Magnetic Resonance Imaging 66 (2020) 248-256

Contents lists available at ScienceDirect

Magnetic Resonance Imaging

journal homepage: www.elsevier.com/locate/mri

Original contribution

snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary R

Check for

generation and matching using extended phase graphs At

Dong Wang™:, Jason Ostenson”, David S. Smith (Ph.D.)"

@ School of Science, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
® Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA

ARTICLE INFO ABSTRACT

Keywords:

Magnetic resonance fingerprinting
Graphics processing units
Extended phase graph
Quantitative MRI

Relaxometry

Non-Cartesian

Purpose:: Magnetic resonance fingerprinting (MRF) is a state-of-the-art quantitative MRI technique with a
computationally demanding reconstruction process, the accuracy of which depends on the accuracy of the signal
model employed. Having a fast, validated, open-source MRF reconstruction would improve the dependability
and accuracy of clinical applications of MRF.

Methods:: We parallelized both dictionary generation and signal matching on the GPU by splitting the simulation
and matching of dictionary atoms across threads. Signal generation was modeled using both Bloch equation
simulation and the extended phase graph (EPG) formalism. Unit tests were implemented to ensure correctness.
The new package, snapMRF, was tested with a calibration phantom and an in vivo brain.

Results:: Compared with other online open-source packages, dictionary generation was accelerated by
10-1000 x and signal matching by 10-100 X . On a calibration phantom, T; and T, values were measured with
relative errors that were nearly identical to those from existing packages when using the same sequence and
dictionary configuration, but errors were much lower when using variable sequences that snapMRF supports but
that competitors do not.

Conclusion:: Our open-source package snapMRF was significantly faster and retrieved accurate parameters,
possibly enabling real-time parameter map generation for small dictionaries. Further refinements to the ac-

quisition scheme and dictionary setup could improve quantitative accuracy.

1. Introduction

Magnetic resonance fingerprinting (MRF) has shown great promise
for accelerating quantitative magnetic resonance imaging (MRI) [1-3].
MRF data acquisition and reconstruction involve four steps: (1) data
acquisition, (2) image reconstruction, (3) signal simulation, and (4)
pattern matching. While the primary limitation on the speed of data
acquisition is the scanner hardware, the latter two steps are subject to
severe computational bottlenecks.

A key step of the reconstruction process for MRF data is the gen-
eration of a dictionary of simulated signals. The accuracy of MRF de-
pends critically on the accuracy of the dictionary of simulated signals.
The original implementation of MRF [1] used a simple Bloch simulation
of a single isochromat. This approximation is very fast, but becomes
inaccurate in the presence of inhomogeneities in the main magnetic
field across the voxel that cause dephasing. In order to take this gra-
dient dephasing into account, the Bloch model can be extended by
averaging over an ensemble of isochromats, but this is computationally

* Corresponding author.

expensive and still an approximation.

The extended phase graph (EPG) model [4] is an alternative ap-
proach that has been used previously in FISP (fast image with steady
precession) signal simulations [5]. The EPG method describes the spin
system as several discrete configuration states using the Fourier trans-
form. This provides more accurate signal evolution compared to Bloch
simulation when the spin system is affected by inhomogeneous mag-
netic fields, such as the gradient crusher field introduced by unbalanced
SSFP. However, EPG is computationally difficult because it must track
the signal history for ~100 or more discrete states for each simulated
signal. In fact, as will be shown later, it takes hours to generate a dic-
tionary of the same size as that used in Ref. [1] using the EPG method
without parallelization on our hardware described below, so the time
cost for increased signal model accuracy is large.

Besides the signal simulation, the fourth step of matching the
measured signal with the most similar dictionary atom is also time
consuming. Ma et al. [1] used a template matching approach that
computed the complex inner product of the normalized voxel signal

E-mail addresses: 311112253@njust.edu.cn (D. Wang), jason.ostenson@vanderbilt.edu (J. Ostenson), david.smith@vumc.org (D.S. Smith).

https://doi.org/10.1016/j.mri.2019.11.015
Received 15 June 2019; Accepted 10 November 2019

0730-725X/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

http://www.sciencedirect.com/science/journal/0730725X
https://www.elsevier.com/locate/mri
https://doi.org/10.1016/j.mri.2019.11.015
https://doi.org/10.1016/j.mri.2019.11.015
mailto:311112253@njust.edu.cn
mailto:jason.ostenson@vanderbilt.edu
mailto:david.smith@vumc.org
https://doi.org/10.1016/j.mri.2019.11.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mri.2019.11.015&domain=pdf

D. Wang, et al.

with each atom in the dictionary. Specifically, let X = x; eCi €{1,2,
...,N}, be the complex fingerprinting data with N voxels and L time
points and D = {d;}eClk €{1,2,...,P}, be the predefined dictionary
with P unit-normalized atoms. If we define <-> as the complex inner
product, then the best matching dictionary atom is then computed by

llc\,» = argmax [(dy, x;)I.
k

(€8]

Note the proton density at voxel i can be simultaneously derived using
the maximum inner product that was found:
/91- = |<d,2i, x;).)

The computational complexity of matching grows as O(PNL?) with
the dictionary size P, the number of time points L, and the number of
voxels N. This scaling is intolerable when large dictionaries are needed
in rapid imaging techniques. For example, in Ref. [1], using MATLAB
(MathWorks, Natick, MA) to generate a dictionary containing 563,783
entries with 1000 time points each took 399 s and matching required
about 3 minutes for 128 x 128 pixels on their hardware.

Besides Ma et al.’s MATLAB code contained in the supplementary
file of Ref. [1], there are other open-source MRF packages available. [6]
published a MATLAB package called EPG-X, which is capable of mod-
eling different kinds of MRI sequences using EPG. However, their code
is implemented on the CPU and is slower, especially in dictionary
generation. EPG-X also cannot handle sequences with variable Tg or Tg,
which are commonly used in MRF, and does not handle B;" effects. [7]
released a C+ + package called PnP-MRF that simulates the whole
procedure of MRF. PnP-MRF does not implement the EPG method and
is written for the CPU and is not parallel, except in its use of SIMD
instructions for vector math. Also, users have to hard code the values of
T; and T, for the dictionary directly into the source, which is not user-
friendly, and does not handle B;* corrections.

Several mathematical methods have been used to accelerate dic-
tionary matching. One strategy is to compress the dimension of the
dictionary in the temporal or parameter direction [8, 9]. In Ref. [8],
McGivney et al. used singular value decomposition (SVD) to compress
the dictionary in the time domain, providing a low-rank approximation
that achieved a speed-up of the matching by a factor of 3.4-4.8.
However, SVDs are time consuming, especially when the dimension is
large. In Ref. [9], Cauley et al. introduced a fast group matching al-
gorithm that divided MRF dictionaries into several clustered groups and
used group principal component analysis to compress the dictionary in
both temporal and parameter dimensions. Both methods, however, did
not accelerate dictionary generation, which often takes longer than
matching. Also, these approaches are approximations that could in-
troduce additional parameter error.

Another category of acceleration uses a neural network to learn a
non-linear function to generate parameter maps from the voxel sig-
nals [10]. This direct inference is much faster than exhaustive pattern
matching on the whole dictionary, so a great speed up can be realized.
The drawback of this method is that it depends critically on the exact
sequence used for data collection. If anything at all is changed about the
sequence, such as any particular flip angle, T, or T in the series, a new
dictionary must be generated and the network retrained. An ideal so-
lution would be both nearly instantaneous and robust to the details of
acquisition. This is possible with the standard, exhaustive dictionary
matching if properly parallelized.

Graphics processing units (GPUs) are now commonly used to speed
up parallel calculations in many areas of imaging science (e.g. [11-13]),
often enabling a 10-100 X reduction in computation time. However, to
the best of our knowledge, no one has used GPUs to generate MRF
dictionaries and perform template matching. Also relevant here is the
growing concern over the lack of reproducibility in scientific research
[14-17]. Thus, to these ends, we present snapMRF, an open-source,
validated MRF reconstruction package that parallelizes dictionary

249

Magnetic Resonance Imaging 66 (2020) 248-256

generation and template matching entirely on the GPU and implements
a battery of unit tests to ensure reliability and accuracy of the generated
signal. snapMRF is capable of simulating different kinds of MRI se-
quences using both single-isochromat Bloch equation and EPG simula-
tions, as well as implementing template matching. Also snapMREF is as
fast as neural network inference without the dependence on the se-
quence or requiring a training step.

The paper is organized as follows. Section 2 discusses the snapMRF
design, data collection, and experimental design. Section 3 presents the
results of time coding, parameter accuracy measurements on a standard
quantitative MRI phantom and image quality evaluation on in vivo
brain data. Section 4 gives the discussion and conclusions. The GPU
kernels and unit tests are described in Appendices A and B, respectively.

2. Methods
2.1. snapMRF code overview

The algorithm that implements the fully parallel EPG signal mod-
eling and pattern matching in snapMRF has five stages, broken into two
input, two computation, and one output. Note that variables prefixed
with a * are arrays.

e Read MRF pulse sequence from a CSV file to host array *h mrf
and copy to device array *d_mrf. Arrays contain four vectors: flip
angle (*d_FA) and RF phase (*d_phi) in degrees, and repetition
time (*d_TR) and echo time (*d_TE) in milliseconds. The number
of time points are saved in nreps.

Read dictionary configuration (T, Ts, Bo, B;") from command line
using parse length() and parse params () and save in host
arrays *h tl, *h _t2, *h b0, and *h bl respectively. Then for
later convenience *h t1, *h t2, *h b0 and *h bl are combined
in a new host variable *h params using trans params () and
then copied to the GPU array *d_params. The values of Ty, Ty, By
and B are saved in T;-major order, with the index of T; changing
the fastest, then T,, then By, and B;" the slowest. The numbers of T,
T», By and By are stored in the variables 1 t1, 1 t2, 1 b0 and
1 bl respectively and the number of atoms in the dictionary is
stored in natoms, which is computed using the compute natoms
(). Situations when T; < T, are removed.

Generate dictionary atoms directly on the GPU using MRF dict
() and save in the device array *d_atoms. For each Bj' and each
time point, the kernels are parallelized with respect to the index of
the atoms. In other words, the signal for all atoms are calculated at
the first time point only, then time is advanced by updating the
transition matrix. After the RF pulse effects are stepped forward, the
next time point is computed for all atoms. This reduces evaluation of
the transition matrix, which contains costly transcendental func-
tions, to once per time point. The atoms are ordered as in the
parameter array *d_params.

Match image voxels to dictionary. Read the gridded, under-
sampled fingerprinting images from a RawArray [18] file and save
in *d_img. The function MRF match () computes the maps in two
steps. First, for each sub-dictionary that has a different Bff (1_bl
sub-dictionaries), compute the maps and save them in *d_MAPS in
the order of B'. For large dictionaries, GPU memory can be limited,
so matching is split into even groups of voxels using compu-
te nsplits() that can fit into the remaining GPU memory.
MRF minimatch() then computes the maps for each group of
voxels. To optimize matching speed, the measured signal is reshaped
into a matrix, and the complex inner products of the atoms with the
signals are computed by multiplying the conjugate of the dictionary
by the signal matrix. This allows the use of the highly optimized
cuBLAS matrix multiply function. The product matrix is then re-
duced via a custom kernel generate maps () that finds the
maxima and copies the parameters associated with these maxima

D. Wang, et al.

from *d_params into the output parameter maps. The second step
uses merge_maps () and Bi correction to generate the final maps.
This kernel is parallelized by voxel. For each voxel, it takes the B in
*d_ b1 that is closest to the measured B;" and selects the T, T, and
B, associated with this Bf" in *d_MAPS as the final parameters. The
closest match Bj is included in the parameter maps as well. The
final maps are stored in *d maps in the loop order of Ty, Ts, off-
resonance, B;t, and proton density.

Save results. Copy the atoms and maps from GPU back to CPU and
save to RawArray files. Free all allocated memory.

Time consuming transfers of data between CPU and GPU happen
only twice, namely copying the RF pulse and fingerprinting images to
the GPU at the beginning and saving the dictionary and parameter maps
to the CPU at the end. All other steps are computed directly on the GPU.

2.2. Code timing and parameter accuracy

For code timing and parameter accuracy measurements (see below),
an MRI system phantom [19] (HPD, Boulder, Colorado) was imaged
coronally at 3.0 T (Philips Ingenia, Philips Healthcare, The Nether-
lands) using a 32-channel head coil. The phantom was imaged at a
single slice through a series of contrast spheres with different MnCl,
concentrations, giving different T; and T, values. The phantom tem-
perature was the same as that during the reference measurements. The
k-space data were acquired with a numerically calculated [20] uniform
spiral with undersampling factor of 32. The FOV, in-plane and through-
plane resolutions, and spiral acquisition time were 240 mm X 240 mm,
1 mm X 1 mm, 10 mm, and 4.9 ms, respectively.

The raw MRF data were gridded and coil-combined using the
Berkeley Advanced Reconstruction Toolkit (BART; [21]). Sensitivity
maps were estimated using eSPIRIT in BART. Sampled density correc-
tions were determined using Ref. [22]. The final reconstructed data
dimensions of the undersampled images were 1000 or
1500 x 240 x 240 depending on the MRF sequences below.

The MRF sequences used for the phantom were adapted from the
first reported MRF unbalanced SSFP sequence [5]. The sequence used
adiabatic inversion with an inversion time (T;) of 40 ms, excitation with
a sinc-gauss pulse and a time-bandwidth product of 10 to minimize B;
heterogeneity in the slice profile [23]. Two variations of this sequence
were used, one with a variable flip angle and one with variable flip
angle and variable Ty. For the fixed Tr sequence, the Ty was fixed at
4.65 ms and the Ty was fixed at 16 ms [24]. For the variable Ty se-
quence, the Tr and flip angle were varied, with Ty variations €
[16,18.7] ms and flip angle € [0,60] deg, similar to Jiang et al. The Tg
was fixed at 3.5 ms. The scan duration was 17.5 s (1000 repetitions) for
the variable Ty sequence and 24.0 s (1500 repetitions) for the fixed Tg
sequence.

For timing comparisons, T; values were set to be between 100 ms
and 3000 ms and T, to be between 20 ms and 2000 ms. To test the
running time with respect to the number of atoms natoms in the dic-
tionary, we selected 10 different increments for T; and T, resulting in
10 different numbers of atoms. We compared the run time with both
EPG-X [6] and PnP-MRF [7] and plotted the time curves.

For parameter accuracy evaluation, we compared the performance
of snapMRF and EPG-X in generating T; and T, maps. Since EPG-X can
only deal with fixed Tr sequences, we used the fixed Tr sequence for
direct comparison. To show the influence of variable Ty and B;' effects
on the final T; and T, maps, we also ran snapMRF with the variable Tx
sequence.

For the experiments with no B; effects included, T; values were
chosen to be between 50 ms and 2500 ms with an increment of 5 ms,
and T, values were chosen to be between 5 ms and 600 ms with an
increment of 2.5 ms, resulting in a final dictionary size of 105,028. For
the case with B} effects included, T; values were chosen to be between
50 ms and 2500 ms with an increment of 12.5 ms, T, values were

Magnetic Resonance Imaging 66 (2020) 248-256

chosen to be between 5 ms and 600 ms with an increment of 5 ms, and
B; values were chosen to be between 0.8 and 1.2 with an increment of
0.1, resulting in a final dictionary size of 105,655. Note that in both
cases, the number of atoms was almost the same. The accuracy of the
parameter maps was assessed with the relative error as follows:

_ ”Tm - Tgt”z

X 100%,
I Tl

3

where T, is the vector of corresponding parameters for the vials as
reconstructed by snapMRF or EPG-X, and Ty, is the vector of ground
truth parameters.

2.3. Image quality

For image quality evaluation, a single volunteer was imaged at 3.0 T
(Philips Ingenia, Philips Healthcare, The Netherlands) in a transverse
slice in the brain using a 32-channel head coil after informed consent
and with approval of the institutional review board. The MRF sequences
used in the brain were the same as that for the phantom data. The k-
space data were acquired with a numerically calculated [20] uniform
spiral with undersampling factor of 32. The FOV, in-plane and through-
plane resolution, and spiral acquisition time were 240 mm X 240 mm,
1 mm X 1 mm, 5 mm, and 5.1 ms, respectively. The same re-
construction method was used as for the phantom data. The re-
constructed data dimensions were 1000 or 1500 X 240 x 240.

In this experiment, we visually compared the parameter maps
generated using snapMRF and EPG-X. For the experiments with no B;*
effects included, T; values were chosen to be between 100 ms and
4000 ms with an increment of 10 ms, and T, values were chosen to be
between 20 ms and 2000 ms with an increment of 5.5 ms, resulting in a
final dictionary size of 108,056 atoms. For the case with B;t effects
included, T; values were chosen to be between 100 ms and 4000 ms
with an increment of 20 ms, T, values were chosen to be between 20 ms
and 2000 ms with an increment of 14.5 ms, and B;" values were chosen
to be between 0.8 and 1.2 with an increment of 0.1, resulting in a final
dictionary size of 102,830 atoms. Note that the number of atoms was
deliberately chosen to be similar in both cases.

All codes were run on a dual 10-core Intel Xeon E5-2630 2.20 GHz
with 256 GB RAM with an Nvidia TITAN V GPU.

3. Results
3.1. Code timing

Fig. 1 shows the run time comparison with EPG-X (Top) and PnP-
MRF (Bottom) in both dictionary generation and matching, plotted on a
logarithmic scale. As can be seen, all the time curves grow linearly with
respect to the number of atoms, as expected, with snapMRF requiring
consistently 10-100 X less time than EPG-X and PnP-MRF. Specifically,
snapMRF outperformed EPG-X by 60-1700 X in dictionary generation
(Top, dotted lines) and by about 2-20 X in matching (Top, solid lines),
and outperformed PnP-MRF by 2-100X in dictionary generation
(Bottom, dotted lines), and by about 60-500 X in matching (Bottom,
solid lines). Thus overall, dictionary generation was accelerated by
10-1000 x and template matching by 10-100 x. Note that snapMRF
performs much faster than the other two packages especially when the
dictionary is large.

3.2. Parameter accuracy

Tables 1 and 2 present the estimated T; and T, values and the
corresponding relative errors in the phantom data respectively. The
running time of dictionary generation and template matching is shown
in Table 3. Note that for all the sequences, snapMRF can generate
100,000 atoms and perform matching in less than 20 s, much faster

D. Wang, et al.
10%
£ - Dictionary
I ® snapMRF o
10%E —— Matching ‘____,—f"‘*
* EPG-X e * T
103E
O C
o 102L
£ E
= C
101E
100:
-1 I B | I B I |
10 10° 10°
Dictionary Size (atoms)
10%¢
£ Dictionary
I ® snapMRF
—— Matching
* PnP-MRF
103
O C
v 102E
g1
= C
101 E
100§
107!

Dictionary Size (atoms)

Fig. 1. Run time comparison with EPG-X (Top) and PnP-MRF (Bottom) in both
dictionary generation and matching. Note the log scale. Time increases linearly
with the dictionary size, showing efficient parallelization. For this example,
with 240 x 240 image voxels, matching took much less time than dictionary
generation.

Table 1

T; accuracy comparison between snapMRF and EPG-X on phantom data. True
T; is the ground truth of T; based on the phantom manufacturer's doc-
umentation. snapMRF was quite accurate, even using an unoptimized sequence
and dictionary.

True T, EPG-X snapMRF snapMRF snapMRF
(ms) fixTr fixTr varTg varlg + Bt
90.9 128.5 127.7 111.5 94.2
126.9 155.0 155.0 146.5 127.9
176.6 173.1 173.1 172.3 153.8
244.2 280.4 280.4 265.0 225.0
336.5 342.7 342.7 326.5 319.2
458.4 471.2 471.2 471.9 468.3
608.6 602.7 601.2 625.0 622.1
801.7 771.5 770.4 818.5 813.5
1044.0 945.0 943.1 1032.3 1026.0
1332.0 1262.7 1263.1 1310.8 1306.7
1604.0 1568.8 1568.1 1607.3 1593.3
1907.0 1861.2 1861.9 1854.2 1828.8
2173.0 2043.1 2043.1 2091.9 2094.2
2480.0 2366.5 2366.2 2434.6 2416.3
err (%) 4.9 5.0 2.6 3.0

Magnetic Resonance Imaging 66 (2020) 248-256

Table 2

T, accuracy comparison between snapMRF and EPG-X on phantom data. True
T, column is the ground truth of T;. snapMRF was quite accurate, even using an
unoptimized sequence and dictionary.

True Ty EPG-X snapMRF snapMRF snapMRF
(ms) fixTg fixTg varTy varT + Bif
5.6 6.9 6.9 9.4 12.3
7.9 11.5 11.2 10.0 13.5
11.2 13.3 13.3 11.2 13.5
15.8 13.7 13.5 11.3 20.4
22.6 21.2 21.2 23.3 30.0
32.0 32.3 32.3 38.3 47.3
46.4 45.0 44.8 50.4 60.0
64.1 64.2 64.2 70.2 83.8
96.9 84.6 84.4 90.8 104.6
133.3 144.0 143.8 146.9 170.8
190.9 175.4 175.4 185.2 213.8
278.1 266.5 266.5 255.4 290.0
403.5 323.3 3235 343.7 407.7
581.3 474.0 474.2 453.5 531.5
Err (%) 16.9 16.9 17.9 9.3
Table 3

Running time comparison between snapMRF and EPG-X on both dictionary
generation and template matching. Note that snapMRF is much faster than EPG-
X.

Running time EPG-X snapMRF snapMRF snapMRF
(s) fixTr fixTr varTg varlg + Bf
phantom/dict 17,797.1 11.0 7.4 9.4
phantom/match 137.1 6.0 4.1 4.9
brain/dict 18,629.8 11.3 7.6 8.7
brain/match 143.6 6.1 4.2 4.6

than EPG-X.

We can see from Tables 1 and 2 that for a fixed Tr sequence,
snapMRF and EPG-X performed nearly identically, which is as expected
because both used the EPG model. For variable Ty sequence, the error
for T; went down to 2.6% while the error for T, remained the same.
When B;' effects were included, T; error remained low and T, error
reduced to 9.3%. The results indicate that including both variable Tx
and B;' effects may improve the accuracy of parameter maps.

Fig. 2 shows the maps of T, T» and proton density separately re-
constructed using snapMRF and EPG-X. To get a better view of the
regions of interest, a binary mask was generated using proton density
map by using Otsu's method to select the signal from the background
and then computing the convex hull of that mask to fill in gaps. The
final mask was applied to all the maps to mask out regions of low signal.
Furthermore, a circular mask centered in the middle of the map was
applied to the T; map and the T, map to highlight the regions of in-
terest. For display, the T; map was clamped to the range 0-2500 ms,
and the T, map was clamped to 0-800 ms.

As is shown in Fig. 2, for fixed a Tr sequence, snapMRF and EPG-X
generated visually the same parameters, which again illustrates that the
EPG model is implemented correctly in snapMRF. For variable Ty, the
T, map was improved while the T, map remained the same. When B;
effects were included, the T, was also improved.

3.3. Image quality

Fig. 3 shows an in vivo brain example using snapMRF to see if
snapMRF could generate clean in vivo parameter maps. A signal mask
was generated using the same method as in the phantom case and ap-
plied to all maps to remove parameter estimates from regions of low
signal. For display, the T, map was clamped to a range of 0-300 ms, and
the proton density map was clamped to 0-0.25. The running time is
shown in Table 3.

D. Wang, et al.

2500
2000
1500

1000

EPG-X fixTg

500

2500

2000

1500

1000

500

snapMRF fixTy

2500

2000

1500

1000

500

snapMRF varTgr

2500

2000

1500

1000

500

snapMRF varTg+B;"

0

Magnetic Resonance Imaging 66 (2020) 248-256

proton density

600

450

300

150

600

450

300

150

600

450

300

150

600

450

300

150

0 0.0

Fig. 2. Parameter accuracy comparison between snapMRF and EPG-X on phantom data. Top row: Parameter maps generated by EPG-X using fixed T sequence. From
left to right: Ty, T», and proton density, respectively. The second through the last rows are the maps generated by snapMRF using a fixed Ty sequence, a variable T
sequence and a variable T sequence with B calibration, respectively. Quantitative estimates of the T; and T, values are contained in Table 1 and Table 2. The
running time is shown in Table 3. In all the T; and T, maps, the background water filling the phantom was masked out for better visibility of the sample vials.

We can see from Fig. 3 that, in all cases, parameter maps were
generated with good quality. Again for the fixed T sequence, snapMRF
and EPG-X generated visually identical maps. For the variable Ty se-
quence, T; maps were smoother and proton density maps were darker
than for the fixed Ty case. When B;' effects were included, the T, map
became smoother, especially in the gray matter.

4. Discussion and conclusion

In this paper, we presented a new package called snapMRF, which
performs MRF dictionary generation and signal matching entirely on
the GPU. snapMREF is capable of accurately generating parameter maps
in real-time. Compared with other online open-source packages, dic-
tionary generation using snapMRF was 100-1000 x faster and signal
matching was 10-100 X faster. Additionally, snapMRF can handle more
complex pulse sequences flexibly, including variable Tg, T, and phase
(besides just flip angle), and it can match both off-resonance and
transmit B; inhomogeneities, if desired.

In Tables 1 and 2, snapMRF and EPG-X differed very slightly on the
fixed Tz sequence. We believe this may be a result of the fact that

snapMRF uses single precision floats while EPG-X uses double preci-
sion.

In conclusion, snapMREF is as fast as neural network inference (i.e.,
timescales of seconds) without the dependence on the sequence details.
Furthermore, if one still desires to use a neural network, the present
work can be used for dictionary generation. The enhanced speed of
snapMRF could potentially be used to decrease calculation time for
multiple locations experiencing different B;" amplitudes. This is ap-
plicable to variations in applied radiofrequency across the image, as
well as variations along the slice profile [23].

An advantage of EPG is that it is easy to incorporate other effects,
such as chemical shift, magnetization transfer [25], motion, diffusion,
slice profile, etc., which are essential in advanced imaging techniques.
In this work, snapMRF was used to model and fit B;" effects in addition
to relaxation parameters using a variable Tg MRF sequence with fixed
Tg. Future work could extend snapMRF to include additional effects
such as those mentioned above.

All the experiments above were run on a single GPU card, but
snapMRF could be further accelerated with asynchronous workload
splitting across multiple GPUs, such as used in Ref. [13]. In theory,

D. Wang, et al. Magnetic Resonance Imaging 66 (2020) 248-256

proton density

4000 300 0.25
IS 3200 - 0.20
e 2400 0.15
< 150
O 1600 0.10
w 800 75 0.05
0 0 0.00
4000 300 0.25
o
= 3200 225 0.20
X
o 2400 0.15
o 150
= 1600 0.10
1
o 800 75 0.05
(V)]
0 0 0.00
4000 300 0.25
o
=
= 3200 - 0.20
e 2400 0.15
o0 150
s 1600 0.10
o
® 800 75 0.05
(V)]
0 0 0.00
+ 4000 300 0.25
s
3200 0.20
= 225
5 2400 0.15
> 150
[N
L 1600 0.10
. 800 75 0.05
(0]
& 0 0 0.00

Fig. 3. Comparing snapMRF and EPG-X on an in vivo brain. Top row: Parameter maps generated by EPG-X using a fixed Tr sequence. From left to right: T;, T, and
proton density, respectively. The second through the last rows are the maps generated by snapMRF using a fixed Tr sequence, a variable Ty sequence and a variable
Tr sequence with B;t calibration, respectively. The running time is shown in Table 3. Note that all cases generated parameter maps with high quality.

further acceleration proportional to the number of GPU cards could be Acknowledgments
achieved because signal generation is parallelized with respect to atoms
and matching is performed for each voxel independently. We gratefully acknowledge funding from NIH RO1 DK105371,NIH

The version of snapMRF used here can be obtained by cloning the RO1 EB017230, andNIH K25 CA176219.
snapMRF repository [26] and checking out the tag v0.0.1.

Appendix A. Description of CUDA kernels

In Nvidia's Compute Unified Device Architecture (CUDA), a kernel is a special function that executes in parallel on the GPU, with one instance of
the function called per GPU thread. It is then natural to divide up algorithms according to data processing steps, so that each parallelizable step
becomes one kernel. We now describe the kernels contained in snapMREF.

init_rf pulse () initializes the magnetization with state [0,0,1]” by default and applies an inversion decay and initial hard pulse, as specified
by the flip angle alpha and phase phi in degrees and inversion time TI in ms. The input natoms is the number of atoms, nstates is the number of
states in the state matrix, and *d_w is the output configuration state matrix.

fill transition matrix () computes the elements of the transition matrix *d_ T m with flip angles @ and RF pulse phases ® which are saved
in the input array *d_mrf. The transition matrix *d T m corresponds to the T operator in the EPG algorithm, and index is the time index of the
echo.

apply rf pulse () multiplies the transition matrix *d_T m and the state matrix *d_w and saves the result in the state matrix *d_w. The
single-precision, complex matrix multiplication is conducted using the built-in cuBLAS function cublasCgemm ().

shift phase () applies an in-place phase shift for B, to the transverse components of the state matrix *d_w.

253

D. Wang, et al. Magnetic Resonance Imaging 66 (2020) 248-256

save atom() saves the most recent echo intensities from the state matrix *d_w to the dictionary *d_atoms. The input nreps is the number of
times points of the sequence, and index is the time index of the echo.

decay signal () applies T; and T, decay to the state matrix *d_w within a certain time interval and saves the result back in *d_w. Four valid
values of type for the time intervals are available: T (type=1), Tr — Tg (type=2), Tg/2 (type=3), and Tgr (type=4). Here Tg and Ty are contained
in the pointer *d_mrf while T; and T, are contained in *d_params. This kernel corresponds to the E operator in the EPG algorithm.

dephase gradients () applies dephasing to the state matrix *d_w caused by the intra-voxel gradient and saves the shifted state to *d_w. This
kernel corresponds to the shift operator S in the EPG algorithm.

Appendix B. Unit tests

Unit tests are simple test cases that can be validated to infer coded correctness and are useful for increasing the reproducibility of computational
research. The normal result of unit tests is for them to all pass. If one or more fail, that can signal a code bug or algorithm mistake. Seven unit tests
based on simple pulse sequences with analytic solutions and one test based on dictionary matching were performed in snapMRF.

All the unit tests are contained in the source file test.cu. Table A.1 shows the parameters used for each echo. For all the sequences, B, = 0 for
simplicity. For more information about the echoes, please refer to Refs. [4] and [27].

Table A.1
Parameters used for unit tests. Six different sequences were chosen in the unit test, each with a different set of parameters. The symbol “n/a” means that the
parameter is not applicable for that test. The notation rand(a,b) means the parameter was chosen randomly between a and b.

Echo Type a (deg) @ (deg) T; (ms) T, (ms) Tg (ms) Tg (ms)
SE g S % -0 600 100 25 1000
SR g - . % = 600 100 1 500
FSE %_JT”_,. g—»o—» n/a n/a 0 0
FSE +relax Tz L 600 100 25 50
FISP % N 0—- 1000 100 5 10
SSFP rand(0,7/3) 0—- 100, 200 20, 40 rand(3.5, 16

7.5)

Unit test 1: Spin echo

In this subsection, we show in detail how to calculate the magnetization response using EPG. The calculation for other echoes is similar to the
spin echo except that the corresponding parameters and operators used are different.

First, we tested a simple spin echo sequence, which consists of a 90-deg pulse (@ = 5/2) about the y-axis (& = n/2) followed by a 180-deg
refocusing pulse about the x-axis (® = 0) at Tg. Here, T; = 600 ms, T = 100 ms, Tz = 25 ms and Tg = 1000 ms. The corresponding host function in
snapMREF is epg_se (). Note here that the meaning of Tg is somewhat different than in traditional spin echo terminology. In traditional spin echo,
the echo time is the time between the initial 90-deg pulse and the readout. snapMRF, however, is optimized for simple representation of steady-state
sequences, so the echo time must be defined as the time between the 180-deg inversion and the readout. To convert to standard spin-echo Tg you can
simply double the Ty here. The same situation also applies for unit test 4.

First, we have the transition matrices:

05 —-051
Ty(90°) =|-05 05 1
—-05 —-050 (B.1)
and
01 O
T,(180)=|1 0 o0 |.
00 -1 (B.2)
Starting with the equilibrium magnetization, the initial state matrix (init rf pulse())is
Q(t<0)=1[o,0,1]". (B.3)
At t = 0, the 90-degree pulse (apply rf pulse ()) changes the state matrix to be
1
Qt=0)=T,0900Q(t <0)=]1|.
0 (B.4)

Next, all the states are shifted up by 1 (dephase gradients ()) followed by relaxation for Tg (decay signal ()):

D. Wang, et al. Magnetic Resonance Imaging 66 (2020) 248-256

Q(t =Ty —) =ESQ(t = 0)

01
=El0 O
00

0 e~ TE/T
= 0 0
1-e®h 0

(B.5)
Then the 180-degree refocusing pulse is applied:

Q=T +) =T.(180)Q@(=Tz —)

0 0
= 0 e~ T/
e -1 0

(B.6)
Again all states are shifted up by 1, followed by relaxation for Ty to read the spin echo:
Q=T =ESQUt=Ts +)

=E
e~ /T2 0
e~ /T2 0
e /L 1 o

(e—TE/TZ 0

= (e*TE/TZ) 0

(e™m—1)" o

o © © o

(=]

(B.7)

Thus the echo intensity is (e”/%)? = [exp(25/100)]> = 0.6065.

Unit test 2: Saturation recovery

This sequence consists of 60-deg excitation pulses about the y-axis (® = 5/2) equally spaced with interval Tr. Here T; = 600 ms, T» = 100 ms,
Tg = 1 ms and Tr = 500 ms. The corresponding host function in snapMRF is epg sr ().

Similar to the spin echo, we also start with equilibrium magnetization of [0,0,1]7, apply RF pulse, decay for time interval Tg, read the echo, and
then decay for time interval T — Tg. This is repeated ten times, which corresponds to ten successive pulses, and the following signal values result:
[0.857, 0.674, 0.631, 0.622, 0.620, 0.620, 0.620, 0.620, 0.620, 0.620]. We can see that after several pulses the echo intensity reaches a steady state
of 0.620.

Unit test 3: Fast spin echo without relaxation

The third sequence we tested was a turbo spin echo sequence with constant 120-deg refocusing flip angles, neglecting relaxation effects. To obey
the CPMG condition, the 90-deg RF pulse has a phase of 7/2, whereas all 120-deg refocusing pulses have a phase of 0. Since relaxation effects were
omitted, T; and T, were infinity in theory. In the code, however, that was not possible, so Tz and Ty were set to 0, and T; and T, were set randomly,
and were not used. The corresponding host function in snapMRF is epg tse ().

This sequence corresponds to repeating a spin echo several times, but neglecting relaxation effects. As a result, only the transition operator T and
dephasing operator S were needed in this case. Here we only calculated the first three echoes, but the calculation can continue as the echo intensity
gradually reaches the pseudo steady state. The final echo intensities are [0.750, 0.938, 0.844].

Unit test 4: Fast spin echo with relaxation

The fourth sequence was also a fast spin echo sequence except that relaxation effects were considered. It consists one 90-degree excitation pulse
followed by eight 180-degree refocusing pulses (ETL = 8). Here T; = 600 ms, T, = 100 ms, Tz = 25 ms and Tz = 50 ms. The corresponding host
function in snapMRF is epg tse ().

The calculation is similar to the last case except that the relaxation operator E has to be used. The final echo intensities were [0.607, 0.368, 0.223,
0.235, 0.082, 0.0500, 0.0302, 0.0183, 0.0111, 0.0068].

Unit test 5: Rapid gradient echo

The fifth sequence we tested was an Fy-type SSFP sequence (commonly known as FISP) which has gradient spoiling but no RF spoiling. It has a
constant flip angle of 30 deg around the x-axis (® = 0) with equally spaced Tk. Here T; = 1000 ms, T> = 100 ms, Tz = 5 ms and Tz = 10 ms. The
corresponding host function in snapMRF is epg_fisp ().

Here, the calculations for the transition matrix T and the relaxation operator E were like the former examples, but the shift operator S was tricky.
If we followed the EPG method by rote to simulate this sequence, all states would get shifted by — 1 and 1 before the readout. But since the net effect
of the gradient before readout is nil on the configuration states, applying the shift operator S twice is pointless [4]. Thus here the shift operator S was
used only once per T, and the echo intensity was computed (assuming T» > T in this case) as

Q(t = Tp) = e ER2Q(t = 0). (B.8)

The final results were [—0.4756i, —0.4125i, —0.3358i], where i = +/—1.
Unit tests 6 and 7: Inversion-recovery balanced steady-state free precession
The last sequence-based unit tests we performed were an inversion-recovery balanced steady-state free procession (IR-bSSFP) sequence using

255

D. Wang, et al.

Magnetic Resonance Imaging 66 (2020) 248-256

both Bloch simulation and EPG. The difference between this sequence and the one used in Unit Test 5 is the addition of an inversion recovery period
at the beginning. For both models, we tested a dictionary containing four atoms with five time points each. The corresponding host functions are
epg_ssfp() and roa ssfp () respectively.

Unit test 8: Dictionary self-matching
An additional unit test for matching was performed using the dictionary generated by EPG. Ten different voxels were selected randomly from the

dictionary and matched to the dictionary. The corresponding host function is MRF_match (). The matched atoms were validated to ensure that the
matched parameters were correct.

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8

=

o

[}

[10]

[11]

[12]

Ma D, Gulani V, Seiberlich N, Liu K, Sunshine J, Duerk J L. Magnetic resonance
fingerprinting. Nature 2013;495(7440):187-92. https://doi.org/10.1038/
naturel1971.

European Society of Radiology (ESR). Magnetic resonance fingerprinting — a pro-
mising new approach to obtain standardized imaging biomarkers from MRI. Insights
into Imaging 2015;6(2):163-5. https://doi.org/10.1007/s13244-015-0403-3.
Bipin Mehta B, Coppo S, McGivney D, Hamilton J, Chen Y, Jiang Y. Magnetic re-
sonance fingerprinting: a technical review. Magn Reson Med 2019;81(1):25-46.
https://doi.org/10.1002/mrm.27403.

Weigel M. Extended phase graphs: dephasing, RF pulses, and echoes—pure and
simple. J Magn Reson Imaging 2015;41(2):266-95. https://doi.org/10.1002/jmri.
24619.

Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold M A. MR fingerprinting using fast
imaging with steady state precession (FISP) with spiral readout. Magn Reson Med
2015;74(6):1621-31. https://doi.org/10.1002/mrm.25559.

Malik S J, Teixeira R P A, Hajnal J V. Extended phase graph formalism for systems
with magnetization transfer and exchange: EPG-X: extended phase graphs with
exchange. Magn Reson Med 2018;80(2):767-79. https://doi.org/10.1002/mrm.
27040.

Cloos M, Knoll F, Zhao T, Block K, Bruno M, Wiggins G C. Multiparametric imaging
with heterogeneous radiofrequency fields. Nat Commun 2016;7:12445. https://doi.
org/10.1038/ncomms12445.

McGivney D F, Pierre E, Ma D, Jiang Y, Saybasili H, Gulani V. SVD compression for
magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging
2014;33(12):2311-22. https://doi.org/10.1109/TMI1.2014.2337321.

Cauley StephenF, Kawin Setsompop, Ma Dan, Yun Jiang, Ye Huihui, Elfar
Adalsteinsson, Wald L L. Fast group matching for MR fingerprinting reconstruction.
Magn Reson Med 2015;74(2):523-8. https://doi.org/10.1002/mrm.25439.

Cohen O, Zhu B, Rosen M S. MR fingerprinting deep reconstruction network
(DRONE). Magn Reson Med 2018;80(3):885-94. https://doi.org/10.1002/mrm.
27198.

Seprensen T S, Schaeffter T, Noe K @, Hansen M S. Accelerating the nonequispaced
fast Fourier transform on commodity graphics hardware. IEEE Trans Med Imaging
2008;27(4):538-47. https://doi.org/10.1109/TMI.2007.909834.

Knoll F, Unger M, Diwoky C, Clason C, Pock T, Stollberger R. Fast reduction of
undersampling artifacts in radial MR angiography with 3D total variation on gra-
phics hardware. Magn Reson Mater Phys, Biol Med 2010;23(2):103-14. https://doi.
org/10.1007/s10334-010-0207-x.

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Smith D S, Sengupta S, Smith S A, Welch E B. Trajectory optimized NUFFT: faster
non-Cartesian MRI reconstruction through prior knowledge and parallel archi-
tectures. Magn Reson Med 2019;81(3):2064-71. https://doi.org/10.1002/mrm.
27497.

Vasilevsky N A, Brush M H, Paddock H, Ponting L, Tripathy S J, LaRocca G M. On
the reproducibility of science: unique identification of research resources in the
biomedical literature. PeerJ 2013;1:e148. https://doi.org/10.7717 /peerj.148.
Collins F S, Tabak L A. Policy: NIH plans to enhance reproducibility. Nature
2014;505(7485):612-3. https://doi.org/10.1038/505612a.

Open Science Collaboration. Estimating the reproducibility of psychological sci-
ence. Science 2015;349(6251). https://doi.org/10.1126/science.aac4716.

Begley C G, Ioannidis J P. Reproducibility in science. Circ Res 2015;116(1):116-26.
https://doi.org/10.1161/CIRCRESAHA.114.303819.

Smith D S, RawArray file format reference implementation : http://github.com/
davidssmith/ra 2018. [Online; accessed 12-May-2018].

Keenan K E, Stupic K F, Boss M A, Russek S E, Chenevert T L, Prasad P V.
Comparison of T1 measurement using ISMRM/NIST system phantom In: ISMRM
24th Annual Meeting. 2016. p. p.3290.

Pipe J G, Zwart N R. Spiral trajectory design: a flexible numerical algorithm and
base analytical equations. Magn Reson Med 2014;71(1):278-85. https://doi.org/
10.1002/mrm.24675.

Uecker M, Tamir J I. Berkeley advanced reconstruction toolbox: version 0.4.01;
2017. 10.5281/zenodo.592960.

Zwart N R, Johnson K O, Pipe J G. Efficient sample density estimation by combining
gridding and an optimized kernel. Magn Reson Med 2012;67(3):701-10. https://
doi.org/10.1002/mrm.23041.

Ma D, Coppo S, Yong Chen, McGivney D F, Jiang Y, Pahwa S. Slice profile and B1
corrections in 2D magnetic resonance fingerprinting. Magn Reson Med
2017;78(5):1781-9. https://doi.org/10.1002/mrm.26580.

Ostenson J, Damon B M, Welch E B. Mr fingerprinting with simultaneous T1, T2,
and fat signal fraction estimation with integrated b0 correction reduces bias in
water T1 and T2 estimates. Magn Reson Imaging 2019;60:7-19. https://doi.org/10.
1016/j.mri.2019.03.017.

Hamilton J I, Griswold M A, Seiberlich N. Mr fingerprinting with chemical exchange
(MRF-X) to quantify subvoxel T1 and extracellular volume fraction. J Cardiovasc
Magn Reson 2015;17(1):W35. https://doi.org/10.1186/1532-429X-17-S1-W35.
Wang D, Ostenson J, Smith D S. snapMRF repository. : http://github.com/
chixindebaoyu/snapMRF; 2019 [Online; accessed 03-Mar-2019].

Hargreves B. Bloch equation simulation. : http://mrsrl.stanford.edu/brian/bloch;
2019 [Online; accessed 25-January-2019].

https://doi.org/10.1038/nature11971
https://doi.org/10.1038/nature11971
https://doi.org/10.1007/s13244-015-0403-3
https://doi.org/10.1002/mrm.27403
https://doi.org/10.1002/jmri.24619
https://doi.org/10.1002/jmri.24619
https://doi.org/10.1002/mrm.25559
https://doi.org/10.1002/mrm.27040
https://doi.org/10.1002/mrm.27040
https://doi.org/10.1038/ncomms12445
https://doi.org/10.1038/ncomms12445
https://doi.org/10.1109/TMI.2014.2337321
https://doi.org/10.1002/mrm.25439
https://doi.org/10.1002/mrm.27198
https://doi.org/10.1002/mrm.27198
https://doi.org/10.1109/TMI.2007.909834
https://doi.org/10.1007/s10334-010-0207-x
https://doi.org/10.1007/s10334-010-0207-x
https://doi.org/10.1002/mrm.27497
https://doi.org/10.1002/mrm.27497
https://doi.org/10.7717/peerj.148
https://doi.org/10.1038/505612a
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1161/CIRCRESAHA.114.303819
http://github.com/davidssmith/ra
http://github.com/davidssmith/ra
http://refhub.elsevier.com/S0730-725X(19)30380-7/rf0090
http://refhub.elsevier.com/S0730-725X(19)30380-7/rf0090
http://refhub.elsevier.com/S0730-725X(19)30380-7/rf0090
https://doi.org/10.1002/mrm.24675
https://doi.org/10.1002/mrm.24675
https://doi.org/10.1002/mrm.23041
https://doi.org/10.1002/mrm.23041
https://doi.org/10.1002/mrm.26580
https://doi.org/10.1016/j.mri.2019.03.017
https://doi.org/10.1016/j.mri.2019.03.017
https://doi.org/10.1186/1532-429X-17-S1-W35
http://github.com/chixindebaoyu/snapMRF
http://github.com/chixindebaoyu/snapMRF
http://mrsrl.stanford.edu/brian/bloch

	snapMRF: GPU-accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs
	Introduction
	Methods
	snapMRF code overview
	Code timing and parameter accuracy
	Image quality

	Results
	Code timing
	Parameter accuracy
	Image quality

	Discussion and conclusion
	Acknowledgments
	Description of CUDA kernels
	Unit tests
	Reference

