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Chapter 1

Introduction

For many engineering applications, controlling heat transfer is critical to ensuring high per-

formance. This remains true both at the macroscale and the nanoscale. Key to under-

standing heat transfer at any scale is the thermal conductivity, or ease with which heat can

flow through a material. At the macroscale high thermal conductivity allows for the rapid

dispersal of heat, while low thermal conductivity materials can be used for thermal insula-

tion. At the nanoscale, maintaining high electrical conductivity while reducing the thermal

conductivity is critical to creating efficient thermometric materials. For microelectronics, as

the size is reduced, cooling becomes an important limiting factor on performance.

Understanding thermal conductivity is critical for designing materials and devices that

control or manipulate heat transfer. At the nanoscale, the influence of surfaces introduces

several effects that can alter the thermal conductivity. The main influence of surfaces is seen

through phonon scattering, however other effects have been reported. In particular, surface

effects in many materials cause the elastic modulus to change locally. At the nanoscale where

surfaces can dominate the physics, the effective properties of the system can assume values

more like the surface than the bulk.

From a continuum understanding of waves in solids, the speed of phonons, the major

carriers of thermal energy in non-metallic solids, can be expressed as vg =
√
E/ρ where E

is the elastic modulus and ρ is the density. In silicon (Si), reductions in the elastic modulus

have been implicated in measurements of very low thermal conductivity for nanostructures

with dimensions of about 20 nm or smaller [2–4], where the effect has been termed acoustic
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softening.

In addition to Si, a number of other materials have effective elastic moduli that are

size dependent—some are even known to stiffen with reduction in size. However, there is

far less experimental evidence for either acoustic softening or acoustic stiffening in other

nanomaterials [4]. This leads one to ask when do effects from changes in the elastic modulus

become apparent at the nanoscale? And, more important to this research, how does the size

dependence of the elastic modulus at the nanoscale manifest itself in thermal conductivity?

In this work I use both modeling and molecular dyanamics (MD) simulations to demon-

strate that the size dependence of the elastic modulus at the nanoscale should impact not

only the velocity of phonons, but also the phonon heat capacity and the phonon scattering

rates—the three main factors that govern thermal conductivity. While a surface level con-

sideration of acoustic softening or acoustic stiffening effects would indicate that the thermal

conductivity decreased or increased proportional to the square root of the change in the

elastic modulus, respectively, the consideration of effects beyond the group velocity, leads

to competing impacts on thermal conductivity. It is the combination of these effects that

is responsible for the total influence of acoustic softening or acoustic stiffening on thermal

conductivity. Understanding how these effects combine offers opportunities to target mate-

rials with a high potential to display acoustic softening/acoustic stiffening effects for further

study.

1.1 Nanoscale Elastic Modulus

Key to understanding acoustic softening and acoustic stiffening effects in nanostructures is

the size dependence of the elastic modulus in nanowires. The elastic modulus, or Young’s

modulus, measures the resistance of a material to non-permanent deformation. In Si a

number of experiments have investigated a decrease in the elastic modulus as a function of

decreasing nanostructure size. When deformed elastically, structures store energy in both the

bulk and the surface but at different rates. For structures with sufficiently large surface-area-
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to-volume ratios, surface elasticity contributes significantly to the effective elastic modulus.

Early work by Miller and Shenoy [5] indicated that for Si, the increasing influence of the

surface elasticity should cause a softening effect. In Si, studies of the elastic modulus of nano-

structures employing molecular dynamics and ab initio methods have found size-dependent

softening of this type [6–12], but numerical analyses tend to predict the onset of softening

occurring at much smaller sizes, and to a lesser degree, than observed in experiments [7,

13–15]. To reconcile the discrepancies between theoretical calculations and experimental

work, several explanations have been proposed, including native oxide layers [14, 16, 17] and

manufacturing defects [13, 14].

Experimentally, size-dependent reductions in the effective elastic modulus have been

reported for a number of Si nanostructures, including wires [15, 16, 18, 19], nanotubes [2],

and cantilevers [13, 20]. In work by Yang et al. [3] both the effective elastic modulus and

thermal conductivity were measured for FIB manufactured nanoribbons. In both the work

on nanotubes from Wingert et al. and the work on nanoribbons by Yang et al. thermal

conductivity and the elastic modulus decrease with decreasing nanostructure size, and the

thermal conductivity decreases below what would be expected from boundary scattering

alone implicating softening in the decreased thermal conductivity value.

Silicon is far from the only material that exhibits a size-dependent elastic modulus at

the nanoscale. Recent reviews have identified significant experimental evidence for size-

dependent elastic moduli at the nanoscale materials including Ag, Au, Cu, GaN, GaAs,

and ZnO [21]. Nanoscaled ZnO has been explored for use in various applications, including

sensing applications [22], solar cells [22, 23], and thermoelectric applications [24]. In contrast

to Si, stiffening in ZnO nanowires has been reported with much more consistency [21].

Using a resonance method Chen et al. measured the elastic modulus of nanowires down

to 50 nm in diameter and found an increase in the Young’s modulus, especially for wires

below 120 nm [25]. Further experimental investigations using resonance, nanoscale tensile,

nanoindentation, and AFM manipulation methods have demonstrated the increase in the
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elastic modulus with reduced wire diameter [26–29]. Additionally, shear and buckling moduli

have also been observed to increase with decreasing diameter [26, 28].

Results comparing the tensile and buckling modulus for nanowires have found a stronger

diameter dependence for the buckling modulus than for the tensile modulus [28], indicating

a surface driven effect. Treating the surface effects as a stiffened surface region, core-shell

type models have proven capable of capturing a large portion of experimental results [25, 26,

29, 30]. For wires exposed to atmosphere, a 3-shell model provides an improved fit indicating

that there is an oxygen-affected region at the surface that causes an increase in the stiffening

effect [29].

To explain these effects, many researchers have turned to the change in coordination

number at the surface of the ZnO nanowires [25–29, 31] which causes a relaxation of the

surface. The change in the bond length at the surface due to the altered coordination

number has been correlated with the increased surface elastic modulus [32]. Calculations of

the change in the bond length at the surfaces from fitted elastic modulus data are in line

with observations [25].

Molecular dynamics simulation of ZnO nanowires’ elastic moduli have also shown that

the elastic modulus is increased as the diameter is reduced [27, 33] in contrast to silicon

nanowires. Combined experimental and computational investigation has shown good quan-

titative agreement between stiffening predicted by MD and that observed experimentally [27].

Analysis of the layer-by-layer elastic modulus confirms that the surface layers are strongly

stiffened, while there is a small amount of softening in the center of the nanowire [27], indi-

cating that the surface effects responsible for stiffening seen in experiment are captured by

MD. The combination of strong experimental evidence for stiffening, and good agreement

with computational methods makes ZnO nanowires a good system for exploring the effects

of surface stiffening on thermal conductivity.
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1.2 Nanoscale Thermal Conductivity

Thermal conductivity is one of the most important properties of underlying heat transfer. In

the presence of a temperature gradient, heat flows from hot to cold, driven by the difference

in temperature. This flow can be described by Fourier’s law,

q = −κ∇T , (1.1)

where q is the heat flux density, in W ·m−2, ∇T is the temperature gradient, and κ is the

thermal conductivity, in W ·m−1 ·K−1. The thermal conductivity is a material property that

represents the ease with which thermal energy can move through a material. For a given

temperature gradient, the higher the thermal conductivity the more heat will flow across the

gradient.

In materials without significant electrical conductivity heat is dominantly carried by

vibrations of the crystal lattice, which when quantized are termed phonons1. From the point

of view of phonons, thermal conductivity can be modeled as [34]

κ =
1

3

∑
i

∫
Cv(ω)vg(ω)l(ω)dω, (1.2)

where Cv is the phonon heat capacity, vg is the group velocity, ω is the phonon frequency,

and l is the phonon mean free path. The sum is taken over the branches of the phonon

dispersion. This model, sometimes termed the kinetic model, demonstrates the main factors

that influence the lattice thermal conductivity. The phonon heat capacity Cv indicates how

much energy each phonon mode can carry; the group velocity, the speed at which the phonon

can move; and the mean free path the distance the phonon can travel before a scattering

event. The integral is taken over the phonon frequencies ω as the specific heat, group velocity

1In materials with significant electrical conductivity, electrons can carry significant thermal energy. In
this work we focus on semiconductors and lattice (phonon) thermal conductivity and so ignore any electrical
contribution to thermal conductivity.
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and mean-free path are spectral quantities.

The phonon frequency is calculated using the dispersion relation. The dispersion relation

relates the phonon wave vector q to the phonon frequency and describes the allowable phonon

frequencies2. In general the dispersion relation is examined over the first Brillouin zone

(FBZ), as wave vectors outside of the FBZ convey the same information as wave vectors

inside it. From the dispersion relation many parameters may be deduced including the

phonon group and phase velocities which are key to this work. The group velocity can be

found as vg(ω) = dω/dq and at the center of the FBZ is equivalent to the speed of sound in

the material.

In nanostructures, the thermal conductivity is mainly limited by the mean free path of

phonos that scatter off the surfaces. Scattering events restrict heat flow, reducing the thermal

conductivity, and surfaces create site where scattering can occur. Scattering can also occur

due to impurities (such as interstitial atoms, or isotropic differences), dislocations, and grain

boundaries. Phonon-phonon scattering, or scattering processes that involve multiple phonons

restrict thermal conductivity as well and are responsible for much of the high temperature

behavior of thermal conductivity. In general, the scattering rates can be expressed as power

functions of the phonon frequency.

Considering experimental investigations of nanoscale thermal conductivity in Si, initial

measurements of single nanowires by Li et al. demonstrated that the thermal conductivity

was significantly reduced from the bulk value [36]. For wires with diameters greater than

22 nm, the reduced thermal conductivity could be explained through classical surface scat-

tering effects. However, for 22 nm wires, classical explanations did not suffice and deviations

from a T 3 low temperature dependence were found. Further work by Chen et al. mea-

sured the thermal conductance of similarly thin chemical vapor deposition (CVD) grown

silicon nanowires with diameters ranging from 15 nm to 50 nm [37]. The measurements con-

firmed the deviation from a T 3 low temperature dependence, which Chen et al. attributed

2For more information on calculating a dispersion relation and the FBZ see a condensed mater textbook
such as Ashcroft & Mermin [34], or a work on lattice dynamics such as [35]
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to frequency-dependent boundary scattering; however, their model consistently predicted

higher thermal conductivity near room temperature than observed. Work by Wingert et al.

using Ge and Ge-Si core-shell nanowires with diameters of 20 nm additionally observed highly

reduced thermal conductivity and modifications to the temperature dependence of thermal

conductivity [38]. They found an enhancement to thermal conductivity at low temperature,

and a reduction at room temperatures for the Ge-Si core-shell nanowires.

Subsequent work by Wingert et al. examining crystalline Si nanotubes found thermal

conductivities below the limit for boundary scattering and below measured values for amor-

phous silicon [2]. To explain these highly reduced thermal conductivities, Winger et al.

proposed acoustic softening. Building on theoretical and experimental evidence of the size

dependence of the elastic modulus in nanostructures, Wingert et al. hypothesized that the

phonon group velocity, which is proportional to the elastic modulus, may be reduced for small

wires, significantly contributing to reduced thermal conductivity. They also measured sig-

nificantly reduced elastic moduli for their Si nanotubes using nanoscale tensile tests, lending

credence to the acoustic softening hypothesis.

Thermal conductivity can be approximated as κ = 1
3
Cvvl, where v is the phonon group

velocity and l is the MFP. This expression is similar to equation 1.2 but does not contain

the spectral dependence. Although this equation is not used for calculations, it is neverthe-

less a useful instructional tool. In nanostructures, reduced thermal conductivity is usually

attributed to a reduced MFP arising from surface scattering; in contrast, acoustic softening

causes additional reductions in the thermal conductivity of nanostructures that arise from

a reduction in v. In the continuum limit, the speed of sound (and thus the long wavelength

phonon group velocity) is proportional to
√
E where E is the Young’s modulus, implying

that a softening of the material should induce a reduction in the phonon group velocity.

Much as for nanoscaled silicon, in nanoscaled ZnO measurements of thermal conductivity

have shown the thermal conductivity of nanowires to be reduced by more than an order of

magnitude from bulk [39, 40]. In ZnO nanowires, the peak thermal conductivity has been
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observed to be shifted to higher temperatures than in bulk[39]. Bui et al. found that the

thermal conductivity of ZnO nanowires reduced faster with diameter than would be predicted

by Casimir limit based scattering models, while the addition of amorphous-carbon shells to

the nanowires was not seen to alter significantly the thermal conductivity [39]. Experiments

have shown that thermal conductivity of ZnO nanowires can be significantly reduced by ion

implantation [40].

Molecular Dynamics investigations of ZnO nanobelts have also indicated a significant

reduction in the thermal conductivity with decreased diameter [41–45]. The simulations

can be fit with the equation for phonon radiative transport using boundary, three-phonon,

and four-phonon processes [42]. In these nanobelts, thermal conductivity and the phonon

group velocity share similar trends with temperature. Jiang, Park and Rabczuk performed

MD simulations of thermal conductivity for ZnO nanowires and nanobelts, with various

reconstructions to the polar surfaces. They found that the thermal conductivity of [1 1 0 0]

oriented nanowires with polar surfaces stabilized by charge reduction, and the conductivity of

the hexagonal nanowires were both significantly less than for [1 1 0 0] oriented ZnO nanowires

with polar surfaces that were allowed to under go surface reconstruction, as the surface

reconstruction reduced scattering of the bending modes by limiting the twisting of the wires

[41].

By studying the thermal conductivity effects of stiffening in ZnO nanowires, we are able to

elucidate competing effects on thermal conductivity of various factors influenced by stiffening

and to note under which circumstances and at which size scales thermal conductivity will be

most strongly affected. This competition in part and the small size scale needed to produce

large thermal conductivity effects may explain the noted [4] lack of experimental evidence

for stiffening in thermal conductivity measurements of ZnO.

Using dispersion relations that incorporate acoustic softening or acoustic stiffening, I was

able to explore the influence of the size dependence of the elastic modulus at the nanoscale

on the factors of thermal conductivity. For the first time I considered the influence of factors
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other than group velocity, namely heat capacity and scattering and explored the relative

magnitude of effects on these factors in multiple materials. My efforts will help to advance

a better understanding of the full scope of softening and stiffening phenomenon affecting

nanoscale thermal transport. More importantly, this understanding can help identify mate-

rials that should demonstrate acoustic softening/acoustic stiffening effects for further study.
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Chapter 2

Modeling Softening

Key to this work is the ability to include the effects of acoustic softening and acoustic

stiffening in models of thermal conductivity. We can start to model thermal conductivity in

Si and ZnO nanostructures by considering the frequency-dependent Landauer-like equations

proffered by Callaway and Holland [46, 47],

κ =
1

3

∫
Cv(ω)vg(ω)Fg(ω)l(ω)dω, (2.1)

where Cv(ω) is the spectral phonon heat capacity, vg(ω) the phonon group velocity, and

l(ω) the mean free path, all functions of ω, the phonon frequency. Fg(ω) is the geometric

reduction function used for nanoribbons and is added to the formulation to capture the

influence of high aspect ratios on boundary scattering. As an implementation detail, the

integral in equation 2.1 is taken with respect to the wave vector (q) over the FBZ. The

phonon frequency and wave vector are related to each-other through the dispersion relation

ω(q).

The effects of acoustic softening/acoustic stiffing act primarily through the dispersion

relation. From continuum elastic theory, the speed of sound in a solid can be related to

the elastic modulus E as vs =
√
E/ρ, where ρ is the density of the material. From the

perspective of the dispersion relation, vs represents the slope of the dispersion relation close

to the center of the FBZ, so changes to the elastic modulus should result in changes to the

dispersion relation. Since all the terms in Eq. 2.1 are dependent on phonon frequency ω(q),
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the addition of softening to the dispersion relation, should result in effects arising in all of

the frequency-dependent terms.

2.1 Born von Karmen Slack Model

To employ this model for thermal conductivity, we need a phonon dispersion for the material

in question. For both softened and stiffened nanostructures we use a modified quarter-sine

wave dispersion, which has been called the Born von Karman Slack (BvKS) model. This

model has been found to accurately reproduce the thermal conductivity and accumulation

functions in Si and Si/Ge nanowires [48, 49].

When stiffening or softening is added to the BvKS, the phonon dispersion function be-

comes

ω = 2πFsvbq0 sin

(
πq

2q0

)
, (2.2)

where the dispersion function is modeled as a quarter sine wave and fitted to the average

bulk speed of sound [48]

1

v2
b

=
1

3

(
1

v2
L

+
2

v2
T

)
, (2.3)

where vL is the longitudinal speed of sound, and vT the transverse speed of sound. q0, the De-

bye cutoff wave vector, is determined from the atomic density. Fs is the stiffening/softening

factor and is the ratio of the modified speed of sound to the bulk speed of sound vb. Using

a continuum analysis, this ratio can be expressed in terms of the elastic modulus as

Fs =

√
Enano

Ebulk

. (2.4)

An example of the BvKS dispersion with and without acoustic softening is shown in Fig-

ure 2.1 for Si.
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Figure 2.1: An example of the BvKS dispersion with and without acoustic softeningfor
silicon.

2.2 Stiffening/Softening Model

In the case of the modified BvKS model, the effect of a size dependent elastic modulus is

included through Fs. In the case of acoustic softening in Si, as the size of the wires decreases,

Fs should decrease from approximately 1.0 at 50 nm to around 0.5 for 20 nm wires. For a

stiffened wire, such as a ZnO nanowire, Fs will be greater than 1 and increase as the size of

the wires decreases.

In ZnO, core-shell models for the nanoscale elastic modulus have found widespread adop-

tion. For ZnO nanowires, the change in the elastic modulus with reduced size arises from

the change in the coordination number of the surface atoms. This change reduces the bond

order, reducing the bond length, and increasing the bond strength[32]. The end result is an

increase in the overall elastic modulus. As the change in the elastic modulus is limited to

the surface region, the effective elastic modulus of the nanowire as a whole can be treated

using a composite model, consisting of a bulk-like core region and a stiffened shell region.
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For nanowires in tension, this results in an effective elastic modulus of

Enano =
AcoreEcore + AshellEshell

Acore + Ashell

, (2.5)

Where Acore and Ashell are the cross-sectional areas of the core and shell respectively, and

Ecore and Eshell are the core and shell elastic moduli. For a hexagonal nanowire, the cross

sectional areas can be calculated as

Acore = 2
√

3

(√
3

4
D − t

)2

and (2.6)

Ashell =
3
√

3

8
D2 − Acore, (2.7)

where D is the nanowire diameter, and t is the thickness of the shell. This results in 3 fitting

parameters for the core-shell model, Ecore, Eshell and t.

For the ZnO nanowires, we fit elastic modulus data from Agrawal et al. [27] to the

model. This results in a shell thickness of 2.36 nm, a shell elastic modulus of 193.1 GPa, and

a core modulus of 136.4 GPa. These parameters are within the ranges reported for other

experimental studies of nanowires [25, 28, 29]. The core modulus is in line with the values of

the elastic modulus for bulk ZnO. One issue arises for the MD wires that we must consider;

at diameters around 5 nm the shell region fully overlaps the core region, and the model begins

to underpredict thermal conductivity. To address this, we performed fits to the core-shell

model including elastic moduli data from MD performed in this work (Chapter 3) and this

fit is discussed further in Chapter 4. From these parameters, the stiffening factor Fs is then

calculated from equation 2.4.

Unlike ZnO, core-shell models have difficult fitting the experimental observations of the

elastic modulus for Si nanowires, particularly the data from Yang et al. [3]. Some fitting

of experimental data using core-shell models are presented in Chapter 4. However, a re-

cent review of size-dependent mechanical properties indicates that there is a high degree of
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scatter in the size-dependent Young’s moduli reported from experiment [21] and that theo-

retical work predicted that softening should not be significant until smaller sizes than seen

in experiment [13, 14].

Taking the above into account, for much of this work, we determine Fs for Si nano-

structures by fitting the data from Yang et al.[3] for Young’s modulus vs hydraulic diameter.

Yang et al. have reported both Young’s modulus and thermal conductivity for sets of Silicon

nanoribbons. We fit the Young’s modulus with the function

E =
Ebulk

1 + exp [−k(dh − d0)]
, (2.8)

where k and d0 are fitting parameters related to the slope of Young’s modulus and the

diameter, respectively, where E/Ebulk = 0.5. Ebulk is the bulk Young’s modulus. The fit

(Figure 2.2) results in k = 0.240 nm−1 and d0 = 25.9 nm. Ebulk for the fit is 176.8 GPa, which

is in line with experimental and theoretical values for silicon [17, 50, 51]. The sound speed

reduction factor is then defined as

Fs =

√
Enano

Ebulk

=

√
1

1 + exp [−k(dh − d0)]
. (2.9)

We note that in this definition the fitted bulk modulus cancels out. From this we find that

Fs = 0.55 corresponds to a hydraulic diameter of approximately 22 nm.

2.3 Group Velocity

A change in group velocity is the most obvious factor that occurs with acoustic softening or

acoustic stiffening. From a continuum point of view, the presence of a dominating surface

alters the elastic modulus resulting in an effective modulus (Enano) for the nanostructure. The

speed of sound in the nanostructure is then related to the effective modulus as vs =
√

Enano

ρ
.

Therefore, if the effective modulus is reduced in a nanostructure because of the surface

softening, so too should the group velocity. However, this reduction implies that there
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Figure 2.2: Fit of Young’s modulus vs hydraulic diameter for nanoribbons from Yang et al.
[3]. Inset: fit extended to 0 nm hydraulic diameter.

should be a reduction in the group velocity not only at the gamma point but also across the

entire FBZ. More explicitly, a reduction in the elastic modulus reduces both the slope of the

dispersion (group velocity) at the center of the FBZ, but also the phonon frequencies at the

edge of the FBZ, which are also proportional to
√
Enano.

Proceeding from the dispersion relation, the group velocity is given as vg = dω(q)/dq.

Considering the BvKS dispersion relation with a softening/stiffening factor Fs, the group

velocity then becomes vg,nano(q, d) = Fs(d)vg,bulk(q). This indicates that the effect on group

velocity should be the same across the entire FBZ. That is, for a 15% softening factor, the

group velocity is reduced by 15% for all wave vectors. This is demonstrated in Figure 2.3

where the group velocities for Si and ZnO with and without softening/stiffening are plotted.

2.4 Mean Free Path

Less obviously than group velocity, acoustic softening and acoustic stiffening can affect the

mean free path (MFP). In nano-structured devices the MFP is controlled by multiple mecha-
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Figure 2.3: Group velocity for softened/stiffened nanowires calculated from the BvKS disper-
sion. Top: Silicon, inset: percent difference between softened and unsoftened group velocities
demonstrating constant reduction. Bottom: ZnO with Fs = 1.15.
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nisms: surface scattering, scattering at internal boundaries (e.g. grain boundaries), impurity

scattering, phonon-phonon scattering, and dislocation scattering. The total MFP can then

be calculated using Matthiessen’s rule:

λ = vg

(∑
τ−1
i

)−1

(2.10)

where the τ−1
i factors are the scattering rates from the various mechanisms.

While for bulk Si and ZnO scattering mechanisms such as grain boundary scattering

and dislocation scattering are important for a good fit, they serve little purpose for our

investigations. The Si nanoribbons that we are interested in are formed via epitaxy, so grain

boundary scattering should result in a relatively small influence on the overall MFP. In our

MD of ZnO, we do not model dislocations. Due to these factors we do not include either

grain boundary or dislocation scattering in our nanoscale models.

Note that the MFP and the scattering rate are related through the group velocity l = vgτ .

For boundary scattering in a nanowire, we can express the scattering rate as τboundary = D/vg.

Thus, the mean free path resulting from the surface can be written as lboundary = D and is

not affected by changes in the velocity from the stiffened dispersion relation.

2.4.1 Monte Carlo Ray Tracing

For structures with a single dominant dimension, e.g. films and wires, the characteristic

length is used directly to estimate the boundary scattering; in structures that have more

than one governing dimension, we have several options. Firstly, we can use an effective size,

such as a Casimir length (
√
ab, where a and b are two different characteristic lengths of

the system). Secondly, all device dimensions can be included through Matthiessen’s rule

(1/l = 1/a + 1/b + · · · ). And finally, we can use a more detailed model of the scattering,

such as Monte Carlo ray tracing (MCRT), that rigorously accounts for several effects, such as

corners and specularity. To compare results from our softened thermal conductivity model

17



with nanoribbons, such as those produced by Yang et al., we use Monte Carlo ray tracing

as the presence of two dominant dimensions (width and height) reduce the accuracy of the

first two options. Parametric sweeps of thick ribbons with aspect ratios from 1 to 15 (similar

to the aspect ratios seen in [3]) have been reported by Park et al. [52] and indicate that for

structures between these ratios, the aspect ratio must be included in modeling the geometric

reduction of thermal conductivity. In this regime, both cross sectional dimensions strongly

influence the resulting MFP, and considerations such as corner effects become important, so

the use of MCRT to model boundary scattering is warranted. While this method provides

accurate boundary scattering, MCRT can be computationally intensive, so to isolate the

effects of modifying the dispersion relation on thermal conductivity, we also present systems

that include a single characteristic dimension.

In the MCRT approach, a calculated geometric factor Fg(q, w, h) = Λn(q)/Λb(q) is the

ratio of the actual nanostructure mean free path dictated by the boundaries scaled by the

mean free path in a bulk material. The MCRT procedure takes its inspiration from the well-

known Fuchs-Sondheimer (FS) formalism [53, 54] first used to describe electrical conductivity

in thin films and later widely used to treat phonons [3, 52, 55]. Under the Fuchs-Sondheimer

(FS) formalism, the geometric reduction arises from the influence of a (partially) diffuse

surface on the MFP of a carrier (e.g. an electron). At any point in the structure, the

influence of a surface at some distance from that point will cause a reduction in the mean

free path due to the change in particle momentum when scattered off the surface. By

integrating over all interior points and all directions to the surface, the reduction in the

mean free path can be computed.

In our case, we have replaced the integration in the FS model with a MCRT procedure

following McGaughey [56]. This replacement allows us to incorporate specularity and other

geometric features into our model not directly available in the FS model. The procedure,

outlined in Figure 2.4, is as follows. First, a dfree is pseudo-randomly selected from an

exponential distribution with a mean of lbulk and an initial direction is pseudo-randomly
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selected. In the second step, ray tracing is employed to determine the distance (l) from the

initial point to the surface along the selected direction. If dfree < l then the free path for

that trial is dfree. If dfree > l then we treat the interaction with the surface as either diffuse

or specular. The selection is made pseudo-randomly based on the specularity parameter

p: the fraction of specular events. The parameter p ranges from 0 (entirely diffuse) to 1

(completely specular) and is treated as a free parameter in the simulation. In the diffuse

case, the free path for the trial is l. For specular events, a new direction is chosen by

inverting the directional component normal to the surface, and ray tracing is continued with

dfree = dfree− l until either a diffuse event or dfree is reduced to below zero. In the case of ray

tracing with specular reflections, the free path for the trial is the sum of all the ray lengths

l = l1 + l2 + · · ·+ ln. Additional trials are calculated using the final position of the previous

trial as the starting position for the new trial, and the reduced MFP is calculated as the

average of the free paths of all the trials. For a specularity of 1 (i.e. no surface scattering)

the MCRT calculations recover an Fg = 1, verifying the model. For the calculations in this

report we consider the limiting case of a fully diffuse boundary (p = 0).

2.4.2 Impurity and Phonon-Phonon Scattering Rates

While grain boundary and geometric surface scattering are not affected by acoustic softening,

impurity and phonon-phonon scattering can be. As both of these scattering rates have a

non-linear dependence on the frequency (usually modeled as a power law), the effects on the

scattering rate of a modification to the dispersion relation persist in the contribution to the

MFP term resulting from both of these phenomena.
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Figure 2.4: MCRT procedure
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Silicon

To demonstrate this more clearly, we consider the Callaway models for scattering. These

power law formulas, which we use for scattering in Si are [46, 48, 49]:

τ−1
I (ω) = Aω4, (2.11)

τ−1
pp (ω) = Pω2T exp

(
−Cu
T

)
, (2.12)

where A, P , and Cu are fitting parameters that depend on the material and the phonon

branch, and are taken from the literature [48, 49] where they are found to reproduce bulk

Si thermal conductivity well. At the nanoscale, the choice of parameters should not have

a large effect on our results as surface scattering will dominate. We do not include terms

for normal scattering, and thus results for scattering at low temperatures should be viewed

with caution. However, at low temperatures, the thermal conductivity is dominated by the

heat capacity. Formulating these relations as MFPs then introduces the dispersion relation

through the group velocity:

limpurity(ω) =
vg(ω)

Aω4
, (2.13)

lphonon-phonon(ω) =
vg(ω)

Pω2T exp
(−Cu

T

) . (2.14)

Therefore, a modified dispersion due to acoustic softening will alter the MFP. This effect is

captured in the MCRT.

For phonon-phonon softening, in addition to the group velocity (vg(ω)) and the frequency

(ω), the fitting parameters are also modified by softening. The factor P can be expressed as

P = h̄γ2

Mv2ΘD
[57]. The Debye temperature, ΘD, and the Grüneisen parameter, γ, are both

proportional to the softening fraction Fs. This leads to a dependence on the softening factor

of 1/Fs for P . Additionally, Cu ∝ ΘD. Thus, for the phonon-phonon scattering, the softened
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phonon-phonon scattering is

τ−1
phonon-phonon(ω) = FsPω

2
bT exp

(
−FsCu
T

)
, (2.15)

where ωb is the unsoftened phonon frequency.

For impurity scattering, a softened dispersion results in an increase in the MFP across

the FBZ. This is in contrast to phonon-phonon scattering. In this case, the P parameter, the

frequency, and the group velocity softening dependencies cancel out, leaving only the effect

of softening on Cu. This results in a small decrease in the MFP from softening. For the

τ ∝ 1
ω4 behavior calculated by Ward and Broido[58], the frequency dependence on softening

would in contrast cause an increase in the MFP. As discussed below and seen in Figure

2.6 the difference between the two models, when incorporating surface scattering, should be

small.

To examine the combined effects of impurity and phonon-phonon scattering in Si we

use a system without surface scattering (where the only geometric scattering included is

a grain-boundary scattering term) and incorporate uniform softening (Figure 2.5). In this

system the effects of phonon-phonon scattering dominate, and the MFP is reduced, by up

to 20%. However, for the major portion of the FBZ, it is clear that the combined MFPs are

much longer than the characteristic size of the nanostructures that we are interested in. For

structures where we would see softening of this degree, we expect that surface scattering will

occur on a size scale of around 10−8 m (10 nm), where the MFPs from the combined phonon-

phonon and impurity scattering are on the order of approximately 10−8 m to 10−5 m.

To demonstrate the characteristics of softening effects in Si on MFP as a function of wave

vector in a structure with a sufficiently small characteristic size, we add boundary scattering

to the MFP via Matthiessen’s rule. This is akin to a round wire with a diameter equal to

the characteristic size. For the structures that show softening experimentally, and which we

wish to investigate, the characteristic size is between 20 nm and 40 nm. The effective MFP
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Figure 2.5: MFP as a function of reduced wave vector for softened and un-softened silicon,
Fs = 0.44 at 300K, this softening corresponds to a wire with a diameter of 20 nm. A:
impurity scattering MFP term, B: phonon-phonon scattering MFP term, C: MFP from
combined impurity and phonon-phonon scattering, D: difference between softened and un-
softened case in subfigure C
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as a function of the reduced wave vector is plotted in Figure 2.6. Since the shortest MFP

component will dominate the total MFP, the inclusion of a nanoscaled surface scattering

term results in that term dominating the MFP. Consequently, the influence of softening on

the MFP is diminished. For a 28 nm characteristic size, the reduction in the MFP is less

than 2% for all wave vectors. For a characteristic size of 20 nm, the reduction in the MFP

never exceeds 12% for any wave vector.

ZnO

In ZnO, for the MFP we adopt the formulations used by Wolf and Martin for fitting low-

temperature bulk ZnO thermal conductivity and for modeling the thermal conductivity ZnO

films respectively[59, 60]. Here scattering is composed of several terms including surface

scattering, phonon-phonon scattering, impurity scattering, and dislocation scattering. As we

are interested in nanowires, where there should be few dislocations, we ignore the dislocation

scattering rate. The pertinent scattering rates then become

τ−1 = τ−1
boundary + τ−1

phonon-phonon + τ−1
impurity, (2.16)

τ−1
boundary =

vg
D
, (2.17)

τ−1
phonon-phonon =

(
P

Fs
exp

(
−FsΘD

4T

)
+ C

)
ω2T , and (2.18)

τ−1
impurity = Aω4. (2.19)

We note that while the surface scattering rate is dependent on the softened phonon group

velocity, the MFP from boundary scattering remains independent of the group velocity (as

discussed above).
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Figure 2.6: Spectral MFP with and without softening (top) for a structure with a charac-
teristic size of 28 nm and Fs = 0.79, and (bottom) for a structure with a characteristic size
of 20 nm and Fs = 0.44
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2.4.3 Scattering Rate Parameters

With the above formulations for the scattering rate, we can parameterize the models for

various materials to reproduce bulk thermal conductivity. These parameters for scattering

are then used as the base for modeling the thermal conductivity of nanostructures. As

discussed above, the fitting parameters for Si are taken from the literature [48, 49].

In ZnO, the BvKS model has not been parameterized, and there are limited sets of tab-

ulated, temperature-dependent thermal conductivity. Most measurements of bulk thermal

conductivity have been performed on sintered specimens, where porosity affects the mea-

sured results. Thus, to parameterize the BvKS model we fit it against parameterized models

presented in the literature. Specifically, we fit our model against the Debye-Callaway model

for bulk ZnO thermal conductivity as parameterized by Wolf and Martin[59] to fit thermal

conductivity data between 1.1 K and 300 K:

κ =
kB

2π2v

(
kBT

h̄

)3 ∫ θD/T

0

τ
x4ex

(ex − 1)2
dx, (2.20)

where θD is the Debye temperature, kB is Boltzmann’s constant, v the speed of sound, and

x = h̄ω/kBT . In order to fit bulk data, Wolf and Martin used the scattering rates, τ , in

equation 2.16 as well as a dislocation scattering term: τ−1
dislocation = Y ω where Y is a fitting

parameter related to the dislocation density.

Using the parameterization of the Debye-Callway model from Wolf and Martin, we fit

the BvKS model against the predicted thermal conductivities in a temperature range from

1 K to 400 K. The resulting scattering parameters are presented in Table 2.1. As seen in

Figure 2.7 the resulting parameters reproduce the bulk thermal conductivity well across the

temperature range. However, the parameters for the BvKS model underpredict thermal

conductivity at 300 K by approximately 15% when compared to the Debye-Callaway model.

The consequences of this when comparing the BvKS model with MD data are discussed in

Chapter 4.
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B [ s/K] C [ s/K] I [ s3] Y
Wolf and Martin[59] 4.7× 10−19 2.8× 10−20 1.7× 10−44 1.5× 10−6

BvKS All Temperature 3.28× 10−19 1.73× 10−20 2.83× 10−44

BvKS High Temperature 1.71× 10−19 1.02× 10−19 1.20× 10−44

Table 2.1: Parameter values resulting from fit of thermal conductivity to bulk ZnO. The
“All Temperature” fit is to thermal conductivities between 1 K and 400 K while the “High
Temperature” fit is to thermal conductivities between 200 K and 400 K.

Figure 2.7: Bulk thermal conductivity calculated with the Debye-Callaway model param-
eterized by Wolf and Martin[59], and with the BvKS model using the “All Temperature”
parameters (Table 2.1).
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2.5 Heat Capacity

In addition to the scattering rate, a change in phonon frequency and thus in phonon energies,

also affects the heat capacity. In general, the reduction in the frequencies of phonons will

result in a reduction in the energy of phonons with high wavevectors, and thus an increase

in the occupation of those states at a given temperature. Deriving a model for heat capacity

using a spherical integration up to the cutoff wavevector, we have for each wavevector q [61]:

Cv(q) =
3h̄2

2kBπ2

1

T 2

q2ω2(q)eh̄ω(q)/kBT

(eh̄ω(q)/kBT − 1)2
. (2.21)

Examining the spectral heat capacity across the FBZ, we see that softening should result

in a slight increase in the spectral heat capacity, especially for longer wavevectors (Fig-

ure 2.8), and a slight decrease for stiffening (Figure 2.9). These effects are more intense at

lower temperatures. Comparing the magnitude of the effect of acoustic softening/acoustic

stiffening on the heat capacity with the magnitude of effect on the MFP at room temperature,

the effect on the heat capacity is much smaller.

As the heat capacity is responsible for a large portion of the temperature dependence of

thermal conductivity, examining the temperature dependence of the heat capacity and the

effect of softening on it become interesting. In Figure 2.10 we plot the heat capacity as a

function of temperature for a softened Si nanowire and note that there are significant changes

in the heat capacity with softening. At low to intermediate temperatures, the heat capacity is

significantly increased by the softening. This increase is mostly due to increased occupation

numbers at low temperatures for the softened case, offsetting the decreased phonon energy.

At higher temperatures, as expected, both heat capacities converge; at room temperature,

the heat capacity is increased by 7% over the unsoftened case for Fs = 0.44.
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Figure 2.8: Heat capacity as a function of reduced wavevector with and without softening
in a Si nanowire at 300 K
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Figure 2.9: Heat capacity as a function of reduced wavevector with and without stiffening
at multiple temperatures in a ZnO nanowire
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Figure 2.10: Heat capacity as a function of temperature with equivalent to 28 nm and 20 nm
diameter wires (Fs = 0.79 and Fs = 0.44) and without softening
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Chapter 3

Molecular Dynamics

While modeling can provide a number of insights into the effects of acoustic stiffening and

acoustic softening on the thermal conductivity of nanowires, the models are still limited by

their empirical nature. As will be discussed in Chapter 4, the scattering rates can play an

important role in the competition between different stiffening modes. Unlike these models, in

molecular dynamics, scattering arises as an intrinsic result of the simulation method. Addi-

tionally, the acoustic softening and acoustic stiffening in MD are less subject to experimental

uncertainties, such as slippage at the ends of nanowires, or twisting of the sample.

Molecular dynamics simulations are a classical simulation of materials. In these simula-

tions, atoms are treated as particles that exert a position dependent force on each other. By

integrating Newtons laws of motion, the trajectory of the atoms as a function of time can

me simulated. From these trajectories, statistical methods can be used to extract a number

of properties such as stress, temperature.

For this work, I have used the LAMMPS software package for MD simulation [62]. This

software is provided by Sandia National Laboratory and has seen active development since

the 1990’s.

3.1 Interatomic Potentials

To model a material in MD we first require an interatomic potential that describes the forces

exerted by atoms on each other. In silicon, one well known potential is the Tersoff potential

[63–65]. Although other interatomic potentials are available for Si, such as Stillenger-Webber
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(SW) potentials, a comparison between Tersoff and SW potentials has show that the Tersoff

potential more accurately predicts thermal conductivity [66]. The Tersoff potential describes

energy between a pair of atoms as the sum of attractive and repulsive terms,

Eij = fC(rij)[fR(rij + bijfA(rij)], (3.1)

where rij is the distance between the pair of atoms i and j and fR and fA are the repulsive

and attractive terms which decay exponentially with distance. fC is a smooth cutoff function

that limits the distance of interactions. This limit to the interaction distance is important

to allow MD simulations to remain computationally tractable. The factor bij is the bond-

order term. This term encodes the changes to the attractive force experienced by an atom

in different environments (with different coordination numbers). The parameters used for

Si come from Munetoh et al. [67] and have been used in a number of studies of thermal

conductivity in Si nanostructures [68–70].

For ZnO a Buckingham-style potential,

Eij = A exp
−rij
ρ
− C

r6
ij

+ Elong(rij), (3.2)

where the long range Coulombic interactions, Elong(rij), are computed using the Wolf sum-

mation as modified by Fennell and Gezelter [71]. Unlike the short-range terms, representing

covalent bonding, Coulombic interactions do not decay fast enough to employ cutoff terms,

necessitating the use of such a summation. Parameters for the Buckingham potential are

taken from the work of Binks [72]. These parameters have been used in a number of ZnO

studies and have found good agreement between experimental and computational values for

the size dependence of the elastic modulus and other mechanical properties [27, 73], and

have been used in studies of thermal conductivity in a number of ZnO nanowire systems

[42, 44, 45]. At the surfaces, the reduced coordination number, specifically the absence of

atoms on one side, results in a change in the equilibrium distance between atoms. As the
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equilibrium distance decreases, a different portion of the interatomic potential is sampled by

the atom’s motions, increasing the stiffness of the potential. Unlike the Tersoff potential, the

Buckingham-style potential used for ZnO here has no explicit dependence on coordination

number or bond order. However, using this potential, the expected decrease in the bond

length from a decrease in coordination number has been observed in MD simulations [27].

3.2 Building Nanostructures

3.2.1 Silicon Nanoribbons

For thermal conductivity calculations in silicon, individual nanoribbons were modeled as

slabs of Si atoms in a perfectly crystalline lattice. Slabs were prepared with cross sectional

dimensions of 4× 4, 4× 8, and 4× 16 unit cells. Slabs were prepared with three conduction

region lengths for each cross section (Figure 3.1) to implement the scaling methodology

described below (Section 3.3). The lattice was equilibrated for 3×105 timesteps in the NVT

ensemble to prepare the system for adding heat. Shrink-wrapped boundaries were applied in

the directions normal to the wire’s surfaces (i.e. parallel to the direction of transport). The

wire was then quenched to the simulation temperature (between 200 K and 400 K, depending

on the particular simulation) over 2× 105 timesteps, and then equilibrated at the simulation

temperature for a further 2 × 105 timesteps. For these simulations a timestep of 0.7 fs was

used.

To investigate the role of surface specularity, we have also built ribbons with increased

surface roughness by melting and quenching the outer layers of the ribbons. This approach

has been taken by a number of groups investigating amorphous silicon and core-shell nano-

wires with molecular dynamics [74–77]. The roughening is accomplished by heating the

outermost unit cells of a crystalline nanoribbon to 2500 K for 3×105 timesteps using a Nose-

Hoover thermostat—-melting the outer surface. The system is then quenched to 1200 K and

the whole system is run for another 3 × 105 timesteps. At this point, a few of the atoms

on the surface of the ribbon may have evaporated from the wire and drifted beyond the
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Figure 3.1: Schematic of NEMD thermal conductivity simulations

force cutoff; these atoms are removed from the simulation for computational efficiency as

they do not contribute to the thermal conductivity of the nanoribbon. The system is then

equilibrated for another 3×105 timesteps at the simulation temperature (between 200 K and

400 K). Equilibrated wires with smooth and roughened surfaces can be seen in Figure 3.2.

3.2.2 ZnO nanowires

For the ZnO simulations, nanowires are prepared using a heat-and-quench procedure from

the idealized structure to allow the surfaces to relax. Nanowires of appropriate dimensions

are first constructed and then heated to 1200 K over 30 ps. The wires are held at this

temperature for 30 ps and allowed to cool to the test temperature over 30 ps and held at the

final temperature for 100 ps before data for thermal conductivity is collected. During this

equilibration procedure, the wires are allowed to relax along the wire length.

3.3 Non-Equilibrium Thermal Conductivity Calculations

For thermal conductivity simulations, we employ a non-equilibrium molecular dynamics

(NEMD) technique. This approach calculates thermal conductivity by imposing a temper-

ature gradient across the system and monitoring the heat flow required to maintain the
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(a)

(b)

Figure 3.2: Smooth (a) and roughened (b) nanoribbons where the color indicates atomic
structure: Dark blue indicates atoms in a diamond cubic structure, while teal colors indicate
that the atom has diamond cubic neighbors. White atoms are not in a diamond cubic
structure [78, 79].
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gradient. Thermal conductivity is then computed using Fourier’s law,

q = −κdT
dx
, (3.3)

where dT
dx

is the temperature gradient, and q the heat flux.

For silicon nanostructures, once the wires were prepared, the thermal conductivity was

calculated as follows. At each end of the wires a 2 unit-cell thick wall of stationary atoms is

created by freezing the atoms, and, directly inside of each wall, a 4 unit-cell thick heat bath is

defined (Figure 3.1). To calculate thermal conductivity with NEMD, a temperature gradient

is imposed along the nanoribbon by holding the heat baths at the simulation temperature

±10 K. This creates a temperature difference of 20 K across the wire. The simulation was

then advanced for 5× 106 timesteps to allow the system to reach steady state.

Once the system reaches steady state, temperatures along the length of the ribbon, as well

as the energy required to maintain the heat bath temperatures are collected for another 5×106

timesteps. During the NEMD calculations, the heat baths are integrated using the Nose-

Hoover thermostat, and the conducting region is integrated without the thermostat. The

heat flux is then computed from the cross-sectional area and the energy added/subtracted

from the heat baths. The effective thermal conductivity can be computed via Fourier’s law.

For this study thermal conductivity was computed as the average of the thermal conductivity

from four separately initialized wires using the data from the last 4.85× 106 timesteps.

Because we want to investigate the effects arising from phonon scattering at the nano-

ribbon surface and compare this to experiment, we want to remove reductions in thermal

conductivity caused by scattering at the heat baths. Therefore, we employ a well-established

scaling method [80, 81] to extract the thermal conductivity of an infinitely long nanoribbon

from a set of different finite-length MD calculations. To accomplish this, we fit a line to the

1/κ vs. 1/L data. The intercept of 1/κ when 1/L is zero gives us the thermal conductivity

for an infinitely long wire; examples of this process are shown in Figure 3.3. Unless other-
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Figure 3.3: Example of scaling thermal conductivity to infinite lengths. Data shown here is
for smooth surfaced ribbons at 400 K. The infinite length thermal conductivity is extracted
from the y-intercept using a linear fit to the thermal conductivity from MD.

wise noted, all thermal conductivities from MD reported in this report are scaled to infinite

nanoribbon lengths.

Similarly, to the Si nanoribbons, after ZnO nanowires have been constructed, the end

regions of the wires are frozen, and high and low temperature heat baths are defined at the

ends of the wire immediately adjacent to the frozen sections. These baths are held at ±10 K

of the average temperature, and the system is allowed to come to a steady state over 0.1 ns.

The temperature difference (∆T ) and energy required to maintain the bath temperatures (q)

were then averaged over a period of 1 ns. Thermal conductivity was then calculated using

Fourier’s law. (k = qL/A∆T , where L is the length of the wire, and A is the cross-sectional

area.)

For each diameter of the ZnO nanowires, the thermal conductivity of an infinitely long
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Figure 3.4: Example of length scaling of thermal conductivity for NEMD method for a
6.9 AA diameter ZnO nanowire at 300 K.

wire is approximated by simulating the thermal conductivity of wires of multiple lengths.

Thermal conductivity as a function of wire length is then fit with 1/k = m/l+ b, where 1/b

is the thermal conductivity of an infinitely wire[80, 81] as for Si. An example of this scaling

for ZnO nanowires is seen in Figure 3.4.

3.4 Wave packet simulations

To directly observe the effects of surfaces on the phonon velocity in Si nanostructures, we

turn to wave packet simulations. In wave packet simulations, a localized phonon wave

packet is constructed from one of the branches of the phonon dispersion by controlling the

displacement of atoms at one end of the simulation domain. As the wave packet propagates

through the simulation domain a number of transport characteristics may be calculated. In

particular, wave packets have been widely used to analyze phonon transmission and reflection

at interfaces [70, 82–86], boundary scattering [87], and thermal rectification [88].
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Figure 3.5: Displacement as a function of position along a wire as a function of the distance
along the nanostructure. Top two images are for a 4×4 UC square wire, bottom two images
are for a 8× 16 UC nanoribbon

In these simulations, a wave packet is introduced into various sized wires (ranging from

2 × 2 UC wires to 32 × 32 UC wires), and the displacement of atoms is monitored as the

wave packet propagates through the system. From these displacements, peaks are identified,

and the position of the peak is determined as a function of time. With that, the velocity is

calculated. Examples of displacements can be seen in figure 3.5. Looking at low frequency

wave packets, we expect phase and group velocity to be approximately equal, and thus this

reduction in phase velocity be similar to a reduction in the group velocity and its effects on

the thermal conductivity.

These structures are prepared by creating a block of silicon with the desired cross section,

with periodic boundaries in the z direction, and shrink wrapped boundaries in the other

directions. For films, shrink-wrapped boundaries are only applied in the x direction, with
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periodic boundaries in the other two directions. The energy of the wire is minimized, and

the box is allowed to relax in the z direction to maintain zero pressure in that direction. We

then simulated annealing the wires by heating them to 500 K and then cooling them over

a number of steps to 0.001 K. This is accomplished over five stages of 1 × 105 timesteps

timesteps (with a timestep of 0.2 fs): holding at 500 K, cooling from 500 K to 1.0 K, holding

at 1.0 K, cooling from 1.0 K to 0.001 K, and holding at 0.001 K. The system is then minimized

again, allowing the box to relax in the z direction. The periodic boundary in the z direction

is then changed to a shrink-wrapped boundary and walls are created by freezing a region

2-unit cells thick at either end of the wire. The system is then run at 0.001 K for a final

1× 105 timesteps timesteps, the velocities zeroed, and the system minimized.

Once minimized wires are built, wave packets are introduced and allowed to propagate

down the wire. The packets are created by moving the lower z wall following the equation:

z = z0A sin(ω(t− t0))exp(−(t− to)η2), (3.4)

where ω is the central frequency, A the amplitude, t0 the center, and η the width of the wave

packet. We then follow the wave packet by calculating the average displacement of slices of

atoms in the z-direction over 25 timestep periods, allowing the system to evolve until the

wave packet has reach far end of the wire, around 7.5× 104 timesteps.

3.5 Elastic Modulus Calculations

To calculate the elastic modulus in the ZnO nanowires molecular dynamics can be employed

in a method that is similar to macroscale tensile testing. To do this the wires are strained

quasi-statically along the c-axis to a total of 0.005 mm/mm over 1 ps. This is done by

deforming the simulation box and re-scaling the atom positions. The wires are then allowed

to relax for 30 ps and the virial stress is monitored. This process is repeated up to a total

strain of 0.05 mm/mm and the elastic modulus is extracted from the stress-strain curve
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constructed from all the simulation steps.
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Chapter 4

Results

Now that we have laid the groundwork for examining acoustic softening and acoustic stiff-

ening in nanowires, we can begin to explore how these effects manifest in the thermal con-

ductivity of both Si and ZnO nanostructures.

4.1 Si Nanoribbons

We were motivated to examine the role of acoustic softening in Si nanoribbons by experimen-

tal results that measured both the thermal conductivity and the elastic modulus for several

sizes of nanoribbons. Yang et al. [3] have examined two sets of nanoribbons with different

thicknesses: a thick set with widths from 29 nm–211 nm and thicknesses of approximately

30 nm, and a thin set with widths from 46 nm–134 nm and thicknesses of approximately

20 nm. For the thick nanoribbons, the thermal conductivity was well modeled by geometric

considerations that incorporate surface scattering in rectangular cross sections. This result

follows similar trends from literature studies on films and wires in the 50 nm–200 nm size

range. To do this in Si, we have employed both molecular dynamics and modeling to capture

the effects on the thermal conductivity.

4.1.1 Molecular Dynamics

We initially investigated the thermal conductivity of silicon nanoribbons by employing a

fully diffuse BvKS model without softening using MCRT to correct for the high aspect

ratios, and compared the thermal conductivity obtained via MD at 300 K with the thermal
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conductivities reported for nanoribbons from Yang et al. [3] and from Park et al. [52], and

for various other nanowire, thin film, and nanotube geometries [2, 36, 89] (Figure 4.1). We

have plotted these as a function of S/V (surface area to volume) so both square or round

wires and ribbons with high aspect ratios (AR = w/h) can be included on a single graph.

Directly comparing the effects seen in MD with the experimental results is suspect due to

the difference in sizes between the two. We bridge these two regimes by including the results

of several MCRT calculations with fully diffuse boundary conditions. With these boundary

conditions MCRT captures the maximum possible reduction in thermal conductivity arising

solely from surface scattering, placing a lower bound on the thermal conductivity due to

geometric effects alone.

For all sets of data, the same trends are apparent: as S/V increases (i.e. the size de-

creases), the thermal conductivity is reduced as expected. The fully diffuse MCRT captures

a large portion of these experimental results, with the values for Yang’s thick nanoribbons1,

for the MD with roughened surfaces conducted here, and for a number of other films, wires,

and ribbons lying between or just slightly above the values for diffuse MCRT with apsect

ratios (AR) varying from 1 to 15. For the data sets that have thermal conductivity higher

than that predicted by fully diffuse MCRT, we expect that the surface specularity is higher

than for other data sets.

The other clear deviation of the experimental results from the fully diffuse MCRT occurs

for structures above a S/V of approximately 0.1 nm−1. For these structures, the measured

thermal conductivity is lower than that calculated with MCRT. While thermal conductivities

that are higher than the diffuse MCRT are easy to incorporate into a geometric model with

specularity, the suppression of the thermal conductivity below that given by a fully diffuse

model indicates that other effects are at play. To that end we turn to acoustic softening.

1Aproximately 30 nm thick
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Figure 4.1: Thermal conductivity as a function of S/V form experiments and MD. Results
from the literature are shown for ribbons [3, 52] (squares), wires [36] (circles), films [89]
(triangles), nanotubes [2] (diamonds) and MD with roughened surfaces (current work, stars).
MCRT calculations with ARs of 1 (dotted line) and 15 (solid line) are also show.
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4.1.2 Wave Packet Simulations

Acoustic softening is a reduction in the acoustic phonon velocity arising from surface effects

that reduce the effective Young’s modulus of a nanowire. Numerous studies have worked

to quantify and describe this reduction, however for thermal conductivity the change in

the elastic modulus is an indirect proxy for phonon velocity. By utilizing MD wave packet

simulations, we attempt to directly interrogate the phonon velocity in structures that may

be subject to softening. Looking at square wires, ribbons, and films, we compute the phase

velocity of low frequency (ω = 1 THz) phonons. At low frequencies, we take the phase

and group velocity to be approximately equal. We observe that the phase velocity of a

longitudinal wave packet decreases from the bulk value (7821± 32 m/ s) to around 5000 m/s

for a 2× 2 UC wire. The dependency is demonstrated in figure 4.2.

For wires with a square cross section, as the surface area to volume ratio increases (i.e.

the wires decrease in size) the decrease in velocity occurs rapidly at first, and then levels off

somewhere between a 8 × 8 UC and 6 × 6 UC wire. For smaller square wires, especially for

the 2× 2 UC wire, the velocity again decreases, although at these sizes other effects may be

contributing to the decrease in velocity. For films a similar pattern holds, with the velocity

decreasing linearly with surface area to volume ratio until a wire size of about 8 × 8 UC in

size. After this point, the velocity levels off.

From these results we develop a simple model after the manner of core-shell models that

splits the cross section of each wire into two parts, a surface region of a constant thickness

and a core region. The velocity in the surface region is taken to be different than the bulk

velocity, and the total velocity computed as the average of the core and surface velocities

weighed by the area fraction of the core (XC) and surface (XS) regions respectively:

veff = vCXC + vSXS. (4.1)

This model captures the plateauing at large surface area to volume ratios, as when a
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Figure 4.2: Phase velocity from various sized nanowires, ribbons and films from wave-packet
simulations. Labels indicate the size of the nanostructures in unit cells.

dimension of the nanostructure reaches the thickness of the surface region XS = 1 and

XC = 0. Additionally, the majority of the change in the surface region fraction occurs over

about a decade of surface to volume ratio as can be seen in figure 4.3.

While a model with just core and surface components can capture the films and square

wires pretty well, it cannot do so with the same parameters. Additionally, for ribbons, the

MD data is between films and square wires, and is not captured. Since there appears to be

two plateaus, one for films and one for square wires, we are motivated to introduce a third

region to the model: corners. Thus, we compute the phonon velocity as,

veff = vRXR + vCXC + vSXS, (4.2)

where vR and XR were the speed and area fraction of the corners.
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Figure 4.3: Fraction of nanostructure cross section in the surface region as a function of the
surface to volume ratio.
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Figure 4.4: Phase velocity from MD fit with equation 4.2. Values from fit: vR = 5607 ±
83 m/s, vS = 6445± 104 m/s, and t = 1.998± 0.166 nm

Fitting this model with the data from the MD wave packet simulations for films, square

wires results in good agreement for almost all sizes (Figure 4.4). From the fitting parameters,

it appears that in the corner region, the velocity is reduced by around 28% and in the surface

region the velocity is reduced by around 17%.

Turning to the results from experiments, the ratio of the nanoscale phonon velocity to the

bulk phonon velocity can be approximated from the measured nanoscale Young’s modulus

as

vnano

vbulk

=

√
Enano

Ebulk

. (4.3)

Comparing the velocities obtained by this method from Yang et al.’s data[3] with the MD

results indicates that the experimental results expect softening to occur much more quickly

with S/V than is seen in MD (figure 4.5). Unlike the MD results, the corner model doesn’t
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Figure 4.5: Comparison between speed of sound calculated using experimental measurements
of the elastic modulus[3] and the phase velocity calculated from MD using wave packets.

fit the data from Yang et al. well.

4.1.3 Simple Acoustic Softening

The addition of specularity allows MCRT and other geometric models to predict the thermal

conductivity in larger nanoribbons and nanowires; however, the addition of specularity can-

not account for thermal conductivities seen in the smallest nanoribbons. A strong candidate

for additional physics causing the reduced thermal conductivity is the acoustic softening ef-

fect. As has been widely reported, the elastic modulus for silicon nanostructures is observed

to decrease with decreasing device size. From continuum theory the speed of sound can be

computed as v =
√

E
ρ

, where E is the Young’s modulus and ρ is the density. Thus, if the

Young’s modulus is reduced, so too then is the speed of sound. The reduction in the group
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velocity due to a reduction in the Young’s modulus can be computed as Fs =
√

Enano

Ebulk
. As

this reduction in ratio is independent of the phonon wave vector for the approximation of the

dispersion we use (the BvKS dispersion), when considering only the effect on the velocity it

can be incorporated into the MCRT method simply as κs = FsκMCRT , where the s subscript

refers to softening.

In general, experimental measurements of Young’s modulus indicate that softening ef-

fects become important when the dimensions of the systems are reduced below approximately

100 nm–150 nm (for example [13]). In Figure 4.6 we summarize the results of several inves-

tigations into this softening by plotting Enano/Ebulk as a function of S/V. In this graph we

take Ebulk = 180 GPa. We see that the softening observed across experiments seems to fall

into two categories: (1) cluster of results with a 1/x type of trend, and (2) Young’s mod-

uli that are linear in S/V. In general these results indicate that for nanoribbons in the size

range of Yang’s thin ribbons, Enano/Ebulk should be between approximately 0.3 and 0.8. This

translates to between a 10% to 45% reduction in thermal conductivity.

To incorporate softening effects into our MCRT we need to choose a model for softening

that is a function of the size of our wires and ribbons. As an initial fit to experimental data,

much of which comes from bending experiments, we use the core-shell model from Sadeghian

for a film in bending [8]:

Eribbon

Ecore

=

(
1 + 6

h0

h

){
h3 + Eshell

Ecore
[8t3 + 6h2t+ 12ht2]

(h+ 2t)3

}
, (4.4)

where h0 is a characteristic length set by the ratio between the Young’s modulus and the

surface elasticity, h is the thickness of the film, and t is the thickness of the oxide at the

surface of the film. In this core-shell model softening arises from two effects (1) from the

difference in the Young’s modulus of the oxide shell, and (2) from surface elasticity. While

this model does not include a finite width (i.e. the forgoing model is strictly valid for films

only), we use the model as a first approximation of the softening in the nanoribbons. As
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Figure 4.6: Reduction in Young’s modulus from bulk from measured wires [3, 8, 15, 19, 20],
and from the core-shell model (equation 4.4) with various oxide thicknesses, t0
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seen in Figure 4.6, this model provides a good fit for data from a number of experiments [8,

19, 20]. Depending on the parameters used—the Young’s moduli of the shell (Eshell) and

the core (Ecore), shell thickness, and characteristic length h0—this model is able to capture

the onset size of softening for both clusters of data, though it only fits the first cluster well.

Additionally, this model is explicitly formulated for a film in bending, and was fitted to

data measured for cantilevers, however the effect of the surface oxide on the tensile modulus

can be different from that of the bending modulus. To look at the change in the speed

of sound, the tensile modulus seems to be more appropriate. Following the approach by

Sadeghian [8, 13] we derive an expression for ribbons in tension. The approach accounts for

the effect of the native oxide on the effective elastic modulus with a composite model, so in

tension

Eeff = Eshell
Ac
At

+ Eshell
At − Ac
At

, (4.5)

where Ac and At are the cross sectional areas of the core and the total ribbon respectively.

The surface elasticity is then modeled by extending the expressions from Miller and Shenoy [5]

to handle ribbons of non-square aspect ratio as

E − Ebulk

Ebulk

= α
S

Ebulk

1

h
=

2(w + h)

w

h0

h
, (4.6)

where w and h are the width and the height of the ribbon. Combining Equations 4.5 and

4.6 results in

Eribbon

Ecore

=

[
1 +

2(w + h)

w

h0

h

](
Ac
At

+
Eshell

Ecore

At − Ac
At

)
. (4.7)

As the parameters tox = 5 nm, h0 = −0.1099 nm, Eshell = 60 GPa, and Ecore = 180 GPa

provide a reasonable fit to the experimental data using equation 4.4, especially the data

from references [8, 19, 20], we will use these parameters with the model for tensile softening

to approximate the acoustic softening effect.

Adding softening to the MCRT calculations reduces the thermal conductivity. Figure 4.7

shows this reduction along with the results from experiment and from MD. For the MCRT the
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softening is approximated using equation 4.4 for a film with the S/V ratio as the nanoribbon

whose thermal conductivity we wish to predict with MCRT. Plotting the percent difference

between the MCRT and measured thermal conductivity (Figure 4.7B) we see that this soft-

ening reduces the over-prediction of the MCRT, compared to the fully diffuse case. There

is still some over-prediction when compared with the very smallest nanoribbons reported

by Yang, although, as seen in Figure 4.7A, the absolute difference in thermal conductivity

is small. Without the addition of any specularity, the MCRT model with softening now

underpredicts the thermal conductivity for Yang’s thick ribbons, as well as the large struc-

tures prepared by Park. In the size range of our MD simulations, the MCRT with softening

seems to strongly underpredict the thermal conductivity seen in MD at 300 K with both

smooth and roughened surfaces. This is likely because (a) our MD models do not have a

surface oxide (which for the MCRT is set at 5 nm), and (b) the studies of softening in MD

consistently show less reduction in the Young’s modulus than that observed experimentally

as the MD models lack many features that contribute to acoustic softening, such as surface

oxides and pin-hole defects (see for example [13]).

4.1.4 Combined Effects

As the addition of neither acoustic softening nor specularity alone allows the MCRT to match

the thermal conductivity across the whole range of experimental data, with both diffuse and

specular MCRT overpredicting thermal conductivity in small structures, and with diffuse

MCRT with softening underpredicting thermal conductivity in large structures, we seek to

combine the two effects. This combination of effects can be understood as the application of

multiple reduction ratios, here Fsoft (the reduction from softening) and F̃surf (the reduction

from surface scattering). Using these reduction ratios, we can now write the total reduction

in the thermal conductivity as κreduced = FsoftF̃surfκbulk. Note that F̃surf is calculated in

this analysis as κMCRT/κbulk for an unsoftened system rather than directly from the MCRT

simulations.
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Figure 4.7: (A) Experimental conductivities from Figure 4.1 and diffuse MCRT with and
without softening from eq. 4.7. (B) The percent increase in the thermal conductivity from
MCRT with softening over the measured measured value for the nanoribbons.

55



Plotting the reduction ratios in Figure 4.8 gives a good indication of the relative strength

of surface scattering effects and acoustic softening at various S/V ratios. Across all sizes,

Fsoft is much larger than F̃surf for either specular or diffuse surfaces, and thus softening is

responsible for much less of the total reduction in thermal conductivity. Fsoft ranges from

approximately 0.5 (a 50% reduction) for the smallest systems (large S/V ratios) to nearly 1

(no reduction) for systems on the order of 100 nm. While, F̃surf ranges from just above zero

(a very strong reduction) to approximately 0.4 (a 60% reduction). The combination of both

surface scattering and acoustic softening is also plotted in Figure 4.8 as Ftotal = FsoftF̃surf for

both diffuse and specular surfaces. In both cases, the total reduction is now lower across all

the S/V ratios than just with the MCRT. Additionally, comparing the reduction ratio with

both specularity and softening to just the reduction ratio from diffuse surface scattering, at

small S/V ratios (large structures), the reduction ratio is higher than F̃surf for the diffuse

case, while for large S/V ratios, the reduction ratio is smaller than F̃surf for the diffuse case.

This can be seen more clearly in Figure 4.9, where the reduction ratios are plotted on a log

axis.

The cumulative effect of both surface scattering with p = 0.05 and acoustic softening on

thermal conductivity is shown in Figure 4.10. We see that for the thick wires from Yang [3],

the addition of specularity and of acoustic softening to the MCRT model roughly balance

each other out. For the thin ribbons the thermal conductivity is more closely matched with

acoustic softening than without, however with a 5% specularity (p = 0.05) the MCRT still

overpredicts the thermal conductivity. As with larger ribbons, the amount of specularity is

a property of the surface of the structures, and thus may differ between devices, and may

explain some of the overprediction in the MCRT with both specularity and acoustic softening

(i.e. the thin wires might have a more diffuse surfaces).
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Figure 4.8: Reduction ratios for both acoustic softening and surface scattering.
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Figure 4.9: Reduction ratios from Figure 4.8 plotted on a log scale.
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Figure 4.10: (a) Thermal conductivity from MCRT with both specularity of p = 0.05 and
acoustic softening, compared with values from experiment. (b) Difference between experi-
ment and the MCRT with both specularity of p = 0.05 and acoustic softening
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4.1.5 Modeling Other Factors

The simplest effect from acoustic softening or acoustic stiffening is the effect on the group

velocity, and the most frequent applications of softening to explain reduced thermal conduc-

tivity have only considered the group velocity effects. However, alterations to the elastic

modulus imply changes to the phonon frequencies. As discussed in Chapter 2, the change in

the dispersion relation causes effects in the group velocity, the heat capacity, and the mean

free path–the three main factors of thermal conductivity. While each of these factors contains

interesting deviations from bulk and bulk-like values when acoustic softening is included, in

order to see how acoustic softening should manifest in experimental measurements, we must

combine these factors to calculate thermal conductivity.

Using as our example case a nanowire with a diameter of 20 nm and a softening factor

of 0.44 (from equation 2.9), we compute the spectral thermal conductivity. This example

wire is of a similar scale to the first wires where anomalously low thermal conductivity was

reported[36]. When we include the effects of softening on the heat capacity, phonon group

velocity, and mean free path, we see that spectral thermal conductivity varies around the

velocity-only value, instead of undergoing a flat reduction as seen for reducing the group

velocity alone (Figure 4.11).

While the contribution to thermal conductivity from longer wavelengths where the differ-

ence in the softening models exists, is small, the overall change in the thermal conductivity

between the two softening models is appreciable. For the model neglecting the effect of

softening on the MFP and heat capacity, the thermal conductivity at this size scale is ap-

proximately 1.7% lower than the full softening model (4.76 W/m K vs 4.84 W/m K).

In addition to spectral thermal conductivity at room temperature, we can look at the

temperature dependence of thermal conductivity under our softened model. In Figure 4.12

we compare the softened and unsoftened thermal conductivity from the BvKS dispersion

for 20 nm to 40 nm characteristic sizes with softening factors from equation 2.9. First, the

change in the thermal conductivity is not uniform. While at higher temperatures, the ther-

60



Figure 4.11: A: spectral thermal conductivity as a function of reduced wave vector (i.e. ther-
mal conductivity per inverse wave vector [W/(mK)/(1/m)]) for nanostructure with a char-
acteristic size of 20 nm for unsoftened, vg only softening, and softening including group
velocity, MFP and heat capacity (Fs = 0.44). B: percent difference between the unsoftened
and softened models.
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Figure 4.12: Thermal conductivity as a function of temperature for Si structures of various
characteristic sizes with and without softening.

mal conductivity is reduced due to the softening, the low-temperature thermal conductivity

(below about 75 K) is increased. Additionally, the temperature at which the peak ther-

mal conductivity occurs is reduced. If softening were only affecting the group velocity of

phonons, we would not expect to see these features, but rather a uniform shift of the thermal

conductivity downwards with temperature.

To further explore the origins of the changes in the temperature dependency of the

thermal conductivity, we consider the effects of each term in the kinetic theory independently.

In Figure 4.13 we see that reducing the group velocity with a softening factor results in a

uniform reduction across temperature. The other two factors in the thermal conductivity

have significantly more variation over temperature. For the softening of the MFP, the

effect on the thermal conductivity is to reduce the thermal conductivity slightly at higher

temperatures, while little effect is seen at low temperatures. For the heat capacity factor,

the thermal conductivity is increased by softening across all of the temperatures, but with
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the increase being more dominant at lower temperatures, and nearly disappearing by room

temperature.

4.1.6 Comparison to Experiment

To compare the results of our model with experiment, we focus on the results obtained by

Yang et al. [3]. Here thermal conductivity and elastic modulus are measured for two groups

of nanoribbons with different thicknesses (a thick group between 30 − 32 nm thick, and a

thin group between 18−20 nm thick). In each group, the width was varied, which varies the

surface-to-volume ratio of the wire.

We have attempted to bracket the observed thermal conductivities with our MCRT model

including a softening factor, Fs. In Figure 4.14 thermal conductivities for wires with 20 nm

and 30 nm thicknesses calculated with an MCRT model with softening factors of 1.0 (unsoft-

ened) and 0.44 (corresponding to a 20 nm diameter wire) are plotted with the experimental

data. From this, we are able to model the thermal conductivity of the thick wires very

well with an unsoftened MCRT model. However, the unsoftened MCRT model predicts

significantly higher thermal conductivity for the thin group of wires than observed.

For the thin group we are able to bracket the data with our softened model using Fs =

0.55. This softening corresponds to a ratio of Enano/Ebulk of around 0.30 which is consistent

with the maximum softening experimentally observed[19, 20] and for a structure with a

hydraulic diameter of approximately 22 nm using the data from Yang et al.[3]. With this

level of softening, we see that all of the ribbons in the thin group are bracketed by the

MCRT.

Using Fs estimated from equation 2.9, MCRT simulations for both thick and thin ribbons

are shown in Figure 4.15. As the experimental ribbons have a thin oxide layer (approximately

2 nm thick [3]) that should play little role in thermal conductivity and that is not modeled

in the MCRT simulations, 4 nm is removed from both the width and height of the ribbon

when calculating the MFP with MCRT. With this model, we observe a close correspondence
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Figure 4.13: Thermal conductivity as a function of temperature for a structure with a
characteristic size of 20 nm (Fs = 0.44) with thermal conductivity from the components of
the softening model plotted separately
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Figure 4.14: Comparison of size sweeps of our thermal conductivity model with and without
softening at 300 K to the thermal conductivity reported by Yang et al. [3] for nanoribbons
at 300 K.
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Figure 4.15: Comparison of size sweeps using our thermal conductivity model with Fs given
by equation 2.9 at 300 K with the thermal conductivity reported by Yang et al. [3] for
nanoribbons at 300 K. For the ribbons from Yang et al. 2 nm of oxide is discounted in the
calculation of the hydraulic diameter.

between the model and the experimental values.

While this model indicates that acoustic softening can explain the lower thermal con-

ductivity for the thin group of wires, it doesn’t explain fully the transition from unsoftened

to softened that occurs with a move from the thick to thin ribbons. Some of the apparent

sharpness may be geometric in nature, with the different thicknesses trending together for

very small structures (high S/V), where the scattering is most strongly controlled by the

width, but differing in the S/V regime where both thickness and width become important.

Thus, the placement of the 1/(S/V) type curve for the thermal conductivities predicted

is shifted to lower S/V ratios for thicker wires and to higher S/V ratios for larger wires.
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Another factor affecting the apparent suddenness of the transition is the high degree of sen-

sitivity of acoustic softening phenomena to such influences as surface recombinations [10],

the relative size of oxide layers [13, 16, 17], and etching defects [13, 14]. Computational

work by Shim et al. has shown that the surface recombination of various silicon surfaces has

a strong impact both on the magnitude of softening and the direction, indicating that for

some recombinations a nanoscale stiffening can occur [10].

While comparison to our model for the effect of acoustic softening on thermal conductivity

with the size-dependent data gives us some confidence that our method produces results that

match the general trends seen in experiment, it does not fully disentangle if softening effects

in heat capacity and scattering are observed in the experimental data. However, because

of the difference in the effects of softening at low and high temperatures, we examine the

temperature-dependent thermal conductivity reported by Yang et al.[3].

In Figure 4.16 we show thermal conductivity from MCRT for wires of the same sizes as

Yang et al., with Fs from equation 2.9. Again, when computing the MFP, the dimensions

of the nanoribbons were reduced by 4 nm to account for the approximately 2 nm thick oxide

commonly present in experiment. We calculate thermal conductivity using both a softened

and unsoftened model, and compare them to the data reported by Yang et al. [3]. Impor-

tantly, including heat capacity and MFP effects in the softening shifts the peak thermal

conductivity to lower temperature. At lower temperatures, the thermal conductivity is in-

creased, while at higher temperatures, the thermal conductivity is decreased. This is similar

to the effect seen for Ge-Si core-shell wires [38].

When compared with the values reported by Yang et al. for the temperature-dependent

thermal conductivity in thin wires, a few features are notable. First, there is a flatter depen-

dence on temperature after the peak thermal conductivity in the reported values than for

the softening model. In the reported values Umklapp scattering begins to have a noticeable

effect (i.e. thermal conductivity stops increasing rapidly) around 125 K to 150 K. This is in

contrast to a model including contributions from softened heat capacity and mean free paths
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Figure 4.16: Calculated thermal conductivity for wires with sizes matched to those reported
by Yang et al. [3] without softening, with softening from equation 2.9.
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where Umklapp scattering begins to dominate around 75 K− 100 K.

We attribute the discrepancies between the models and experiment to the highly ap-

proximate nature of the dispersion relationship used and the softening method. Namely

the fitting parameters for phonon-phonon scattering and for impurity scattering are taken

from bulk silicon and vary for the nanostructures considered due to the processing. The

lack of normal scattering in the model may additionally reduce the accuracy of the model

at low temperatures. Additionally, the model for Fs used here is based on Young’s modulus

measurements, is entirely empirical, and may not completely capture the pertinent physics

related to transport properties. Moreover, in contrast to our assumption that the softening

is uniform across the cross section of the nanostructures we consider, effects of the surface

energy are likely to be strongest at the surface of the wire and decay towards the center of

the wire. Therefore, the approximation of a uniform distribution of strain energy should be

examined. Finally, the effects of the surfaces on dispersion relation of the wires may not

be the same for both the transverse modes and the longitudinal modes; the effects of oxide

layers on the effective elastic modulus are not the same for extension and bending.

4.2 ZnO Nanowires

Overall, there is a modest effect from acoustic stiffening that increases the thermal conduc-

tivity at most temperatures. At low temperatures, thermal conductivity is slightly reduced

compared to the unstiffened case mostly due to the impact of the heat capacity. At higher

temperatures, the thermal conductivity is increased, though this increase does not reach

the magnitude expected from considering velocity scaling only. The modest deviation is the

result of a number of competing factors, and a calculation of all the combined effects results

in the thermal conductivity not reaching the value expected when considering the geometry

and velocity alone.
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4.2.1 BvKS Model

In the ZnO nanowires, the main competition preventing the expected increase in thermal

conductivity is that between the effects of velocity and the effects of scattering, which serve

to counteract each other. In Figure 4.17 we plot the thermal conductivity as a function

of temperature considering stiffening in particular factors only. Here we plot the effects on

the mean free path rather than scattering as this preserves the insensitivity of reduction in

thermal conductivity from boundary scattering to stiffening effects. As a brief explanation,

consider the kinetic formulation where we can write thermal conductivity either in terms of

the scattering rates τ or in terms of the mean free paths l.

k =
1

3

∫
Cvvgldq =

1

3

∫
Cvv

2
gτdq (4.8)

Here the mean free path and the scattering rate are related through the group velocity

l = vgτ . For boundary scattering τboundary = D/vg for a nanowire. Thus the mean free path

resulting from the surface can be written as lboundary = D, and is not affected by changes in

the velocity from the stiffened dispersion relation.

In Figure 4.17, we see that the thermal conductivity including only a stiffened velocity

experiences a significant increase across the entire range of the temperatures. Across the

temperature range, the velocity is increased by a flat 15%, resulting in a corresponding 15%

increase in the thermal conductivity. Without considering the impact of stiffening on the

dispersion relation and the phonon frequencies, we would expect this effect to begin causing a

noticeable increase in thermal conductivity over predictions using the bulk speed of sound for

wires with diameters of less than 200 nm. Just considering velocity effects we would predict

an increase in thermal conductivity would range from 3% for 70 nm wires to 15% for 10 nm

wires when compared with prediction using only boundary scattering. Comparing the effect

of various factors with changes in Figure 4.18, the qualitative effect of stiffing in each factor

remains the same, although the effects are stronger relative to the thermal conductivity for
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Figure 4.17: Thermal conductivity for a 10 nm ZnO nanowire with a stiffening factor Fs =
1.15 applied individually to heat capacity, mean free path, and scattering
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Figure 4.18: Thermal conductivity for various sizes of ZnO nanowires with size dependent
stiffening factors from Eqs. 2.4 and 2.5 with fitted parameters applied individually to heat
capacity, velocity, and mean free path

smaller sizes.

In contrast to the increase in thermal conductivity seen when considering the effect of

stiffening velocity only, when considering the effect of stiffening on the scattering rate or

the MFP, thermal conductivity is reduced at most temperatures. This can be seen in both

Figure 4.17 and Figure 4.18. In particular, at 300 K, the reduction in thermal conductivity

from the effect of stiffening on the MFP is on the order of 2% to 3% for the wires in

Figure 4.18. When the effects of stiffening on velocity and scattering are considered together

(Figure 4.19), the total effect is an increase in thermal conductivity across all temperatures.

Looking closer at how the scattering (and through it the MFP) is affected by stiffening, we
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Figure 4.19: Effect of stiffening in both the MFP and the velocity on thermal conductivity
for a 10 nm ZnO wire with a stiffening factor of Fs = 1.15
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can consider three components of scattering that we have modeled here: boundary scattering,

impurity scattering, and phonon-phonon scattering. In Figure 4.20 we plot the MFP resulting

from different scattering mechanisms as a function of the wavevector for an example nanowire

with and without stiffening. We note that the MFP from boundary scattering is unaffected

by softening as it is controlled by the size of the nanowires, and do not plot it separately.

For both the impurity scattering and the phonon-phonon scattering, the increase in the

phonon frequencies with stiffening increases the scattering rate. This reduces both the MFP

(Figure 4.20 C and D) and the thermal conductivity. For impurity scattering, the rate is

proportional to 1/ω4, leading to a dependency on the stiffening factor of 1/F 4
s , and thus a

dependence of the impurity MFP to 1/F 3
s .

For phonon-phonon scattering, this dependence becomes more complicated as more than

just the phonon frequencies are affected by stiffening. In particular, the Debye temperature

and the constants describing the scattering can be affected by changes in the elastic modulus.

For the softening formulation in Si nanoribbons, mean phonon-phonon scattering can be

modeled as

τ−1
phonon−phonon,Si(ω) = Bω2Texp(

−Cu
T

), (4.9)

where B, ω and Cu are dependent on softening. The dependence of the constant B on the pa-

rameters directly modified by stiffening/softening has been given as B = h̄γ2

Mv2ΘD
[57]. Where

the Debye temperature ΘD, the Grüneisen parameter γ and the velocity v’s dependence on

stiffing/softening result in a 1/Fs proportionality for B. Here, for ZnO, we use this same

dependence for the parameter B in equation 2.18, leading to a reduction in the MFP for

stiffened nanowires.

An important difference seen here in ZnO when compared to Si nanoribbons is the relative

orders of magnitude of the MFP from impurity and phonon-phonon scattering. In ZnO the

MFPs from these scattering modes are, for much of the first Brillouin zone, on the same order

as the boundary scattering, i.e. tens of nanometers. Thus, in Si nanoribbons, the effects of

boundary scattering dominate, resulting in an overall small effect on thermal conductivity
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Figure 4.20: MFP of an example system (10 nm ZnO wire with a stiffening factor of
Fs = 1.15) demonstrating the effect of the stiffening of the total MFP and the MFP for
frequency dependent components (impurity and phonon-phonon scattering) both combined
and independently
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from scattering effects. In ZnO, the boundary scattering fully dominates only at very small

sizes. This allows for the opposite effects of the MFP on thermal conductivity to help cancel

out the velocity effects. Under this model, the alterations to the thermal conductivity only

become apparent at very small sizes.

The addition of stiffening effects in heat capacity operates mainly to shift the temperature

of the peak thermal conductivity to a higher temperature. This is similar to the effect seen in

silicon nanoribbons with a softened dispersion relation, where the heat capacity effect shifts

the peak thermal conductivity to lower temperatures. In Figure 4.21 the per-wavevector heat

capacity is plotted at a series of temperatures. We see that at lower temperatures the heat

capacity attributed to high frequency (large wavevector) phonons is reduced by stiffening,

and the effect becomes smaller with increasing temperature. We attribute this to a shift

in the phonon occupation. As the material is stiffened the frequencies of large wavevector

phonons are increased, increasing the phonon energies and decreasing the occupation at a

given temperature.

In Figure 4.22 heat capacity is plotted as a function of temperature for cases with and

without stiffening. The result is that stiffening tends to reduce the heat capacity at low

temperatures. At high temperatures, the effects of stiffening disappear, and the heat capac-

ity approaches the unstiffened value. Much as for the case of Si, the stiffening effect can

be viewed as an alteration of the Debye temperature. The Debye temperature is directly

related to the stiffness of a crystal, so in the case of softening, e.g. in Si nanowires, the

Debye temperature is reduced, and thus the high temperature limit of the heat capacity is

approached more rapidly. Here, in the case of stiffening in ZnO, the Debye temperature

is increased, and thus the high temperature limit of the heat capacity is approached more

slowly.

76



Figure 4.21: Frequency dependent heat capacity for an example system (10 nm ZnO wire
with a stiffening factor of Fs = 1.15) at multiple temperatures with and without stiffening.

77



Figure 4.22: Temperature dependent heat capacity of an example system (10 nm ZnO wire
with a stiffening factor of Fs = 1.15) demonstrating the shift in the heat capacity with
stiffing.
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4.2.2 Molecular Dynamics

Our models for thermal conductivity in ZnO nanowires indicate that the effects of stiffening

should not be readily apparent in measurements of thermal conductivity at many size scales.

This is consistent with observations from experiments using nanowires of 70 nm and larger[4]

where a stiffening effect was not observed. However, as the lack of strong stiffening effect in

part arises from the canceling out of velocity and MFP effects, this result is dependent on

the nature of scattering in the material. This presents a weakness of a model which employs

scattering rates described by empirical relations. While these empirical relations work well

to model the bulk thermal conductivity, they do not fit data from nanowires. Additionally,

the nature of the stiffening effect is subject to the empirical form chosen for the scattering

rates. If the scattering rates are formulated to have a different dependence on the phonon

frequencies, it may be possible to find a set of parameters that fit bulk ZnO data well but

cause the scattering rate to have a different dependence on the stiffening factor.

As experimental results from ZnO nanowires are limited, we turn to molecular dynamics

to provide a measure of the thermal conductivity with more realistic scattering rates. As

phonon-phonon scattering in MD arises from the trajectories of the atoms, it is not subject

to the choice of an empirical scattering relation or its dependence on the stiffening factor.

First, we examine the size dependence of the elastic modulus on the thermal conductivity

of the nanowires. Here we confirm that the elastic modulus of our nanowires in MD is

dependent on the size of the nanowire. The stiffening seen in our nanowires additionally

is comparable to the stiffening seen in nanowires from Agrawal et al. [27] in both MD and

experiment. Adding these MD data points to the stiffening model results in parameters of

1.44 nm for the shell thickness and 142.7 GPa and 211.1 GPa for the core and shell elastic

moduli respectively. This indicates that the thermal conductivity of our MD nanowires

should contain the effects of stiffening. For the size range of the MD, the stiffening factor

should range from approximately Fs = 1.13− 1.22. This fit is demonstrated in Figure 4.23

To analyze the possible effects of stiffening, we compare the thermal conductivity from

79



Figure 4.23: Size dependent elastic modulus from experiment and MD from Agrawal et
al.[27] and MD from this work, fit to Eq. 2.5.
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MD with the values predicted from our model. Using the fitting parameters from above, in

Figure 4.24 we compare the thermal conductivity at 300 K for a sequence of MD simulations

and our model. As excepted, our thermal conductivity model indicates that the stiffening

effects should cause a small increase in the thermal conductivity vs a model without stiffening

effects. This increase is most apparent at small sizes where the stiffening factor is the largest.

Across all sizes, the thermal conductivity from MD is greater than for both the stiffened and

un-stiffened model.

To understand the higher thermal conductivity in the model we explored two avenues.

First, the parameters for the thermal conductivity model, particularly the scattering, are

fitted to thermal conductivity data from the entirety of the temperature range. This results

in the higher low-temperature thermal conductivity measurements dominating the parameter

fit. This results in an underprediction of the thermal conductivity at 300 K of around 15%

for the bulk thermal conductivity. Fitting our bulk thermal conductivity model for just

high-temperature thermal conductivity (between 200 K and 400 K) results in a model that

predicts the bulk thermal conductivity at 300 K well. Using these parameters, as shown

in Figure 4.24, the thermal conductivity from the model, with and without softening is

increased. However, this increase is small and insufficient to fully capture the MD data.

The other avenue that we explore is the surface specularity for our MD. Thus far our

model has assumed fully diffuse surfaces. For a highly roughened nanowire, a fully diffuse

boundary condition might be appropriate, however, in our MD, the surfaces of the wires

are atomically smooth. For smooth surfaces, specular reflections can increase the MFP from

surface scattering, increasing the thermal conductivity. To investigate this, we add a specular

component to our thermal conductivity model.

To incorporate the thermal conductivity, we modify the surface scattering MFP as[]

ls =
(1 + p)

(1− p)
D, (4.10)
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Figure 4.24: Comparison of MD thermal conductivity at 300 K and the modeling with and
without stiffening as a function of size.
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where D is the wire diameter, and p is the fraction of specular reflections from the surface.

The specularity parameter p is dependent on the surface roughness η and the wave vector

q. This is calculated as p = exp(−4η2q2)[90]. Note here that the specularity parameter is

dependent on the wavevector and not the phonon frequency. As a result, it is not directly

modified by changes to the elastic modulus. However, as it alters the MFP for surface

scattering, it may change how dominant the phonon-phonon and impurity scattering rates

are.

The addition of surface specularity results in another free parameter for the model—the

surface roughness. Here we note that large values of η result in highly diffuse surfaces (where

p→ 0) and a roughness of η = 0 nm results in a perfectly specular surface (p = 1). For our

smooth surfaced wires, we consider surface roughness on the order of 0.1 nm. This is on the

order of roughness observed in the fit of thermal conductivity for other nanostructures, in

particular nanostructures such as FIB manufactured Si nanoribbons [3].

In Figure 4.25 we see that for a model with a surface specularity of 0.1 nm, the thermal

conductivity of both the stiffened and unstiffened model matches well with the thermal

conductivity from MD for a wide range of sizes. Additionally, the uncertainty in the thermal

conductivity from MD is approximately the same size as the difference between the two

models. This result helps to validate the conclusion that the total effect of stiffening in

ZnO should result in a change in the thermal conductivity that is difficult to perceive.

As the relative insensitivity to stiffening of the thermal conductivity is strongly related to

the scattering rates, the correlation of both models to MD data helps to confirm that the

empirical models for scattering provide a good approximation of the scattering behavior. In

MD the scattering is inherent to the simulation rather than requiring a choice of model to

be parameterized.
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Figure 4.25: Comparison of MD thermal conductivity at 300 K and the modeling with the
addition of frequency dependent surface specularity (η = 0.1 nm) with and without stiffening
as a function of size.
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Chapter 5

Conclusions and Outlook

Through this work we have developed a deeper understanding of the effect of acoustic soft-

ening/acoustic stiffening in semiconducting nanowires.

Using Si nanoribbons, I have compared MD calculations and a MCRT model that includes

the effect of high aspect ratios with experimental measurements of thermal conductivity from

the literature. For these nanostructures, I have modeled the dependence of thermal conduc-

tivity on geometric size, including both the width and the thickness of the wires, using both

MD and MCRT. Using a simplified velocity-only model for acoustic softening and combin-

ing it with the MCRT model for geometric effects better agreement between experiment

and modeling was achieved than just considering geometric effects alone. Despite this, the

models were unable to fully capture the thermal conductivity of the smallest nanostructures.

Additionally, by using wave packet simulations, I demonstrated that while the phonon

velocity is reduced with decreasing nanostructure size, this decrease occurs at much smaller

sizes in MD than would be expected from experiment. This may be due to the same effects

causing a difference between experiment and computational methods for the changes in the

elastic modulus [7, 13–15] in Si.

While a velocity only model for acoustic softening/acoustic stiffening gives a rough ap-

proximation of the effects on thermal conductivity, it doesn’t capture the full implications

of altered elastic moduli on the dispersion relation thermal conductivity. To capture these

more detailed effects I developed a model of acoustic softening that incorporates the effects

of changes in the elastic modulus on components of thermal conductivity beyond the phonon
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group velocity. By considering how a change in the elastic modulus (and thus the continuum

speed of sound) should impact the general form of the dispersion relation, we are able to

extract the expected influence of acoustic softening on heat capacity and various scatter-

ing processes in Si nanoribbons. Including these factors allows us to match the general size

dependence of thermal conductivity for wires for which acoustic softening has been observed.

This model indicates that acoustic softening should modify more than just the group

velocity. In particular, the heat capacity should be increased at low temperatures, while the

mean free path should be slightly reduced. This results in a shifting of the peak thermal

conductivity to lower temperatures and an increase in the thermal conductivity at low tem-

peratures. This is similar to effects seen in Ge-Si core-shell wires [38], and the effect is likely

to be important for the thermal conductivity at low temperatures and for wires with surface

layers.

Further, this model indicates that the influence of acoustic softening phenomena at the

nanoscale implicates changes in the dispersion relation that occur on these scales. Incorpo-

rating more fine-grained predictions of how the dispersion relation should be modified by

surface phenomena at the nanoscale should improve these results and increase the ability of

thermal conductivity models to predict nanoscale thermal conductivity in size regimes where

size-dependent elastic-modulus effects occur.

While Si provides a number of experimental results to compare modeling against, it suffers

from a lack of strong agreement in the literature for the size dependent elastic modulus [21].

As seen here, and elsewhere in the literature[7, 13–15], computational methods don’t capture

softening well when compared with experimental results. By exploring the potential influence

on thermal conductivity of the related size-dependent stiffening effect in ZnO nanowires, I

was able to explore a system where both computation and experiment have better agreement.

By employing both MD and modeling we have indicated that for small nanowires, stiffening

may increase the thermal conductivity observed in experiment relative to that predicted from

boundary scattering. However, this increase is small enough that it may be difficult to resolve
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experimentally. This is in part due to the competing effects of scattering, heat capacity, and

group velocity. While the effect of stiffening on group velocity tends to increase thermal

conductivity at small sizes, the effects on heat capacity and scattering tend to decrease

thermal conductivity.

An important limitation on this work remains the predictions of scattering rates. While

the empirical rate used here have enjoyed long used for predicting thermal conductivity,

even at the nanoscale, it is possible that, particularly for the phonon-phonon scattering

rates, these formulas fail to capture relevant physics. In particular, the power law formulas

used here for phonon-phonon scattering do not, in and of themselves, enforce selection rules

for Umklapp scattering. Recent experimental work in silver nanowires has indicated that

changes in the optical bands may result in significant changes to allowed phonon-phonon

scattering process, increasing the mean free path[91]. To include such effects, it may be

necessary to compute scattering rates from ab initio simulations including surfaces to fully

capture effects seen in experiment.

From this work we can make some observations on materials likely to exhibit large stiffen-

ing or softening effects in thermal conductivity. First, they should have very strong stiffening

or softening of the elastic modulus as the effect on the thermal conductivity is proportional

to the square root of this change. Materials with large changes in the coordination num-

ber at the surface and large changes in bond lengths near the surface are likely to exhibit

the strongest effects. Secondly, the more strongly the scattering is dominated by boundary

and surface effects, the more strongly the thermal conductivity will be affected. In general,

the effects on phonon-phonon and impurity scattering tend to counter the effects of stiffen-

ing/softening on velocity. Materials with large band gaps between the optical and acoustic

phonons, as well as high purity materials should have less dominant phonon-phonon and

impurity scattering, and thus effects from velocity will be more dominant.

Using dispersion relations that incorporate acoustic softening or acoustic stiffening, we

were able to explore the influence of the size dependence of the elastic modulus at the
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nanoscale on the factors of thermal conductivity. For the first time we considered the influ-

ence of factors other than group velocity, namely heat capacity and scattering and explored

the relative magnitude of effects on these factors in multiple materials. These efforts will

help to advance a better understanding of the full scope of softening and stiffening phe-

nomenon affecting nanoscale thermal transport. More importantly, this understanding can

help identify materials that should demonstrate acoustic softening/acoustic stiffening effects

for further study.

88



BIBLIOGRAPHY

1M. D. Gerboth and D. G. Walker, “Effects of acoustic softening on thermal conductivity

beyond group velocity”, Journal of Applied Physics 127, 204302 (2020).

2M. C. Wingert, S. Kwon, M. Hu, D. Poulikakos, J. Xiang, and R. Chen, “Sub-amorphous

Thermal Conductivity in Ultrathin Crystalline Silicon Nanotubes”, Nano Letters 15, 2605–

2611 (2015).

3L. Yang, Y. Yang, Q. Zhang, Y. Zhang, Y. Jiang, Z. Guan, M. Gerboth, J. Yang, Y.

Chen, D. Greg Walker, T. T. Xu, and D. Li, “Thermal conductivity of individual silicon

nanoribbons”, Nanoscale 8, 17895–17901 (2016).

4R. Chen, J. Lee, W. Lee, and D. Li, “Thermoelectrics of Nanowires”, Chemical Reviews

119, 9260–9302 (2019).

5R. E. Miller and V. B. Shenoy, “Size-dependent elastic properties of nanosized structural

elements”, Nanotechnology 11, 139–147 (2000).

6H. Sadeghian, J. F. L. Goosen, A. Bossche, B. J. Thijsse, and F. Van Keulen, “Effects of size

and surface on the elasticity of silicon nanoplates: Molecular dynamics and semi-continuum

approaches”, Thin Solid Films 520, 391–399 (2011).

7K. Kang and W. Cai, “Size and temperature effects on the fracture mechanisms of silicon

nanowires: Molecular dynamics simulations”, International Journal of Plasticity 26, 1387–

1401 (2010).

89



8H. Sadeghian, C. K. Yang, J. F. L. Goosen, E. Van Der Drift, A. Bossche, P. J. French,

and F. Van Keulen, “Characterizing size-dependent effective elastic modulus of silicon

nanocantilevers using electrostatic pull-in instability”, Applied Physics Letters 94, 221903

(2009).

9H. Sadeghian, J. F. L. Goosen, A. Bossche, and F. Van Keulen, “Surface stress-induced

change in overall elastic behavior and self-bending of ultrathin cantilever plates”, Applied

Physics Letters 94, 231908 (2009).

10H. W. Shim, L. G. Zhou, H. Huang, and T. S. Cale, “Nanoplate elasticity under surface

reconstruction”, Applied Physics Letters 86, 1–3 (2005).

11B. Lee and R. E. Rudd, “First-principles calculation of mechanical properties of Si〈001〉

nanowires and comparison to nanomechanical theory”, Physical Review B 75, 195328

(2007).

12B. Gong, Q. Chen, and D. Wang, “Molecular dynamics study on size-dependent elastic

properties of silicon nanoplates”, Materials Letters 67, 165–168 (2012).

13H. Sadeghian, C.-K. Yang, J. F. L. Goosen, A. Bossche, U. Staufer, P. J. French, and F. van

Keulen, “Effects of size and defects on the elasticity of silicon nanocantilevers”, Journal of

Micromechanics and Microengineering 20, 064012 (2010).

14H. Sadeghian, H. Goosen, A. Bossche, B. Thijsse, and F. van Keulen, “On the size-

dependent elasticity of silicon nanocantilevers: impact of defects”, Journal of Physics D:

Applied Physics 44, 072001 (2011).

15Y. Zhu, F. Xu, Q. Qin, W. Y. Fung, and W. Lu, “Mechanical Properties of Vapor−Liquid−Solid

Synthesized Silicon Nanowires”, Nano Letters 9, 3934–3939 (2009).

16M. J. Gordon, T. Baron, F. Dhalluin, P. Gentile, and P. Ferret, “Size effects in mechani-

cal deformation and fracture of cantilevered silicon nanowires”, Nano Letters 9, 525–529

(2009).

90



17Y. Calahorra, O. Shtempluck, V. Kotchetkov, and Y. E. Yaish, “Young’s modulus, residual

stress, and crystal orientation of doubly clamped silicon nanowire beams”, Nano Letters

15, 2945–2950 (2015).
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