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CHAPTER I 

 

Introduction 

1.1. Alzheimer’s Disease and Racial Disparities 

Alzheimer’s disease (AD) is a neurodegenerative disorder that causes memory loss and 

decreases cognitive function to the point that it disrupts daily activity. Recent studies report 5.8 

million Americans are suffering from this disease and it is the 6th leading cause of death in the 

USA.1 While deaths due to diseases such as heart disease, HIV and breast cancer have decreased 

significantly from 2000-2015, deaths due to AD increased by 146%.1 To date, there is no cure 

available for this disease and the estimated cost per year to treat, provide care, and give support 

stands at $306 billion in 2020.1  

One aspect of AD, which has been severely understudied in basic science research is the 

aspect of racial disparities. It is well reported that African American/Black adults are 2-3 times 

more likely to develop AD compared to non-Hispanic White adults.1-2 AD is also the 4th leading 

cause of death among African American/Blacks.3 The incidence of AD is higher in the population 

aged 65 and older and by 2060, African American/Black and other minorities aged  65 years and 

older will constitute 45% of the US population.1, 4   

Despite the apparent disparity in incidence of AD among African American/Black adults, 

there is no difference in the initial manifestation of the disease among different racial groups.2, 5 

This disparity could be a consequence of the differences in quality of education, socioeconomic 

status, genetic factors and presence of comorbidities.6-9 Recently, there has been evidence of 

differences in AD biomarkers in the African American/Black population. Multiple studies have 
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reported lower cerebrospinal fluid (CSF) concentrations of total tau, phosphorylated tau 10-11 and 

interleukin-9 12 in African American/Black adults compared to non-Hispanic White adults. There 

have been few studies involving African American/Black samples in AD research 13-14 despite 

better diversity of samples in other diseases such as prostate cancer 15-16, bladder cancer 17-18, 

Wilms tumor 19, cardiovascular disease 20-21, and endometrial cancer.22  

1.2. Blood-based Biomarkers in AD 

According to the Food and Drug Administration (FDA)- National Institute of Health (NIH) 

Biomarker Working group, a biomarker is “A defined characteristic that is measured as an 

indicator of normal biological processes, pathogenic processes or responses to an exposure or 

intervention”.23 An ideal biomarker for AD should then be- 1) able to detect a fundamental feature 

of AD neuropathology; 2) validated in neuropathologically-confirmed AD cases; 3) precise (able 

to detect AD early in its course and distinguish it from other dementias); 4) reliable; 5) non-

invasive; 6) simple to perform; and 7) inexpensive.24 Much effort has gone into AD biomarker 

discovery with varying degrees of success. To date, five biomarkers have been successfully 

established in AD- CSF measurements of amyloid beta 42 (Aβ42), total tau and phosphorylated 

tau concentration, and imaging biomarkers including Magnetic Resonance Imaging (MRI) and 

Positron Emission Tomography (PET) imaging of amyloid plaques, and hyperphosphorylated 

tau.25-26 Despite the high accuracy and specificity of these biomarkers for AD, the invasive nature 

of these biomarkers makes their application in all disease stages challenging. Furthermore, MRI 

and PET scanning are expensive and require specific training for administration. Thus, there is still 

an urgent need for blood-based biomarkers to be applied as first line diagnostic tools for AD. 

 Finding blood-based biomarkers has been very challenging due to the low concentrations 

of these biomarkers in blood. Levels of Aβ42 as a potential biomarker has been well studied in 
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human plasma with varying degrees of success.27-28 A recent meta-analysis found the Aβ42 ratio 

between AD and cognitively normal individuals to be non-significant.29 Comparatively, the 

Aβ42/Aβ40 ratio has had better success as a potential blood-based biomarker in AD. Reduced 

plasma levels of Aβ42/Aβ40 ratio have been reported in plasma 30-31, and have reported high 

diagnostic accuracy for the detection of amyloidosis.32 Positive correlation of the Aβ42/Aβ40 ratio 

between plasma and CSF exists and is lower in AD, compared to mild cognitive impairment (MCI) 

and subjective cognitive decline (SCD) individuals.33  

Other potential blood-based biomarkers include tau protein, which has been found to be 

increased in AD.34 Increased tau protein has been reported to be associated with faster disease 

progression.35 Similar increase in neurofilament light (NF-L) levels in plasma have high diagnostic 

accuracy in AD.36 Variations in the levels of cytokines and chemokines have also been suggested 

as potential blood-based biomarkers in AD.37 Another approach for blood-based biomarker 

discovery in AD is the use of ‘omics techniques such as proteomics and lipidomics, which is 

discussed below in Section 1.4 and 1.7.  

1.3. Plasma Proteomics 

Plasma is one of the major blood components constituting 55% of the total volume of 

blood.38 Plasma is composed of mostly water, with 7% attributed to proteins.38 Plasma proteins 

contribute to blood viscosity, which in term contribute to maintaining blood pressure.38  Besides 

the classical proteins (albumin, IgG) plasma contains circulation proteins from different organs in 

the body.39 These characteristics make plasma an ideal candidate for disease study of protein 

alterations. Also, plasma samples are less invasive than CSF, easy to collect and the number of 

samples available in tissue banks are much higher compared to other tissue types. As a result, 

human plasma has received wide popularity for disease studies using proteomics.  
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Proteomics is defined as the analysis of the protein complement of a cell, tissue, or 

organism under a specific, defined set of conditions.40 Proteomics studies have the ability to 

provide information on protein abundance, pathways involved, protein function as well as post 

translational modifications. In general, proteomics can be divided into three different methods- 

top-down 41, middle-down 42, and bottom-up 43 proteomics. In Chapter II of this dissertation, we 

applied bottom-up techniques for plasma proteomics analysis. In general, bottom-up proteomics 

involves the proteolytic digestion of proteins into their corresponding peptides before being 

analyzed using mass spectrometric analysis. A general overview of a plasma proteomics workflow 

is provided in Figure 1.1. Plasma proteomics involves the following steps- immunodepletion of 

crude plasma 44, digestion using trypsin-Lys-C enzymes 45, isobaric tagging 46, high pH 

fractionation 47, and liquid chromatography-mass spectrometry (LC-MS) MS/MS MS3 analysis. 
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Figure 1.1. Plasma proteomics workflow. Crude plasma samples are first immunodepleted, 

followed by digestion and isobaric tagging. This is followed by high pH reversed phase 

fractionation of the samples followed by LC-MS, MS/MS, MS3 analysis. Figure adopted from the 

recently submitted research article “Dataset of Why race matters in plasma proteomics biomarker 

discovery for Alzheimer’s disease.” (Under review in data in brief) 
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1.3.1. Immunodepletion of plasma  

 Despite its popularity in disease studies, human plasma is a very complicated fluid for 

protein analysis. Plasma has a high dynamic range (~1010-1012) in protein concentration 39, which 

makes detection of low abundant proteins highly challenging. Additionally, 22 proteins constitute 

almost 99% of the total plasma protein mass.39 Various methods have been proposed to mitigate 

this issue. By far the most popular is the immunodepletion of high abundance proteins.39 Different 

immunodepletion techniques are available commercially, which includes multiple affinity removal 

system (MARS) 48, ProteoPrep 49, and Proteominer.50 MARS depletion has been found to be the 

most efficient and reproducible among all the available techniques.51 MARS is a LC stationary 

phase column, which contains antibodies for the six most abundant proteins in plasma (albumin, 

IgG, IgA, transferrin, haptoglobin and anti-trypsin).48 The crude plasma is loaded onto the column 

and, the six proteins are separated from plasma by an antigen-antibody interaction, while the 

remaining proteins pass through the column and the undepleted proteins are collected for further 

MS analysis. In Chapter II of this dissertation, we used a MARS-6 column for plasma depletion. 

1.3.2. Isobaric tagging 

 In quantitative proteomics, sample multiplexing allows analysis of multiple samples in a 

single injection. This multiplexing reduces instrumentation acquisition time as well as reduces 

sample variation introduced due to sample preparation. One of the most popular sample 

multiplexing techniques is the use of isobaric tagging 46 such as isobaric tags for relative and 

absolute quantitation (iTRAQ) 52, tandem mass tags (TMT) 53, and N, N-dimethyl leucine 

(DiLeu).54 TMT reagents have the capability to multiplex 6 55, 11 56, and 16 57 samples in a single 

analysis. The TMT reagent has three groups in its structure- a reporter ion group, a balancer group 

and amine reactive group (Figure 1.2a). For the TMT-11 plex tag, heavy isotopes (13C, 15N) are 
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incorporated into the reporter ion and balancer groups in such a manner that the overall mass of 

the tag remains the same (229.16 Da), while the mass of the reporter ion groups vary from 126-

131 Da (Figure 1.2b). During the tagging reaction, the N-terminus and the lysine residue react 

with the reactive group, leaving the mass reporter and balancer groups on the peptide. The tags are 

individually added to each sample and then pooled together into a single sample before injection 

into the mass spectrometer. Despite the incorporation of the heavy isotopes, the labeled peptides 

all elute simultaneously. Once the labeled peptide is eluted and selected for fragmentation, the 

individual reporter ion intensities are quantified based on their respective peptide abundances 

(Figure 1.2c).  

1.3.3. MS3 quantification using tribrid mass spectrometer 

 Quantitation of peptides labeled with TMT requires high resolution (>50000), due to the 

small mass differences (~6 mDa) between neutron coded isobaric tags.58 Orbitrap instruments 

provide the necessary resolution to resolve this small mass difference and enables quantitation.58 

In spite of this, TMT reagents suffer from inaccurate quantitation due to ion interferences.59 This 

issue can be resolved by the use of the more advanced tribrid Orbitrap instruments, which have 

better sensitivity for detecting low abundant proteins, as well as high resolution compared to 

previous hybrid models.60 Also, the tribrid instruments have multi-notch MS3 capability called 

synchronous precursor selection (SPS), which allows multiple MS/MS fragments to be selected 

for MS3 quantification, which increases the number of quantifiable peptides as well as reduces 

distorted reporter ion ratios.61 Performing MS3 quantification has the advantage of providing more 

accurate quantitative information, which is necessary when studying various disease states and 

facilitating biomarker discovery.  
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Figure 1.2. TMT-11 plex labeling strategy. a) Example structure of TMT-126; b) TMT-11plex 

reagent structures with corresponding isotope position denoted by *; c) Resulting spectra from 

TMT analysis. 
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1.4. Plasma Proteomics and AD 

1.4.1. Protein dysregulation in AD 

Proteomics studies have been performed using plasma/serum samples comparing AD and 

cognitively normal samples to identify dysregulated proteins in AD.62-71 However, there has been 

inconsistency in findings, as seen in Figure 1.3. Alpha-2 macroglobulin 62, 67, 69, 71-72 reported to 

be genetically associated with AD 73 was increased in AD by five studies 62-63, 67, 71-72, while others 

have reported it to be decreased in AD.69, 71 Other proteins which are dysregulated in AD include 

afamin 68-71, 74, several apolipoproteins such as apolipoprotein A1, apolipoprotein B-100, 

apolipoprotein A4, apolipoprotein E, apolipoprotein J, apolipoprotein C 62, 65-66, 68-71, 74, 75, and 

several complement proteins such as complement factor H, complement factor B, complement C4a 

precursor protein.62-63, 66-67, 69-72, 74, 76-78 Pathways include lipid metabolism 79, inflammation 

response 80-81, and coagulation.82 

1.4.2. Protein panels for blood-based biomarker discovery 

 Biomarker panels for classifying both AD and MCI samples have been proposed based on 

proteomic analyses. A panel of 18 signaling proteins classified AD with 90% accuracy.83 Others 

tried, but failed to replicate such results in different sample cohorts.84-85 On the other hand, a subset 

(5 of the 18 -IL-1α, IL-3, EGF, TNFα and G-CSF) of the protein panel have reported diagnostic 

accuracy of 96% in predicting clinical AD.86 Similar attempts of using a subset of the protein panel 

did not replicate and had lower accuracy.87-88 Despite the 18-protein panel lacking replicability in 

separate cohorts, it still is considered a benchmark for AD blood-based biomarker development.  
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Figure 1.3. Reproducibility of candidate biomarkers across proteomics experiment. Here, the 

CB in red represent proteins reporting inconsistent changes, while the CB in black represents 

proteins with consistent changes across multiple studies. (Source: See ref 89) 
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Similar biomarker panels based on blood-based proteins 90-92 have been demonstrated with 

accuracies of 89% 84 and 91-95%.93 These models improve when clinical variables (age, sex, 

education and APOE status) were added to the model.93 A panel involving the most replicated 

proteins dysregulated in AD from proteomics studies (α-1 antitrypsin, α-2-macroglobulin, 

apolipoprotein E and complement C3) achieved an accuracy of 77%.94  

1.4.3. Protein panels involving minority groups  

 The number of proteomics studies involving African American/Black or Hispanic 

population is very limited despite the higher incidence of AD. Attempts to establish protein panels 

involving Mexican American adults demonstrated accuracies from 88-96%.95-97 To date, there are 

no proteomics experiments in AD that have focused on African American/Black adults in order to 

further understanding of racial disparities or ensure effective biomarkers for diagnosis are 

available. In Chapter II of this dissertation, we employed plasma proteomics to discover potential 

diagnostic biomarkers in AD in a cohort comprising both African American/Black and non-

Hispanic White adults. 

1.5. Plasma Lipidomics 

 According to the LipidMaps Consortium, lipids can be broadly defined as hydrophobic or 

amphipathic small molecules that originate entirely or in part by carbanion-based condensations 

of thioesters and/or by carbocation-based condensations of isoprene units.98 Lipids can broadly be 

classified into eight categories- fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, 

sterol lipids, prenol lipids, saccharolipids and ployketides.98  

Lipidomics is the study of extracted lipids from biological samples on a large scale. 

Lipidomics has advanced steadily 99-102, however despite better instrumentation and platforms, 
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there is still a need for better global lipidomics approach. Broadly, lipidomics experiments can be 

divided into either untargeted or targeted lipidomics. Untargeted lipidomics involves the global 

analysis of all the lipid species present in a certain sample. In this method, instead of monitoring a 

specific lipid class of interest, all lipid classes are monitored in tandem. This approach is ideal for 

discovering altered lipid species in disease and as a screening technique for discovering potential 

disease biomarkers. In Chapter IV of this dissertation, we employed such an untargeted approach 

in the study of plasma samples in AD. Despite the apparent advantage of this approach, limitation 

lies in assigning confident annotations to lipid species, which are being addressed with ion 

mobility.103 This is due to the presence of a high number of isomers in lipid species.104 Also, the 

lack of established databases, specifically MS/MS fragmentation databases also makes assigning 

confident identifications complicated.  

 On the other hand, a targeted lipidomics approach involves monitoring either a specific 

lipid class or classes, or specific lipid species in a certain sample type. This approach involves 

targeting characteristic fragmentation patterns for a lipid class or lipid species for analysis. 

Common fragmentation patterns of lipid species are given in Figure 1.4. For example, in case of 

phosphatidylcholine species, characteristic phosphatidylcholine fragment product (m/z 184) is 

targeted for its identification. Similarly, loss of fragment ion characteristic of 

phosphatidylethanolamine (m/z 141) is targeted for its identification of phosphatidylethanolamine 

species. The targeted approach has the advantage of achieving confident identification of lipids. It 

also has the ability to provide absolute quantitative information.  

 Sciex introduced a novel multiple reaction monitoring (MRM) based targeted lipidomics 

method specific for plasma samples. This method has the capability to analyze ~1150 lipids from 

19 lipid classes.105 This approach uses hydrophilic interaction liquid chromatography (HILIC) 
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separation in conjunction with MRM to analyze lipid species. HILIC separates lipids by their 

respective lipid classes, as well as achieves molecular lipid identification upto its molecular species 

level, by targeting the loss of fatty acid chains instead of the loss of head groups. This approach 

has the capability to remove complexities due to isobaric lipid species by using HILIC separation 

on the front of MS analysis. This method has been established as a potential alternative to the 

untargeted method using high resolution mass spectrometry in Chapter III.   

 

 

Figure 1.4. Example characteristic fragmentation pattern of a) phosphatidylcholine and b) 

phosphatidylethanolamine lipid species in LC-MS analysis. (Source: Modified from Ref 105)  
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1.6. Lipids and AD 

 Involvement of lipids and altered lipid metabolism are critical in the pathogenesis of AD.79, 

106-108 For example, cholesterol is actively involved in AD pathogenesis, as its been demonstrated 

in Figure 1.5. Brain contains the highest concentration of cholesterol, which is responsible for 

maintaining fluidity of the plasma membrane.109 In the brain, a majority of free cholesterol is 

derived from de novo biosynthesis.110 Excess free cholesterol is converted to cholesterol ester by 

the enzyme acyl-coenzymeA:cholesterol acyl-transferase 1 (ACAT1). Levels of cholesterol ester 

are correlated with the formation of Aβ.111 Increase in the amount of cholesterol ester, increases 

the formation of Aβ, while the inhibition of ACAT reduces Aβ formation.112 On the other hand, 

free cholesterol can be converted into 24(S)-hydroxycholesterol, which is capable of passing the 

blood brain barrier. Increased 24(S)-hydroxycholesterol levels in AD patients have been 

reported.79, 107 Cholesterol efflux also has a role in Aβ formation. Increased levels of ATP-binding 

cassette sub-family A member 1 (ABCA1), which is responsible for regulating efflux of excess 

cholesterol to lipid acceptors such as APOE decrease Aβ formation in AD brain,113 while poor 

APOE lipidation promotes Aβ formation. Additionally, cholesterol influences Aβ formation by 

modulating secretase activity.114 Aβ formation is predominantly controlled by β-secretase 1 

(BACE1) and γ-secretase, which in term is influenced by cholesterol levels in the membrane.79, 107 

 Glycerophospholipids have also been widely implicated to be involved in AD 

pathogenesis.79, 106, 108 Glycerophospholipids are the main component of the cell membrane.115 

Two of the major glycerophospholipids are- phosphatidylethanolamines and 

phosphatidylcholines. These subclasses of glycerophospholipids along with phosphatidylinositol 

are reduced in AD, which impacts membrane fluidity, leading to oxidative stress.107 In the human 

brain, it’s been found that plasmalogens are reduced in frontal, parietal and temporal regions of 



 15 

the brain at early stages of AD.116 Similar reduction has also been reported in white matter of the 

brain.116 Reduction of plasmalogens have been correlated with disease severity.117 Similar 

reduction in phosphatidylcholines have been reported in the frontal, primary auditory and parietal 

cortices in brain of AD patients.108  

Two of the major classes of sphingolipids are sphingomyelins and ceramides. 

Sphingomyelins are the most abundant sphingolipids in the brain, and are found mostly in the 

myelin sheaths.118 Sphingomyelins are an important component of lipid raft, which is responsible 

for facilitating the formation and aggregation of Aβ.119 Sphingomyelins act as inhibitors of γ-

secretase activity, which in turn reduces the formation of Aβ.120 On the other hand, ceramide is 

involved in sphingolipid metabolism, and has been reported to be elevated in AD brain.75, 121 

Ceramides regulate BACE1 activity, promoting the breakdown of amyloid precursor protein via 

amyloidogenic pathway.108 Glycerolipids, such as monoacylglycerides and diacylglycerides have 

also been linked with AD.122  
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Figure 1.5. Role of cholesterol in Aβ formation in AD pathogenesis. Here the protein in green 

decrease Aβ formation, while the proteins in red increases Aβ formation. (Source: Ref 79)  
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1.7. Lipidomics and AD 

1.7.1. Lipid dysregulation in AD  

Comparison between cognitively normal and AD individuals involving lipidomics have 

revealed changes to various lipid classes. These include alterations to lysophosphatidylcholine and 

lysophosphatidylethanolamine species 123-127; reduction of phosphatidylcholines 123, 125, 128-134, 

phosphatidylethanolamines 123, plasmalogens 123, 130, 135-136, sphingomyelins 125, 137, and increase of 

phosphatidylcholines 123, phosphatidylethanolamines 125, and ceramides.137-140 Other lipid species 

reported to be altered in plasma of AD individuals includes triacylglyceride 125, 141,  and 

diacylglyceride species 124, 130, 135, 138, 141-142, cholesterol ester 132, 141, 143, desmosterol 144, lanosterol 

and lathosterol.145 Although individual lipid species may differ in the majority of cases, the 

alterations to lipid classes are reproducible across studies. 

1.7.2. Lipid panels for blood-based biomarker discovery 

 With recent advancements in lipidomics, several studies have proposed lipid panels in 

blood as potential biomarkers in AD. One of the most cited lipid panels involving 8 phospholipids 

and 2 acylcarnitines achieved an AUC of 0.96, also validated in a separate cohort with an AUC of 

0.827.133 Attempts to validate this panel by others have been unsuccessful.146 Similar panels 

including phospholipids have reported AUC ranging from 0.76 to 0.83.131, 134, 147 The ratio of PC 

34:4/ LysoPC 18:2 achieved an AUC of 0.823 for predicting AD.131  

Similar panels involving cholesterol and its precursors reported good accuracy for 

predicting AD.144 Other panels involving both metabolite and lipids reported an AUC of 0.792 

with a specificity and sensitivity of 76.9% and 81.8% respectively.132 Other mixed metabolite/lipid 
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panels reported an AUC of 0.918 with a 7 metabolite panel 125, accuracy of 71% with a 24 feature 

panel 143, and AUC of 0.886 with 9 features.141  

 Despite the increased number of panels, the number of studies involving African 

American/Black participants have been very limited. One such study attempted to replicate prior 

results 133 on a cohort of 221 participants, 97% of which were African American/Black adults,  

reported an AUC of 0.609 for predicting AD.148 Although, it is suggested that this could be a result 

of different study conditions 149, this is a clear indication of the need for better AD biomarkers 

effective for African American/Black individuals. As a result, more studies focusing on African 

American/Black participants is necessary. Such a study has been described in Chapter V of this 

dissertation, indicating possible differences between the African American/Black and non-

Hispanic White lipidomes in AD pathology. 

1.8. Overview of Dissertation 

 This dissertation aimed to apply ‘omics technologies to better understand health disparities 

in AD. To achieve this goal, in Chapter II we applied a robust plasma proteomics technology to 

plasma samples collected from African American/Black and non-Hispanic White adults, to 

validate the importance of inclusion in AD research. We combined the proteomics results from 

this study with machine learning to discover potential diagnostic biomarkers for AD. With the 

increasing number of studies focusing on lipids and their involvement in disease pathology, in 

Chapter III we evaluated a novel MRM based targeted lipidomics approach against an untargeted 

approach to find the best approach for plasma lipidomics analysis. Based on the involvement of 

lipid and altered lipid metabolism in AD, Chapter IV discusses the application of multi-lipidomics 

approaches to study AD. In Chapter V, a targeted MRM based approach was applied to plasma 

samples collected from African American/Black and non-Hispanic White adults to study 
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involvement of lipids in health disparities in AD. Finally, future directions of this work are 

discussed in Chapter VI. 

1.9. References 

1. 2020 Alzheimer's disease facts and figures. Alzheimer's & Dementia 2020, 16 (3), 391-

460. 

2. Chin, A. L.; Negash, S.; Hamilton, R., Diversity and disparity in dementia: the impact of 

ethnoracial differences in Alzheimer disease. Alzheimer disease and associated disorders 2011, 

25 (3), 187-195. 

3. Stephen, C. E.; Regina, L. E., Alzheimer’s Disease in African Americans: A Preliminary 

Systematic Review. Neurol Res Surg 2020, 3 (1), 1-3. 

4. Matthews, K. A.; Xu, W.; Gaglioti, A. H.; Holt, J. B.; Croft, J. B.; Mack, D.; McGuire, L. 

C., Racial and ethnic estimates of Alzheimer's disease and related dementias in the United States 

(2015-2060) in adults aged ≥65 years. Alzheimer's & dementia : the journal of the Alzheimer's 

Association 2019, 15 (1), 17-24. 

5. Barnes, L. L.; Leurgans, S.; Aggarwal, N. T.; Shah, R. C.; Arvanitakis, Z.; James, B. D.; 

Buchman, A. S.; Bennett, D. A.; Schneider, J. A., Mixed pathology is more likely in black than 

white decedents with Alzheimer dementia. Neurology 2015, 85 (6), 528-534. 

6. Barnes, L. L.; Bennett, D. A., Alzheimer's disease in African Americans: risk factors and 

challenges for the future. Health Aff (Millwood) 2014, 33 (4), 580-586. 

7. Barnes, L. L.; Wilson, R. S.; Hebert, L. E.; Scherr, P. A.; Evans, D. A.; Mendes de Leon, 

C. F., Racial differences in the association of education with physical and cognitive function in 

older blacks and whites. The journals of gerontology. Series B, Psychological sciences and social 

sciences 2011, 66 (3), 354-363. 

8. Sisco, S.; Gross, A. L.; Shih, R. A.; Sachs, B. C.; Glymour, M. M.; Bangen, K. J.; Benitez, 

A.; Skinner, J.; Schneider, B. C.; Manly, J. J., The role of early-life educational quality and literacy 

in explaining racial disparities in cognition in late life. The journals of gerontology. Series B, 

Psychological sciences and social sciences 2015, 70 (4), 557-67. 

9. Stepler, K.; Robinson, R., The Potential of ‘Omics to Link Lipid Metabolism and Genetic 

and Comorbidity Risk Factors of Alzheimer’s Disease in African Americans. Adv Exp Med Biol. 

2019, 1118, 1-28. 

10. Garrett, S. L.; McDaniel, D.; Obideen, M.; Trammell, A. R.; Shaw, L. M.; Goldstein, F. 

C.; Hajjar, I., Racial Disparity in Cerebrospinal Fluid Amyloid and Tau Biomarkers and 

Associated Cutoffs for Mild Cognitive Impairment. JAMA network open 2019, 2 (12), e1917363. 



 20 

11. Morris, J. C.; Schindler, S. E.; McCue, L. M.; Moulder, K. L.; Benzinger, T. L. S.; 

Cruchaga, C.; Fagan, A. M.; Grant, E.; Gordon, B. A.; Holtzman, D. M.; Xiong, C., Assessment 

of Racial Disparities in Biomarkers for Alzheimer Disease. JAMA neurology 2019, 76 (3), 264-

273. 

12. Wharton, W.; Kollhoff, A. L.; Gangishetti, U.; Verble, D. D.; Upadhya, S.; Zetterberg, H.; 

Kumar, V.; Watts, K. D.; Kippels, A. J.; Gearing, M.; Howell, J. C.; Parker, M. W.; Hu, W. T., 

Interleukin 9 alterations linked to alzheimer disease in african americans. Ann Neurol 2019, 86 (3), 

407-418. 

13. Buford, T. W.; Manini, T. M.; Kairalla, J. A.; McDermott, M. M.; Vaz Fragoso, C. A.; 

Chen, H.; Fielding, R. A.; King, A. C.; Newman, A. B.; Tranah, G. J., Mitochondrial DNA 

Sequence Variants Associated With Blood Pressure Among 2 Cohorts of Older Adults. J Am Heart 

Assoc 2018, 7 (18), e010009-e010009. 

14. Grewal, R.; Haghighi, M.; Huang, S.; Smith, A. G.; Cao, C.; Lin, X.; Lee, D. C.; Teten, 

N.; Hill, A. M.; Selenica, M.-L. B., Identifying biomarkers of dementia prevalent among amnestic 

mild cognitively impaired ethnic female patients. Alzheimer's research & therapy 2016, 8 (1), 43. 

15. Panigrahi, G. K.; Praharaj, P. P.; Kittaka, H.; Mridha, A. R.; Black, O. M.; Singh, R.; 

Mercer, R.; van Bokhoven, A.; Torkko, K. C.; Agarwal, C.; Agarwal, R.; Abd Elmageed, Z. Y.; 

Yadav, H.; Mishra, S. K.; Deep, G., Exosome proteomic analyses identify inflammatory phenotype 

and novel biomarkers in African American prostate cancer patients. Cancer medicine 2019, 8 (3), 

1110-1123. 

16. Zhou, X.; Mei, H.; Agee, J.; Brown, T.; Mao, J., Racial differences in distribution of fatty 

acids in prostate cancer and benign prostatic tissues. Lipids in health and disease 2019, 18 (1), 

189. 

17. Vantaku, V.; Amara, C. S.; Piyarathna, D. W. B.; Donepudi, S. R.; Ambati, C. R.; Putluri, 

V.; Tang, W.; Rajapakshe, K.; Estecio, M. R.; Terris, M. K.; Castro, P. D.; Ittmann, M. M.; 

Williams, S. B.; Lerner, S. P.; Sreekumar, A.; Bollag, R.; Coarfa, C.; Kornberg, M. D.; Lotan, Y.; 

Ambs, S.; Putluri, N., DNA methylation patterns in bladder tumors of African American patients 

point to distinct alterations in xenobiotic metabolism. Carcinogenesis 2019, 40 (11), 1332-1340. 

18. Vantaku, V.; Donepudi, S. R.; Piyarathna, D. W. B.; Amara, C. S.; Ambati, C. R.; Tang, 

W.; Putluri, V.; Chandrashekar, D. S.; Varambally, S.; Terris, M. K.; Davies, K.; Ambs, S.; Bollag, 

R.; Apolo, A. B.; Sreekumar, A.; Putluri, N., Large-scale profiling of serum metabolites in African 

American and European American patients with bladder cancer reveals metabolic pathways 

associated with patient survival. Cancer 2019, 125 (6), 921-932. 

19. Axt, J.; Murphy, A. J.; Seeley, E. H.; Martin, C. A.; Taylor, C.; Pierce, J.; Caprioli, R. M.; 

Whiteside, M.; Lovvorn, H. N., 3rd, Race disparities in Wilms tumor incidence and biology. J 

Surg Res 2011, 170 (1), 112-119. 

20. Buie, J. N. J.; Hammad, S. M.; Nietert, P. J.; Magwood, G.; Adams, R. J.; Bonilha, L.; 

Sims-Robinson, C., Differences in plasma levels of long chain and very long chain ceramides 



 21 

between African Americans and whites: An observational study. PLoS One 2019, 14 (5), 

e0216213-e0216213. 

21. Halade, G. V.; Kain, V.; Dillion, C.; Beasley, M.; Dudenbostel, T.; Oparil, S.; Limdi, N. 

A., Race-based and sex-based differences in bioactive lipid mediators after myocardial infarction. 

ESC Heart Failure 2020, 7 (4), 1700-1710. 

22. Bateman, N. W.; Dubil, E. A.; Wang, G.; Hood, B. L.; Oliver, J. M.; Litzi, T. A.; Gist, G. 

D.; Mitchell, D. A.; Blanton, B.; Phippen, N. T.; Tian, C.; Zahn, C. M.; Cohn, D. E.; Havrilesky, 

L. J.; Berchuck, A.; Shriver, C. D.; Darcy, K. M.; Hamilton, C. A.; Conrads, T. P.; Maxwell, G. 

L., Race-specific molecular alterations correlate with differential outcomes for black and white 

endometrioid endometrial cancer patients. Cancer 2017, 123 (20), 4004-4012. 

23. Group, F.-N. B. W., In BEST (Biomarkers, EndpointS, and other Tools) Resource, Food 

and Drug Administration (US) National Institutes of Health (US): Silver Spring (MD), Bethesda 

(MD), 2016. 

24. Consensus Report of the Working Group on: “Molecular and Biochemical Markers of 

Alzheimer’s Disease” 11The names of the Working Group Members and the names of the 

Working Group Advisory Committee Members are listed in the Appendix A(section VI). 22The 

Reagan Institute Working Groups are planned and organized by Z. S. Khachaturian and T.S. 

Radebaugh; Fax: 301-879-2023; E-mail: zaven@idt.net. Neurobiology of Aging 1998, 19 (2), 109-

116. 

25. Khoury, R.; Ghossoub, E., Diagnostic biomarkers of Alzheimer’s disease: A state-of-the-

art review. Biomarkers in Neuropsychiatry 2019, 1, 100005. 

26. Robinson, R. A. S.; Amin, B.; Guest, P. C., Multiplexing Biomarker Methods, Proteomics 

and Considerations for Alzheimer's Disease. Advances in experimental medicine and biology 

2017, 974, 21-48. 

27. Hampel, H.; O’Bryant, S. E.; Molinuevo, J. L.; Zetterberg, H.; Masters, C. L.; Lista, S.; 

Kiddle, S. J.; Batrla, R.; Blennow, K., Blood-based biomarkers for Alzheimer disease: mapping 

the road to the clinic. Nature Reviews Neurology 2018, 14 (11), 639-652. 

28. Zetterberg, H.; Burnham, S. C., Blood-based molecular biomarkers for Alzheimer’s 

disease. Molecular Brain 2019, 12 (1), 26. 

29. Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; 

Rosén, C.; Olsson, C.; Strobel, G.; Wu, E.; Dakin, K.; Petzold, M.; Blennow, K.; Zetterberg, H., 

CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-

analysis. The Lancet Neurology 2016, 15 (7), 673-684. 

30. Nakamura, A.; Kaneko, N.; Villemagne, V. L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; 

Li, Q.-X.; Martins, R.; Rowe, C., High performance plasma amyloid-β biomarkers for Alzheimer’s 

disease. Nature 2018, 554 (7691), 249-254. 



 22 

31. Pannee, J.; Törnqvist, U.; Westerlund, A.; Ingelsson, M.; Lannfelt, L.; Brinkmalm, G.; 

Persson, R.; Gobom, J.; Svensson, J.; Johansson, P.; Zetterberg, H.; Blennow, K.; Portelius, E., 

The amyloid-β degradation pattern in plasma--a possible tool for clinical trials in Alzheimer's 

disease. Neurosci Lett 2014, 573, 7-12. 

32. Ovod, V.; Ramsey, K. N.; Mawuenyega, K. G.; Bollinger, J. G.; Hicks, T.; Schneider, T.; 

Sullivan, M.; Paumier, K.; Holtzman, D. M.; Morris, J. C.; Benzinger, T.; Fagan, A. M.; Patterson, 

B. W.; Bateman, R. J., Amyloid β concentrations and stable isotope labeling kinetics of human 

plasma specific to central nervous system amyloidosis. Alzheimer's & dementia : the journal of 

the Alzheimer's Association 2017, 13 (8), 841-849. 

33. Janelidze, S.; Stomrud, E.; Palmqvist, S.; Zetterberg, H.; van Westen, D.; Jeromin, A.; 

Song, L.; Hanlon, D.; Tan Hehir, C. A.; Baker, D.; Blennow, K.; Hansson, O., Plasma β-amyloid 

in Alzheimer's disease and vascular disease. Scientific reports 2016, 6, 26801. 

34. Zetterberg, H.; Wilson, D.; Andreasson, U.; Minthon, L.; Blennow, K.; Randall, J.; 

Hansson, O., Plasma tau levels in Alzheimer's disease. Alzheimers Res Ther 2013, 5 (2), 9-9. 

35. Mielke, M. M.; Hagen, C. E.; Wennberg, A. M.; Airey, D. C.; Savica, R.; Knopman, D. S.; 

Machulda, M. M.; Roberts, R. O.; Jack, C. R.; Petersen, R. C., Association of plasma total tau 

level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic 

study on aging. JAMA Neurol 2017, 74 (9), 1073-1080. 

36. Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K., Association of Plasma 

Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol 

2017, 74 (5), 557-566. 

37. Lee, K. S.; Chung, J. H.; Choi, T. K.; Suh, S. Y.; Oh, B. H.; Hong, C. H., Peripheral 

Cytokines and Chemokines in Alzheimer’s Disease. Dementia and geriatric cognitive disorders 

2009, 28 (4), 281-287. 

38. Farley, A.; Hendry, C.; McLafferty, E., Blood components. Nursing standard (Royal 

College of Nursing (Great Britain) : 1987) 2012, 27 (13), 35-42. 

39. Anderson, N. L.; Anderson, N. G., The Human Plasma Proteome. History, Character, and 

Diagnostic Prospects 2002, 1 (11), 845-867. 

40. Yu, L.-R.; Stewart, N. A.; Veenstra, T. D., Chapter 8 - Proteomics: The Deciphering of the 

Functional Genome. In Essentials of Genomic and Personalized Medicine, Ginsburg, G. S.; 

Willard, H. F., Eds. Academic Press: San Diego, 2010, 89-96. 

41. Sze, S. K.; Ge, Y.; Oh, H.; McLafferty, F. W., Top-down mass spectrometry of a 29-kDa 

protein for characterization of any posttranslational modification to within one residue. Proc Natl 

Acad Sci U S A 2002, 99 (4), 1774-1779. 

42. Wu, C.; Tran, J. C.; Zamdborg, L.; Durbin, K. R.; Li, M.; Ahlf, D. R.; Early, B. P.; Thomas, 

P. M.; Sweedler, J. V.; Kelleher, N. L., A protease for 'middle-down' proteomics. Nature Methods 

2012, 9 (8), 822-824. 



 23 

43. Zhang, Y.; Fonslow, B. R.; Shan, B.; Baek, M.-C.; Yates III, J. R., Protein analysis by 

shotgun/bottom-up proteomics. Chem Rev 2013, 113 (4), 2343-2394. 

44. Pieper, R.; Su, Q.; Gatlin, C. L.; Huang, S. T.; Anderson, N. L.; Steiner, S., Multi-

component immunoaffinity subtraction chromatography: an innovative step towards a 

comprehensive survey of the human plasma proteome. Proteomics 2003, 3 (4), 422-32. 

45. Saveliev, S.; Bratz, M.; Zubarev, R.; Szapacs, M.; Budamgunta, H.; Urh, M., Trypsin/Lys-

C protease mix for enhanced protein mass spectrometry analysis. Nature Methods 2013, 10 (11), 

i-ii. 

46. Rauniyar, N.; Yates, J. R., 3rd, Isobaric labeling-based relative quantification in shotgun 

proteomics. Journal of proteome research 2014, 13 (12), 5293-5309. 

47. Cao, Z.; Tang, H.-Y.; Wang, H.; Liu, Q.; Speicher, D. W., Systematic comparison of 

fractionation methods for in-depth analysis of plasma proteomes. Journal of proteome research 

2012, 11 (6), 3090-3100. 

48. Tu, C.; Rudnick, P. A.; Martinez, M. Y.; Cheek, K. L.; Stein, S. E.; Slebos, R. J. C.; Liebler, 

D. C., Depletion of abundant plasma proteins and limitations of plasma proteomics. Journal of 

proteome research 2010, 9 (10), 4982-4991. 

49. Crawford, A. S.; Schuchard, M. D.; Melm, C. D.; Chapman, H. A.; Wildsmith, J.; Ray, K. 

B.; Mehigh, R. J.; Chen, D. E.; Scott, G. B., Novel ProteoPrep® 20 Immunoaffinity Depletion 

Resin for Human Plasma. Complement 2006, 1, 1. 

50. Li, S.; He, Y.; Lin, Z.; Xu, S.; Zhou, R.; Liang, F.; Wang, J.; Yang, H.; Liu, S.; Ren, Y., 

Digging More Missing Proteins Using an Enrichment Approach with ProteoMiner. Journal of 

Proteome Research 2017, 16 (12), 4330-4339. 

51. Björhall, K.; Miliotis, T.; Davidsson, P., Comparison of different depletion strategies for 

improved resolution in proteomic analysis of human serum samples. Proteomics 2005, 5 (1), 307-

17. 

52. Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; 

Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-

Jones, M.; He, F.; Jacobson, A.; Pappin, D. J., Multiplexed protein quantitation in Saccharomyces 

cerevisiae using amine-reactive isobaric tagging reagents. Molecular & cellular proteomics : MCP 

2004, 3 (12), 1154-69. 

53. Thompson, A.; Schäfer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; 

Johnstone, R.; Mohammed, A. K.; Hamon, C., Tandem mass tags: a novel quantification strategy 

for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 2003, 75 (8), 1895-

904. 

54. Xiang, F.; Ye, H.; Chen, R.; Fu, Q.; Li, L., N,N-dimethyl leucines as novel isobaric tandem 

mass tags for quantitative proteomics and peptidomics. Analytical chemistry 2010, 82 (7), 2817-

2825. 



 24 

55. Dayon, L.; Hainard, A.; Licker, V.; Turck, N.; Kuhn, K.; Hochstrasser, D. F.; Burkhard, P. 

R.; Sanchez, J. C., Relative quantification of proteins in human cerebrospinal fluids by MS/MS 

using 6-plex isobaric tags. Anal Chem 2008, 80 (8), 2921-31. 

56. O’Connell, J. D.; Paulo, J. A.; O’Brien, J. J.; Gygi, S. P., Proteome-wide evaluation of two 

common protein quantification methods. Journal of proteome research 2018, 17 (5), 1934-1942. 

57. Thompson, A.; Wölmer, N.; Koncarevic, S.; Selzer, S.; Böhm, G.; Legner, H.; Schmid, P.; 

Kienle, S.; Penning, P.; Höhle, C.; Berfelde, A.; Martinez-Pinna, R.; Farztdinov, V.; Jung, S.; 

Kuhn, K.; Pike, I., TMTpro: Design, Synthesis, and Initial Evaluation of a Proline-Based Isobaric 

16-Plex Tandem Mass Tag Reagent Set. Analytical Chemistry 2019, 91 (24), 15941-15950. 

58. Werner, T.; Becher, I.; Sweetman, G.; Doce, C.; Savitski, M. M.; Bantscheff, M., High-

resolution enabled TMT 8-plexing. Anal Chem 2012, 84 (16), 7188-94. 

59. Arul, A. B.; Robinson, R. A. S., Sample Multiplexing Strategies in Quantitative 

Proteomics. Analytical chemistry 2019, 91 (1), 178-189. 

60. Senko, M. W.; Remes, P. M.; Canterbury, J. D.; Mathur, R.; Song, Q.; Eliuk, S. M.; Mullen, 

C.; Earley, L.; Hardman, M.; Blethrow, J. D.; Bui, H.; Specht, A.; Lange, O.; Denisov, E.; 

Makarov, A.; Horning, S.; Zabrouskov, V., Novel Parallelized Quadrupole/Linear Ion 

Trap/Orbitrap Tribrid Mass Spectrometer Improving Proteome Coverage and Peptide 

Identification Rates. Analytical Chemistry 2013, 85 (24), 11710-11714. 

61. McAlister, G. C.; Nusinow, D. P.; Jedrychowski, M. P.; Wühr, M.; Huttlin, E. L.; Erickson, 

B. K.; Rad, R.; Haas, W.; Gygi, S. P., MultiNotch MS3 enables accurate, sensitive, and 

multiplexed detection of differential expression across cancer cell line proteomes. Analytical 

chemistry 2014, 86 (14), 7150-7158. 

62. Zhang, R.; Barker, L.; Pinchev, D.; Marshall, J.; Rasamoelisolo, M.; Smith, C.; Kupchak, 

P.; Kireeva, I.; Ingratta, L.; Jackowski, G., Mining biomarkers in human sera using proteomic 

tools. Proteomics 2004, 4 (1), 244-56. 

63. Hye, A.; Lynham, S.; Thambisetty, M.; Causevic, M.; Campbell, J.; Byers, H. L.; Hooper, 

C.; Rijsdijk, F.; Tabrizi, S. J.; Banner, S.; Shaw, C. E.; Foy, C.; Poppe, M.; Archer, N.; Hamilton, 

G.; Powell, J.; Brown, R. G.; Sham, P.; Ward, M.; Lovestone, S., Proteome-based plasma 

biomarkers for Alzheimer's disease. Brain : a journal of neurology 2006, 129 (Pt 11), 3042-50. 

64. Liu, H. C.; Hu, C. J.; Chang, J. G.; Sung, S. M.; Lee, L. S.; Yuan, R. Y.; Leu, S. J., 

Proteomic identification of lower apolipoprotein A-I in Alzheimer's disease. Dementia and 

geriatric cognitive disorders 2006, 21 (3), 155-61. 

65. Liao, P. C.; Yu, L.; Kuo, C. C.; Lin, C.; Kuo, Y. M., Proteomics analysis of plasma for 

potential biomarkers in the diagnosis of Alzheimer's disease. Proteomics. Clinical applications 

2007, 1 (5), 506-12. 

66. Cutler, P.; Akuffo, E. L.; Bodnar, W. M.; Briggs, D. M.; Davis, J. B.; Debouck, C. M.; 

Fox, S. M.; Gibson, R. A.; Gormley, D. A.; Holbrook, J. D.; Hunter, A. J.; Kinsey, E. E.; Prinjha, 



 25 

R.; Richardson, J. C.; Roses, A. D.; Smith, M. A.; Tsokanas, N.; Willé, D. R.; Wu, W.; Yates, J. 

W.; Gloger, I. S., Proteomic identification and early validation of complement 1 inhibitor and 

pigment epithelium-derived factor: Two novel biomarkers of Alzheimer's disease in human 

plasma. Proteomics. Clinical applications 2008, 2 (4), 467-77. 

67. Thambisetty, M.; Hye, A.; Foy, C.; Daly, E.; Glover, A.; Cooper, A.; Simmons, A.; 

Murphy, D.; Lovestone, S., Proteome-based identification of plasma proteins associated with 

hippocampal metabolism in early Alzheimer's disease. Journal of neurology 2008, 255 (11), 1712-

20. 

68. Kitamura, Y.; Usami, R.; Ichihara, S.; Kida, H.; Satoh, M.; Tomimoto, H.; Murata, M.; 

Oikawa, S., Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer's 

disease. Neurological research 2017, 39 (3), 231-238. 

69. Chen, M.; Xia, W., Proteomic Profiling of Plasma and Brain Tissue from Alzheimer’s 

Disease Patients Reveals Candidate Network of Plasma Biomarkers. Journal of Alzheimer's 

Disease 2020, 76, 349-368. 

70. Muenchhoff, J.; Poljak, A.; Song, F.; Raftery, M.; Brodaty, H.; Duncan, M.; McEvoy, M.; 

Attia, J.; Schofield, P. W.; Sachdev, P. S., Plasma protein profiling of mild cognitive impairment 

and Alzheimer's disease across two independent cohorts. Journal of Alzheimer's disease : JAD 

2015, 43 (4), 1355-73. 

71. Song, F.; Poljak, A.; Kochan, N. A.; Raftery, M.; Brodaty, H.; Smythe, G. A.; Sachdev, P. 

S., Plasma protein profiling of Mild Cognitive Impairment and Alzheimer's disease using iTRAQ 

quantitative proteomics. Proteome science 2014, 12 (1), 5. 

72. Zabel, M.; Schrag, M.; Mueller, C.; Zhou, W.; Crofton, A.; Petersen, F.; Dickson, A.; 

Kirsch, W. M., Assessing candidate serum biomarkers for Alzheimer's disease: a longitudinal 

study. Journal of Alzheimer's disease : JAD 2012, 30 (2), 311-21. 

73. Blacker, D.; Wilcox, M. A.; Laird, N. M.; Rodes, L.; Horvath, S. M.; Go, R. C. P.; Perry, 

R.; Watson, B.; Bassett, S. S.; McInnis, M. G.; Albert, M. S.; Hyman, B. T.; Tanzi, R. E., Alpha-

2 macroglobulin is genetically associated with Alzheimer disease. Nature Genetics 1998, 19 (4), 

357-360. 

74. Shen, L.; Liao, L.; Chen, C.; Guo, Y.; Song, D.; Wang, Y.; Chen, Y.; Zhang, K.; Ying, M.; 

Li, S.; Liu, Q.; Ni, J., Proteomics Analysis of Blood Serums from Alzheimer's Disease Patients 

Using iTRAQ Labeling Technology. Journal of Alzheimer's disease : JAD 2017, 56 (1), 361-378. 

75. Thambisetty, M.; Simmons, A.; Velayudhan, L.; Hye, A.; Campbell, J.; Zhang, Y.; 

Wahlund, L.-O.; Westman, E.; Kinsey, A.; Güntert, A.; Proitsi, P.; Powell, J.; Causevic, M.; 

Killick, R.; Lunnon, K.; Lynham, S.; Broadstock, M.; Choudhry, F.; Howlett, D. R.; Williams, R. 

J.; Sharp, S. I.; Mitchelmore, C.; Tunnard, C.; Leung, R.; Foy, C.; O'Brien, D.; Breen, G.; Furney, 

S. J.; Ward, M.; Kloszewska, I.; Mecocci, P.; Soininen, H.; Tsolaki, M.; Vellas, B.; Hodges, A.; 

Murphy, D. G. M.; Parkins, S.; Richardson, J. C.; Resnick, S. M.; Ferrucci, L.; Wong, D. F.; Zhou, 

Y.; Muehlboeck, S.; Evans, A.; Francis, P. T.; Spenger, C.; Lovestone, S., Association of plasma 



 26 

clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen 

Psychiatry 2010, 67 (7), 739-748. 

76. Bennett, S.; Grant, M.; Creese, A. J.; Mangialasche, F.; Cecchetti, R.; Cooper, H. J.; 

Mecocci, P.; Aldred, S., Plasma levels of complement 4a protein are increased in Alzheimer's 

disease. Alzheimer disease and associated disorders 2012, 26 (4), 329-34. 

77. Henkel, A. W.; Müller, K.; Lewczuk, P.; Müller, T.; Marcus, K.; Kornhuber, J.; Wiltfang, 

J., Multidimensional plasma protein separation technique for identification of potential 

Alzheimer’s disease plasma biomarkers: a pilot study. Journal of Neural Transmission 2012, 119 

(7), 779-788. 

78. Yang, H.; Lyutvinskiy, Y.; Herukka, S. K.; Soininen, H.; Rutishauser, D.; Zubarev, R. A., 

Prognostic polypeptide blood plasma biomarkers of Alzheimer's disease progression. Journal of 

Alzheimer's disease : JAD 2014, 40 (3), 659-66. 

79. Di Paolo, G.; Kim, T.-W., Linking lipids to Alzheimer's disease: cholesterol and beyond. 

Nature Reviews Neuroscience 2011, 12 (5), 284-296. 

80. Akiyama, H., Inflammatory response in Alzheimer's disease. The Tohoku journal of 

experimental medicine 1994, 174 (3), 295-303. 

81. Rogers, J., The inflammatory response in Alzheimer's disease. Journal of periodontology 

2008, 79, 1535-1543. 

82. Cortes-Canteli, M.; Zamolodchikov, D.; Ahn, H. J.; Strickland, S.; Norris, E. H., 

Fibrinogen and Altered Hemostasis in Alzheimer's Disease. Journal of Alzheimer's Disease 2012, 

32, 599-608. 

83. Ray, S.; Britschgi, M.; Herbert, C.; Takeda-Uchimura, Y.; Boxer, A.; Blennow, K.; 

Friedman, L. F.; Galasko, D. R.; Jutel, M.; Karydas, A.; Kaye, J. A.; Leszek, J.; Miller, B. L.; 

Minthon, L.; Quinn, J. F.; Rabinovici, G. D.; Robinson, W. H.; Sabbagh, M. N.; So, Y. T.; Sparks, 

D. L.; Tabaton, M.; Tinklenberg, J.; Yesavage, J. A.; Tibshirani, R.; Wyss-Coray, T., Classification 

and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature 

medicine 2007, 13 (11), 1359-62. 

84. Soares, H. D.; Chen, Y.; Sabbagh, M.; Roher, A.; Schrijvers, E.; Breteler, M., Identifying 

early markers of Alzheimer's disease using quantitative multiplex proteomic immunoassay panels. 

Annals of the New York Academy of Sciences 2009, 1180, 56-67. 

85. Björkqvist, M.; Ohlsson, M.; Minthon, L.; Hansson, O., Evaluation of a Previously 

Suggested Plasma Biomarker Panel to Identify Alzheimer's Disease. PLoS One 2012, 7 (1), 

e29868. 

86. Gómez Ravetti, M.; Moscato, P., Identification of a 5-protein biomarker molecular 

signature for predicting Alzheimer's disease. PLoS One 2008, 3 (9), e3111-e3111. 



 27 

87. Marksteiner, J.; Kemmler, G.; Weiss, E. M.; Knaus, G.; Ullrich, C.; Mechtcheriakov, S.; 

Oberbauer, H.; Auffinger, S.; Hinterhölzl, J.; Hinterhuber, H.; Humpel, C., Five out of 16 plasma 

signaling proteins are enhanced in plasma of patients with mild cognitive impairment and 

Alzheimer's disease. Neurobiol Aging 2011, 32 (3), 539-40. 

88. Biella, G.; Franceschi, M.; De Rino, F.; Davin, A.; Giacalone, G.; Brambilla, P.; Bountris, 

P.; Haritou, M.; Magnani, G.; Martinelli Boneschi, F.; Forloni, G.; Albani, D., Multiplex 

assessment of a panel of 16 serum molecules for the differential diagnosis of Alzheimer's disease. 

Am J Neurodegener Dis 2013, 2 (1), 40-45. 

89. Rehiman, S. H.; Lim, S. M.; Neoh, C. F.; Majeed, A. B. A.; Chin, A.-V.; Tan, M. P.; 

Kamaruzzaman, S. B.; Ramasamy, K., Proteomics as a reliable approach for discovery of blood-

based Alzheimer’s disease biomarkers: A systematic review and meta-analysis. Ageing Research 

Reviews 2020, 60, 101066. 

90. Doecke, J. D.; Laws, S. M.; Faux, N. G.; Wilson, W.; Burnham, S. C.; Lam, C. P.; Mondal, 

A.; Bedo, J.; Bush, A. I.; Brown, B.; De Ruyck, K.; Ellis, K. A.; Fowler, C.; Gupta, V. B.; Head, 

R.; Macaulay, S. L.; Pertile, K.; Rowe, C. C.; Rembach, A.; Rodrigues, M.; Rumble, R.; Szoeke, 

C.; Taddei, K.; Taddei, T.; Trounson, B.; Ames, D.; Masters, C. L.; Martins, R. N., Blood-based 

protein biomarkers for diagnosis of Alzheimer disease. Archives of neurology 2012, 69 (10), 1318-

25. 

91. O'Bryant, S. E.; Xiao, G.; Barber, R.; Huebinger, R.; Wilhelmsen, K.; Edwards, M.; Graff-

Radford, N.; Doody, R.; Diaz-Arrastia, R., A blood-based screening tool for Alzheimer's disease 

that spans serum and plasma: findings from TARC and ADNI. PLoS One 2011, 6 (12), e28092. 

92. O'Bryant, S. E.; Xiao, G.; Barber, R.; Reisch, J.; Hall, J.; Cullum, C. M.; Doody, R.; 

Fairchild, T.; Adams, P.; Wilhelmsen, K.; Diaz-Arrastia, R., A blood-based algorithm for the 

detection of Alzheimer's disease. Dementia and geriatric cognitive disorders 2011, 32 (1), 55-62. 

93. O'Bryant, S. E.; Xiao, G.; Barber, R.; Reisch, J.; Doody, R.; Fairchild, T.; Adams, P.; 

Waring, S.; Diaz-Arrastia, R., A serum protein-based algorithm for the detection of Alzheimer 

disease. Archives of neurology 2010, 67 (9), 1077-81. 

94. Kiddle, S. J.; Sattlecker, M.; Proitsi, P.; Simmons, A.; Westman, E.; Bazenet, C.; Nelson, 

S. K.; Williams, S.; Hodges, A.; Johnston, C.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, 

M.; Vellas, B.; Newhouse, S.; Lovestone, S.; Dobson, R. J., Candidate blood proteome markers of 

Alzheimer's disease onset and progression: a systematic review and replication study. Journal of 

Alzheimer's disease : JAD 2014, 38 (3), 515-31. 

95. O'Bryant, S. E.; Xiao, G.; Edwards, M.; Devous, M.; Gupta, V. B.; Martins, R.; Zhang, F.; 

Barber, R.; Texas Alzheimer's, R.; Care, C., Biomarkers of Alzheimer's disease among Mexican 

Americans. Journal of Alzheimer's disease : JAD 2013, 34 (4), 841-849. 

96. Edwards, M.; Hall, J.; Williams, B.; Johnson, L.; O’Bryant, S., Molecular Markers of 

Amnestic Mild Cognitive Impairment among Mexican Americans. Journal of Alzheimer's Disease 

2016, 49, 221-228. 



 28 

97. Petersen, M.; Hall, J.; Parsons, T.; Johnson, L.; O'Bryant, S., Combining Select Blood-

Based Biomarkers with Neuropsychological Assessment to Detect Mild Cognitive Impairment 

among Mexican Americans. Journal of Alzheimer's disease : JAD 2020, 75 (3), 739-750. 

98. Fahy, E.; Subramaniam, S.; Murphy, R. C.; Nishijima, M.; Raetz, C. R. H.; Shimizu, T.; 

Spener, F.; van Meer, G.; Wakelam, M. J. O.; Dennis, E. A., Update of the LIPID MAPS 

comprehensive classification system for lipids. J Lipid Res 2009, 50 Suppl (Suppl), S9-S14. 

99. Blanksby, S. J.; Mitchell, T. W., Advances in mass spectrometry for lipidomics. Annual 

Review of Analytical Chemistry 2010, 3, 433-465. 

100. Hsu, F.-F., Mass spectrometry-based shotgun lipidomics–a critical review from the 

technical point of view. Analytical and bioanalytical chemistry 2018, 410 (25), 6387-6409. 

101. Hu, T.; Zhang, J. L., Mass‐spectrometry‐based lipidomics. Journal of separation science 

2018, 41 (1), 351-372. 

102. Jurowski, K.; Kochan, K.; Walczak, J.; Barańska, M.; Piekoszewski, W.; Buszewski, B., 

Comprehensive review of trends and analytical strategies applied for biological samples 

preparation and storage in modern medical lipidomics: State of the art. TrAC Trends in Analytical 

Chemistry 2017, 86, 276-289. 

103. Picache, J. A.; Rose, B. S.; Balinski, A.; Leaptrot, Katrina L.; Sherrod, S. D.; May, J. C.; 

McLean, J. A., Collision cross section compendium to annotate and predict multi-omic compound 

identities. Chemical Science 2019, 10 (4), 983-993. 

104. Rustam, Y. H.; Reid, G. E., Analytical Challenges and Recent Advances in Mass 

Spectrometry Based Lipidomics. Analytical Chemistry 2018, 90 (1), 374-397. 

105. Khan, M. J.; Codreanu, S. G.; Goyal, S.; Wages, P. A.; Gorti, S. K. K.; Pearson, M. J.; 

Uribe, I.; Sherrod, S. D.; McLean, J. A.; Porter, N. A.; Robinson, R. A. S., Evaluating a targeted 

multiple reaction monitoring approach to global untargeted lipidomic analyses of human plasma. 

Rapid Communications in Mass Spectrometry 2020, 34 (22), e8911. 

106. Kao, Y.-C.; Ho, P.-C.; Tu, Y.-K.; Jou, I. M.; Tsai, K.-J., Lipids and Alzheimer's Disease. 

Int J Mol Sci 2020, 21 (4), 1505. 

107. Liu, Q.; Zhang, J., Lipid metabolism in Alzheimer's disease. Neurosci Bull 2014, 30 (2), 

331-345. 

108. Touboul, D.; Gaudin, M., Lipidomics of Alzheimer's disease. Bioanalysis 2014, 6 (4), 541-

61. 

109. Gamba, P.; Testa, G.; Sottero, B.; Gargiulo, S.; Poli, G.; Leonarduzzi, G., The link between 

altered cholesterol metabolism and Alzheimer's disease. Annals of the New York Academy of 

Sciences 2012, 1259, 54-64. 



 29 

110. Dietschy, J. M.; Turley, S. D., Cholesterol metabolism in the brain. Current opinion in 

lipidology 2001, 12 (2), 105-12. 

111. Ledesma, M. D.; Dotti, C. G., Amyloid excess in Alzheimer’s disease: What is cholesterol 

to be blamed for? FEBS Letters 2006, 580 (23), 5525-5532. 

112. Puglielli, L.; Konopka, G.; Pack-Chung, E.; Ingano, L. A.; Berezovska, O.; Hyman, B. T.; 

Chang, T. Y.; Tanzi, R. E.; Kovacs, D. M., Acyl-coenzyme A: cholesterol acyltransferase 

modulates the generation of the amyloid beta-peptide. Nature cell biology 2001, 3 (10), 905-12. 

113. Sun, Y.; Yao, J.; Kim, T. W.; Tall, A. R., Expression of liver X receptor target genes 

decreases cellular amyloid beta peptide secretion. The Journal of biological chemistry 2003, 278 

(30), 27688-94. 

114. Liu, Q.; Zerbinatti, C. V.; Zhang, J.; Hoe, H.-S.; Wang, B.; Cole, S. L.; Herz, J.; Muglia, 

L.; Bu, G., Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism 

through lipoprotein receptor LRP1. Neuron 2007, 56 (1), 66-78. 

115. O'Brien, J. S.; Sampson, E. L., Fatty acid and fatty aldehyde composition of the major brain 

lipids in normal human gray matter, white matter, and myelin. J Lipid Res 1965, 6 (4), 545-551. 

116. Han, X.; Holtzman, D. M.; McKeel, D. W., Jr., Plasmalogen deficiency in early 

Alzheimer's disease subjects and in animal models: molecular characterization using electrospray 

ionization mass spectrometry. Journal of neurochemistry 2001, 77 (4), 1168-80. 

117. Wood, P. L.; Mankidy, R.; Ritchie, S.; Heath, D.; Wood, J. A.; Flax, J.; Goodenowe, D. 

B., Circulating plasmalogen levels and Alzheimer Disease Assessment Scale-Cognitive scores in 

Alzheimer patients. Journal of psychiatry & neuroscience : JPN 2010, 35 (1), 59-62. 

118. Gault, C. R.; Obeid, L. M.; Hannun, Y. A., An overview of sphingolipid metabolism: from 

synthesis to breakdown. Advances in experimental medicine and biology 2010, 688, 1-23. 

119. Rushworth, J. V.; Hooper, N. M., Lipid Rafts: Linking Alzheimer's Amyloid-β Production, 

Aggregation, and Toxicity at Neuronal Membranes. International Journal of Alzheimers Disease 

2011, 2011, 603052. 

120. Grimm, M. O. W.; Grimm, H. S.; Pätzold, A. J.; Zinser, E. G.; Halonen, R.; Duering, M.; 

Tschäpe, J.-A.; Strooper, B. D.; Müller, U.; Shen, J.; Hartmann, T., Regulation of cholesterol and 

sphingomyelin metabolism by amyloid-β and presenilin. Nature cell biology 2005, 7 (11), 1118-

1123. 

121. Mielke, M. M.; Lyketsos, C. G., Alterations of the sphingolipid pathway in Alzheimer's 

disease: new biomarkers and treatment targets? Neuromolecular Med 2010, 12 (4), 331-340. 

122. Wood, P. L.; Medicherla, S.; Sheikh, N.; Terry, B.; Phillipps, A.; Kaye, J. A.; Quinn, J. F.; 

Woltjer, R. L., Targeted Lipidomics of Fontal Cortex and Plasma Diacylglycerols (DAG) in Mild 

Cognitive Impairment and Alzheimer's Disease: Validation of DAG Accumulation Early in the 



 30 

Pathophysiology of Alzheimer's Disease. Journal of Alzheimer's disease : JAD 2015, 48 (2), 537-

46. 

123. González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J. L., Combination of 

metabolomic and phospholipid-profiling approaches for the study of Alzheimer's disease. Journal 

of Proteomics 2014, 104, 37-47. 

124. Wood, P.; Phillipps, A.; Woltjer, R. L.; Kaye, J.; Quinn, J., Increased 

lysophosphatidylethanolamine and diacylglycerol levels in Alzheimer's disease plasma. JSM 

Alzheimer's Disease and Related Dementia 2014, 1. 

125. Olazarán, J.; Gil-de-Gómez, L.; Rodríguez-Martín, A.; Valentí-Soler, M.; Frades-Payo, B.; 

Marín-Muñoz, J.; Antúnez, C.; Frank-García, A.; Acedo-Jiménez, C.; Morlán-Gracia, L.; Petidier-

Torregrossa, R.; Guisasola, M. C.; Bermejo-Pareja, F.; Sánchez-Ferro, Á.; Pérez-Martínez, D. A.; 

Manzano-Palomo, S.; Farquhar, R.; Rábano, A.; Calero, M., A blood-based, 7-metabolite signature 

for the early diagnosis of Alzheimer's disease. Journal of Alzheimer's disease : JAD 2015, 45 (4), 

1157-73. 

126. Peña-bautista, C.; Roca, M.; López-cuevas, R.; Baquero, M.; Vento, M.; Cháfer-pericás, 

C., Metabolomics study to identify plasma biomarkers in alzheimer disease: ApoE genotype effect. 

Journal of Pharmaceutical and Biomedical Analysis 2020, 180, 113088. 

127. Li, N.-j.; Liu, W.-t.; Li, W.; Li, S.-q.; Chen, X.-h.; Bi, K.-s.; He, P., Plasma metabolic 

profiling of Alzheimer's disease by liquid chromatography/mass spectrometry. Clinical 

biochemistry 2010, 43 (12), 992-997. 

128. Costa, A. C.; Joaquim, H. P. G.; Forlenza, O.; Talib, L. L.; Gattaz, W. F., Plasma lipids 

metabolism in mild cognitive impairment and Alzheimer’s disease. The World Journal of 

Biological Psychiatry 2019, 20 (3), 190-196. 

129. Fiandaca, M. S.; Zhong, X.; Cheema, A. K.; Orquiza, M. H.; Chidambaram, S.; Tan, M. 

T.; Gresenz, C. R.; FitzGerald, K. T.; Nalls, M. A.; Singleton, A. B.; Mapstone, M.; Federoff, H. 

J., Plasma 24-metabolite Panel Predicts Preclinical Transition to Clinical Stages of Alzheimer's 

Disease. Front Neurol 2015, 6, 237-237. 

130. González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J. L., Metabolomic study of 

lipids in serum for biomarker discovery in Alzheimer's disease using direct infusion mass 

spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2014, 98, 321-326. 

131. Klavins, K.; Koal, T.; Dallmann, G.; Marksteiner, J.; Kemmler, G.; Humpel, C., The ratio 

of phosphatidylcholines to lysophosphatidylcholines in plasma differentiates healthy controls from 

patients with Alzheimer's disease and mild cognitive impairment. Alzheimers Dement (Amst) 2015, 

1 (3), 295-302. 

132. Proitsi, P.; Kim, M.; Whiley, L.; Pritchard, M.; Leung, R.; Soininen, H.; Kloszewska, I.; 

Mecocci, P.; Tsolaki, M.; Vellas, B.; Sham, P.; Lovestone, S.; Powell, J. F.; Dobson, R. J. B.; 

Legido-Quigley, C., Plasma lipidomics analysis finds long chain cholesteryl esters to be associated 

with Alzheimer's disease. Transl Psychiatry 2015, 5 (1), e494-e494. 



 31 

133. Mapstone, M.; Cheema, A. K.; Fiandaca, M. S.; Zhong, X.; Mhyre, T. R.; MacArthur, L. 

H.; Hall, W. J.; Fisher, S. G.; Peterson, D. R.; Haley, J. M.; Nazar, M. D.; Rich, S. A.; Berlau, D. 

J.; Peltz, C. B.; Tan, M. T.; Kawas, C. H.; Federoff, H. J., Plasma phospholipids identify antecedent 

memory impairment in older adults. Nature medicine 2014, 20 (4), 415-8. 

134. Whiley, L.; Sen, A.; Heaton, J.; Proitsi, P.; García-Gómez, D.; Leung, R.; Smith, N.; 

Thambisetty, M.; Kloszewska, I.; Mecocci, P.; Soininen, H.; Tsolaki, M.; Vellas, B.; Lovestone, 

S.; Legido-Quigley, C.; AddNeuroMed, C., Evidence of altered phosphatidylcholine metabolism 

in Alzheimer's disease. Neurobiology of aging 2014, 35 (2), 271-278. 

135. Wood, P. L.; Locke, V. A.; Herling, P.; Passaro, A.; Vigna, G. B.; Volpato, S.; Valacchi, 

G.; Cervellati, C.; Zuliani, G., Targeted lipidomics distinguishes patient subgroups in mild 

cognitive impairment (MCI) and late onset Alzheimer's disease (LOAD). BBA Clinical 2016, 5, 

25-28. 

136. Goodenowe, D. B.; Cook, L. L.; Liu, J.; Lu, Y.; Jayasinghe, D. A.; Ahiahonu, P. W.; Heath, 

D.; Yamazaki, Y.; Flax, J.; Krenitsky, K. F.; Sparks, D. L.; Lerner, A.; Friedland, R. P.; Kudo, T.; 

Kamino, K.; Morihara, T.; Takeda, M.; Wood, P. L., Peripheral ethanolamine plasmalogen 

deficiency: a logical causative factor in Alzheimer's disease and dementia. J Lipid Res 2007, 48 

(11), 2485-98. 

137. Han, X.; Rozen, S.; Boyle, S. H.; Hellegers, C.; Cheng, H.; Burke, J. R.; Welsh-Bohmer, 

K. A.; Doraiswamy, P. M.; Kaddurah-Daouk, R., Metabolomics in early Alzheimer's disease: 

identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One 2011, 6 (7), 

e21643. 

138. González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J. L., Application of a novel 

metabolomic approach based on atmospheric pressure photoionization mass spectrometry using 

flow injection analysis for the study of Alzheimer׳s disease. Talanta 2015, 131, 480-489. 

139. Kim, M.; Nevado-Holgado, A.; Whiley, L.; Snowden, S. G.; Soininen, H.; Kloszewska, I.; 

Mecocci, P.; Tsolaki, M.; Vellas, B.; Thambisetty, M.; Dobson, R. J. B.; Powell, J. F.; Lupton, M. 

K.; Simmons, A.; Velayudhan, L.; Lovestone, S.; Proitsi, P.; Legido-Quigley, C., Association 

between Plasma Ceramides and Phosphatidylcholines and Hippocampal Brain Volume in Late 

Onset Alzheimer's Disease. Journal of Alzheimer's disease : JAD 2017, 60 (3), 809-817. 

140. Mielke, M. M.; Bandaru, V. V. R.; Haughey, N. J.; Xia, J.; Fried, L. P.; Yasar, S.; Albert, 

M.; Varma, V.; Harris, G.; Schneider, E. B.; Rabins, P. V.; Bandeen-Roche, K.; Lyketsos, C. G.; 

Carlson, M. C., Serum ceramides increase the risk of Alzheimer disease: the Women's Health and 

Aging Study II. Neurology 2012, 79 (7), 633-641. 

141. Anand, S.; Barnes, J. M.; Young, S. A.; Garcia, D. M.; Tolley, H. D.; Kauwe, J. S. K.; 

Graves, S. W., Discovery and Confirmation of Diagnostic Serum Lipid Biomarkers for 

Alzheimer's Disease Using Direct Infusion Mass Spectrometry. Journal of Alzheimer's disease : 

JAD 2017, 59 (1), 277-290. 

142. Wood, P. L.; Medicherla, S.; Sheikh, N.; Terry, B.; Phillipps, A.; Kaye, J. A.; Quinn, J. F.; 

Woltjer, R. L., Targeted lipidomics of fontal cortex and plasma diacylglycerols (DAG) in mild 



 32 

cognitive impairment and Alzheimer’s disease: validation of DAG accumulation early in the 

pathophysiology of Alzheimer’s disease. Journal of Alzheimer's Disease 2015, 48 (2), 537-546. 

143. Proitsi, P.; Kim, M.; Whiley, L.; Simmons, A.; Sattlecker, M.; Velayudhan, L.; Lupton, M. 

K.; Soininen, H.; Kloszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Lovestone, S.; Powell, J. 

F.; Dobson, R. J. B.; Legido-Quigley, C., Association of blood lipids with Alzheimer's disease: 

A comprehensive lipidomics analysis. Alzheimer's & Dementia 2017, 13 (2), 140-151. 

144. Sato, Y.; Suzuki, I.; Nakamura, T.; Bernier, F.; Aoshima, K.; Oda, Y., Identification of a 

new plasma biomarker of Alzheimer's disease using metabolomics technology. J Lipid Res 2012, 

53 (3), 567-576. 

145. Kölsch, H.; Heun, R.; Jessen, F.; Popp, J.; Hentschel, F.; Maier, W.; Lütjohann, D., 

Alterations of cholesterol precursor levels in Alzheimer's disease. Biochimica et biophysica acta 

2010, 1801 (8), 945-50. 

146. Casanova, R.; Varma, S.; Simpson, B.; Kim, M.; An, Y.; Saldana, S.; Riveros, C.; Moscato, 

P.; Griswold, M.; Sonntag, D.; Wahrheit, J.; Klavins, K.; Jonsson, P. V.; Eiriksdottir, G.; Aspelund, 

T.; Launer, L. J.; Gudnason, V.; Legido Quigley, C.; Thambisetty, M., Blood metabolite markers 

of preclinical Alzheimer's disease in two longitudinally followed cohorts of older individuals. 

Alzheimer's & dementia : the journal of the Alzheimer's Association 2016, 12 (7), 815-822. 

147. Oresic, M.; Hyotylainen, T.; Herukka, S.; Sysi-Aho, M.; Mattila, I.; Seppanan-Laakso, T.; 

Julkunen, V.; Gopalacharyulu, P.; Hallikainen, M.; Koikkalainen, J. Metabolome in progression 

to Alzheimer’s disease. Transl Psychiatry. 2011, 1 (12), e57. 

148. Li, D.; Misialek, J. R.; Boerwinkle, E.; Gottesman, R. F.; Sharrett, A. R.; Mosley, T. H.; 

Coresh, J.; Wruck, L. M.; Knopman, D. S.; Alonso, A., Prospective associations of plasma 

phospholipids and mild cognitive impairment/dementia among African Americans in the ARIC 

Neurocognitive Study. Alzheimers Dement (Amst) 2016, 6, 1-10. 

149. Oeckl, P.; Otto, M., A Review on MS-Based Blood Biomarkers for Alzheimer's Disease. 

Neurology and therapy 2019, 8 (Suppl 2), 113-127. 

 

 

 

 

 

 

 

 

 

 

 

 



 33 

CHAPTER II 

 

Why Inclusion Matters for Alzheimer’s Disease Biomarker Discovery in Plasma 

“This chapter is adopted from the research articles: Khan, MJ, Desaire, H, Lopez, OL, Kamboh, MI, Robinson, RAS, “Why race matters in plasma proteomics 

biomarker discovery for Alzheimer’s disease.” Accepted in JAD and Khan, MJ, Desaire, H, Lopez, OL, Kamboh, MI, Robinson, RAS, “Dataset of why race 

matters in plasma proteomics biomarker discovery for Alzheimer’s disease.” Under review” 

2.1. Introduction 

One of the fastest growing populations in the United States are ethnic minorities, such that 

Hispanics and African American/Blacks (AA) are estimated to account for 40% of older adults in 

2050.1-3 This is critical for the field of Alzheimer’s disease (AD) which disproportionately impacts 

these populations and accounts for higher incidence rates of 1.5 to 2x for African American/Black 

adults.4-6 In addition to disparities in disease incidence, there is a disparate economic burden of 

AD costs and caregiving for African American/Black families.7-8 Racial and ethnic disparities in 

AD are multi-factorial and can include contributions from socioeconomic status 1, 5, 9-10, quality 

and level of education 11-14, comorbidities 1, 15, genetic risk factors 15, environmental stressors 16-17, 

healthcare access 1, 5, and systemic racism.18 Disease pathology is similar in African 

American/Black and Hispanic adults with regards to what we have learned for decades about AD 

in non-Hispanic White (NHW) populations.5, 19-23 Although, understanding disease pathogenesis 

is complicated by higher frequency of mixed dementia cases and vascular comorbidities that are 

often found for example in African American/Black adults with AD.19, 21-22  

Importantly, for better diagnosing AD in all communities and for developing effective 

therapies, better strategies are needed to increase research participation of African American/Black 

adults into AD and related dementia research.24 Currently, African American/Black adults 

participate in clinical trials at a rate of <~5% and in AD research assessments at <~13%.25-27 

Recently, there have been reports that demonstrate that biomarker discovery efforts for AD need 
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to be inclusive of African American/Black adults as the standard cerebrospinal fluid (CSF) 

biomarkers, total-tau and phosphorylated (p)-tau, have different concentration levels in a cohort of 

African American/Black adults when compared to non-Hispanic White adults.28-33 Other 

circulatory proteins in plasma also have been reported to have differences in African 

American/Black AD patients such as interleukin-9.34 Examples of plasma biomarker studies that 

include or solely focus on African American/Black adults are few.35-37 This is critical as plasma is 

a less-invasive biofluid to obtain than CSF, and more importantly, as diagnostic or prognostic 

biomarkers for AD need to be effective for all. 

Plasma proteomics is a growing field within AD biomarker discovery.38-45 Many studies 

have conducted plasma proteomics analyses across the AD spectrum from cognitively normal 

(CN) to mild cognitively impaired to confirmed early and late-onset AD.46-64 The most widely 

used biomarkers in plasma are amyloid-beta 40 (Aβ40) and 42 (Aβ42) peptides.38, 45, 65-67 Other 

potential plasma protein biomarkers, many of which have been validated within the same cohort 

68 and few in independent cohorts 46, 48, 59, 69-70, also  exist. A recent review of plasma biomarkers 

for AD 40 analyzed findings from 20 previous discovery-based proteomics studies and found a lack 

of reproducibility across those studies. For example, the review reported alpha-2 macroglobulin as 

a biomarker candidate in six different studies, while pancreatic polypeptide was reported in five 

studies.40 The remaining proteins reported in only more than two studies included apolipoprotein 

A1, afamin, fibronectin, apolipoprotein A4, alpha -1- antitrypsin, fibrinogen-γ chain, insulin like 

growth factor binding protein-2, macrophage inflammatory protein 1-α, beta-2 glycoprotein and 

complement factor B.40 

Few plasma biomarker studies utilized diverse cohorts that incorporated African 

American/Black adults into the study design.35, 37, 71 Plasma biomarkers for an amnestic MCI 



 35 

cohort of females from African American/Black, Hispanic, and non-Hispanic White backgrounds 

were identified as having levels unique to a given racial and ethnic group and highlight the 

importance of including diverse groups in biomarker studies.37 Age was deemed a critical factor 

in mid-life plasma Aβ concentrations in a large cohort of European and African American/Black 

adults, whereby there were also different genes that had race-specific changes.35 For example, 

cystathionine beta-synthase gene had genome-wide significant association with plasma 

homocysteine levels in African American/Blacks and Yoruba cohorts, that are associated with 

African ancestry.71 Inclusion of African American/Black adults in study designs is critical to 

ensure that specific biomarkers, combinations of biomarkers in a panel, or biomarker levels that 

able to accurately distinguish and diagnose disease in all groups.  

Herein, we conducted a pilot study with plasma samples available from the University of 

Pittsburgh Alzheimer’s Disease Research Center (ADRC) that included self-reported African 

American/Black and non-Hispanic White adults that participated in ADRC research. Individual 

participants were either cognitively normal or had a clinically confirmed diagnosis of AD, and 

plasma was collected from a time point away from baseline that was coincident with clear disease 

pathology and clinical diagnosis. The samples (N=113) were randomly divided into two sets in 

order to accommodate a study design that would allow us to 1) conduct discovery-based 

proteomics to identify differentially-expressed proteins in a cohort that included African 

American/Black adults; 2) use the data generated from the discovery-based proteomics studies to 

determine the utility of the selected panel of proteins as diagnostic AD biomarkers using machine 

learning; and 3) determine the extent to which the model performance depended on the racial and 

ethnic background of the training set samples. Comprehensive plasma proteomics biomarker 

discovery was conducted using quantitative tandem mass tags of peptides from plasma 



 36 

immunodepletion, liquid chromatography (LC), and mass spectrometry (MS) workflows. 

Processed proteomics data along with machine learning was used to test whether the racial and 

ethnic background of the training set samples impacts the accuracy of the biomarker panels for 

AD.  In this approach, we divided the cohort into two sets: Set 1 (N = 73) was used to select the 

optimal protein features and Set 2 (N = 40) was used to validate the results.  

2.2. Methods 

2.2.1. Plasma sample collection  

Human plasma samples (N=113) from African American/Black and non-Hispanic White 

individuals were obtained from the University of Pittsburgh Alzheimer’s Disease Research Center 

(ADRC). Detailed characteristics of the individuals are provided in Table 2.1. Approval for the 

participation of human subjects were obtained by the Institutional Review Boards of the University 

of Pittsburgh and Vanderbilt University. The Mini-Mental State Examination (MMSE) was 

performed and disease individuals were clinically diagnosed with mild to moderate dementia at 

the time of blood draw according to the National Institute on Aging-Alzheimer’s Association and 

National Alzheimer’s Coordinating Center criteria. The samples were divided into two separate 

sample sets of N = 73 and N = 40, using a blinded study design. Plasma samples were obtained 

from participants at the most recent blood draw at the start of this study in December 2016, in 

order to analyze plasma that was close in chronological year and storage conditions and that 

corresponded to clear disease diagnosis.  
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Table 2.1. Demographics of plasma sample cohorts. 
 African American/Black non-Hispanic White 

p-

value* 
 

Cognitively 

normal 

Alzheimer’s 

disease 

Cognitively 

normal 

Alzheimer’s 

disease 

Sample size 26 30 28 29  

Sex (Male/Female) 8 / 18 8 / 22                      9 /19                      12 / 17                      0.69 

Mean age at draw (SD) 72.5 (7.4) 74.5 (7.8)                    71.1 (9.1)                    76.2 (8.7)                   0.58 

Mean year of most current 

blood draw (SD) 
2006.4 (7.4) 2007.4 (6.6)                  2008.8 (6.6)                  2007.2 (6.0)                  0.55 

Mean years of education 

(SD) 
13.3 (2.0) 13.4 (3.9) 16.1 (2.4) 13.2 (2.6) 0.0004 

MMSEa Mean (SD) 27.1(2.4) 14.5(7.1) 27.8(4.5) 13.6(5.9) 1.94E-22 

Diabetesb N=15 N=18                          N=19                          N=13                          0.22 

Hypercholesterolemiab N=15 N=18                          N=19                          N=13                          0.65 

Hypertensionb N=15 N=18                          N=19                          N=13                          0.046 

APOEc genotype      

2/3 

2/4 

3/3 

3/4 

4/4 

4 

2 

14 

5 

1 

4 

0 

10 

9 

7 

5 

0 

18 

4 

1 

1 

0 

11 

15 

2 

 

a MMSE- Mini-Mental State Exam,  
b Presence of comorbidity prior to or during blood draw. 
c APOE- Apolipoprotein E 
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2.2.2. Plasma depletion 

Plasma samples were depleted of the top six most abundant proteins (albumin, IgG, IgA, 

α1-antitrypsin, transferrin and haptoglobin) using the Multiple Affinity Removal System (MARS) 

Column Human 6 (Agilent, Santa Clara) according to manufacturer’s instructions. In brief, 30 μL 

of crude plasma sample was diluted 4 times using buffer A (Agilent, Santa Clara) and centrifuged 

at 16000 g for 1 min through a 0.22 μm spin filter to remove particulates. The sample was injected 

onto the MARS 6 column using a Waters Alliance 2695 Separation module LC system and the 

resulting fractions were collected. The flow through fractions were concentrated using a 5 kDa 

molecular weight cutoff concentrator at 4695 g for 1.5 hr followed by a bicinchoninic acid (BCA) 

assay to determine protein concentration. A pooled sample containing equal amounts of protein 

from each of the plasma samples was generated and used as quality control (QC) sample.  

2.2.3. Digestion 

Samples were randomized into eight and four batches respectively, for Set 1 and Set 2 with 

corresponding QC sample in each batch. In Set 1, in solution digestion was performed in 100 mM 

ammonium bicarbonate buffer. Proteins (100 μg) were reduced using 200 mM dithiothreitol (DTT) 

for 45 min at 55°C, while alkylation was performed using 200 mM iodoacetamide (IAM) in the 

dark for 30 min. Finally, proteins were digested using trypsin/Lys-C mix (Promega, Madison) 

overnight at 37 °C (1:50 enzyme:protein ratio). The digested samples were acidified with formic 

acid and desalted using HLB cartridges (Waters Corporation, Milford) per manufacturer’s 

instructions. For Set 2, the digestion was carried out using the filter assisted sample preparation 

(FASP) protocol.72 In brief, proteins (100 μg) were transferred onto a 10 kDa molecular weight 

cutoff filter (Sartorius, Gloucestershire, UK) and reduced for 15 min with 20 mM DTT in 100 mM 

Tris with 8 M urea. This was followed by centrifugation at 14000 rpm for 30 min and the resulting 
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filtrate was discarded. Proteins were then alkylated with 20 mM IAM in the dark for 15 min 

followed by centrifugation to remove the excess reagents. Samples were washed using 100 mM 

Tris in 1 M urea in a centrifuge at 14000 rpm and trypsin/Lys-C mix (Promega, Madison) was 

added and digested for 8 hr at 37 °C (1:50 enzyme:protein ratio). After digestion, the peptides were 

acidified with formic acid and desalted using HLB cartridges. TMT 10-plex or 11-plex labeling 

(ThermoFisher Scientific, Waltham) was performed following manufacturer’s instruction with 25 

μg of peptides. Labeled peptides were desalted and separated into 12 fraction using high pH 

(pH=10) reversed-phase fractionation with acetonitrile (ACN(%)- 

3,5,8,10,13,18,22,30,45,60,80,95) on an HLB cartridge. Fractions were dried down and 

reconstituted in water with 0.1% formic acid. 

2.2.4. LC-MS/MS and MS3 parameters 

Peptides were analyzed using an Orbitrap Fusion Lumos (ThermoFisher Scientific, 

Waltham) in positive ionization mode. The samples were loaded onto a self-packed C18 (5 μm, 

200Ǻ, MICHROM Bioresources Inc.) trap column (100 μM ID x 2.5 cm, IntegraFrit Capillary), 

and separation was performed on an in-house packed C18 (2.5 μm, 100Ǻ, XBridge BEH from 

Waters) capillary column (100 μM ID x 25 cm, Polymicro Technologies) at 300 nL/min using 

solvent A (water with 0.1 % formic acid) and solvent B (acetonitrile with 0.1% formic acid). The 

gradient was as follows: 0-7 min, 10% B; 7-67 min, 10-30% B; 67-75 min, 30-60% B; 75-77 min, 

60-90% B; 77-82 min, 90% B; 82-83 min, 90-10% B; and 83-100 min, 10% B. Full MS scans 

were acquired over a mass range of m/z 375–1500 at a resolution of 120,000 with the automatic 

gain control (AGC) target set at 4 × 105 ions and maximum ion injection (IT) time of 50 ms. Data 

dependent acquisition (DDA) was used to acquire MS/MS spectra with a cycle time of 3 s. MS/MS 

fragmentation was performed using collision-induced dissociation (CID) with an NCE= 35%. The 
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AGC was set at 1 × 104 using an isolation width of 0.7 m/z, maximum injection time of 100 ms, 

and a dynamic exclusion of 20 s. Synchronous precursor selection (SPS) mode was used for 

collecting MS3 spectra of the top 10 most intense ions from the MS/MS fragments. Higher-energy 

collisional dissociation (HCD) was used for MS3 with the following Orbitrap parameters: NCE= 

55%, scan range = 100-400 m/z, resolution = 60,000, AGC = 5 × 104, maximum injection time = 

118 ms and isolation width = 2 m/z. Each fraction was injected in duplicate and the injection order 

was randomized for each batch. 

2.2.5. Data analysis 

Raw files were analyzed using Proteome Discoverer software (version 2.2) and searched 

against the Uniprot human reviewed protein database (07/17/2018, 20289 sequences) using 

SEQUEST-HT. The following parameters were used: maximum two trypsin miscleavages, 

precursor mass tolerance 10 ppm, fragment mass tolerance 0.6 Da; dynamic modification of 

methionine oxidation (+15.995 Da), protein N-termini acetyl (42.011 Da), TMT 10 (229.163 

Da)/11 plex (229.169 Da) on peptide N-termini and lysine residue, static modification of cysteine 

carbamidomethyl (+57.02 Da). Decoy database searching was employed to generate high 

confidence peptides (FDR < 1%). TMT reporter ions (i.e. m/z 126 – 131) were identified with the 

following parameters: most confident centroid and 20 ppm for reporter ion mass tolerance. 

Technical replicates and fractions from each batch were combined into one result file. Finally, the 

individual batch data were combined together for further processing using a in-house Python 

script. 

Protein filtering criteria included peptide spectral matches (PSMs) ≥ 2, and reporter ion 

intensity values above the minimum threshold in at least 75% of the TMT channels (i.e., present 
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in any 54 of 73 samples or 30 of 40 samples). The final list of proteins was normalized using a 

two-step internal reference scaling (IRS) method which has been described previously.73 Briefly, 

in-batch normalization was performed by calculating a scaling factor (SF), which is the ratio of 

the sum of intensity of the pooled channel to the sum of each individual TMT channel, followed 

by multiplying the intensities by the SF for each individual batch. Next, across-batch normalization 

was applied by the use of SF from the geometric mean of the TMT intensity of pooled samples. 

Once normalized, differentially-expressed proteins (p-value<0.05) were determined by student’s 

t-test’s between AD and CN samples groups within each sample set. We did not use Bonferroni or 

other multiple hypothesis testing to keep a less stringent initial set of data to feed into the machine 

learning algorithm.74-75 A fold change cut-off of 1.23 (Set 1) and 1.33 (Set 2) was established based 

on biological and technical variation in the data.76 The mass spectrometry proteomics data have 

been deposited to the ProteomeXchange Consortium ( 

http://proteomecentral.proteomexchange.org/) via the PRIDE 77  partner repository with the dataset 

identifier PXD022265.  

2.2.6. Machine learning 

 Data preparation. Supervised classification was performed using RStudio, R version 3.5.1. 

The data sets with at least 75% of the TMT channels filled were selected for further analysis. 

Models were built with two different approaches: 1) using only the protein data, and 2) using the 

protein data along with the variables of sex, age, years of education, and APOE status. In the 

models with combined data types, sex and APOE genotype status were converted to numeric 

variables. For APOE status, any patient with an 4/4genotype was coded as a 4.  Genotypes of 3/4 

and 3/3 were coded as 3 and 2, respectively. All remaining patients, who had at least one APOE*2 

allele (2/3, 2/4 genotypes), were coded as 1. Prior to classification, differentially-expressed 

http://proteomecentral.proteomexchange.org/
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proteins were selected as the protein feature set. These were either combined or not combined with 

the clinical variables and then the matrix was scaled using the embedded scale function in R. After 

scaling, any missing values were replaced with the average value for the given feature in the dataset 

under consideration.  Since the data had been scaled, the average value was zero in each case. 

 Classification.  All supervised classification was performed with a Support Vector 

Machine (SVM) using the R package, e1071.78 All area under the receiver-operator curve (AUC) 

values reported herein were calculated using the R package, pROC.79 In order to ensure 

comparability from one experiment and one data set to the next, all of the SVM classifications 

were performed using identical parameters (i.e., leave-one-out cross-validation was performed in 

every case, and hyperparameters were not optimized). The reported accuracy was based on 

comparing the true class values to the probabilities generated in the model.  The probabilities were 

also used in calculating the AUC.   

 To account for class imbalance and the fact that the data sets had different proportions of 

cases versus controls, a random undersampling and aggregation technique was employed.  During 

undersampling, a random set of training samples was selected for model building, with the number 

for each class being equal and determined by subtracting one from the smallest class of samples. 

(For example, if there were 39 AD patients and 34 controls, the number of samples in each class 

in the training set would be 33.) The test sample was always excluded from consideration, and 

then training samples from each class were randomly selected, based on the pre-set number of 

samples to be used in the model. The SVM classification commenced, and the probability of the 

sample being assigned to Group 1 was recorded.  This process was repeated 300 times for each 

sample. The 300 probabilities that resulted from the 300 classifications for each sample were 

averaged in order to determine a single probability for each sample. This algorithm maximally 
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leverages all available data while not imparting a bias in the results based on the relative sizes of 

the two classes in the training set.   

2.3. Results 

Plasma samples (N=113) from four study groups- African American/Black cognitively 

normal (African American/Black CN, N=26) and AD (African American/Black AD, N=30), non-

Hispanic White cognitively normal (non-Hispanic White CN, N=28) and AD (non-Hispanic White 

AD, N=29) were obtained from the University of Pittsburgh ADRC. Generally, there were twice 

as many females in each group and no significant differences were found in CN compared to AD 

groups with regards to sex, age, year of blood draw and presence of other comorbidities (diabetes, 

hypercholesterolemia, hypertension). Each of the groups had an average 13 years of education, 

except the non-Hispanic White CN group which had ~16 years of education (Table 2.1). The 

average MMSE scores for the CN samples were above 27 while for the AD samples they were 

below 15. Each patient sample also had information about APOE genotypes, and we note that the 

African American/Black AD group had a higher percentage (i.e., 23%) of the 4/4 genotype 

compared to non-Hispanic White AD group. AD groups overall had higher percentages of 

individuals who carried a homozygous and/or heterozygous 3/4 or 4/4 genotypes compared to the 

CN group.  

A general overview of the plasma proteomics workflow employed for both Set 1 and Set 2 

is shown in Figure 2.1. For both experiments, all steps, except the digestion process were similar 

in order to simulate known variations in sample preparation study designs across proteomics 

laboratories. A correlation plot of average normalized TMT reporter ion intensities for all proteins 

between different batches for both experiments is given in Figure B2.1, demonstrating high 
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reproducibility among the batches in each experiment. The average R2 values for Set 1 and Set 2 

were 0.99 and 0.9939, respectively. A total of 538 high confidence proteins (1% FDR, PSMs ≥ 2) 

were identified in Set 1, and 596 proteins were identified in Set 2 yielding a total of 740 proteins 

from both sets (Figure 2.2). Between Set 1 and Set 2, 395 proteins were identified in both sets. 

While this level of coverage is desirable, many of the proteins were identified in only a sub-

population of the samples, so different filtering criteria were assessed to choose a data set size that 

balanced the competing needs of retaining many proteins in the data set while having quantitative 

data for as many samples as possible for each of the proteins. When considering only proteins with 

50% of the TMT channels present, 285 and 380 proteins remained in Set 1 and Set 2, respectively. 

When considering only proteins with 75% of the TMT channels present, 249 and 314 proteins, 

respectively, were present in Set 1 and Set 2, with >95% of the proteins in Set 1 also appearing in 

Set 2. This filtering option results in significantly better coverage for each protein while only 

minimally shrinking the size of the data set. We also considered filtering the data to include only 

proteins with 100% of the TMT channels present, which resulted in 189 proteins in Set 1, 257 

proteins in Set 2, and 183 proteins in common between the two sets. This filtering option would 

likely remove too many important but low-abundant proteins. We selected those proteins present 

in 75% of the patient samples for further analysis, as this data set best balanced the needs of 

retaining as many proteins as possible while providing quantitative data for as many samples as 

possible for each protein.  
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Figure 2.1. Overview of the plasma proteomics workflow. Samples from four study groups-

African American/Black Alzheimer’s disease (AD) and cognitively normal (CN), non-Hispanic 

White AD and CN-were obtained from the University of Pittsburgh ADRC. Samples were divided 

into Set 1 (N=73) and Set 2 (N=40) for this study. Samples were randomized into eight batches 

for Set 1 and four batches for Set 2. There was one QC pool sample in each batch and 

representation of one sample from each study group in each batch. The samples were randomly 

assigned TMT channels for both experiments. The experimental workflow was maintained the 

same except for the digestion step, where in solution digestion was used for Set 1, while FASP 

digestion was employed in Set 2. The plasma samples were immunodepleted of the six most 

abundant proteins, followed by proteolytic digestion. This was followed by isobaric tagging using 

either TMT 10/11 plex labels, followed by high pH reversed-phase fractionation. The resulting 

peptides were loaded into an Ultimate 3000 RPLC system coupled to an Orbitrap Fusion Lumos 

mass spectrometer for LC-MS, MS/MS and MS3 analysis. Example representative MS3 reporter 

ion spectra for TMT-10 plex sample (Set 1) and TMT-11 plex sample (Set 2) is also provided, 

demonstrating analysis of multiple samples using a single injection. 
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Figure 2.2. Summary of the number of identified proteins in both sample sets. On the left, are 

the number of high confidence identified proteins as a function of missing channels for TMT 

reporter ions. Values are provided for Set 1 and Set 2. On the right are Venn diagrams, displaying 

the overlap in common proteins at each level from Set 1 and Set 2. 
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2.3.1. Differentially-expressed proteins in AD 

Since only a small fraction of plasma proteins were expected to be differentially expressed 

between AD and CN groups, a robust process to select the optimal proteins for machine learning 

was needed. Thus, we focused on identifying differentially-expressed proteins in Set 1 (N= 34 CN, 

N= 39 AD) which had a larger number of samples compared to Set 2 (N= 20 CN, N= 20 AD). For 

this initial analysis, we combined data from all of the CN individuals into one group and all with 

AD into a second group. Figure 2.3a displays a volcano plot distribution of protein TMT ratios of 

the AD compared to CN groups. Of the proteins with significant p-values in Set 1 (p < 0.05), four 

proteins had fold-changes that were >1.18: beta-ala-his dipeptidase (FC- 0.73, p-value 0.0001), 

keratin type I cytoskeletal 9 (FC- 0.71, p-value 0.049), apolipoprotein L1 (FC- 0.84, p-value 0.03), 

and adiponectin (FC- 1.40, p-value 0.02). Beta-Ala-His dipeptidase, keratin type I cytoskeletal 9, 

and apolipoprotein L1 were all lower in AD compared to CN, while adiponectin was higher in AD. 

These changes are consistent with literature reports.80-82 Thus, these four proteins from Set 1 were 

selected as the protein feature to use in subsequent machine learning studies, and their utility for 

confirming AD was tested in both Set 1 and Set 2.  

Using an SVM classifier and leave-one-out cross-validation, we determined the utility of 

the four selected proteins for confirming AD. Two models were tested: one included only the four 

proteins (beta-ala-his dipeptidase, keratin type I cytoskeletal 9, apolipoprotein L1, and 

adiponectin), and the second contained these proteins along with four additional variables: age, 

sex, years of education, and APOE status.  These models were tested twice, using samples from 

either Set 1 or Set 2.  The classification accuracies of the two models in Set 1 and Set 2, are shown 

in Figure 2.4.   
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Figure 2.3. Volcano plots of differentially-expressed proteins between Alzheimer’s disease 

(AD) and cognitively normal individuals (CN) for the entire set of samples in a) Set 1 (N=39 

AD, N= 34 CN); b) data from the non-Hispanic White group only, Set 1 (N=19 AD, N= 18 CN); 

and c) data from the African American/Black group only, Set 1 (N=20 AD, N= 16 CN). Red circles 

coincide with proteins higher in AD compared to CN, while green circles coincide with proteins 

lower in AD. Abbreviations: CNDP1- Beta-Ala-His dipeptidase, KRT9- Keratin type I 

cytoskeletal 9, APOL1- Apolipoprotein L1, ADIPOQ- Adiponectin, KRT1- Keratin type II 

cytoskeletal 1, APOC3- Apolipoprotein C3, MMRN2- Multimerin-2, AFM- Afamin, SAA1- 

Serum amyloid A-1 protein , SAA4- Serum amyloid A-4 protein, DPH- Dopamine beta-

hydroxylase, APOE- Apolipoprotein E.  
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Figure 2.4. Histogram displaying classification accuracy for predicting AD in Set 1: N=73 

samples and Set 2: N=40 samples.  Blue bars:  Accuracy determined when only the four 

differentially expressed proteins (beta-ala-his dipeptidase, keratin type I cytoskeletal 9, 

apolipoprotein L1, and adiponectin) are included in the model.  Orange bars:  Additional 

improvement in accuracy when clinical variables (age, sex, education, and APOE) are also 

included in the model.   
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Several significant outcomes are noted based on results in Figure 2.4.  In all four 

classifications, the non-Hispanic White adult samples had higher accuracy than the African 

American/Blacks adult samples. Additionally, in both Set 1 and Set 2, a higher overall accuracy 

was obtained when the other variables were included. However, the variables of age, sex, years of 

education, and APOE status, provided a bigger boost to the accuracy of the samples from non-

Hispanic White adults compared to African American/Black adults. The fact that the two tested 

models were not as effective for the samples from African American/Black adults as they were for 

the samples from non-Hispanic White adults caused us to consider race-stratification of proteomics 

data prior to machine learning.  

2.3.2. Differentially-expressed proteins in AD in race-stratified groups 

Differentially-expressed proteins between AD and CN groups for the African 

American/Black and non-Hispanic White samples in Set 1, are shown using volcano plots in 

Figures 2.3b and 2.3c. Nine proteins were differentially expressed for the non-Hispanic White 

samples. Most of these proteins were decreased in AD with serum amyloid A-1 protein having the 

largest change (FC = 0.5, p-value 0.02). The remaining proteins included: beta-ala-his dipeptidase 

(FC = 0.69, p-value 0.0009), dopamine beta-hydroxylase (FC = 0.69, p-value 0.03), apolipoprotein 

C3 (FC = 0.74, p-value 0.001), serum amyloid A-4 protein (FC = 0.8, p-value 0.02), multimerin-

2 (FC = 0.8, p-value 0.01), apolipoprotein E (FC = 0.81, p-value 0.045) and afamin (FC = 0.81, p-

value 0.01). Adiponectin (FC = 1.61, p-value 0.02) was the only proteins that increased in non-

Hispanic White AD samples. 

Two proteins were differentially-expressed in samples from African American/Black 

adults in Set 1 (Figure 2.3c): beta-ala-his dipeptidase (FC = 0.78, p-value 0.04) and keratin type 
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II cytoskeletal 1 (FC = 0.59, p-value 0.048). Only beta-ala-his dipeptidase was differentially-

expressed in AD for both African American/Black and non-Hispanic White samples. A list of 

differentially-expressed proteins with corresponding p- and fold-change values are provided in 

Table 2.2 and Table B2.1.  

2.3.3. Supervised classification of differentially-expressed proteins  

Eight unique classifications were performed using the differentially-expressed proteins 

selected from volcano plots in Figures 2.3b and 2.3c. The first SVM classification used the set of 

nine proteins that were differentially expressed in the non-Hispanic White group from Set 1 

(Figure 2.3b) as a feature set, and the non-Hispanic White group data from Set 1 for training.  

Similarly, a second classification was conducted in the same was with Set 2 samples. Two 

additional classifications were performed in which the nine proteins described above were 

combined with the four variables (age/sex/education/APOE status). In total, four classifications 

were performed using the proteins that were differentially expressed in the samples from non-

Hispanic White AD adults in Set 1. A parallel set of four classifications was performed using the 

set of proteins that were differentially expressed in samples from African American/Black AD 

adults (Figure 2.3c). These proteins were tested in Set 1 and Set 2, either on their own or with the 

four clinical variables. In every case where the feature set included proteins that had been 

differentially expressed in samples from African American/Black adults, those samples from the 

set being tested, were used to train the model. Results for all eight classifications, separated by 

racial group, are shown in Table 2.3. Test samples were always left out when training the models 

(see 2.2 Methods).  
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Table 2.2. List of differentially-expressed proteins in race-stratified groups (Set 1). 

Accession Protein name 

African American Non-Hispanic White 

Fold change# 
p-

value* 

Fold 

change# 
p-value* 

Q96KN2 Beta-Ala-His dipeptidase 0.78 0.04 0.69 9.78E-4 

P04264 Keratin type II cytoskeletal 1 0.59 0.05 0.85 0.5 

Q15848 Adiponectin 1.19 0.3 1.61 0.02 

P43652 Afamin 0.98 0.77 0.81 0.01 

P02656 Apolipoprotein C3 1.04 0.72 0.74 1.1E-3 

P02649 Apolipoprotein E 1.02 0.93 0.81 0.05 

P09172 Dopamine beta-hydroxylase 1.17 0.32 0.69 0.03 

Q9H8L6 Multimerin-2 1.02 0.86 0.8 0.01 

P0DJI8 Serum amyloid A-1 protein 1.06 0.78 0.5 0.02 

P35542 Serum amyloid A-4 protein 1.01 0.86 0.8 0.02 

# Fold change cut off 1.23; * p-value < 0.05 

Bold denotes proteins that meet both fold-change cut-off and p-value < 0.05                                             

 

 

 

 

 

Table 2.3. Summary of results from machine learning. 
 non-Hispanic White (NHW) * African American/Black (AA) * 

 No extra variables Age/Sexa/Edub/APOEc No extra variables Age/Sexa/Edub/APOEc 

Set 1 NHW AA NHW AA NHW AA NHW AA 

AUCd 0.91 0.49 0.97 0.61 0.83 0.59 0.91 0.47 

Accuracy 86% 47% 86% 56% 73% 67% 84% 47% 

Set 2 NHW AA NHW AA NHW AA NHW AA 

AUCd 0.73 0.31 0.94 0.43 0.63 0.84 0.40 0.56 

Accuracy 65% 40% 85% 45% 55% 70% 45% 50% 

Abbreviations: a. Sex, b. Education, c. Apolipoprotein E4 genotype, d. Area under the curve 

Set 1: N=73 samples, Set 2: N=40 samples 

* Differentially-expressed proteins from Set 1 were used for the SVM classification; The full list of differentially-

expressed proteins is provided in Table 2.2 
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Overall, when differentially-expressed proteins from the non-Hispanic White group were 

used to classify AD in the samples, an effective model (i.e, AUC was 0.91 and the accuracy was 

86%) was developed, but only for the samples from the non-Hispanic White adults. In contrast, 

the model performed noticeably worse (i.e., AUC of 0.49 and accuracy of 47%) when classifying 

the data from samples of African American/Black adults. When other (age, sex, education, APOE 

status) variables were also included in the model, the classification accuracy (i.e., AUC was 0.61 

and the accuracy was 56%) of the samples from African American/Black adults improved, yet not 

to the level of accuracy what would be required for an effective biomarker assay. Incorporating 

(age, sex, education, APOE status) variables improved the accuracy from 0.91 to 0.97 for the non-

Hispanic White group, demonstrating that these variables could be combined with protein data to 

generate a model that can effectively predict AD in this demographic. This desirable outcome, 

which did not happen when those variables were included for the African American/Black group, 

suggests that other variables are needed to improve the accuracy of a given model for the African 

American/Black adult samples in this study.  

When SVM classifications were performed on Set 2, the overall findings from Set 1 were 

generally replicated. Using data from samples in only the African American/Black adult group did 

not result in accurate classification (i.e., maximum AUC was 0.43 and the accuracy was 45%), 

either with or without (age, sex, education, APOE status) variables included. In Set 2, samples 

from non-Hispanic White adults were best classified by combining protein data and (age, sex, 

education, APOE) variables (Table 2.3).  

Differences between the two racial groups are readily apparent when the classification 

model is built using differentially-expressed proteins (N = 2, Table 2.2) from the African 

American/Black group and only samples from this group to train the model. The best overall 
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outcome for samples from non-Hispanic White adults occurred when Set 1 was classified using 

the clinical variables (sex/age/education/APOE status) and the protein features. In this case, an 

AUC of 0.91 and accuracy of 84% was obtained. Using similar data from samples in the African 

American/Black groups, resulted in worse classification performance (i.e., AUC of 0.47 and 

accuracy of 47%). The best overall outcome for samples from African American/Black adults was 

observed when no clinical variables were used and when testing data in Set 2.  In that case, an 

improved classification was obtained (i.e, AUC of 0.84 and an accuracy of 70%) demonstrating 

how critical it was to evaluate various parameters and testing approaches in finding the best 

classification for both racial groups. However, it’s clear that the performance outcomes of the 

machine learning models is also dependent on the samples and protein data obtained in training 

and test sets. In all the tests where samples from African American/Black adults were used for 

model training, more accurate classification without the age/sex/education/APOE status variables 

was obtained. By contrast, in three out of the four classifications where these variables were 

included for samples from non-Hispanic White adults, the samples from that group were more 

accurately classified.   

2.4. Discussion 

In this study we performed two independent plasma proteomics experiments between AD 

and CN samples collected from African American/Black and non-Hispanic White participants 

from the University of Pittsburgh ADRC. At the time of this study, there were only 56 African 

American/Black participants that had banked plasma sample meeting our criterion. We used the 

demographics of those participants, primarily age, sex, and AD diagnosis, to match a similar size 

of non-Hispanic White participants. The AD diagnosis was clinically confirmed, and we used the 

most recent blood draw for these plasma analyses. Most characteristics that we evaluated of the 
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participants were generally similar between African American/Black and non-Hispanic White 

groups. 

We identified 740 proteins in total using TMT-based quantitative proteomics on an 

Orbitrap Fusion Lumos MS instrument, which is on par with recent plasma proteomics 

publications.83-90 However, with substantial increases in high pH reversed-phase fractionation in 

the sample processing, higher numbers of plasma protein identifications could have been 

identified.91 Additionally, we note that our MS data acquisition method used MS3 for TMT 

measurements in order to increase the quantitative accuracy of differentially-expressed proteins. 

However, using this approach is known to increase instrument duty cycle and result in lesser 

protein identifications. After applying stringent criteria for identification, presence of TMT 

reporter ion channels across samples, and fold-change and p-value cutoffs, we identified a total of 

27 differentially-expressed proteins (see Methods) in AD. These proteins were either different in 

a specific racial group or in comparisons of both racial groups together. Several of these proteins 

had changes in AD that were previously reported.80-81, 90 Notable in this study was the inclusion of 

samples from African American/Black ADRC participants. Based on our analyses, there was only 

one differentially-expressed protein (beta-Ala-His dipeptidase) in AD that was significant in both 

African American/Black and non-Hispanic White groups. Lower expression of this protein in AD 

for both groups is consistent with previous reports.90 

 One of the proteins that was only differentially expressed in non-Hispanic White samples 

included ApoE, which has been widely reported as potential plasma biomarker in AD. There have 

been contradictory reports of ApoE being higher in AD 92, while others have reported it as lower 

in AD.52 In our study, in samples from non-Hispanic White adults, ApoE was lower in adults in 

AD, whereas it did not have a change in AD vs CN in samples from African American/Black 
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adults. Other proteins that were lower in samples from non-Hispanic White AD included afamin, 

ApoC3, serum amyloid A1 protein and serum amyloid A4, which all have been reported to also 

change in previous studies. Direction of change in afamin, ApoC3, and adiponectin (Table 2.2) 

were also consistent with literature reports.47, 49-50, 80, 90, 93-95 Some of the differentially-expressed 

proteins (i.e., serum amyloid A1 and serum amyloid A4 proteins) that we identified were observed 

in other studies, however the direction of change in AD vs CN was not consistent.90 Two novel 

findings in this work were the differential expression of dopamine beta-hydroxylase and 

multimerin-2 which were only different in the non-Hispanic White group. 

The main outcome from our machine learning analyses is that samples from the African 

American/Black and non-Hispanic White participants had notable differences in performance 

outcomes.  Proteomics data from non-Hispanic White adults was classified substantially more 

accurately than data from African American/Black adults when both racial groups were combined 

in the training data (Figure 2.4) and when only the non-Hispanic White group was used as training 

data (Table 2.3). The other main difference observed is that samples from the non-Hispanic White 

group were typically best classified when (age, sex, education, and APOE status) variables were 

included in the model, while the classification of the African American/Black group benefitted 

less from including these variables. In fact, including these variables was detrimental in both cases 

where samples only from the African American/Black group were used to train the model and 

using proteins differentially expressed only in the African American/Black group.  Even in the 

case where samples from both African American/Black and non-Hispanic White groups were used 

to identify differentially-expressed proteins and to train the model (Figure 2.4), including (age, 

sex, education, and APOE status) variables only improved the classification of the samples from 

African American/Black adults in test data sets.   
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Overall, these studies show how critical it is for biomarker discovery efforts to be inclusive 

of individuals from various racial and ethnic backgrounds as it can have a huge impact on 

effectiveness of machine learning models. These studies found overall that samples from the non-

Hispanic White group were more accurately classified with SVM based on changes in plasma 

proteins from CN and AD adults. Also, the addition of age, sex, years of education, and APOE 

status as variables in the model disproportionally improved the classification accuracy of the non-

Hispanic White group compared to the African American/Black group. It is not clear from our 

findings that the machine learning performance outcomes are simply just tied to the self-reported 

race as many factors such as life experiences, stress, age, education, mixed-dementia pathology 

are intermixed in the construct of race and can contribute to protein levels in plasma. These factors 

should be considered for the African American/Black group, however are not easy to evaluate in 

terms of contributions to differential protein expressions in AD, which ultimately was used to feed 

proteins into the machines learning model. Achieving satisfactory outcomes with machine learning 

for AD with samples from African American/Black adults was possible in this study for one set of 

plasma proteins and without the use of covariates of age, sex, years of education, and APOE status 

variables. However, these studies clearly point to a need for increased plasma proteomics studies 

and number of plasma samples from African American/Black adults that are cognitively normal 

and with clinical diagnoses of AD in order to facilitate training of machine learning models and 

importantly, ensure favorable outcomes for African American/Black adults in plasma proteomics 

biomarker discovery efforts. 

2.4.1. Study strengths and limitations 

One of the major strengths of our study is the inclusion of plasma samples from both 

African American/Black and non-Hispanic White individuals. The number of samples from each 
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group was evenly distributed, with no significant differences due to sex, age, or comorbidities. 

Also, the AD samples having higher percentage of APOE*4 allele present, as reported by previous 

studies 1 was maintained by the samples in this study. This is the first study of its kind to compare 

these two racial groups in plasma proteomics experiments and directly evaluate in machine 

learning models for AD biomarker discovery. The majority of the proteins we found to be 

differentially expressed have been previously reported to change in AD; yet a few findings, with 

regard to AD-related protein expression, are novel, particularly when considering the protein 

expression data specific to samples from African American/Black adults. These findings coupled 

with the fact that the number of studies involving samples from African American/Black adults 

are very limited, puts emphasis on the need for conducting more AD research including African 

American/Black patient samples. This additional effort is necessary to both better understand 

disparities in disease incidence but also to ensure biomarker discovery efforts are effective for 

everyone.  

We employed a randomized blinded study design and ensured samples from each study 

group were included in every TMT batch. This allowed us to minimize error due to sample 

preparation. Also, we performed MS3 quantification, which provides highly accurate quantitative 

information and thus enhances confidence in the fold-changes observed for AD. This choice is 

potentially critical for facilitating biomarker discovery by focusing on robust protein changes.96 

Despite the use of MS3, which requires a higher duty cycle, we were able to identify similar 

numbers of proteins compared to recent publications using MS/MS approaches.83-90  

Another strength is that we had enough plasma samples to establish two independent data 

sets so that the results obtained from a training set (Set 1) could be validated with a test set (Set 

2). There was a high degree of overlap in terms of protein identifications in the training and test 
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sets that could be considered for use in machine learning. Our study design allowed us to stratify 

our data post-analysis based on the self-reported racial and ethnic group of the participants. In this 

case, the machine learning model was able to differentiate AD samples with high accuracy for the 

non-Hispanic White group using a set of nine proteins that were selected based on volcano plot 

analysis. We believe it was a strength that our study design allowed us to test if self-reported race 

was a critical factor in the accuracy of potential biomarker candidates. The same protein set that 

produced high accuracy in the non-Hispanic White group performed poorly when applied to the 

African American/Black group in both data sets. This strongly indicates a need for more studies 

that have inclusive designs and for evaluation of whether self-reported race or other variables are 

critical for biomarker development. 

 A notable limitation of this study was that protein identifications were cut in half by 

filtering out proteins that were missing TMT values for at least 50% of the samples. We note that 

this loss is likely due to batch effects; for every additional TMT batch acquired, new proteins are 

observed while others can go undetected due to the stochastic nature of the data dependent 

acquisition.97 Also, the use of MS3 could result in proteins being missed, as they may not have 

been selected for fragmentation in one TMT batch but were in another. DIA or targeted MRM 

methods could avoid this issue by only focusing on known protein identifications throughout the 

entire run.  

 While our sample size was a total of N = 113, which was on par with our similar studies 

involving AD 58, 63-64, 90, 95, 98, but we note that for biomarker discovery efforts this sample size is 

still small. Obtaining samples from African American/Black participants is challenging with 

limited availability in ADRCs; however, we will need to work with other ADRCs and focused 

studies 99-100 to generate large sample sizes especially from available African American/Black 
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participants. Sample size is especially critical as any racial and ethnic group is not homogenous 

and existing knowledge in plasma proteomics for AD is based mostly on participants from non-

Hispanic White and European backgrounds. We believe our moderate sample size also limited our 

ability to identify an adequate number and set of differentially-expressed proteins that could be 

effective for the machine learning classification of African American/Black adults. This is 

recognized by our study design to split samples into two sets for training and validation which 

reduced sample size in each group. However, our sample size was substantially higher than in 

other reported AD biomarker studies of African American/Black adults.37   

 Finally, we note another limitation to this study was not including additional variables other 

than age/sex/education/APOE*4 status that may have improved machine learning outcomes for 

samples from the African American/Black group. For example, it is recognized that biases in mini-

mental state examination and other cognitive tests 101-102 may result in inadequacies of generating 

similar types of participants and that quality of education may be a far more important factor than 

years of education to include in study designs.103 Genetic ancestry could be included as an 

additional measure as well as the use of other types of genetic markers that have AD risk associated 

with African American/Black adults.104 Stratification of groups based on self-reported race has 

limits also because it does not capture life-long experiences, such as discrimination and exposure 

to systemic racism 18, that have been shown to lead to inherent biases in healthcare and also impact 

plasma  proteomic cytokine levels.105-106 

2.5. Conclusions 

 Plasma proteomics analysis combined with classification by machine learning is a powerful 

strategy for identifying potential biomarker candidates that can be used for AD diagnosis. Plasma 
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proteomics biomarker discovery efforts have largely excluded samples from African 

American/Black adults, and this study sought to include samples from this group to help facilitate 

biomarker discovery efforts for everyone. Our analyses demonstrated that potential biomarker 

candidates for AD diagnosis could be identified with high accuracy in plasma samples from non-

Hispanic White adults that were cognitively normal or clinically diagnosed with AD, and that these 

same candidates were not effective in samples from African American/Black adults. Further 

improved machine learning outcomes for AD biomarker discovery were possible with the addition 

of variables such as age, sex, years of education, and APOE*4 status in the training model; 

however, these specific variables do not appear to be as effective for classifying samples from 

African American/Black adults with plasma proteomics data. Thus, the search is on for a better set 

of plasma proteins and/or combined use of clinical/demographic variables which can be used to 

ensure biomarker discovery efforts in AD are effective for everyone, including African 

American/Black adults.   
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CHAPTER III 

 

Evaluating a Targeted MRM Approach to a Global Untargeted Approach for Lipidomic 

Analyses of Human Plasma 

“This chapter is adopted from published research article: Khan, MJ, Codreanu, SG, Goyal, S, et al. Evaluating a targeted multiple reaction monitoring approach 

to global untargeted lipidomic analyses of human plasma. Rapid Commun Mass Spectrom. 2020; 34: e8911” 

3.1. Introduction 

Lipidomics is one of the most rapidly developing branches of science over the last decade 

due to the potential of linking lipids to different human health issues. With the advancement in 

mass spectrometric instruments over the last few decades, more studies are being conducted 

focusing on lipids and their role in different disease pathologies, examples of which include 

diabetes 1-2, obesity 3, cystic fibrosis 4 and many types of cancers.5-9 Due to the high content of 

lipids in the brain and central nervous system (CNS), Alzheimer’s disease (AD) and many other 

neurological diseases such as multiple sclerosis, epilepsy, schizophrenia, and Parkinson's disease 

have been associated with faulty lipid metabolism.10-14  Numerous lipidomics studies have 

established a correlation between altered lipid metabolism and AD.15-19 Although several studies 

have been conducted over the years, there are still many areas in the field that require improvement. 

For example, there is a major need for a universal method for the analysis of lipids from various 

classes. 

Targeted and untargeted lipidomics approaches can be utilized to study single or multiple 

lipid species. In targeted approaches, a known lipid molecule and/or lipid class of interest is 

selectively chosen for mass spectrometry (MS) analysis, while in an untargeted approach, all 

extracted lipid compounds from diverse classes are monitored simultaneously in a single MS 

assay. Relative and absolute quantification 20 can be performed using internal standards in both of 

these approaches. While targeted approaches have advantages of being highly specific, selective, 
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and accurate with regards to quantification, these approaches are biased on a priori selection of 

species, leaving many unknowns undetected. On the other hand, untargeted approaches monitor 

all species in a putatively unbiased manner and have the potential to discover new lipid species 

that may be indicative of a disease state.    

Recently, SCIEX introduced a targeted lipidomics method using a combination of 

hydrophilic interaction liquid chromatography (HILIC) separation and a multiple reaction 

monitoring (MRM) based assay to analyze ~1150 different lipids from 19 different classes of 

lipids.21 This method has the advantage of being highly specific, with the ability to identify a broad 

array of lipids with high accuracy and precision and, with streamlined data analysis.21 The QTRAP 

6500+ mass spectrometer offers fast polarity switching between positive and negative ionization 

modes and high sensitivity at higher acquisition rates.  These features in conjunction with HILIC 

separation of the lipids into their individual classes, makes it easier to assign MRM measurements 

to individual lipid species within a narrow retention time window.21 

Here we evaluated the performance of this targeted MRM method against a conventional 

untargeted approach, using a reversed phase separation in conjunction with the Q Exactive-HF 

mass spectrometer. The untargeted approach used two separate injections, for both the positive 

and negative ionization modes, unlike the targeted approach, which utilized polarity switching 

within the same run. In these studies, we focused our evaluations on (1) the number of lipids 

identified by both approaches, (2) classes of lipids individually identified by each approach, (3) 

relative quantification of lipid classes, and (4) the overall ease of data acquisition and data 

processing. We also benchmarked these findings against previously reported studies. 

3.2. Methods 

3.2.1. Plasma sample collection  
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Human plasma samples (N=5) from healthy individuals were collected from the University 

of Pittsburgh Alzheimer’s Disease Research Center (ADRC). Approval for the participation of 

human subjects was obtained by the Institutional Review Boards of the University of Pittsburgh 

and Vanderbilt University. Samples were collected between 2000-2015 from cognitively normal 

individuals. The average age of all the patients at the time of draw was ~75 years and both male 

and female individuals were included in the study.  

3.2.2. Untargeted lipidomics study 

3.2.2.1. Lipid extraction 

 Lipids were extracted using a modified Bligh-Dyer extraction protocol.22 Briefly, plasma 

samples (30 μL) were transferred into a borosilicate glass tube followed by addition of 4 mL of 

solvent A (chloroform/methanol solution (1:1, v/v)) and 2 mL of 50 mM LiCl. The tubes were 

vortexed for 20 s and centrifuged at 2,700 × g for 10 min. The bottom organic layer containing the 

lipids was carefully collected, and 2 mL of chloroform was added to the aqueous phase (upper 

layer) to re-extract the remaining lipids. The sample was vortexed and centrifuged again. The 

subsequent bottom layer was combined with the previously collected lipids and dried down using 

centrifugal evaporation. The whole procedure was repeated again with the dried down sample as 

above except 10 mM LiCl was used instead of 50mM LiCl solution. The lipid layer was collected 

and dried down before being reconstituted for injection into the instrument.  

3.2.2.2. LC – MS/MS analyses 

 For the untargeted analysis, a reconstitution solution was prepared by adding internal 

standard solution (Splash Lipidomix® from Avanti), which constituted a mixture of 14 different 

isotopically labelled lipids (Table C3.1) at a 1:5 ratio of standard to solvent A 
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(chloroform:methanol solution (1:1, v/v).23-25 The dried down lipids were reconstituted with 100 

μL of the reconstitution solution and vortexed to dissolve all the lipids. A quality control (QC) 

sample was prepared by adding an equal amount of each sample to generate a QC pool mixture. 

LC-MS/MS analysis was performed on a Vanquish HPLC system (Thermo Fisher Scientific, 

Bremen, Germany) coupled to an Orbitrap Q Exactive-HF mass spectrometer (Thermo Fisher 

Scientific, Bremen, Germany). Both positive and negative ionization ESI modes were used for the 

analysis. In the positive mode, 4 μL of sample was loaded onto a Hypersil Gold C18 3 μm, 2.1 

mm × 100 mm column (Thermo Fisher Scientific, Waltham, MA), while in the negative mode 6 

μL of sample was injected. RPLC separation was performed at 250 μL/min using solvent A (water 

with 0.1 % formic acid) and solvent B (isopropanol:acetonitrile:water at 60:36:4 ratio with 0.1% 

formic acid) with the following gradient: 40-70% B over 5 min, 70-100% B for 10 min, 100% B 

for 7 min, 90-20% B for 1 min, 20% B for 3 min, 40% B for 4 min for a total gradient time of 30 

min. Full MS scans were acquired over a mass range of m/z 100–1500 for both positive and 

negative ionization modes. The Q Exactive-HF has the capability of performing polarity switching 

which has been used for untargeted lipidomics experiments previously 26 and could have been used 

herein. However, in order to ensure comparable sampling across each lipid species, separate 

injections for positive and negative modes on Q Exactive-HF were preferred. The source 

parameters were as follows: spray voltage = 3 kV (both positive and negative mode); capillary 

temperature = 280°C; sheath gas = 30 (positive), 40 (negative); auxiliary gas = 5 (positive), 10 

(negative); spare gas = 1; probe heater temperature = 300°C (positive), 400°C (negative); Slens = 

40%. The resolution was set to 60,000 with the automatic gain control (AGC) target set at 1 × 106 

ions and maximum ion injection (IT) time of 100 ms. The top two most intense precursors were 

selected for MS/MS. The MS/MS scans were acquired at 15,000 resolution using an isolation 
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width of 1.5 m/z, stepped collision energy (NCE 15, 20, 25), and a dynamic exclusion of 6 s. The 

AGC target was set at 2 × 105 ions and IT of 100 ms.  

3.2.2.3. Data analysis 

RAW files were analyzed using Progenesis QI (Non-linear Dynamics, Newcastle, UK) 

following a previously described process.27 Briefly, all the data files (both sample and QC) were 

imported and aligned against a full MS QC pool reference and adduct ions ([M+Na]+, [M+K]+, 

[M+Li]+, [M+H]+, [M+H-H2O]+, [M-H]-, [M-H2O-H]-, [M+Cl]-) were selected for data processing 

and deconvolution. Peak picking was performed at a minimum threshold of 2.5 × 105 ion intensity. 

Unique ions (retention time and m/z pairs) were grouped (a sum of the abundances of unique ions) 

using both adduct and isotope deconvolution to generate unique “features” (retention time and m/z 

pairs) representative of each compound. Data were normalized using Progenesis QI to all 

compounds. Annotations were assigned within Progenesis QI using accurate mass measurements 

(<5 ppm error), isotope distribution similarity, and manual assessment of fragmentation spectral 

matching (when applicable) from LipidMaps 28, Lipidblast 29 and  Human Metabolome Database 

(HMDB).30  

3.2.3. MRM targeted study 

3.2.3.1. LC-MS/MS analysis 

Plasma samples were extracted using the same protocol as the untargeted study, but 

prepared on a separate day compared to the untargeted approach, using aliquots from the same 

sample set. The extracted lipids were reconstituted using ethanol with internal standards (Splash 

Lipidomix® mix and standard mix made by combining individual standards bought from Avanti) 

added at different concentrations (Table C3.1). The Amide based LC-MS/MS analysis was 
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performed using an ExionLC™ System, a high-performance (HPLC) system consisting of a binary 

high pressure mixing gradient pump with a degasser, a thermostated autosampler, and a column 

oven. Separation was achieved on a Waters XBridge Amide column (4.6 × 150 mm, 3.5 µm). The 

LC method details are listed below: column temperature was set at 35 ºC, flow rate of 0.7 mL/min, 

injection volume of 5 µL. The mobile phases were as follows: solvent A (water:acetonitrile) at 

5:95 ratio with 1 mM ammonium acetate (adjusteded to pH 8.4) and solvent B (water:acetonitrile) 

at 50:50 ratio with 1 mM ammonium acetate, pH 8.2 with the following gradient: 0-6% B over 6 

min, 6-25% B for 4 min, 25-98% B for 1 min, 98-100% B for 2 min, 100% B for 5.6 min, 100-

0.1% B for 0.1 min, 0.1% B for 5.3 min for a total gradient time of 24 min. The SCIEX QTRAP 

6500+ System was equipped with an IonDriveTM Turbo V source and was operated in low mass 

and MRM mode with ESI polarity switching. Source and gas setting were as follow: curtain gas = 

35; CAD gas = medium for positive mode and low for negative mode, ion spray voltage = 5.2 kV 

in positive mode and −4.5 kV in negative mode; temperature= 550 °C, declustering potential (DP) 

= 60 (positive mode), -80 (negative mode); entrance potential = 10 (Positive mode), -10 (Negative 

mode). Data processing was performed using SCIEX OS™ software and Microsoft Excel for post 

data analysis. 

3.3. Results and Discussion 

3.3.1. Untargeted vs Targeted study 

3.3.1.1 Lipid identification and class assignment 

A general overview of the untargeted and targeted workflows is shown in Figure 3.1. To 

assign confident identification to the lipid classes in the untargeted study, the elution time profiles 

of the heavy-labeled lipid standard mixture was generated. The sample profile was referenced to 
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the standards to assign elution order of lipid classes (Figure 3.2). Negative ionization mode was 

observed to be favored by phosphatidylinositol (PI) species, while phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) species were more abundant in the positive ionization mode. 

Assigned annotations and lipid classes were confirmed by matching the MS/MS spectra of the 

lipid to the expected fragmentation patterns documented in the literature, when available, and also 

filtering based on the fragmentation score assigned by Progenesis QI for individual lipids.31-34  

An example MS/MS spectrum for a PC 32:1 is shown in Figure 3.3a. For PCs, the most 

common adducts are either the protonated form [M+H]+ or alkali metal adduct [M+Na]+ or 

[M+Li]+. Here, we observed the characteristic PC fragment ion peak at m/z 184.073, for the 

[phosphocholine+H]+ species. There are also fragment ions present at m/z 695.462 [M+Na-59]+ 

which corresponds to the loss of a trimethylamine and m/z 571.469, which corresponds to [M+Na-

183]+, loss of a phosphocholine. Similarly, PE species can form either a protonated adduct [M+H]+ 

or alkali metal adduct [M+Na]+ or [M+Li]+ and a fragment species at m/z 599.503 [M+H-141]+ 

was observed, corresponding to the loss of phosphoethanolamine (Figure 3.3b). For 

sphingomyelins (SM), we observed [M+Na]+ species and fragment ion peaks owing to the neutral 

loss of trimethylamine at m/z 750.571 [M+Na-59]+, neutral loss of phosphocholine at m/z 626.588 

[M+Na-183]+, and a fragment ion peak at m/z 184.073 for the [phosphocholine+H]+ species 

(Figure 3.3c). Ceramides (Cer) have characteristic intact ion peaks for sphingoid base ions at m/z 

264.268 and 282.279 and also fragment peaks at m/z 502.499 [M+H-2H2O]+ and m/z  520.508 

[M+H-H2O]+, corresponding to neutral  water losses (Figure 3.3d). Similar strategies for lipid 

characterization were applied across all detected lipid classes, these include: phosphatidylserine, 

lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and others. After removing 

redundant annotations, the most confident annotation is selected based on both the score output  
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Figure 3.1. Experimental workflow. Lipids were extracted from 30 µL plasma and reconstituted 

using assay specific solvent with the addition of internal standards. Extracted lipids were analyzed 

using a Thermo Orbitrap Q Exactive HF and SCIEX QTRAP 6500+ mass spectrometers and the 

resulting raw files were analyzed using software specific to the approach. 

 

 

 

 
Figure 3.2. Total ion current chromatograms in positive and negative ionization mode 

showing regions where lipids of different classes elute in an untargeted approach. Lipid class 

elution in (a) positive and (b) negative ionization mode. Elution order determined by analyzing 

internal standard by itself and comparing the elution order to that of the actual samples. 

(Abbreviations: DG- Diaclyglycerol, LPC- Lysophosphatidylcholine, LPE- 

Lysophosphatidylethanolamine, PC- Phosphatidylcholine, PE- Phosphatidylethanolamine, PS- 

Phosphatidylserine, PI- Phosphatidylinositol, SM- Sphingomyelin, Cer- Ceramide, TG- 

Triacylglycerol) 
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Figure 3.3. MS/MS fragmentation pattern of different lipids.  Example MS/MS spectra from 

positive mode analysis of (a) PC 32:1, (b) PE 36:1, (c) SM 40:1, and (d) Cer 34:1 from the Thermo 

Orbitrap Q Exactive HF. 
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provided by Progenesis QI and manual curation and verification of the MS/MS spectra available 

in external databases. In this study, exact mass similarity, isotope similarity, and fragmentation 

score were used to determine annotation score.  

In the targeted lipidomics workflow, a previously established MRM method was used to 

target a large set of ~1150 lipids using the SCIEX platform.35-36 The targeted analysis was 

accomplished using a “Global MRM list” of ~1150 lipids which constitute the most commonly 

identified lipids in human plasma from 19 different classes of lipids. Details of the MRM list are 

provided in Table C3.2. These lipids were analyzed using both positive and negative ionization 

modes on the same run using the fast polarity switching mode of the QTRAP 6500+. This method 

has the advantage of identifying lipids at the molecular level, especially for phospholipids in which 

instead of using the loss of head group in the positive ionization mode for lipid identification, it 

uses the loss of fatty acid chains from lipids in the negative ion mode.21 The samples were analyzed 

using a ScheduledMRM™ algorithm, which involves performing a series of unscheduled and 

scheduled analyses by injecting a QC sample, which represents similar complexity of all samples 

in the experiment. This is accomplished with a HILIC separation which separates the lipids on the 

basis of head group functionality (Figure 3.4) and has recently been shown having better utility in 

separating lipid classes than reversed-phase separation.37 For example, TG, Cer and CE elute at tR 

2.3 min; PS, PE, and PC at tR 9.8 min; LPS, LPI, SM, and LPG at tR 12.0-13.5 min; LPC, PI, LPE 

at tR 13.0 min (Figure 3.4a). One of the major benefits using HILIC separation is its high 

reproducibility in elution times across triplicate injections (3 days) of the individual sample 

(Figure 3.4b). Although, there are differences in the intensities across some injections, these are 

mostly due to the intensity differences of the patient samples. Also, as the endogenous lipids in the 

sample are co-eluting with its corresponding internal standard, differences in ionization  
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Figure 3.4: Chromatographic profile of lipids from targeted MRM. (a) Total ion 

chromatogram of all the lipid classes detected, (b) overlayed chromatograms across 15 plasma 

injections, (c) total ion chromatograms for all lipid classes with the highlighted portion for PE 

species which eluted at tR 9.8 min and (d) integrated MS spectra from (c) with peaks labeled 

according to annotations based on the fatty acid masses specific to the species matched from the 

MRM list with its corresponding Q1 and Q3 masses (listed as Q1/Q3); (Abbreviations: TG- 

Triacylglycerol, CE- Cholesterol Ester, Cer- Cermaide, HexCer- Hexosylceramide, LacCer- 

Lactosylceramide, PG- Phosphatidylglycerol, PS- Phosphatidylserine, PE- 

Phosphatidylethanolamine, PC- Phosphatidylcholine, LPI- Lysophosphatidylinositol, LPS- 

Lysophosphatidylserine, LPC- Lysophosphatidylcholine, PI- Phosphatidylinositol, LPE- 

Lysophosphatidylethanolamine). 
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efficiencies and ion suppression effects can be accounted. After ionization, the lipids are scanned 

in Q1, fragmented in Q2, and fatty acid specific scans are conducted in Q3. An example is shown 

in Figure 3.4c, in which PE species elute at tR 9.8 min. Upon completion of fatty acid specific 

scans and data processing, the peaks at specific m/z values are annotated to PE species (Figure 

3.4d). Similar strategies were used for annotating all the lipid classes in the targeted MRM method. 

A list of all identified lipids in both approaches is provided in Table C3.3. Fatty acid composition 

of lipids in the untargeted analysis for PC, PE, PI, and TG species is based on fragmentation scores 

provided by Progenesis QI software, while LipidMaps naming convention was used for lipid 

annotations.38 

3.3.1.2. Overall performance evaluation 

We evaluated the performance of the untargeted and targeted approaches by comparing the 

overall variation in number of lipids identified against previous studies performed on human 

plasma samples.39-40 Specifically, we compared the coverage of the lipid classes common between 

the two approaches and also their overlap with previous studies.39-40 Overall, 297 lipids were 

annotated using the untargeted approach, while 619 lipids were annotated using the targeted MRM 

approach from 11 classes of lipids (CE- Cholesterol Ester, Cer- Ceramide DG- Diacylglycerol, 

LPC- Lysophosphatidylcholine, LPE- Lysophosphatidylethanolamine, PC- Phosphatidylcholine, 

PE- Phosphatidylethanolamine, PI- Phosphatidylinositol, PS- Phosphatidylserine, SM- 

Sphingomyelin, TG- Triacylglycerol). In the targeted MRM approach the lipids were annotated 

based on their individual fatty acid chain information, while in the untargeted study, fatty acid 

chains were reported as a total number of carbons added together with the corresponding degree 

of unsaturation, identical to previous LipidMaps 39 and NIST 40 studies. To better compare the two 

approaches, the lipid annotations in the MRM approach were converted to the same annotations. 
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In doing so, the total number of annotated lipids was reduced from 619 to 327 lipids. In total, 465 

lipids were identified in both approaches, 159 lipids were similar between the two approaches 

(Figure 3.5a), 168 lipids were unique to the targeted MRM approach, and 138 lipids were unique 

to the untargeted approach. Figure 3.5b shows the distribution of lipids classes in both the 

approaches. A majority of the lipids in the untargeted approach were from PC and PE lipid classes. 

On the other hand, TG species were the major lipid class in the targeted method as would be 

expected from plasma samples, along with high numbers of PC and PE species. The number of 

LPC and LPE species identified in each approach were similar. A comparison of the different lipid 

classes annotated between the two approaches is shown in Figure 3.5c.  The targeted approach 

had a higher number of TG species identified, compared to the untargeted approach, due to lack 

of ammoniated buffer, while the number of SMs and PCs were higher in the untargeted approach. 

There were similar numbers of lipids from PE, PI, LPC, and LPE classes of lipids in both 

approaches, while there were higher numbers of lipids from Cer and PS lipid classes in the targeted 

approach. As for the common lipids identified between the two approaches, most identified species 

were from PE, TG, and PC classes (Figure 3.5d). PI and PE had similar numbers of unique lipids 

for both approaches. As for other classes, CE had no unique lipids in untargeted approach, and 

both LPE and LPC had a higher number of lipids that were common between the two approaches 

as opposed to those that were unique in each approach (Figure 3.5d). 
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Figure 3.5. Distribution of lipid classes in both approaches. (a) Overlap of the lipid identified 

between the two approaches; (b) pie chart showing the different classes of lipids identified in both 

of the methods; (c) comparison of the number of lipids from different classes in both approaches; 

(d) total number of lipids identified per lipid class in both approaches. (Abbreviations: CE- 

Cholesterol Ester, Cer- Ceramide, DG- Diacylglycerol, LPC- Lysophosphatidylcholine, LPE- 

Lysophosphatidylethanolamine, PC- Phosphatidylcholine, PE- Phosphatidylethanolamine, PI- 

Phosphatidylinositol, PS- Phosphatidylserine, SM- Sphingomyelin, TG- Triacylglycerol). 
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Our results were compared against previous studies of human plasma and serum by 

LipidMaps 39 and NIST.40 Both of these studies are considered benchmarks for estimating 

concentrations of lipid species from several lipid classes and also report the lipid species and lipid 

class complexity in these sample types. Although the total number of identified lipids in both of 

those studies were higher (1527 lipids), especially in the NIST study 40, we focused our 

comparisons against the most commonly observed lipids in human serum or plasma. Additionally, 

the lipid annotations herein were reformatted to match that of those studies. For example- in the 

LipidMaps study, Cer species were reported as a corresponding sphingoid base, this formatting is 

similar to our targeted approach, but in the NIST study, they were reported as the total number of 

carbons in the fatty acid chains, similar to the annotations in the untargeted study. Once the 

necessary conversion was complete, 142 and 191 lipids were common in the untargeted approach 

when compared to LipidMaps and NIST studies, respectively (Figure 3.6a&c). In the targeted 

MRM approach, 189 and 208 lipids were common with the LipidMaps and NIST study, 

respectively (Figure 3.6b&d). When comparing the numbers for individual lipid classes against 

the LipidMaps study, higher numbers of Cers, PSs, and DGs were common with the targeted MRM 

study compared to the untargeted study, while the number of SM species in common were higher 

in the untargeted study. The remaining classes had similar numbers for both approaches. On the 

other hand, higher numbers of PC and SM species were common with the NIST study for the 

untargeted approach, while there were higher number of TG, Cer and PE species common with 

the NIST study for the targeted MRM approach (Figure 3.6e-h).  

We further compared the two approaches through evaluation of the inter-day relative 

abundances and concentrations of lipid species across three days for five individual patient plasma 

samples. The ratio of the MS signal for a given endogenous lipid to the corresponding spiked-in  
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Figure 3.6. Comparison of the lipid classes identified for two approaches against previous 

studies. Overlap of the lipids identified between (a) LipidMaps study and untargeted study, (b) 

LipidMaps study and targeted study, (c) NIST study and untargeted study, (d) NIST study and 

targeted study, (e) & (f) comparison of lipids identified in the untargeted and targeted approach 

against the LipidMaps study; (g) & (h) comparison of lipids identified in the untargeted and 

targeted approach against the NIST study. (Abbreviations: CE- Cholesterol Ester, Cer- Ceramide, 

DG- Diacylglycerol, LPC- Lysophosphatidylcholine, LPE- Lysophosphatidylethanolamine, PC- 

Phosphatidylcholine, PE- Phosphatidylethanolamine, PI- Phosphatidylinositol, PS- 

Phosphatidylserine, SM- Sphingomyelin, TG- Triacylglycerol). 
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internal standard in the same lipid class was calculated. Because the sample internal standard 

mixture was used in both untargeted and targeted approaches, this can help to account for 

differences related to separation and ionization of lipids. However, we note that matrix effects are 

complex between the HILIC and RP separation methods and may require more complex 

normalization approaches. Due to the higher injection amount of the internal standards for some 

of the classes in the MRM approach, the final ratio values were much smaller, compared to the 

untargeted approach of the same species. Despite this, the ratios were more consistent for the MRM 

approach, compared to the untargeted approach. Overall, the lipid classes had a higher percent 

coefficient of variation (%CV) across the three-day injections for the untargeted approach, 

compared to the targeted MRM approach. For example, the LPC species had a 17% CV for the 

untargeted approach, while it was 6.4% CV for the targeted MRM approach. Similarly, the LPE 

species had a 16% CV and 3% CV for the untargeted and targeted MRM approaches, respectively. 

Overall, the %CV for the ratio of six most abundant lipid classes (PC, PE, LPC, LPE, TG and SM) 

was ~9% for the targeted MRM approach whereas, it was ~23% for the untargeted approach.  For 

plasma samples, there is inherent biological variation across patients or in this study healthy 

volunteers. We assessed inter-day variation in plasma concentrations (nmol/mL of plasma) for 

both the untargeted and targeted approaches, and show results from four example lipid species 

across several classes. As the data was collected on patient samples, there was variation in the ratio 

values across the samples (as can be seen in Figure 3.7). This was evident in all the lipid species 

identified in both approaches. Generally, the plasma concentrations determined from the MRM 

analyses were more stable across the three days than those determined from the untargeted 

approach. For example, PC 38:3 had average concentrations of 52.06, 47.2 and 68.1 nmol/mL 

plasma for Days 1, 2, and 3, respectively, in the untargeted approach whereas for the MRM  
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Figure 3.7. Concentrations of lipid species from different lipid classes demonstrating the 

inter-day variation of patient sample across the three days for both the targeted and 

untargeted platforms. Example of lipid species from (a) Phophotidylcholine (PC), (b) 

Phosphotidylethanolamine, (c) Lysophophotidylcholine and (d) Lysophosphotidylethanolamine 

lipid classes. The five different color points represent individual patient sample, while the black 

point represent the average concentration among all the patient samples for that lipid species for 

that day.  
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approach, the concentrations were 32.5, 31.4 and 34.2 nmoL/mL plasma for Days 1, 2, and 3, 

respectively (Figure 3.7a).  It should be noted that one patient sample had PC 38:3 concentrations 

that were noticeably higher than the other four patient samples. Other species such as PE 36:0, 

LPC 20:4, and LPE 20:3, also had more consistent average concentrations with the MRM approach 

than the untargeted approach across the three days (Figure 3.7b-d). Thus, these results are 

consistent with the lower %CV values observed overall for the MRM approach.    

We also compared the relative total quantities of the six most abundant lipid classes in 

plasma (Figure 3.8a), which was calculated by multiplying the ratio of the abundance of the 

endogenous species and its corresponding internal standard by the amount of standard injected. In 

most cases the amounts (ng) were similar in both approaches, except for SM species. In both 

approaches, LPE had the lowest amount (~1ng) of lipids, while TG had the highest amount (~500-

700 ng). We also compared the sum of concentration of lipid species (nmol/mL plasma) in our 

study against that of the LipidMaps 39 & NIST 40 studies (Figure 3.8b) for PC, PE, LPC, LPE, SM, 

and TG classes. Only the lipid species that were common among all the studies were compared. 

For LPC and SM classes, all four studies had comparatively similar values. For the PC class the 

untargeted approach had similar values to the NIST study, while the targeted MRM approach and 

LipidMaps studies had similar outcomes. On the other hand, there were similarities between the 

untargeted and LipidMaps study for the PE class, while the targeted MRM approach and NIST 

study showed similar results. For the LPE class, LipidMaps had higher values. Relative 

concentrations of lipids common between the untargeted and MRM approach is given in Table 

C3.4. 

While the untargeted and targeted MRM approach were able to identify lipids from similar 

classes and had similar total numbers of observed lipids, the lipid assignments were less specific  
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Figure 3.8. Comparison of relative concentration of lipid classes in both MRM and 

untargeted approaches. a) Box plot showing the sum of relative amount (ng) of lipids compared 

to the corresponding internal standard for phosphotidylcholine, phosphotidylethanolamine, 

lysophophotidylcholine, lysophosphotidylethanolamine, sphingomyelin and triacylglyceride 

classes in both the untargeted and targeted (MRM) approaches; b) Bar chart of comparison of the 

sum of lipid species concentration (nmol/mL plasma) of our study against LipidMaps and NIST 

studies (N= lipids species common among the studies being compared) for the classes mentioned 

above. 
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with the untargeted approach. In this untargeted approach, we were unable to distinguish the 

individual fatty acid chains. This was expected and could be in part due to limitations in database 

annotations and searching.20 For example, in the targeted MRM approach, PC, PE, PI, and PS 

species were identified up to their individual fatty acid chains, which was unavailable in the case 

of the untargeted approach, which reports it as a sum of the total carbons in the fatty acid chains. 

Similarly, in the targeted MRM approach, SM species were assumed to have 18:1 sphingosine 

backbone due to its higher abundance in human plasma and reports the other fatty acid chain, 

however, the untargeted approach is able to identify both fatty acid chains. Similarly, TG species 

in the targeted MRM approach report only one fatty acid chain and the remaining chain as the total 

number of fatty acids, while the untargeted approach has the capability to identify all three fatty 

acid chains individually. We also acknowledge that the use of HILIC and reversed phase separation 

in different approaches could have also influenced the number of lipids identified, especially for 

the untargeted approach where the number of identified lipids could have increased with the use 

of longer gradient times. Buffer composition can have an impact on the species detected and we 

note that a lower number of TG species was identified in the untargeted study although they have 

been previously reported to be higher in plasma samples. The incorporation of an ammoniated 

buffer could increase the observation of this lipid class. Despite all the positives in the targeted 

MRM approach, it does not account for any isotope correction, which is a limitation of the method. 

Also, the targeted MRM approach has been developed for human plasma samples and its 

application for other samples require further method development. Furthermore, the untargeted 

approach can identify more lipid classes in addition to the 11 lipid classes included here. Despite 

these limitations, the streamlined nature of the targeted MRM data analysis makes this approach 

very attractive. The major advantage of the targeted MRM method is its capability of reporting 
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each lipid at its molecular species level, unlike the untargeted method, where the lipids were 

reported as the sum composition of their respective fatty acids. Additionally, each lipid in the 

MRM approach has been pre-verified with standards and fragmentation, resulting in higher 

confidence level for the identifications. Further development could include improvements in 

assays, such as use of the SelexION capabilities of the QTRAP 6500+ for identification and 

quantification of lipid species. Also, improvement in lipid annotations, validated identifications, 

and isotopic corrections are necessary. Data analysis in the targeted MRM approach is much 

simpler (albeit this is subjective), straight forward, and less time consuming. Overall, these 

considerations make the targeted MRM approach highly attractive for plasma lipid analysis.  

While an ideal study would include a direct comparison of both HILIC and RP separation 

methods on each MS analyzer used in this study, our focus was to determine general pros and cons 

of these two entire platforms including different separation methods and MS analyzers. Others 

have recently reported direct comparisons of NIST human plasma standard on HILIC and RP on 

the same Q Exactive Plus MS instrument. Those studies provide further evidence that HILIC and 

RP can yield similar quantification for several lipid classes such as PE, LPE, and SM, however, 

overestimation of lipid concentrations for LPCs may occur with HILIC.41  RP offers higher 

separation power than HILIC, and is the most commonly used method in untargeted lipidomics 

studies.42-44 The separation observed using HILIC, having many species in a lipid class co-elute 

from the column is particularly helpful for the analysis of phospholipids and sphingomyelins 37 

and is better for ensuring similar ionization and matrix effects occur when deuterated internal 

standards are used.41 

3.4. Conclusions 
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 Overall, both the untargeted Q Exactive-HF and targeted MRM SCIEX QTRAP 6500+ 

approaches identified similar numbers of lipids across 11 lipid classes from human plasma. The 

targeted MRM approach had the advantage of identifying lipids at the molecular level with 

confidence compared to the untargeted approach. Also, the targeted MRM approach had a much 

lower inter-day variability of lipid abundances and concentrations for the patient samples in 

comparison to the untargeted approach. Despite these positives, the targeted MRM approach is 

limited by the number of lipid transitions and lipid classes it can monitor to-date, as it focuses on 

1150 lipid transitions. The targeted MRM approach is specific for human plasma samples and 

would require further method development for other sample types. On the other hand, the 

untargeted approach identified more unique lipids and also lipids from other classes outside the 11 

lipid classes mentioned. This is likely due to the separation power of RP liquid chromatography. 

In conclusion, the targeted MRM assay developed by SCIEX on the QTRAP 6500+ seems 

promising for characterizing the lipidome of human plasma samples. 
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CHAPTER IV 

 

Multi-Lipidomics Approaches to Study Alzheimer’s Disease 

4.1. Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder that causes memory loss and 

decreases cognitive function to the point that it disrupts daily activity. AD is the sixth leading cause 

of death in the USA, with 5.8 million people suffering and the number is expected to triple by the 

year 2050.1-2 While deaths due to diseases such as heart disease, HIV, and breast cancer have 

decreased significantly in the last decade, deaths due to AD have increased by 123%.3 To date, 

there are no cures available for this disease and the estimated cost per year to treat and provide 

care-giver support stands at $277 billion.3  

It is well known that the primary hallmarks of AD are the formation of amyloid beta (Aβ) 

plaques and hyperphosphorylated tau, leading to the development of neurofibrillary tangles within 

the brain.4 The formation of Aβ peptides, either predominant Aβ40 or less abundant Aβ42, from 

the amyloid precursor protein (APP) by different secretases is influenced by lipids.5-7 Along with 

Aβ and hyperphosphorylated tau, the breakdown of the cellular membrane in the brain and altered 

lipid metabolism in both the brain and the periphery have been demonstrated in AD8 and are 

regarded as two of the primary characteristics of neurodegeneration.9-12 In addition, there has been 

numerous evidence—both ante and post mortem—of the blood brain barrier being compromised 

in AD patients13 which makes plasma well suited for biomarker discovery in AD.  

Lipidomics analyses have been used to study various diseases such as diabetes,14-15 

obesity,16 cystic fibrosis,17 and many types of cancers.18-22 Association between dysregulated lipid 

metabolism and different neurological diseases such as multiple sclerosis, epilepsy, schizophrenia 
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and Parkinson's disease have been well studied.23-27 Similar association has been established 

between faulty lipid metabolism and AD by lipidomics studies.8, 28-31 Among various 

phospholipids, the levels of phosphatidylethanolamines (PE), phosphatidylinositols (PI) and 

plasmalogens (PPE) were observed to decrease, while phosphatidylserine (PS) was significantly 

increased in AD compared to cognitively normal (CN) individuals.32-35 However, contradictory 

results have been reported for phosphatidylcholine (PC) levels with its content reported: 

unchanged in white and grey matter, increased in temporal, parietal, caudate and cerebellar cortex, 

and decreased in plasma.11, 33, 36-37 Despite the conflicting reports, PC deficiency has been 

considered as a potential biomarker for AD.  

Diacylglycerol (DAG) levels were increased in brain, plasma, and serum studies of mild 

cognitive impairment and AD, and the early increase in DAG levels has also been considered as 

an early biomarker for AD.32-33, 38 Several classes of sphingolipids are altered in AD39-42 and have 

shown the importance of the role cholesterol and its precursors play in AD both in brain and the 

periphery.6, 43 For example, plasma levels of the 24S-hydroxycholesterol and 27-

hydroxycholesterol have been observed to be reduced in AD.44 Several intermediates from the 

cholesterol biosynthesis pathway,45 such as lanosterol and desmosterol, are lower in AD sample 

types.27, 46-47 Many studies have adopted a targeted approach for a particular class of lipids in the 

context of AD.32, 35, 37-38 In contrast, there are fewer reports using untargeted lipidomics in aging48 

and in AD,33, 39, 49-50 especially for plasma.  It is recognized that focusing on broad lipid classes 

potentially may not suffice to understand prevailing disease mechanisms whereas individual lipid 

identifications is often more insightful.51 

Here we describe a multi-lipidomics platform, including both untargeted and targeted MS-

based approaches, to obtain a more comprehensive view of peripheral lipid metabolism in AD. For 
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this, we used plasma samples from a small cohort of clinically diagnosed AD and CN individuals 

and performed three independent MS-based lipidomics analyses. First, we performed an 

untargeted lipidomics study and an evaluation of Bligh-Dyer and Folch lipid extractions for their 

ability to identify lipids across all classes. Secondly, we performed multiple reaction monitoring 

(MRM) of 1250 of the most common plasma lipids using an MRM approach that is an alternative 

to the Lipidyzer platform.48 Advantages and disadvantages of these two approaches have been 

described in Chapter III. Lastly, we performed selected reaction monitoring (SRM) of cholesterol 

and its precursors. Here, the merits of this multi-lipidomics approach and the findings of plasma 

lipid and lipid classes that are altered in this AD cohort study will be discussed. 

4.2. Methods 

4.2.1. Plasma sample collection  

Plasma samples (N=5 AD, N=5 CN) were collected from non-Hispanic White participants 

from the University of Pittsburgh Alzheimer’s Disease Research Center (ADRC). Detailed 

characteristics of the individuals are given in Table 4.1. Approval for the participation of human 

subjects was obtained by the Institutional Review Boards of the University of Pittsburgh and 

Vanderbilt University. Samples were collected in 2000-2015. The average age of all the 

individuals at the time of draw was ~75 years and both male and female individuals were included 

in the study. The Mini-Mental State Examination was performed and disease individuals were 

clinically diagnosed with mild to moderate dementia at the time of draw according to the National 

Institute on Aging-Alzheimer’s Association and National Alzheimer’s Coordinating Center 

criteria.52-55  
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Methods applied in this study have been described in detail previously56 and also in 

Chapter III, section 3.2. These are described in brief in the following sections.  

 

Table 4.1. Characteristics of AD and cognitively normal participants. 
 ADb (N=5) Cognitively Normal (N=5) 

Agea 76 (69-93) 75 (70-93) 

Male 4 1 

Female 1 4 

Year of blood draw 2009 (2007-2011) 2009 (2000-2015) 

MMSEc, mean 19.2 (14-25) 26.8 (23-30) 

APOE4 alleles 3/3 and 3/4 2/3, 3/3 and 3/4 

BMId, kg/m2 28.51 28.99 

Diabetes, n 0 0* 

Hypertension, n 1 1* 

Hypercholesterolemia, n 3 2* 

Range given in parentheses; Abbreviations: a- average age with range, b- Alzheimer’s Disease 

(AD), c- Mini-mental state examination score (MMSE), d- Body mass index (BMI) 
* Information not available for N=2 patient samples 
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4.2.2. Lipid extraction 

 Lipids were extracted using a modified Bligh-Dyer extraction protocol.57 Plasma sample 

(30 μL) was transferred into a borosilicate glass tube followed by addition of 4 mL of solvent A 

(chloroform/methanol solution (1:1, v/v)) and 2 mL of 50 mM LiCl. The tubes were vortexed and 

centrifuged. The bottom layer was collected, followed by the addition of 2 mL of chloroform to 

re-extract any remaining lipids. The sample was vortexed and centrifuged again. The subsequent 

bottom layer was combined with the previously collected lipids and dried down. The whole 

procedure was repeated again.  

4.2.3 LC – MS/MS analyses 

 For the untargeted analysis, a reconstitution solution was prepared by adding internal 

standard solution (Splash® from Avanti) at a 1:5 ratio of standard to solvent A 

(chloroform:methanol solution (1:1, v/v)) . A quality control (QC) sample was prepared by adding 

an equal amount of each sample to generate a pooled mixture. LC-MS/MS analysis was performed 

on a Vanquish UHPLC system (Thermo Fisher Scientific, Bremen, Germany) coupled to an 

Orbitrap QExactive HF mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). Both 

positive and negative ionization ESI modes were used for the analysis. Samples were loaded (4 μL 

positive mode, 6 μL negative mode) onto a Hypersil Gold C18 3 μm, 2.1 mm × 100 mm column 

(Thermo Fisher Scientific, Waltham, MA). RPLC separation was performed at 250 μL/min. using 

solvent A (water with 0.1 % formic acid) and solvent B (isopropanol:acetonitrile:water at 60:36:4 

ratio with 0.1% formic acid). The gradient used was as followed: 40-70% B over 5 min, 70-100% 

B for 10 min, 100% B for 7 min, 90-20% B for 1 min, 20% B for 3 min, 40% B for 4 min. for a 

total gradient time of 30 min. Full MS scans were acquired over a mass range of m/z 100–1500 for 
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both positive and negative ionization modes. Detailed LC-MS parameters have been provided in 

Chapter III, section 3.2.2.2.  

 For the targeted MRM analysis, the extracted lipids were reconstituted using ethanol with 

the Avanti Splash® mix at a 1:10 ratio. LC-MS/MS analysis was performed using an ExionLC™ 

System, coupled to an SCIEX QTRAP 6500+ mass spectrometer. Separation was achieved on a 

Waters XBridge Amide column (4.6 × 150 mm, 3.5 µm). at a flow rate of 0.7 mL/min. with an 

injection volume of 5 µL. The mobile phases were as follows: solvent A (water:acetonitrile) at 

5:95 ratio with 1 mM ammonium acetate (adjusted to pH 8.2) and solvent B (water:acetonitrile) at 

50:50 ratio with 1 mM ammonium acetate, pH 8.2 with the following gradient: 0-6% B over 6 

min, 6-25% B for 4 min, 25-98% B for 1 min, 98-100% B for 2 min, 100% B for 5.6 min, 100-

0.1% B for 0.1 min, 0.1% B for 5.3 min. for a total gradient time of 24 min. The SCIEX QTRAP 

6500+ System was equipped with an IonDriveTM Turbo V source and was operated in low mass 

and MRM mode with ESI polarity switching. Detailed LC-MS parameters have been provided in 

Chapter III section, 3.2.3.1.  

4.2.4. Data analysis 

For the untargeted analysis, RAW files were analyzed using Progenesis QI (Non-linear 

Dynamics, Newcastle, UK) following a previously described process.58 Briefly, all the data files 

(both sample and QC) were imported and aligned against a full MS QC referenced for data 

processing and deconvolution. Peak picking was performed at a minimum threshold of 2.5 × 105 

ion intensity. Unique ions (retention time and m/z pairs) were grouped (a sum of the abundances 

of unique ions) using both adduct and isotope deconvolution to generate unique “features” 

(retention time and m/z pairs) representative of each compound. Data were normalized using 

Progenesis QI to all compounds and exported to EZ Info (Umetrics Software). Supervised (% of 
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mean) partial least square for discriminant analysis (PLS-DA) and principal component analysis 

(PCA) were used to visualize clustering of data groups (all features included) prior to ANOVA 

analysis. Significantly different lipids were considered those with a p value ≤ 0.05 and fold change 

of ≥ |1.5|. Detailed description has been provided in Chapter III section 3.2.2.3. 

In case of the targeted MRM method, data processing was performed using MultiQuant™ 

Software for post data acquisition and MarkerView™ Software for statistical analysis. 

4.2.5. Sterol extraction and analysis 

Cholesterol and four cholesterol precursors—7-dehydrocholesterol (7-DHC), 8-

dehydrocholesterol (8-DHC), desmosterol (Des) and lanosterol (Lan)—were analyzed with a 4-

phenyl-1,2,4-triazoline-3,5-dione (PTAD) derivatization method. Analysis of cholesterol and 7-

DHC, Des and Lan have been described previously.59-60 All sterol standards, natural and 

isotopically labeled, used in this study are available from Kerafast, Inc. (Boston, MA). To a 10 L 

aliquot of plasma sample, 0.3 nmol d7-cholesterol, 0.03 nmol d7-7-dehydrocholesterol, 0.03 nmol 

d7-8-dehydrocholesterol, 0.03 nmol 13C3-desmosterol, and 0.03 nmol 13C3-lanosterol was added. 

Folch solution (2:1 chloroform:methanol) was added (400 L), vortexed, and an equal volume of 

0.9% NaCl was added, vortexed, and centrifuged at max speed for 5 min. The organic layer was 

transferred to HPLC vials (Fisher Scientific 03377B) and dried under vacuum. PTAD solution in 

methanol (100 L of 2 mg/mL) was added to each vial and shaken for 30 min. at room temperature. 

Samples were then analyzed by LC-MS/MS. Briefly, derivatized sterol samples (10 µL injections) 

were analyzed on a UPLC C18 column (Acquity UPLC BEH C18, 1.7 um, 2.1 mm × 50 mm) with 

100% methanol (0.1% v/v acetic acid) mobile phase at a flow rate of 500 µL/min. and runtime of 

1.2 min. A Thermo TSQ Quantum Ultra tandem mass spectrometer (ThermoFisher) was used for 

MS detection, and data were acquired with a Finnigan Xcalibur software package. SRMs of the 
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PTAD derivatives were acquired in the positive ion mode using atmospheric pressure chemical 

ionization (APCI). MS parameters were optimized for the 7-DHC-PTAD adduct and were as 

follows: auxiliary nitrogen gas pressure at 55 psi and sheath gas pressure at 60 psi; discharge 

current at 22 µA and vaporizer temperature at 342 °C. Collision induced dissociation (CID) was 

optimized at 12 eV under 1.0 mTorr of argon. The monitored transitions included: 7-DHC 

560→365, d7-7-DHC 567→372, 8-DHC 558→363, d7-8-DHC 565→370, Des 592→365, Lan 

634→602,13C3-Des 595→368, and 13C3-Lan 637→605. Cholesterol and d7-cholesterol were 

monitored using pseudo-SRMs of 369→369 and 376→376, respectively, during the same 

analytical run. Sterol levels were analytically determined based on response to their respective 

isotopically labeled internal standard and normalized to plasma sample volume. Statistical analysis 

was performed using Microsoft Excel. 

4.3. Results  

4.3.1. Untargeted lipidomics study 

4.3.1.1. Developing a robust untargeted workflow 

For establishing a robust lipidomics workflow, we first determined the better extraction 

method between Bligh-Dyer61 and Folch.62 We evaluated the number of compounds identified, 

percent recovery of lipids using each method, and the reproducibility of the methods. We also used 

a commercial mix of lipids (Splash®, Avanti), which contained 14 deuterated lipids from various 

classes (Table D4.1), and tested for the optimal standard to sample volume ratio (1:5, 1:10, and 

1:20) for both extraction methods. This was necessary to check for signal suppression of plasma 

lipids and to detect standards with appropriate signal. Based on the number of compounds 

identified, the Bligh-Dyer extraction showed a higher total number of compounds compared to 
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Folch (i.e., 4336 and 3233 compounds, resulting in 1881 and 1757 lipid identifications 

respectively, (Figure 4.1). A similar number of lipid identifications were also observed in other 

lipidomic studies previously performed (Table D4.2). Folch and Bligh-Dyer methods were 

extremely reproducible (> 98%) with regards to detecting similar compounds across triplicate 

technical injections (Figure 4.1a).  We also optimized the internal standard injection amount and 

determined that a 1:5 ratio was optimal for all the lipid classes (Figure 4.1b). For given individual 

lipids, the Folch extraction resulted in slightly higher abundances; the Bligh-Dyer resulted in more 

lipid identifications and was selected for further analyses. A general overview of the multi-

lipidomics approach included untargeted and targeted workflows is shown in Figure 4.2. Lipid 

identifications for the untargeted approach were assigned based on the criteria described 

previously56 and also in Chapter III, section 3.3.1.1.  

4.3.1.2. Changes in lipids related to Alzheimer’s disease 

A small subset of plasma samples from AD and CN individuals were used in this study to 

monitor changes in lipids due to AD. We detected 3644 and 2258 compounds in positive and 

negative ionization ESI modes respectively, of which 1984 and 1305 were assigned an annotation 

(Table 4.2). Based on the classifications from the LipidMaps consortium63, our study observed 

lipids from seven classes (Figure 4.3). Of all the observed lipids, 54% came from the 

glycerophospholipid (GP) class in positive ionization mode. A majority of the GPs were from 

phosphatidylcholine and phosphatidylethanolamine subclasses. Among other lipid classes, fatty 

acyls (FA, 19%) and sterols (ST, 8%) were also observed in the study (Figure 4.3). Similar 

distributions across lipid classes were observed in both ionization modes, however, there were 
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Figure 4.1. Comparison between extraction methods. (a) Lipids were extracted using Bligh-

Dyer and Folch extraction methods using three workflow replicates each. The circles represent the 

number of lipid species detected for a given replicate injection with each method. (b) Histogram 

plots of peak areas for selected example lipids in the QC sample using different ratio of 

sample:internal standard. The internal standard signal injected alone at a volume similar to that of 

the 1:10 ratio is shown in red. 
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Figure 4.2. Experimental workflow. Lipids were extracted from 30 µL plasma and reconstituted 

using assay specific solvent with the addition of internal standards. Resulting lipids were analyzed 

using a Thermo Orbitrap QExactive HF, SCIEX QTRAP 6500+ and Thermo TSQ Quantum Ultra 

mass spectrometers and the resulting raw files were analyzed using software specific to each 

approach. 

 

 

 

 

 

Table 4.2. Number of lipids annotated in untargeted lipidomics analysis. 

Ionization mode Total Compounds* Assigned 

identifications 

Positive 3644 (105) 1984 (88) 

Negative 2258 (122) 1305 (105) 
*Numbers given in parenthesis are significantly different lipids with p ≤ 0.05 

and fold change ≥ │1.5│. 
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Figure 4.3. Lipid classes identified. Identified lipids were classified according to LipidMaps. 

Lipid identification was assigned to each lipid based on its score in Progenesis QI and 

corresponding theoretical fragmentation patterns and separated into classes. The pie chart shows 

representation of lipid classes for (a) positive and (b) negative ionization mode of the lipids 

identified and the bar chart shows percentages of different subclasses of glycerophospholipids. 

The legend provides definitions of abbreviations. 
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more sphingolipids (SP, 17%) and glycerolipids (GL, 19%) and less fatty acyls (FA, 9%) for 

negative ion mode. Higher abundances of glycerophosphoinositols (PI, 23%), 

glyerophosphoglycerols (PG, 12%), and glycerophosphates (GP, ~8%) were observed in negative 

compared to positive ionization modes. 

The supervised PLS-DA of AD and CN groups shown in Figures 4.4a & b demonstrate 

two distinct study groups in both ionization modes. We note that triplicate injections of each 

sample were analyzed on three different days. The data reflects this clustering of the groups and 

indicates slight variations or differences in inter-day analyses. During these analyses, we observed 

solvent evaporation, which may affect measurement of lipids in the sample and has an impact on 

inter-day variations in lipid signal. Over 200 lipid compounds were statistically significant (p value 

≤ 0.05 and fold change ≥ |1.5|) in AD vs CN sample types (Figure 4.4). Lipids that are lower in 

AD, are 47 and 25 in positive and negative ionization mode respectively, while lipids that were 

higher in AD, are 58 and 97 positive and negative ionization modes, respectively. In this study, 

the GP lipid class was observed to have the most lipids with statistically significant changes in AD 

for both positive and negative ionization modes. There were also significant changes to several of 

the sphingolipids (SP), fatty acids (FA), and sterols (ST).  Selected changes for individual lipids 

are provided in Figure 4.5.  

4.3.1.3. Changes in glycerophospholipids  

Among various GPs, PCs showed significant reduction in AD compared to CN in this 

study. For example, PC 32:1 (p=0.01), PC 32:2 (p=0.03), PC 34:4 (p=0.04) & PC 36:6 (p=0.002) 

were 1.8, 1.6, 1.5 and 2.2x lower in AD individuals (Figure 4.5a), respectively. On the other hand, 

plasmalogen and other PEs (e.g., PE 36:4 (p= 0.01), PE-P 36:2 (p=0.02), were increased in AD 

(Figure 4.5b), except for PE 26:1 (p=0.003, data not shown), which was reduced in AD. 
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Figure 4.4: Statistical analyses of the findings from the untargeted approach. PLS-DA of 

lipids across CN and AD groups and volcano plots of lipids from (a) positive and (b) negative 

ionization mode. Each sample was run in triplicate across three separate days, with the days 

denoted by circles on the PLS-DA plots. On the volcano plots, lipids that were increased in AD 

are in red and those decreased in blue. A p-value of 0.05 is denoted by the dashed line. 
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A majority of PSs such as PS 38:5 (p=0.01), and different lyso variants (LPC, LPE, LPS), were 

also increased in AD. For example, LPC 18:1 (p=0.04) and LPE 22:4 (p=0.03) both were increased 

in AD by 3x, while LysoSM 18:1 (p=0.001) showed an approximate ninefold increase in AD 

compared to CN (Figure 4.5c).   

4.3.1.4. Changes in sphingolipids and glycerolipids  

Among SPs, Cer and SM levels were significantly increased and decreased in AD, 

respectively. For example, Cer d34:1 (p=0.001) and LacCer 34:1 (p=0.01) both were 1.6x 

increased in AD, while SM 42:1 (p=0.009) and SM 42:2 (p=0.01) were 4 and 1.5x reduced in AD, 

respectively (Figure 4.5d). Among glycerolipids (GL), both monoacylglycerides (MG) and 

triacylglyceride (TG) were increased in AD.  

4.3.1.5. Changes in other lipid classes 

Many other lipid classes such as fatty acids (octadecanoids), bile acids, and STs (e.g. 

secosteroids) had contradictory results for individual lipids although the overall class was 

generally higher in AD (Figure 4.6). The annotations for the lipids that were statistically 

significant between the sample types is given in Table D4.3 along with the corresponding fold-

change values of the lipids in AD compared to CN. 

4.3.2. MRM targeted study 

4.3.2.1. Identification of lipids 

Here we used MRM to target a large set of lipids established previously with bovine heart 

extract on the SCIEX platform,64-65 which has been described in detail previously.56 (Chapter III, 

section 3.3.1.1.)  
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4.3.2.2. Changes in lipids related to AD 

In the targeted MRM study, we identified 1098 molecular species from the list of 1250 

lipids, which come from four separate lipid classes: GP, GL, SP and ST. Approximately, 47% and 

46% of the total lipids were from GL and GP classes, respectively. We identified 155 lipids that 

were statistically significant in AD compared to CN plasma samples, of which 75 were higher and 

80 were lower in AD, respectively (Table D4.4).  

4.3.2.3. Changes in glycerophospholipids  

PCs showed significant reduction in AD compared to CN, consistent with our untargeted 

analysis (Figure D4.2). There were mixed changes for other classes such as PE, PG, PS, and PI 

species when considering individual lipid species; however, as a lipid class (GP) these were overall 

increased in AD. Among the PE species, the plasmalogens were increased in AD, except for PE-

P 18:1_20:5. The PGs were also higher in AD, except for PG 18:2_22:5 (p=0.008). Out of 13 PIs 

that were significantly different in AD, nine were reduced in AD, while PI 14:0_18:1 (p=0.014), 

PI 14:0_18:2 (p=0.022), PI 16:0_14:0 (p=0.021) and PI 16:0_16:0 (p=0.05) were increased in AD 

by 7.5, 2.4, 1.9, and 1.6x, respectively. Similar trends were also visible for PS species. Among the 

lyso variants, LPC, LPE, LPG were increased in AD, except for LPG 16:1 (p=0.008) decreased by 

1.8x in AD. Lyso variants were generally increased in AD from the untargeted study, showing 

consistency between the approaches. 
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Figure 4.5: Box plots of selected lipids with assigned identifications. Changes from CN (black) 

and AD (red) in (a) phosphatidylcholine (PC), (b) phosphatidylethanolamine (PE), (c) lyso 

variants, and (d) sphingomyelins (SM) as noted in the figure headers. *p< 0.001, **p< 0.01, ***p< 

0.05  
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Figure 4.6. Total changes in lipid classes due to AD using both approaches. (a) Bar chart of 

summed intensities and (b) bar chart of summed total peak area of lipids in a given class across 

triplicate injections of N=5 per group for the untargeted and targeted MRM approach respectively. 

Zoomed regions are shown for lower intensity classes. CN are shown in black and AD are shown 

in red.  Error bars represent standard error of the mean. (Abbreviations: PC, phosphatidylcholine; 

PE, phosphatidylethanolamine; PS, phosphatidylserine; Cer, ceramide; PE-P, 

alkenylphosphatidylethanolamine (plasmalogen); LPC, lysophosphatidylcholine; PE-O, 

alkylphosphatidylethanolamine; LPE, lysophosphatidylethanolamine; LSM, lysosphingomyelin; 

MG, monoacylglycerol; TG, tricylglycerol; ST, sterol; SM, sphingomyelin; FA, fatty acyls; PC-

O, alkylphosphatidylcholine; PC-P. alkenylphosphatidylcholine; PR, prenol; PG, 

phosphatidylglycerol; PI, phosphatidylinositol; LPG, lysophosphatidylglycerol; DG, 

diacylglycerol; CE, cholesterol ester) 
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4.3.2.4. Changes in other lipid classes 

Among SPs, all the Cers were significantly increased in AD. GLs such as mono and 

diacylglycerides were higher in AD, while the TGs had mixed changes. Additionally, there were 

also three cholesterol esters, CE 20:2 (p=0.0002), CE 20:5 (p=0.021) and CE 22:5 (p=0.02), that 

were significantly decreased in AD. The identifications of the lipids that were significantly 

different in AD using the MRM assay are provided in Table D4.4.  

4.3.3. SRM cholesterol targeted study 

4.3.3.1. Changes in cholesterol and its precursors 

In order to further assess the cholesterol biosynthesis pathway, we applied a targeted SRM 

cholesterol assay on plasma samples. Details on the sterol assay are explained elsewhere.60 It 

should be noted that this assay is ~1 min. in total MS scan time. Here we used SRM to monitor 

cholesterol and its four precursors: 7-dehydrocholesterol (7-DHC), 8-dehydrocholesterol (8-

DHC), desmosterol (Des) and lanosterol (Lan). Sterols were analyzed and quantified using an 

isotopically labeled standard. The elution of the standard to the endogenous species was compared. 

Typical extracted ion chromatograms are shown in Figure 4.7. Pseudo-SRMs for cholesterol and 

d7-cholesterol were observed at tR 0.8 min. at m/z 369→369 and m/z 376→376, respectively 

(Figures 4.7a & 8b). Peaks for Des and 13C3-Des adducts were observed at tR 0.4 min. at m/z 592

→365 (Figure 4.7c) and tR 0.4 min. at m/z 595→368 (Figure 4.7d), respectively. Similar peaks 

for 7-DHC and Lan (Figures 4.7e-h) were observed.  

Plasma levels of cholesterol were significantly lower (p<0.04) in AD compared to CN 

samples even after considering characteristic ratios such as Des/Chol, Des/Lan, and Lan/Chol 

(Table 4.3). None of the other precursors were found to be significantly different in our study. 
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Table 4.3. Plasma levels of cholesterol and its precursors in plasma using SRM. 

 CN (Mean±SD) AD(Mean±SD) p value 

Cholesterol (ng/µL) 47.43 ± 11.28 31.25 ± 9.28 0.04 

7-DHC (pg/µL) 145.22 ± 76.55 151.44 ± 95.77 0.91 

8-DHC (pg/µL) 525.54 ± 407.03 597.09 ± 488.38 0.81 

Desmosterol (pg/µL) 221.33 ± 112.65 149.60 ± 40.33 0.22 

Lanosterol (pg/µL) 733.06 ± 1212.66 174.32 ± 34.29 0.33 

Desmosterol/Cholesterol 0.01 ± 0.00 0.01 ± 0.00 0.83 

Desmosterol/Lanosterol 0.80 ± 0.55 0.90 ± 0.38 0.74 

Lanosterol/Cholesterol 0.01 ± 0.02 0.01 ± 0.00 0.36 

 

 

 

 

 

Figure 4.7. UPLC chromatogram of cholesterol and its precursors using SRM targeted assay. 

Chemical structures, ion chromatograms, and SRM transitions of (a) cholesterol, (b) d7- 

cholesterol, (c) desmosterol, (d) 13C3- Des, (e) 7-DHC, (f) d7-7-DHC, (g) lanosterol, and (h) 13C3-

Lan species. 
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4.4 Discussion 

Several reports have linked lipid changes to AD pathology34, 39, 41, 66 especially for 

phospholipids.35, 67-68 Phospholipids are an integral part of the cell membrane. It has been reported 

that Aβ interacts with and binds phospholipids within the membrane and changes the lipid 

bilayer69, which leads to the disruption of the cell membrane. Multiple studies report  decreased 

levels of phosphatidylcholines,36, 67 phosphatidylethanolamines,70-71 phosphatidylinositols,68, 72 

and plasmalogens,73 whereas phosphatidylserines are increased74-75 in AD. In this study, our data 

show similar reduced levels of phosphatidylcholines and increased levels of phosphatidylserines. 

However, data from our study conflicts with current literature as the untargeted approach detected 

higher plasmalogen and phosphatidylethanolamine levels in AD. Herein, similar results were 

observed with the untargeted and targeted MRM analyses of our subset of plasma samples. In the 

MRM study, there was a mixed response in the changes to individual phosphatidylserine and 

phosphatidylinositol lipid species, where there were species that were both increased and 

decreased in AD. This highlights the power of using the untargeted and targeted MRM approaches: 

detailed insight to biochemical pathways is gained by monitoring individual lipids whereas such 

information may be lost in only monitoring global changes of a given lipid class.51  

Sphingolipids, specifically sphingomyelins and ceramides, are another important class 

associated with AD. Altered sphingolipid metabolism is related to neurodegenerative disease, 

especially AD.76-77 Sphingolipids are one of the major constituents of lipid rafts, and many studies 

have suggested that the amyloidogenic processing of the APP protein using BACE1 and γ secretase 

happens in the lipid raft region.6, 78 It has been found that increasing levels of ceramides promote 

the formation of Aβ by targeting the BACE1 secretase towards the lipid rafts.6 Recent studies using 

human samples have found elevated levels of ceramides and decreased levels of sphingomyelins 
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in AD.39-41 Our findings using the multi-lipidomics approaches, were consistent. For glycerolipid 

species, mono and diacylglycerol species were also observed with similar trends to previous 

reports 29, 32-33, however this cohort data showed mixed results for the triglyceride species.  

One of the most important lipid species implicated in AD is cholesterol and its metabolic 

precursors. Several studies have reported that desmosterol levels are low in AD brain,79 while the 

desmosterol:cholesterol ratio has been found to be low in AD plasma samples.47 Others report low 

levels of lanosterol in AD.27 In this study, only cholesterol was observed to be significantly altered 

in AD, and none of the other precursors showed any statistical changes. This could be due to the 

small sample size of the pilot study, potentially sex specific effects, or a true reflection of the 

dynamic changes in AD and CN individuals. To validate this, we performed another sterol analysis 

using a cohort of 40 samples (AD= 20, CN= 20; data not shown). Neither cholesterol or any of the 

other precursors were found to be significantly different in this study, indicating a need for much 

larger sample cohort sizes.  

The multi-lipidomic approach utilized here, using untargeted and targeted MRM and SRM 

assays, has allowed a comprehensive analysis of plasma lipid changes in AD. We do acknowledge 

that the low number of samples per study group (N=5) may be considered a limitation in this pilot 

study, but the goal of this work was to evaluate the comprehensive depth of lipid identification 

that could be obtained across three lipidomic methods in AD.  It should be noted that for most 

individual lipids and lipid classes the changes observed in AD were consistent across approaches, 

but there were cases in which they differed, especially for plasmalogens and triglycerides. 

Although there were some inconsistencies, mostly between the untargeted and targeted 

approaches, further development related to improvements in assays, data annotations, validated 

identifications, and additions to the global MRM list are necessary.  As for the targeted SRM 
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cholesterol approach, this was a highly selective and rapid assay. We identified and quantified four 

cholesterol precursors; we however were unable to find any significant changes in AD using a 

larger cohort of samples.  

4.5. Conclusions 

The multi-lipidomics approach described here determined significant changes in lipid 

profiles between CN and AD individuals for a small cohort of plasma samples.  Our lipid results 

were mostly consistent with previous literature reports indicating confidence in the comprehensive 

multi-lipidomics approach. This multi-lipidomics approach will be helpful for other plasma 

lipidomics studies and especially in early stages of study design devoted to discovery whereby 

comprehensive lipid coverage is desired. Focused strategies on lipids of interest may be more 

suitable using targeted MRM and SRM approaches for larger sample sizes. We applied a targeted 

MRM lipid assay to a larger cohort of samples (Chapter V) in order to reveal more robust evidence 

and deeper insight to complex lipid metabolism changes in AD. 
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CHAPTER V 

 

Targeted Lipidomics to Understand Health Disparities in Alzheimer’s Disease 

“This chapter is adopted from the recently submitted research articles: Khan, MJ, Desaire, Chung, NC, Lopez, OL, Kamboh, MI, Robinson, RAS, “Targeted 

lipidomics to understand health disparities in Alzheimer’s disease.” Under review 

5.1. Introduction 

 Alzheimer’s disease (AD) is one of the fastest growing diseases with currently 5.8 million 

Americans suffering from it.1 One aspect of this disease that is severely understudied is the 

disproportionate impact of AD among the African American/Black population. AD is the 4th 

leading cause of death among African American/Black adults.2 African American/Black 

individuals are also more likely to develop AD compared to their non-Hispanic White 

counterparts.1, 3-4 It is estimated that, by 2050, of the number of people age 65 and older, 40% will 

be African American/Black and Hispanics.5 This is extremely concerning as age is the largest risk 

factor for AD.1 The initial manifestation of AD is similar for both African American/Black and 

non-Hispanic White individuals 3,6, however mixed-dementia is more prominent among African 

American/Blacks.6 Disparities in disease incidence can be attributed to systemic racism 7, 

education 8-10, presence of comorbidities 11-12, healthcare access 11, and genetics.12 

 Recent studies have found evidence of differences among African American/Black and 

non-Hispanic White individuals when it comes to established AD biomarkers. For example, the 

concentration levels of tau and phosphorylated tau in cerebrospinal fluid (CSF) 13-14 and 

Interleukin-9 in plasma from African American/Black individuals were lower than in non-Hispanic 

Whites.15 Our laboratory recently identified race specific differentially-expressed proteins in AD 

in post mortem brain tissues from African American/Black and non-Hispanic White adults.16 

Whether or not these molecular differences are casual or the result of “weathering” 17-20 in 

combination with social, environmental, and genetic factors is not clear.  
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 Numerous studies have demonstrated a link between AD and altered lipid metabolism 

making lipids key in the pathogenesis of AD.12, 21-24 Advances in mass spectrometry (MS) 

instrumentation have further accelerated lipidomics applications in AD research.25-30 Reduction in 

the plasma levels of glycerophospholipids, especially phosphatidylcholines have been reported.31-

36 Several studies have proposed lipid biomarker panels for AD discovery including 

phosphatidylcholines.35-37 Other glycerophospholipids altered in AD plasma include 

phophatidylethanolamines, lysophophatidylcholines, lysophosphatidylethanolamines and 

plasmalogens.32-34, 38-41 Sphingolipids change in plasma from AD adults such that sphingomyelins 

decrease and ceramide levels increase in AD.42-45 Diacylglycerols and triacylglycerols also change 

in AD 42, 46-48 and together these studies support the role of lipids in AD and their potential use as 

diagnostic biomarkers. 

 Despite the large number of studies involving lipids in AD, very few have focused on or 

included samples from African American/Black adults. A recent study of the lipid panel proposed 

by Mapstone et al. 35 failed to replicate in a cohort of African American/Black adults.49 Similar 

lipidomics evidence of racial disparities in cancer and myocardial infarction 50-53, cardiometabolic 

diseases 54, as well lupus 55 have been reported. Distinct metabolite profiles were observed in 

African American/Black adults with bladder cancer.52 Together, these studies point to potential 

molecular differences in lipids that warrant further studies in the context of AD. 

 Here, we conducted a lipidomics study using plasma samples from cognitively normal 

(CN) and AD individuals of African American/Black and non-Hispanic White backgrounds. 

Plasma samples were analyzed using a multiple reaction monitoring (MRM) MS targeted 

lipidomics analysis of ~1150 lipids, recently evaluated in our laboratory.56 The goal was to 

determine if there were any differences in the plasma lipidome in African American/Black and 
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non-Hispanic White adults due to AD. Our findings signify the importance of inclusion in AD 

research, as our results demonstrate some differences in lipid expression in AD based on racial 

background. 

5.2. Methods 

5.2.1. Plasma demographics  

Plasma samples (N=113) from African American/Black and non-Hispanic White adults 

were obtained from the University of Pittsburgh Alzheimer’s Disease Research Center (ADRC). 

Detailed characteristics are given in Table 5.1. Approval for the participation of human subjects 

was obtained by the Institutional Review Boards of the University of Pittsburgh and Vanderbilt 

University. The disease individuals were clinically diagnosed with mild to moderate dementia at 

the time of draw according to the National Institute on Aging-Alzheimer’s Association and 

National Alzheimer’s Coordinating Center criteria.57-60 The AD diagnosis for all the participants 

was clinically confirmed and blood from the most recent draw was used for this analysis. 

 

 

Table 5.1. Demographics of participant cohort. 
 African American/Black non-Hispanic White p-

value*   
Cognitively 

normal 

Alzheimer’s 

disease 

Cognitively 

normal 

Alzheimer’s 

disease 

Sample size 26 30 28 29  

Sex (Male/Female) 8 / 18 8 / 22 9 /19 12 / 17 0.69 

Mean age at draw (SD) 72.5 (7.4) 74.5 (7.8) 71.1 (9.1) 76.2 (8.7) 0.58 

MMSEa Mean (SD) 27.1(2.4) 14.5(7.1) 27.8(4.5) 13.6(5.9) 1.94E-22 

Diabetesb 15 18 19 13 0.22 

Hypercholesterolemiab 15 18 19 13 0.65 

Hypertensionb 15 18 19 13 0.046 
a MMSE- Mini-Mental State Exam,  
b Number of individuals with the presence of comorbidity prior to or during blood draw. 
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5.2.2. Lipid extraction 

 Plasma samples were divided into four batches in such a way that there were no differences 

among the batches in terms of the number of samples from each study group, and also other 

variables such as age, sex and presence of comorbidities. Each sample batch was prepared 

simultaneously and ran sequentially. Plasma sample (25 μL) was transferred into a borosilicate 

glass tube followed by addition of internal standards (Splash® Lipidomix, Avanti Polar, Alabaster, 

AL) at 1:1 ratio of internal standard (IS):plasma. The complete list of IS and their corresponding 

concentrations have been described previously.56 Water, methanol and chloroform at a 1:2:0.9 

ratio was added to the glass tube. The mixture was vortexed and left to sit at room temperature for 

30 min. Next, water and chloroform were added at a 1:0.9 ratio and the sample tube was inverted 

several times. The tubes were centrifuged at 3500 rpm for 30 min. The bottom organic layer 

containing the lipids was carefully collected, and 2 mL of chloroform was added to the aqueous 

phase (upper layer) to re-extract the lipids. Tubes were vortexed and centrifuged again. The 

subsequent bottom layer was combined with the previously collected lipids and dried down using 

a nitrogen stream.  

5.2.3. LC – MS/MS analyses 

Extracted lipids were reconstituted using 9:1 methanol:chloroform solvent. The LC-

MS/MS method used in this study has been described previously.56 In short, the LC-MS/MS 

analysis was performed using an ExionLC™ System coupled to an Sciex QTRAP 6500+ mass 

spectrometer. The lipids were loaded onto a Waters XBridge Amide column (4.6 × 150 mm, 3.5 

µm) using a thermostated autosampler. The LC method details are as follows: column temperature 

= 35 ºC, flow rate of 0.7 mL/min, injection volume = 5 µL. The mobile phases were as follows: 



 134 

solvent A (water:acetonitrile) at a 5:95 ratio with 10 mM ammonium acetate (adjusted to pH 8.2) 

and solvent B (water:acetonitrile) at a 50:50 ratio with 10 mM ammonium acetate, pH 8.2. 

Chromatographic separation was achieved with the following gradient: 0-6% B over 6 min, 6-25% 

B for 4 min, 25-98% B for 1 min, 98-100% B for 2 min, 100% B for 5.6 min, 100-0.1% B for 0.1 

min, 0.1% B for 5.3 min for a total gradient time of 24 min. The source and gas settings were as 

follows: curtain gas (N2) pressure, 35 a.u.; CAD gas (N2) pressure, medium (positive mode) low 

(negative mode); ion spray voltage, 5.5 kV (positive mode) and −4.5 kV (negative mode); 

temperature, 550°C; ion source gas 1, 50 a.u.; ion source gas 2, 60 a.u. The compound settings 

were as follows: declustering potential, 60 V (positive mode) and −200 V (negative mode); 

entrance potential, 10 V (positive mode) and −10 V (negative mode); collision energy, 43 V 

(positive mode) and -50 V (negative mode); collision cell exit potential, 15 V (positive mode) and 

-12 V (negative mode). In order to check the quality of the data, a quality control sample containing 

an equimolar pool of all patient samples was injected every 12 hours. 

5.2.4. Data analysis 

Data processing was performed using SCIEX OS™ software for peak integration and post 

data acquisition analysis. For peak integration the following parameters were used: minimum peak 

width, 2 points; S/N integration threshold, 2; noise percentage, 80%; baseline subtract window, 2 

min; peak splitting, 2 points. Analyte concentrations were calculated as follows: 

Analyte concentration= [Analyte area] / [IS area] x [IS concentration] 

where IS denotes the internal standard for a given lipid class.56 Batch correction and partial least 

squares discriminant analysis (PLS-DA) were performed using Metaboanalyst.61 Differentially-

expressed lipids (p-value <0.05) were determined by student’s t-test’s. Multiple hypothesis testing 
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using Bonferroni correction 62 was applied to find differentially expressed lipids using an in-house 

R script.  

5.3. Results 

 Plasma samples (N=113) were obtained from the University of Pittsburgh Alzheimer’s 

Disease Research Center from African American/Black (AD=30, CN=26) and non-Hispanic 

White (AD=29, CN=28) adults. A detailed description of the sample demographics is provided in 

Table 5.1. The samples had no significant differences in terms of sex, age, and presence of 

comorbidities such as diabetes, hypertension, and hypercholesterolemia. The average age was 73.6 

± 8.5 years for the four study groups. The mean mini mental state examination (MMSE) scores for 

the AD groups were lower for the non-Hispanic White samples, compared to the African 

American/Black samples.  

 A general overview of the lipidomics workflow is given in Figure 5.1a. Internal standards 

were added to the crude plasma (25 µL) and lipid extraction was performed. Extracted lipids were 

analyzed using an MRM-based LC-MS/MS analysis, details of which have been described 

previously.63-64 In total, the MRM assay contains 1214 lipids from 19 classes specific for human 

plasma and internal standards (Figure 5.1b). In the first step, an unscheduled analysis was 

performed for each batch to determine the retention times of the lipid species, and also to eliminate 

any non-detectable lipids from the assay. The unscheduled assay of 1160 lipid species was reduced 

to 733 based on detection of lipids in all four sample batches. Next, we filtered the data to only 

include lipids from glycerophospholipid and sphingolipid (sphingomyelin only) classes (i.e. 355 

lipids). Finally, we removed lipids with an average %CV >20% across all the samples to generate 

a final robust set of 329 lipid species (Figure 5.1b) for further analysis. Distribution of the lipid 
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species based on their respective classes is given in Figure 5.1c. The majority of these lipids (56%) 

were phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species. The remaining lipid 

classes were phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), 

lysophosphatidycholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylglycerol 

(LPG), and sphingomyelins (SM) (Figure 5.1c).  

 Next, to eliminate any possible issues due to multiple batch sample preparation, we 

performed batch correction and assessed the variation of the data (Figure E5.1). The internal 

standards had lower %CV variation (3.5-15.2%) for LPG, PE, PG, PS and SM lipid classes, while 

PS had the highest variation across the four batches (Figure E5.1a). Overall, across all the lipid 

classes the average %CV was <20%, with LPE, LPG, PE, PG and SM species having the lowest 

%CV values (3.3-10.8%) among all the lipid classes (Figure E5.1b). These CV values 

demonstrate the robustness of this dataset and gave us a confident set of lipids with which to 

evaluate changes in AD. 

5.3.1. Differentially-expressed lipids in AD  

 We performed PLS-DA in order to determine if lipids could distinguish AD and CN sample 

groups (Figure 5.2a). The PLS-DA plot shows a clear separation between CN and AD study 

groups using the lipidomics profile. PLS-DA achieved positive scores for both Q2 and R2 scores 

(data not shown). Next, we compared lipid species concentrations of lipid classes in AD and CN 

groups (Figure E5.2). There was a significant decrease (p-value < 0.05) between AD and CN 

sample groups for the overall total lipid concentration, as well as for the PC and PS lipid classes. 

Other classes did not have significant changes in AD.  
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Figure 5.1. Experimental workflow and distribution of lipid classes in lipidomics experiment. 

a) General workflow for plasma lipidomics analysis; lipids are extracted from crude plasma 

samples and injected into an Exion HPLC system coupled to an Sciex QTRAP 6500+ mass 

spectrometer for MRM based LC-MS, MS/MS analysis. b) Distribution of lipids analyzed in 

different stages of method development and statistical analysis; c) Pie chart showing the 

distribution of lipid classes in final set of lipids (N=329). Abbreviations: PG- 

Phosphatidylglycerol, PI- Phosphatidylinositol PS- Phosphatidylserine, PE- 

Phosphatidylethanolamine, PC- Phosphatidylcholine, LPC- Lysophosphatidylcholine, LPE- 

Lysophosphatidylethanolamine, LPG- Lysophosphatidyglycerol, SM- Sphingomyelin) 
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Next, we determined differentially-expressed lipids based on their p- and fold-change 

values. Initially, 42 lipids were found to be differentially-expressed (p-value < 0.05 and fold-

change cut off 1.2) between AD and CN samples. Upon multiple-hypothesis testing, five lipids 

were differentially-expressed between AD and CN, all of which were decreased in AD samples 

(Figure 5.2b). Example box plots of differentially-expressed lipids in AD are shown in Figures 

5.2c-f, with their respective structures. These lipid species were PS 18:0_18:0, PS 18:0_20:0, PC 

16:0_22:6, PC 18:0_22:6 and PS 18:1_22:6 (Table 5.2). 

5.3.2. Differentially-expressed lipids in race-stratified AD groups 

 Lipid data was reanalyzed by PLS-DA, based on racial background stratification of CN 

and AD groups (Figure 5.3). There is a strong overlap between CN racial groups and yet a clear 

separation between CN and AD groups in general. One strikingly noticeable feature here was the 

separation between the African American/Black and non-Hispanic White AD groups. In contrast 

to the CN groups, none of the lipid features overlapped for any African American/Black and non-

Hispanic White AD adults. Next, we determined the differentially-expressed lipids between 

African American/Black CN & AD sample groups, where we started by performing no multiple-

hypothesis correction. We found 8 lipids differentially-expressed whereas, there were 33 lipids 

differentially-expressed for the non-Hispanic White samples in similar comparisons only (Figure 

5.4a). A detailed list of differentially-expressed lipids specific to both African American/Black 

and non-Hispanic White groups is given in Table E5.1. There were four differentially-expressed 

lipids in common between the African American/Black and non-Hispanic White groups and they 

each had similar changes in AD for both African American/Black and non-Hispanic White AD.  
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Figure 5.2. Summary of results from comparison between Alzheimer’s disease cognitively 

normal individuals. a) PLS-DA plot for the 329 lipids in CN (Red) and AD (Green) groups; b) 

Volcano plot of lipid ratios in AD/CN groups. Significant lipids after multiple hypothesis testing 

are shown in green and labeled accordingly; c-f) Example box plots of differentially-expressed 

lipids and their corresponding lipid structure.  
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Table 5.2. Differentially-expressed lipids after multiple hypothesis testing. 

Lipid p-value* Adjusted p-value** Fold change# 

PS 18:0_18:0 6.92E-33 2.28E-30 0.76 

PS 18:0_20:0 1.54E-5 1.69E-3 0.83 

PC 16:0_22:6 1.2E-4 9.87E-3 0.81 

PC 18:0_22:6 1.57E-4 0.01 0.81 

PS 18:1_22:6 5.44E-4 0.03 0.77 

#  Fold change cut off 1.2 

*  p-value < 0.05  

**p-value adjusted using Bonferroni correction 

 

 

 

Figure 5.3. PLS-DA plot for the 329 lipids obtained from lipidomics analysis. The plot is 

demonstrating the separation of the four study groups (African American/Black disease and 

cognitively normal, non-Hispanic White disease and cognitively normal) in the lipidomics 

analysis. (Abbreviations: AA CN (Purple)- African American/Black cognitively normal, NHW 

CN (Orange)- non-Hispanic White cognitively normal, AA AD (Yellow)- African 

American/Black Alzheimer’s disease, NHW CN (Blue)- non-Hispanic White Alzheimer’s disease) 
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Figure 5.4. a) Venn diagram of differentially-expressed lipids common between African 

American/Black and non-Hispanic White sample groups after race stratified comparisons; b & c) 

Volcano plot of lipid ratios in AD/CN groups for African American/Black adults only (N= 30 AD, 

N= 26 CN) and non-Hispanic White adults. Significant lipids after multiple hypothesis testing are 

shown in green and labeled accordingly; d & e) Box plots of lipids after race stratified comparisons  
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After consideration of adjusted p-values, for the African American/Black sample group, 

only PS 18:0_18:0 met the criteria for differentially-expressed lipids, while PS 18:0_18:0 and PG 

16:0_20:4 were differentially-expressed in the non-Hispanic White groups (Table 5.3 and Figure 

5.4b-e). These lipids were all reduced in AD.  

 

 

 

 

Table 5.3. Differentially-expressed lipids in race-stratified groups after multiple hypothesis 

testing. 

 African American/Black non-Hispanic White 

 p value* Adjusted p value** Fold Change# p value* Adjusted p value** Fold Change# 

PS 18:0_18:0 2.03E-18 6.68E-16 0.78 6.27E-19 2.06E-16 0.74 

PG 16:0_20:4 0.66 0.99 1.11 0.05 0.022 0.54 

#  Fold change cut off 1.2 

*  p-value < 0.05  

**p-value adjusted using Bonferroni correction 

 

 

 

 

 

 

 



 143 

5.4. Discussion 

 Here, we conducted an MRM-based targeted lipidomics study on plasma samples obtained 

from African American/Black and non-Hispanic White adults that were CN or clinically diagnosed 

with AD. Samples were carefully selected by matching for age, sex and AD diagnosis and as a 

result there were no significant differences amongst these variables.  

 We acquired MS data on 1160 lipid species from 19 different lipid classes, and reduced 

our analysis to 329 lipid species from glycerophospholipid and sphingolipid classes. These classes 

represent a majority of the reported changes in lipid species in AD such as PC, PE, PG, PS, PI, 

LPC, LPE, LPG and SM lipid classes, with 38% of the lipids constituting PE species.32-36, 38-40, 43-

44, 46, 65-67 PLS-DA of the lipid species revealed clear separation between CN and AD sample 

groups, indicating the ability of lipids to distinguish diagnosed cases of AD. For individual lipid 

classes, PC showed an overall decrease in AD, findings similar to previous studies.32-33, 35-36, 40, 44, 

65-67 In this study, we measured alteration in PS in AD, which has not been previously reported in 

plasma. After application of strict criteria, we identified 5 lipid species that were decreased in AD. 

Among them, PS 18:0_18:0 had the largest significance (adjusted p-value = 2.28E10-30, fold 

change = 0.76) and represents a novel finding. PC 16:0_22:6 and PC 18:0_22:6 were decreased in 

our study and supported by others.32, 36, 66 PS 18:0_20:0 and PC 18:1_22:6 also represent novel 

findings in this work. 

 Alteration of phospholipid metabolism in AD has been previously reported.29 PC accounts 

for 32.8% of human brain 68 and loss of PC content has been reported in early and late stages of 

AD 35-36, indicating its critical role in AD progression. Both PC 16:0_22:6 and PC 18:0_22:6 have 

been correlated to poorer memory performance in nondemented individuals.69-70 These two lipids 

along with PC 16:0_20:5 have been well evaluated as potential AD biomarkers in plasma.36 On 
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the other hand, involvement of PS in AD has not been as well studied compared to other lipid 

classes, despite it being a major component of plasma membrane.27 Reduced PS in the brain cortex 

from AD mouse model, and increase of PS in brain of AD patients have been reported.71-73  

 A critical design of this study was the inclusion of samples from both African 

American/Black and non-Hispanic White study groups. It is generally regarded that African 

American/Black adults have a much healthier lipid profile compared to their non-Hispanic White 

counterparts.74 Despite this, African American/Black adults have a higher incidence of AD and 

other lipid relevant diseases such as diabetes, cardiovascular disease, and hypertension. In this 

study, the lipidome of African American/Black and non-Hispanic White adults with AD were 

highly distinguishable whereas CN adults were more similar in both racial backgrounds. It is 

possible that the distinction is a result of disease heterogeneity, or other underlying factors unique 

in the racial groups or samples selected for this study. Comparatively lower triglyceride 

concentration in African American/Black adults has been well reported.74-75 Additionally, the 

inability to replicate the lipidomics results of a non-Hispanic White cohort 35, in a cohort of African 

American/Black participants 49, supports the notion that potential differences in lipidome profiles 

exist. Knowledge of such differences and environmental, genetic and physiological factors that 

may contribute to this disparity in lipids 74 is crucial for designing effective biomarker therapies 

and furthering disease understanding. 

In total, there were 37 lipids that were differentially-expressed between AD and CN 

samples in either African American/Black (N=56) or non-Hispanic White adults (N=57). Among 

these, four lipids were common between African American/Black and non-Hispanic White adults, 

including PC 18:0_22:6 reported by others.32, 36, 66 After multiple hypothesis testing, only PS 

18:0_18:0 and PG 16:0_20:4 met the criteria for being significant and only PS 18:0_18:0 was 
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common between two racial groups. Neither of these lipids has been previously reported to change 

in AD, and are novel findings. PS 18:0_18:0 has drastically different profiles in CN and AD 

samples for both racial groups, increasing its potential as a future biomarker in AD.  

 One of the major strengths of this study is the inclusion of plasma samples from African 

American/Black adults. General patient demographics were matched within groups. However, 

improvements could be made to examine social and other factors that may influence lipid profiles 

in future studies. Despite the challenges associated with obtaining plasma samples from African 

American/Black adults, our sample size was large enough to monitor changes with statistical 

confidence.  

 Another major strength of our study is that we were able to identify differentially-expressed 

lipids despite using strict criterion for significance. We performed batch correction to account for 

any variation in sample preparation and data acquisition. Also, we added internal standards specific 

to each of the lipid classes being studied and to endogenous lipids before extraction to account for 

any differences due to the extraction procedure. Despite this, further validation of these findings 

in a larger cohort is necessary to establish any of the lipids as potential biomarkers in AD. 

 A limitation of this study could be our focus on a subset of lipid classes that have been 

previously implicated in AD. Although, we added internal standards specific to each lipid class, 

there were instances such as plasmalogens, where other lipid species specific internal standards 

would have provided more accurate quantitative information. One possible solution to this could 

be the use of LipidyzerTM standards 76, that have over 50 labeled molecular species from 13 

different classes. Additionally, some of the lipid classes had higher %CV values and were filtered 

from our final data analysis steps. Recently, the targeted MRM method has been updated to include 
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more lipid classes and lipid species.77 Future studies could focus on ceramides, diacylglycerols, 

triacylglycerols and cholesterol esters, which were not the subject of this work.  

5.5. Conclusions 

 A limited number of ‘omics AD studies involving plasma samples from African 

American/Black adults exists. This study is one of the first to measure lipidome profiles to better 

understand change in racial and ethnic disparities in AD. We identified lipid species previously 

reported by other studies in mostly non-Hispanic White adults, but also identified novel lipid 

species changing in AD. Plasma lipidome profiles in individuals diagnosed with AD were overall 

distinct in African American/Black and non-Hispanic White adults. Few differentially-expressed 

lipids were in common between African American/Black and non-Hispanic White adults but those 

that were, had a consistent direction of change in AD. Overall, with the increase in incidence of 

AD among minority groups, this study provides evidence that there is an urgent need for more 

‘omics research that includes African American/Black and other underrepresented minority 

population. Additionally, it highlights the potential of lipids for AD biomarker discovery efforts. 
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CHAPTER VI 

 

Conclusions and Future Directions 

 

Here, ‘omics techniques were employed on human plasma samples to study Alzheimer’s 

disease, and discover potential biomarkers of Alzheimer’s disease (AD). In Chapter II, 

quantitative proteomics was used to discover biomarkers for AD with the use of multiplexing 

technologies. We also discovered proteins, that were specifically dysregulated in AD and tested 

their utility as potential biomarker candidates for disease diagnosis. Our analysis revealed that the 

protein panels achieved a higher accuracy as biomarkers for AD for non-Hispanic White sample 

groups, compared to African American/Black sample groups. The accuracy of the biomarkers 

improved considerably when coupled with clinical variables (age, sex, years of education and 

APOE status) for the non-Hispanic White samples only, which points to the need for inclusion of 

other variables that may be more relevant for the African American/Black sample group. 

Furthermore, these studies highlight the importance of diversity in the make-up of future sample 

cohorts in AD research. In order to study lipidomic changes in AD, a comparison between an 

untargeted approach and a novel targeted multiple reaction monitoring (MRM) based approach 

has been discussed in Chapter III. With its high reproducibility and molecular level identification 

of lipids, the targeted MRM based approach was demonstrated as a highly robust method, and an 

ideal alternative to the untargeted lipidomics approach for the analysis of human plasma. This 

method and an untargeted lipidomics approach were applied in a pilot study of AD in Chapter 

IV, along with a targeted selective reaction monitoring (SRM) approach. Overall, there was a 

decrease in phosphatidylcholine (PC) and sphingomyelins (SM), while ceramides and 

plasmalogens increased in AD samples compared to cognitively normal (CN) samples using the 
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untargeted and targeted MRM approaches. Also, there was a significant decrease in plasma 

cholesterol levels in AD, although that result did not replicate in a larger sample cohort which 

highlights the necessity for large sample sizes in these ‘omics studies. Overall, the results in 

Chapter IV had good overlap with previous studies in AD and demonstrated the benefits of 

lipidomics in the discovery stage of AD research. In order to study these changes in depth, a larger 

cohort of plasma samples were studied using a targeted MRM approach in Chapter V. The study 

was able to identify previously reported lipids (PC 16:0_22:6 and PC 18:0_22:6), as well novel 

lipid class (phosphatidylserine-PS) and species (PS 18:0_18:0, PS 18:0_20:0, PS 18:1_22:6) 

changing in AD plasma. Specifically, changes to phosphatidylserine species in plasma have not 

been reported previously. We examined the effect of race in determining differential expression of 

lipids in AD, and found lipids whose expression in AD was unique to non-Hispanic White or 

African American/Black racial groups. These findings were similar to protein results in Chapter 

II, and point to possible molecular differences between African American/Black and non-Hispanic 

White AD cases that can impact discovery efforts. This dissertation work points to the need for 

more inclusion in AD research, especially more studies focusing on African American/Black and 

other minority groups. 

6.2. Future Directions   

 Throughout this dissertation, omics’ approaches have been applied to plasma samples to 

identify differentially-expressed proteins (Chapter II) or lipids (Chapter V) in AD to be used as 

potential diagnostic biomarkers. Further analysis is required to replicate and validate these as 

potential biomarkers in AD. In the case of differentially-expressed proteins, we have proposed a 

panel of proteins having good accuracy in determining AD in non-Hispanic White individuals. 

Immunoassays targeting these proteins or even a targeted mass spectrometric analysis in a larger 
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cohort is necessary to validate these findings. Although our study demonstrated lower accuracy of 

these proteins in African American/Black AD individuals, one possible reason for this could have 

been related to the number of differentially-expressed proteins that we applied in the machine 

learning algorithm which was lower, compared to the number of proteins identified. This issue 

could be resolved by modifying the existing plasma proteomics workflow to include liquid 

chromatography (LC) based high pH fractionation instead of a solid-phase extraction fractionation 

approach. Recent publications have reported over 2000 proteins being identified from plasma 

proteins using a combination of immunodepletion, higher number of fractions in high pH 

fractionation step, and MS2 quantification.1 Improvements in protein coverage and high 

reproducibility of those measurements should result in higher numbers of statistically significant 

proteins that would change in AD and be fed into the machine learning models for determining 

diagnostic accuracy of biomarker panels. Additionally, analysis of larger sample sizes and samples 

from different cohorts in each group would help to determine how generalizable these results are 

in the groups. Another possible path could be the implementation of data independent acquisition 

in the mass spectrometry (MS) analysis, which has shown promise in plasma proteomics.2-3 As for 

biomarker panels specific to African American/Black adults, very little is known about how basic 

science contributes to or is impacted by racial disparities in AD amongst African American/Black 

adults. So, more such studies focusing on African American/Black and other underrepresented 

minority populations is necessary to better understand the heterogeneity of disease pathology. 

Also, one aspect that was clear from our study was that common variables 

(age/sex/education/APOE status) did not improve biomarker accuracy in samples from African 

American/Black adults in AD. So, inclusion of other variables such as genetic markers, quality of 



 158 

education, environmental stress, and measures of discrimination could be helpful in achieving a 

better biomarker panel for African American/Black adults and likely other groups as well.   

 We have reported in Chapter V a list of lipids that are differentially-expressed in AD from 

a targeted lipidomics analysis. One such lipid, PS 18:0_18:0 had drastically different profiles in 

AD and CN individuals. Also, we identified other phosphatidylserines as potential biomarkers in 

AD, yet little is known about the mechanisms of this lipid class in AD pathogenesis. Thus, a 

targeted study involving phosphatidylserines on a larger cohort sample could be beneficial, to 

understand the effects of this class in AD pathogenesis. To accomplish this, the same targeted 

lipidomics approach employed in this dissertation can be used to target the phosphatidylserine 

species in a larger sample cohort, with more class specific internal standards having varying fatty 

acid compositions being employed in order to achieve more accurate quantitative information from 

the analysis. Assessment of phosphatidylserine species, specifically PS 18:0_18:0 as a potential 

biomarker for AD can be accomplished by constructing ROC curves in order to calculate their 

diagnostic accuracies either as a single biomarker or as a combination of multiple species. In 

addition to this, pathway analysis could also reveal specific pathways the lipids of interest are 

involved in. Phosphatidylserines are known to reduce with age, affecting memory and cognition 

ability. There has been evidence of phosphatidylserines improving cognition, specifically 

providing phosphatidylserine supplements have shown to improve cognition in early stages of AD 

patients.4-6 The underlying mechanisms of these actions are still unknown and requires further 

research. Pathway analysis involving lipid is still improving, and all the known pathway mapping 

software’s only provide information at the class level.7  Further research is ongoing to include 

specific lipid species in pathway analysis.8 The targeted experiment proposed above can be used 
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as a pilot study to understand the involvement of phosphatidylserines in improving cognition, until 

more in-depth pathway analysis in available. 

Other lipid species of interest in this study are PC 16:0_22:6 and PC 18:0_22:6, which have 

been reported to be reduced in AD by others. As a result, these two lipid species have potential to 

be considered as AD biomarker candidates. Further follow up could involve validating the findings 

from this study on a larger sample cohort. At the same time, machine learning analyses similar to 

those reported in Chapter II, would demonstrate the effectiveness of the lipids as potential 

diagnostic biomarkers. Integration of the proteomics and lipidomics network analysis has revealed 

involvement of lipid and immunity pathways with AD in a recent study 9, similar analysis using 

the findings from the proteomics and lipidomics analysis can be employed to further study AD 

pathogenesis. 

Although the targeted MRM based lipidomics method is highly reproducible for measuring 

glycerophospholipids as demonstrated in Chapters IV & V, other classes had higher levels of 

variation in their measurements. This is due to the inadequate separation of the glycerolipids using 

amide based hydrophilic interaction liquid chromatography (HILIC). To eliminate this issue, Sciex 

recently updated the existing method, to include a new NH2 based column 10, which also separates 

the glycerolipids, as well as the remaining lipid classes with similar reproducibility as the previous 

method had achieved. This improved approach could be employed for future studies. 

  The work completed in this dissertation has been focused to plasma. AD is a 

neurodegenerative disease, therefore understanding the link between changes being monitored in 

plasma and brain would be ideal and further the search for potential AD biomarkers. For example, 

analysis of cerebrospinal fluid (CSF) and plasma samples from the same patients could be used to 

monitor possible changes due to AD. Recent studies on CSF have indicated possible racial 
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disparities in CSF biomarkers for AD, indicating the need to understand the complexities of AD 

in diverse groups.11-12 One possible study of direction could be a targeted experiment for proteins 

related to lipid metabolism. Previous studies have targeted lipid metabolism-related proteins in 

either CSF or plasma using targeted MS analysis.13-15 Most of these studies focused on primarily 

apolipoproteins, as these proteins have been consistently implicated in AD pathogenesis. One 

approach could be to target the entire lipid metabolism pathway in a longitudinal study, instead of 

focusing on a few proteins at a time, which would provide a more comprehensive picture of AD. 

With the increasing evidence of involvement of altered lipid metabolism in AD, this study would 

be able to reveal specific protein changes due to disease progression. Very few studies to date have 

evaluated the relationship between changes in CSF and plasma using the same cohort. Monitoring 

changes happening in both plasma and CSF, we would be able to link the changes together, and 

uncover more mechanisms about the pathogenesis that might help with the fight against AD.  

 Despite all the biomarker studies involving plasma, the biggest obstacle to date has been 

the lack in reproducibility across studies from different research groups, which is true for both 

proteins and lipids. Possible explanations to this could be the apparent differences in plasma itself, 

as well differences in conditions of blood draw and sample collection protocols. Also, standardized 

analytical protocols across research groups do not exist, and as we showed in Chapter II, slight 

differences to the digestion protocols could impact protein detection and replication. Also, the 

disease stages and presence of other dementias or comorbidities can have a major effect on the 

findings. As a result, more standardized protocols from the collection of blood in study cohorts to 

the MS detection methods are necessary for advancing future biomarker efforts in AD.  
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APPENDIX B 

SUPPLEMENTAL INFORMATION FOR CHAPTER II 

 

Table B2.1. List of differentially-expressed proteins in race-stratified groups (Set 2). 

Accession Protein name 
African American/Black non-Hispanic White 

Fold change# p-value* Fold change# p-value* 

Q01518 
Adenylyl cyclase-associated 

protein 1 
1.71 0.03 1.12 0.73 

P12814 Alpha actinin-1 1.78 4.87E-02 1.00 0.99 

P06733 Alpha-enolase 1.56 0.01 1.04 0.85 

P11226 Mannose-binding protein C 0.56 0.04 0.78 0.18 

P02775 Platelet basic protein 1.63 0.03 0.85 0.59 

P07737 Profilin 1 1.94 0.02 0.96 0.91 

P14618 Pyruvate kinase PKM 1.58 0.04 1.03 0.92 

Q9Y490 Talin 1 1.72 0.04 1.06 0.87 

P62328 Thymosin beta-4 2.27 0.03 1.00 0.99 

P06753 Tropomyosin alpha-3 chain, 1.79 0.02 0.93 0.71 

P67936 Tropomyosin alpha-4 chain 2.08 0.03 1.11 0.76 

P18206 Vinculin 1.67 0.04 1.08 0.82 

P62258 14-3-3 protein epsilon 1.07 0.63 1.55 0.04 

P14136 Glial fibrillary acidic protein 0.87 0.66 2.64 1.07E-03 

P00738 Haptoglobin 1.10 0.64 1.71 0.03 

# Fold change cut off 1.33; * p-value < 0.05    
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Figure B2.1. Correlation plot of average normalized TMT reporter ion intensities for all 

proteins between different batches for both Set 1 and Set 2. Both displayed positive correlation 

among all the batches. In case of Set 1, batch 3 and batch 6 showed the best correlation with an R2 

value of 0.9972, while batch 2 and batch 7 showed the lowest co-relation with an R2 value of 

0.9765. On average Set 1 had an R2 value of 0.99. On the other hand, for Set 2, batch 1 and batch 

2 had the best co-relation with an R2 value of 0.9973, and with an R2 value of 0.9902, batch 2 and 

batch 4 had the lowest co-relation. On average Set 1 had an R2 value of 0.9939.   
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APPENDIX C 

SUPPLEMENTAL INFORMATION FOR CHAPTER III 

 

Table C3.1. Internal standard lipids and their concentration. 

Name Formula Target Conc. (µg/mL) 

PC 15:0-18:1(d7) C41H73 D7 NO8 P 160 

PE 15:0-18:1(d7) C38H67D7NO8P 5 

PS 15:0-18:1(d7) C39H66 D7 NNaO10 P 5 

PG 15:0-18:1(d7) C39H67D7NaO10 P 30 

PI 15:0-18:1(d7) C42H75D7NO13P 10 

PA 15:0-18:1(d7) C36H61D7NaO8P 7 

LysoPC 18:1(d7) C26H45D7NO7P 25 

LysoPE 18:1(d7) C23H39D7NO7P 5 

LysoPI 17:1* C26H52NO12P 0.0005 

LysoPG 17:1* C23H44NaO9P 0.025 

LysoPS 17:1* C23H43NNaO9P 0.025 

Chol Ester18:1(d7) C45H71D7O2 350 

MG 18:1(d7) C21H33 D7O4 2 

DG 15:0-18:1(d7) C36H61D7O5 10 

TG 15:0-18:1(d7)-15:0 C51H89 D7O6 55 

SM 18:1(d9) C41H72 D9N2O6P 30 

Cholesterol (d7) C27H39OD7 100 

Ceramide C12* C30H59NO3 0.025 

C8 Dihydroceramide (d18:0/8:0) * C26H53NO3 0.025 

C12 Glucosyl(ß) Ceramide (d18:1/12:0) * C36H69NO8 0.025 

C12 Lactosyl(ß) Ceramide (d18:1/12:0) * C42H79NO13 0.025 

*MRM approach only 
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Table C3.2. Number of transitions monitored per lipid class*. 

Lipid class Ionization mode 
Number of transitions per 

class 

CE + 22 

Cer + 12 

DG + 51 

DCer + 12 

HexCer + 19 

LacCer + 19 

LPC - 17 

LPE - 17 

LPG - 17 

LPI - 17 

LPS - 17 

MG + 18 

PC - 80 

PE - 143 

PG - 79 

PI - 78 

PS - 79 

SM + 13 

TG + 446 

                    *Full assay is available at https://sciex.com/x115304 
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Table C3.3. Lipids identified in both approaches. 

Untargeted Targeted 

Lipid class Lipid ID [*] Lipid class Lipid ID 

CE CE 18:2 CE CE 16:0 

CE CE 20:4 CE CE 18:1 

CE CE 20:5 CE CE 18:2 

Cer Cer 34:1 CE CE 18:3 

Cer Cer 40:1 CE CE 20:0 

Cer Cer 41;1 CE CE 20:3 

Cer Cer 42:0 CE CE 20:4 

Cer Cer 42:1 CE CE 20:5 

Cer Cer 42:2 CE CE 22:1 

Cer Cer 43:1 CE CE 22:2 

Cer HexCer 32:2 CE CE 22:4 

Cer HexCer 34:1 CE CE 22:5 

Cer LacCer 32:1 CE CE 22:6 

Cer LacCer 34:1 Cer Cer d18:1_14:0 

Cer LacCer 42:2 Cer Cer d18:1_16:0 

DG DG 36:2 Cer Cer d18:1_18:0 

DG DG 36:4 Cer Cer d18:1_18:1 

DG DG 38:5 Cer Cer d18:1_20:0 

DG DG 38:7 Cer Cer d18:1_20:1 

DG DG 46:5 Cer Cer d18:1_22:0 

LPC LPC 14:0 Cer Cer d18:1_22:1 

LPC LPC 15:0 Cer Cer d18:1_24:0 

LPC LPC 16:0 Cer Cer d18:1_24:1 

LPC LPC 16:1 Cer Cer d18:1_26:1 

LPC LPC 17:0 Cer Cer d18:0_16:0 

LPC LPC 18:0 Cer Cer d18:0_18:0 

LPC LPC 18:1 Cer Cer d18:0_18:1 

LPC LPC 18:2 Cer Cer d18:0_20:0 

LPC LPC 18:3 Cer Cer d18:0_20:1 

LPC LPC 20:0 Cer Cer d18:0_22:0 

LPC LPC 20:1 Cer Cer d18:0_22:1 

LPC LPC 20:2 Cer Cer d18:0_24:0 

LPC LPC 20:3 Cer Cer d18:0_24:1 

LPC LPC 20:4 Cer Cer d18:0_26:0 

LPC LPC 20:5 Cer Cer d18:0_26:1 

LPC LPC 22:4 Cer HexCer d18:1_14:0 

LPC LPC 22:5 Cer HexCer d18:1_16:0 

LPC LPC O-18:0 Cer HexCer d18:0_18:0 

LPC LPC P-16:0 Cer HexCer d18:1_18:0 
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LPC LPC P-18:0 Cer HexCer d18:1_18:1 

LPC LPC P-18:1 Cer HexCer d18:0_20:0 

LPE LPE 16:0 Cer HexCer d18:1_20:0 

LPE LPE 16:1 Cer HexCer d18:1_20:1 

LPE LPE 18:0 Cer HexCer d18:1_22:0 

LPE LPE 18:1 Cer HexCer d18:1_22:1 

LPE LPE 18:2 Cer HexCer d18:0_24:0 

LPE LPE 20:0 Cer HexCer d18:1_24:0 

LPE LPE 20:1 Cer HexCer d18:0_24:1 

LPE LPE 20:2 Cer HexCer d18:1_24:1 

LPE LPE 20:3 Cer HexCer d18:0_26:0 

LPE LPE 20:4 Cer HexCer d18:1_26:0 

LPE LPE 20:5 Cer HexCer d18:0_26:1 

LPE LPE 22:0 Cer LacCer d18:1_14:0 

LPE LPE 22:1 Cer LacCer d18:1_16:0 

LPE LPE 22:4 Cer LacCer d18:0_18:0 

LPE LPE 22:5 Cer LacCer d18:1_18:0 

LPE LPE 22:6 Cer LacCer d18:1_22:1 

PC PC 28:0 [PC 14:0_14:0] Cer LacCer d18:1_24:0 

PC PC 29:1 Cer LacCer d18:0_24:1 

PC PC 30:0 [PC 16:0_14:0] Cer LacCer d18:1_24:1 

PC PC 30:1 [PC 16:1_14:0] Cer LacCer d18:1_26:0 

PC PC 31:0 Cer LacCer d18:0_26:1 

PC PC 31:1 DG DG 14:0_18:1 

PC PC 32:0 [PC 16:0_16:0] DG DG 16:0_16:1 

PC PC 32:1 [PC 16:0_16:1] DG DG 16:0_18:1 

PC PC 32:2 [PC 16:1_16:1] DG DG 16:1_18:0 

PC PC 33:1 DG DG 16:0_18:2 

PC PC 33:3 DG DG 16:1_18:1 

PC PC 33:4 DG DG 16:0_18:3 

PC PC 34:0 [PC 16:0_18:0] DG DG 16:1_18:2 

PC PC 34:1 [PC 16:0_18:1] DG DG 14:0_20:4 

PC PC 34:2 [PC 16:0_18:2] DG DG 16:1_18:3 

PC PC 34:3 [PC 16:1_18:2] DG DG 16:1_20:0 

PC PC 34:4 [PC 16:1_18:3] DG DG 18:0_18:1 

PC PC 34:5 [PC 14:0_20:5] DG DG 18:0_18:2 

PC PC 35:2 DG DG 18:1_18:1 

PC PC 35:3 DG DG 16:0_20:3 

PC PC 35:4 DG DG 16:1_20:2 

PC PC 35:6 DG DG 18:0_18:3 

PC PC 36:1 [PC 18:0_18:1] DG DG 18:1_18:2 
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PC PC 36:2 [PC 18:0_18:2] DG DG 16:1_22:6 

PC PC 36:3 [PC 18:0_18:3] DG DG 18:2_20:5 

PC PC 36:4 [PC 18:2_18:2] DG DG 18:0_22:6 

PC PC 36:5 [PC 16:0_20:5] DG DG 18:1_22:5 

PC PC 36:6 [PC 16:1_20:5] DG DG 18:2_22:4 

PC PC 37:7 LPC LPC 14:0 

PC PC 38:1 [PC 18:1_20:0] LPC LPC 16:0 

PC PC 38:3 [PC 18:1_20:2] LPC LPC 16:1 

PC PC 38:4 [PC 18:0_20:4] LPC LPC 18:0 

PC PC 38:5 [PC 18:0_20:5] LPC LPC 18:1 

PC PC 38:6 [PC 18:1_20:5] LPC LPC 18:2 

PC PC 38:7 [PC 18:2_20:5] LPC LPC 18:3 

PC PC 40:10 [PC 20:5_20:5] LPC LPC 20:0 

PC PC 40:4 [PC 20:0_20:4] LPC LPC 20:1 

PC PC 40:5 [PC 20:0_20:5] LPC LPC 20:2 

PC PC 40:6 [PC 18:0_22:6] LPC LPC 20:3 

PC PC 40:7 [PC 18:1_22:6] LPC LPC 20:4 

PC PC 40:8 [PC 18:2_22:6] LPC LPC 20:5 

PC PC 42:10 LPC LPC 22:4 

PC PC 42:7 LPC LPC 22:5 

PC PC 42:8 LPC LPC 22:6 

PC PC O-32:0 [PC O-16:0_16:0] LPE LPE 14:0 

PC PC O-32:1 [PC O-16:0_16:1] LPE LPE 16:0 

PC PC O-34:1 LPE LPE 16:1 

PC PC O-34:2 LPE LPE 18:0 

PC PC O-34:3 LPE LPE 18:1 

PC PC O-35:4 LPE LPE 18:2 

PC PC O-36:1 LPE LPE 18:3 

PC PC O-36:3 LPE LPE 20:0 

PC PC O-36:4 [PC O-16:0_20:4] LPE LPE 20:1 

PC PC O-36:5 LPE LPE 20:2 

PC PC O-38:4 LPE LPE 20:3 

PC PC O-38:5 LPE LPE 20:4 

PC PC O-42:1 [PC O-20:0_22:1] LPE LPE 20:5 

PC PC O-44:3 LPE LPE 22:4 

PC PC P-32:0 [PC P-16:0_16:0] LPE LPE 22:5 

PC PC P-34:0 [PC P-18:0_16:0] LPE LPE 22:6 

PC PC P-34:2 [PC P-16:0_18:2] PC PC 14:0_14:0 

PC PC P-36:0 [PC P-18:0_18:0] PC PC 16:0_14:0 

PC PC P-36:2 [PC P-18:0_18:2] PC PC 16:0_16:0 

PC PC P-36:3 [PC P-16:0_20:3] PC PC 18:0_14:0 
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PC PC P-36:4 [PC P-16:0_20:4] PC PC 14:0_18:2 

PC PC P-38:3 [PC P-18:0_20:3] PC PC 18:0_16:1 

PC PC P-38:4 [PC P-18:4_20:0] PC PC 14:0_20:2 

PC PC P-40:6 PC PC 16:0_18:2 

PC PC P-42:0 [PC P-20:0_22:0] PC PC 16:1_18:1 

PC PC P-44:4 [PC P-20:2_24:4] PC PC 18:1_16:1 

PE PE 32:1 [PE 16:0_16:0] PC PC 14:0_20:3 

PE PE 34:0 [PE 16:0_18:0] PC PC 16:0_18:3 

PE PE 34:1 [PE 16:0_18:1] PC PC 16:1_18:2 

PE PE 34:2 [PE 16:0_18:2] PC PC 18:2_16:1 

PE PE 35:0 PC PC 14:0_20:4 

PE PE 36:0 [PE 18:0_18:0] PC PC 18:0_18:0 

PE PE 36:1 [PE 18:0_18:1] PC PC 16:0_20:1 

PE PE 36:2 [PE 18:0_18:2] PC PC 18:0_18:1 

PE PE 36:3 [PE 18:1_18:2] PC PC 20:0_16:1 

PE PE 36:4 [PE 18:1_18:3] PC PC 16:0_20:2 

PE PE 36:5 [PE 18:2_18:3] PC PC 18:0_18:2 

PE PE 38:1 [PE 18:1_20:0] PC PC 18:1_18:1 

PE PE 38:3 [PE 18:2_20:1] PC PC 16:0_20:3 

PE PE 38:4 [PE 18:1_20:3] PC PC 18:0_18:3 

PE PE 38:5 [PE 16:0_22:5] PC PC 18:1_18:2 

PE PE 38:6 [PE 18:0_20:6] PC PC 14:0_22:4 

PE PE 38:7 [PE 18:2_20:5] PC PC 16:0_20:4 

PE PE 39:2 PC PC 18:1_18:3 

PE PE 40:4 [PE 18:0_22:4] PC PC 18:2_18:2 

PE PE 40:5 [PE 18:0_22:5] PC PC 16:0_20:5 

PE PE 40:6 [PE 18:0_22:6] PC PC 18:2_18:3 

PE PE 40:7 [PE 18:1_22:6] PC PC 14:0_22:6 

PE PE 41:2 PC PC 18:0_20:0 

PE PE 41:3 PC PC 18:0_20:1 

PE PE 41:5 PC PC 20:0_18:1 

PE PE 42:9 PC PC 18:0_20:2 

PE PE O-18:1 [PE O-18:1_0:0] PC PC 18:1_20:1 

PE PE O-32:0 [PE O-16:0_16:0] PC PC 18:0_20:3 

PE PE O-34:0 [PE O-18:0_16:0] PC PC 18:1_20:2 

PE PE O-34:1 [PE O-18:1_16:0] PC PC 18:2_20:1 

PE PE O-34:2 [PE O-18:2_16:0] PC PC 16:0_22:4 

PE PE O-34:3 [PE O-18:3_16:0] PC PC 18:0_20:4 

PE PE O-36:5 PC PC 18:1_20:3 

PE PE O-38:0 [PE O-16:0_22:0] PC PC 18:2_20:2 

PE PE O-38:4 [PE O-18:0_20:4] PC PC 16:0_22:5 
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PE PE O-38:5 [PE O-18:1_20:4] PC PC 18:0_20:5 

PE PE O-38:6 [PE O-16:0_22:6] PC PC 18:1_20:4 

PE PE O-40:6 [PE O-18:0_22:6] PC PC 18:2_20:3 

PE PE P-16:1 [PE P-16:1_0:0] PC PC 16:0_22:6 

PE PE P-18:0 [PE P-18:0_0:0] PC PC 18:1_20:5 

PE PE P-22:0 [PE P-22:0_0:0] PC PC 18:2_20:5 

PE PE P-22:4 [PE P-22:4_0:0] PC PC 18:0_22:4 

PE PE P-24:0 [PE P-22:0_2:0] PC PC 20:0_20:4 

PE PE P-34:1 [PE P-18:1_16:0] PC PC 18:0_22:6 

PE PE P-34:2 [PE P-16:0_18:2] PC PC 18:1_22:5 

PE PE P-36:2 [PE P-18:0_18:2] PC PC 18:1_22:6 

PE PE P-36:4 [PE P-16:0_20:4] PE PE 14:0_16:1 

PE PE P-36:5 [PE P-16:0_20:5] PE PE 16:0_16:0 

PE PE P-38:1 [PE P-18:1_20:0] PE PE 18:0_14:0 

PE PE P-38:3 [PE P-18:0_20:3] PE PE 14:0_18:1 

PE PE P-38:4 [PE P-18:0_20:4] PE PE 16:0_16:1 

PE PE P-38:5 [PE P-18:1_20:4] PE PE 14:0_18:2 

PE PE P-38:6 [PE P-18:1_20:5] PE PE 18:1_16:1 

PE PE P-38:7 [PE P-18:1_20:6] PE PE 14:0_20:3 

PE PE P-40:4 [PE P-18:0_22:4] PE PE 16:0_18:3 

PE PE P-40:5 [PE P-18:0_22:5] PE PE 18:2_16:1 

PE PE P-40:6 [PE P-18:1_22:5] PE PE 14:0_20:4 

PE PE P-40:7 [PE P-18:1_22:6] PE PE 18:0_18:0 

PI PI 34:1 [PI 16:0_18:1] PE PE 16:0_20:1 

PI PI 34:2 [PI 16:0_18:2] PE PE 18:0_18:1 

PI PI 36:1 [PI 18:0_18:1] PE PE 16:0_20:2 

PI PI 36:2 [PI 18:1_18:1] PE PE 18:0_18:2 

PI PI 36:3 [PI 18:1_18:2] PE PE 18:1_18:1 

PI PI 36:4 [PI 16:0_20:4] PE PE 16:0_20:3 

PI PI 38:3 [PI 18:0_20:3] PE PE 18:0_18:3 

PI PI 38:4 [PI 16:0_20:4] PE PE 18:1_18:2 

PI PI 38:5 [PI 18:1_20:4] PE PE 14:0_22:4 

PI PI 40:3 PE PE 16:0_20:4 

PI PI 40:6 [PI 18:0_22:6] PE PE 18:1_18:3 

PI PI 42:6 PE PE 18:2_18:2 

PS PS 18:1 PE PE 14:0_22:5 

PS PS 28:0 PE PE 16:0_20:5 

PS PS 28:1 PE PE 18:2_18:3 

PS PS 30:1 PE PE 18:0_20:1 

PS PS 30:3 PE PE 18:0_20:2 

PS PS 34:1 PE PE 18:1_20:1 
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PS PS 36:0 PE PE 18:0_20:3 

PS PS 36:1 PE PE 18:1_20:2 

PS PS 36:3 PE PE 18:2_20:1 

PS PS 38:4 PE PE 16:0_22:4 

PS PS 38:5 PE PE 18:0_20:4 

PS PS 40:3 PE PE 18:1_20:3 

PS PS 40:4 PE PE 18:2_20:2 

PS PS 40:5 PE PE 16:0_22:5 

PS PS 44:7 PE PE 18:0_20:5 

PS PS O-36:4 PE PE 18:1_20:4 

PS PS O-38:6 PE PE 18:2_20:3 

PS PS P-36:3 PE PE 16:0_22:6 

PS PS P-38:5 PE PE 18:1_20:5 

SM SM 30:1 PE PE 18:2_20:4 

SM SM 31:1 PE PE 18:0_22:4 

SM SM 32:0 PE PE 18:0_22:5 

SM SM 32:1 PE PE 18:1_22:4 

SM SM 32:2 PE PE 18:0_22:6 

SM SM 33:1 PE PE 18:1_22:5 

SM SM 33:2 PE PE 18:2_22:4 

SM SM 34:0 PE PE 18:1_22:6 

SM SM 34:1 PE PE 18:2_22:5 

SM SM 34:2 PE PE O-16:0_16:0 

SM SM 35:1 PE PE O-16:0_16:1 

SM SM 35:2 PE PE O-18:0_16:0 

SM SM 36:0 PE PE O-16:0_18:2 

SM SM 36:1 PE PE O-16:0_20:1 

SM SM 36:2 PE PE O-18:0_18:1 

SM SM 38:1 PE PE O-16:0_20:2 

SM SM 38:2 PE PE O-18:0_18:2 

SM SM 39:1 PE PE O-16:0_20:3 

SM SM 40:1 PE PE O-18:0_18:3 

SM SM 40:2 PE PE O-16:0_20:4 

SM SM 41:1 PE PE O-16:0_20:5 

SM SM 41:2 PE PE O-18:0_20:1 

SM SM 42:1 PE PE O-18:0_20:2 

SM SM 42:2 PE PE O-18:0_20:3 

SM SM 42:3 PE PE O-16:0_22:4 

TG TG 42:0 PE PE O-18:0_20:4 

TG TG 44:1 PE PE O-16:0_22:5 

TG TG 46:1 [TG 16:0_14:0_16:1] PE PE O-18:0_20:5 
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TG TG 46:2 PE PE O-16:0_22:6 

TG TG 48:0 [TG 16:0_16:0_16:0] PE PE O-18:0_22:4 

TG TG 48:1 [TG 16:0_14:0_18:1] PE PE O-18:0_22:5 

TG TG 48:2 [TG 18:2_14:0_16:0] PE PE O-18:0_22:6 

TG TG 48:3 [TG 14:0_16:1_18:2] PE PE P-16:0_18:0 

TG TG 49:1 [TG 15:0_18:1_16:0] PE PE P-18:0_16:0 

TG TG 50:0 [TG 16:0_16:0_18:0] PE PE P-16:0_18:1 

TG TG 50:1 [TG 16:0_16:0_18:1] PE PE P-18:0_16:1 

TG TG 50:2 [TG 16:1_16:0_18:1] PE PE P-18:1_16:0 

TG TG 50:3 [TG 16:0_18:2_16:1] PE PE P-16:0_18:2 

TG TG 50:4 [TG 16:0_14:0_20:4] PE PE P-16:1_18:1 

TG TG 50:5 [TG 18:2_14:0_18:3] PE PE P-18:1_16:1 

TG TG 50:6 PE PE P-16:0_18:3 

TG TG 50:7 PE PE P-18:0_18:0 

TG TG 51:1 [TG 15:0_18:1_18:0] PE PE P-16:0_20:1 

TG TG 51:2 [TG 15:0_18:1_18:1] PE PE P-18:0_18:1 

TG TG 51:3 [TG 15:0_18:1_18:2] PE PE P-18:1_18:0 

TG TG 51:4 [TG 15:0_18:1_18:3] PE PE P-16:0_20:2 

TG TG 52:1 [TG 16:0_18:0_18:1] PE PE P-18:0_18:2 

TG TG 52:2 [TG 16:0_18:1_18:1] PE PE P-18:1_18:1 

TG TG 52:3 [TG 18:0_16:0_18:3] PE PE P-16:0_20:3 

TG TG 52:4 [TG 18:1_16:0_18:3] PE PE P-18:0_18:3 

TG TG 52:5 [TG 16:0_18:2_18:2] PE PE P-18:1_18:2 

TG TG 52:6 PE PE P-16:0_20:4 

TG TG 52:8 PE PE P-18:1_18:3 

TG TG 53:2 [TG 17:0_18:1_18:1] PE PE P-18:2_18:2 

TG TG 53:3 [TG 17:0_18:1_18:1] PE PE P-16:0_20:5 

TG TG 53:6 PE PE P-16:0_22:4 

TG TG 54:1 [TG 18:0_18:0_18:1] PE PE P-18:0_20:4 

TG TG 54:2 [TG 18:0_18:1_18:1] PE PE P-18:1_20:3 

TG TG 54:3 [TG 18:0_18:1_18:2] PE PE P-18:2_20:4 

TG TG 54:4 [TG 18:1_18:1_18:2] PE PE P-16:0_22:5 

TG TG 54:5 [TG 18:1_16:0_20:4] PE PE P-18:0_20:5 

TG TG 54:6 [TG 18:0_16:0_20:5] PE PE P-18:1_20:4 

TG TG 54:7 [TG 16:0_18:2_20:5] PE PE P-16:0_22:6 

TG TG 54:8 PE PE P-18:1_20:5 

TG TG 54:9 PI PI 16:0_16:1 

TG TG 55:5 [TG 17:0_18:1_20:4] PI PI 16:0_18:0 

TG TG 55:6 [TG 17:0_18:1_20:5] PI PI 16:0_18:1 

TG TG 56:10 PI PI 18:0_16:1 

TG TG 56:3 [TG 18:0_18:2_20:1] PI PI 16:0_18:2 
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TG TG 56:4 [TG 18:0_18:1_20:3] PI PI 18:1_16:1 

TG TG 56:5 [TG 18:0_18:1_20:4] PI PI 16:0_18:3 

TG TG 56:6 [TG 16:0_18:1_22:5] PI PI 18:2_16:1 

TG TG 56:7 [TG 18:1_16:0_22:5] PI PI 16:0_20:3 

TG TG 56:8 [TG 18:2_18:2_20:4] PI PI 18:0_18:3 

TG TG 58:10 PI PI 18:1_18:2 

TG TG 58:11 PI PI 16:0_20:4 

TG TG 58:6 PI PI 18:1_18:3 

TG TG 58:8 PI PI 18:2_18:2 

TG TG 58:9 PI PI 16:0_22:4 

  PI PI 18:0_20:4 

  PI PI 18:1_20:3 

  PI PI 16:0_22:5 

  PI PI 18:1_20:4 

  PI PI 18:0_22:5 

  PI PI 18:0_22:6 

  PS PS 16:0_16:0 

  PS PS 18:0_14:0 

  PS PS 14:0_18:1 

  PS PS 16:0_16:1 

  PS PS 14:0_18:2 

  PS PS 16:0_18:1 

  PS PS 18:0_16:1 

  PS PS 16:0_18:2 

  PS PS 18:1_16:1 

  PS PS 14:0_20:3 

  PS PS 18:2_16:1 

  PS PS 14:0_20:4 

  PS PS 14:0_20:5 

  PS PS 18:0_18:0 

  PS PS 18:0_18:1 

  PS PS 20:0_16:1 

  PS PS 16:0_20:2 

  PS PS 18:0_18:2 

  PS PS 18:1_18:1 

  PS PS 16:0_20:3 

  PS PS 18:1_18:2 

  PS PS 14:0_22:4 

  PS PS 16:0_20:4 

  PS PS 18:1_18:3 

  PS PS 18:2_18:2 
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  PS PS 14:0_22:5 

  PS PS 18:0_20:0 

  PS PS 18:0_20:1 

  PS PS 20:0_18:1 

  PS PS 20:0_18:2 

  PS PS 18:0_20:3 

  PS PS 18:1_20:2 

  PS PS 16:0_22:4 

  PS PS 18:0_20:4 

  PS PS 18:1_20:3 

  PS PS 16:0_22:5 

  PS PS 18:0_20:5 

  PS PS 18:1_20:4 

  PS PS 18:2_20:3 

  PS PS 16:0_22:6 

  PS PS 18:1_20:5 

  PS PS 18:2_20:4 

  PS PS 18:2_20:5 

  PS PS 20:0_20:1 

  PS PS 20:0_20:2 

  PS PS 20:0_20:3 

  PS PS 20:0_20:4 

  PS PS 18:0_22:5 

  PS PS 18:1_22:4 

  PS PS 18:0_22:6 

  PS PS 18:2_22:4 

  PS PS 18:1_22:6 

  PS PS 18:2_22:5 

  PS PS 18:2_22:6 

  PS PS 20:0_22:5 

  PS PS 20:0_22:6 

  SM SM 32:1 

  SM SM 34:1 

  SM SM 36:1 

  SM SM 36:2 

  SM SM 38:1 

  SM SM 38:2 

  SM SM 40:1 

  SM SM 40:2 

  SM SM 42:1 

  SM SM 42:2 
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  SM SM 44:1 

  SM SM 44:2 

  TG TG 40:0_FA14:0+NH4 

  TG TG 40:0_FA16:0+NH4 

  TG TG 42:0_FA16:0+NH4 

  TG TG 42:1_FA14:0+NH4 

  TG TG 42:1_FA18:1+NH4 

  TG TG 44:0_FA14:0+NH4 

  TG TG 44:0_FA16:0+NH4 

  TG TG 44:1_FA14:0+NH4 

  TG TG 44:1_FA16:0+NH4 

  TG TG 44:1_FA18:1+NH4 

  TG TG 44:2_FA16:0+NH4 

  TG TG 44:2_FA18:2+NH4 

  TG TG 46:0_FA16:0+NH4 

  TG TG 46:0_FA18:0+NH4 

  TG TG 46:1_FA14:0+NH4 

  TG TG 46:1_FA16:0+NH4 

  TG TG 46:1_FA16:1+NH4 

  TG TG 46:1_FA18:1+NH4 

  TG TG 46:2_FA14:0+NH4 

  TG TG 46:2_FA16:0+NH4 

  TG TG 46:2_FA18:1+NH4 

  TG TG 46:2_FA18:2+NH4 

  TG TG 46:3_FA18:1+NH4 

  TG TG 46:3_FA18:2+NH4 

  TG TG 48:0_FA14:0+NH4 

  TG TG 48:0_FA16:0+NH4 

  TG TG 48:0_FA18:0+NH4 

  TG TG 48:1_FA14:0+NH4 

  TG TG 48:1_FA16:0+NH4 

  TG TG 48:1_FA16:1+NH4 

  TG TG 48:1_FA18:0+NH4 

  TG TG 48:1_FA18:1+NH4 

  TG TG 48:2_FA14:0+NH4 

  TG TG 48:2_FA16:0+NH4 

  TG TG 48:2_FA16:1+NH4 

  TG TG 48:2_FA18:1+NH4 

  TG TG 48:2_FA18:2+NH4 

  TG TG 48:3_FA14:0+NH4 

  TG TG 48:3_FA16:0+NH4 



 178 

Table C3.3 cont.    

  TG TG 48:3_FA16:1+NH4 

  TG TG 48:3_FA18:1+NH4 

  TG TG 48:3_FA18:2+NH4 

  TG TG 48:4_FA18:2+NH4 

  TG TG 48:4_FA18:3+NH4 

  TG TG 49:1_FA16:0+NH4 

  TG TG 49:1_FA17:0+NH4 

  TG TG 49:1_FA18:1+NH4 

  TG TG 49:2_FA16:0+NH4 

  TG TG 49:2_FA16:1+NH4 

  TG TG 49:2_FA18:2+NH4 

  TG TG 50:0_FA16:0+NH4 

  TG TG 50:0_FA18:0+NH4 

  TG TG 50:1_FA14:0+NH4 

  TG TG 50:1_FA16:0+NH4 

  TG TG 50:1_FA16:1+NH4 

  TG TG 50:1_FA18:0+NH4 

  TG TG 50:1_FA18:1+NH4 

  TG TG 50:2_FA14:0+NH4 

  TG TG 50:2_FA16:0+NH4 

  TG TG 50:2_FA16:1+NH4 

  TG TG 50:2_FA18:0+NH4 

  TG TG 50:2_FA18:1+NH4 

  TG TG 50:2_FA18:2+NH4 

  TG TG 50:3_FA14:0+NH4 

  TG TG 50:3_FA16:0+NH4 

  TG TG 50:3_FA16:1+NH4 

  TG TG 50:3_FA18:1+NH4 

  TG TG 50:3_FA18:2+NH4 

  TG TG 50:3_FA18:3+NH4 

  TG TG 50:4_FA14:0+NH4 

  TG TG 50:4_FA16:1+NH4 

  TG TG 50:4_FA18:1+NH4 

  TG TG 50:4_FA18:2+NH4 

  TG TG 50:4_FA18:3+NH4 

  TG TG 50:5_FA18:3+NH4 

  TG TG 51:1_FA16:0+NH4 

  TG TG 51:1_FA17:0+NH4 

  TG TG 51:1_FA18:1+NH4 

  TG TG 51:2_FA16:0+NH4 

  TG TG 51:2_FA17:0+NH4 
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  TG TG 51:2_FA18:1+NH4 

  TG TG 51:2_FA18:2+NH4 

  TG TG 51:3_FA18:2+NH4 

  TG TG 51:4_FA18:2+NH4 

  TG TG 52:0_FA16:0+NH4 

  TG TG 52:0_FA18:0+NH4 

  TG TG 52:1_FA16:0+NH4 

  TG TG 52:1_FA18:0+NH4 

  TG TG 52:1_FA18:1+NH4 

  TG TG 52:2_FA16:0+NH4 

  TG TG 52:2_FA16:1+NH4 

  TG TG 52:2_FA18:0+NH4 

  TG TG 52:2_FA18:1+NH4 

  TG TG 52:2_FA18:2+NH4 

  TG TG 52:3_FA16:0+NH4 

  TG TG 52:3_FA16:1+NH4 

  TG TG 52:3_FA18:0+NH4 

  TG TG 52:3_FA18:1+NH4 

  TG TG 52:3_FA18:2+NH4 

  TG TG 52:3_FA18:3+NH4 

  TG TG 52:4_FA16:0+NH4 

  TG TG 52:4_FA16:1+NH4 

  TG TG 52:4_FA18:1+NH4 

  TG TG 52:4_FA18:2+NH4 

  TG TG 52:4_FA18:3+NH4 

  TG TG 52:4_FA20:0+NH4 

  TG TG 52:4_FA20:3+NH4 

  TG TG 52:4_FA20:4+NH4 

  TG TG 52:5_FA16:0+NH4 

  TG TG 52:5_FA16:1+NH4 

  TG TG 52:5_FA18:1+NH4 

  TG TG 52:5_FA18:2+NH4 

  TG TG 52:5_FA18:3+NH4 

  TG TG 52:5_FA20:4+NH4 

  TG TG 52:5_FA22:5+NH4 

  TG TG 52:6_FA16:0+NH4 

  TG TG 52:6_FA16:1+NH4 

  TG TG 52:6_FA18:2+NH4 

  TG TG 52:6_FA18:3+NH4 

  TG TG 52:6_FA20:4+NH4 

  TG TG 53:0_FA16:0+NH4 
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  TG TG 53:1_FA18:1+NH4 

  TG TG 53:2_FA16:0+NH4 

  TG TG 53:2_FA17:0+NH4 

  TG TG 53:2_FA18:1+NH4 

  TG TG 53:2_FA18:2+NH4 

  TG TG 53:3_FA16:0+NH4 

  TG TG 53:3_FA17:0+NH4 

  TG TG 53:3_FA18:2+NH4 

  TG TG 53:4_FA18:2+NH4 

  TG TG 54:1_FA18:0+NH4 

  TG TG 54:1_FA18:1+NH4 

  TG TG 54:1_FA20:0+NH4 

  TG TG 54:2_FA16:0+NH4 

  TG TG 54:2_FA18:0+NH4 

  TG TG 54:2_FA18:1+NH4 

  TG TG 54:2_FA18:2+NH4 

  TG TG 54:2_FA20:0+NH4 

  TG TG 54:2_FA20:1+NH4 

  TG TG 54:3_FA16:0+NH4 

  TG TG 54:3_FA18:0+NH4 

  TG TG 54:3_FA18:1+NH4 

  TG TG 54:3_FA18:2+NH4 

  TG TG 54:3_FA20:1+NH4 

  TG TG 54:3_FA20:2+NH4 

  TG TG 54:4_FA16:0+NH4 

  TG TG 54:4_FA16:1+NH4 

  TG TG 54:4_FA18:0+NH4 

  TG TG 54:4_FA18:1+NH4 

  TG TG 54:4_FA18:2+NH4 

  TG TG 54:4_FA18:3+NH4 

  TG TG 54:4_FA20:2+NH4 

  TG TG 54:4_FA20:3+NH4 

  TG TG 54:4_FA20:4+NH4 

  TG TG 54:5_FA16:0+NH4 

  TG TG 54:5_FA16:1+NH4 

  TG TG 54:5_FA18:0+NH4 

  TG TG 54:5_FA18:1+NH4 

  TG TG 54:5_FA18:2+NH4 

  TG TG 54:5_FA18:3+NH4 

  TG TG 54:5_FA20:3+NH4 

  TG TG 54:5_FA20:4+NH4 
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  TG TG 54:5_FA22:5+NH4 

  TG TG 54:6_FA16:0+NH4 

  TG TG 54:6_FA16:1+NH4 

  TG TG 54:6_FA18:1+NH4 

  TG TG 54:6_FA18:2+NH4 

  TG TG 54:6_FA18:3+NH4 

  TG TG 54:6_FA20:3+NH4 

  TG TG 54:6_FA20:4+NH4 

  TG TG 54:6_FA20:5+NH4 

  TG TG 54:6_FA22:5+NH4 

  TG TG 54:6_FA22:6+NH4 

  TG TG 54:7_FA16:1+NH4 

  TG TG 54:7_FA18:2+NH4 

  TG TG 54:7_FA18:3+NH4 

  TG TG 54:7_FA20:4+NH4 

  TG TG 54:7_FA20:5+NH4 

  TG TG 54:7_FA22:6+NH4 

  TG TG 54:8_FA22:6+NH4 

  TG TG 55:1_FA16:0+NH4 

  TG TG 55:1_FA18:1+NH4 

  TG TG 55:2_FA18:2+NH4 

  TG TG 55:3_FA18:1+NH4 

  TG TG 55:3_FA18:2+NH4 

  TG TG 56:2_FA20:0+NH4 

  TG TG 56:3_FA18:1+NH4 

  TG TG 56:3_FA20:0+NH4 

  TG TG 56:3_FA20:1+NH4 

  TG TG 56:4_FA18:0+NH4 

  TG TG 56:4_FA18:1+NH4 

  TG TG 56:4_FA18:2+NH4 

  TG TG 56:4_FA20:1+NH4 

  TG TG 56:4_FA20:2+NH4 

  TG TG 56:4_FA20:3+NH4 

  TG TG 56:5_FA16:0+NH4 

  TG TG 56:5_FA18:0+NH4 

  TG TG 56:5_FA18:1+NH4 

  TG TG 56:5_FA18:2+NH4 

  TG TG 56:5_FA20:2+NH4 

  TG TG 56:5_FA20:3+NH4 

  TG TG 56:5_FA20:4+NH4 

  TG TG 56:5_FA22:4+NH4 
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  TG TG 56:5_FA22:5+NH4 

  TG TG 56:6_FA16:0+NH4 

  TG TG 56:6_FA18:1+NH4 

  TG TG 56:6_FA18:2+NH4 

  TG TG 56:6_FA20:3+NH4 

  TG TG 56:6_FA20:4+NH4 

  TG TG 56:6_FA22:4+NH4 

  TG TG 56:6_FA22:5+NH4 

  TG TG 56:6_FA22:6+NH4 

  TG TG 56:7_FA16:0+NH4 

  TG TG 56:7_FA18:0+NH4 

  TG TG 56:7_FA18:1+NH4 

  TG TG 56:7_FA18:2+NH4 

  TG TG 56:7_FA18:3+NH4 

  TG TG 56:7_FA20:3+NH4 

  TG TG 56:7_FA20:4+NH4 

  TG TG 56:7_FA20:5+NH4 

  TG TG 56:7_FA22:5+NH4 

  TG TG 56:7_FA22:6+NH4 

  TG TG 56:8_FA16:0+NH4 

  TG TG 56:8_FA18:1+NH4 

  TG TG 56:8_FA18:2+NH4 

  TG TG 56:8_FA20:4+NH4 

  TG TG 56:8_FA20:5+NH4 

  TG TG 56:8_FA22:5+NH4 

  TG TG 56:8_FA22:6+NH4 

  TG TG 56:9_FA20:4+NH4 

  TG TG 56:9_FA20:5+NH4 

  TG TG 56:9_FA22:6+NH4 

  TG TG 57:2_FA18:1+NH4 

  TG TG 58:10_FA20:4+NH4 

  TG TG 58:10_FA22:6+NH4 

  TG TG 58:6_FA18:1+NH4 

  TG TG 58:7_FA18:1+NH4 

  TG TG 58:7_FA18:2+NH4 

  TG TG 58:7_FA22:5+NH4 

  TG TG 58:7_FA22:6+NH4 

  TG TG 58:8_FA18:1+NH4 

  TG TG 58:8_FA18:2+NH4 

  TG TG 58:8_FA22:5+NH4 

  TG TG 58:8_FA22:6+NH4 
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  TG TG 58:9_FA18:1+NH4 

  TG TG 58:9_FA18:2+NH4 

  TG TG 58:9_FA20:4+NH4 

  TG TG 58:9_FA22:5+NH4 

  TG TG 58:9_FA22:6+NH4 

  TG TG 60:12_FA22:6+NH4 

    *Fatty acid composition based on fragmentation score provided by Progenesis QI software 
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  Table C3.4. Concentrations (nmol/mL plasma) for lipids common between the two approaches. 

Lipid ID Untargeted MRM 

LysoPC(16:0) 7.45 36.14 

LysoPC(16:1) 2.95 1.17 

LysoPC(18:0) 35.18 15.77 

LysoPC(18:1) 17.41 10.74 

LysoPC(18:2) 28.55 11.91 

LysoPC(18:3) 0.46 0.10 

LysoPC(20:0) 0.11 0.08 

LysoPC(20:1) 0.27 0.13 

LysoPC(20:2) 0.32 0.17 

LysoPC(20:3) 2.47 0.74 

LysoPC(20:4) 7.21 0.54 

LysoPC(20:5) 0.78 0.03 

LysoPC(22:4) 0.07 0.04 

LysoPC(22:5) 0.34 0.04 

LysoPC(22:6) 1.71 0.02 

LysoPE(16:0) 0.74 0.37 

LysoPE(18:0) 0.89 0.68 

LysoPE(18:1) 0.50 0.56 

LysoPE(18:2) 0.23 0.65 

LysoPE(20:0) 2.23 0.01 

LysoPE(20:1) 0.28 0.02 

LysoPE(20:2) 0.09 0.01 

LysoPE(20:3) 0.22 0.07 

LysoPE(20:4) 1.38 0.15 

LysoPE(22:5) 0.06 0.02 

LysoPE(22:6) 1.24 0.01 

PC 28:0 0.13 0.56 

PC 30:0 1.26 5.66 

PC 32:0 7.71 186.34 

PC 32:1 10.99 28.27 

PC 32:2 7.47 7.38 

PC 34:0 0.93 87.11 

PC 34:1 148.72 280.49 

PC 34:2 248.22 513.73 

PC 34:3 6.20 7.53 

PC 34:4 2.76 1.45 

PC 36:1 27.16 1.03 

PC 36:2 220.27 47.12 

PC 36:3 117.06 63.58 

PC 36:4 134.74 111.26 

PC 36:5 40.99 5.78 

PC 36:6 0.74 0.33 
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PC 38:1 2.99 2.69 

PC 38:3 55.80 32.73 

PC 38:4 125.07 69.86 

PC 38:5 5.02 16.53 

PC 38:6 19.44 10.21 

PC 38:7 0.22 0.19 

PC 40:4 0.51 1.55 

PC 40:5 0.92 3.39 

PC 40:6 21.66 0.90 

PC 40:7 4.81 1.18 

PE 34:0 1.64 0.03 

PE 34:1 0.23 0.73 

PE 34:2 1.81 1.15 

PE 36:0 0.98 0.32 

PE 36:1 2.09 11.25 

PE 36:2 207.04 19.06 

PE 36:3 26.17 0.25 

PE 36:4 0.35 0.25 

PE 36:5 0.18 0.01 

PE 38:1 105.00 0.06 

PE 38:2 0.22 0.01 

PE 38:3 3.12 2.84 

PE 38:4 2.13 3.82 

PE 38:5 2.52 0.21 

PE 38:6 5.02 0.05 

PE 40:4 0.55 0.17 

PE 40:5 9.27 0.35 

PE 40:6 3.08 0.26 

PE 40:7 1.17 0.01 

PE O- 32:0 0.30 0.01 

PE O-36:4 2.60 0.03 

PE P-34:0 0.41 0.14 

PE P-34:1 3.58 0.13 

PE P-34:2 0.74 0.35 

PE P-36:1 2.28 0.37 

PE P-36:2 0.81 0.92 

PE P-36:4 0.83 0.22 

PE p-36:5 20.80 0.01 

PE P-38:3 0.41 0.12 

PE P-38:4 2.24 0.46 

PE P-38:5 1.39 0.19 

PE P-38:6 0.45 0.02 

SM 32:1 23.55 2.80 
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SM 34:1 102.76 29.31 

SM 36:1 19.92 5.11 

SM 36:2 10.93 3.48 

SM 38:1 0.78 107.41 

SM 40:1 17.03 87.98 

SM 40:2 1.94 56.43 

SM 41:2 9.68 7.91 

SM 42:1 23.45 17.91 

TG 44:0 7.95 2.94 

TG 44:1 9.74 2.60 

TG 46:1 4.13 4.81 

TG 46:2 13.55 3.29 

TG 48:0 8.81 4.21 

TG 48:1 16.09 11.40 

TG 48:2 20.40 12.73 

TG 48:3 24.64 10.42 

TG 49:1 9.74 2.92 

TG 50:0 65.12 6.27 

TG 50:1 62.77 4.34 

TG 50:2 53.17 27.15 

TG 50:3 39.90 50.68 

TG 50:4 15.92 10.62 

TG 50:5 13.48 1.45 

TG 51:1 26.73 2.63 

TG 51:2 8.50 10.68 

TG 52:2 193.65 255.90 

TG 52:3 161.07 277.16 

TG 52:4 131.12 171.04 

TG 52:5 68.90 41.03 

TG 52:6 26.22 4.40 

TG 53:2 18.86 4.24 

TG 54:1 6.95 3.61 

TG 54:2 77.18 39.89 

TG 54:3 73.73 142.73 

TG 54:4 63.84 159.54 

TG 54:5 42.68 100.59 

TG 54:6 40.48 41.49 

TG 54:7 44.79 10.97 

TG 56:3 5.84 2.16 

TG 56:5 20.23 10.83 

TG 56:6 27.11 12.83 

TG 56:7 36.68 15.19 
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SUPPLEMENTAL INFORMATION FOR CHAPTER IV 

 

 

Table D4.1. Internal standard lipids and their concentration. 

Name Formula Target Conc. (µg/mL) 

PC 15:0-18:1(d7) C41H73 D7 NO8 P 160 

PE 15:0-18:1(d7) C38H67D7NO8P 5 

PS 15:0-18:1(d7) C39H66 D7 NNaO10 P 5 

PG 15:0-18:1(d7) C39H67D7NaO10 P 30 

PI 15:0-18:1(d7) C42H75D7NO13P 10 

PA 15:0-18:1(d7) C36H61D7NaO8P 7 

LysoPC 18:1(d7) C26H45D7NO7P 25 

LysoPE 18:1(d7) C23H39D7NO7P 5 

Chol Ester18:1(d7) C45H71D7O2 350 

MG 18:1(d7) C21H33 D7O4 2 

DG 15:0-18:1(d7) C36H61D7O5 10 

TG 15:0-18:1(d7)-15:0 C51H89 D7O6 55 

SM 18:1(d9) C41H72 D9N2O6P 30 

Cholesterol (d7) C27H39OD7 100 
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Table D4.2. Number of lipids identified. 

Extraction 

method 
Ionization mode 

Total 

Compounds 

Assigned 

Identifications 

MS/MS 

spectra 

Folch 
Positive 2140 941 817 

Negative 1495 582 469 

Bligh-Dyer 
Positive 2588 1197 863 

Negative 1214 549 224 
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Table D4.3. Assigned IDs of altered lipids in AD using the untargeted approach. 

Tentative Identification 
Anova 

p value 

Fold Change 

value 

Annotation 

Score 

LSM 18:1 0.001 8.66 42.1 

Stearoylcarnitine 0.018 5.68 37.3 

10S-HOME 0.002 4.92 38.5 

3-hydroxylinoleoylcarnitine 0.004 4.44 40.6 

PE-O-16:0 0.001 4.42 38 

11Z-Octadecenylcarnitine 0.002 4.31 44.4 

PE-O-18:0 0.002 4.19 39.8 

PE 34:1 0.001 4.14 55.6 

Octadec-9-enoic Acid 0.011 3.26 37.6 

MG 18:1 0.031 3.24 39.3 

Palmitoylcarnitine 0.001 3.14 49.6 

Oleoyl L-carnitine 0.006 2.99 56.4 

PE-P-38:1 0.007 2.92 42.8 

LPE 22:4 0.032 2.90 52.3 

LPC 18:1 0.050 2.86 53.1 

PE-P 18:0 0.013 2.80 52.3 

LPC-O 18:0 0.013 2.72 44.6 

PS-O 18:0 0.016 2.71 52.4 

LPC-P 18:0 0.034 2.51 36.2 

PE-P 38:4 0.000 2.42 52.4 

PE-P 34:1 0.020 2.42 50.3 

PC-O 16:0 0.018 2.42 43.3 

PE 38:7 0.001 2.40 40.4 

PE 36:1 0.003 2.34 55.7 

1-Stearoylglycerophosphoserine 0.024 2.33 39.9 

(1alpha,3beta,20S,22R,24S,25S)-Pubescenin 0.045 2.29 37.3 

3-Methyl-5-propyl-2-furanundecanoic acid 0.037 2.26 41.4 

PE-P 20:0 0.022 2.18 50.1 

PE-P 36:1 0.000 2.14 43.7 

PE-P 38:3 0.000 2.14 47 

O-tetradecanoylcarnitine 0.030 2.01 41.8 

1alpha-hydroxy-2beta-(5-hydroxypentoxy) 

cholecalciferol 
0.001 1.95 41.9 

PE-P 40:4 0.007 1.93 38.6 

PE-P 40:6 0.000 1.93 40.8 

7,10-Octadecadienoic acid 0.023 1.92 43.6 

PC-O 20:0 0.007 1.90 37.3 

PE-P 40:5 0.015 1.87 43.9 

1-(6-[3]-ladderane-hexanoyl)-2-(8-[3]-ladderane-

octanyl)-sn-glycerophosphoethanolamine 
0.021 1.87 36.1 
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9-HODE 0.010 1.84 49.9 

(1R,2R)-3-oxo-2-pentyl-cyclopentanehexanoic acid 0.003 1.83 48.4 

hexadecadienoylcarnitine 0.023 1.80 37.5 

7beta-acetoxy-gorgostan-3beta,5alpha,6beta-triol 0.010 1.79 46.3 

20,24-Epoxy-25,26-dihydroxydammaran-3-one 0.012 1.77 49.9 

PS 22:0 0.047 1.77 37.9 

(25R)-3alpha,7alpha,12alpha-trihydroxy-5alpha-

cholestan-26-oic acid 
0.026 1.74 42.3 

3b,12a-Dihydroxy-5a-cholanoic acid 0.026 1.73 53 

PE 34:0 0.002 1.72 51.8 

5Z,9Z-hexadecadienoic acid 0.003 1.72 48.9 

PE 36:4 0.011 1.72 52 

1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy) 

cholecalciferol 
0.027 1.71 42.3 

PE-P 34:2 0.040 1.70 51.6 

PS 20:3 0.007 1.69 41.1 

Cer 34:1 0.022 1.69 50.2 

2alpha-methyl-1beta,25-dihydroxycholecalciferol 0.032 1.68 42.7 

PE 38:5 0.032 1.67 54.7 

3alpha,7alpha,12alpha-Trihydroxy-24-methyl-5beta-

cholest-23-en-26-oic acid 
0.018 1.66 51.3 

PE 36:3 0.018 1.64 36.1 

3S,7,11-Trimethyl-6,10-dodecadienoic acid 0.008 1.63 47.2 

1-(8-[5]-ladderane-octanoyl)-2-(8-[3]-ladderane-

octanyl)-sn-glycerophosphoethanolamine 
0.000 1.61 51.5 

(24S)-1alpha,24-dihydroxy-26,27-dimethyl-22-

oxacholecalciferol 
0.025 1.61 40.2 

PS 38:5 0.014 1.59 38.7 

LacCer 34:1 0.012 1.57 53.3 

PE-P 36:2 0.025 1.56 51.4 

6alpha-Hydroxycastasterone 0.030 1.56 40 

PE P-36:4 0.006 1.55 54.3 

PS 36:3 0.042 1.55 50.7 

PE 38:4 0.000 1.55 48.4 

PE 36:2 0.017 1.53 53.3 

PE 34:2 0.022 1.50 52.6 

PC 34:4 0.044 -1.50 45.70 

PC 32:2 0.004 -1.54 52.60 

SM 42:4 0.006 -1.56 37.90 

PC 36:5 0.005 -1.61 46.90 

SM 42:2 0.011 -1.76 51.20 

PC 32:1 0.013 -1.77 46.90 
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GlcCer 36:2 0.035 -1.79 53.30 

3-O-(2-O-(2E-decenoyl)-alpha-L-

rhamnopyranosyl)-3-hydroxydecanoic acid 
0.037 -1.80 39.10 

SM 40:1 0.009 -1.82 51.40 

1-Stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine 0.005 -1.88 46.40 

PC 34:1 0.012 -2.18 54.20 

TG 50:5 0.010 -2.23 37.20 

PC 36:6 0.002 -2.25 54.70 

26-Glucosyl-1,3,11,22-tetrahydroxyergosta-5,24-

dien-26-oate 
0.001 -2.31 48.40 

PC 30:1 0.027 -2.31 41.80 

PC 34:5 0.011 -2.39 41.20 

3alpha-Hydroxy-1,7-dioxo-5beta-cholan-24-oic 

Acid 
0.024 -2.52 46.00 

PE 26:1 0.003 -2.56 47.70 

3beta-(3-methyl-butanoyloxy)-villanovane-

13alpha,17-diol 
0.003 -2.57 50.50 

Notoginsenoside T1 0.006 -2.63 55.30 

2-Hydroxyfelbamate 0.024 -2.70 37.90 

PC-P 44:4 0.002 -3.11 53.50 

SM 42:1 0.009 -3.97 53.80 

9K,12,13-diHODE 0.009 -4.03 37.00 

11,12,13-TriHOME 0.005 -5.59 41.00 

2S-aminohexadecanoic acid 0.001 -6.90 52.40 
*p-value < 0.05 
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Table D4.4. Significantly altered lipids in AD using the targeted MRM approach. 

Lipid ID p-value AD/CN 

PS 16:0_22:4 0.013 15.03 

PI 14:0_18:1 0.014 7.48 

PE 14:0_22:4 0.026 6.86 

PE 18:0_22:4 0.007 5.46 

PS 18:0_20:3 0.016 4.17 

PS 18:1_20:5 0.044 3.85 

PE 18:2_22:4 0.006 3.83 

PS 14:0_22:4 0.018 3.72 

PE-O 18:0_22:4 0.003 3.68 

TG 50:5-FA14:0 0.029 3.67 

LPG 22:4 0.001 3.24 

PE 16:0_22:4 0.014 3.10 

DG 18:1_22:5 0.020 2.94 

PG 16:0_22:4 0.007 2.63 

PE 18:1_22:4 0.020 2.61 

PE 18:2_18:3 0.010 2.52 

TG 48:4-FA20:4 0.033 2.50 

PE 18:0_16:0 0.011 2.46 

PE 18:2_22:5 0.029 2.44 

PI 14:0_18:2 0.022 2.43 

TG 54:5-FA18:0 0.020 2.43 

PE-P 16:0_18:0 0.012 2.42 

PE 18:2_18:2 0.000 2.41 

PE P-18:0_22:4 0.008 2.35 

PG 18:1_22:4 0.025 2.29 

LPE 22:4 0.008 2.27 

LPG 20:4 0.001 2.22 

PE-O 16:0_18:1 0.009 2.20 

PE-O 16:0_20:1 0.012 2.20 

TG 54:4-FA18:0 0.039 2.19 

PG 18:2_20:2 0.003 2.18 

PS 14:0_22:5 0.002 2.16 

PE 16:0_20:1 0.022 2.12 

PG 14:0_20:4 0.007 2.11 

PE 14:0_22:5 0.033 2.07 

PG 18:1_18:3 0.002 2.06 

PE 14:0_20:1 0.036 2.04 

TG 54:8-FA18:3 0.014 2.00 

PE-P 16:0_22:4 0.013 1.99 

PE 18:2_22:6 0.017 1.95 
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PE-O 16:0_22:4 0.008 1.94 

PI 16:0_14:0 0.021 1.93 

PE 16:0_18:1 0.046 1.92 

LPG 22:5 0.019 1.91 

PG 18:1_18:2 0.004 1.87 

PE-P 18:0_20:1 0.006 1.81 

TG 54:8-FA18:2 0.018 1.81 

PG 20:0_20:5 0.044 1.80 

HCer 22:1 0.000 1.78 

PG 16:0_16:0 0.049 1.77 

PE 18:1_20:1 0.010 1.76 

PE 18:2_20:4 0.026 1.76 

PE-O 16:0_20:2 0.034 1.76 

PE-P16:0_18:1 0.014 1.76 

PS 14:0_20:4 0.002 1.74 

HCer 24:1 0.002 1.70 

PG 16:0_22:6 0.032 1.70 

TG45:0-FA16:0 0.045 1.66 

TG54:2-FA18:2 0.037 1.65 

PE-O 18:0_20:4 0.000 1.63 

DCer 18:0 0.007 1.63 

PE-O 18:0_20:1 0.042 1.62 

PI 16:0_16:0 0.050 1.62 

LPS 18:1 0.039 1.59 

MG 22:5 0.003 1.59 

LPG 14:0 0.004 1.58 

PE 18:1_16:1 0.028 1.57 

LPG 20:5 0.011 1.56 

HCer d18:0_20:0 0.010 1.55 

PE-P 18:0_22:5 0.024 1.54 

MG 18:0 0.005 1.51 

PE-P 16:0_20:1 0.050 1.51 

LCer d18:0_18:0 0.033 1.51 

LPC 20:1 0.037 1.51 

PS 14:0_20:5 0.001 1.51 

PE 18:1_20:5 0.044 0.67 

TG 58:10-FA22:5 0.013 0.66 

PE 18:0_20:2 0.001 0.65 

CE 20:5 0.021 0.65 

PG 18:2_22:5 0.008 0.65 

TG 56:7-FA16:1 0.015 0.64 
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PC 18:0_20:4 0.020 0.64 

PC 18:0_20:0 0.014 0.64 

PE-P 18:1_20:5 0.028 0.64 

PC 14:0_22:5 0.032 0.64 

PI 16:0_20:3 0.043 0.63 

PE 18:0_20:3 0.022 0.63 

PI 18:0_22:6 0.009 0.62 

PC 16:0_20:1 0.013 0.62 

PI 20:0_18:1 0.027 0.62 

TG58:8-FA22:6 0.021 0.62 

CE 20:2 0.000 0.61 

PI 18:1_20:5 0.013 0.61 

PE O-18:0_16:1 0.000 0.60 

PS 16:0_20:3 0.003 0.60 

PI 16:0_20:5 0.027 0.60 

PC 16:0_22:5 0.002 0.60 

PS 14:0_18:1 0.000 0.59 

PC 16:0_18:1 0.003 0.59 

PC 20:0_18:1 0.046 0.59 

PS 18:1_20:2 0.000 0.58 

PS 18:1_18:3 0.003 0.58 

CE 22:5 0.018 0.58 

PC 16:0_20:3 0.023 0.58 

PE 18:0_18:3 0.006 0.58 

PI 18:0_18:3 0.003 0.57 

PI 18:0_20:5 0.001 0.57 

PC 18:0_18:0 0.001 0.56 

LPG 16:1 0.008 0.55 

TG 56:7-FA22:6 0.015 0.54 

PC 18:2_20:2 0.048 0.54 

TG 56:7-FA22:5 0.012 0.54 

PI 18:0_16:1 0.040 0.53 

PC 18:0_20:2 0.013 0.53 

PI 18:1_22:6 0.015 0.53 

PC 16:0_22:4 0.011 0.52 

PS 18:1_20:3 0.000 0.51 

TG 54:3-FA16:1 0.007 0.51 

PC 14:0_14:0 0.005 0.51 

PS 20:0_18:2 0.005 0.51 

PC 16:0_20:2 0.002 0.51 

PC 18:0_22:5 0.020 0.51 
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PS 20:0_20:2 0.012 0.51 

PS 18:2_20:5 0.007 0.50 

PC 16:1_18:2 0.002 0.50 

PS 18:2_20:3 0.002 0.49 

PE 14:0_16:1 0.002 0.49 

PS 16:0_16:1 0.012 0.49 

PE 18:0_16:1 0.035 0.48 

PC 18:2_20:3 0.049 0.48 

PS 20:0_20:5 0.047 0.48 

PC 18:0_18:3 0.022 0.48 

PC 18:1_18:1 0.001 0.47 

PS 20:0_16:1 0.000 0.47 

PC 18:2_20:5 0.000 0.44 

PC 20:0_20:3 0.025 0.43 

PC 18:0_20:3 0.023 0.43 

TG 56:7-FA20:5 0.008 0.43 

PC 18:0_16:1 0.034 0.43 

PC 18:1_18:3 0.015 0.42 

PC 18:1_20:2 0.000 0.41 

PC 16:0_18:3 0.004 0.41 

PS 20:0_18:3 0.001 0.40 

PC 20:0_20:4 0.009 0.40 

PS 20:0_20:3 0.013 0.40 

PC 16:0_16:1 0.007 0.39 

PC 18:1_20:5 0.005 0.35 

LPS 20:0 0.000 0.34 

PC 18:0_20:5 0.000 0.33 

PC 18:2_16:1 0.000 0.31 

PC 18:1_20:3 0.005 0.31 

PC 16:0_20:5 0.000 0.28 

PC 18:1_16:1 0.006 0.28 

PE 18:0_20:5 0.027 0.20 

PC 18:1_22:5 0.025 0.07 
*p-value < 0.05 

 

 

 

 

 



 196 

APPENDIX E 

SUPPLEMENTAL INFORMATION FOR CHAPTER V 

 

Table E5.1. Differentially-expressed lipids in race-stratified groups. 
 African American/Black non-Hispanic White 

Lipids p value* Fold Change# p value* Fold Change# 

PS 18:0_18:0 2.03E-18 0.78 6.27E-19 0.74 

PC 16:0_22:6 1.96E-03 0.79 0.02 0.84 

PC 18:0_22:6 0.01 0.82 0.01 0.80 

LPC 22:4 0.02 1.41 0.20 1.17 

PS 18:1_22:6 0.03 0.81 0.01 0.74 

PE 16:0_22:4 0.04 1.60 0.22 1.21 

PC 18:0_22:4 0.04 1.30 0.33 1.11 

PC 16:0_22:4 0.05 1.22 0.05 1.21 

PG 16:0_20:4 0.66 1.11 1.97E-04 0.54 

PS 18:0_20:1 0.58 0.93 6.10E-04 0.67 

PS 18:0_20:0 0.01 0.86 7.89E-04 0.79 

PS 20:0_20:1 0.67 0.96 1.83E-03 0.70 

PC 18:0_20:5 0.49 0.90 2.62E-03 0.52 

PC 16:0_20:5 0.47 0.89 2.99E-03 0.52 

PE-P 18:2_22:6 0.27 0.85 0.01 0.75 

PS 16:0_18:0 0.18 0.90 0.01 0.83 

PE-P 16:0_22:6 0.08 0.81 0.01 0.76 

PE-P 18:1_16:0 0.62 0.94 0.01 0.78 

PE 18:0_20:5 0.85 0.96 0.01 0.61 

PE 16:0_20:5 0.89 1.03 0.01 0.61 

PE-P 18:1_22:6 0.08 0.80 0.01 0.76 

PS 18:2_22:6 0.10 0.86 0.01 0.78 

PC 18:2_16:1 0.55 0.95 0.01 1.22 

PS 18:2_20:5 0.81 1.04 0.02 0.49 

PE-P 18:1_20:5 0.99 1.00 0.02 0.52 

PE 18:1_20:5 0.88 0.97 0.02 0.66 

PE-P 18:1_22:4 0.45 1.15 0.02 1.49 

PE-P 18:0_20:5 0.71 0.93 0.02 0.56 

PC 18:1_22:4 0.22 1.20 0.02 1.38 

PE-P 16:0_20:5 0.98 1.01 0.02 0.50 

PE 16:0_22:6 0.09 0.86 0.03 0.80 

PC 18:1_20:5 0.63 0.93 0.03 0.64 

PC 16:1_18:2 0.52 0.95 0.03 1.21 
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PC 16:0_14:0 0.96 1.01 0.03 0.80 

PS 14:0_22:4 0.49 1.10 0.03 1.30 

PS 16:0_16:0 0.09 0.74 0.04 0.64 

PE-O 16:0_22:6 0.32 0.84 0.04 0.76 

# Fold change cut off 1.2; * p-value < 0.05 (no multiple hypothesis correction testing)  
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Figure E5.1. Box plot comparison of a) area of internal standards and b) average %CV of relative 

concentrations of endogenous lipids across all four sample batches, with the median value 

representing average median of all the samples analyzed, and the error bars representing standard 

deviation of the lipid of the values.  
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Figure E5.2. Box plot of total lipid concentrations in each lipid class. (For CN (red), N= 54, 

AD (Green), N= 59) 
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