
SPATIOTEMPORAL ANOMALY DETECTION AND PREDICTION OF ANOMALY

PROPAGATION PATH USING LSTM NETWORKS

By

Sanchita Basak

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

December 12, 2020

Nashville, Tennessee

Approved:

Dr. Abhishek Dubey

Dr. Aniruddha Gokhale

Dedicated to my family in Kolkata, India

ACKNOWLEDGEMENTS

I would like to acknowledge my advisor Dr. Abhishek Dubey for his guidance in conduct-

ing the research. I would also like to thank Dr. Aniruddha Gokhale for being a member

of my thesis committee. I would like to express a special note of thanks to my friends

Scott Eisele, Chinmaya Samal, Fangzhou Sun, Geoffrey Pettet, Michael Wilbur, Shreyas

Ramakrishna, and Nithin Guruswamy for their constant support during my time at Vander-

bilt.

I would like to acknowledge the research funding from National Science Foundation

(NSF) and Siemens CT for supporting various research projects in which I have partici-

pated.

I want to convey my heartfelt gratitude to Dr. Shyamali Mukherjee and Dr. Saptarshi

Sengupta for always staying by my side when the going got tough.

None of this would have come to fruition without the constant love and support of my

family based in Kolkata, India. This one is for you.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . ii

TABLE OF CONTENTS . iii

LIST OF TABLES . v

LIST OF FIGURES . vi

I Introduction . 1

I.1 Problem Overview . 1
I.2 Scope of the Thesis . 4
I.3 Outline of the Thesis . 5

II Data-Driven Detection of Anomalies and Cascading Failures in Traffic Net-
works . 6

II.1 Problem scope . 6
II.1.1 Definitions . 8
II.1.2 Problem Definition and Dataset 10

II.2 Related Work . 10
II.2.1 Existing Work on Traffic Forecast with Machine Learning 11
II.2.2 Existing Work on Traffic Anomaly Prediction 12
II.2.3 Existing Work on Cascading Failures 13

II.3 Traffic Speed Prediction Model . 14
II.3.1 Prediction Using Recurrent Neural Network 16
II.3.2 Prediction Using Long Short-Term Memory 16
II.3.3 Comparison Between RNN and LSTM 17
II.3.4 Prediction Using Gaussian Process Regression 18

II.4 Detection of Anomalies . 20
II.5 Cascading Effect of Traffic Congestion 23

II.5.1 Congestion Simulation . 24
II.5.2 Effect of Physical Incidents . 24
II.5.3 Timed Failure Propagation Graph of Traffic Network 27
II.5.4 Diagnosis . 28
II.5.5 Case Study . 29

II.6 Outcome . 29

iii

III Analyzing the Cascading Effect of Traffic Congestion Using LSTM Networks 31

III.1 Problem Scope . 31
III.1.1 Definitions . 34

III.2 Related Work . 35
III.3 Citywide Connected LSTM Fabric . 37

III.3.1 Selecting number of past observations 39
III.3.2 Selecting the time resolution for the LSTM fabric 40
III.3.3 LSTM architecture . 41
III.3.4 Predicting multiple timesteps ahead 42

III.4 Congestion Prognostics . 42
III.4.1 Training Phase . 42
III.4.2 Congestion Forecasting Algorithm 44
III.4.3 Identifying likelihood of congestion propagation 47

III.5 Validation . 48
III.5.1 Cascade Event Dataset . 49
III.5.2 Congestion Progression Using 10 minute resolution LSTM 51
III.5.3 Fine tuning progression results Using LSTM with timestep=5 . . . 54

III.6 Outcome . 54

IV Conclusions and Future Work . 56

BIBLIOGRAPHY . 57

iv

LIST OF TABLES

Table Page

II.1 Average Loss with Different Number of Timesteps 15

III.1 Summary of the congestion forecasting result for ten congestion events
whose precision and recall values are shown in Figure III.11. The con-
gestion sources, the date and time of onset of congestion at source, the
actual and predicted times of onset of congestion at each of the neigh-
bors. Note that there are multiple neighbor rows for the same congestion
source, one for each incoming neighbor at that hop distance. Dashes in-
dicate that there were no congestion events on the neighbors. 50

III.2 The table shows the actual and predicted time for onset of congestion
w.r.t. the time of onset of congestion at source at 5 minute resolution. . . 53

v

LIST OF FIGURES

Figure Page

II.1 Average loss from predicted speed values by RNN and LSTM for differ-
ent number of neurons . 16

II.2 Predicted speed values by RNN vs actual speed values for the test data
of first TMC . 17

II.3 Predicted speed values by LSTM vs actual speed values for the test data
of the first TMC . 18

II.4 Loss from predicted speed values by LSTM and RNN for the first 100
TMC (difference is shown in Log scale) 19

II.5 Comparison of LSTM and Gaussian Process Regression based on pre-
dicting the speed of a chosen TMC . 19

II.6 Introducing additive anomaly into sensor readings of a TMC 21

II.7 Detection of anomaly through CUSUM algorithm 22

II.8 Precision Recall curves of LSTM and Gaussian Process Regression show-
ing their comparative efficiency in identifying anomaly 23

II.9 Part of the Nashville traffic network showing the source of congestion
and the direction of traffic flow . 24

II.10 Congestion instance: vehicles at target road R1 completely stop due to
some incident. 25

II.11 Prediction result for 1st hop neighbor R2 25

II.12 Prediction result for 2nd hop neighbor R4 25

II.13 TFPG model of congestion propagation 26

II.14 An illustration of a TFPG Model with Failure Modes (FM), Discrepan-
cies (D), and fault propagation links. Labels on edges indicate delay in
(min,max) values. 27

vi

III.1 A sample road network and corresponding connected LSTM networks. . 32

III.2 Each computing processor associated with each road segment in the net-
work collects the speed of the neighboring segments according to the
graphical model of the network, process them to forecast the speed and
send the results to a central cloud server which can be used for taking
traffic routing decisions . 33

III.3 An illustrative representation of k-hop incoming and outgoing neigh-
bors. In this figure, ’A’ is the target road, ’G’ and ’H’ are its 1st hop
incoming neighbors, ’I’ and ’J’ are its 2nd hop incoming neighbors, ’B’
and ’C’ are its 1st hop outgoing neighbors and ’D’,’E’ and ’F’ are its
2nd hop outgoing neighbors. 35

III.4 Comparison of mean Squared error in traffic forecasting with and with-
out using neighborhood information to solely evaluate the importance of
using neighborhood information in the traffic prediction architecture. . . 39

III.5 Comparison of the mean squared errors of taking different number of
past observations in predicting the future speed 40

III.6 Selecting hyper-parameter: time constant at which the data should be
sampled. 41

III.7 Predicting normalized traffic speed of TMC ‘4424-0.12847’ upto three
timesteps, i.e., 30 minutes ahead from current time using the citywide
connected LSTM fabric. 43

III.8 Comparing the forecasted speed after 10 minutes and the actual observed
speed after 10 minutes on a TMC ID having five neighbors. 43

III.9 Comparison of the mean squared errors among forecasting one, two,
three and four timesteps ahead respectively for 45 TMC out of 3724
TMC in Nashville. The plot shows first 45 TMC only for brevity. 44

III.10 An illustration of the overall congestion forecasting framework 46

III.11 Precision and recall values identifying the onset of congestion in all 1st,
2nd and 3rd hop neighboring segments of a congestion source tested
over ten congestion events. 52

III.12 Road segment for congestion event 10 in Table III.1. The source road of
congestion is road segment ‘A’. Following the congestion at the source
road segment, the congestion propagates to the 1st (‘B’), 2nd (‘C’, ‘G’)
and 3rd hop (‘D’, ‘E’, ‘F’, ‘H’, ‘I’, ‘J’) incoming neighbors respectively. 52

vii

III.13 Radar chart showing the accuracy of forecasting results applied to the
for road section and congestion event shown in Figure III.12 53

III.14 Workflow of the congestion forecasting framework. 54

viii

CHAPTER I

Introduction

I.1 Problem Overview

A Cyber Physical System (CPS) is an integration of cyber and physical parts. Examples

include transportation networks (Deka et al., 2018), water networks (Wei and Li, 2015),

smart grid (Yu and Xue, 2016) etc. We can retrieve the information about the physical

systems through various forms of sensors and build models that ensure safe and correct

operation of such systems. Faults that affect this efficient and accurate operation of these

systems need to be identified.

Modern Cyber Physical System is a collection of connected nodes and edges where

information diffuses among various nodes of the network. Each node is associated with a

sensor which measures the system state. In a large scale geographically distributed Cyber

Physical System some nodes are in close proximity of each other whereas some are far

away. The nodes are mutually influential and are connected in a way that the state of a

particular node is affected by the state of the nodes in its neighborhood. The hypothesis

is that if there is a fault or anomaly in a sensor associated with a node then there must be

anomalies in the neighboring sensors as well. The objective is to try to identify anomalies

in each node and identify the anomalies that are in neighboring nodes that appear within

a specified time interval and analyze if those anomalies are connected or not. Connected

anomaly indicates multiple anomalies that occur in a close spatial neighborhood within a

short interval of time and appear due to a common reason and progresses in a cascaded

way.

A networked Cyber Physical System can be represented as a connected graph with

multiple nodes and edges that share information and influence each other. The research

questions that this thesis aims to solve are as follows: (a) how to capture the neighborhood

1

information in a networked Cyber Physical System, (b) how to capture temporal progres-

sion of system variables in networked CPS, (c) how to select past temporal windows that

affect future system states, (d) how to diagnose connected anomalies and differentiate be-

tween cyber and physical anomalies and (e) how to prognosticate anomaly propagation

path.

Thus the objective of this research is to identify and correlate anomalies in networked

Cyber Physical Systems. Once an anomaly is identified it needs to be categorized whether

it is due to a cyber attack or due to some physical incidents. If multiple anomalies are

observed, the correlation among them should be investigated and the cascaded progression

of anomalies should be analyzed. From the sequence of this chained anomaly progres-

sion, the root cause i.e., the source of anomaly needs to be isolated. Also the focus is to

prognosticate future progression of anomaly in networked Cyber Physical Systems.

An efficient way to identify anomalous behavior in non-stationary Cyber Physical Sys-

tems is to look at the context specific data and study the changing distributions of data over

time and learn the temporal variations of this data to take into account the variances and

uncertainties introduced by temporal scales. However, along with temporal variations it

is important to characterize the spatial influences that govern the system dynamics. Ex-

isting research in this area ignores the micro-scale, subsystem level spatial influence in

modeling system properties (Ma et al., 2015b). Thus there remains a need to develop a

robust, system-wide framework that works at a granularity of capturing the specificity of

micro-level sub-systemic spatial interactions. In this context we looked at the neighbor-

hood specific information as in a small neighborhood, that is at a very small systemic level

the data distributions should have influence over each other and should cluster together. So

it is important to note how the observation in a single neighborhood gets impacted by the

observations nearby. In this context it is important to chose optimal neighborhood as that

helps avoid lack of specificity as well as breach of causality. Thus it takes into account the

exact information flow among the actual neighbors. This is proposed to solve using graph

2

based approaches. One of the primary reasons why the graph data is useful is because

of its structural correlations that help discover underlying data patterns. It is important to

note that multi-dimensional data objects are not always completely independent of each

other when they are part of the same subsystem. To capture their interdependence in multi-

dimensional space, incorporation of graphical structure can help capture the correlations

among various data objects. On the basis of that, an integrated architecture to model the

system as a directed connected graph encapsulating the micro-scale spatial interactions is

created for large scale Cyber Physical systems.

This thesis aims to develop a common framework for diagnosis and prognosis of anomaly

for a networked Cyber Physical System. The solution approach to mitigate these research

challenges are explained with traffic networks which is an example of a large scale net-

worked Cyber Physical System.

In the context of traffic networks, anomaly is defined as the sudden and huge difference

between the predicted speed value of a road segment and the observed speed value of that

road segment. The goal is to identify whether an anomaly is due to a cyber incident or a

physical incident. As a first step, we continuously predict the traffic speed of each road

segment based on the speed of its neighbors. If a sudden and huge difference between

the predicted and observed speed is noticed from statistical measurements, an anomalous

prediction is identified. Next, a diagnostic framework is built which relies on connecting

the dots between anomalous predictions of multiple roads in a neighborhood that occur

within a short time window. Consequently a graphical representation to capture the flow of

anomaly propagation is created. Once the anomalies are identified it is investigated if they

are connected and occur in a close neighborhood within a short time. If this condition holds

true then the anomalous occurrences are identified to have evolved from a physical incident,

otherwise they are attributed to cyber attacks on the sensors. Also the thesis addresses

prognosticating the future states of anomaly propagation. In context of traffic networks the

thesis develops a citywide connected recurrent neural architecture to prognosticate traffic

3

congestion propagation patterns and discusses the likelihood of congestion propagation

from a source of congestion to its neighboring segments.

I.2 Scope of the Thesis

This thesis focuses on developing application-specific spatiotemporal anomaly detection

and prognosis frameworks for networked Cyber Physical Systems. In this thesis two re-

search questions are explored:

• The first question is how to capture the neighborhood information in a networked

cyber-physical system as well as capture temporal correlations of system variables

to identify system anomalies. Once an anomaly is identified how can one traverse

the anomaly propagation path to identify the source of anomaly. This question is ad-

dressed in chapter II of the thesis. In this case, we use real traffic data from Nashville,

TN to demonstrate a novel anomaly detector and a Timed Failure Propagation Graph

(TFPG) (Abdelwahed et al., 2009) based diagnostics mechanism. The novelty lies in

the ability to capture the the spatial information and the interconnections of the traf-

fic network as well as the use of recurrent neural network architectures to learn and

predict the operation of a graph edge as a function of its immediate peers, including

both incoming and outgoing branches.

• The second question that the thesis looks at is how to predict anomaly propagation

path in advance. For example, when a congestion is detected at a particular road

segment of the traffic network can we predict how the congestion will propagate to

the neighboring road segments and when. We answer this question in chapter III of

the thesis. In the past, this problem has mostly been addressed by modelling the traf-

fic congestion over some standard physical phenomenon through which it is difficult

to capture all the modalities of such a dynamic and complex system. While other

recent works have focused on applying a generalized data-driven technique on the

whole network at once, they often ignore intersection characteristics. On the con-

4

trary, we propose a city-wide ensemble of intersection level connected Long Short

Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) network models and

propose mechanisms for identifying congestion events using the predictions from

the networks. To reduce the search space of likely congestion sinks we use the likeli-

hood of congestion propagation in neighboring road segments of a congestion source

that we learn from the past historical data. We validated our congestion forecasting

framework on the real world traffic data of Nashville, TN, USA.

I.3 Outline of the Thesis

A descriptive exposition of data-driven detection of anomalies and cascading failures in

traffic networks is laid out in Chapter II. In this Chapter the problem statement is first de-

scribed, the background is elaborated on, the traffic speed prediction model is proposed

and how that is used in detection of anomalies is detailed. A discussion follows about the

cascading effect of traffic congestion and finding the root cause. Next, in Chapter III an

analysis of the cascading effect of traffic congestion using LSTM networks is introduced. In

order to do that, a citywide connected LSTM fabric and a congestion propagation frame-

work are introduced. Chapter IV concludes the thesis with possible directions of future

research.

5

CHAPTER II

Data-Driven Detection of Anomalies and Cascading Failures in Traffic Networks

II.1 Problem scope

Since the emergence of smart cities, a major focus has been in the area of Intelligent Trans-

portation System. These systems provide researchers with unique opportunities to study

the dynamics of road traffic. In this chapter, we address the first research question, that is

how to capture the neighborhood information in a connected cyber-physical system as well

as capture temporal correlations of system variables to identify system anomalies. Once

an anomaly is identified we also discuss how can one traverse the anomaly propagation

path to identify the source of anomaly. The first step of the proposed anomaly detection

model relies on an effective traffic speed prediction architecture on top of which an effec-

tive anomaly detection and anomaly source identification approaches are built. The work

discussed in this chapter is published in (Basak et al., 2019).

Traffic predictions can be performed based on two different approaches: model-driven

and data-driven (Barros et al., 2015). In model-driven approaches, we have a physical

model that represents the network topology, incorporating information about intersections,

road segments, signals, geographical coordinates of Traffic Message Channel (TMC), etc.

In data-driven approaches, information regarding various forms of traffic measurements,

such as speed and congestion factor, are needed for training, which can be obtained from

sensors, such as induction-loop detectors placed in the road network.

Our aim here is to combine model-driven and data-driven approaches to build an effec-

tive traffic prediction architecture. We use the physical model of the network to generate a

directed graph that captures the spatial interconnections within the network. The temporal

dependencies of the flow patterns are captured by training recurrent neural network archi-

tectures using significant amounts of sensor data. Thus, combining the model-driven and

6

data-driven approaches, we can assess the evolution of the traffic state of the entire road

network.

We demonstrate our approach using real traffic data from Nashville, TN, USA obtained

via the HERE API (her, 2020). In particular, we study the efficacy of building traffic-speed

predictors using two different approaches, Long-Short Term Memory Networks (LSTMs)

and Gaussian Process Regression (GPR). For both approaches, we model the speed of each

road segment in the network as a function of its neighboring road segments, and build

specialized traffic predictors for each edge of the entire network.

We develop the traffic speed prediction model keeping two objectives in mind: 1) de-

tection of anomalous sensor readings and 2) a model to capture the dynamics of congestion

propagation in a cascaded way. The disruptive events in the traffic network causing anoma-

lous sensor readings can be due to malicious sensor attacks involving data manipulation

as well as real physical incidents creating congestion. For sensor anomaly and attack de-

tection, we introduced additive and deductive anomalies in the real-time traffic data and

showed the ability of the trained traffic predictors to identify the attacks using statistical

control charts. We also analyzed the precision and recall of this anomaly detection scheme.

Next, the cascading effect of congestion in a traffic network is analyzed where conges-

tions/perturbations created at a local level at a targeted road segment can propagate back-

wards like a wave to affect a larger part of the network leading to chained congestions. To

analize such effects in a large-scale traffic network, we use the SUMO (Simulation of Urban

Mobility) (Behrisch et al., 2011) traffic simulator to access real-time traffic simulation and

monitor as well as analyze traffic patterns under the influence of congestion. We trained

traffic predictors with data collected from SUMO under normal operating conditions and

showed that the pre-trained models effectively predicted the real-time cascading effect of

congestions spreading out to the neighboring road segments. Once a persisting congestion

is noted in a road segment, we identified the root-cause of the cascaded congestion by find-

ing the target road where the congestion started using Timed Failure Propagation Graphs

7

(TFPG) (Abdelwahed et al., 2009).

Contributions Our contributions in this chapter are:

• Building efficient LSTM based traffic predictors in an unique way of modelling each

road segment in a large scale traffic network as a function of its neighboring roads

and comparing its performance with that of Recurrent Neural Network and Gaussian

Process Regression. We achieved an accurate prediction model with an average loss

of 6.55×10−4 on normalized speed values.

• These traffic predictors combined with statistical control chart CUSUM are able to

detect anomalies in sensor reading with high precision and recall indicating an AUC

of 0.8507 of the precision-recall curve.

• We formulated the traffic congestion propagation as a Timed Failure Propagation

Graph to identify the root cause of failure in the network.

Thus we are interested in developing data-driven detectors to identify the following

disruptive events: (a) sensor attacks, that is, cyber-attacks against smart sensors by a net-

worked adversary which may change the measurements values arbitrarily, and (b) physical

incidents, such as motor vehicle accidents, that occur randomly and may cause a cascade

of traffic disruptions throughout the road network by creating chained traffic congestion.

In such cases, identification of the root cause of an event can help eliminate the cascaded

propagation of congestion.

II.1.1 Definitions

Transportation Network Graph: A graph representing our system model is defined as

G = (V,E) where V is a set of nodes. E is the set of road segments connecting the nodes.

In the graph, let vi ∈V denote a node and ei j = (vi,v j) ∈ E represent an edge.

in, out: The in operator in : V → 2E gives all the edges for which this node v is the

destination. When the out operator is applied to a node out : V → 2E it gives all the edge

8

for which this node v is the source.

in degree, out degree: The in degree of a node v is the number of road segments

incoming to the node and can be calculated as |in(v)|, whereas, the out degree of a node v

is the number of road segments outgoing from the node and is calculated as |out(v)|.

Traffic Message Channels (TMC): We call an edge a traffic message channel (TMC)

if it has timestamped traffic speed data associated with it. We denote the set of TMC as

T MC ⊆ E. Each sensor (s ∈ S)(s : T MC×T →ℜ+) represents the speed readings of each

traffic message channel at times T .

Jam Factor: We also have a function J that provides the jam factor, a value between 0

to 1 that describes the congestion on road. 0 means no congestion and 1 means the observed

speed is zero.

k-hop incoming neighbors: These are the k-nearest hops of the incoming edges feed-

ing traffic into an edge. The set of k hop incoming neighbors Nk
in(e) can be defined

recursively as
⋃

x∈Nk−1
in (e)(in(src(x))) using the definition of 1 hop neighbors, N1

in(e) =⋃
x∈in(src(e))(in(src(x)))

k-hop outgoing neighbors: These are the k-nearest hops of edges taking traffic away

from an edge via its out node. We define this function recursively as well. N1
out(e) =⋃

x∈out(dst(e))(out(dst(x))). Given the set Nk−1
out , the set Nk

out can be defined as Nk
out(e) =⋃

x∈Nk−1
out (e)(out(dst(x))).

Physical incident: By physical incidents, we mean the failure circumstances such that

the real speed of the edge is significantly below maximum speed. This can typically be

explained by motor-vehicle accidents that occur randomly and may cause a cascade of traf-

fic disruptions throughout the road network. An incident can cause disruptions (i) directly

through traffic congestion, which may propagate to connected roads, and/or (ii) indirectly

by forcing vehicles to take alternative routes, even before reaching the areas that are not

affected by direct congestion.

Logical incident: A logical incident is the hypothesis that the observed speed of the

9

edge is significantly different from its speed under normal operating condition. A logical

incident can be caused by a fault in the sensor or by an adversary. The disruptive events

alter the traffic speed attribute where physical incidents have effect on real traffic speed, but

the sensor failures and attacks change the observed or sensed traffic speed but not the real

speed.

AUC: AUC is the area under the precision recall (PR) curve. It is used as an indicator

of efficiency of the anomaly detection approaches discussed in the chapter. The greater the

AUC of the PR curve, the better is the detection model.

II.1.2 Problem Definition and Dataset

We are concerned with the following problem. Given a transportation graph and a sequence

of real-time speed readings,detect the occurrence of the anomalous events. Performance in

detecting anomalies is provided by quantifiable measures such as false positives, true pos-

itives, false negatives, true negatives as well as precision and recall. Second, we want to

identify the root cause of an event (e.g., if a congestion event on a road causes a large dis-

ruption through cascades of reroutes, we need to identify the original congestion event as

the root cause). In this chapter, we specifically study this problem for the transportation

network of Nashville, TN. In particular, we use the data collected by our team from HERE

to setup the problem. The data contains timestamped representation of information regard-

ing speed, jam factor, free flow speed, etc. for each Traffic Message Channel (TMC) ID.

Each TMC ID identifies a specific road segment and represents the sensor information for

that particular segment.

To inject physical incidents and study their effect, we use the microscopic traffic simu-

lator SUMO, which we have configured for Nashville.

II.2 Related Work

The approach that we will describe later in this chapter is combining three active areas of

research (a) building a predictor to forecast the normal congestion events and the expected

10

speeds on the road network; (b) using these predictors to build anomaly detectors; and (c)

developing a cascade model to study the progression of congestion and effectively isolate

the root causes. We make the assumption of single root failure (physical incident). The

model of computation we use and describe later in this chapter can support multi-failure

hypothesis. But we leave that for our future work.

II.2.1 Existing Work on Traffic Forecast with Machine Learning

Ma et al. (Ma et al., 2015a) presented an LSTM neural network to predict travel speed

using microwave detector data. They collected 1-month traffic speed data from two sites in

Beijing expressway. They compared three different typologies of recurrent neural network

(i.e. Elman NN, TDNN and NARX NN) as well as other non-parametric and parametric

methods (i.e. SVM, Time Series and Kalman Filter) with the LSTM NN based on the

same dataset. The numerical experiments proved that the LSTM NN performes better than

other algorithm in terms of accuracy and stability. Tian et al. (Tian and Pan, 2015) intro-

duced a model called Long Short-Term Memory Recurrent Neural Network (LSTM RNN)

which represents long-term dependencies and determines the optimal time lags for time

series problems. The study used data from the Caltrans Performance Measurement System

(PeMS) and included a comparison of the LSTM RNN model with other four established

prediction models, i.e., RW (Random Walk), SVM (Support Vector Machine), FFNN (Feed

Forward NN) and SAE (Sum of Absolute Errors). This study mainly analyzed the tempo-

ral influence on traffic flow but does not consider other factors, such as spatial impact from

neighbour observation stations, weather conditions, etc.

Polson et al. (Polson and Sokolov, 2017a) developed a deep learning architecture which

combined a linear model that was fitted using l1 regularization and a sequence of tanh lay-

ers. The first layer identified spatiotemporal relations among predictors and other segments

modelled nonlinear relationships. The study provided a twofold analysis of short-term traf-

fic forecasts from deep learning. It demonstrated that deep learning provides a significant

11

advancement over linear models. A good review of Deep Learning technologies used in

forecasting analysis can be found in (Sengupta et al., 2019b). Prior work on traffic fore-

casting has also been carried out with multi agent based approaches. Hu aet al. (Hu et al.,

2014) used Particle Swarm Optimization for traffic flow prediction. Some recent swarm-

based algorithms listed in [(Sengupta et al., 2019a), (Sengupta et al., 2018)] can also be

used in this purpose.

For short term traffic volume forecasting, Zhao et al. (Zhao et al., 2017) proposed a

cascaded LSTM network by combining the interaction among the road network in both

the time and spatial domain. They showed that the proposed LSTM network approach for

traffic volume prediction is sturdy and had a minimum MRE (Mean Relative Error) com-

pared to other models such as ARIMA (Autoregressive Integrated Moving Average) model,

SVM (Support Vector Machine) and SAE (Stacked Auto-encoder). LSTM and RNN archi-

tectures also outperformed other techniques in numerous applications, such as language

learning [(Gers and Schmidhuber, 2001)], connected handwriting recognition [(Graves

and Schmidhuber, 2009)], Remaining Useful Life Prediction of hard disks [(Basak et al.,

2019b)].

In comparison our approach we model each road segment in the network as a function

of its neighboring roads and use that relationship for prediction. When we compared our

performance with that of RNN and Gaussian Process Regression we saw that we achieved

a better prediction model with an average loss of 6.55× 10−4 calculated on Normalized

Speed.

II.2.2 Existing Work on Traffic Anomaly Prediction

Zygouras et al. (Zygouras et al., 2015) presented an approach to identify anomalous sensors

and resolve whether irregular measurements are due to faulty sensors or unusual traffic.

The proposed method was implemented by using the Lambda Architecture which com-

bined a batch processing framework (i.e. Hadoop3) and a distributed stream processing

12

system (i.e. Storm4) for efficiently processing both historical and real-time data. The au-

thors also developed a Crowdsourcing system to extract answers from the human crowd

based on the MapReduce paradigm. The study recognised anomalous SCATS (Sydney Co-

ordinated AdaptiveTraffic System) sensors from Dublin city with three methods; Pearson’s

correlation, cross-correlation and multivariate ARIMA model. The three different outlier

detection techniques identified a complementary set of faulty sensors. The study gave a

detailed experimental evaluation to prove that their proposed approach effectively resolved

the source of irregular measurements in real-time.

Lu et al. (Lu et al., 2008) provided a systematic study of previous loop fault detection

and data correction methods, and also systematic classification of possible faults and the

reasons behind them at different levels. According to the study, existing work on loop fault

detection and data correction/imputation may be divided into three levels which lead to

different viewpoints for loop fault detection and data correction: macroscopic such as: (a)

TMC/PeMS level; (b) mesoscopic – a stretch of freeway; and (c) microscopic – control

cabinet level. These three levels of approaches are complementary to each other although

they study the problem from different aspects using a different level of data.

In this work we used statistical control chart CUSUM to identify malicious sensor at-

tacks with high precision and recall indicating an AUC of 0.8507 of the precision-recall

curve.

II.2.3 Existing Work on Cascading Failures

Daqing et al. (Daqing et al., 2014) studied the long-range spatial correlation of cascading

failures and their evolution with time to predict system collapse in case of power grid fail-

ures and traffic congestion. Zhang et al. (Zhang et al., 2015) employed an improved form

of Coupled Map Lattice(CML) model to analyze the cascading failures on Beijing Traffic

network. They considered the traffic network topology and tested on various attack strate-

gies and how the scale of failure varies with external perturbations, coupling strengths and

13

attack strategies. Liang et al. (Liang et al., 2017) proposed a data-driven approach CasIn f

to study the cascading patterns of traffic propagation through maximizing the likelihood

function from the available data. They treated it as a submodular function maximization

problem providing near-optimal performance guarantees.

In this chapter, the spatiotemporal correlations of anomaly have been formulated as a

separate directed graph. The concept of Timed Failure Propagation Graph (TFPG) in an-

alyzing and correlating traffic congestion propagation pattern has been introduced in this

research. Apart from analyzing the cascading effects of traffic congestion on the neigh-

boring road segments of the network, the innovation of this work lies in showing that the

source of congestion can be isolated by formulating the congestion propagation problem as

a Timed Failure Propagation Graph.

II.3 Traffic Speed Prediction Model

For the Nashville dataset, we have 3,724 unique TMCs. For each TMC we have collected

speed values for a total of 6000 timesteps. Each timestep specifies a small time interval of

10 minutes.

First, a matrix of dimension (total number of timesteps × traffic speed for all unique

TMC IDs) (6000×3724) is formed. Some of the TMCs do not have speed value recorded.

To interpolate the missing speed value of a particular TMC, we are considering the speed

values of all the neighbouring TMCs for the preceding and succeeding timestep using data

imputation.

Since we consider the speed of the neighbors for predicting the speed of a TMC we

must ensure that we normalize the speeds (see definition 1). The normalized speeds are

defined to be in between 0 and 1 and help ensure data ranges are balanced between the road

segments. This is required for building a good predictive model.

Definition 1 (Normalized speed) The normalized speed of a TMC (definition II.1.1) is a

ratio of its current speed with the average of speeds for times when the jam factor (definition

14

II.1.1) is zero.

For each TMC, N1
in(T MC) and N1

out(T MC) give the set of its immediate incoming and

outgoing neighbors respectively. For each TMC, the normalized speed values for each of

its neighbors (including incoming and outgoing) are treated as input features whereas the

normalized speed of the target TMC is treated as the label. We applied both Recurrent

Neural Networks and Long Short Term Memory Networks to build the traffic predictors

for each TMC in the traffic network.

The number of timesteps to look back in order to predict the result for current timestep

has been chosen in a way that produces the least loss. The timesteps are varied from 5 to

20. From the experimental results, we have seen that for RNN, ten timesteps provide a

stable outcome whereas LSTM gives better result with 15 timesteps. Table II.1 shows the

average loss on test data calculated over normalized speeds for different timesteps produced

by RNN and LSTM.

Table II.1: Average Loss with Different Number of Timesteps

Number of Timesteps Average Loss Average Loss
to Look Back from RNN from LSTM

5 0.0007797 0.0007032
10 0.0006966 0.0007063
15 0.0006976 0.0006805
20 0.0006966 0.0006853

RNN and LSTM take the input as a three dimensional matrix of dimension specified as

(Samples× timesteps× f eatures) where number of features is equal to the total number of

Neighbouring TMCs. As the sample labels for a particular TMC is the normalized traffic

speed value of that TMC, the network learns to predict the speed at any timestep for the

target TMC given past 10 timesteps of data inputs form its neighbors. The sample matrices

are split randomly into Training Set and Test Set (70% Training and 30% Testing).

15

Figure II.1: Average loss from predicted speed values by RNN and LSTM for different
number of neurons

II.3.1 Prediction Using Recurrent Neural Network

For Recurrent Neural Network (RNN) prediction model, we have tried a different number

of neurons (from 40 to 200) in the input and hidden layers. We ran the models with a

different number of neurons for the first 100 TMC. From the average losses, we have found

out that RNN works better with 80 neurons. Figure II.1 shows the average losses produced

by RNN and LSTM for the different number of neurons. The average losses provided by

RNN show a downward trend for 40 to 80 neurons. Afterwards, as the number of neurons

increases, the average loss also increases.

We have used Mean Squared Error as the loss function for RNN. For training the deep

neural model, we have used Adam optimizer. Figure II.2 shows the predicted speed value

and actual speed value of the first TMC for the first 400 timesteps. The loss of this predic-

tion is 3.388×10−5.

II.3.2 Prediction Using Long Short-Term Memory

For the LSTM model, we have predicted normalized speed values for the different number

of neurons (40 to 200). The average losses show a downward trend with the increasing

16

Figure II.2: Predicted speed values by RNN vs actual speed values for the test data of first
TMC

number of neurons. According to our experiment, 180 neurons in both input and hidden

layer produces the least average loss. The loss function is defined in terms of mean squared

error. Figure II.1 shows the average loss produced by RNN and LSTM with varying number

of neurons. It is visible from the figure that RNN converges with 80 neurons while LSTM

needs 180 neurons. So, in our LSTM model, we have used 180 neurons.

Figure II.3 shows the predicted speed value and actual speed value of the first TMC for

the first 400 timesteps. The loss of this prediction is 2.704×10−5.

II.3.3 Comparison Between RNN and LSTM

To compare which model is producing a better result, we have run the model with their

optimal number of neurons and timesteps. Based on our experiments, the optimal number

of neurons for RNN and LSTM is 80 and 180 respectively. RNN works the best with 10

timesteps and LSTM with 15 timesteps. So, we ran both the models for the first 100 TMC

to see which delivers the best result. Figure II.4 shows the losses for the first 100 TMCs. It

is visible in the figure that LSTM produces the least loss in most cases. The average loss

from RNN is 7.04×10−4, and average loss from LSTM is 6.55×10−4. So, LSTM works

17

Figure II.3: Predicted speed values by LSTM vs actual speed values for the test data of the
first TMC

best for this dataset.

II.3.4 Prediction Using Gaussian Process Regression

Other than neural networks, we have also used Gaussian Process Regression (Rasmussen

and Williams, 2005) which is a Bayesian approach for modelling functional relationships

to build traffic predictors. The underlying assumption in this process is that the prior dis-

tribution of the regression function is considered to be a multivariate Gaussian distribution.

By calculating the covariance matrix for the labeled data and covariance vector between

labeled and new test data points and taking the measurement noise into account, the pre-

diction result for the test data points can be obtained (Ghafouri et al., 2017). In this work,

we have used Radial Basis Function (RBF) as the kernel. Figure II.5 compares the root

mean square losses of the prediction results produced by LSTM and Gaussian Process Re-

gression for the first 100 TMCs. The average loss from Gaussian Process Regression is

0.0178 whereas LSTM produces an average loss of 6.55×10−4 showing that LSTM works

best for this traffic speed prediction problem.

18

Figure II.4: Loss from predicted speed values by LSTM and RNN for the first 100 TMC
(difference is shown in Log scale)

Figure II.5: Comparison of LSTM and Gaussian Process Regression based on predicting
the speed of a chosen TMC

19

II.4 Detection of Anomalies

The goal here is to identify anomalous sensor readings in the traffic networks. Anomalous

sensor readings can arise due to sensor attacks as faults can be artificially injected in the

data stream associated with a sensor by a networked adversary. So it is important to build

effective anomaly detectors so that we can mitigate the effects by replacing the erroneous

or missing data with predictions based on correct values from other sensors through data

imputation.

Each TMC ID is associated with a sensor si whose value is predicted through the set of

sensors (s j ∈ S, i 6= j) placed in the neighboring (incoming and outgoing) road segments.

The anomalous sensor readings can be detected by calculating the difference between the

prediction and the real-time sensor measurement. The time series data representing this

difference can be used for identifying anomaly. The anomalies in the sensor data can be

introduced in two ways: additive or deductive. In case of additive anomalies, the sensor

readings are increased arbitrarily compared to normal operating conditions. Conversely,

for deductive anomalies, the sensor readings are decreased compared to the normal condi-

tions. We must inject anomalies artificially into the real data since we need ground-truth

labels for anomalies in order to validate the detection approach, but we do not have any

labels corresponding to anomalous readings of real data. Figure II.6 shows and example of

differences between the predicted and the actual real-time sensor measurements during an

additive sensor attack.

In this work, we use Cumulative Sum Control chart (CUSUM) (Page, 1954), which is

a statistical control chart to track the variation of timeseries data. This algorithm is used to

identify the timestamp when the anomaly started and ended, the amplitude of change, and

an alarm (timestamp of when the anomaly was detected).

By choosing a threshold, we can control the number of false positives and negatives,

i.e., we can modulate the sensitivity of the algorithm for anomaly detection. The upper

(usumt
s) and lower (lsumt

s) cumulative sums are defined as:

20

Figure II.6: Introducing additive anomaly into sensor readings of a TMC

usumt
s = max{0,usumt−1

s + xt
s−µ− k} (II.1)

lsumt
s = min{0, lsumt−1

s + xt
s−µ + k} (II.2)

The CUSUM criterion detects a sample xt
s of sensor s to be anomalous at timestamp t,

if (usumt
s > ηs) or (lsumt

s < ηs), where ηs is the detection threshold for sensor s.

Figure II.7 shows the detection of anomaly for the case described in Figure II.6. We in-

troduced an additive sensor attack between the time window of (80,100) and the difference

between the predicted speed through LSTM and the sensor data subjected to the attack has

been fed to CUSUM, which triggered the alarm at 80th and 100th instant, identifying the

actual time of attack. This anomaly identification can be carried out online as we continu-

ously feed the difference between the prediction and sensor measurements. This validates

the fact that using traffic predictors combined with change detection algorithm CUSUM,

online identification of anomalies is possible.

21

Figure II.7: Detection of anomaly through CUSUM algorithm

To compare the efficiency of the anomaly detection scheme between the approach com-

bining LSTM based traffic predictors and CUSUM and on the other hand, Gaussian Process

Regression based traffic predictors and CUSUM, we show the Precision-Recall curve for

both the approaches by varying the anomaly detection thresholds similarly. Series of ran-

domly generated additive and deductive anomalies have been introduced in the sensor data

and the above mentioned approaches have been applied on the same altered data to iden-

tify the anomalies. Figure II.8 shows the Precision Recall curves of LSTM and Gaussian

Process Regression showing their comparative efficiency in identifying anomalies. The

Area Under Curve (AUC) for Gaussian Process Regression is 0.4070 whereas the AUC for

LSTM based approach is 0.8507 showing its superiority in identifying anomalies all other

conditions remaining equal. We expected LSTM to perform better in anomaly detection

because we had already seen in Figure II.5 that it predicts traffic speed more accurately

It is to be noted that anomalies in sensor data can also be due to physical incidents.

However, the presence of any physical incidents can be deduced by Timed failure Propa-

gation Graphs indicating a sequence of anomalies. This is described in detail in Section

II.5.

22

Figure II.8: Precision Recall curves of LSTM and Gaussian Process Regression showing
their comparative efficiency in identifying anomaly

II.5 Cascading Effect of Traffic Congestion

In a large-scale interconnected system such as a traffic network, congestion in one (or some)

parts can lead to congestion in other, connected parts as well. In this chapter, our goal is

to identify the pattern of how congestion originating from one road segment propagates

backwards to the incoming branches of the road segment, creating a cascading effect of

traffic congestion.

To study the spread of road congestion, we used SUMO, which is a microscopic traffic

simulator. SUMO allows us to introduce congestion by manipulating a running simula-

tion and to measure road traffic using simulated traffic sensors. All of the experiments

in this section are based on SUMO simulations. We simulated congestion scenarios on a

part of Nashville’s road network, which we downloaded from OpenStreetMap (ope, 2020).

Figure II.9 shows the part of the road network that we used in our simulations. For our

experiments, we introduced congestion at road segment R1.

23

Figure II.9: Part of the Nashville traffic network showing the source of congestion and the
direction of traffic flow

II.5.1 Congestion Simulation

Figure II.10 depicts an instance of congestion simulation, where the vehicles at the target

road R1 completely stop due to some incident. The graph shows how the effect of the con-

gestion propagates backwards to affect all the incoming road segments of R1. Following

the congestion at R1, the observed speed at its first hop neighbors R2 and R3 drops imme-

diately; whereas the speed at its second hop neighbors R4 and R5 drops one minute later.

Vehicle speed at the third hop neighbor R7 drops following the speed drop at R5.

We trained traffic speed predictors for each road segment using the data collected from

SUMO. For training the predictors, we modeled the speed of each road segment as a func-

tion of its neighboring road segments, all working under normal operating conditions, so

that each predictor learns how speed at the target road segment depends on its neighbors.

Then, we tested whether they can predict the speed at a road segment based on the speed at

its neighboring road segments under the influence of congestion.

II.5.2 Effect of Physical Incidents

In section II.4 we discussed anomaly detection when anomaly was introduced at a par-

ticular road segment whereas the neighboring road segments were working under normal

operating conditions. So, the traffic predictors predicted the speed of the target road based

24

Figure II.10: Congestion instance: vehicles at target road R1 completely stop due to some
incident.

Figure II.11: Prediction result for 1st hop neighbor R2

Figure II.12: Prediction result for 2nd hop neighbor R4

25

Figure II.13: TFPG model of congestion propagation

on the speed of the normally operating neighbors. As a result, the prediction result for the

target road produced normal speed values as the output which deviated from the anomalous

sensor readings showing large difference in the actual and predicted speed.

In case of a physical congestion in a road segment the traffic speed of the target road

segment experiences a sudden decrease in speed while its neighbors are still operating

under congestion free condition. So the prediction of speed for that road segment is off

by some margin from the actual speed at that current time as the prediction is based on

speed of the neighbors who are still working normally. Under this condition our LSTM

based traffic predictors should raise an alarm due to the large deviation between actual and

predicted speed. However, as time progresses and congestion propagates to the neighboring

roads, the traffic predictor for the target road starts giving predicted result close to the actual

decreased speed as the neighbors are also getting congested. Once the difference between

the actual and predicted result goes down the alarm turns off1. Figures II.11 and II.12 show

that the time at which the congestion started there is a large difference between actual and

predicted speed and then the difference decreases with progression of time. We observe

this sequence of alarms (as they turn on) for each road as a time series to hypothesize the

source of the physical incident.

1Note that this is because the LSTM is predicting based on recent history

26

Figure II.14: An illustration of a TFPG Model with Failure Modes (FM), Discrepancies
(D), and fault propagation links. Labels on edges indicate delay in (min,max) values.

II.5.3 Timed Failure Propagation Graph of Traffic Network

We can identify the source of congestion efficiently using a Timed Failure Propagation

Graph (TFPG) (Abdelwahed et al., 2009). TFPGs capture the causality and temporal pat-

tern of failure propagation in complex systems. A timed failure propagation graph (TFPG)

is a labeled directed graph where nodes are either failure modes or discrepancies. Discrep-

ancies are the failure effects, some of which may be observable. Edges in TFPG represent

the causality of the fault propagation and edge labels capture operating modes in which the

failure effect can propagate over the edge, as well as a time-interval by which the failure

effect could be delayed (see figure II.14).

Figure II.13 shows a TFPG model capturing the propagation of congestion among the

edges of the network described in Figure II.9. To create a TFPG model for the traffic net-

work, we start with a directed graph of the traffic network, where each road segment in

the network corresponds to a discrepancy node in the TFPG. The direction of the edges

between the TFPG nodes is opposite to the direction of traffic flows in the traffic net-

work since congestion propagates in the opposite direction of traffic flow. The TFPG is

comprised of a non-empty set of discrepancy nodes (DN). Each edge eTFPG in the TFPG

model represents the direction of congestion propagation between two road segments with

an approximate minimum eTFPG[tmin] to maximum eTFPG[tmax] time bound. The time for

27

congestion propagation are subject to some fluctuations depending on specific time of days

and other external factors. These time bounds are obtained from the simulation, which we

set up by creating congestion scenarios in each edge of the network and calculating the time

bounds within which the congestion propagates from one DN to other. All the discrepancy

nodes in the TFPG are OR type as they are activated when the congestion propagates from

any of their parent nodes within the specified time bound. Certain discrepancy nodes are

consistently monitored, i.e., we have traffic predictors for this discrepancy nodes;

Note that monitoring all the discrepancy nodes in a large-scale traffic network is compu-

tationally expensive. There are various ways for selecting monitored nodes of a graph un-

der the constraint of maximum number of allowed nodes that can be monitored and can be

treated as an optimization problem. (Davis et al., 2016) discussed hill-climbing algorithm

which starts with an initial seed node for placing the first monitor and goes on placing the

next monitors on the highest degree neighbors. (Wijegunawardana et al., 2017) discussed

strategies of monitor placement based on graph topology and colors of nodes. Other than

some well-known monitor placement strategies such as smart random sampling, red score,

most red neighbors, the authors proposed a learning based monitor assignment strategy. As

there are numerous well-established methodologies for this problem, we do not discuss it

any further.

II.5.4 Diagnosis

In a traffic network, congestion created at a source road segment propagates to its incom-

ing neighbors. So if the root cause of an observed congestion at a certain road segment is

to be found, then the root must lie within its k-hop outgoing neighbors in the traffic net-

work. Note that the direction of traffic flow in the network is opposite to the direction of

the congestion propagation shown in TFPG. Hence, once an alarm is observed from one of

the monitored discrepancy node, a hypothesis is made such that the root failure node must

lie within a subset of k-hop incoming discrepancy nodes in the TFPG. So, starting from a

28

monitored alarm at a monitored discrepancy node, traverse through the TFPG, in a back-

ward manner, and check if their corresponding alarms have been activated within the time

range specified and go up to k-hop incoming discrepancy nodes, until the alarm at k-th hop

discrepancy node is not activated but alarms till (k-1) th hop discrepancy nodes have been

activated, so that we know that the source of congestion was at (k-1)th hop discrepancy

node. At each hop, the subset of DNs whose alarms are not observed from the set of DNs

at that hop are eliminated from the hypothesis set, so that the hypothesis set for finding the

root of failure shrinks continuously and ultimately boils down to a single discrepancy node

which is the source of congestion.

II.5.5 Case Study

Here we present a case study, where we try to find the source of congestion for road segment

R4 (see Figure II.9) where an alarm has been observed in the corresponding DN after 5

minutes from start of simulation. For the root cause diagnosis we first check for its first

hop incoming neighbors R3 and R13, out of which the alarm of R3 has been activated

almost 60 seconds ago and the time bound for congestion propagation from R3 to R4 is

(20-60) seconds as shown in the TFPG model in Figure II.13. However DN R13 is inactive

following by the same logic. Next we check when the alarms of the immediate incoming

neighbors of only R3 triggered, and find the alarm of R1 to be activated within specified

time bound. Then we stop checking further as the alarms associated with none of the

immediate incoming neighbors of R1 is activated, returning R1 as the source of congestion

correctly.

II.6 Outcome

In this chapter methodologies for capturing neighborhood specific information for a large-

scale connected cyber-physical system has been introduced. Architecture of Long Short

Term Memory networks have been put up to capture both the spatial and temporal corre-

lations of system variables to identify system anomalies. The cascading effect of traffic

29

congestion has been simulated using a traffic simulator SUMO and its impact on the traffic

speeds in the neighboring region of the source of congestion have been predicted. The most

interesting contribution of this work lies in formulating the cascading effect of congestion

propagation problem as a Timed Failure Propagation Graph. The source of congestion has

been shown to be identified by traversing through the TFPG.

30

CHAPTER III

Analyzing the Cascading Effect of Traffic Congestion Using LSTM Networks

III.1 Problem Scope

In a large-scale interconnected system such as a traffic network, it is important to study the

effect of cascading failures, where failure in one part of the system eventually triggers fail-

ure in other parts of the system. In this chapter we are trying to answer the second research

question, that is how to predict anomaly propagation path in advance. For example, when

a congestion is detected at a particular road segment of the traffic network can we predict

how the congestion will propagate to the neighboring road segments and when. The work

discussed in this chapter is published in (Basak et al., 2019a).

In past, traffic congestion prediction has been carried out in both model-driven and

data-driven approaches. Model-driven approaches are based upon mathematical modelling

to capture traffic congestion dynamics. For example, Fei et al. (Fei et al., 2017) modeled

the traffic congestion inspired by shockwave theory, Arnott (Arnott, 2013) represented the

network dynamics as a bathtub model. However, accurate modeling of the dynamic behav-

ior of a complex system such as traffic networks using standard mathematical or statistical

methods is a challenging task because the speed distributions in a large scale dynamic

system like traffic network cannot be always modeled by predetermined distributions and

all the modalities of such a dynamic and complex system cannot be captured (Ma et al.,

2015b).

On the contrary, in case of data-driven approaches the complex functional relationships

among several influencing factors can be learned by studying large amounts of data with-

out relying on any standard and fixed statistical relation. Recent works on data driven

approaches (Polson and Sokolov, 2017b), Ma et al. (2015b) in traffic prediction consid-

ered the traffic network as a homogeneous system and were mostly focused on applying

31

Figure III.1: A sample road network and corresponding connected LSTM networks.

a generalized single architecture for the entire network at once ignoring road intersection-

specific information. Thus it is difficult to capture the dynamically changing influence of

each neighbor on a certain target road segment.

To address this gap, we developed a citywide congestion forecasting framework that

works at a much higher granularity tailored towards capturing the specificity of each traffic

intersections of the network. To develop such an integrated architecture we modeled the

traffic network to a directed connected graph encapsulating the spatial interconnections

where each neighbor of a road segment is a function of spatial distance as well as traffic

flow directions. Along with modelling spatial dependencies, the temporal aspect of the

traffic flow has been captured by multiple recurrent neural network architectures. Our

approach has been validated with the real world traffic data from Nashville, USA collected

from the HERE API.

Figure III.1 illustrates the representation of a sample road network with directions of

traffic flow and its corresponding framework of the connected fabric of neural architec-

tures. These neural modules associated with each and every edge of the network takes into

account the information from itself and its outgoing neighbors for certain past sequences

32

Figure III.2: Each computing processor associated with each road segment in the network
collects the speed of the neighboring segments according to the graphical model of the
network, process them to forecast the speed and send the results to a central cloud server
which can be used for taking traffic routing decisions

upto current time to determine the future traffic state of the target edge. Figure III.2 shows

a deployment diagram where each computing processor associated with each road segment

in the network collects the traffic speed of the neighboring segments from the associated

sensors according to the graphical model of the network, process them to forecast the speed

of the target road segment and send the results to a central cloud server, which can be used

for taking traffic routing decisions.

Prior research work has been based on training the network with several congestion

specific incidents and learning from them (Pan et al., 2015) and applying the learnt models

on similar traffic incidents in future. Here, we do not train our model on specific congestion

incidents as being trained on specific incident data may limit the model’s performance on

similar situations only. Rather, we trained our architecture on all possible traffic conditions

observed over the entire city for almost one and a half month and tailored our algorithms

to identify the congestion propagation phenomenon from them.

Contributions Our contributions in this chapter are:

• We developed a city-wide connected congestion forecasting framework by incorpo-

33

rating intersection-specific information. We performed spatiotemporal modelling of

the transportation network by expressing the network as a directed connected graph

and used Long Short Term Memory (LSTM) networks to learn the distribution of the

traffic speed of a target road in future as a function of the past sequences of observed

speed of the target road and its immediate outgoing neighbors.

• We describe algorithms for identifying congestion events at any part of the network

based on spatial and temporal correlations of the traffic speed at any road segment

and its associated neighborhood. We also reduce the search space of the real time

congestion forecasting algorithm by making it focus on intersections with a higher

likelihood of congestion progression as learned from the historical data.

• The congestion forecasting framework has been validated by applying it on ten con-

gestion events identified from the real traffic data of Nashville. We effectively iden-

tified the onset of congestion in each of the neighboring segments of the congestion

source with an average precision of 0.9269 and an average recall of 0.9118 tested

over those ten events.

This chapter solves the following problem: if a congestion event is observed at a certain

road segment at any point of time in the transportation network, when does its effect propa-

gate to its k−hop incoming neighbors. We define the congestion event and the congestion

cascade below.

III.1.1 Definitions

Definition 2 (Congestion Event (CE)) A Congestion Event (CE) at an edge e is a tuple

CE(e) = (t,s(e, t)) where s(e, t)≤ 0.6∗FF(e).

Xiong et al. (Xiong et al., 2018) used reduction of 50% speed compared to free flow

speed as an indicator of congestion. We use the congestion criteria described as above.

34

Figure III.3: An illustrative representation of k-hop incoming and outgoing neighbors. In
this figure, ’A’ is the target road, ’G’ and ’H’ are its 1st hop incoming neighbors, ’I’ and
’J’ are its 2nd hop incoming neighbors, ’B’ and ’C’ are its 1st hop outgoing neighbors and
’D’,’E’ and ’F’ are its 2nd hop outgoing neighbors.

Definition 3 (∆− Cascade Event) The Delta Cascade Event is defined as a congestion

event where more than 50% of first hop neighbors (N1
in(e)) show 60% speed reduction with

∆ time steps. We say e is the source of the cascade event.

Figure III.3 provides an example of k-hop incoming and outgoing neighbors. Given a

city network and the data collected from TMC segments our goal is to find the ∆− Cas-

cade Events across the city and show that without training specifically on the cascade or

congestion events we can identify the time of propagation of congestion up to the k−hop

incoming neighboring segments where k varies from one to three.

III.2 Related Work

Previous work on traffic congestion analysis have adopted several model-driven approaches.

Fei et al. (Fei et al., 2017) proposed a time-variant model of congestion boundary founded

on shockwave theory which is based on the analogy of traffic with the fluid flow. The pa-

rameters used in the model are specific to the design and features of a particular type of

road segment and thus is difficult to be generalized to new traffic scenarios. Arnott (Arnott,

2013) modeled the traffic congestion as a bathtub model to analyze the traffic conditions

in downtown areas during rush hour. The model compares the traffic inflow and outflow to

the water flowing into and out of the tub with the height of water being proportional to the

35

traffic density. The author proposed time-varying congestion pricing in situations where the

demand is higher than the capacity. Long et al. (Long et al., 2008) proposed a congestion

propagation framework inspired by the cell transmission phenomenon to identify network

congestion bottleneck under various traffic demand scenarios.

Xiong et al. (Xiong et al., 2018) predicted congestion propagation patterns by con-

structing propagation graphs as a sequence of the traffic conditions of the road segments to

identify in which of the roads the congestion will propagate from the source. Several other

Deep Learning approaches (Sengupta et al., 2019c) are suitable to be applied to congestion

forecasting. Zhang et al. (Zhang et al., 2019) carried out traffic congestion prediction by

taking the snapshots of the traffic network as images and trained deep autoencoder architec-

tures to predict the congestion levels. Polson et al. (Polson and Sokolov, 2017b) developed

a Deep Learning architecture to predict traffic flows where the first layer identifies the spa-

tiotemporal relations among predictors and the second layer models the non-linearities.

They commented that the recent observations are stronger predictors than the historical

values in predicting future traffic conditions.

Ma et al. (Ma et al., 2015b) used data driven techniques to analyze the congestion evo-

lution in transportation network. They used conditional Restricted Boltzmann Machine

(RBM) and Recurrent Neural Networks (RNN) to predict traffic congestion applied to

Global Positioning System (GPS) data collected from taxi rides. The authors commented

on the fact that although their prediction model performed well, in future they would like

to explore the possibility incorporating spatial interactions among adjacent road segments

in order to improve prediction accuracy. The use of recurrent neural networks specially

Long Short Term Memory (LSTM) Networks for short term traffic volume prediction has

also been evidenced in Zhao et al. (Zhao et al., 2017). Due to the exceptional capability

of learning temporal sequence, LSTMs are used in various other domains including lan-

guage learning (Gers and Schmidhuber, 2001), prognostics (Basak et al., 2019b) as well

as traffic prediction. Tian et al. (Tian and Pan, 2015) also compared the traffic speed pre-

36

diction performance by LSTM-RNN, with that of Support Vector Machine, Random Walk

and Feed-forward neural networks and showed the supremacy of the LSTM-RNN model.

Past research works in traffic congestion forecasting using data driven approaches were

contingent upon a single network approach where the entire information of the network

state at any point of time is inputted and flattened as a vector. As a result, we lose the

specific neighborhood information obtained from the network graph because the flattened

vector does not incorporate the spatial closeness information along with the traffic data.

Instead, in this work, we use multiple recurrent architectures with specific attention to each

of the traffic channels in the network. Thus, our models are tailored towards capturing

the specific dynamic relationships of any traffic channel and its neighbors which is not

possible for a single neural network architecture for the entire city to provide the same

level of resolution of encoding such inter-relationships.

III.3 Citywide Connected LSTM Fabric

LSTM is a form of recurrent neural network with the capability of processing sequences

of data. It was proposed by Hochreiter and Schmidhuber (Hochreiter and Schmidhuber,

1997). LSTM prevents the vanishing and exploding gradient problem encountered in re-

current neural networks so that they are capable of capturing long temporal dependencies

using backpropagation through time. They are used in this work to model the temporal

dependencies of the traffic speed that will affect the speed in future. We build a connected

LSTM based architecture that is intersection specific. To model the future speed of a par-

ticular TMC we use the information from its relevant neighboring segments. Now, in a

transportation network traffic flows to a road from its incoming neighbor but congestion

flows in a reverse direction of traffic flow, i.e., from an outgoing neighbor to a target road.

As the congestion moves in a sequence, the speed forecasting detector for a target road is

trained on the traffic data of the target road segment and its immediate outgoing neighbor,

since congestion flows from an outgoing neighbor to a target road. In our previous work

37

(Basak et al., 2019), we used information from both the incoming and outgoing neigh-

bors to model real-time traffic speed but as we are now concerned with predicting future

traffic speed under the influence of congestion we use the information from the outgoing

neighbors only.

The function of the traffic predictors for speed forecasting ∀e ∈ T MC can be expressed

as:

s(e)ct+p = f (〈s(e)〉ct
ct− j,〈N

1
out(e)〉

ct
ct− j) (III.1)

Where s(e) denotes the speed of any TMC e, ct denotes the current timestep, p is the

number of timesteps we are going to predict ahead in future and j is the number of past

timesteps to look back. So, future traffic states of the TMC s(e), evaluated at current

timestep ct , has been modeled as a function (f) of traffic states of its own and its immediate

outgoing neighbors’ speed (N1
out(e)) from timestep (ct− j) to ct . The traffic predictors take

into account the normalized speed data of each TMC, normalized w.r.t. the free flow speed.

Each TMC in the network has such LSTM based traffic predictor associated with it. Figure

III.1 shows an example of a sample road network and its corresponding connected fabric

of LSTM.

Our approach is unique in the sense that it takes into account the information from

neighbors to forecast the traffic speed of a target road. To solely analyze the importance

and influence of neighboring road segments in determining the future traffic speed of a

target road segment, we trained two simple feed-forward networks with same architecture,

optimizer and loss functions. The first network is trained to forecast traffic speed using

the information from the neighboring road segments and the second network is trained to

forecast the traffic speed without using any information from neighbors. Figure III.4 shows

the comparison of the mean squared errors (MSE) in forecasting the traffic speed over five

randomly chosen TMC IDs. We observe that, given same architectural constraints the fore-

casts using the neighbors’ information have far less MSE than the forecasts without using

38

Figure III.4: Comparison of mean Squared error in traffic forecasting with and without
using neighborhood information to solely evaluate the importance of using neighborhood
information in the traffic prediction architecture.

the neighbor’s information clearly indicating the need for using neighborhood information

in traffic forecasting.

III.3.1 Selecting number of past observations

Selecting the number of past observations is an important hyperparameter to tune the LSTM

models. We look back two past sequences of the traffic speed i.e., we look back into

the past 20 minutes of the data for predicting the future traffic speed. Choosing longer

time sequence doesn’t improve performance in this case, because the future speed can

be more closely approximated with speeds in recent history. Figure III.5 compares the

mean squared errors (MSE) associated with different number of past observations taken

into account while predicting the future traffic speed. It shows that MSE is not decreasing

as we take more number of past data samples into account and is least when looking back

for two timesteps. Hence, we choose the hyper-parameter representing the number of past

observations as two.

39

Figure III.5: Comparison of the mean squared errors of taking different number of past
observations in predicting the future speed

III.3.2 Selecting the time resolution for the LSTM fabric

The timestep i.e., the interval at which the traffic data is discretely sampled is a critical

hyperparameter. Figure III.6 ‘a’, ‘b’ and ‘c’ show a total of 500 minutes of data collected

at an interval of 1 minute, 5 minutes and 10 minutes respectively. When we predict multiple

timesteps ahead, the error in prediction increase gradually. If we choose data collected at

one-minute time interval, then we need to predict 10 times to get a prediction after 10

minutes, which includes the error accumulated at each level of prediction. Instead if we

choose data sampled at 10 minute time interval, then we just need to predict once to get a

10-minute ahead prediction, given we do not lose much information by sampling the data

at 10 minute interval.

When plot ‘a’ is regenerated from plot ‘c’ by making each datapoint of plot ‘c’ repre-

sent same values for 10 corresponding samples of plot ‘a’, the mean squared error between

the actual signal in plot‘a’ and the regenerated signal of plot ‘a’ from the downsampled ver-

sion in plot ‘c’ is only 0.00138. Generally, for a normal data distribution, 95% of the data

remain within two standard deviations from the mean. Also, there are no two consecutive

datapoints in plot ‘c’, where the change in signal values is more than two standard devia-

tions of the data samples in plot ‘a’. Hence we chose the timestep as 10 minutes for this

work. Our predicted results using LSTMs with timestep = 10 are in multiples of 10 minute

40

Figure III.6: Selecting hyper-parameter: time constant at which the data should be sampled.

time intervals. Later in this chapter we show how we fine-tune our solution to predict

congestion times in multiple of 5 minute time intervals using LSTMs with timestep = 5.

III.3.3 LSTM architecture

We used a two-layered deep LSTM network for each traffic predictor with 100 units in

each layer and a dense output layer. We used the mean squared error (MSE) between the

predicted and actual speed as the loss function and the ‘Adam’ optimizer for optimizing the

loss function.

41

III.3.4 Predicting multiple timesteps ahead

Using the connected LSTM fabric we can predict multiple timesteps ahead in future. As we

want to predict ahead from current time, we require the information upto k-hop neighbors

of a target road to predict the traffic speed for ‘k’ number of timesteps in advance. For ex-

ample, a one-step ahead prediction requires the past and current traffic speed of the 1st hop

neighbors, whereas, a two-step ahead prediction requires the one-step ahead predictions of

the target road segment as well as that of the 1st hop neighbors to be treated as input. Now,

the one-step ahead predictions of the 1st hop neighbors require the traffic information from

their neighbors, i.e., the 2nd hop neighbors of the target road. So, for a two-step ahead

prediction we need information upto 2nd hop neighbors.

Figure III.7 shows predictions upto three timesteps ahead in the future incorporating

information upto 3rd hop neighbors following similar approach. The 0-th timestamp is the

current time and we predict one, two and three timesteps ahead from the current time. This

is how the connected fabric of LSTM architectures inter-dependently can produce multi-

timestep ahead predictions. But the difference between actual and predicted speed while

predicting three timesteps ahead is 1.3414 times more than that of two timesteps ahead

and 2.6857 times more than that of one timestep ahead. So as we move further away in

the future, the difference between the actual and predicted speed will increase as shown in

Figure III.7.

III.4 Congestion Prognostics

In this section we describe our approach of building a congestion forecasting framework

with an overall connected fabric of LSTM architectures.

III.4.1 Training Phase

We choose the data from 01.01.2018 to 01.27.2018 to train the traffic predictors for each

TMC. We employ the LSTM fabric discussed in Section III.3 to train the network. The

trained model for each TMC is saved which is used again in the congestion forecasting

42

0 1 2 3
0

0.2
0.4
0.6
0.8

1

Number of timesteps

N
or

m
al

iz
ed

sp
ee

d

Actual Speed
Predicted Speed

Figure III.7: Predicting normalized traffic speed of TMC ‘4424-0.12847’ upto three
timesteps, i.e., 30 minutes ahead from current time using the citywide connected LSTM
fabric.

Figure III.8: Comparing the forecasted speed after 10 minutes and the actual observed
speed after 10 minutes on a TMC ID having five neighbors.

phase. Figure III.8 shows an example of the traffic speed forecasting performance on a

road segment having five neighbors. It shows that the forecasted speed after ten minutes

and the actual speed after ten minutes overlap each other with a mean squared error of

0.0046.

In this work, we also compare the mean squared error (MSE) in predicting one vs.

multiple timesteps ahead in future for multiple TMCs. Figure III.9 compares the mean

squared errors in forecasting one, two, three and four timesteps ahead for 45 TMCs out of

3724 TMCs in Nashville and shows that the error increases vastly as we predict for times

much ahead in the future.

43

Figure III.9: Comparison of the mean squared errors among forecasting one, two, three
and four timesteps ahead respectively for 45 TMC out of 3724 TMC in Nashville. The plot
shows first 45 TMC only for brevity.

III.4.2 Congestion Forecasting Algorithm

Algorithm 1 illustrates the overall congestion forecasting architecture. Once congestion

is identified at a target road segment the algorithm starts with gathering the 1st hop incom-

ing neighbors N1
in(e), For each of those 1st hop neighbors, it finds the 2nd hop incoming

neighbors denoted as N2
in(e). It repeats the process for 3rd hop incoming neighbors to find

a set of it denoted as N3
in(e). These subsets of 1st, 2nd and 3rd hop neighbors constitutes

the set of total neighbors denoted as Ñ.

The function predict next(e, timestep) calls the pre-trained LSTM forecasting module

to predict the speed for a certain TMC edge e (e ∈ T MC) based on the values of its neigh-

boring segments as discussed in equation III.1. It predicts the speed of edge e one time-step

ahead in the future which is 10 minutes in this case. When the decrease in speed between

two consecutive forecasts for a given tmc e is more than a detection threshold (δ) indicat-

ing a sudden and sharp drop in forecasted speed for the specified tmc, and the forecasted

speed is less than or equal to 60% of the free-flow speed, the algorithm turns on the cor-

responding flag for the tmc e and forecasts a congestion to start at that tmc from the next

timestep. So, the accuracy of this algorithm depends on the detection threshold δ indicating

how much percentage of dip in forecasted speed from that of the previous timestep would

trigger the initiation of congestion. Empirically we found that the algorithm works best

44

Algorithm 1: Algorithm to forecast congestion from a source up to its 3rd hop
incoming neighbors

1: Input: Congestion event CE at TMC e at timestep n
2: Ñ = []
3: Ñ.append(N1

in(e))
4: for each i in N1

in(e) do
5: Ñ.append(N2

in(e))
6: for each j in N2

in(e) do
7: Ñ.append(N3

in(e))
8: end for
9: end for

10: for timestep n : n+10 do
11: f lag = zeros(length(Ñ))
12: for each i in Ñ do
13: if predict next(i,n−1)− predict next(i,n)≥ δ ∗ predict next(i,n−1) and

predict next(i,n)≤ 0.6∗FF(e) then
14: f lag[i] = 1
15: Output Ñ will have onset of congestion at timestep (n+1)
16: end if
17: end for
18: for each j in flag do
19: if f lag[j] = 1 then
20: Ñ.delete(Ñ[i])
21: end if
22: end for
23: end for

45

Figure III.10: An illustration of the overall congestion forecasting framework

with a detection threshold between 0.1 to 0.15.

At each timestep the algorithm checks for the TMCs whose flags have been turned

on and eliminates those from the list of Ñ. In essence the algorithm starts with checking

if a congestion is forecasted to start within the next 10 minutes for all the relevant 1st,

2nd and 3rd hop neighbors and then goes on eliminating the neighbors where congestion

gets started. As in the 1st hop neighbors the congestion start earlier, they get eliminated

from the list first, so that in the next timestep, the computation is carried out only for their

corresponding 2nd and 3rd hop neighbors to output the corresponding time for onset of

congestion for them.

This algorithm uses two sets of LSTMs we have. The LSTM with timestep = 10 uses

the data collected at 10 minute intervals and predict time of onset of congestion at multiples

of 10 minutes. Once congestion is forecasted within next ten minutes, the solution can be

fine tuned by predicting whether the congestion will start within next 0 to 5 minutes or

within next 5 to 10 minutes by using LSTMs with timestep = 5. This kind of prediction

applies the same algorithm using the data sampled at 5 minute intervals.

Figure III.10 shows a diagram explaining the overall congestion forecasting framework.

46

III.4.3 Identifying likelihood of congestion propagation

Algorithm 2: Algorithm to identify which of the incoming neighbors of a con-
gestion source have higher likelihood of congestion propagation. This algorithm
is shown for the first hop neighbors but can also be applied to the second and third
hop neighbors.

1: ˆcn1(e) = []
2: for i in N1

in(e) do
3: ev1 = 0
4: ev2 = 0
5: if s[e][n]< 0.6∗FF then
6: ev1 = ev1+1
7: temp = 0
8: speed array = s[i][n : n+4]
9: if any item in speed array < 0.6∗FF then

10: temp = 1
11: end if
12: if temp = 1 then
13: ev2 = ev2+1
14: end if
15: end if
16: likelihood[i] = ev2/ev1
17: if likelihood[i]> 0.5 then
18: ˆcn1(e).append(i)
19: end if
20: end for

Algorithm 2 aims to find out the likelihood of congestion propagation from a source

road to a destination road. It identifies which of the incoming neighbors of a target road

segment have higher likelihood of congestion propagation. By doing so, we can reduce the

execution time of algorithm 1 by testing for onset of congestion for only those neighbors

at each hop where the likelihood of congestion propagation are higher given historical

records, instead of testing for congestion for all the incoming neighbors at each hop.

The algorithm keeps track of two kinds of events. Event ev1 corresponds to the phe-

nomenon where a significant speed decrease is observed at any target road. Event ev2

corresponds to the phenomenon where a significant speed decrease is observed at any of its

incoming neighbors within the time range of start time of congestion in target road, upto

47

∆ timesteps from that time. ∆ is a heuristic and is chosen as 4 in this case with the as-

sumption that a congestion if progresses from source to neighbor, should take place within

4 timesteps. The choice of ∆ will vary according to the problem. For each neighbor the

algorithm checks the number of times the event ev1 and ev2 occurred and saves the ratio of

ev2/ev1 as likelihood which signifies the proportion of times the congestion created at the

source propagated to the corresponding neighbors.

From the historical observations this likelihood of congestion propagation for each

source destination pair can be found out and can be updated in real time, as more and more

such cases are encountered. If the likelihood is more than 50%, i.e., more than half of

the times the congestion from source propagated to a particular neighbor given historical

records, then this particular neighbor is appended to the set of most likely neighbors to be

affected by congestion at source road e and this set is denoted as ĉn(e) of a road segment

‘e’. The k hop ĉn(e) is denoted as ĉnk(e), which indicates the subset of the neighbors of ‘e’

at k− th hop that have higher likelihood of getting affected by the congestion at ‘e’, where

k=1,2,3.

So, ĉn1(e) ⊂ N1
in(e), such that when we run our overall congestion forecasting algo-

rithm described in Algorithm 1, we run the congestion forecasts for ĉn1(e) only, instead

of the whole set of N1
in(e). Thus we are reducing the execution time of the overall con-

gestion forecasting algorithm by an order of ĉn1(e)/N1
in(e) for each of the road segments.

Xiong et al. (Xiong et al., 2018) also used congestion propagation probabilities to construct

propagation graphs from congestion matrices. But, in this work we use the likelihood of

congestion propagation to save the time complexity of the overall congestion forecasting

algorithm. However, our algorithm can still be applied to edges that are left out.

III.5 Validation

We validate our algorithm on the Nashville dataset. The data from January 28, 2018 to

February 12, 2018 was used for validation purposes. The outline of this section is as fol-

48

Algorithm 3: Algorithm to identify ∆−Cascade−Event from Nashville traffic
data

for each e in T MC list do
for each timestep n do

if (s[e][n] and s[e][n+1])< 0.6∗FF then
for i in N1

in(e) do
count = 0
temp = 0
s array = s[i][n : n+4]
if any item in s array < 0.6∗FF then

temp = 1
end if
if temp = 1 then

count = count +1
end if

end for
if count ≥ 0.5∗ |N1

in(e)|) then
Output: TMC e has congestion at timestep n

end if
end if

end for
end for

lows. We first identify the set of congestion events (definition 2). Then we discuss the

results. We specifically look at one of the congestion events and show how we can further

resolve the time to propagation to a 5 minute resolution.

III.5.1 Cascade Event Dataset

The procedure for finding the cascade events from validation dataset (see Algorithm

3) starts with checking for TMC IDs whose current speeds are less than 60% of the free

flow speed (FF) for two consecutive timesteps n and n+1. Then for each of the incoming

neighbors N1
in(e) for TMC e it checks their corresponding normalized speed from timestep

n to n+∆. We select ∆= 4 for this purpose as the hypothesis is if there is a congestion event

that affects a neighborhood, then the congestion propagation between any two consecutive

hops are within this ∆ number of timesteps. The parameter ∆ is just a heuristic here and will

vary depending on the problem. If it detects congestion in any of the incoming neighbors

49

Table III.1: Summary of the congestion forecasting result for ten congestion events whose
precision and recall values are shown in Figure III.11. The congestion sources, the date and
time of onset of congestion at source, the actual and predicted times of onset of congestion
at each of the neighbors. Note that there are multiple neighbor rows for the same congestion
source, one for each incoming neighbor at that hop distance. Dashes indicate that there
were no congestion events on the neighbors.

1-hop neighbors 2-hop neighbors 3-hop neighborsIndex Congestion source
(ID)

Congestion source
(Road name) Date Time Actual Predicted Actual Predicted Actual Predicted

1 7413+3.57391 Hillsboro Pike 02.01.2018 16:30 16:40 16:40 - - - -

2 4564+0.68565 I-24 01.30.2018 18:00 18:20 18:20 - - - -
3 4418-0.94469 Charlotte Avenue 01.29.2018 16:20 16:30 16:30 16:40 16:40 - -
4 4470+1.91003 I-24 02.02.2018 14:40 14:50 14:50 - - - -

15:10 15:30 15:20
5 6847-1.51788 Memorial Boulevard 01.31.2018 15:00 15:00

15:30 15:20
- -

14:20 14:20
6 6841+0.23911 South Church Street 02.09.2018 14:10

14:50 15:00
15:00 15:10 - -

15:20 15:20
15:20 15:207 5041+1.16158 Dickerson Pike 01.30.2018 15:20
15:50 16:00

16:00 16:00 - -

06:50 06:50 07:40 07:30
- 07:108 6017+0.46437 US 231 02.05.2018 06:30

07:20 07:10
07:50 07:50

- -

11:00 11:00 10:40 10:50
11:10 11:209 8649-0.30317 West End Avenue 02.09.2018 10:40

11:10 11:10
11:20 11:20

- -

07:00 07:00 07:00 07:00
07:10 07:00
07:30 07:30
07:30 07:30
07:20 07:20

10 13710-0.32285 21st Ave North 02.02.2018 06:50 06:50 06:50
07:40 07:20

07:30 07:30

within this specified time range, it turns the flag temp on for that road as specified in

Algorithm 3. After that the algorithm counts the number of times the flag temp turned on

and sum them up. This count indicates how many incoming neighbors showed the sign of

congestion within that time range. If more than or equal to 50% of the incoming neighbors

showed the effect of congestion, then the algorithm classifies it as a congestion event and

outputs the traffic network edge ‘e’ has congestion at timestep n. The assumption here is,

that not all of the neighbors necessarily need to be congested in a dynamic real-world traffic

scenario. By identifying these cascaded congestion events, we are creating a validation set

to verify the proposed congestion forecasting algorithm. We have identified ten such events

from the Nashville dataset.

50

III.5.2 Congestion Progression Using 10 minute resolution LSTM

We validate our algorithms on a total of ten congestion events identified across Nashville.

To give a more precise idea of the efficacy of the algorithm we calculated the corresponding

precision and recall values in identifying the onset of congestion in each of the neighboring

road segments. For each road segment we carried out an experiment for three consecutive

timesteps including the actual time of onset of congestion and one timestep before and after

that and classified whether the proposed algorithm outputted the presence of congestion

or not for those timesteps and compared them with true conditions. When the onset of

congestion is correctly identified, we consider it to be true positive. When the algorithm

forecasts the onset of congestion before the actual onset, it is considered as false positive

for those number of timesteps during when congestion was forecasted but was not actually

present. When the algorithm forecasts the onset of congestion after the actual onset, it is

considered to be false negative for those number of timesteps during when congestion was

not forecasted but was actually present.

We test our algorithms only on neighbors that had higher likelihood congestion prop-

agation as outlined in Algorithm 2. We present various scenarios where the congestion is

confined within the 1st hop neighbors itself or affects a larger number of neighbors ranging

upto the 3rd hop. Table III.1 summarizes the congestion forecasting results by comparing

the actual and predicted time for onset of congestion w.r.t. the time of onset of congestion

at source for each specific congestion event. It also reports the event index, TMC ID of

the congestion source and the time of actual onset of congestion for the congestion source

outputted by Algorithm 3 on which our approach was tested. It only shows the results for

the neighbors where likelihood of congestion propagation was higher according to Algo-

rithm 2. Figure III.11 shows the corresponding results of the precision and recall values in

identifying the onset of congestion 10 minutes in advance in the neighboring segments and

the corresponding number of neighbors that got affected by the congestion for ten different

congestion events. The average precision and recall are obtained as 0.9269 and 0.9118 re-

51

Figure III.11: Precision and recall values identifying the onset of congestion in all 1st, 2nd
and 3rd hop neighboring segments of a congestion source tested over ten congestion events.

Figure III.12: Road segment for congestion event 10 in Table III.1. The source road of
congestion is road segment ‘A’. Following the congestion at the source road segment, the
congestion propagates to the 1st (‘B’), 2nd (‘C’, ‘G’) and 3rd hop (‘D’, ‘E’, ‘F’, ‘H’, ‘I’,
‘J’) incoming neighbors respectively.

spectively tested on these ten events. The variance of these precision and recall values are

recorded as 0.02 and 0.0131 respectively.

When a congestion is predicted for a neighboring segment within next ten minutes, we

fine tune our solution to identify whether the congestion will take place within next 0 to

5 minutes or next 5 to 10 minutes. Table III.2 summarizes the actual and predicted time

of onset of congestion for all the neighbors using LSTM with timestep = 5. It refers back

to the event index 10 in table III.1 and identifies whether the congestion is going to take

place in the 0-5 minute time-slot or 5-10 minute time-slot. The average precision and recall

values for identifying the onset of congestion in one of the two possible higher resolution

time-slots are calculated as 0.75 and 0.92 respectively.

52

Figure III.13: Radar chart showing the accuracy of forecasting results applied to the for
road section and congestion event shown in Figure III.12

Table III.2: The table shows the actual and predicted time for onset of congestion w.r.t. the
time of onset of congestion at source at 5 minute resolution.

Neighbors of TMC ID
‘13710-0.32285’ Actual Predicted

B 06:40-06:45 06:40-06:45
C 06:50-06:55 6:55-07:00
G 07:35-07:40 07:10-07:15
D 06:55-07:00 06:50-06:55
E 07:05-07:10 06:55-07:00
F 07:20-07:25 07:20-07:25
J 07:20-07:25 07:20-07:25
H 07:10-07:15 07:10-07:15
I 07:20-07:25 07:20-07:25

53

Figure III.14: Workflow of the congestion forecasting framework.

III.5.3 Fine tuning progression results Using LSTM with timestep=5

Figure III.12 shows the transportation network for congestion event index 10 described in

table III.1. For better understanding of the result on the cascaded congestion prediction

using LSTM with timestep = 10 we present Figure III.13 which shows the effectiveness

of the algorithm in identifying the onset of congestion in each of the neighbors through

three different radar charts. The chart in the middle shows the results for one 1st and two

2nd hop neighbors. The radar charts on the left and the right shows the results for the 3rd

hop neighbors corresponding to each of the 2nd hop neighbors. It is seen that the onset of

congestion can be identified accurately most of the time.

Figure III.14 represents the overall workflow of the congestion forecasting framework.

III.6 Outcome

In this chapter we looked at how to predict anomaly propagation path in advance in a con-

nected cyber-physical system. For this a city-wide ensemble of intersection level connected

54

Long Short Term Memory (LSTM) network models has been proposed to analyze how the

congestion created at a s ource will affect its neighbors and in what order. We validated our

congestion forecasting framework on the real world traffic data of Nashville, TN, USA and

achieved an average precision of 0.9269 and an average recall of 0.9118 in identifying the

onset of congestion for the neighboring road segments of congestion sources tested on ten

congestion events.

55

CHAPTER IV

Conclusions and Future Work

In this thesis we demonstrated mechanisms for spatiotemporal modelling of networked Cy-

ber Physical Systems. As an example of large scale cyber-physical system we worked on

transportation networks and modeled it as a directed connected graph. We proposed a ro-

bust traffic speed prediction architecture by learning the distribution of traffic speed of a

road segment as a function of its neighboring segments exploiting the graphical interde-

pendence in multi-dimensional space. Experiments show that we could identify malicious

traffic sensor attacks, with a precision-recall curve having AUC of 0.8507, demonstrating

the effectiveness of the approach in anomaly detection. Next, we analyzed cascading effect

of traffic congestion using a traffic simulator SUMO and predicted its impact on the traffic

speeds in the neighboring region of the source of congestion. The most interesting contribu-

tion of this work lies in formulating the cascading effect of congestion propagation problem

as a Timed Failure Propagation Graph. We identified the source of congestion traversing

through the TFPG on observation of congestion at any edge of the traffic network.

We also developed a traffic congestion forecasting framework based on city-level con-

nected LSTM networks. We took into account the likelihood of congestion propagation for

each of the neighboring segments of any congestion source and identified the onset of con-

gestion at each of them with an average precision of 0.9269 and an average recall of 0.9118

tested on ten congestion events. This approach serves the purpose of forecasting the onset

of congestion in advance, so that traffic routing algorithms can divert the traffic away from

the roads to be congested in near future. In future, we plan to extend this framework to

predict cascading effects of failure in other networked systems such as electrical grids and

water networks using similar approach. We expect to use this generalized spatio-temporal

data analysis framework in various related applications aimed at real-time decision support.

56

BIBLIOGRAPHY

(Accessed on Aug 2020). Here api, https://developer.here.com/.

(Accessed on Aug 2020). Openstreetmap, https://www.openstreetmap.org.

Abdelwahed, S., Karsai, G., Mahadevan, N., and Ofsthun, S. C. (2009). Practical imple-
mentation of diagnosis systems using timed failure propagation graph models. IEEE
Transactions on Instrumentation and Measurement, 58(2):240–247.

Arnott, R. (2013). A bathtub model of downtown traffic congestion. Journal of Urban
Economics, 76:110 – 121.

Barros, J., Araujo, M., and Rossetti, R. J. F. (2015). Short-term real-time traffic prediction
methods: A survey. In 2015 International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), pages 132–139.

Basak, S., Ayman, A., Laszka, A., Dubey, A., and Leao, B. P. (2019). Data-driven detection
of anomalies and cascading failures in traffic networks. In Proceedings of the Annual
Conference of the PHM Society.

Basak, S., Dubey, A., and Bruno, L. (2019a). Analyzing the cascading effect of traffic
congestion using lstm networks. In 2019 IEEE International Conference on Big Data
(Big Data), pages 2144–2153.

Basak, S., Sengupta, S., and Dubey, A. (2019b). Mechanisms for integrated feature normal-
ization and remaining useful life estimation using lstms applied to hard-disks. In 2019
IEEE International Conference on Smart Computing (SMARTCOMP), pages 208–216.

Behrisch, M., Bieker, L., Erdmann, J., and Krajzewicz, D. (2011). Sumo - simulation of
urban mobility: An overview. In in SIMUL 2011, The Third International Conference
on Advances in System Simulation, pages 63–68.

Daqing, L., Yinan, J., Rui, K., and Havlin, S. (2014). Spatial correlation analysis of cas-
cading failures: Congestions and blackouts. In Scientific reports.

Davis, B., Gera, R., Lazzaro, G., Lim, B. Y., and Rye, E. C. (2016). The Marginal Benefit
of Monitor Placement on Networks, pages 93–104. Springer International Publishing,
Cham.

Deka, L., Khan, S. M., Chowdhury, M., and Ayres, N. (2018). 1 - transportation cyber-
physical system and its importance for future mobility. In Deka, L. and Chowdhury, M.,
editors, Transportation Cyber-Physical Systems, pages 1 – 20. Elsevier.

Fei, W., Song, G., Zang, J., Gao, Y., Sun, J., and Yu, L. (2017). Framework model for
time-variant propagation speed and congestion boundary by incident on expressways.
IET Intelligent Transport Systems, 11(1):10–17.

57

Gers, F. A. and Schmidhuber, E. (2001). Lstm recurrent networks learn simple context-free
and context-sensitive languages. Trans. Neur. Netw., 12(6):1333–1340.

Ghafouri, A., Laszka, A., Dubey, A., and Koutsoukos, X. (2017). Optimal detection of
faulty traffic sensors used in route planning. In Proceedings of the 2Nd International
Workshop on Science of Smart City Operations and Platforms Engineering, SCOPE ’17,
pages 1–6, New York, NY, USA. ACM.

Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multidimen-
sional recurrent neural networks. In Advances in neural information processing systems,
pages 545–552.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780.

Hu, J., Gao, P., Yao, Y., and Xie, X. (2014). Traffic flow forecasting with particle swarm
optimization and support vector regression. In 17th International IEEE Conference on
Intelligent Transportation Systems (ITSC), pages 2267–2268.

Liang, Y., Jiang, Z., and Zheng, Y. (2017). Inferring traffic cascading patterns. In Proceed-
ings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’17, pages 2:1–2:10, New York, NY, USA. ACM.

Long, J., Gao, Z., Ren, H., and Lian, A. (2008). Urban traffic congestion propagation and
bottleneck identification. Science in China Series F: Information Sciences, 51(7):948.

Lu, X.-Y., Varaiya, P., Horowitz, R., and Palen, J. (2008). Faulty loop data analysis/correc-
tion and loop fault detection. In 15th World Congress on Intelligent Transport Systems
and ITS America’s 2008 Annual MeetingITS AmericaERTICOITS JapanTransCore.

Ma, X., Tao, Z., Wang, Y., Yu, H., and Wang, Y. (2015a). Long short-term memory neural
network for traffic speed prediction using remote microwave sensor data. Transportation
Research Part C: Emerging Technologies, 54:187–197.

Ma, X., Yu, H., Wang, Y., and Wang, Y. (2015b). Large-scale transportation network
congestion evolution prediction using deep learning theory. PloS one, 10:e0119044.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1-2):100–115.

Pan, B., Demiryurek, U., Gupta, C., and Shahabi, C. (2015). Forecasting spatiotemporal
impact of traffic incidents for next-generation navigation systems. Knowl. Inf. Syst.,
45(1):75–104.

Polson, N. G. and Sokolov, V. O. (2017a). Deep learning for short-term traffic flow predic-
tion. Transportation Research Part C: Emerging Technologies, 79:1–17.

Polson, N. G. and Sokolov, V. O. (2017b). Deep learning for short-term traffic flow predic-
tion. Transportation Research Part C: Emerging Technologies, 79:1 – 17.

58

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press.

Sengupta, S., Basak, S., and Peters, R. A. (2018). Particle swarm optimization: A survey of
historical and recent developments with hybridization perspectives. Machine Learning
and Knowledge Extraction, 1(1):157–191.

Sengupta, S., Basak, S., and Peters, R. A. (2019a). Chaotic quantum double delta swarm
algorithm using chebyshev maps: Theoretical foundations, performance analyses and
convergence issues. Journal of Sensor and Actuator Networks, 8(1).

Sengupta, S., Basak, S., Saikia, P., Paul, S., Tsalavoutis, V., Atiah, F., Ravi, V., and Pe-
ters, R. A. (2019b). A review of deep learning with special emphasis on architectures,
applications and recent trends. CoRR, abs/1905.13294.

Sengupta, S., Basak, S., Saikia, P., Paul, S., Tsalavoutis, V., Atiah, F. D., Ravi, V., and
Peters, R. A. (2019c). A review of deep learning with special emphasis on architectures,
applications and recent trends. ArXiv, abs/1905.13294.

Tian, Y. and Pan, L. (2015). Predicting short-term traffic flow by long short-term memory
recurrent neural network. In 2015 IEEE international conference on smart city/Social-
Com/SustainCom (SmartCity), pages 153–158. IEEE.

Wei, Y. and Li, S. (2015). Water supply networks as cyber-physical systems and controlla-
bility analysis. IEEE/CAA Journal of Automatica Sinica, 2:313–319.

Wijegunawardana, P., Ojha, V., Gera, R., and Soundarajan, S. (2017). Seeing red: Lo-
cating people of interest in networks. In Gonçalves, B., Menezes, R., Sinatra, R., and
Zlatic, V., editors, Complex Networks VIII, pages 141–150, Cham. Springer International
Publishing.

Xiong, H., Vahedian, A., Zhou, X., Li, Y., and Luo, J. (2018). Predicting traffic conges-
tion propagation patterns: A propagation graph approach. In Proceedings of the 11th
ACM SIGSPATIAL International Workshop on Computational Transportation Science,
IWCTS’18, pages 60–69, New York, NY, USA. ACM.

Yu, X. and Xue, Y. (2016). Smart grids: A cyber–physical systems perspective. Proceed-
ings of the IEEE, 104(5):1058–1070.

Zhang, S. L., Yao, Y. Z., Hu, J., Zhao, Y., Li, S., and Hu, J. (2019). Deep autoencoder
neural networks for short-term traffic congestion prediction of transportation networks.
In Sensors.

Zhang, Y., Lu, Y., Lu, G., Chen, P., and Ding, C. (2015). Analysis of road traffic network
cascade failures with coupled map lattice method. Mathematical Problems in Engineer-
ing, 2015:1–8.

Zhao, Z., Chen, W., Wu, X., Chen, P. C., and Liu, J. (2017). Lstm network: a deep learning
approach for short-term traffic forecast. IET Intelligent Transport Systems, 11(2):68–75.

59

Zygouras, N., Panagiotou, N., Zacheilas, N., Boutsis, I., Kalogeraki, V., Katakis, I., and
Gunopulos, D. (2015). Towards detection of faulty traffic sensors in real-time. In MUD
@ ICML, pages 53–62.

60

