIR spectrometer (Thermo Fisher, Waltham, MA) with a 
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single-reflection diamond ATR attachment. Measurements were averaged 100 times with a 

resolution of 4 cm−1 and with the evanescent wave covering a 1.5-mm diameter area. For these 

measurements, PDMS disks were floated as detailed above in a solution of PFOA for 48 hours, 

removed from solution, dried with nitrogen, and placed directly onto the diamond ATR. Both 

PFOA-soaked disks and control solvent-soaked disks were measured in triplicate to confirm 

homogeneity of surface binding. Since FTIR spectra were measured at a single time point, they 

were only used to estimate the amount of PFOA bound and not its binding kinetics. To convert 

from IR absorbance to concentration, we used the strong PFOA vibrational mode at 1209 cm−1, 

which corresponds to a (CF2) + (CF3) asymmetric stretch,97 and measured calibration spectra  of 

diluted PFOA solutions in pure DMSO. The contribution of PDMS to FTIR spectra of soaked 

disks was minimized by weighted subtraction of a spectrum of a control solvent- soaked disk and 

a constant baseline offset, with weights determined by least squares minimization of the resultant 

spectrum in a region with no PFOA vibrational bands (990–1040 cm−1). 

2.3.5. Computational model 

Modelling of chemical transport in a microfluidic device, including binding and desorption 

from PDMS surfaces, was conducted using COMSOL Multiphysics (Burlington, MA). The 

modelled geometry was a single longitudinal plane through a simple rectangular microchannel 

(length = 8 mm, width = 1.5 mm, and height = 0.1 mm). Since channel width was much greater 

than height, variations in velocity and concentration along the channel width were neglected and 

a well-developed parabolic flow velocity was imposed vertically. Symmetry allowed for a 

reduction in computation time by explicitly modelling only the bottom half of the channel. 

Conditions were assumed to be isothermal, with convective flux boundary conditions specified at 
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both device inlet and outlet. The model scheme was validated by simulating disk-soak experiments 

under well-mixed conditions to reproduce the experimental binding and desorption kinetics. 

2.4. Results 

The primary method used here to measure chemical binding to PDMS was quantifying the 

loss of chemical from a solution in contact with a PDMS disk or channel surface using UV-Vis 

absorbance (Figure 2.1). Control experiments on matched solutions without PDMS disks 

confirmed that all but one tested chemical had no significant PDMS-independent loss from 

solution. That exception was molinate, likely due to its high volatility.95 Its loss from control 

samples was measured and its binding to PDMS was assessed as the excess depletion observed in 

disk-soak experiments. 

 

Figure 2.2 Time-dependent depletion of selected chemicals from bulk aqueous solutions in PDMS 
disk-binding experiments. A/A0 = fraction remaining. Results ordered via descending logP (listed 
beside each chemical structure). Data points with different symbols indicate different sample 
replicates. Solid lines are best fits to an empirical description (Equation 2.1); dashed lines are fits 
to a microscopic model for binding kinetics (Equation 2.3b). Dotted lines show a normalized value 
of 1.0 for chemicals with no discernible depletion. 
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Figure 2.3 Time-dependent return of chemicals into bulk aqueous solution via desorption from 
previously-soaked PDMS disks. Different symbols denote different sample replicates. Solid lines 
are best fits to an empirical description (Equation 2.2); dashed lines are fits to a microscopic model 
of binding kinetics (Equation 2.3b). Concentration is normalized to the amount depleted from 
solution, and thus bound to the disk, in the previous soaking experiment (ΔA1 = −44.4 μM for 
ethofumesate; −53 μM for molinate). 

In disk-soak experiments, we observed no PDMS binding for any tested chemical with 

logP < 2.5. On the other hand, four of the seven most hydrophobic chemicals tested in these 

experiments were lost from solution following exponential decays over tens of hours – see Figure 

2.2 for molinate, ethofumesate, propiconazole, and to a lesser degree, bisphenol A. This behavior 

was not universal: other hydrophobic chemicals with logP > 2.5, such as diethylstilbestrol, 

genistein and rhodamine 6G, showed no evidence of depletion from solution and thus no binding 

to PDMS. The most hydrophobic compound tested, PFOA, had no appropriate UV-vis absorption, 

which precluded measuring its binding kinetics, but we were able to measure the degree to which 
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it bound PDMS at a single time point using ATR-FTIR spectroscopy. We found that 24% of the 

PFOA originally in solution had bound to the surface of a PDMS disk after soaking for 48 hours. 

When pre-soaked PDMS disks were transferred to fresh solvent, we found that two tested 

chemicals desorbed from PDMS and returned to solution: molinate and ethofumesate. As shown 

in Figure 2.3, their desorption followed a roughly exponential approach to a new equilibrium 

between bound and free chemical. Molinate never reached a steady level, but instead appears to 

decrease after 40 hours because the correction for its PDMS-independent loss could not be 

implemented for off-rate experiments. Nonetheless, about 1/4 and 1/3 of the molinate and 

ethofumesate bound to a PDMS disk respectively returned to solution within 48 hours. The other 

two chemicals for which we could measure PDMS- binding kinetics, namely propiconazole and 

bisphenol A, bound irreversibly with no evidence of desorption in fresh solvent. 

To empirically quantify the PDMS-binding kinetics of each chemical, we fit the disk soak 

results to exponential approaches to equilibrium: 

A = A0 + ΔA1(1 − e−t/τ1)     (Equation 2.1) 

A = ΔA2(1 − e−t/τ2)      (Equation 2.2) 

Equation 2.1 fits experiments in which an initial amount of chemical A0 is depleted from 

solution with time constant τ1 to approach a final value of A0 + ΔA1 (in which ΔA1 < 0). Equation 

2.2 similarly fits experiments in which an amount of chemical ΔA2 > 0 returns to solution as it 

desorbs from a pre-soaked disk with time constant τ2. For each chemical that bound PDMS, Table 

2.2 lists the time constants (τ1, τ2), the fraction bound at equilibrium, fB,eq = −ΔA1/A0, and the 

fraction eventually returned to solution, ΔA2/A0. The “fraction bound” is also listed for chemicals 

that did not exhibit significant loss from solution for which it is based solely on the percent change 
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in concentration between the start and end of experiments.  Some of the non-binding chemicals 

have experimentally estimated values of fB,eq that are negative, but these are all within a few 

standard deviations of zero. Note that these are empirical descriptors specific to the stated 

experimental conditions. 

Notably, rhodamine B did not show significant binding to PDMS in disk-soak experiments 

despite visibly dying the disk surface. Since rhodamine B has a high extinction coefficient, this 

visible dying could result from a very small amount bound. To quantify binding for chemicals like 

rhodamine B that partitioned into PDMS to a lesser extent, we thus conducted additional 

experiments in which solutions were sealed inside a microfluidic channel (dimensions as in Figure 

2.1). These channel-soak experiments had a much larger surface-to-volume ratio (116 cm−1 versus 

0.3 cm−1), which allowed detection of less extensive binding. Results from both types of 

experiments are compared in Table 2.2. Due to the shorter effective pathlength of the Nanodrop 

spectrophotometer, several chemicals had too little absorbance even at their solubility limit to have 

their PDMS binding measured using channel-soak experiments (diethylstilbestrol, propiconazole, 

molinate, ethofumesate, docetaxel). 
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Table 2.2 Summary of key molecular properties, experimental details and results for all chemicals 
tested: N = number of sample replicates; A0 = initial chemical concentration; fB,eq, ΔA1, τ1, ΔA2, τ2 
from empirical fits to Equation 2.1 and Equation 2.2 as defined in main text. Experiments not 
conducted and parameters that could not be estimated marked by dashes. The PDMS-surface-to-
solution-volume ratio α is noted for each class of experiments 

                                                                            Disk-soak experiments(α=S/V=0.3 cm−1)       Channel-soak experiments(α=S/V=116 cm−1) 
        Expt.                 Expt. 

   Molecular properties           detail         Empirical fit parameters             detail            Empirical fit parameters 
 
Chemical name 

 
log P 

TPSA 
(Å2) 

H-Bond 
donors 

  
N 

 
A0 
(μM) 

 fB,eq = 
−ΔA1/A0 

 
τ1 (h) 

 
ΔA2/A0 

 
τ2 
(h) 

  
N 

 
A0 
(μM) 

 fB,eq = 
−ΔA1/A0 

 
τ1 (h) 

 
ΔA2/A0 

 
τ2 
(h) 

PFOA 6.3 37.3 1 5 589 26 ± 4% — — — — — — — — — 

Rhodamine 6G 5.2 59.9 2 3 20 1.7 ± 
0.3% 

— — — 5 189 8 ± 3% — — — 

Diethylstilbestrol 5.07 40.5 2 3 89 4 ± 3% — — — — — — — — — 
Propiconazole 3.72 49.2 0 9 336 90 ± 2% 9.7 ± 

1 
— — — — — — — — 

Bisphenol A 3.32 40.5 2 3 97 8 ± 2% 17.6 — — 3 488, 78 ± 
1% 

3.12 
± 

11.8 ± 0.2 
± 

       ± 1     3100  0.03 2% 0.2 
Genistein 3.04 87.0 3 3 38 1 ± 1% — — — 3 38 4 ± 4% — — — 
Molinate 3.21 45.6 0 3 113 50 ± 

10% 
13.6 12 ± 6.1 ± — — — — — — 

       ± 2  2% 1       

Ethofumesate 2.7 70.2 0 9 75 59 ± 4% 11.3 19 ± 11.0 — — — — — — 
       ± 1  1% ± 2        

Docetaxel 2.40 224.0 5 3 12 −0.1± 
0.8% 

— — —
 — 

— — — — — 

Rhodamine B 1.95 52.8 1 3 10 2.05 ± 
0.05 

— — —
 3 

177 80 ± 
5% 

2.6 ± 5 ± 
2% 

1.5 
± 

             0.7  0.8 

Imazaquin 1.86 91.6 2 3 17 −1.0± 
0.4% 

— — — 3 16 13% 3.5 ± — — 

             0.8   

Hexazinone 1.85 56.2 0 3 40 1.1 ± 
0.6% 

— — — 3 40 37 ± 
7% 

2.8 ± — — 

             0.6   

Doxorubicin 1.27 206 6 3 60 6 ± 1% — — — 2 60 5 ± 8% — — — 
Sulfentrazone 0.99 90.5 1 3 26 −1.1± 

0.6% 
— — — 2 26 −8.00 ± — — — 

            0.02%    

Acetamiprid 0.8 52.3 0 3 45 0.1 ± 
0.1% 

— — — 2 45 −1 ± 
8% 

— — — 

Formetanate 0 53.9 2 3 39 −2 ± 3% — — — 2 39 −9 ± 
3% 

— — — 

Foramsulfuron −0.78 177.0 3 3 32 −0.8 ± — — — 2 32 7 ± 3% — — — 
      0.2%          

Aminopyralid −2.87 76.2 2 3 50 −2 ± 1% — — — 3 50 −14 ± 
7% 

— — — 

SDG −2.93 258 10 3 58 0 ± 3% — — — 2 58 11 ± 
9% 

— — — 
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Between the two sets of experiments, nine chemicals in our test set measurably bound to 

PDMS: PFOA, rhodamine 6G, propiconazole, bisphenol A, molinate, ethofumesate, rhodamine B, 

imazaquin and hexazinone. All had high logP (≥1.8) and low TPSA (≤91.6 Å2). These results are 

consistent with data from two previous studies by Wang et al. and Van Meer et al. that linked 

PDMS absorption to measures of high hydrophobicity.30,36 On the other hand, our larger test set 

identified several chemicals with similarly high logP and/or low TPSA that did not measurably 

bind to PDMS, e.g., diethylstilbestrol and genistein (logP of 5.07 and 3.04 respectively; see Table 

2.2). We thus investigated whether any additional molecular property would distinguish the 

hydrophobic non- binders. The only combination we found that discriminated binders from non-

binders was logP and the number of H-bond   donors. This discrimination is shown in Figure 2.4A 

and B, which separately compare results for disk-soak experiments and channel-soak experiments. 

Previous studies had surface-to-volume ratios closer to our channel-soak experiments and are thus 

reported alongside those results in Figure 2.4B. Whenever there was a discrepancy in reported 

logP values, we plotted data points at both values and connected them with a horizontal line. There 

is clearly a threshold logP (in the range of 1.27–1.85), below which chemicals do not bind PDMS. 

Above this threshold, chemicals may bind PDMS, but the strength of this binding decreases for 

molecules having more H-bond donors. An exception to this trend was rhodamine 6G as tested by 

Wang et al.36 We tested rhodamine 6G in both our experimental setups and found very little 

binding to PDMS. This discrepancy will be revisited in Discussion. 
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Figure 2.4 Correlation of PDMS binding affinity (% Bound) with chemicals’ LogP and number of 
H-bond donors (subscript). Shaded region represents the LogP threshold for significant chemical 
absorption. (A) Disk-soak experiments. (B) Channel-soak experiments reported in this work (), 
in van Meer et al.43 (), or in Wang et al.42 (). Data points connected with horizontal lines 
denote discrepancies in reported LogP values. 

2.4.1. Predicted impact of chemical-PDMS binding 

As noted above, the empirical descriptors of PDMS binding are useful, but specific to 

limited experimental conditions. To find parameters more useful for modelling chemical- PDMS 

interactions over a wider range of concentrations and PDMS surface areas, we fit the data to a 

microscopic model of 1st order binding kinetics.  
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This model considers a reaction between chemical A and PDMS-surface site S, i.e., A + S 

⇌ Abound. Allowing for reversible interactions, the reaction kinetics follow 

𝑑𝑑[𝐴𝐴]
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝐹𝐹[𝐴𝐴][𝑆𝑆] + 𝑘𝑘𝑅𝑅[𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏]     (Equation 2.3a) 

where brackets denote concentrations and kF, kR are the forward and backward rate 

constants. Dropping the brackets, making the time-dependent terms explicit, and casting [S] and 

[Abound] in terms of A(t) yields: 

 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝐹𝐹𝐴𝐴(𝑡𝑡) �𝑆𝑆0
𝛼𝛼
− �𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐴𝐴(𝑡𝑡)�� + 𝑘𝑘𝑅𝑅(𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐴𝐴(𝑡𝑡))  (Equation 2.3b) 

where Atot is the total amount of chemical divided by the solution volume, S0 is the initial 

surface density of binding sites, and α is the ratio of solution volume to PDMS surface area. For a 

given chemical, binding and desorption experiments were fit simultaneously with shared 

parameters. Binding experiments were fit to analytic solutions to Equation 2.3b using boundary 

condition A(0) = Atot = the  stated  starting concentration. Desorption experiments were fit to 

solutions with A(0) = 0 and Atot being a concentration equivalent to desorbing all  chemical  bound 

to the disk's surface in the previous on-rate binding experiment. For chemicals that bound 

irreversibly, the desorption experiment was simply taken to yield kR = 0. Microscopic model fits 

are shown alongside the empirical fits of binding/desorption kinetics in Figure 2.2 and Figure 2.3. 

Parameters from the microscopic model fits are compiled in Table 2.3. 
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Table 2.3 Summary of microscopic model fit parameters 

 

These microscopic model fit parameters were then used in a computational fluid dynamics 

(CFD) model combining mass transport and surface reactions to predict the sequestration of 

chemicals in a PDMS-based microfluidic device (geometric details under Experimental design). 

This model is very similar to those used in biosensor applications.98–102 Chemical transport in the 

bulk fluid is described by a convection–diffusion equation: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 �𝜕𝜕
2𝑐𝑐

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝑐𝑐

𝜕𝜕𝑦𝑦2
�  − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∙ 𝑢𝑢�⃑     (Equation 2.4) 

where c is the time-dependent chemical concentration, D is diffusivity of a chemical 

species in bulk fluid, and u is the position- and time-dependent fluid velocity. Chemical transport 

and reaction on the PDMS surface are governed by a reaction–diffusion equation: 

𝜕𝜕𝑐𝑐𝑠𝑠
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑠𝑠 �𝜕𝜕
2𝑐𝑐𝑠𝑠
𝜕𝜕𝑥𝑥2

+  𝜕𝜕
2𝑐𝑐𝑠𝑠
𝜕𝜕𝑦𝑦2

� + 𝑘𝑘𝐹𝐹𝑐𝑐(𝑆𝑆0 − 𝑐𝑐𝑠𝑠) −  𝑘𝑘𝑅𝑅𝑐𝑐𝑠𝑠  (Equation 2.5) 

where cs is the bound species surface density, Ds is its surface diffusivity, S0 is the binding 

capacity per unit of PDMS surface area, and kF, kR are the forward and backward rate constants for 

surface binding respectively. The surface reaction expression in Equation 2.5 includes the bulk 

Chemical  
kF 

(10-4 h-1 μM-1) 
kR 

(10-2 h-1) 
S0  

(nm-2) 

propiconazole 3.7 ± 0.7 0 7300 ± 600 
bisphenol A 0.3 ± 0.2 4.6 ± 0.7 500 ± 300 
molinate 5 ± 1 0.9 ± 0.2 2500 ± 300 
ethofumesate 5 ± 2 2.27 ± 0.4 2000 ± 1000 
rhodamine B 3.2 ± 0.3 0.003 ± 0.002 8.0 ± 0.3 
imazaquin 1.5 ± 0.5 0 0.13 ± 0.03 
hexazinone 7 ± 2 0 0.7 ± 0.1 
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concentration, c, at the reacting surface.  This coupling with mass balance in the bulk is obtained 

at the flux boundary according to 

𝐷𝐷 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝑘𝑘𝐹𝐹𝑐𝑐(𝑆𝑆0 − 𝑐𝑐𝑠𝑠) − 𝑘𝑘𝑅𝑅𝑐𝑐𝑠𝑠    (Equation 2.6) 

Although this model does not explicitly consider diffusion into bulk PDMS, such diffusion 

must occur, especially for chemicals for which PDMS has a larger binding capacity. For example, 

the fitted binding capacity for molinate is 2500 molecules per nm2. If molinate molecules were 

truly packed on a PDMS surface at this density, each molecule would occupy an area of just 4 × 

10−4 nm2, which is much too tightly packed to be reasonable. Instead, molinate and other chemicals 

with S0 > O (1 nm−2) must penetrate into PDMS and S0 should be considered as effective density 

per unit of geometric surface area. 

To explore the potential range of binding and chemical sequestration in a microfluidic 

device, we ran this model for three tested chemicals: ethofumesate, which binds reversibly; 

propiconazole, which binds irreversibly; and rhodamine B, which is minimally adsorbed by 

PDMS. Since these chemicals were of similar size, their diffusivities were taken to be the same: 

10−9 m2 s−1 in aqueous solution (D) and 10−11 m2 s−1 along the PDMS surface (Ds). Each model 

considered parabolic flow with a maximum velocity, umax = 100 μm s−1. We model a hypothetical 

device in which a cell culture chamber begins at the end of an 8 mm long channel; cellular exposure 

is thus taken as the chemical concentration just above the PDMS surface at the end of this channel. 

We investigated effects under both continuous injection of chemicals (starting from t = 2 hours) 

and bolus injections (from t = 2 to 6 hours) over a wide range of inlet concentrations from 10−2 to 

10−7 M. Inlet concentrations for ethofumesate and propiconazole were limited to ≤10−4 M due to 

their low aqueous solubility. Predicted cellular exposures are shown for all three chemicals for 

continuous and bolus injections in Figure 2.5A–C and Figure 2.6A–C, respectively. These figures 
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also include the corresponding degree to which PDMS binding sites are saturated (Figure 2.5D–F 

and Figure 2.6D–F). 

Under continuous dosing, the differential impacts of reversible and irreversible PDMS 

binding can be seen by comparing Figure 2.5A and D and B and E. For a reversible binder like 

ethofumesate, the predicted cellular exposure gradually increases with time and asymptotically 

approaches the inlet concentration (Figure 2.5A). This occurs for all inlet concentrations once the 

on- and off-rates for PDMS binding approach equilibrium. For the highest inlet concentration 

simulated (10−4 M), this equilibrium occurs at nearly 70% surface saturation (Figure 2.5D). On the 

other hand, for an irreversible binder like propiconazole, the predicted cellular exposures only 

approach the nominal inlet concentrations once the surface be- comes fully saturated (Figure 2.5B 

and E). Even at the highest dose simulated (10−4 M), reaching saturation can take several hundred 

hours. For doses that do not yield surface saturation within the simulated time window (200 h), the 

predicted cellular exposure remains an order of magnitude less than the nominal inlet 

concentration. 

Additional impacts arise under bolus dosing. For a reversible binder like ethofumesate, 

exposure was at lower levels (less than 30% of inlet exposure) for all of the 4-hour bolus period 

(Figure 2.6A and D). Even more interestingly, once a bolus dose ended, cellular exposure 

continued. This extended exposure was due to gradual chemical desorption from the surface. It 

could initially be as large as 5% of the bolus exposure and gradually diminished to less than 1% 

after 48 hours. Such extended exposures were absent for an irreversible binder like propiconazole, 

but it too had effects that were highly dependent on the nominal inlet concentration. Only at the 

highest simulated dose (10−4 M) was propiconazole able to saturate the device's PDMS surfaces 

during the bolus period and thus yield cellular exposures approaching the nominal inlet 
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concentration. For all other simulated doses, the exposures were an order of magnitude less than 

the nominal dose. 

 

Figure 2.5 CFD model predictions for continuous dosing with inlet concentrations from 10−7 to 
10−2 M: (A–C) predicted cellular exposures as a   fraction of inlet exposures; (D–F) predicted 
degree of PDMS surface saturation. Chemical classes represented by ethofumesate with strong 
reversible binding, propiconazole with strong irreversible binding, and rhodamine B with weak 
reversible binding. The number next to each curve is log of the inlet concentration. 

 

For weaker binding chemicals like rhodamine B, cellular exposures closely match inlet 

concentrations. This is true for all simulated doses under both continuous (Figure 2.5C and F) and 

bolus exposures (Figure 2.6C and F). At low inlet concentrations (10−7 to 10−5 M), the on-rate for 

binding is so low that there is little impact on cellular exposures under the modelled flow 

conditions. At higher inlet concentrations (10−2 to 10−4 M), binding is more rapid and the system 

quickly reaches surface saturation (Figure 2.5F), but the low binding capacity of the surface again 

results in little change in chemical concentrations throughout the perfusate. 
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Figure 2.6 CFD model predictions for 4 h bolus dosing with inlet concentrations from 10−7 to 10−2 
M: (A–C) predicted cellular exposures as a fraction of inlet exposures; (D–F) predicted degree of 
PDMS surface saturation. The number next to each curve is log of the inlet concentration. 

2.5. Discussion 

Here we have investigated binding to PDMS surfaces for 19 chemicals of interest in 

environmental toxicology. This set of test chemicals covers a wider range of molecular properties 

than previous studies and allows us to further delineate those characteristics most closely 

associated with binding to PDMS. In addition, for those chemicals that did bind, we have more 

fully characterized the on- and off-rate kinetics to facilitate predictive modelling of chemical 

sequestration and actual cellular exposures in PDMS-based microfluidic devices. 

Importantly, we used two experimental setups, disk soaks and channel soaks, to fully 

characterize both weak and strong PDMS affinities. Only one compound in our test set, i.e., 

bisphenol A, was amenable to kinetic characterization in both setups. Given the different surface-

to-volume ratios and starting concentrations, the two experiments for bisphenol A yielded quite 

different empirical parameters (% bound and time constants); however, all of the bisphenol A data 
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could be fit well simultaneously with a single set of microscopic kinetic parameters (kF, kR and S0) 

(Figure S1). This consistency is an important validation of the approach taken here. 

In terms of the molecular properties that influence PDMS binding, we also find a key role 

for measures of chemical hydrophobicity. Wang et al. tested five compounds and noted an 

apparent logP threshold separating chemicals that bound PDMS strongly (≥2.62) from those that 

did so weakly or not at all (≤2.47).36 Van Meer et al. tested four other chemicals – all with logP 

above the apparent threshold – and instead noted a linear correlation between the percent remaining 

unbound to PDMS and the compounds' TPSA, another measure of hydrophobicity.30 Once we add 

our data, these measures are no longer fully predictive of PDMS binding over the combined data 

set of 26 chemicals. We find that insufficient hydrophobicity is still a useful predictor of chemicals 

that do not partition into PDMS. Both logP and TPSA can be used to establish such a threshold at 

less than 1.85 for logP or greater than 91.6 Å2 for TPSA. Note that these results were obtained 

using unmodified PDMS; plasma treatments used to reduce PDMS surface hydrophobicity could 

alter the logP and TPSA binding thresholds. 

Despite agreement on thresholds, we find that the degree of PDMS binding for chemicals 

with logP above (or TPSA below) threshold is no longer linearly related to TPSA. Neither is it 

related to molecular weight (range from 187 to 808 g mol−1) or polarizability (range from 17 to 

980 Å3). Among those and 15 other molecular properties catalogued by ChemSpider 

(http://www.chemspider.com), the best predictor of PDMS binding was logP above the noted 

threshold and the number of H-bond donor groups (T-test P-value = 0.0037). Highly hydrophobic 

compounds with no H-bond donor groups were strongly sequestered by PDMS, those with one 

tended to be sequestered more modestly, and those with two or more were affected weakly if at 
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all. One chemical right at the logP threshold (hexazinone) with zero H-bond donors did not 

partition appreciably into PDMS in disk-soak experiments, but did so in channel soaks. 

As noted above in Results, the large PDMS-binding capacities (S0) for some chemicals 

show that substantial sequestration requires both surface partitioning and diffusion away from the 

surface into the PDMS bulk. Although logP is a reasonable measure of how well a chemical 

partition from aqueous solution into PDMS,103 this partitioning is only at equilibrium near the 

interface. As has been shown previously, larger sequestration in PDMS-based microfluidics is 

associated with larger chemical diffusivity in PDMS,34 and diffusion through PDMS membranes 

is slower for chemicals with a larger number of H-bond donors.104 It is thus insightful, but  not 

surprising, that the number of H-bond donors in a molecule can affect its sequestration by PDMS. 

As shown in Figure 2.4, one notable exception to the above trend is rhodamine 6G. This 

compound has two H-bond donor groups, and yet Wang et al. concluded that it  bound PDMS 

strongly.36 When we tested rhodamine 6G in our experimental setup, we found a conflicting result 

with little to  no PDMS binding. Both setups were depletion experiments, i.e., measuring the 

amount of chemical left in bulk solution after some duration of exposure to PDMS, but the 

experiments differed in the method used to measure chemical concentration. Our experiments used 

UV-vis absorption, whereas Wang et al. used fluorescence intensity. Fluorescence is more 

sensitive, but also subject to photobleaching or quenching, which could explain the discrepancy 

by yielding an apparent depletion of rhodamine 6G even in the absence of PDMS binding. We 

thus consider absorption spectroscopy a more robust measure of chemical concentration. Of note, 

rhodamine 6G was the only compound that Wang et al. quantified via fluorescence; the others 

were measured via radiolabels that are not subject to the same complications.36 
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Beyond elucidating the molecular properties that correlate with PDMS binding, our 

experiments quantify binding to PDMS in a way that provides new insights. First, for three of the 

five PDMS-binding chemicals tested here, the carrying capacity of PDMS exceeded 1000 

molecules per nm2. Such carrying capacities are obviously much too large to represent  pure 

surface packing and it is well known that small molecules can diffuse into the PDMS bulk.27 

Building on the model presented by Shirure and George,34 one would expect the carrying capacity 

to increase with a chemical's diffusivity within PDMS. Such diffusivity is however difficult to 

measure directly for non-fluorescent molecules. Carrying capacity thus provides an alternative and 

more easily measurable parameter for bioavailability modelling that is valid at least over tens to 

hundreds of hours. This time regime is longer than the measured time constants associated with 

binding and desorption, which ranged from 2 to 18 hours. 

These time constants are in a range that complicates the evaluation of multi-day chemical 

screening for targeted and/ or adverse responses in microfluidically cultured cells and tissue 

constructs. Based on our modelling, the complications are three-fold. First, even if the nominal 

inlet concentration is constant, cellular exposure to a drug or potential toxicant will be time-

dependent. Furthermore, the time needed to reach a steady-state exposure will be longer for lower 

inlet concentrations. Second, for chemicals that bind PDMS reversibly, even the steady-state 

cellular exposure will be less than the nominal dose – an order of magnitude less given the values 

we observe for the example of ethofumesate. Third, the delivery of acute doses of reversibly 

binding chemicals will be complicated by long tails of extended low-dose exposure long after a 

bolus injection. Our modelling approach shows that these complications can be estimated and thus 

considered in evaluating cellular responses. It may also be possible to use this modelling approach 
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in a reverse manner to design a time-dependent inlet concentration profile that yields a targeted 

time-dependent cellular exposure. 

2.6. Conclusions 

We have established a technique to measure chemicals' PDMS-binding kinetics and a 

method to use these measured kinetic parameters to model chemical transport in PDMS- based 

devices and thus predict time-dependent cellular exposures. Further, we have found that binding 

to PDMS is not only correlated with measures of hydrophobicity such as logP or TPSA, but also 

increases for compounds with fewer hydrogen-bond donor groups. This finding can serve as an 

exclusion criterion for compounds likely to have strong interactions with PDMS and thus difficult 

to interpret effects on cells in PDMS-based devices.



41 
 

Chapter 3 CHAPTER 3 Chapter 3                                                                                                                                          

b                                                                                                                                                         

EXTENDED MODEL FOR VALIDATING IN-DEVICE TOXICOKINETICTS 

3.1. Modeling In-Device Toxicokinetics 

As described in Chapter 2, computational fluid dynamics models were developed to 

estimate in-device toxicokinetics based on reversible binding of chemicals onto PDMS surface 

with chemical specific surface binding capacity. Those key chemical-PDMS interaction 

parameters were experimentally measured from the time dependent depletion of chemicals from 

solution in contact with PDMS surfaces and its return from the PDMS surfaces to fresh solvent. 

The geometry was modeled for different length scales based on surface-area-to-volume-ratios: low 

ratio for disk soak experiment with PDMS disks floating in solution in small vial and high ratio 

for channel soak experiment with solution filled channels in larger PDMS blocks. The original 

modeling approach considered lumped surface binding capacity that cannot separate the 

contribution of binding of chemical onto PDMS surface and diffusion of that chemical into PDMS 

bulk. This combined contribution of surface partitioning and diffusion into the PDMS bulk may 

be an inadequate descriptor of the appropriate phenomena involved in chemical-PDMS interaction 

in different time and length scale. This discrepancy led to further analysis on how the model can 

be extended and validated with the experimental observation. 

3.2. Implementing Diffusion into Bulk PDMS in the Toxicokinetic Model 

An extension of the model was developed that allows diffusion into bulk PDMS. For doing 

so, additional PDMS bulk layers were modeled on top and the bottom of the microchannel as 

shown in Figure 3.1a. First, the original model was kept with the reversible surface binding 

parameters and was revised by adding diffusion coefficient through the PDMS bulk, referring to 
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as surface reaction model. Second, the fixed binding capacity parameter was replaced with a 

PDMS-water surface partitioning coefficient and a bulk PDMS diffusion coefficient, referring to 

as partitioning model. The original model was then compared with the surface reaction model and 

the partitioning model by simulating disk- and channel- soak experiments. 

Surface reaction model, when compared with the original model, the final concentrations 

were found to be same. This is because of these two models’ similar approach of applying binding 

kinetics at the PDMS surface, with an exception in surface reaction model by an additional 

diffusion into the bulk. In both cases, the same amount of chemical bound to the surface, with an 

additional observation that the bounded amount in surface model found to diffuse through the 

PDMS layer. This consistency validates the modeling set-up for the extension. 

 
Figure 3.1 a) Extension of the original model by including PDMS bulk section on top and below 
the microchannel (the dotted box represents the section of the geometry that are shown in b and c; 
b) surface reaction model: original model with the binding kinetics of chemical-PDMS was 
extended by adding diffusion into the PDMS bulk; c) partitioning model: replacing fixed binding 
capacity parameter with a PDMS-water partitioning coefficient and diffusion into the PDMS bulk. 
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3.3. Geometry Development in Extended Models 

 For simulating disk-soak and channel-soak experiments, geometries were developed in 

COMSOL using the dimensions as described in Chapter 2. In the disk-soak model, a cylindrical 

PDMS disk (6 mm in diameter and 5 mm in height) was soaked in a 4-mL cuvette as shown in the 

Figure 3.2. The interface between solution phase and PDMS phase was defined with the 

partitioning coefficient for the chemical partitioning to PDMS bulk. In the channel-soak model, 

0.1 x 1.5 x 21.1-mm long channel was inserted in the PDMS block. For modeling in both set-ups, 

diffusivity into the PDMS was defined. These channel-soak model had a much larger surface-to-

volume ratio compared to disk-soak model (70 cm−1 versus 3 cm−1). 

 
Figure 3.2 3D geometries of disk-soak and channel-soak experiments: a) disk-soak: a cylindrical 
PDMS disk (6 mm in diameter and 5 mm in height) was soaked in a 4-mL cuvette; b) channel-
soak: 0.1 x 1.5 x 21.1-mm long channel was inserted in the PDMS block; red arrows in each figure 
denotes the transport of chemicals through the PDMS bulk. 
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3.4. Preliminary Analysis of Extended Modeling Approaches 

 The preliminary analysis included modeling of disk- and channel-soak experiments for two 

chemicals: Bisphenol A and Ethofumesate for which PDMS interaction parameters have been 

measured as described in Chapter 2. Bisphenol A was tested via disk- and channel-soak 

experiments in Auner et al. (2019) and found to have significant PDMS interactions. 

Ethofumesate, tested via disk-soak only, exhibited a significant binding and unbinding 

characteristics with PDMS43. 

The extended models were developed to include surface binding capacity in the surface 

reaction model and partitioning coefficient in the partitioning model (as mentioned in the previous 

section). The surface reaction modeling approach has already been fairly applicable to the disk-

soak length scale43. The task was to find out the caveats (in any) of using both surface reaction and 

partitioning approaches considering both length scales. If the model results complement each 

other, that will confirm the validity of the two modeling approaches. In this analysis, partitioning 

coefficient was derived from the surface reaction model and applied into the portioning model for 

both disk- and channel- soak experiments. The coefficient thus derived was referred to as effective 

partitioning coefficient (partitioning coefficient, K = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

). One 

example of such calculation was included in supplementary section S.2. For these chemicals with 

similar size, their diffusivities were taken to be 10−9 m2/sec in aqueous solution and 10−11 m2/sec 

into the PDMS bulk (DPDMS). Whether this assumption of DPDMS is valid will be discussed later. 

3.4.1. Bisphenol A 

Bisphenol A was modeled with starting concentration of 97 µM and 3000 µM, similar to 

the concentration used in the disk- and channel- soak experiments, respectively. With a simulation 
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time of 48 h, surface reaction model in disk-soak set-up predicted very small depletion. This was 

an expected observation because of bisphenol A’s known weaker partitioning into PDMS in disk-

soak length scale. The portioning model was then run using the effective partitioning coefficient 

of 0.45. Using the effective partitioning coefficient, the modeled concentration appeared to be 

consistent with the surface reaction model (see Figure 3.3). 

 

Figure 3.3 Predicted concentration depletion of bisphenol A for simulating experiment in different 
length scales: a) disk-soak (starting conc. = 97 µM, effective partitioning coefficient = 0.45) and 
b) channel-soak (starting conc = 3000 µM, effective partitioning coefficient = 0.064) experiments; 
Surface reaction model and partitioning model appears to be consistent when appropriate effective 
portioning coefficients were used. 

Similarly, surface reaction model was run for simulating channel-soak experiment, with a 

starting concentration of 3000 µM. Unlike, disk- soak result, predicted concentration depletion 

was large in channel soak length scale – as expected due the larger surface-area-to-volume ratio. 

The effective partitioning coefficient was calculated to be 0.064 which is much smaller than the 

former one (0.064 vs 0.45). In fact, effective partitioning coefficient is not the universal 

description, rather depends on the starting concentration and the length scale – the variability in 

this calculated parameter is reasonable. After the simulation of channel-soak experiment, the 

predicted concentration depletion was fairly consistent, with a small discrepancy in the rate at 
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which those two models predicted the depletion. Such discrepancy may arise from the diffusion 

coefficient being selected based on assumption. Deeper understanding of diffusivity of the 

chemicals into PDMS bulk is necessary. 

Apart from the modeling of disk-soak and channel-soak experiment, bisphenol A was also 

modeled for hypothetical situation where surface-area-to volume ratio (α) were varied for channel-

soak setting. The goal was to investigate the concentration depletion against a wide range of α by 

modifying the geometry by changing the microchannel dimension as shown in the Figure 3.4. The 

wider the microchannel, the lower the surface-area-to volume ratio. With a starting concentration 

of 3000 µM in the surface reaction model, higher depletion was predicted with the higher α (Figure 

3.5). Similar observation of chemical interaction with device materials with respect of the device 

aspect ratios was described by Jenke and Rabinow et al (2017)105. 

 

Figure 3.4 Geometry modification similar to channel-soak experiment, surface-area-to volume 
ratio (α) was modified by changing the microchannel dimensions; red arrows in denotes the 
transport of chemicals through the PDMS bulk. 
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Figure 3.5 Depletion of bisphenol A using surface reaction model; the larger the surface-area-to-
volume ratio, the higher the degree of partitioning. 

3.4.2. Ethofumesate 

Similar to the modeling approaches for bisphenol A, surface reaction and partitioning 

model was developed for ethofumesate to simulate both disk- and channel- soak experiments. 

Unlike bisphenol A, same starting concentration (175 µM, based on the maximum solubility of 

ethofumesate) was used for ethofumesate. By taking similar starting concentration, the intention 

was to investigate if similar partitioning parameter can be applied to both length scales. Figure 3.6 

shows the predicted depletion of ethofumesate for disk- and channel- soak experiment. The 

prediction from partitioning model was fairly in agreement with the surface model results for disk-

soak simulation, with an effective partitioning coefficient, K = 19.5 (Figure 3.6a). In channel-soak 

simulation in Figure 3.6b, the surface model predicted very steep depletion which may indicates 

the impact of high surface capacity parameter of ethofumesate. By running the partition model 

with the K value of 19.5, strong partitioning of ethofumesate was also evident. Similar to what 

was observed for bisphenol A, the discrepancy in the initial depletion rate seems to arise from the 

diffusion coefficient through the PDMS bulk, which was an assumed value and may not be an 

appropriate one. 
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Figure 3.6 Predicted concentration depletion of ethofumesate for simulating experiment in 
different length scales and conditions: a) disk-soak, b) channel-soak, c) channel-flow experiments; 
for similar starting concentration of 75 µM (nominal concentration for channel-flow simulation), 
same effective portioning coefficient (K =19.5) can be used to pursue partitioning modeling 
approach. 

In addition to disk- and channel- soak simulation, a model was developed for ethofumesate 

depletion in the channel-flow experiment, particularly for predicting the concentration at the 

channel outlet as done in the real microfluidic experiments. Nominal concentration was set to 175 

µM at a flow rate of 10-10 m3/sec (6 µL/min) for simulation time of 48 h. Due to the continuous 

exposure of ethofumesate, both surface reaction and partitioning model predicted the concentration 

to reach the nominal concentration (Figure 3.6). These models were developed using surface 

binding capacity extracted from the prior modeling approach. And the proper understanding of the 
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diffusivity of chemicals into PDMS is still missing. The findings under flow-condition, therefore, 

cannot be conclusive without further analysis and validating with channel-flow experiments. 

3.5. Preliminary Experimental Design for Model Validation 

The extended modeling approach works well for disk soak and channel soak experiments, 

but has not been validated against channel flow experiments with measurements in perfused organ-

on-chip devices. So, an experimental scheme has been implemented to validate in-device 

toxicokinetics. The preliminary experiment was performed with two chemicals with strong 

chemical-PDMS binding: ethofumesate and molinate. 

To examine the effect of chemical-PDMS binding, chemicals were introduced to PDMS 

microchannel in a real device and the effluent were collected from the channel outlet at specified 

time intervals. Chemicals were administered using syringe pump at a flow rate of 36 µL/h 

(maximum velocity, umax = 10-4 m/sec).  Following the exposure, the hourly samples were collected 

in microcentrifuge tubes for the first 24 h and daily thereafter until the effluent concentration no 

longer changes. Hourly collected sample’s UV-Vis spectra were measured using Nanodrop 2000C 

Spectrophotometer. Dilution series standards were also measured for all tested chemicals, and 

calibration curves were generated to translate absorbance into concentration. 

Experimental protocol was developed for forward kinetics and reverse kinetics. 

Experiments for forward kinetics included real measurement with chemicals perfused to saturated 

PDMS using PFA tubing, positive control with chemical perfusion only through PFA tubing (no 

PDMS), and negative control with water (solvent) perfusion into PDMS using PFA tubing. For 

reverse kinetics, chemical flow was stopped in real measurement and water was allowed to flow 

to see if any chemical comes back into solution in the channel (i.e., the reverse Kinetics). During 
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the long-hour preliminary experiment (n=1), positive and negative controls were good for both 

chemicals. While complete loss of molinate was observed, ethofumesate concentration stayed at 

50% of the injection concentration though out the experimentation. In the reverse experiment, non-

measurable desorption was anticipated. Overall, a constant sequestration of chemical from the 

solution was evident in the long-term binding experiment which is also not consistent with the 

predicted concentration in Auner et al (2019) and the model presented here in Figure 3.6c. It 

implies that the chemical-PDMS interaction is far from saturation as a result of rate limiting 

binding-unbinding kinetics of chemicals with PDMS. This observation needs further investigation. 

Sone challenges were experienced in performing the validation experiments. Chemicals were 

found to have interaction with tygon tubing system which was later replaced with the more 

chemical resistant perfluoroalkoxy (PFA). Care should be taken when testing highly volatile 

chemical like Molinate. In that situation, experiments should be designed under confined setting. 

3.6. Discussion 

From the preliminary modeling analysis, it has been observed that both surface reaction 

and partitioning model can be fairly in agreement across different length scales with an effective 

partitioning coefficient. Surface reaction model is, in fact, just an extension of the original model 

by including PDMS bulk diffusion. In the partitioning model, the binding-unbinding kinetics was 

replaced a fast kinetics of partitioning of chemicals into PDMS. This partition coefficient used, 

however, is not chemical specific, rather very specific to experimental/modeling condition. 

Regardless of the modeling approaches, it has also been tested that, chemical depletion and 

strong partitioning is obvious with the higher surface-area-to-volume ratio, in other word, in 

smaller length scale. This potential problem is worsened by the small channel dimensions in such 
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devices’ microfluidic perfusion systems, which yield high surface-area-to-volume ratios. These 

ratios can range from 100-1000 cm-1 for organ-on-a-chip systems. The orders-of-magnitude larger 

relative surface area means that partitioning of a chemical into the PDMS surfaces of microfluidic 

channels can drastically change a chemical’s concentration in the perfusing solution34,43. 

In this chapter, efforts have been made to validate different modeling approaches in 

different length scales. Details of validity and applicability of different models in different length 

scales are summarized in Table 3.1. 

Table 3.1 Summary of modeling approaches and their applicability in different length scale 

Experiment Original model Surface Reaction Model 
(adding PDMS bulk Diffusion) 

Modeling with Partitioning 
coefficient 

Disk-soak Model results are consistent 
with the experimental 
observation 

Outlet concentration is similar to 
the original model. Chemical 
retained on the surface diffuses 
through the PDMS. (no 
additional impact) 

Model can reproduce 
experimental results (with 
effective partitioning 
coefficient calculated from 
surface reaction model) 

Channel -
soak 

works well with surface 
reaction model. 

works well with surface reaction 
model. 

Partition model closely 
follow the surface reaction 
model. 

Channel -
flow 

Model results don’t follow 
experimental findings. Outlet 
concentration quickly 
reaches the injection 
concentration 

Outlet concentration is similar to 
the original model. Outlet 
concentration quickly reaches 
the injection concentration 

 

Doesn’t seem to achieve 
steady state 

 

As also discussed in Chapter 2, the prior modeling approach didn’t provide any means to 

separate the contributions of surface partitioning of a chemical into PDMS and its diffusion into 

the PDMS bulk. The binding capacities for some of the chemical in the prior work were too large 

to represent a true surface carrying capacity which thus implies a significant diffusion into the 

PDMS bulk. The inconsistency and discrepancy in those models and the lack of knowledge on the 
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paramter values (including PDMS diffusivity and the partition coefficient) clearly shows the need 

for experimentally measured parameters to make the model more predictive of the real scenario of 

chemical partitioning into PDMS under microfluidic condition. 

3.7. Conclusion 

Two physical phenomena are involved in chemical-PDMS interaction: surface binding-

unbinding and diffusion into PDMS. The rate limiting kinetics will govern the degree of chemical 

sequestration into the PDMS. The preliminary experiment, showed constant sequestration of 

chemicals (Ethofumesate) that means saturation never achieved. It could be the result of rate 

limiting binding-unbinding kinetics of chemicals. Instead of using the prior modeling approach 

with lumped surface binding parameter, a hybrid model should be developed that includes the 

distinct contribution of the binding and unbinding kinetics with more realistic surface binding 

capacity and the appropriate diffusion coefficient into the PDMS. This challenge certainly seeks 

for further experiment to find out the diffusion coefficient for the chemicals under fluidic 

condition.
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Chapter 4 CHAPTER 4 Chapter 4                                                                                                                    
b                                                                                                                                     

COMPUTATIONAL MODEL FOR DOWNSTREAM METABOLITE DETECTION 

4.1. Introduction 

Organ-on-chip microsystem (OCM) shows promises to recreate the dynamics of cellular 

functions in response to chemicals and drugs. To achieve its full potential, it is essential to integrate 

detection techniques with high spatial and temporal resolution, for monitoring cellular metabolic 

responses, such as glucose or glutamate uptake and lactate production. One of the techniques of 

detection is electrochemical sensors based on electrical measurement against chemical 

concentration1. Such electrochemical sensing techniques developed at the Vanderbilt Institute for 

Integrative Biosystems Research and Education (VIIBRE) are: 1) microphysiometer, with sensor 

electrodes embedded with cells in the same chamber allowing in situ detection, and 2) 

microclinical analyzer (µCA), sensor chamber placed downstream of the cell chamber allowing 

downstream detection. 

While in situ detection using microphysiometer has already demonstrated its capability for 

instantaneous measurement48,54,106, their design can be complex and system specific. On the other 

hand, µCA, a comparatively newer and versatile design under investigation, is advantageous for 

being adaptable to variety of cell culture microsystems with easy pumping and valve system.1 The 

application of µCA can be possible with detailed understanding of its ability to measure the 

metabolic signals downstream, without compromising the resolution. In this work, a detailed 

computational approach has been taken to evaluate the performance of µCA in detecting cellular 

metabolism using enzyme-based sensors. 
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4.2. Enzyme-based Sensors for Metabolite Detection 

The majority of electrochemical sensors are enzymatic sensor which are very selective to 

particular interaction with specific metabolite in the heterogenous environment of cells. Coating 

of enzyme onto the sensor electrode enables detection of chemicals that can be enzymatically 

oxidized. Oxidase enzymes, glucose-, lactate-, glutamate-oxidase have all been used for 

electrochemical detection.46 Enzymes are deposited on electrode head that is exposed to the 

solution to be analyzed. This layer also includes bovine serum albumin (BSA) and the crosslinker 

glutaraldehyde46,48,106. If the electrode is biased at a correct voltage, the rate of conversion of O2 

to peroxide (H2O2) in the sensor electrode region can be described by,106 

𝑂𝑂2 + 2𝑒𝑒− + 2𝐻𝐻+   𝐻𝐻2𝑂𝑂2→
𝑝𝑝𝑝𝑝       (Equation 4.1) 

The enzyme layer onto the electrode is porous medium allowing the chemical/analyte (A) 

to diffuse though it. The chemical reaction occurring in the enzyme layer is described by the 

Michaelis Menten kinetics:106 

In the glucose-oxidase enzyme layer: 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 → 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂2   (Equation 4.2a) 

In the lactate-oxidase enzyme layer: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 → 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐻𝐻2𝑂𝑂2    (Equation 4.2b) 

In the glutamate-oxidase enzyme layer: 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 → 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐻𝐻2𝑂𝑂2  (Equation 4.2c) 

An additional thin layer of Nafion polymer is deposited on the enzyme layer that limits the 

escape of peroxide and increase the signal48. Generated H2O2 diffuses through the enzymatic layer 
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to the electrode to generate the signal following the reaction in Equation 4.3. The peroxide donates 

two electrons and then oxidizes back to water and oxygen. 

2𝐻𝐻2𝑂𝑂2   →
𝑝𝑝𝑝𝑝 𝑂𝑂2 + 2𝑒𝑒− + 2𝐻𝐻+      (Equation 4.3) 

Electrochemical signal are proportional to the peroxide consumption across the sensor 

electrode106,107. To determine the peroxide consumption, the flux can be calculated using Equation 

4.4 where I is the current generated by peroxide, n is the number of electrons transferred in the 

reaction (n =2 for redox couple of metabolites and respective enzymes), F is the Faraday’s 

Constant. W is the working area (in this case, circular head of the electrodes), and J is the molar 

rate of transfer.  

𝐼𝐼 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛       (Equation 4.4) 

The molar rate (J) can be evaluated from the peroxide production rate using enzymatic 

reaction expression. The Michaelis Menten type reaction in the enzyme layer can also be described 

by [𝐴𝐴] + [𝐸𝐸]
𝑘𝑘𝐹𝐹
𝑘𝑘𝑅𝑅
⇔ [𝐸𝐸𝐸𝐸]

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐�⎯� [𝑃𝑃] + [𝐸𝐸] where rate of peroxide production can be expressed as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝑚𝑚+𝑐𝑐𝑠𝑠

       (Equation 4.5a) 

𝐾𝐾𝑚𝑚 =  𝑘𝑘𝑟𝑟+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘𝑓𝑓

       (Equation 4.5b) 

            Here brackets denote concentrations, A is the chemical/analyte (glucose/lactate/ 

glutamate), P is the peroxide (H2O2), E is the enzyme, kF, kR, and kcat are the reaction rate constants, 

Vmax is the maximum rate of the reaction and Km is the Michaelis Menten constant equal to the 

analyte concentration at which the reaction rate is half of Vmax. By combining Equations 4.4 and 
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4.5a, current signal can be expressed as the Equation 4.6 that shows signal’s dependence on the 

analyte concentration. 

𝐼𝐼 = 𝑛𝑛𝑛𝑛 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. [𝐴𝐴]
𝐾𝐾𝑚𝑚+[𝐴𝐴]

      (Equation 4.6) 

The measured current signal resulting from the change in glucose, lactate, or glutamate 

concentration at the enzyme-modified electrodes generates analytical data as current vs time. This 

data can be translated in terms of analyte concentration and exposure time, providing information 

on metabolic activities in real-time. 

4.3. Microclinical Analyzer Modeling using COMSOL 

Modeling of convective-diffusive-reactive transport in µCA, including enzymatic reaction 

on the sensor surface, was conducted using COMSOL Multiphysics (Burlington, MA).  

4.3.1. Geometry for the metabolite detection 

Chemical transport was modeled through two µCAs (Radius = 6 mm, Height of each 

chamber = 0.23 mm, volume = 26 µL) and three electrode heads (area = 1.8 mm2) on the bottom 

of the chamber surface. Two µCAs were connected with 150 mm tubing where the upstream µCA 

chamber mimicked the cell chamber and the downstream µCA chamber represented the sensor 

chamber (see Figure 4.1). Such arrangement with two µCAs also allowed for comparative analysis 

of in situ and downstream signals. 
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Figure 4.1 a) COMSOL geometry of two µCAs (radius = 6 mm, height of each chamber = 0.23 
mm) connected with 150 mm tubing – upstream chamber mimicked the cell chamber and the 
downstream chamber mimicked the µCA; b) circular section in the chamber shows circular area 
of three electrodes (area = 1.8 mm2). 

4.3.2. Modeling enzymatic reaction in µCA 

For enzyme-based metabolite detection, the geometry was extended to include the Michalis 

Menten type metabolic reaction around the sensor surface area. The geometry was slightly 

modified by adding a cylindrical volume just above the sensor electrodes to create the volume 

required to allow the Michalis Menten type metabolic reaction to take place (Figure 4.2). The layer 

thicknesses were simplified by making a best guess of the enzyme height of 40 µm. The additional 

Nafion layer is neglected in the model. This added reaction feature of computational model 

simulated the cylindrical volume above the electrodes for the enzymatic reaction: [𝐴𝐴] +

[𝐸𝐸]
𝑘𝑘𝐹𝐹
𝑘𝑘𝑅𝑅
⇔ [𝐸𝐸𝐸𝐸]

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐�⎯� [𝑃𝑃] + [𝐸𝐸]. 
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Figure 4.2 Modeling enzymatic layers for metabolite detection: three enzymatic sensor electrodes 
placed on the bottom of the µCA (left); simple 2D schematic showing the enzyme layer on the top 
of the electrodes where the Michaelis Menten type reaction occurs and produced peroxide gets 
consumed by the electrodes (right). 

4.3.3. Boundary conditions 

The modeling was performed using a number of boundary conditions to mimic the cellular 

consumption and the sensor. The sensor surface boundary condition is set to zero concentration 

based on ideal sensor theory107, indicating complete consumption of analytes by the sensor 

electrodes (Figure 4.3). Isothermal condition was assumed throughout the modeling, with 

convective flux boundary conditions specified at both device inlet and outlet. In the solution phase, 

diffusion coefficients of glucose, lactate, glutamate, and peroxide were taken from the study of 

Velkovsky et al (2011). In the porous enzyme layer, diffusivities of these chemicals were assumed 

to be significantly low as reported in the literature108–110. 

Measurement with µCA is performed under two flow conditions: stop-flow and continuous 

flow48,111. For modeling continuous perfusion of analytes, steady state fluid field was used, and for 
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stop-flow perfusion, transient state fluid field imposed. A brief discussion on these two types of 

perfusion has been in included in the supplementary document (S.4). 

 
Figure 4.3 Mesh and boundary conditions to model transport in µCA. Fine fluid dynamics meshing 
was applied to the geometry, including µm-scale size of the mesh elements on the sensor surface 
(top view); convective flux boundary conditions specified at both device inlet and outlet (front 
view); boundary condition was set to zero concentration of peroxide at the sensor surface, 
assuming complete consumption by the electrode, cellular consumption or production was set as 
a flux across the bottom surface of the µCA. 

The transport of chemical species i from the cell chamber to the sensor chamber can be 

defined as convective-transport-reaction equation: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝐷𝐷𝑖𝑖∆2𝐶𝐶𝑖𝑖 − 𝑢𝑢∆𝐶𝐶𝑖𝑖 + 𝑅𝑅, which is very 

similar to Equations. 2.4 and 2.5. The reaction term R is a sink (or source) term representing 

cellular consumption (or production) rate for glucose/glutamate (or lactate). The consumption of 

glucose and glutamate were defined as the molar flux (mol/m2.sec) at the electrode surface and 

those terms were normalized with the initial concentration. Lactate production terms was defined 

as a function of glucose production rate, including a degree of anaerobicity (x%) of the cellular 
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microenvironment1,112. One mole glucose can convert to two moles of lactate in anerobic 

condition. This reaction can be defined by Equation 4.7, and the lactate flux can be written as the 

Equation 4.8.  

[glucose]  2[lactate]: 𝑑𝑑[𝐺𝐺]
𝑑𝑑𝑑𝑑

= − 2 𝑑𝑑[𝐿𝐿]
𝑑𝑑𝑑𝑑

   (Equation 4.7) 

Flux|lactate = Flux|glucose × 2 × 𝑥𝑥%    (Equation 4.8) 

The enzymatic reaction was modeled within the volume section defined as enzyme layer. 

The peroxide concentrations were used as sensor signals by taking integration over its consumption 

flux across the electrode surface. 

The modeling scheme was validated by simulating a simple consumption experiment in 

µCA and by reproducing the experimental signals. This proof-of-concept study (Supplementary 

S.5) successfully demonstrate the potential of computational development of transport through 

µCA. 

4.4. Estimation of Kinetic Parameters for Enzymatic Reaction 

The modeling of enzymatic reactions needs the kinetic parameters such as Km and Vmax. 

Such parameters are often extracted by fitting to the experimental calibration plots (signal vs 

analyte concentration)46,111. The measured signal depends on the degree at which peroxide 

produces and reaches to the electrode surface, and thus combines the contribution of the reaction 

kinetics and the transport kinetics of peroxide. If kinetic parameters are obtained from the such 

experimental data, those are not fully predictive of the enzymatic reactions – more of a 

representation of the combined kinetics of the enzymatic reactions and the transport of peroxide 
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on the surface of the electrode, overestimating the reaction parameters. In an effort to find the 

reaction kinetic parameters, an additional numerical analysis has been performed. 

The Nelder-Mead simplex method113,114 is a commonly applied direct search method used 

to find the minimum or maximum of an objective function in a multidimensional space. In this 

work, computational modeling for glucose, lactate, and glutamate sensors were performed 

iteratively with best, next-to worst, and worst guessed Km and Vmax values. For each set of 

parameters, it was possible to model the calibration plots similar to the those of the previous 

studies. The objective function was defined as the goodness to fit (sum of squared residual) of the 

modeled calibration plots with the experimental data points (see Figure 4.4). The iterations were 

continued until the objective function minimized, and the parameters were selected from the final 

iteration. The estimated kinetic parameters were slightly lower than those reported in the published 

study (see Table 4.1). 

 

Figure 4.4 Using Nelder-Mead Simplex method of kinetic parameter search. Calibration data 
points from the experiments were fitted to find out the Michaelis Menten kinetic parameters for a) 
glucose, b) lactate, c) glutamate. 

For a given chemical, data from the calibration experiments were fitted to the Equation 4.6 

and goodness-to-fit was assessed for comparing with the quality of the literature results and this 

numerical approach. These results were compared with those obtained from the numerical analysis 
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as shown in the Table 4.1. The details of the numerical method and the iteration results have been 

included in the supplementary figure (S.6) and tables (S.7, S.8, S.9). The Km and Vmax values of 

the enzymatic reactions appeared to be smaller than those from the literatures, implying that these 

parameters described the sole contribution of Michalis Menten type enzymatic reactions. This 

numerical approach for finding the reaction kinetic parameters appears to be convincing with the 

improved goodness to fit – making those parameters appropriate for the modeling of enzymatic 

reactions, mimicking glucose, lactate, and glutamate sensors within µCA.  

Table 4.1 Estimation of reaction kinetic parameters: Nelder-Mead Simplex method was used to 
search the kinetic parameters for the enzymatic reactions. In this work, parameters were estimated 
using iterative modeling approach, and compared with those reported in previous studies46,111. The 
approach taken here appears as a means to improve the prediction of parameters as evident by the 
goodness to fit values. 

Parameter  
Glucose Lactate Glutamate 

Melow et al 
(2020) 

Nelder-Mead 
Method 

Melow et al 
(2020) 

Nelder-Mead 
Method 

Miller et al 
(2018) 

Nelder-Mead 
Method 

Km (mM) 33 24.7 0.67 0.42 5.3 4.86 
Vmax 

(mM/sec) 1.02 1.57 0.14 0.23 2.13 0.22 
Goodness 

to fit 263900 251714 3895 1983 417 583 
 

4.5. Downstream Metabolite Detection for Continuously Perfused System 

 Microclinical analyzer can be used under the continuous flow condition. With continuous 

perfusion with buffer, chemicals along with the buffer are injected as pulse input and changes in 

signal can be observed due to the exposure. 

4.5.1. Predicted impact of flowrates in continuous perfusion 

In the real-time measurement of analytes using microphysiometer and µCA, calibrations 

are often done at high flow rate, but experiments are run at low flow rates46,48,54,111. It is important 

to understand the degree to which a calibration done at one flow rate is valid at other flow rates. 
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To analyze the consequence of calibration at different flow rates, glucose sensor has been modeled 

and calibration curves were generated at various concentrations ranging from 1 to 25 mM and 

under the continuous flow condition of 10, 20, 100 µL/min (Figure 4.5). 

 
Figure 4.5 Calibration plot (Concentration vs time). (left) Variation in flow rate impacted the 
calibration curve. The impact is higher at high concentration. (right) For high concentration, 
measurement at low flow rate is subject to calibration error up to 15%. 

 
Figure 4.6 (left) glucose gradient across the enzyme layer. (right) peroxide gradient across the 
enzyme layers.  

At low concentrations (<5 mM), modeled glucose signals were found to be slightly higher 

at high flow rate (100 µL/min), but at higher concentrations (>5mM), signals were higher at low 
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flow rates (10, 20 µL/min). This behavior is like to be attributed to the availability of glucose for 

the enzymatic reaction and peroxide production rate (Figure 4.6). Higher flow rate causes higher 

supply of chemicals and low flow rates provides higher residence time for the reaction to happen. 

At low concentration, higher flow rates yield higher signal due to faster availability of the glucose. 

At high concentration, lower flow rate causes higher residence time for more peroxide production, 

increasing the signal. If the flow rate of 100 µL/min is considered as standard one, calibration at 

10 µL/min would cause an error up to 15% at higher concentration (Figure 4.5). 

4.5.2. Modeling Crosstalk in Metabolite Sensing 

Microclinical analyzer is a multianalyte system, offering a platform for simultaneous 

measurement of different analytes, for example, real-time measurement of cellular consumption 

of glucose as well as its production of lactate at the same time. In the enzymatic reaction, such 

measurements are done by evaluating the peroxide consumption at the electrode surface, not the 

original analytes such as glucose or lactate. So, the peroxide produced in glucose sensor might 

interfere with the signal generated in the lactate sensor and vice versa. Such cross-talk has been 

modeled here. 

In order to investigate any possible signal crosstalk, a glucose and a lactate sensor have 

been modeled within the same µCA. Sensors were specified in two different arrangements: two 

sensors in the same side of the flow and in the opposite side of the flow (Figure 4.7). For both 

arrangements, lactate sensor was kept behind the glucose signal, assuming physiologically relevant 

higher glucose signals are more subject to interfere with comparatively weaker lactate signal. 
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Figure 4.7 The change in signal resulting from the consumption of glucose and production of 
lactate are measured simultaneously and plotted as signal vs time. In the arrangement where two 
electrodes are positioned at the same side of the flow, the glucose signal interfere and increase the 
lactate signal more than 20%, even higher with lower flow rate. 

Modeling was performed with the injection of 5 mM glucose, and 0.5 mM lactate 

(mimicking on and off with appropriate buffer solution) and under flow conditions of 20 µL/min 

with 5-min pulses, 10 µL/min with 10-min pulses, and 5 µL/min with 20-min pulses. There is no 

discernible change in glucose signals in any of the arrangement of sensors. but the lactate signal 

was found to increase when placed at the same side of the glucose sensor. Lactate signal was found 

to increase by 26, 31, and 33% under the flow condition of 20, 10, 5 µL/min, respectively. Peroxide 

produced in the upstream glucose sensor interfered with that produced in the downstream lactate 
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senor and overestimated the lactate signal. However, other possible arrangements with glucose 

and lactate sensor were modeled too, but the results were not presented here because of no evidence 

of crosstalk between sensors signals in those arrangements. 

4.5.3. Modeling Downstream Glutamate Consumption 

It have been experimentally observed that the µCA is an easy-to-use and versatile sensor 

for the in-situ monitoring of cellular response to glutamate 46. Miller et al. (2018) reported µCA’s 

use for the glutamate detection by immobilized enzyme glutamate oxidase on a platinum-disk 

electrode colocalized with the neuronal cells. When the cells were incorporated within the µCA, 

the glucose starved cells took up to an average of 210 nmoles of glutamate during the exposure 

for 30 minutes at 20 µL/min. The system thus allowed for quantitative real-time measurement of 

in-situ cellular bioenergetics. 

While the in-situ measurement appears promising, the design of µCA requires further 

testing to evaluate its potential in downstream detection by the effluent from the various 

organotypic culture within upstream OCMs. In this work, a glutamate consumption model has 

been developed using COMSOL to simulate two µCAs (µCAs) – representing one as upstream 

cellular chamber (mimicking glutamate consuming cells) and the other one downstream µCA for 

the downstream detection (Figure 4.8). Modeling was performed with the injection of 1 mM 

glutamate (on and off with appropriate buffer solution) and under flow condition of 20 µL/min 

with one 30-min pulse. Cellular consumption was mimicked as flux boundary condition at the 

bottom of the chamber surface, assuming cells are spread on the bottom of the chamber. The 

consumption flux was calculated from the experimentally found cellular uptake of average of 210 

nmoles of glutamate46. Glutamate detection was modeled as enzymatic reaction occurring in an 
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appropriate thickness of enzyme layer on the top of the electrodes. The enzymatic reaction 

produced peroxide that translates into the signal on the electrode surface. 

 

Figure 4.8 downstream detection of glutamate uptake by neuronal cells under continuous flow 
condition. Model showed that in situ cellular uptake of glutamate is 177.5 nmoles compared to 
downstream measurement of 177 nmoles. 

Glutamate was injected at a concentration of 1 mM. Without cells in the chamber the 

current signal was found to be 290 nA which is consistent with the calibration curves. Due to the 

cellular uptake of glutamate, the in-situ signal was found to be 248 nA and the downstream signal 

was 212 nA. In-situ and downstream both signals were calculated and compared for evaluating 

uCA’s potential for using as downstream detection device. Modeling outcome appears fairly 

consistent with the experimental observation. Model observation showed that total cellular uptake 

of glutamate is 177.5 nmoles compared to experimental consumption of 210 nmoles. The 

consumption flux used in the model was normalized by the glutamate concentration inside the 

chamber (normalization factor = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝑡𝑡=0

) – that yields a slight difference in total 

consumption in situ.  The total consumption was then evaluated from downstream current signal 



68 
 

which is 177 nmoles, similar to the in-situ measurement. So, given the flow condition and exposure 

time, it was possible to simulate the experimental consumption in situ and to detect the glutamate 

consumption downstream of the cellular chamber without any discrepancy. 

4.6. Modeling Metabolite Signals in Stop-flow Perfusion 

In previous studies, microphysiometer was used with stop/flow pump cycle to periodically 

supply the analytes for in situ detection. In this work, effort has been made to model µCA with 

stop-flow protocol for downstream measurement of glucose and lactate. The model tested with 

stop-flow cycles of 200s on/40s off and 80s on/40s off at 100 µL/min to estimate concentrations 

of glucose and lactate.  

Similar to the continuous flow system, the model geometry included two µCAs connected 

with 150 mm tubing where the upstream µCA chamber mimicked the cell chamber and the 

downstream µCA chamber represented the sensor chamber (µCA). (Figure 4.1). Glucose 

consumption flux was assumed to be 5 × 10−6  𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚2𝑠𝑠𝑠𝑠𝑠𝑠

 and 10% anaerobic lactate production was 

considered. Two different flow protocols have been tested, complete 6 stop-flow cycles of 80s 

on/40s off and 200s on/40s off at 100 µL/min.  Glucose consumption has been modeled to decrease 

gradually from 100% to 25% in the first 4 cycles, and consumption was set to zero to mimic dead 

cells in the last 2 cycles. Lactate production was also set to zero in the last 2 cycles (Figure 4.9). 
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Figure 4.9 a) stop/flow protocol of 6 cycles with 200s on/40s off at 100 µL/min. b) glucose and 
lactate flux with rates decreasing with time to simulate live-cell environment and no rates in last 
two cycles mimicking dead cells 

During the flow phase peroxide produced from the enzymatic reaction of glucose and 

lactate, but the peroxide flushed away leaving the signal as baseline. With the available glucose 

and lactate, during the stop phase, an increase in the glucose signal occurred due to the 

accumulation of produced peroxide at the electrode surface. Once the medium from the cell culture 

area passes the electrode, the lactate signal increases due to the lactate produced by the cells during 

the stop phase. The glucose signal dropped in the flow phase (starting from the 2nd cycle) due to 

the consumption on the upstream cell chamber in the prior stop phase. The sharp rise of the lactate 

signal in the stop phase occurred due to the production of the lactate in the stop phase of the prior 

cycle. This behavior can be observed in Figure 4.10 and Figure 4.11. The rise/drop of the glucose 

and lactate peaks is a distinct characteristic signal that the downstream measurement was able to 

capture. Here the lactate production and glucose consumption during the stop phase can be 

determined by the peak height in the flow phase. However, the baseline is slightly increasing the 

glucose signals in successive cycles. 
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To calculate the glucose consumption rate in one cycle, one needs to consider the baseline 

of the same cycle. In the first cycle, total consumption rate 0.54 nmoles/sec based on nominal 

concentration. The measurement through in situ detection is 0.45 nmoles/sec, taken as current 

change over time. From the downstream detection, the glucose signal in the stop phase was used 

to calculate the area under the curve which give the glucose consumption flux of 0.41 nmoles/sec. 

A slight discrepancy has been observed in downstream measurement.  

 

Figure 4.10 Stop/flow (100 µL/min) measurement mimicking metabolism: a, b) glucose signals in 
two protocols; c, d) lactate signals in two protocols - complete 6 stop-flow cycles of 80s on/40s 
off and 200s on/40s off at 100 µL/min. First 4-cyles was set with gradual decrease in glucose 
consumption, hence lactate production; last 2 cycle was set with no cellular consumption and 
metabolite production mimicking dead-cells; longer duration of flow phase is desirable to 
completely flush the system so the signals don’t get overlapped as clearly evident in c and d. 
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Under same stop-flow protocol, the differential impacts of the duration of flow phase can 

be seen in Figure 4.10. For both of the protocols (80s on/40s off and 200s on/40s off at 100 

µL/min), Glucose and lactate signals were clearly transient signals with longer flow phase (200s 

on/40s off). Although glucose signals were distinctive, lactate signals were slightly overlapped in 

shorter flow phase (80s on/40s off system). The minimum time of the flow has to be enough to 

flush the chamber completely to acquire the desired metabolic signals as observed for the 200s 

on/40s stop-flow protocol. 

 

Figure 4.11 Stop/flow (100 µL/min) measurement mimicking metabolism: complete 6 stop-flow 
cycles of 80s on/40s off and 200s on/40s off at 100 µL/min. First 4-cyles was set with gradual 
decrease in glucose consumption, hence lactate production; last 2 cycle was set with no cellular 
consumption and metabolite production mimicking dead-cells; glucose consumption (a) and 
lactate production (b) during the stop phase can be determined by the peak height in the flow phase. 
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Additional impact arises when the flow rates were varied. The flow sensitivity is prominent 

with a flow rate of 100 µL/min as seen in the sharp drop in the glucose signal at the moment of 

stopping the flow. Unlike the high flow rate condition, when the flow protocol was changed to 15 

µL/min with the same stop-flow cycles (200s on/40s off), the flow sensitivity was decreased 

(Figure 4.12). Sharp transient signals were no longer available in the measurement under the low 

flow rate. 

 

Figure 4.12 Impact of flow rates under same stop/flow protocol. The flow sensitivity is prominent 
with a flow rate of 100 µL/min as seen in the sharp drop in the glucose signal at the moment of 
stopping the flow. Unlike the high flow rate condition, when the flow protocol was changed to 15 
µL/min with the same stop-flow cycles (200s on/40s off), the flow sensitivity was decreased; with 
low flow rates, the sharp peaks were no more observed. 15 µL/min appears to be much slower 
flow for the complete flush in the flow phase, resulting is overlapped signal for lactate.  
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In this modeling effort, a µCA was used as a representative cell chamber upstream. It also 

allowed us for evaluating in-situ measurements to compare with the downstream signals. However, 

the first chamber could be a wide variety of organotypic cultures from OCMs with much lower 

volume16,17,19. In the modeling, the first chamber geometry was modified to get a volume half of 

the original volume (original µCA volume = 26 µL. reduced volume = 13 µL). By doing this, it 

was possible to investigate how the size of the upstream chamber effects the downstream signals. 

With half of the original volume of the first microchamber, both glucose and lactate signals 

increased around 40%, as seen in the Figure 4.13. 

 

Figure 4.13 Impact of the size of the upstream chamber: a, b) glucose signal. c. d) lactate signal. 
with a cell chamber volume (original volume = 26 µL. reduced volume = 13 µL), reduced to half 
of the original upstream chamber, glucose and lactate signals increased around 40%. 
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4.7. Discussion 

A computational framework has been developed that is capable of modeling the dynamics 

of in situ and downstream measurement using µCA under continuous and stop-flow conditions. A 

numerical technique has been employed to accurately predict the kinetic parameters needed to 

model the enzymatic reactions. The modeling of metabolic signals under continuous perfusion 

focused on few previous studies. The goal was to recreate some of the previous studies and extend 

those to the application of µCA. This approach will be a guide to the design and protocol for future 

application of µCA. The results showed that in situ and downstream consumption using µCA were 

consistent under continuous exposure at 20 µL/min. In the previous studies, calibrations are often 

done at 100 µL/min, when the actual measurement are conducted at much lower flow rates46,111,115. 

The model showed that the calibration curve generated at 10 µL/min is only valid for 100 µL/min 

at low concentration. In the situation where higher concentration of chemicals is relevant, the 

decision of choosing the flow rates for experiments and calibration is critical. For simultaneous 

measurement of glucose consumption and lactate production, one has to be aware of the placement 

of sensors in the µCA. Glucose signals are usually very large that may cause interference with 

lactate signals which is what happened in one of the modeling investigations. When their 

respective sensors were located at one side of the chambers, modeled lactate signal was 

overestimated due to the crosstalk with glucose signal. 

The modeling of metabolic signals under stop-flow condition included various aspects that 

could impact the measurements. Depending on the flow rate, the duration of the flow phase has to 

be designed to avoid the overlapping of the signals. A reasonable combination of higher flow rate 

and longer duration in flow phase is desirable to yield distinct signals with sharp peak, allowing 

its ability to evaluate the cellular rate. Such cellular rate evaluated from the downstream signal 
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showed slight discrepancy, may be arising from the diffusional spread. The size of the upstream 

chamber also has impact on the downstream signal. With lower volume of the cell chamber, the 

downstream signals are clearer and more distinctive. 

4.8. Conclusion 

A detailed computational framework has been developed for the detection of cellular 

metabolism using microclinical analyzer. In situ and downstream measurement under different 

flow conditions were modeled. This predictive modeling provides an understanding of the various 

factors (flow rates, stop/flow protocol, size of the upstream cell chamber, positioning of sensors 

for simultaneous measurement) that affect measured signal. In addition, a technique has been 

established to extract the kinetic parameters for cellular metabolism, which is critical to accurate 

measurement. Microclinical analyzer showed promises in evaluating the cellular metabolic rates 

as well. This can be successfully used to determine the metabolic response of different organotypic 

cultures of organ-on-chip microsystem connected with it, and can potentially play an important 

role in the assessment of drug and chemical toxicity on organ-on-chip platform.  
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Chapter 5 CHAPTER 5 Chapter 5                                                                                                                    

b                                                                                                                                    

CONCLUSIONS AND FUTURE DIRECTIONS 

5.1. Conclusions 

In the screening of chemical toxicity, the strength of organ-on-chip microsystems relies on 

their ability to reproduce cellular microenvironment – which poses some challenges on how to 

predict in-device toxicokinetics and how to detect cellular metabolic changes in response to toxic 

exposure. These research questions were computationally explored in the dissertation. 

Under aim 1, a toxicokinetic model was developed that demonstrated how to model the 

impact of chemical-PDMS interactions to estimate in-device cellular exposures in organ-on-chip 

microsystems. Chemical-PDMS interactions were assessed for the wider range of chemicals to 

describe their partitioning into PDMS, as well as chemical sequestration via reaction rates and 

chemical-specific carrying capacities were quantified and readily measurable parameters. These 

parameters were used in computational fluid dynamics models to predict in-device effects of 

PDMS-chemical interactions on chemical bioavailability. This research provided new insights into 

how one can quantify and account for chemical-PDMS interactions to calculate in-device 

toxicokinetics. The modeling strategies, once optimized and validated against real measurements, 

could be widely adopted in the field of polymer-based microfluidics for the improved prediction 

of human-chemical dose responses using organ-on-chip microsystems. 

At the end of aim 2, a detailed computational framework was developed for the detection 

of cellular metabolism via enzyme-based sensors in microclinical analyzer. In situ and downstream 

measurements under different flow conditions were modeled. This predictive modeling provided 

an understanding of the various factors that affect measured signal. In addition, a technique was 



77 
 

established to extract the kinetic parameters for cellular metabolism, which is critical to the 

accurate measurement. Microclinical analyzer showed promises in evaluating the cellular 

metabolic rates as well. This computational approach allows for further analysis and testing of 

application of microclinical analyzer. If the model predicts any detection limitation for using 

sensors downstream of the cellular construct, this can be computationally explored to identify the 

alternative operating conditions for improved detection with higher spatiotemporal resolution. 

This computational effort will guide the researchers on design improvement for the next generation 

device for metabolite detection for its application to organ-on-chip microsystems. 

5.2. Future Directions 

5.2.1. In-device toxicokinetics 

In the model development of in-device toxicokinetics, some challenges have surfaced in 

performing the validation experiments. The extended modeling approach worked well for disk 

soak and channel soak experiments, but was not validated against channel flow model with 

measurements in perfused organ-on-chip devices. The original modeling approach considered a 

compound surface binding capacity that cannot separate the contribution of chemical binding onto 

PDMS surface and diffusion of that chemical into PDMS bulk. The binding capacities for some of 

the chemical in the prior work were too large to represent a true surface carrying capacity which 

implies a significant diffusion into the PDMS bulk. Thus, the combined contribution of surface 

partitioning and diffusion into the PDMS bulk may be an inadequate descriptor of the appropriate 

phenomena involved in chemical-PDMS interaction in different time and length scales.  

This discrepancy led to further analysis on how the model can be extended and validated 

with the experimental observation. Instead of using the prior modeling approach with compound 
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surface binding parameter, a hybrid model should be developed that includes the distinct 

contribution of the binding and unbinding kinetics with more realistic surface binding capacity and 

the appropriate diffusion coefficient into the PDMS. This challenge certainly provides provision 

for future experimental approach in order to find out the diffusion coefficient for the chemicals 

under fluidic condition. 

With appropriate diffusion coefficient experimentally measured, the model can be run with 

kinetic parameters to obtain the range of surface density results that needs to be consistent with 

experimental measurements and model observation in different length scales. The models can be 

compared to find out matching condition under which predicted results diverge – especially on 

predicting the outlet chemical concentration. The conditions under which model works across 

different time- and length- scale should be documented. As expected, the model with chemicals’ 

distinct diffusion coefficients would be the appropriate ones to better complement the experiments. 

Another potential future work includes the experimental approach for the assessment of 

surface treatment of PDMS and to examine mitigating behavior of the chemical-PDMS interaction 

for a wide range of chemical of interest in toxicology study. 

5.2.2. Metabolite detection 

In developing the computational framework for metabolite detections, two microclinical 

analyzer were connected so that the upstream chamber can simulate organ-on-chip device. In 

future, a real device could be modeled and coupled with microclinical analyzer. One of such 

systems is neurovascular-unit-on-chip17, developed at the Vanderbilt Institute for Integrative 

Biosystems Research and Education (VIIBRE). This device replicates a vascular and neuronal 

chamber separated by a blood-brain barrier to control chemical transport using thin permeable 
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membrane. The computational approach would allow for the prediction of the chemical/metabolite 

transport from vascular to neuronal chamber may affect the blood-brain barrier by analyzing 

whether the chemical was able to cross into the neuronal chamber or if it had any effects on 

metabolism, and such detection of metabolism would be modeled using a downstream 

microclinical analyzer.
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APPENDIX A Supplementary materials for Chapter 2Chapter 9 

Supplementary Section S.1 

 

Figure S1: Simultaneous fit of microscopic model for binding kinetics (Equation 2.3) to all bisphenol A experiments. 
(A, B) Adsorption and desorption, respectively, for 488 µM channel experiment, (C,D) adsorption and desorption for 
3000 µM channel experiment and (E) adsorption for disk experiment. 
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Chapter 7 APPENDIX B Supplementary materials for Chapter 3Chapter 10 

Supplementary Section S.2 

The mathematical formulation for partitioning coefficient 

Simulation for disk-soak experiment (Bisphenol A) 

Concentration in solution phase = Cs 

Concentration in PDMS = Cp 

Volume of the PDMS = Vp 

𝑉𝑉𝑝𝑝 =  𝜋𝜋𝑟𝑟2ℎ =  𝜋𝜋 (3)2 5 𝑚𝑚𝑚𝑚3 = 141.37 ×  10−9 𝑚𝑚3 

Volume in the cuvette = Vs 

𝑉𝑉𝑠𝑠 = 40 × 10 × 10 × 10−9 𝑚𝑚3 −  141.37 × 10−9 𝑚𝑚3 = 3858.63 ×  10−9 𝑚𝑚3 

Total moles = 𝑁𝑁 =  𝑁𝑁𝑠𝑠 +  𝑁𝑁𝑝𝑝 =  𝐶𝐶𝑠𝑠𝑉𝑉𝑠𝑠 + 𝐶𝐶𝑝𝑝𝑉𝑉𝑝𝑝 =  𝐶𝐶𝑠𝑠𝑉𝑉𝑠𝑠 + 𝐾𝐾𝐾𝐾𝑠𝑠𝑉𝑉𝑝𝑝 = (𝑉𝑉𝑠𝑠 + 𝐾𝐾𝑉𝑉𝑝𝑝) 𝐶𝐶𝑠𝑠 

Let Cs = 97 µM = 97 ×  10−3 𝑚𝑚𝑚𝑚 =  𝟗𝟗𝟗𝟗 ×  𝟏𝟏𝟏𝟏−𝟑𝟑  𝒎𝒎𝒎𝒎𝒎𝒎
𝒎𝒎𝟑𝟑  

At t = 48 h, Cs = 95.9 ×  10−3  𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚3  

Total mole reduction = (97 − 95.5) × 10−3  𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚3 × 3858.63 × 10−9 𝑚𝑚3 = 5.8 ×  10−9 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  

So, at t = 48 h, 𝐶𝐶𝑝𝑝 =  5.8 × 10−9 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
141.37 × 10−9 𝑚𝑚3 = 𝟎𝟎.𝟎𝟎𝟎𝟎 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝒎𝒎𝟑𝟑  

Implementing partitioning coefficient: 𝐶𝐶𝑝𝑝 = 𝐾𝐾𝐶𝐶𝑠𝑠 

From the above equation: K = 0.44 
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Chapter 8 APPENDIX C Supplementary materials for Chpater 4Chapter 11 

Supplementary Section S.3 

 

Figure S.3 a) stop flow system with intermittent flow of glucose; b) continuous flow system with continuous flow of 
PBS buffer and intermittent flow of glucose 

 

 

Supplementary Section S.4 

Table S.4. Modeling the Consumption of Ferricyanide by Upstream µCA Electrode. The upstream microclinical 
analyzer (µCA) was used to simulate cellular uptake within an organotypic device through the reduction of 
ferricyanide. A two-µCA setup was used for the experiments, with the upstream µCA simulating an OCM device and 
the downstream µCA used for quantification. The redox couple of ferricyanide/ferrocyanide was used to simulate 
consumption/production of metabolites within the upstream system, with the changes then measured at the 
downstream µCA. 

 
Flow rate 
(µL/min) 

% current reduction due to consumption in upstream µCA 

Electrode 1 Electrode 2 Electrode 3 
experimental modeled experimental modeled experimental modeled 

200 4.0 4.9 3.47 4.91 2.88 4.89 
20 16.39 13.22 15.62 15.07 16.16 15.15 
2 47.62 37.31 47.10 37.21 -- 37.29 
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Supplementary Section S.5 

 

Figure S.5 Simulation of consumption of chemical in upstream µCA and detection using downstream µCA, with 
continuous flow of ferricyanide at a) 200. b) 20, c) 2 µL/min. Maximum diffusional spread with the maximum current 
reduction at 2 µL/min 
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Supplementary Section S.6 

 

Figure S.6: Illustration of the sequence of steps in one iteration of the Nelder-Mead Simplex method with two 
parameters (n = 2)87 

 

Note: The steps happen in the following order:  

- *Reflect* the worst point through the remaining two points.  

- If the reflected point is now the second-best point, accept it. 

- If the reflected point is now the best point, try *extending* the reflection further.  

- If the *extended* point is even better than the reflected point take the extended point. Otherwise, 
accept the *reflected* point. 

- If the reflected point is still the worst performing of the three points, try two *contracted* 
locations.  

- If the better of the contracted locations is now the second-best point, accept the *contracted* 
point. 

- If the contracted locations are still the worst of the three points, *shrink* the simplex. 
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Supplementary Section S.7 

Table S.7 Glucose Parameter Fitting using Nelder-Mead Simplex Method 

Trials  Km Vmax 

Function: 
Sum of Squared 
Residual (SSR) 

avg of 
function 

% change from 
average 

initial worst 30 1.5 1859829 970489 -91.6383  
 next-to-worst 25 1.7 645072  33.53124  
 best 25 1.5 406566  58.1071  

1 worst 27.5 1.5 982696 552389.3 -77.8992  
 next-to-worst 25 1.5 406566  26.39865  
 best 25 1.6 267906  51.50051  

2 worst 25 1.5 406566 315082.3 -29.0348  
 next-to-worst 24.17 1.57 270775  14.06214  
 best 25 1.6 267906  14.9727  

3 worst 24.17 1.57 270775 263588.7 -2.72634  
 next-to-worst 25 1.6 267906  -1.63791  
 best 24.72 1.56 252085  4.364249  

4 worst 25 1.6 267906 258963 -3.45339  
 next-to-worst 25.55 1.59 256898  0.797411  
 best 24.72 1.56 252085  2.655978  

5 worst 25.55 1.59 256898 253708.7 -1.25708  
 next-to-worst 25.09 1.583 252143  0.617112  
 best 24.72 1.56 252085  0.639973  

6 worst 25.09 1.583 252143 251980.7 -0.06442  
 next-to-worst 24.72 1.56 252085  -0.04141  
 best 24.69 1.565 251714  0.105828  
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Supplementary Section S.8 

Table S.8 Lactate Parameter Fitting using Nelder-Mead Simplex Method 

Trials  Km Vmax Function Error 
initial worst 0.6 0.282921 11811.13 4127.365 

 next-to-worst 0.67 0.282921 14924.71  
 best 0.6 0.273795 8558.645  

1 worst 0.615 0.279 9598.033 1971.774 

 next-to-worst 0.6 0.28 11811  
 best 0.6 0.274 8558  

2 worst 0.60375 0.278 9196.278 704.509 

 next-to-worst 0.615 0.279 9598  
 best 0.6 0.274 8558  

3 worst 0.6 0.274 8558 1150.64 

 next-to-worst 0.60375 0.278 9196.28  
 best 0.58 0.2715 7504.512  

4 worst 0.58 0.2715 7504.51 1195.337 

 next-to-worst 0.6 0.274 8558  
 best 0.5625 0.26225 6665.317  

5 worst 0.5625 0.26225 6665.317 2539.284 

 next-to-worst 0.58 0.2715 7504.51  
 best 0.51375 0.252625 4003.374  

6 worst 0.517 0.25 5181.85 1680.749 

 next-to-worst 0.5625 0.26225 6665.317  
 best 0.51375 0.252625 4003.374  

7 worst 0.51375 0.252625 4003.374 2184.763 

 next-to-worst 0.517 0.25 5181.85  
 best 0.42 0.232 1982.52  

8 worst 0.417 0.233 2174.44 1171.99 

 next-to-worst 0.51375 0.252625 4003.374  
 best 0.42 0.232 1982.52  

9 worst 0.419 0.2325 2066.22 120.8842 

 next-to-worst 0.417 0.233 2174.44  
 best 0.42 0.232 1982.52  
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Supplementary Section S.9 

Table S.9 Glutamate Parameter Fitting using Nelder-Mead Simplex Method 

Trials  Km Vmax Function 
initial worst 5.3 0.257201 14037.26 

 
next-to-
worst 5.3 0.231481 1956.564 

 best 5 0.231481 824.9467 
1 worst 5.15 0.244 4927.45 

 
next-to-
worst 5.15 0.231 878.43 

 best 5 0.231 824.95 
2 worst 5.15 0.231 878.43 

 
next-to-
worst 5.1 0.234 844 

 best 5 0.231 824.95 
3 worst 5.1 0.234 844 

 
next-to-
worst 5 0.231 824.95 

 best 5.08 0.232 674.74 
4 worst 5.08 0.232 675 

 
next-to-
worst 4.98 0.229 593.5 

 best 4.86 0.224 582.64 
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