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CHAPTER 1 
INTRODUCTION 

 

Sleep disorders and their diagnosis 

Obstructive Sleep Apnea (OSA) Syndrome is a sleep disorder in which breathing rapidly 

starts and stops during sleep. It has been independently linked to multiple health conditions 

including an increased risk of hypertension, diabetes, cardiovascular disease, stroke risk, and 

overall mortality.1-4 It affects approximately 6% of women and 13% of men in the United 

States.5 OSA is diagnosed using an overnight sleep study measuring multiple high-resolution 

physiologic signals called a polysomnogram (PSG).  

Overnight polysomnography is central to the diagnosis and management of many sleep 

disorders. A patient will come in at nighttime, and a technologist will apply monitors to 

measure activity in the body related to sleep (Figure 1). Some of this activity includes:  

• Wires with small cup electrodes attached to the scalp with a conductive paste to 

monitor brain activity. 

• Wire electrodes taped to the face to show muscle activity. 

• 2 elastic belts around the chest and stomach to measure breathing effort. 

• A nasal cannula and small heat monitor to measure all breathing activity. 

• A wire electrode on each leg to measure body movement/muscle activity.  

• A monitor taped to a finger to detect oxygen levels during the study.  

• 2-3 lead EKG monitors to show heart rate and rhythm. 

• A small snore mic applied to the throat to detect snoring. 
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Figure 1. Sleep study setup6  

 

 After the study is completed, a sleep technologist will then score the study, labeling 

diagnostic events such as apneas and hypopneas, and sleep staging. Apneas and hypopneas are 
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the cessation and slowing of breathing. An apnea is technically defined by the American 

Acadamy of Sleep Medicine as the absence of airflow for > 10 seconds, while the latest 

hypopnea definition is a > 3% oxyhemoglobin desaturation or event-related arousal.7 Scoring 

these events allows for the calculation of the Apnea-Hypopnea Index (AHI), used to diagnose 

sleep apnea. 

 The value of AHI is used to determine the severity categorization of sleep disordered 

breathing (SDB). These classifications are as follows: mild (AHI = 5-14), moderate (AHI = 15-30), 

severe (AHI > 30). AHI is defined by apnea and hypopnea occurrence and can vary widely with 

the use of different hypopnea scoring criteria. This metric can be difficult to automatically score 

not only because of nuances like the hypopnea scoring criteria, but because of variability in 

human event detection. Despite the variability with AHI, it has been found to correlate with 

cardiovascular risk and overall mortality. 1-4 

 Sleep staging is the categorization of sleep into REM, non-REM and wake stages, and is 

essential for evaluating the quality of sleep and diagnosing its disorders. Sleep staging is 

evaluated using the brain activity (EEG), muscular activity (EMG) and eye activity (EOG) 

channels. The clinical standard for PSG sleep staging requires visual inspection of the data by 

trained sleep technicians and physicians. Sleep technicians look for specific waveforms in the 

EEG channel that indicate sleep stage, some of which include alpha activity, theta activity, 

vertex sharp waves, spindles, K complexes and slow waves. The EMG channel is used to 

distinguish between sleep and wake (muscular activity is lost in sleep), and the EOG channel is 

used to distinguish the presence of eye blinks (wake).7  

 

The sleep staging problem 

 Staging historically followed the Rechtschaffen and Kales criteria until the American 

Academy of Sleep Medicine (AASM) published updated criteria in 2007.8,9 The AASM rules 

divide sleep into five stages: Wake, Non-Rapid Eye Movement stages 1, 2, and 3 (N1, N2, and 

N3), and Rapid Eye Movement (REM). PSG scoring is a labor-intensive process that requires up 

to two hours for a sleep technologist to complete.10 In addition, inter-rater and intra-rater 
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reliability of PSG staging and event scoring is also known to suffer from considerable 

variability.11-20 

In the past, significant effort has been invested in developing computer-assistive or 

automated staging technologies, but they have struggled to achieve human-level 

performance.10, 21-32 The problem is difficult because of multiple channels of timeseries data 

with specific rules and event triggers are used in order to define the stage of sleep. In order for 

a staging system to have clinical utility it should be at least as accurate and reliable as a trained 

human scorer. Therefore, a practical non-inferiority threshold for staging algorithms is an 

overall agreement of 82.0% (Cohen’s kappa = 0.76), which is the overall inter-rater agreement 

between trained scorers at eight European centers using the 2007 AASM PSG scoring rules. We 

tackle the automatic sleep stage scoring problem in our first Aim. 

 

The standard metric: Apnea-Hypopnea Index 

 The gold standard for the diagnosis of OSA is AHI, defined as the average number of 

airflow limitations (hypopneas) and cessations (apneas) observed per hour of sleep during a 

PSG.7 The large volumes of data generated in these studies has been analyzed the same way for 

decades: a human interpreter looks for visual patterns in the data. This labor-intensive task is 

difficult and multiple studies have confirmed significant interrater variability in sleep and 

respiratory event scoring.33-36 We explore the respiratory event scoring problem in our second 

Aim. 

 Furthermore, the definitions of an apnea and hypopnea have changed in recent years as 

the sleep medicine community continues to debate the fundamentals of clinically meaningful 

events during sleep. The cumulative effect of these subjective definitions and interpretations is 

reflected in recently published work that shows the overall predictive value of AHI for 

complications from OSA is low.37-39 Furthermore, published research suggests that the 

definition of clinically significant events may need to change depending on the health outcome 

of interest. Currently, there is a critical need to personalize the field of sleep medicine by 

developing computational tools for PSGs that objectively discover clinically significant OSA 

phenotypes that may be too complex for human interpreters to reliably recognize. 
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Ambiguity in the hypopnea definition 

The definition of a hypopnea has changed since its original definition in 1999. It has gone 

through three different definitions: 1) a > 4% oxyhemoglobin desaturation; 2) a > 3% 

oxyhemoglobin desaturation; 3) a > 3% oxyhemoglobin desaturation or event-related arousal. It 

has been found that as the definition of a hypopnea has changed, AHI has increased, resulting 

in a more severe SDB classification on average.40 Because of the uncertainty and changing 

definition of hypopnea, there has been controversy surrounding the use of the AHI as the single 

disease scoring metric. 

 In addition to the various available definitions of hypopnea, there is a problem in 

measuring hypopnea severity because it is defined using a threshold. A problem with 

thresholds is that any events that exceed the threshold are represented as the equivalent, e.g. 

4% desaturation is considered equivalent to a 10% desaturation. Because of this, we lose 

information about the severity of the hypopnea. Similarly, a 100-second long apnea or 

hypopnea contributes the same information as a 10-second long event to a patient’s AHI. In 

general, the AHI is a useful metric that defines OSA, but does not measure its severity 

particularly well. Despite the problems with AHI, it has been found to correlate with 

cardiovascular risk and overall mortality. 1-4  

 A growing body of evidence suggests that a common definition of AHI may be 

insufficient for predicting the many complications of OSA. This may be due, in part, to the fact 

that repetitive airway obstructions can variably precipitate other physiologic events such as 

tachycardia, blood oxygen desaturation, and neurologic arousal. While these related risks are 

likely important for quantifying associated disease risk, they are only coarsely captured by 

defining threshold criteria for apneas and hypopneas, if at all. In the Sleep Heart Health Study 

(SHHS), severe OSA has been shown to double the hazard ratio of cardiovascular disease risk in 

certain subpopulations, but in other groups the prognostic power of AHI appears more 

limited.2,10,39 

 AHI severity categories do not correlate well with symptom burden or comorbidity 

outcomes.39 This has led to other signal patterns in PSG data being investigated for their 
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relationships with outcomes of interest. Two-percent oxygen desaturations have been found to 

predict insulin resistance, while 4% oxygen desaturations and REM-predominant OSA predict 

hypertension.41-43 The time spent with an oxygen saturation below 90% predicts platelet 

aggregation, while an increased arousal index predicts memory impairment.44-46 Definitions of 

disease burden may therefore need to change depending on a given patient’s history, the 

outcome of interest, and the specific pathophysiologic mechanisms underpinning their OSA.38 

We tackle this problem of defining phenotypes in our third Aim. 

 

Machine learning in sleep 

 Machine learning has started to become more widely used in the sleep medicine field in 

the past couple years. Problems such as apnea/hypopnea event detection or sleep staging are 

examples of some of the areas that machine learning has been used to explore and solve.20-30 

Polysomnogram data, the main diagnostic data available for sleep, is in the form of 

multichannel signal data. This type of data is both temporal and spatial in nature, and lends 

itself well to deep learning techniques, which have been widely used in other areas of signal 

processing (music, weather forecasting).31,32 We apply a combination of traditional machine 

learning and deep learning techniques to polysomnogram data to try and solve the 

beforementioned problems. 

 

Dissertation Aims 

 In this dissertation, we leverage a variety of machine learning methods in combination 

with clinical knowledge to build models that help to characterize, measure and phenotype sleep 

apnea. Deep learning can be used to take advantage of the structure of polysomnogram data 

and learn to recognize predefined patterns and definitions, as well as search for new patterns. 

We use these techniques to first solve supervised problems, automating sleep staging and 

apnea/hypopnea event detection, and then build models to predict comorbid outcomes such as 

cardiac arrest.  
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Aim 1: Predict sleep staging from polysomnograms using deep learning. 

The first aim describes the development of an automated sleep staging model using 

polysomnogram data as input into deep neural network models. Chapter 3 presents the process 

and reasoning behind the model creation and presents results on the performance and model 

generalizability.  We published this work in the journal of SLEEP medicine, under a title of 

“Automated Sleep Stage Scoring of the Sleep Heart Health Study Using Deep Neural Networks”. 

Automating sleep stage scoring is an important step in the automation of polysomnogram 

scoring, as well as developing a model that can reduce variability in sleep stage scoring.  

 

Aim 2: Predict AHI from polysomnograms using deep learning. 

The second aim describes the development of an automated apnea/hypopnea event detection 

model and its use to predict AHI. Chapter 4 details the creation of this model as well as the 

effects of differing representations of the temporal data. This work explores deeper into the 

different ways to represent snippets of signal from a long overnight sleep study and how those 

representations affect prediction of events. Automating respiratory event detection is another 

important step in the automation of polysomnogram scoring and the methods used in this 

problem illustrate different ways that timeseries data can be represented. 

 

Aim 3: Engineer PSG-derived features that predict sleep apnea-associated cardiac outcomes. 

The third aim describes the development of a series of models that predict cardiac outcomes 

associated with sleep apnea. The base model is built to predict cardiovascular outcomes with 

multiple clinician-defined features (e.g. AHI, demographics, clinical data, etc.). We then 

developed engineered features derived from polysomnograms and literature in sleep apnea. 

These features significantly improve prediction of associated cardiac outcomes and show that 

there are sleep-derived patterns and features within polysomnograms that can be used to 

describe those outcomes. This work is important in starting to develop and categorize subtypes 

of OSA, allowing for more personalized treatment. 

 



 8 

 The work in this thesis is important in the advancement of the field of sleep medicine. 

There is a wealth of data from polysomnography that is perfect for modeling and pattern 

discovery. With the development of data-driven models, the time-consuming and variable tasks 

such as polysomnogram scoring can be automated. With the development of new data-driven 

phenotypes, we can develop better descriptors of sleep apnea, resulting in more personalized 

patient treatment plans.  
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CHAPTER 2 

BACKGROUND 

 

 This dissertation explores sleep apnea and how we diagnose it using polysomnography. 

To do this, we must first understand what the signal data looks like and how we use machine 

learning to process and learn from it. This chapter describes the data and methods used, 

followed by previous research in this domain. 

 

Polysomnography and signal data 

 Polysomnograms are an overnight record of a number of physiological signals of the 

sleeping patient. In order to gain information from these signals, sleep technicians look 

manually look through the study and score events and sleep staging (Figure 2). These events 

and sleep stages are used to diagnose sleep apnea.7 

 

Figure 2. Sleep stage summary. The EEG channel describes brain activity, EOG channel describes 

eye activity, and EMG channel describes muscle movement.47 
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 Signal data can be processed and analyzed or used as input features for other models. 

Generally, signal data are described or analyzed by measuring the frequency of the signals. 

These frequencies are associated with events that are occurring within the channel. 

Transforming the data from the signal domain into the frequency domain using Fourier or 

Wavelet transformations can summarize the frequencies of the signal and is helpful in analysis. 

These summaries are often used as inputs into models, because they contain a condensed 

version of the important information from the signal. 

 

Machine learning 

Machine learning uses probabilistic mathematics to recognize data patterns by 

inspecting many examples rather than by following explicit programming. There are two types 

of machine learning: supervised and unsupervised. Supervised machine learning uses labeled 

data to train models that predict an output (label) for the associated input. The goal for these 

models is to be able to predict the label for new, unseen input. To do this, supervised machine 

learning models learn patterns and relationships between the input and output labels. 

Unsupervised machine learning uses unlabeled data and attempts to find order, patterns or 

structure between the inputs. Its goal is more exploratory; it attempts to cluster the inputs in 

order to summarize, explain or identify noteworthy patterns.48 

 Machine learning analyses are not based on a priori clinical definitions, and therefore 

have the potential to learned existing and unrecognized phenotypes. Specifically for sleep data, 

we choose to use deep neural networks, a type of model which mimics the neuronal 

connections of the human brain. These systems have only become practical within the last 

decade as computational power has increased to the point where models can be trained on 

large datasets.48 They rapidly analyze large volumes of data through layers of interconnected 

processing units to find patterns that many be too complex for human interpreters to 

recognize. Deep learning systems have been shown to scale well for large datasets and build 

highly accurate classifiers out of noisy, real-world datasets.  
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Deep learning and neural networks 

A standard neural network consists of a number of simple connected processors called 

neurons that mathematically transform an input signal into an output. The relative strength, or 

weight, of each neuron is iteratively adjusted during model training to maximize the accuracy 

between the network output and the expected value. Deep neural networks have many layers 

of neurons, where the output of one layer provides the input to the next layer, enabling 

discovery of nonlinear and hierarchical relationships within the data.49 An example of this 

hierarchical learning can be seen in the facial recognition problem (Figure 3). 

Figure 3. Example neural network used to solve facial recognition problem.49 

 

Specialized neural networks use convolutional and recurrent layers to take advantage of 

naturally existing structures within data. Convolutional neural networks emphasize patterns in 

close spatial proximity and are well-suited to problems in the image classification and 

recognition space.48 Recurrent neural networks function well with information contained in 

sequences such as natural language, where the next word or character depends on the 

immediately preceding data.50  

 Convolutional layers differ from the regular fully-connected network layers in that their 

connections are limited to other network structures in spatial proximity, emphasizing locality or 
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co-occurrence within the data. They have been used in various image and signal applications, 

ranging from image classification to brain-mapping using EEG signals.51-52 (Figure 4).  

 

Figure 4. Convolutional neural network used to solve image recognition.53 

 

 Recurrent layers feature unidirectional feedback mechanisms from downstream 

network structures. This construction takes advantage of continuous sequences, where 

memories of past events contribute to future decision making. Recurrent neural networks have 

yielded dramatic improvements in speech recognition and wind forecasting.50,54 The activating 

features of these networks can be visualized through different methods including visualizing 

layer activations and maximally-activating inputs, thus allowing for human interpretation of the 

learned model (Figure 5). 
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Figure 5. Recurrent neural network structure.55 

 

Machine learning in sleep medicine 

Machine learning is a field of computer science where classifiers discover novel patterns 

within a dataset without the traditional explicit encoding of all rules. Because PSG data are 

complex, different machine learning methods for detecting sleep stages have been trialed over 

the last twenty years. Published models have utilized hand-tuned feature extraction techniques 

such as spectral power, time domain analysis, and time-frequency domain (wavelet) analysis.56-

59 Other systems employ fuzzy logic, support vector machines, hidden Markov models, or 

artificial neural networks.60-69 Most of these systems do not achieve human-level inter-rater 

agreement or are tested against a small set of preselected, high-quality PSGs that do not reflect 

realistic testing environments. Few have been validated against large clinical datasets. In recent 

years, deep neural networks have rapidly found favor for signal analysis. They have proven to 

be remarkably robust in developing classifier systems for noisy, “real-world” datasets: the type 

of data represented by PSGs. PSGs are well suited for convolutional and recurrent processing 

methodologies as they consist of spatially- and temporally-related signal data.  

 The increase in available computing power and publicly available PSG datasets over the 

last several years has brought the era of Big Data and machine learning to sleep medicine and 

made deep neural network processing of PSGs feasible.70,71 Successful development of a 

reliable and accurate automated scoring system using machine learning will ease the burden of 

PSG scoring and will reduce sleep staging inter-rater variability that affects Sleep Medicine 

research and clinical practice. 
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Machine learning in sleep staging 

 Staging historically followed the Rechtschaffen and Kales criteria until the American 

Academy of Sleep Medicine (AASM) published updated criteria in 2007.8,9 The AASM rules 

divide sleep into five stages: Wake, Non-Rapid Eye Movement stages 1, 2, and 3 (N1, N2, and 

N3), and Rapid Eye Movement (REM). PSG scoring is a labor-intensive process that requires up 

to two hours for a sleep technologist to complete.10 Inter-rater and intra-rater reliability of PSG 

staging and event scoring is also known to suffer from considerable variability.11-20 

 Significant effort has been invested in developing computer-assistive or automated 

staging technologies, but they have struggled to achieve human-level performance.10, 21-32 

These studies use a wide variety of signal processing and machine learning methods. In order 

for a staging system to have clinical utility it should be at least as accurate and reliable as a 

trained human scorer. Therefore, a practical non-inferiority threshold for staging algorithms is 

an overall agreement of 82.0% (Cohen’s kappa = 0.76), which is the overall inter-rater 

agreement between trained scorers at eight European centers using the 2007 AASM PSG 

scoring rules.  

 

Machine learning in apnea-hypopnea prediction 

 There has been much work on apnea-hypopnea event prediction in the past. Koley & 

Dey (2013) automatically detect apnea and hypopnea events from a single oronasal airflow 

channel using support vector machines.72 Huang et al. (2017) detect apnea and hypopnea 

events based on the respiratory nasal airflow signal and the oximetry signal.73 They use a sliding 

window and short time slice method to eliminate systematic and sporadic noise of the airflow 

signal for improving the detection precision. Choi et al. (2018) use convolutional neural 

networks in a sliding window method to detect events.74 Yu et al. (2019) use random forests on 

hand-engineered features for detection.75 A number of these methods perform fairly well on 

the event detection problem, using a wide variety of techniques and methods of data 

representation. The problem is handled differently by almost every study in this problem space, 

because there is no defined period of time in which an apnea or hypopnea event can occur; the 

event can occur at any point, and only has the requirement of lasting a minimum of 10 seconds. 
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Because of this, we decide to explore different ways of representing the signal data in different 

window periods of time, and its effect on apnea/hypopnea event detection and the resulting 

AHI. 

 

Phenotyping sleep apnea 

Different methodologies have been applied in recent years in an attempt to better elucidate 

factors related to OSA pathogenesis. A top-down, structured approach to phenotyping based 

on PSG measurements of multiple clinician-defined physiologic traits was described in 2013 by 

Eckert and colleagues as the PALM Scale (airway critical closure pressure [Pcrit], arousal 

threshold, loop gain, muscle responsiveness of the upper airway).77 These features are 

measured by actively alternating airway pressures in patients wearing continuous positive 

airway pressure tolerance (CPAP) and then measuring physiologic responses according to pre-

specified criteria. Patients showed significant trait heterogeneity, with over half displaying 

abnormal non-anatomic features such as hypersensitive loop gain, decreased arousal 

thresholds, and inadequate pharyngeal dilator muscle responsiveness. Further work has shown 

that patient populations display different combinations of PALM traits.78,79 Other research 

confirms that phenotypes can have differential responses to targeted therapies,80-85 lending 

greater weight to the concept of undiscovered OSA subtypes with different underlying disease 

risks and responses to therapy. There is a need for more work in this area, which we dive into 

with Aim 3. 
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CHAPTER 3 

AUTOMATED SLEEP STAGE SCORING OF THE SLEEP HEART HEALTH STUDY USING DEEP 

NEURAL NETWORKS 

 

Statement of significance 

 Sleep staging is an important part of evaluating overnight polysomnograms. Sleep 

stages are scored by technicians and physicians based on visual examination of 

neurophysiologic signal patterns. This process is labor intensive and suffers from variability 

between scorers. In this study, large amounts of publicly available PSG data were used to train a 

sleep staging classifier. Sleep staging classification by the model achieved better agreement 

than human agreement in literature. Generalizability of the model to other unseen datasets 

from different public projects is also demonstrated.  

 

Introduction 

 Overnight polysomnography (PSG) is central to the diagnosis and management of many 

sleep disorders. The clinical standard for PSG sleep staging requires visual inspection of the data 

by trained sleep technicians and physicians. Staging historically followed the Rechtschaffen and 

Kales criteria until the American Academy of Sleep Medicine (AASM) published updated criteria 

in 2007.7,8 The AASM rules divide sleep into five stages: Wake, Non-Rapid Eye Movement stages 

1, 2, and 3 (N1, N2, and N3), and Rapid Eye Movement (REM). PSG scoring is a labor-intensive 

process that requires up to two hours for a sleep technologist to complete.3 Inter-rater and 

intra-rater reliability of PSG staging and event scoring is also known to suffer from considerable 

variability.11-20 

 Significant effort has been invested in developing computer-assistive or automated 

staging technologies, but they have struggled to achieve human-level performance.10, 21-32 In 

order for a staging system to have clinical utility it should be at least as accurate and reliable as 

a trained human scorer. Therefore, a practical non-inferiority threshold for staging algorithms is 

an overall agreement of 82.0% (Cohen’s kappa = 0.76), which is the overall inter-rater 
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agreement between trained scorers at eight European centers using the 2007 AASM PSG 

scoring rules.12 

 Machine learning is a field of computer science where classifiers discover novel patterns 

within a dataset without the traditional explicit encoding of all rules. Because PSG data are 

complex, different machine learning methods for detecting sleep stages have been trialed over 

the last twenty years. Published models have utilized hand-tuned feature extraction techniques 

such as spectral power, time domain analysis, and time-frequency domain (wavelet) analysis.56-

59 Other systems employ fuzzy logic, support vector machines, hidden Markov models, or 

artificial neural networks.60-69 Most of these systems do not achieve human-level inter-rater 

agreement or are tested against a small set of preselected, high-quality PSGs that do not reflect 

realistic testing environments. Few have been validated against large clinical datasets. In recent 

years, deep neural networks have rapidly found favor for signal analysis. They have proven to 

be remarkably robust in developing classifier systems for noisy, “real-world” datasets: the type 

of data represented by PSGs.  

 A standard neural network consists of a number of simple connected processors called 

neurons that mathematically transform an input signal into an output. The relative strength, or 

weight, of each neuron is iteratively adjusted during model training to maximize the accuracy 

between the network output and the expected value. Deep neural networks have many layers 

of neurons, where the output of one layer provides the input to the next layer, enabling 

discovery of nonlinear and hierarchical relationships within the data. Convolutional neural 

networks emphasize patterns in close spatial proximity and are well-suited to problems in the 

image classification and recognition space.51,52 Recurrent neural networks function well with 

information contained in sequences such as natural language, where the next word or 

character depends on the immediately preceding data.50 PSGs are well suited for convolutional 

and recurrent processing methodologies as they consist of spatially- and temporally-related 

signal data. For example, a k-complex may signal onset of N2 sleep, even though subsequent 

EMG data may be low-amplitude mixed-frequency data visually identical to N1.  

 The increase in available computing power and publicly available PSG datasets over the 

last several years has brought the era of Big Data and machine learning to sleep medicine and 
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made deep neural network processing of PSGs feasible.70,71 Successful development of a 

reliable and accurate automated scoring system using machine learning will ease the burden of 

PSG scoring and will reduce sleep staging inter-rater variability that affects Sleep Medicine 

research and clinical practice. 

 

Methods 

 This study was designed as a retrospective analysis of PSG data collected through 

several multicenter cohort studies made available through the National Sleep Research 

Resource (NSRR).71,86,87 The study design was approved by the Vanderbilt University Medical 

Center Institutional Review Board (#171186) and data access was approved by the NSRR.  

 

Study datasets 

 A deep neural network model was trained and tested on 5,804 Type II PSGs from 

multiple centers containing patients with and without sleep-disordered breathing collected for 

the Sleep Heart Health Study (SHHS; Table 1).71,86,87  

 

Table 1. Sleep Heart Health Study summary statistics 

Category Mean Median Min, Max 

Age 63.1 63 [39, 90] 

Body Mass Index 28.2 27.5 [18, 50] 

Apnea Hypopnea Index 17.9 13.2 [0, 161.8] 

Sleep Time (minutes) 359.8 367.0 [34.5, 519] 

 
 
 Two additional unrelated datasets available through the NSRR were used to test the 

generalizability of the model: the Study of Osteoporotic Fractures (SOF) and the Osteoporotic 

Fractures in Men study (MrOS; Table 2). 
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Table 2. Summary of datasets used in study 

Dataset Polysomnography 
studies (n) 

Study 
population 

W (%) N1 (%) N2 (%) N3 (%) R (%) 

SHHS 5,793 Adults aged 
40 and older 

28.8% 3.7% 40.9% 12.6% 13.9% 

MrOS 2,907 Men 65 
years or 
older 

46.1% 3.7% 33.9% 5.8% 10.6% 

SOF 461 Women 
ages 65-89 
years 

41.9% 2.9% 32.5% 11.9% 10.7% 

SHHS = Sleep Heart Health Study; SOF = Study of Osteoporotic Fractures; MrOS = Osteoporotic 
Fractures in Men study 
 

Polysomnography Data 

 All PSG files were downloaded in the European Data Format (EDF) which contained the 

raw time series data of physiologic signals from each PSG as well as human scored sleep stages 

and apneic events. For the training phase, 5,213 PSGs were randomly selected from the SHHS 

dataset, providing 42,560 hours of sleep data in 5,107,200 30-second epochs. PSGs in all three 

datasets were recorded as Type II unattended home studies previously scored using modified 

Rechtschaffen & Kales (RK) criteria. 71,86,87 PSG signal data and sleep stage labeling (Wake, N1, 

N2, N3, N4 or REM) were extracted from each study cohort. RK stages 3 and 4 were combined 

into a single stage N3 label to more closely align with modern AASM scoring conventions and to 

aid comparison with previously published literature. The model was trained and tuned using 

90% of the SHHS visit 1 data (5,213 patients). A 10% holdout set (580 patients) was taken and 

set aside to validate the model. 

 

Input data and feature selection 

 Signal data from the electroencephalogram (EEG), electromyogram (EMG), and 

electrooculogram (EOG) PSG channels were extracted for model analysis. The Type II PSGs 

across all three cohorts were recorded using a single central (C3) EEG channel. Sampling rates 

across data channels from SOF and MrOS were down- or up-sampled as indicated to match 

corresponding baseline data sampling rates from SHHS. 
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 Two different methodologies for feature representation were tested. In the first 

method, raw PSG signal data was provided directly as input to the network in per-epoch units 

and tested under various model architectures. In the second method, short time Fourier 

transforms were used to generate a spectrogram for each epoch and then provided to the 

model as the input. Spectrograms were generated using 2-second sub-epochs formed by a 

Tukey window with 25% of the window inside the tapered cosine region (Figure 6). Signal 

normalization and filter signal preprocessing methods (median, FIR, IIR filters) were tested to 

evaluate the impact of noise and artifact reduction.    

 

 

Figure 6. Representative raw data sample from each sleep stage with associated spectrogram. 

 

 All data preprocessing was performed using the signal module in the python package 

SciPy and scikit-learn. Model development was performed using Keras on a TensorFlow 

backend. 

 

Model architecture 

 Convolutional and recurrent network layers were utilized to take advantage of the 

temporally-linked, sequential construction of PSG data. Convolutional layers were generated to 

evaluate the co-occurrence of signal patterns within one-dimensional PSG data channels or co-
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occurrence of frequencies within single spectrograms. Recurrent layers were designed to take 

advantage of the temporal relationships in the data such as epochs of equivalent stage 

occurring in sequence. The deep neural network combined recurrent and convolutional 

structures to evaluate input spectrograms generated from the raw data (Figure 7). Multiple 

combinations of dense, convolutional, and recurrent layers were tested against the training set 

in the network architecture (Appendix A). 

 

 

Figure 7. Simplified example model architecture for one data channel. LSTM = long short-term 

memory layer. 

 

Model tuning 

 Deep neural networks contain tunable hyperparameters (i.e. number of layers, number 

of units in each layer, number of filters in convolutional layers, etc). A set of parameter search 

spaces were defined for each hyperparameter, and the best combination of hyperparameters 

were found using the python package hyperopt with a random search algorithm for parameter 

tuning.88 Multiple hyperparameter configurations were evaluated using the training set.  
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Model evaluation 

 Model performance was evaluated with accuracy, F1-score, and Cohen’s Kappa. 

Weighted and unweighted accuracy and F1-score were calculated to assess the effect of sleep 

stage class imbalances in the data. Weighted accuracy was calculated as the average of the per-

class stage accuracies. Because the “ground truth” comparators are human-tagged PSG events 

with their own level of inter-rater reliability, model agreement was also assessed using inter-

rater agreement statistics (Cohen’s Kappa). Transition epoch F1-scores were calculated as 

scoring agreement is known to degrade during transition from one stage of sleep to another. 

Transition stages account for approximately 0.5% of the data, but were evaluated as they 

potentially convey physiologically relevant information.  

 

Transfer learning 

 Generalizability was assessed using the SOF and MrOS datasets. These studies were 

conducted in different environments with various types of acquisition hardware and on 

different patient populations than SHHS.  

 Model performance was additionally evaluated on subsets of the SHHS population with 

mild, moderate and severe obstructive sleep apnea (OSA) to demonstrate model transferability 

between patients with different degrees of sleep-disordered breathing. A separate model was 

also trained and tested on only severe patients to demonstrate validity even when restricted to 

a subset of studied patients. 

 

Results 

 The optimal sleep staging model’s architecture consisted of a combination of separate 

networks for each signal channel. Spectrograms of each channel were fed into convolutional 

layers that examined the proximal relationships of the frequencies in time as well as recurrent 

layers that examined the sequential relationships of epochs (Table 3). The subnetworks for each 

signal channel were combined into two dense layers feeding into a final softmax output layer 

used to generate discrete stage predictions for each epoch. 
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Table 3. Base model architecture per data channel 

Layer Layer Type Size Output Size 

Input   (2, 1, 129, 16) 

C1 Convolutional (32,64,3) (2, 32, 66, 14) 

C2 Convolutional (32,64,3) (2, 32, 2, 12) 

P1 Max Pooling (2,2) (2, 32, 1, 6) 

R1 Reshape  (2, 192) 

L1 Long short-term 

memory 

(256) 256 

D1 Dense (512) 512 

 

Model testing 

 The SHHS dataset was split into a 90% training and 10% holdout set. The training set was 

further split into training and validation sets, which were used to train the model, select the 

optimal deep learning architecture (Appendix A), and tune the model hyperparameters 

(Appendix B). Model training required approximately 48 hours on an Nvidia GTX Titan X GPU. A 

learning curve plateauing around 1,000,000 training epochs demonstrated that the dataset was 

sufficiently large (Figure 8). Testing on the holdout set required approximately 30 minutes. 
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Figure 8. The deep neural network model learning curve begins to plateau at approximately 

1,000,000 

 

Model evaluation 

 Signal preprocessing methods were tested on the raw input signal. No significant 

improvement in accuracy or F1-scores were found using normalization or filters, so signal 

preprocessing was not used in the final pipeline (data not shown). Multiple model architectures 

were tested on the SHHS dataset. The first model was a simple baseline Markov Chain that 

predicted the next stage based on overall stage transition probabilities measured directly from 

SHHS. Because stages commonly occur in long chains with relatively rare transitions, this model 

has a high F1-score, but low transition F1-score. Following this baseline model, a convolutional 

neural network (CNN) was tested against raw PSG data, followed by separate CNN and long 

short-term memory (LSTM) models on the spectrogram data, and finally a combination of CNN 

+ LSTM, which yielded the best performance (Figure 9). 
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Figure 9. Model performance under various architectures against the SHHS dataset. CNN = 

convolutional neural network; LSTM = long short-term memory 

 

 The optimal neural network model was composed of spectrograms in the input layer 

feeding into CNN layers and an LSTM layer to achieve a weighted F1-score of 0.87 and Cohen’s 

Unweighted Kappa of K = 0.82, higher than that of human agreement found in literature (K = 

0.76). 

 A confusion matrix was generated for model performance against all tested epochs 

(Figure 10) as well as transition epochs (Figure 11).  
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Figure 10. Confusion matrix for all epochs. 

 

Figure 11. Transition epoch confusion matrix. 
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 When considering all epochs, the model scored Wake, N1, N2, N3, and REM stages 

correctly 92%, 37%, 91%, 77%, and 88% of the time, respectively. During transition epochs 

correct staging was scored for Wake, N1, N2, N3, and REM 75%, 44%, 79%, 54%, and 88% of the 

time, respectively. Table 4 compares staging accuracy of this model to others published in the 

literature using the class imbalances present in the underlying dataset. Table 5 permits 

comparison to other models in the literature that used methods to balance the classes such 

that all classes contribute equally in model training.  Figure 12 demonstrates agreement 

between a trained scorer and the automated scoring model in one example PSG hypnogram.  

 

Table 4. Performance of class imbalanced model compared to other studies 

Study Sample 
size 
(studies) 

Evaluation 
split 

W 
Accuracy 

N1 
Accuracy 

N2 
Accuracy 

N3 
Accuracy 

REM 
Accuracy 

Overall 
Accuracy 

Balanced 
Accuracy 

Cohen’s 
Kappa 

Biswal et 
al. [89] 

10,000 Train – 
validation 
– test 

84.5% 56.2%% 88.4% 85.4% 92% 85.8% 81.3 0.795 

Sors et 
al. [90] 

5793 Training 
– 
validation 
– test 

91% 35% 89% 85% 86% 87% 77.2% 0.81 

Sharma 
et al. [91] 

100 10-fold-
CV 

95% 17% 76% 57% 36% 91.7% 56.5% N/A 

Proposed 
model 

5793 Train – 
validation 
- test 

92% 37% 91% 77% 88% 87% 77% 0.82 

 

Table 5. Performance of class balanced model compared to other studies 

Study Sample 
size 
(studies) 

Evaluation 
split 

W 
Accuracy 

N1 
Accuracy 

N2 
Accuracy 

N3 
Accuracy 

REM 
Accuracy 

Overall 
Accuracy 

Balanced 
Accuracy 

F1 
Score 

Cohen’s 
Kappa 

Supratak 

et al. [92] 
62 31-fold 

cross 
validation 

87.3% 43.5% 90.5% 77.1% 80.9% 86.2% 75.9% 0.817 0.8 

Tsinalis 
et al. [93] 

40 20-fold 
cross 
validation 

70% 60% 73% 91% 74% 82% 74% 0.81 N/A 

Chambon 
et al. [94] 

62 5-fold 
cross 
validation 

85% 52% 77% 91% 83% 79% 77.6% 0.72 N/A 

Proposed 
model 

5793 Train – 
validation 
- test 

91% 46% 89% 77% 88% 86% 78% 0.81 0.82 
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Figure 12. Example output hypnogram of a PSG scored by the model overlaid on the human 

manual scoring. 

 

Performance on cohorts with and without sleep-disordered breathing  

 The model performs similarly on subsets of the holdout set with different apnea severity 

(Table 6). A model trained and tested on severe OSA patients only achieved an unweighted F1 

score of 0.846, similar to the model trained on heterogeneous data. 

 

Table 6. SHHS model performance on patient subgroups of varying obstructive sleep apnea 
severity2 
Testing cohort F1 Epochs (N) 

All 0.872 621794 

Normal (AHI < 5) 0.871 132742 

Mild (5 < AHI < 15) 0.864 262426 

Moderate (15 < AHI < 30) 0.853 168074 

Severe (AHI > 30) 0.841 58552 

SHHS = Sleep Heart Health Study; AHI = Apnea-Hypopnea Index 
 

Transfer learning 

 After training on SHHS data, model generalizability was tested against two additional 

NSRR datasets. The microvolt mean and standard deviation of each included data channel was 

significantly different between studies, suggesting different signal architectures between 

datasets (Table 7). 
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Table 7. Mean and standard deviation of the channels for each dataset 

Channel SHHS MrOS SOF 

EEG (uV) -0.39  30.31 2.5  38.08 * -8.87  43.02 * 

EMG (uV) 0.54  9.68 -1.06  58.49 * 10.05  34.47 * 

EOG(L) (uV) -3.57  30.60 -12.5  49.28 * -9.81  35.60 * 

EOG(R) (uV) -4.19  31.36 3.33  50.81 * 5.32  41.37 * 

* indicates significant difference from SHHS data at p < 0.05. SHHS = Sleep Heart Health Study; 
SOF = Study of Osteoporotic Fractures; MrOS = Osteoporotic Fractures in Men study 
 

 F1-score and Cohen’s Kappa scores on the MrOS and SOF datasets demonstrated 

moderate to strong inter-rater agreement between the model and trained scorers depending 

on the selected testing data and achieved high performance in the balance of precision and 

recall on sleep staging (Table 8). 

 

Table 8. Generalizability of the SHHS model to novel datasets. 

Model F1-score (weighted) Cohen’s Kappa 

Training data: SHHS 

Testing data: SHHS 

0.87 0.82 

Training data: SHHS 

Testing data: MrOS 

0.79 0.70 

Training data: SHHS 

Testing data: SOF 

0.77 0.68 

Training data: MrOS 

Testing data: SHHS 

0.69 0.56 

Training data: SOF 

Testing data: SHHS 

0.66 0.53 

SHHS = Sleep Heart Health Study; MrOS = Osteoporotic Fractures in Men study; SOF = Study of 
Osteoporotic Fractures 
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Discussion 

 The deep learning model presented here automatically predicts sleep stage with 

moderate to strong agreement compared with expert human scorers across multiple datasets. 

The optimal model utilized input consisting of spectrograms derived from the EEG, EMG, and 

EOG channels passed to a deep learning architecture with convolutional and recurrent layers. A 

learning curve demonstrated that sufficient data was available to train the model well. The 

model performs comparably or better than other models reported in literature and, when 

tested against studies with structure similar to the underlying training dataset, meets or 

exceeds the accepted benchmark of K = 0.76 between trained human scorers.  

 Spectrograms are used to represent the data provided to the model in the form of 

dimensionally-reduced input that retains important information for sleep stage classification. 

The Fourier transforms used to generate spectrograms organized PSG data into component 

frequencies more easily compared across different platforms than raw signal data, which 

contains baseline signal noise and variation due to different recording environments and 

hardware. Spectrogram construction also aided network throughput as the volume of input 

data were reduced without significant loss of key signal information.  

 Preprocessing raw signal data for noise and artifact reduction did not significantly 

impact classification results in preliminary testing. Prior performance analyses have 

demonstrated that deep learning models become more robust when trained on noisy data,95 

and we suspect that training on unfiltered data may be advantageous for accuracy and 

transferability when testing across clinical datasets. 

 PSGs have significant class imbalances between stage types due to the natural 

asymmetric distribution of sleep stages. The SHHS dataset is no exception, with large 

differences in representation between several of the stages. Accounting for class imbalances by 

over-representing minority classes (such as N1) can improve single class accuracy, but often at 

the expense of larger classes. For instance, in SHHS N1 is only 3.7% of the dataset, whereas N2 

is 40.9%. The model presented here scored 31% of N1 and 91% of N2 epochs correctly with an 

overall accuracy of 87% when the native class imbalances are not adjusted.  
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 When N1 was oversampled to balance class representation, accuracy of N1 increased to 

45% at the expense of other stages, such as N2, which decreased to an accuracy of 88%. Class 

balancing decreased overall model scoring accuracy to 86%. Class imbalances also complicate 

comparison of performance metrics between published models. We believe that preserving 

native class imbalances best represents how the model would perform in a production setting. 

However, performance metrics for models trained on natural as well as balanced class 

distributions are provided in order to facilitate comparison with previously published models 

(Tables 4 and 5).  

 Accuracy in N1 scoring is worse than other sleep stages for this model, consistent with 

other published models.90-94 This may be an artifact of PSG scoring rules, which allow for low-

amplitude mixed pattern EEG signals identical to N1 to be scored as N2 if the preceding stage 

was also scored as N2. These rules, along with the large class imbalances between N1 and N2, 

likely compromise N1 accuracy.  

 Other issues may complicate scoring accuracy, such as patient movement artifacts 

contaminating W and N1 stages. Unlike many other published works, this model was not 

trained on a curated set of high-quality PSGs and contains studies partially contaminated by 

signal and motion artifacts. Contaminated epochs scored by humans theoretically contain 

enough signal information that they should be of value in training a machine learning algorithm 

that will be exposed to similar data in a production environment. The inclusion of this more 

ambiguous data may create systemic difficulties in scoring W and N1 in the same way that it 

would degrade inter-rater agreement between human scorers. To this point, Younes et al 

recently found an intra-class correlation coefficient of 0.69 (range: 0.30 – 0.86) in N1 scoring, 

suggesting only poor to moderate agreement between trained human scorers.20 

This model presented in this work has several strengths. It meets or exceeds performance of 

other published works. A large and diverse training dataset increased transferability, 

demonstrated across several other large datasets. Significant differences existed in mean 

microvolt channel levels across the tested datasets (Table 6), suggesting significant underlying 

differences in dataset structure due to differences in recording hardware, environment, study 

populations, or other variables. Despite these differences, the model presented here could be 
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trained on one dataset and still perform with moderate to strong agreement on other datasets 

(MrOS F1 = 0.78, K = 0.68 and SOF F1 = 0.68, K = 0.55). The model also performed similarly on 

cohorts composed of subjects with varying degrees of sleep disordered breathing, with F1-

scores ranging from 0.841 to 0.872, suggesting that sleep-disordered breathing does not 

significantly impact sleep stage classification patterns for the model. In comparison, a model 

trained only on patients with severe sleep apnea and tested on the same cohort performs only 

slightly better than one trained on all patients, demonstrating model transferability between 

different disease populations. Taken together, the transferability properties illustrated here 

suggest that automated deep learning classifiers have the potential for use in different clinical 

sleep laboratory environments without complete retraining on local data.  

 Few other studies test models on PSGs collected from a variety of recording 

environments and hardware platforms. Patanik et al.97 did so, demonstrating generalizability by 

testing against two novel datasets with inter-rater agreement of K = 0.740 and K = 0.597. 54 

However, their reported outcomes (accuracy) were obtained from model training data instead 

of separate holdout data, limiting inner-dataset comparability to the work presented here. The 

Kappa values are also not directly comparable to our inter-rater agreement of K = 0.70 and K = 

0.56. The datasets in Patanik et al. were acquired using the same framework and pipeline, while 

the external test datasets presented here were acquired on a variety of different hardware 

platforms that were then down- or up-sampled to match SHHS dataset frequencies. Both 

studies demonstrate comparable performance on external datasets that the models were not 

trained on, demonstrating transferability.  

 This work is not without limitations. The datasets examined here are composed of Type 

II PSGs recorded in subject home environments with a limited, single EEG channel montage. 

Generalizability to more common Type I or Type III PSGs could not be evaluated; however, we 

suspect that training the model with additional EEG signals available in Type I PSGs would likely 

yield performance improvements from additional channel data. Retraining the model with 

additional channels while maintaining input from previously evaluated channels would be 

expected to improve performance, as deep neural networks generally perform better as more 

data is available.98 Comparison with more limited montage datasets, such as consumer 
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wearables using actigraphy and heart rate monitoring, is limited by the lack of large, publicly 

available datasets. In addition, accuracy outcomes may differ between AASM sleep staging 

criteria and RK staging criteria. 

 In conclusion, this work suggests that automated PSG scoring systems can rapidly 

annotate PSG files with inter-rater agreement rivaling that of trained human scorers. Future 

work will require institutions and interested stakeholders to make available large libraries of 

high-quality datasets using modern scoring criteria in order for data scientists to develop 

robust, generalizable scoring models. 
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CHAPTER 4 

APNEA AND HYPOPNEA EVENT DETECTION FOR APNEA-HYPOPNEA INDEX PREDICTION  

 

Introduction 

 Overnight polysomnography (PSG) is central to the diagnosis and management of sleep 

disorders. Obstructive Sleep Apnea (OSA) Syndrome is a sleep disorder in which the upper 

airway collapses during sleep, obstructing ventilation. It has been independently linked to 

multiple health conditions including an increased risk of hypertension, diabetes, cardiovascular 

disease, stroke risk, and overall mortality.1-4 OSA is diagnosed using an overnight sleep study 

measuring multiple high-resolution physiologic signals called a polysomnogram (PSG). A sleep 

technologist or clinician label diagnostic events such as apneas (near cessation of ventilation) 

and hypopneas (reduction in ventilation) to calculate the average number of respiratory events 

per hour: the Apnea-Hypopnea Index (AHI). An apnea is defined by the American Academy of 

Sleep Medicine (AASM) as decrease in baseline airflow amplitude by at least 90% for 10 or 

more seconds.7 The preferred 2012 definition for hypopnea is:7 

 a. The peak signal excursions drop by ≥30% of pre-event baseline 

 b. The duration of the ≥30% drop in signal excursion is ≥10 seconds 

 c. There is a ≥3% oxygen desaturation from pre-event baseline and/or the event is 

 associated with an arousal 

 

 The AHI is used to determine the severity of sleep-disordered breathing. Classification 

categories are as follows: normal (AHI < 5), mild (AHI = 5-14), moderate (AHI = 15-30) and 

severe (AHI > 30). PSG labeling, or scoring, is a labor-intensive process that requires up to two 

hours for a sleep technologist to complete.10 In addition, inter-rater and intra-rater reliability of 

event scoring is also known to suffer from considerable variability.13,14,18,19. Despite its reported 

variability, AHI has been found to correlate with cardiovascular risk and overall mortality.100-103 

 A wide range of methodologies have been previously employed to create automated 

event detection models. The earliest models include rule-based models, followed by machine 

learning and deep learning models. Koley & Dey (2013) developed a combined SVM and rule-
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based system from 36 patients to achieve an overall accuracy of 96.5% for event detection.72 

Lee et al. (2016) created a rule-based algorithm that achieved an 86.4% positive predictive 

value (PPV) and 84.5% sensitivity in AHI prediction73, while Huang et al. (2017) created a rule-

based algorithm using sliding windows and short time slices to test on cohorts of 30 and 28 

patients, achieving PPVs of 97.6% and 92.3% and sensitivities of 95.7% and 92.3% in predicting 

AHI, respectively.74 Choi et al. (2018) trained convolutional neural networks on 179 recordings 

for an overall accuracy of 96.6%75, while Yu et al. (2019) developed a random forest model 

trained on 24 subjects that achieved an 88.3% accuracy.76  

 PSG data is composed of high-resolution biophysiological signal data including 

measurements of airflow, thoracic and abdominal movement (belts), brain activity via 

electroencephalography (EEG), and oxygen saturation that are well-suited to analysis with deep 

learning methods because of the inherent spatial and temporal relationships. Deep learning 

methods have been successfully applied to automating sleep stage labeling in PSGs.104 A 

standard neural network consists of simple connected processors called neurons that 

mathematically transform an input signal into an output. Deep neural networks have many 

layers of interconnected neurons enabling discovery of nonlinear and hierarchical relationships 

within the data. Convolutional networks emphasize patterns in close spatial proximity and are 

well-suited to problems in the image classification and recognition space.51,52 Moreover, 

compared to rule-based methods where humans define the rules for event prediction, deep 

learning models discover underlying patterns in data without explicit programming. The use of 

deep learning models has resulted in more robust and better performing models in many 

medical fields.105 

 While previous studies have found generally high prediction performance, they are 

trained and tested on small datasets, limiting conclusions that can be made regarding model 

robustness and generalizability. In addition, direct comparisons between rule-based and 

machine learning models on the same datasets have not been performed. This rule-based 

comparison is important in particular, because definite rules for apnea and hypopnea have 

been defined previously and are considered standard-of-care. In this study, a deep learning 

model was trained and tested on a large dataset and directly compared to a rule-based model. 
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The performance of the event prediction on calculating AHI was evaluated. Successful 

development of a reliable and accurate automated scoring system using machine learning will 

ease the labor burden of PSG analysis and will reduce inter-rater variability in event scoring 

affecting Sleep Medicine research and clinical practice. 

Methods 

 This study was designed as a retrospective analysis of PSG data collected through 

several multicenter cohort studies available through the National Sleep Research Resource 

(NSRR). 71,86,87 Study design was approved by the Vanderbilt University Medical Center 

Institutional Review Board (#171186) and data access was approved by the NSRR. 

Study datasets 

 A deep neural network model was trained on 5,804 Type II PSGs from multiple centers 

containing patients with and without sleep-disordered breathing collected for the Sleep Heart 

Health Study (SHHS). The study contains two sets of visits, with the first and larger set used 

here (SHHS 1; Table 9). 

Table 9. SHHS 1 summary statistics 

Category Mean Median Min, Max 

Age 63.1 63 [39, 90] 

Body Mass Index 28.2 27.5 [18, 50] 

Apnea Hypopnea Index 17.9 13.2 [0, 161.8] 

Sleep Time (minutes) 359.8 367.0 [34.5, 519] 

 

Polysomnography Data 

 All PSG files were downloaded in the European Data Format containing the raw time 

series data of physiologic signals from each PSG as well as human-scored sleep stages and 

apneic events. For the training phase, 5,213 PSGs were randomly selected from the SHHS 

dataset. The model was trained and validated using 90% of the SHHS visit 1 data (5,213 

patients) and a 10% holdout set (580 patients) was taken and set aside to test the model. 
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Input data and representation 

 Signal data from the airflow, abdominal and thoracic belt channels were used for the 

apnea model. Data from the airflow, saturated oxygen channels the EEG channel were tested as 

input for the hypopnea model. The raw signal data were normalized before segmentation and 

model input. All data preprocessing was performed using the python packages SciPy and scikit-

learn.106 Model development was performed using Pytorch.107 

 Apnea and hypopnea events are defined as having a decrease in airflow for a minimum 

of 10 seconds, but there is no limit on the event length. Due to the fact that event length is 

unrestricted, windows, or segments of set length, of the PSG data are selected as input for 

classification. Differing window sizes and length of overlap between windows for 

representation of input data were tested (Appendix C). Window sizes ranging from 5 to 60 

seconds were tested with overlap between the windows on a range from 0 to 5 seconds.  

 A single input window was considered apnea- or hypopnea-positive if at least 5 seconds 

of a segment less than 30 seconds belonged to a labeled event, or at least 10 seconds for a 

segment of length 30 seconds or greater. These thresholds represent the minimum segment 

processing (5 seconds) and event definition (10 seconds) lengths, and therefore require 

considerable overlap in order to register as a positive detection event. 

Model architecture 

 Multiple combinations of dense, convolutional, and recurrent layers were tested against 

the training set in the network architecture (Appendix D). Convolutional layers were used on 

multiple channels of data with the same frequency and on single channels of data. Recurrent 

layers were tested only on non-overlapping segments of input data, which represent 

sequences. The best architecture for each the apnea and hypopnea models were selected 

based on per-segment accuracy metrics, and the best performing model used convolutional 

layers on normalized signal data (Figure 13, Figure 14). 
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Figure 13. Simplified apnea model architecture 

 

Figure 14. Simplified hypopnea model architecture 

 The apnea and hypopnea neural network models assign labels to each segment. 

However, those labels only provide information that an event has occurred within that period 

of time. To detect the specific seconds in time where an event has occurred, the models use the 

per-segment labels to calculate a majority vote for each second, where the votes are counted 

from all segments containing the second under evaluation (Figure 15). Ten or greater seconds 

with apnea or hypopnea labels are scored as an apnea or hypopnea event, respectively. If both 

apnea and hypopnea models identify the same section of the PSG, the section is counted as a 

single respiratory event when calculating AHI. 
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Figure 15. A. Apnea model is used to classify each 10-second segment within the 
polysomnogram. B. Classification of each 1-second segment is obtained by a majority vote of 
the all of the classified 10-second windows containing each 1-second segment.  
A = Apnea, N = No event 
 

Model tuning 

 Deep neural networks contain tunable hyperparameters (e.g. number of layers, number 

of units in each layer, number of filters in convolutional layers, etc). A set of parameter search 

spaces were defined for each hyperparameter, and the best combination of hyperparameters 

were found using the python package hyperopt with a random search algorithm for parameter 

tuning.108 Multiple hyperparameter configurations were evaluated using the training set. 

Additionally, models were tested with and without signal preprocessing/denoising. 

Model evaluation 

 Model performance was evaluated with accuracy, area under the receiver operating 

characteristic, and Cohen’s Kappa. Performance of model event detection was calculated using 

the per-segment accuracy and ROC. AHI prediction accuracy was evaluated by comparing 

estimated per-patient AHI to human-scored AHI and predicted versus human-scored apnea 

severity class. 
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Comparison to rule-based methods 

 A rule-based event detection model was implemented from the AASM definitions as a 

baseline for comparison to data-driven models. The rule-based model’s pipeline consists of 

signal preprocessing, amplitude computation from peak/trough point detection, and event 

detection. Signal preprocessing was performed using a median filter to reduce signal noise 

followed by normalization of the signal. Peaks and troughs were detected using scipy’s 

find_peaks method. This method finds peaks using the neighbors comparison method, enabling 

easy calculation and comparison of signal amplitude that comprises the definitions for apneas 

and hypopneas. 

 The amplitude was calculated from detected peaks and troughs, and a rule-based model 

implemented from Lee et a. (2016) was used for event detection. The model uses the 

amplitude to determine event occurrence, and the duration to keep track of events. An outline 

of the rules used can be seen in Appendix F and pseudocode can be found in the paper.73 

Thresholds for the rule-based model were selected based on the contemporary AASM 

definitions for apneas and hypopneas for the years in which the dataset was scored (follow the 

2007 rules). The hypopnea threshold was 0.5 (50% drop in signal) and hypopnea duration was 

10 seconds based on the previous 2007 hypopnea definition. The apnea threshold was 0.1, 

based on the unchanged apnea definition.  

 The raw AHI predicted values from the rule-based model and deep-learning models 

were also binned into severity classes such as normal (AHI < 5), mild (AHI = 5-14), moderate 

(AHI = 15-30) and severe (AHI > 30), and severity class prediction quality was measured.  

Results 

 The optimal architecture for apnea detection consisted of an input of the airflow, chest 

and thoracic belt channels fed into a convolutional neural network (Table 10, Figure 13). The 

best model for hypopnea detection consisted of an input of the airflow and SaO2 channels fed 

separately into 1-D convolutional layers, ultimately flattened and concatenated to a dense layer 

(Table 11, Figure 14). Hypopnea model input was structured differently: the airflow channel 

corresponded with the location in the PSG where an event could be detected, while the 
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relevant SaO2 channel data generally followed 30 seconds after the airflow channel window due 

to the delay in oxygen desaturation after airway obstruction.  

Table 10. Apnea model architecture 

Layer Layer Type Size Output Size 

Input   (1, 100, 3) 

C1 Convolutional (16, 20, 3) (16, 81, 1) 

C2 Convolutional (16, 20, 1) (16, 62, 1) 

P1 Max Pooling (2,1) (16, 31, 1) 

R1 Reshape  (496) 

D1 Dense (512) 512 

D2 Dense (256) 256 

 

Table 11. Hypopnea model architecture 

Layer Layer Type Size Output Size 

Input1   (1, 100) 

C1 Convolutional (16,32) (16, 69) 

C2 Convolutional (16,32) (16, 38) 

P1 Max Pooling (2,2) (8, 18) 

R1 Reshape  (144) 

D1 Dense (512) 512 

Input2   (1, 100) 

C3 Convolutional (16,32) (16, 69) 

C4 Convolutional (16,32) (16, 38) 

P2 Max Pooling (2,2) (8, 18) 

R2 Reshape  (144) 

D2 Dense (512) 512 

D1+D2 Concatenate (1024) 1024 
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Model testing 

 The SHHS dataset was split into a 90% training/validation and 10% holdout set. The 

training/validation was split into training and validation sets, which were used to train the 

model, select the best input representation (Appendix C) with its optimal deep learning 

architecture (Appendix D), and tune the model hyperparameters (Appendix E). 

Model evaluation 

 The performance of the models in predicting each event was evaluated (Table 12). 

Table 12. Model event detection performance 

Model Accuracy AUC PPV Sensitivity 

Apnea 97% 0.95 94% 85% 

Hypopnea 92% 0.88 90% 83% 

 

 The model achieves a high accuracy overall accuracy of 96.1% when predicting apnea 

severity class based on AHI calculated from the model (Table 13).  

 

Table 13. Model AHI prediction performance 

Class Accuracy 

Normal 98.2% 

Mild 95.5% 

Moderate 92.1% 

Severe 96.7% 

 

 The model predicts overpredicts AHI (mean: 16.3) compared to human-scored AHI 

(14.6) with a 2.89 mean squared error (MSE). A breakdown of the AHI class predictions is 

presented in Table 14. 
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Table 14. Model per-class AHI prediction performance 

Class Estimated AHI AHI 

Normal 2.2 2.8 

Mild 10.1 11.7 

Moderate 19.9 22.4 

Severe 44.6 50.5 

 

 A rule-based model for apnea and hypopnea detection developed in 2016 was 

implemented for comparison to generated deep learning models (Table 15).73 

 

Table 15. Comparison of accuracy of rule-based73 vs. deep learning model performance in 

predicting apnea severity class by AHI 

Model Rule-based Deep learning 

No preprocessing 61% 91% 

Noise reduction/normalization 87% 96% 

 

 The performance of the rule-based model was found to vary based on the quality of 

preprocessing as well as rule thresholds. The thresholds for apnea and hypopnea (0.1 and 0.5 of 

amplitude respectively) were chosen based on the contemporary rules used for human event 

scoring at the time SHHS was conducted. A hypopnea threshold of 0.7 was originally used 

(based on AASM 2012 definitions) and documented a worse performance. Algorithm-specific 

thresholds for counting amplitude (thres_count_amp = 6), skipping amplitude calculation after 

an event (count_skip = 4), and rescaling amplitude when a significant change occurred 

(thres_amp_over = 1.2) were tested as well (Appendix G). For these selected and tuned 

thresholds, the deep learning model performed better than the rule-based model. 

 

  



 44 

Discussion 

 The deep learning models developed in this work achieve a high accuracy and AUC when 

predicting segmented windows of respiratory events and achieve an accurate AHI prediction for 

patients with the labeled events. The accuracy and estimation of the predicted AHI is on par 

with or slightly better than previous works within existing literature and performs better than 

an expert-designed rule-based method with less user input. 

 Originally, the airflow, SaO2 and EEG channels were used as input to predict hypopnea 

because of the AASM definition of a hypopnea. We found that the EEG channel did not improve 

detection, which was likely due to the fact that in the SHHS scoring criteria for PSGs, a 

hypopnea was labeled if the amplitude of any respiratory signal is reduced by 30% of the 

amplitude of “baseline” and if this change lasts for ≥ 10 s and for >2 breaths, with more subtle 

changes in breathing (not clearly reduced by 30% or more from baseline) requiring at least a 2% 

desaturation. Because of this definition, arousals in the labeling of the PSG would not have 

included arousals, and the definition used to label the PSG may make a significant difference in 

model performance and affect model design. 

 Due to the non-limited length of apnea and hypopnea events, a number of different 

representations for the input data were explored, as well as different architectures for the 

models. While non-overlapping segments of signal are easier and faster to process, they 

generally seem to result in an underestimate of respiratory events, resulting in an 

underestimate of AHI (especially for window sizes of 30+ seconds). On the other hand, 

overlapping segments greatly increases the number of segments to train and predict on, but 

resulted in a more accurate prediction. Neural networks consisting of convolutional layers 

produced the better accuracy when compared to models with recurrent layers, which may be 

due to the fact that the base rules for apnea and hypopnea events are fairly simple, and 

recurrent layers are not needed for these simple patterns. 

 Compared to the implemented rule-based model, the deep learning model performs 

better on per-segment apnea and hypopnea event detection. The deep learning model required 

less manual tuning (thresholds and/or variables) and less signal preprocessing than the rule-
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based method for a better result. A limitation in this comparison is that only one rule-based 

algorithm was implemented for comparison. An algorithm by Huang et al. (2017) cites higher 

performance, but we were unable to implement that model and achieve comparable results 

based on its written description. More importantly, the deep learning model performs much 

better on un-processed signal data than the rule-based model. In addition, the model performs 

better than or on par with other models using traditional machine learning methods14-17,19 that 

require human feature generation. To create features to feed into these models, such as SVMs 

or random forests, expert knowledge of the AASM rules and signal processing is generally 

required. Engineered features include averaging signal data, calculating statistical moments, or 

performing other types of transforms. Practically, this means that the data-driven deep learning 

model requires less human intervention in preprocessing and tuning for a comparable or better 

result.  

 There are a few limitations with this work. Since the predicted hypopnea events were 

scored using a specific criterion, the model may perform worse when compared to newer 

criteria. Training the model on a dataset scored with the new criteria would mitigate this issue. 

Another limitation is the method in which AHI events are detected. Events were detected based 

on whether there was a minimum of 10 consecutive seconds having an event label; if there is a 

single second gap between seconds without the event label, the chain is broken. This may have 

contributed to the under-estimation of AHI. 

 

Conclusion 

 Models were developed to predict apnea, hypopnea and AHI with high accuracy. These 

deep-learning based models perform as well as or better than rule-based models with less 

manual labor and human bias. Automated scoring systems may ease the burden of PSG scoring 

and reduce inter-rater variability in event scoring, improving the PSG scoring process for sleep 

medicine research and clinical practice. 
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CHAPTER 5 

ENGINEERING PSG-DERIVED FEATURES TO PREDICT SLEEP APNEA-ASSOCIATED OUTCOMES 

 

Introduction 

 Obstructive sleep apnea (OSA) is a sleep disorder in which multiple interacting 

pathophysiologic mechanisms lead to recurrent upper airway obstruction and associated 

physiologic stress. It has been independently linked to multiple health conditions including an 

increased risk of hypertension, diabetes, cardiovascular disease, stroke risk, and overall 

mortality.1-4 It affects approximately 6% of women and 13% of men in the United States.2 OSA is 

diagnosed using an overnight sleep study measuring multiple high-resolution physiologic signals 

called a polysomnogram (PSG). The management of OSA and associated disease risks is largely 

dependent on a single disease metric: the apnea-hypopnea index (AHI), defined as the average 

number of airflow limitations (hypopneas) and cessations (apneas) observed per hour of sleep. 

This disease metric is used to categorize the severity of sleep apnea (Table 16). 

 

 Table 16. AHI severity classes 

AHI Class Criteria 

None/Minimal AHI < 5 

Mild 5  AHI < 15 

Moderate 15  AHI < 30 

Severe AHI ≥ 30 

 

 However, overall predictive value of AHI for complications from OSA is low, and a need 

exists for better prognostic metrics.37–39 Significant variation in OSA presenting symptoms, 

disease mechanisms, associated comorbidities, and treatment outcomes has been reported in 

patients with similar AHI.109–115 Three flaws in AHI contribute to poor prognostic value: 1) 

differences in threshold criteria defining respiratory events,116 2) variability in human event 

scoring accuracy,117,118 and 3) the loss of important physiologic data associating with comorbid 

disease risk.37  
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 In this paper, we develop a model that predicts cardiovascular outcomes with data from 

the Sleep Heart Health Study (SHHS). SHHS is a large, high-quality dataset within the National 

Heart, Lung, and Blood Institute that monitored cardiovascular outcomes in 5,804 subjects with 

and without untreated OSA. 71,86,87 This model we develop includes not only existing clinical and 

cardiac features, but engineered features from polysomnogram channels. To date, multiple 

studies have examined cardiovascular disease risk stratification in association with single PSG 

metrics, such as AHI, but few have tried engineering new features.  

 A growing body of evidence suggests that a common definition of AHI may be 

insufficient for predicting the many complications of OSA. This may be due, in part, to the fact 

that repetitive airway obstructions can variably precipitate other physiologic events such as 

tachycardia, blood oxygen desaturation, and neurologic arousal. While these related risks are 

likely important for quantifying associated disease risk, they are only coarsely captured by 

defining threshold criteria for apneas and hypopneas, if at all. In SHHS, prior work has 

demonstrated conflicting associations between cardiovascular outcomes and AHI. The 

prevalence of atrial fibrillation (AF) was demonstrated to be 4-fold higher in those with OSA 

compared to unaffected individuals with a temporal relationship between respiratory and AF 

events.119,120 More recent work identified central, but not obstructive, sleep apnea as having an 

association with incident AF, while other AHI analyses demonstrated associations with incident 

heart failure, but not incident coronary disease in SHHS.121,122 The risk of stroke in the SHHS 

cohort was 3-fold higher in men in the highest quartile of OSA severity compared to the lowest 

quartile, but the relationship was less robust in women.123  

 This study helps clarify the relationship between OSA and cardiovascular outcomes as 

the epidemiologic findings are somewhat discordant with the pathophysiology shared by these 

two conditions (i.e. inflammation, sympathetic nervous system activation, platelet aggregation) 

and may be bi-directional (as also suggested by SHHS data).124 Overall, SHHS data demonstrate 

that severe OSA doubles the hazard ratio of cardiovascular disease risk in certain 

subpopulations, but in other groups the prognostic power of AHI appears more limited.2,37,39 
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 AHI severity categories ultimately do not correlate well with symptom burden or 

comorbidity outcomes.39 This has led to other signal patterns in PSG data being investigated for 

their relationships with outcomes of interest. Two-percent oxygen desaturations have been 

found to predict insulin resistance, while 4% oxygen desaturations and REM-predominant OSA 

predict hypertension. 41-43 The time spent with an oxygen saturation below 90% predicts 

platelet aggregation, while an increased arousal index predicts memory impairment. 44-46  

Definitions of disease burden may therefore need to change depending on a given patient’s 

history, the outcome of interest, and the specific pathophysiologic mechanisms underpinning 

their OSA.38 

 Different methodologies have been applied in recent years in an attempt to better 

elucidate factors related to OSA pathogenesis. A top-down, structured approach to 

phenotyping based on PSG measurements of multiple clinician-defined physiologic traits was 

described in 2013 by Eckert and colleagues as the PALM Scale (airway critical closure pressure 

[Pcrit], arousal threshold, loop gain, muscle responsiveness of the upper airway).77 These 

features are measured by actively alternating airway pressures in patients wearing continuous 

positive airway pressure tolerance (CPAP) and then measuring physiologic responses according 

to pre-specified criteria. Patients showed significant trait heterogeneity, with over half 

displaying abnormal non-anatomic features such as hypersensitive loop gain, decreased arousal 

thresholds, and inadequate pharyngeal dilator muscle responsiveness. Further work has shown 

that patient populations display different combinations of PALM traits.78,79 Other research 

confirms that phenotypes can have differential responses to targeted therapies,80-85 lending 

greater weight to the concept of undiscovered OSA subtypes with different underlying disease 

risks and responses to therapy. 

 These clinical subtypes, and the mechanisms that underlie them, may only become 

apparent with the application of more sophisticated mathematical tools. For example, 

electrocardiographic research has demonstrated changes in heart rate variability and 

autonomic/respiratory interactions (called cardiopulmonary coupling) in SHHS that correlate 

with EEG and respiratory event markers of sleep.125–128 Cardiopulmonary coupling has been 

significantly associated with comorbidities including hypertension and stroke risk,129 but it is 
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difficult for humans to rapidly visually recognize and is unlikely to be the only significant 

determinant of disease risk. Other clinically meaningful information, not captured by visual 

scoring methods, may therefore lie within PSG signals. OSA is a distinctly different disease in 

different populations, and there is a great need for prognostic data beyond the AHI.  

 This study develops a model that uses clinical, cardiac, and new engineered features to 

predict cardiovascular outcomes, serving as a proof of concept. This study will help move 

towards more personalized sleep medicine by outlining important phenotypic elements from 

PSG data.  

 

Methods 

 This study was designed as a retrospective analysis of PSG data collected through 

several multicenter cohort studies available through the National Sleep Research Resource 

(NSRR). 71,86,87 Study design was approved by the Vanderbilt University Medical Center 

Institutional Review Board (#171186) and data access was approved by the NSRR. 

Study datasets 

 A logistic regression model was trained on 5,804 Type II PSGs from multiple centers 

containing patients with and without sleep-disordered breathing collected for the Sleep Heart 

Health Study (SHHS). The study contains two sets of visits, with the first and larger set used 

here (SHHS 1; Table 17). 

 

Table 17. SHHS 1 summary statistics 

Category Mean Median Min, Max 

Age 63.1 63 [39, 90] 

Body Mass Index 28.2 27.5 [18, 50] 

Apnea Hypopnea Index 17.9 13.2 [0, 161.8] 

Sleep Time (minutes) 359.8 367.0 [34.5, 519] 

 

 



 50 

SHHS data 
 The data included in the SHHS study ranges from clinical data such as age and gender, 

full night polysomnogram data that has been labeled by experts, and cardiac outcomes over the 

following 10 years. 

Polysomnography data 

 All PSG files were downloaded in the European Data Format containing the raw time 

series data of physiologic signals from each PSG as well as human-scored sleep stages and 

apneic events. For this study, 5,213 patients were randomly selected from the SHHS1 dataset. 

The model was trained and validated using 5-folds cross validation with the SHHS1 data. 

Outcomes data 

 The patients in the SHHS study were kept track of and followed up with for outcomes 

information. The patients were targeted from the following studies: Atherosclerosis Risk in 

Communities Study (1,750 participants), Cardiovascular Health Study (1,350 participants), 

Framingham Heart Study (1,000 participants), Strong Heart Study (600 participants), New York 

Hypertension Cohorts (1,000 participants), and Tucson Epidemiologic Study of Airways 

Obstructive Diseases and the Health and Environment Study (900 participants). 

 Outcomes data for SHHS subjects belonging to these cohorts were provided to the SHHS 

by the parent cohorts. ARIC, CHS, FHS, and SHS studies had mechanisms in place for 

determining CVD outcomes since the start of SHHS. The SHHS subjects recruited in Tucson and 

New York were members of research cohorts that did not include ongoing assessment of CVD 

outcomes. In these two sites, SHHS investigators have implemented their own procedures for 

ascertaining and adjudicating CVD outcomes among SHHS participants. The outcomes that we 

use are shown in Table 18. 
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Table 18. Number of positive cases of each cardiac event 

Cardiac event Positive cases for those age > 

65 

Positive cases for those 

age < 65 

Angina 344 (9.8%) 17 (0.7%) 

Congestive heart failure 584 (16.7%) 43 (1.7%) 

Myocardial infarction 310 (8.8%) 55 (2.2%) 

Stroke 263 (7.5%) 26 (1.1%) 

Fatal cardiovascular disease 340 (9.7%) 18 (0.7%) 

Fatal coronary heart disease 221 (6.3%) 12 (0.5%) 

 

Model design 

 We use machine learning methods create a model that predicts if a cardiac event will 

occur in the future (within 10 years). The model is built from various features available within 

the SHHS data and the polysomnogram data. This includes: 

1. AHI 

2. Clinical features 

• Demographic 

• Laboratory 

• Cardiac 

3. Engineered features 

  

 Age ended up being a dominant factor in predicting cardiac risk. Due to this, we decided 

to split the data into two groups: age > 65 and age < 65, and not include age as a feature. The 

different channels from the polysomnogram that we used included: EEG (arousals), airflow 

(breathing). 
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Feature selection 

 We selected a number of clinical features from those available from the SHHS. These 

features included the demographic feature gender, as well as a number of laboratory values 

(Table 19) and cardiologists’ ECG labeled determinations (described in the next section). 

 

Table 19. Clinical demographic and laboratory features 

Feature Description 

AHI Apnea-Hypopnea Index 

Gender Patient gender 

Weight Patient weight 

Waist Patient waist circumference 

BMI Body-Mass Index 

Chol Cholesterol 

HDL HDL 

Trig Triglycerides 

FEV1 Forced expiratory volume 

FVC Forced vital capacity 

DiasBP Diastolic blood pressure  

SystBP Systolic blood pressure 

 

 

Clinical ECG features 

 ECGs have been previously used to find features associated with respiratory signals. 

ECGs have been found to provide information to identify apneic epochs.129,130 With signal 

processing, respiration can be extracted out of the ECG signals with a reasonable degree of 

reliability. This can be valuable information when studying patients with OSA.131 Extracting 

respiration from the ECG signal has been found to be possible by three mechanisms: the 

physical effect of respiration causes displacement of the ECG electrodes, ventilation changes 
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the volume of air within the lung which alters the amplitude of the ECG signal, and respiration 

causes heart rate variability (HRV).132 

 ECG features were based on the ECG channel measured in the polysomnogram. The 

ECGs from the SHHS study were labeled by expert cardiologists; we use these expert labels 

(Table 20). Recently, there’s been a lot of work in using deep learning to find these labels. 

 

Table 20. Clinical cardiac features 

Feature Description 

antlatmi Anterolateral myocardial infarction (MI) 

antsepmi Anteroseptal myocardial infarction (MI) 

apbs Atrial bypasses 

av1deg First degree atrioventricular block 

av3deg Third degree atrioventricular block 

ilbbb Incomplete left bundle-branch block 

infmi Inferior myocardial infarction (MI) 

irbbb Incomplete right bundle-branch block 

iventblk Indeterminate intraventricular block pattern 

lah Left Atrial Hypertrophy 

lbbb Left bundle-branch block 

lvh3_1 Left Ventricular Hypertrophy: Voltage 3-1 

lvh3_3 Left Ventricular Hypertrophy: Voltage 3-3 

lvhst Left Ventricular Hypertrophy with ST and T-

wave abnormalities 

mob1 Mobitz Type-1 Heart Block 

mob2 Mobitz Type-2 Heart Block 

nodal Nodal rhythm 

nonsp_st Nonspecific ST wave abnormalty 

nonsp_tw Nonspecific T wave abnormalty 

paced Paced rate 
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part2deg Partial second degree atrioventricular block 

qrs QRS Axis 

rbbb Right bundle-branch block 

rtrial Right Atrial Enlargement 

rvh Right Ventricular Hypertrophy 

st4_1_3 ST and T-wave 4-1 to 4-3 

st5_1_3 ST and T-wave 5-1 to 5-3 

truposmi True posterior myocardial infarction (MI) 

ventrate Ventricular rate 

vpbs Ventricular bypasses 

wpw Wolff-Parkinson-White Syndrome 

 

Engineered features 

 We engineer features from the sleep studies of the patients using both clinical and 

signal processing knowledge. These features are derived from data solely contained within 

PSGs. In engineering these features, we enlisted clinician help for ideas on sleep-related aspects 

of specific data channels (i.e., respiratory, ECG) that are not well described nor often used to 

predict cardiac outcomes. We then create features that describe these aspects of the data. 

 

Engineered respiratory features 

 Respiratory features were based on the airflow channel in a polysomnogram. This 

channel measures the airflow during sleep, generally used to find and label apneas and 

hypopneas. Traditionally, these are then used to calculate AHI. While AHI gives a good estimate 

of the number of respiratory events that occur over a period of time, it doesn’t give information 

about those events themselves.  

 A number of physiological features have been shown to occur in response to respiratory 

events, like oxygen saturation drops or arousals. Although the immediate consequences of 

drops in oxygen saturation throughout the night is not yet clear, it has been associated with 

various conditions such as carotid wall thickening and plaque occurrence133, excessive daytime 
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sleepiness134, cancer progression135, and neurobehavioral and autonomic alterations136. This 

suggests that other physiological parameters besides those measured by AHI, such as the 

magnitude of oxygen desaturation, event length, or clustering of events may contribute 

differently to OSA. With this in mind, we selected a few features that encompass this 

information (Table 21). 

 

Table 21. Engineered respiratory features 

Feature Description 

Average apnea length Average apnea event length 

Average hypopnea length Average hypopnea event length 

Average time between apneas Average time between apnea events 

Average time between hypopneas Average time between hypopnea events 

SASHB Area under the curve (SaO2) of respiratory 

event to baseline 

 

 We selected the average event length to better characterize respiratory events, since 

the AHI only takes into account the number of events that have occurred. The average time 

between events was selected to better characterize the clustering of those events. 

 The Sleep Apnea-Specific Hypoxic Burden (SASHB) is the area under the curve of the 

oxygen saturation for the oxygen desaturation following those respiratory events.137 It is 

calculated by determining the baseline for SaO2, and then finding the area between the SaO2 

curve and the baseline. This concept has been recently used to predict cardiovascular disease-

related mortality138 and incident HF137. For each identified respiratory event, the pre-event 

baseline saturation was defined as the maximum SaO2 during the 100 seconds before the end 

of the event. The area under this baseline value was calculated over the desaturation that 

followed the respiratory event as labeled by sleep technicians (Figure 16). 
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Figure 16. Sleep Apnea-Specific Hypoxic Burden 

 

Engineered EEG Features 

 EEG recordings are widely used in sleep medicine because of its ability to detect 

variations in cortical activity and differentiate wake from different stages of sleep. Guidelines 

for scoring wake and sleep stages standardize and improve upon previous ad-hoc methods.39,40 

Because sleep is currently assessed visually by sleep technicians, there is possibly more 

information to be gained from EEG routinely collected EEG signal. Efforts to further process 

these stored data will be helpful in better characterizing sleep physiology in patients with OSA. 

 Simple summary EEG features were designed to capture information about arousals, 

which aren’t currently widely used to evaluate OSA (Table 22).  

 

Table 22. Engineered EEG features 

Feature Description 

Arousal duration Duration of arousal 

Arousal average time between Average time between arousals 

 

Engineered ECG Features 

 Several ECG features were tested and selected based on literature of QT interval 

implications on cardiac death139, P-wave differences in OSA patients140, and HRV relationships 

with OSA141 (Table 23). 
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Table 23. Engineered ECG features 

Feature Description 

QT interval Length of Q-T interval 

P-wave area difference Difference in area under P-wave between 

event and non-event breathing 

R-R interval Average interval between R peaks 

 

Model validation and testing 

 We tested a number of different models including logistic regression, SVMs, random 

forests, and deep learning models. We settled on a logistic regression model with the features 

as input, because of performance and interpretability of the model. We oversample the 

minority class to ensure a class balance within the imbalanced data, and measure model 

performance using accuracy and area under the receiver operating characteristic (ROC) curve. 

Models are tuned using a random walk search over a set of parameters. We use 5-fold cross 

validation to measure performance for the final result. 

 

Results 

 The final model consists of a combination of AHI (1), clinical (42) and engineered (5 

respiratory, 2 EEG, 3 ECG) features. We plot the training and testing accuracy vs the number of 

samples to ensure the models converge properly (Figures 17-22). 

 

Figure 17. Angina learning curve 
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Figure 18. CHF learning curve 

 

 

Figure 19. Myocardial Infarction learning curve 

 

 

Figure 20. Stroke learning curve 

 

 

Figure 21. CVD learning curve 



 59 

 

 

Figure 22. CHD learning curve 

 

 We show the model performance against a baseline model using only AHI as the 

feature, as well as the final combined model compared to AHI and clinical features (Figures 23-

28). A significant increase in AUC (p < 0.05) is marked by an asterisk.  

 

 

Figure 23. Angina model 
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Figure 24. Congestive heart failure model 

 

Figure 25. Myocardial infarction model 
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Figure 26. Stroke model 

 

Figure 27. Cardiovascular disease model 
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Figure 28. Coronary heart disease model 

 

 The results of each of the final models is summarized in Table 24. Additionally, we check 

for significance between the results of the models with and without the engineered features 

using a t-test to compare the 5-fold cross validated accuracies between the two models. Tables 

for age < 65 can be found in Appendix H. 

Table 24. Summary of model outcomes for age ≥ 65 

Model Outcome AUC 

Angina 0.86 +/- 0.013 * 

CHF 0.76 +/- 0.023 * 

MI 0.76 +/- 0.022 * 

Stroke 0.67 +/- 0.018 * 

CVD 0.78 +/- 0.020 * 

CHD 0.75 +/- 0.025 *  

* Indicates significance at p < 0.05 
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 The impact of the features in the model can be inferred by examining the weights of the 

features in the logistic regression model (Table 25). We examine the features for angina, the 

outcome that had the highest predictability with the feature set. 

 

Table 25. Feature weights for angina model 

Feature Weight 
ahi_a0h3a -0.02 

Gender -0.33 
Weight -0.12 

Waist  0.10 

bmi_s1  0.15 
Chol -0.23 

HDL -0.08 
Trig  0.16 

FEV1 -0.05 

FVC -0.32 
DiasBP -0.42 

SystBP  0.46 
lvh3_1 -0.13 

lvh3_3 -0.19 

st4_1_3 -0.57 

st5_1_3  0.37 

lvhst  0.78 
mob1 -0.97 

part2deg -1.40 

mob2 -0.97 

av3deg -0.97 

av1deg  0.20 
lbbb  0.19 

rbbb -0.08 

ilbbb  0.01 

irbbb -0.21 

lah  0.02 
iventblk -0.02 

wpw  1.07 
antsepmi  0.10 

infmi -0.05 

antlatmi  0.13 
nonsp_st  0.37 
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nonsp_tw -0.23 
rtrial  0.58 

rvh  0.69 

VENTRATE  0.48 

QRS  0.01 

AFIB  0.31 
PACED  2.86 

nodal -0.53 

apbs -0.82 

vpbs -0.48  

Average apnea length -0.63 
Average hypopnea length  0.55 

Average time between apneas  0.38 

Average time between hypopneas -0.34 

SASHB  0.87 

Arousal duration -0.27 
Arousal average time between -0.58 

QT interval 0.41 

P-wave area difference -0.21 

R-R interval 0.18 

 
 To summarize the most important features for each of the cardiac outcomes, we find 

the top 5 features (Table 26). 

 

Table 26. Top 5 features by weight per cardiac outcome 

Angina CHF MI Stroke CVD CHD 

PACED Arousal time 

btwn 

Arousal 

duration 

nodal av3deg PACED 

part2deg lah wpw SASHB mob1 vpbs 

mob1 nodal PACED Hypopnea 

duration 

FVC rvh 

mob2 rvh Arousal time 

btwn 

wpw mob2 iventblk 

av3deg part2deg part2deg vpbs PACED av3deg 
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Discussion 

 We developed machine learning models to predict the occurrence of six different 

cardiovascular events within the following 10 years. We compare the performance breakdown 

of each group of features to the engineered features that we implement and to the gold 

standard, AHI. We show that AHI has a weak predictive performance for cardiac outcomes, and 

features that better describe the apneas, hypopneas, and arousals outperform it. 

 In examining the features that have higher weights in the logistic regression model, we 

can infer the features that have a higher impact on predicting the outcome. We find that 

cardiac features that describe atrioventricular blocks, heart blocks, bypasses and pace rate, plus 

the SASHB feature have the highest weights in predicting angina. The AHI feature appears to 

have one of the lowest weights within the model for angina. 

 The results for the age < 65 may be affected by the low number of actual cardiovascular 

events that occur. In particular, the stroke, CVD and CHD have the lowest number of cases and 

the worst performance. While we oversample the minority class for the model, this means that 

the samples are all similar and likely does not fully describe cohort at risk for those outcomes. 

 There are several limitations within this study. One limitation is that we predicted 

cardiac outcomes as occurrence within 10 years. This was selected due to the available 

cardiovascular outcomes data but could be better refined. In addition, there is possibly missing 

data in the follow up for the SHHS patients; there are possible missing cardiovascular events.   

 AHI has in the past been shown to have conflicting associations with cardiovascular 

outcomes and not correlate well with symptom burden or comorbidity outcomes. We find that 

using AHI as a feature for 6 different cardiovascular outcomes mirrors this finding; for angina 

and CHF, AHI is predictive, but for myocardial infarction, stroke, CVD and CHD it has very little 

predictive power. We show that engineered features that better describe the apneas, 

hypopneas, and arousals that occur during sleep in most cases make better features for 

predicting those cardiovascular outcomes. 
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Future work in unsupervised phenotype discovery and PSG analysis 

 Future work in phenotype discovery may be aided by deep learning, which has been 

shown to have success in fields such as natural language processing and audio. In this future 

work section, we present an idea we used to attempt to summarize and organize PSG data 

with. Work in the implementation of this model allowed us to learn about the difficulties in 

summarizing PSG data. 

PSG2VEC 

 In the field of natural language processing, the sentence and document representation 

problems have been solved using models called WORD2VEC and DOC2VEC142,143
. WORD2VEC is 

a well-known language model that converts words into a vector representation of term 

semantics that can be mathematically manipulated (e.g. king - man + women = queen). 

DOC2VEC leverages a corpus of WORD2VEC-transformed terms to create a vector 

representation of a document for easy comparison between documents. Our idea was to create 

a similar model, which we dubbed PSG2VEC, in which representations of signal (analogous to 

words) could be used to describe a PSG. 

 Autoencoders are a specific type of neural network that consist of an input layer, hidden 

layer, and output layer. The weights of the hidden layer are updated iteratively during training 

to produce an output that is as similar as possible to the input. After training, the hidden layer 

can be used to transform the input into a compact representation. For PSG data, the encoding 

layer will consist of convolutional layers to identify spatial patterns. It has been shown that 

CNN-based autoencoders can find features that outperform other methods in classification 

tasks, including principal component analysis and sparse random projection in EEG signal.58–60 

The compact autoencoder representation will be used to capture a dictionary of features from 

raw PSG data. Relevant features may be simple, easily recognizable single channel patterns 

such as k-complexes or sleep spindles, but can also be far more complex, spanning multiple 

channels and physiologic signal interactions over large time intervals. These encoded features 

would then be used in a sequence learning model to generate a single vector representation of 

a PSG, termed PSG2VEC.  
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 The PSG2VEC approach analogously leverages the auto-encoded features as “words”, 

and sequences of those PSG “words” to learn a “document” representation (Figure 29). The 

resulting PSG “document” representation would allow for the comparison and stratification of 

PSG data. 

 

Figure 29. A. PSG data are used to train an autoencoder that capture important sleep 
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characteristics. The resulting encoded vectors results in a sequence of compressed features 
that represents the signal. B. The PSG2VEC model takes a sequence of encoded PSG features 
and a patient ID to predict the next pattern/signal encoding in the sequence. The trained 
network outputs an encoding for patient a PSG to a PSG2VEC vector that summarizes the 
characteristics of an entire PSG exam, which can be used for patient stratification. 

 
 These PSG2VEC vectors could be leveraged as predictors for cardiovascular outcomes by 

themselves and in combination with clinician-defined features. Moreover, PSG2VEC vectors 

from multiple patients can be compared and correlated with other patient characteristics.  

 Our work in this area did not yield a working model, but allowed us to learn about the 

difficulties that must be solved in in future work in order to do so. PSG data is much more 

complex than in natural language in that signals are noisy and not so well-defined as words. 

Autoencoders were used to attempt to create more defined units analogous to words, but the 

variation in signal makes the task difficult. There is the disentanglement problem: how to 

represent the information present in a compact and interpretable structure. In addition, we 

want the representation to be meaningful to our goal, phenotyping sleep apnea (and 

correlation to its outcomes). Some ideas for future work in this area include using inductive 

bias, or using labels and related metadata to help direct the formation of those 

representations.  

 The other problem we found was that the depth and breadth of the PSG data was hard 

to summarize succinctly. Essentially, we want to make a metric or data representation like AHI 

that includes more relevant information. The idea of a model similar to DOC2VEC is hindered 

without the smaller units that have distinct meaning (i.e. words). In the audio domain, 

autoencoders have been used to categorize songs, but here the PSG data is too much to 

process in a similar manner. For future work, the biggest challenge is finding a way to 

summarize or analyze the data in a meaningful manner.  
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CHAPTER 6 

CONCLUSIONS 

 

 Sleep apnea is a highly preventable disease that can be more efficiently treated if we 

have better tools to measure, characterize and phenotype it. With the rise of machine and deep 

learning methods in the last decade, we have the capability to more efficiently and quickly 

categorize and analyze polysomnogram data that has previously been laborious to label and 

complex to evaluate. The work presented in this thesis takes a step towards the improvement 

of sleep study analysis systems and provides insight and suggestions for better phenotyping 

sleep apnea. 

 

Contribution and innovation 

 The management of OSA and associated disease risks currently remain largely 

dependent on the single disease metric, the apnea-hypopnea index. Literature has shown, and 

we have mirrored the finding, that predictive value of AHI for complications from OSA is low 

(cardiac, in our work), and a need exists for better prognostic metrics. Significant variation in 

OSA presenting symptoms, disease mechanisms, associated comorbidities, and treatment 

outcomes has been reported in patients with similar AHI. We describe three flaws in AHI that 

contribute to poor prognostic value: 1) differences in threshold criteria defining respiratory 

events, 2) variability in human event scoring accuracy, and 3) the loss of important physiologic 

data associating with comorbid disease risk. We used these three flaws as a baseline upon 

which we developed three aims for different studies.  

 To enhance the efficiency and accuracy of PSG analysis, we developed and evaluated 

staging and event scoring models. The evaluation of these models demonstrated that deep-

learning based models perform as well as or better than humans with less manual labor and 

human bias. Automated scoring systems may ease the burden of PSG scoring and reduce inter-

rater variability in staging and event scoring, improving and expediting the PSG scoring process 

for sleep medicine research and clinical practice. Automated systems are our answer for the 

first two flaws with AHI that we determined. 
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 In the third aim, we developed sleep-derived features from sleep studies to predict 

cardiac outcomes associated with sleep apnea. These additional features derived from 

polysomnogram data were found to have a higher predictive contribution than AHI and added 

additional information to aid prediction on top of AHI, demographic and clinical data. This is the 

first step in defining better prognostic measures and discovering and defining phenotypes for 

obstructive sleep apnea. 

 

Limitations 

 The work presented is limited in several dimensions that require further development 

and testing in order to better apply these models and features to practice. 

 

Effect of different event and staging definitions 

 One flaw with AHI is the differences in threshold criteria defining respiratory events.  In 

a similar fashion, there are different criteria for determining sleep stage: AASM and RK. Both 

Aim 1 and 2 studies used only one set of criteria, and the effect of additional data from a 

different set is unknown. Model accuracy outcomes may differ between new vs. old AASM 

respiratory event definitions, or AASM sleep staging criteria and RK staging criteria. In the 

future, the newest set of criteria should be chosen, or the models should be trained on a 

mixture of newer and older criterion’s data. This also brings up another question: is the current 

definition the best definition of a respiratory event or a sleep stage (both are human-defined), 

or should the definitions be more data-driven and unbiased? 

 

Transferability across different PSG types and additional data sources 

 The datasets examined in these works are composed of Type II PSGs recorded in subject 

home environments with a limited, single EEG channel montage. Generalizability to more 

common Type I or Type III PSGs could not be evaluated, and we suspect that training the model 

with additional EEG signals available in Type I PSGs would likely yield performance 

improvements to models using that channel because more data from those additional channels 

would be available. As availability and usage of consumer wearables becomes higher, 
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comparison with more limited montage datasets, such as consumer wearables utilizing 

actigraphy and heart rate monitoring, becomes possible. Work in this area is limited by the lack 

of large, publicly available datasets with this type of data source.  

 

Timeframe and labeling in PSG event or staging detection and analysis 

 In the apnea and hypopnea event detection models, we defined a respiratory event as 

occurring when we find 10 or more seconds successively defined as belonging to an event. A 

single negatively defined second in 10+ seconds breaks the chain, and a possible event would 

be left undetected. This may have contributed to the under-estimation of AHI for our model. 

This type of continuity problem always must be dealt with when using timeseries data.  

 Another issue is that it is known that there is variability in the labeling of apnea and 

hypopnea events. This variability exists in selecting existing events, as well defining the start 

point and duration of those events. This leads to a limitation in the standard for event 

detection; the human-labels cannot make up a true gold standard. Despite that, however, since 

there is a high degree of agreement between human-labels, the labels that make up this silver 

standard are still useful. The same applies to stage labeling, minus the variability in staging 

duration since those are defined to exist in 30 second periods, which brings us to another 

limitation. 

 The definition of staging being limited to 30 second periods is a human definition that 

was created for simplicity. Sleep staging describes a continuous cycle of the stages of sleep, 

which are not contained physiologically in 30 second periods. There is inaccuracy in describing 

the sleep stages in such a manner. Future work may explore continuous sleep staging, which 

could more accurately describe that area of analysis.  

 

PSG data summarization and feature selection for phenotyping 

 In our work to attempt phenotyping obstructive sleep apnea using PSG data, we found 

that the breadth and depth of PSG data coupled with the lack of a method of summarization 

hindered our efforts. The positive point about AHI is that it is a singular metric that describes 

some information pertaining to sleep apnea, though it is lacking in that information. It is 
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difficult to find a similar metric that is more meaningful. Sleep study data contains hours of 

multiple channels of physiological signal data, which can be hard to analyze and even harder to 

summarize.  

 Prior to engineering specific features using previous knowledge from literature, we 

attempted to use methods used in other timeseries data to summarize a PSG. These methods 

included models similar to WORD2VEC, or models used in the auditory domain. We found that 

PSG data is more complex in that signals are noisy and not so well-defined as words, and that a 

single PSG held too much data to be summarized in a similar manner to a song. Future work 

may want to attempt this feat again, but engineering features using clinical knowledge was our 

path towards that grander goal.  

 

Clinical and informatics implications 

 The methods developed in this thesis demonstrate that advancements in computer 

science and informatics can be applied to and improve the solutions to clinical problems. We 

developed models using deep-learning methods that can be directly applied to PSG labeling in a 

clinical setting, enabling more efficient and less labor-intensive sleep study analysis. While 

there may be some limitations with these models, we demonstrated generalizability for both 

the event detection and sleep stage scoring models. Automated scoring systems can largely 

improve the productivity of sleep labs, for example reducing scoring time of sleep staging from 

2 hours per PSG to 2 minutes.  

 The engineered features and methods for selection presented in our cardiac prediction 

models demonstrate a strong first step towards sleep apnea phenotyping and prognostic 

development. Clinical knowledge can be combined with signal processing and machine learning 

to find features that help to better describe and predict relevant outcomes to sleep apnea. We 

also detail the limitations currently inherent in dealing with and attempting to summarize PSG 

data, and some areas to look into for future work.  
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Future work 

 This work is a step towards better defining sleep apnea phenotypes and prognostics. 

The event detection and sleep staging models help process and analyze PSGs in an efficient, less 

variable manner. Further work in this area includes exploring and solidifying those definitions, 

possibly in a more data-driven and precise manner. Our work in engineered features is the start 

of forming better descriptors of sleep apnea correlated with relevant outcomes and 

complications. Further work can be done to discover more descriptors using complications and 

outcomes other than the cardiac ones used in our study. These descriptors can be used to 

cluster groups of sleep apnea cohorts and start to define different phenotypes.  

 Apart from using features derived from clinical knowledge, deep learning may be used 

to perform unsupervised exploration of the PSG data. As mentioned in the limitations section, 

work in other areas of research such as document summarization and song categorization may 

lend some relevant techniques to this endeavor. We have proved in our modeling of respiratory 

event detection and sleep staging that deep-learning lends itself well to signal data and can be 

used to predict human-defined labels. This indicates that deep learning may also be able to 

perform well in the more unsupervised space and is the next area of exploration in this field. 
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Appendix A 

Tested sleep staging machine learning model architectures 

Model Description 

Markov Chain Simple Markov model, predict next stage 

based on prior probabilities observed 

CNN Raw signal as input fed into a convolutional 

neural network 

Spectrogram + LSTM Spectrogram for 30 seconds of signal data as 

input, fed into LSTM network 

Spectrogram + CNN Spectrogram for 30 seconds of signal data as 

input, fed into convolutional neural network 

Spectrogram + CNN + LSTM Spectrogram for 30 seconds of signal data as 

input, fed into convolutional layers whose 

features are fed into LSTM layers 
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Appendix B 

Sleep staging machine learning model hyperparameter search space 

Parameter Search space 

Number of convolutional layers 1,2,3,4,5 

Number of filters 32,64,96,128 

Filter width 1,2,3,4 

Filter height 32,64,128 

Number of pooling layers 1,2,3 

Width/height of pooling layer 2,3,4 

Number of LSTM layers 1,2,3 

Number of LSTM units 256, 512, 768, 1024 

Number of dense layers 1,2,3 

Number of units in dense layer 256, 512, 768, 1024 
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Appendix C 

Apnea and hypopnea window search parameters 

Input representation 

Window = 5, overlap = 0 

Window = 10, overlap = 0 

Window = 15, overlap = 0 

Window = 20, overlap = 0 

Window = 25, overlap = 0 

Window = 30, overlap = 0 

Window = 60, overlap = 0 

Window = 5, overlap = 1 

Window = 10, overlap = 1 

Window = 15, overlap = 1 

Window = 20, overlap = 1 

Window = 5, overlap = 3 

Window = 10, overlap = 3 

Window = 15, overlap = 3 

Window = 20, overlap = 3 

Window = 10, overlap = 5 

Window = 15, overlap = 5 

Window = 30, overlap = 5 

 

  



 77 

Appendix D 

Apnea and hypopnea event detection architectures and performance 

Input representation and architecture type effect on apnea model performance – most 

significant input representation and model architectures are listed, though more combinations 

were tested. 

Model Performance  

(Patient AHI Class Accuracy) 

Window = 5, overlap = 0 

Convolutional layers 

0.72 

Window = 10, overlap = 0 

Convolutional layers 

0.87 

Window = 15, overlap = 0 

Convolutional layers 

0.83 

Window = 20, overlap = 0 

Convolutional layers 

0.85 

Window = 25, overlap = 0 

Convolutional layers 

0.81 

Window = 30, overlap = 0 

Convolutional layers 

0.80 

Window = 60, overlap = 0 

Convolutional layers 

0.75 

Window = 5, overlap = 0 

Convolutional+recurrent layers 

0.74 

Window = 10, overlap = 0 

Convolutional+recurrent layers 

0.87 

Window = 15, overlap = 0 

Convolutional+recurrent layers 

0.82 

Window = 20, overlap = 0 

Convolutional+recurrent layers 

0.86 

Window = 25, overlap = 0 

Convolutional+recurrent layers 

0.81 

Window = 30, overlap = 0 0.80 
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Convolutional+recurrent layers 

Window = 60, overlap = 0 

Convolutional+recurrent layers 

0.72 

Window = 5, overlap = 1 

Convolutional layers 

0.80 

Window = 10, overlap = 1 

Convolutional layers 

0.96 

Window = 15, overlap = 1 

Convolutional layers 

0.94 

Window = 20, overlap = 1 

Convolutional layers 

0.91 

Window = 5, overlap = 3 

Convolutional layers 

0.90 

Window = 10, overlap = 3 

Convolutional layers 

0.94 

Window = 15, overlap = 3 

Convolutional layers 

0.91 

Window = 20, overlap = 3 

Convolutional layers 

0.90 

Window = 10, overlap = 5 

Convolutional layers 

0.90 

Window = 15, overlap = 5 

Convolutional layers 

0.87 

Window = 30, overlap = 5 

Convolutional layers 

0.85 
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Appendix E 

Apnea and hypopnea machine learning model hyperparameter search space 

Parameter Search space 

Number of convolutional layers 1,2,3,4,5 

Number of filters 16, 32,64,128 

Filter width 1,2,3,4,5,10 

Filter height 2,3 

Number of pooling layers 1,2,3 

Width/height of pooling layer 2,3 

Number of dense layers 1,2,3 

Number of units in dense layer 256, 512, 768, 1024 
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Appendix F 
Rule-based model summary 

• For signal x, check if point is trough: 

• If trough: 
1. Compute mean amplitude based on the last six peak-to-trough measurements if 

the hypopnea threshold is exceeded 
2. Determine if the point is in a hypopnea event by keeping count of such points 
3. Check threshold duration of event 
4. Determine if an event has ended based on current amplitude of signal and count 

of event duration 
5. Stop computation of mean amplitude if event has ended, or adjust if necessary 

• If not a trough: 
1. Determine if point is in an apnea event by checking amplitude compared to 

mean amplitude and apnea count 
2. If apnea event is detected using the apnea threshold, override hypopnea count 
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Appendix G 
Rule-based model parameters 

Final algorithm parameters: 
apnea_thres = 0.1; hypopnea_thres = 0.5; apnea_duration = 10 s; hypopnea duration = 10 s 
thres_count_amp = 6; count_skip = 4; thres_amp_over = 1.2 
 
Performance of algorithm different parameters 

Parameter AUC 

Model with the above parameters 0.87 

hypopnea_thres = 0.7 0.84 

thres_count_amp = 4 0.85 
thres_count_amp = 5 0.86 

thres_count_amp = 7 0.84 

count_skip = 3 0.86 

count_skip = 5 0.86 

thres_amp_over = 1.1 0.85 
thres_amp_over = 1.3 0.86 
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Appendix H 
Summary of model outcomes for age < 65 

Model Outcome AUC 

Angina 0.84 +/- 0.017 * 

CHF 0.73 +/- 0.026 * 

MI 0.63 +/- 0.042 

Stroke 0.63 +/- 0.031 

CVD 0.57 +/- 0.023 

CHD 0.56 +/- 0.054 

* Indicates significance at p < 0.05 
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