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CHAPTER 1 

 

IMPACT OF INCLUDING COMPREHENSIVE SMOKING DATA IN ASCVD RISK ESTIMATION 

 

Introduction 

The cornerstone for atherosclerotic cardiovascular disease (ASCVD) prevention is assessing risk 

prior to the event and implementing lifestyle modifications accordingly; the current gold standard risk 

assessment tool is the ASCVD Risk Estimator Plus.1,2 This calculator considers former smokers to be at 

excess ASCVD risk compared to never smokers for the first 5 years of cessation and does not incorporate 

pack-years smoked. However, a recent study demonstrated that the excess risk of cardiovascular 

disease among former heavy (>20 pack-years) smokers as compared to never smokers can remain for up 

to 16 years post cessation.3 Thus, both years since quitting smoking and pack-years smoked may play an 

important role in ASCVD risk estimation. 

The backbone of the ASCVD Risk Estimator Plus is the 2013 American College of 

Cardiology/American Heart Association (ACC/AHA) Guideline on the Assessment of Cardiovascular Risk 

and its corresponding sex- and race-specific Pooled Cohort Equations (2013 PCE) for estimation of 10-

year ASCVD risk.4 When developing the ASCVD Risk Estimator Plus, Lloyd-Jones et al. sought to expand 

the 2013 PCE by incorporating use of ASCVD preventive medications and smoking cessation.1  While the 

quality of evidence for the estimates regarding the impact of pharmacotherapies on ASCVD risk 

reduction was considered “high” by the authors, they noted that the “effects [of smoking cessation] on 

ASCVD risk [are] poorly reported.”1 For this reason, Lloyd-Jones et al. estimated the effects of smoking 

cessation on ASCVD risk using pooled results from Lee et al. 5,6 which conclude that the excess risk of 

coronary heart disease and cerebrovascular disease attributable to smoking has a half-life of 4 to 5 years 

(relative to continuing smokers) but make no comment about the excess risk in former smokers 
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following cessation compared to never smokers. Thus, although the ASCVD Risk Estimator Plus 

approximates the ASCVD risk benefit from smoking cessation relative to continuing smokers, an 

improvement over prior tools, evidence is lacking to support the assumption that ASCVD risk among 

former smokers – regardless of pack-years smoked – approaches that of never smokers within five years 

of cessation. There are now more than 55 million US adults who have quit smoking,7 and this number 

grows as smoking cessation rates increase.8 Potential misclassification of ASCVD risk among former 

smokers could have large implications. 

In this context, we fit a series of ASCVD risk prediction models using longitudinal data from the 

Framingham Heart Study. By assessing a variety of model fit metrics spanning goodness-of-fit, 

discrimination, calibration, and reclassification, we evaluated the predictive utility of adding years since 

quitting smoking and pack-years smoked to the 2013 PCE for more accurate ASCVD risk prediction.  
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Methods 

Study Sample 

This investigation included more than 50-years of data on Framingham Heart Study (FHS) 

Offspring9 cohort participants who attended their first (1971-1975) examination cycle and had at least 

one additional contact with study staff following examination one. Participants presented for 

quadrennial examination cycles beginning in 1979 (up to 8 examination cycles total in this analysis). Each 

person-examination and the subsequent 10-year follow-up period served as an independent ASCVD risk 

prediction window, yielding up to 8 data records per individual. Figure 1 displays examination timing 

and subsequent follow-up. 

The analysis dataset was constructed in two phases (Figure 2). First, we excluded participants 

from the base sample (n=5,122) if, at examination one, they had a history of myocardial infarction (MI), 

ischemic stroke (IS), heart failure (HF), coronary artery bypass graft (CABG), percutaneous coronary 

intervention (PCI), or atrial fibrillation (n=54) or were missing data that would prevent us from 

quantifying lifetime smoking history (n=116). After these exclusions, 4,952 individuals remained in our 

sample. In the second phase of dataset construction, we applied exclusion criteria at the person-

examination level since these served as individual “baselines” for 10-year ASCVD risk prediction.   

Exclusion criteria at this level were similar to those described by Goff et al.4 From a starting sample of 

26,042 person-examinations, person-exams were excluded for the following reasons: aged <40 or >79 

years (n = 5,883 person-examinations); history of MI, IS, HF, CABG, PCI, or atrial fibrillation (n = 1,484 

person-examinations); or missing data on predictors (n = 275 person-examinations). Following 

exclusions, our final sample for analysis contained 18,400 person-examinations on 3,908 individuals 

(Figure 2).   
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Figure 1: Timeline for FHS Offspring Examinations 

 

Timing of FHS Offspring examinations and corresponding 10-year follow-up periods. 

 

  

 10 Years 

10 Years 

10 Years 

10 Years 

10 Years 

10 Years 

10 Years 

10 Years 
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Base Sample Exclusions

Starting N = 5,122 individuals

Exclusions

● Aged >79 years (0)

● History of MI, IS, HF, PCI, CABG, or AF (54)

● Missing data on smoking history (116)

Remaining N = 4,952 individuals

Person-examination Exclusions

Starting N = 26,042 person-examinations 
on 4,952 individuals

Exclusions

● Aged <40 or >79 years (5,883 person-exams)

● History of MI, IS, HF, PCI, CABG, or AF (1,484 
person-exams)

● Missing covariate data (275 person-exams)

Remaining N = 18,400 person-
examinations on 3,908 individuals

Men

8,395 person-examinations on 
1,895 individuals

358 ASCVD Events

Women

10,005 person-examinations on 
2,013 individuals

197 ASCVD Events

Exclusions at this level remove 

an individual’s entire follow-

up from exam 1 through 2015 

Exclusions at this level remove 

specific person-examinations 

that meet exclusion criteria 

Figure 2: Sample Flow Diagram 
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Outcome 

 FHS participants are under continuous surveillance for the development of new ASCVD events. 

In this investigation, participants were surveilled until December 31, 2016 for the development of 

ASCVD events including MI, fatal or non-fatal IS, and coronary heart disease death. For suspected ASCVD 

events, medical records were obtained with permission; events were adjudicated by three Study 

physicians as previously detailed.3,10–12  

 

ASCVD Risk Factor Definitions 

 To assess the significance of adding smoking related variables to the ASCVD Risk Estimator Plus, 

our risk factor definitions were the same as those previously published by Goff et al.4 and Lloyd-Jones et 

al.1  in sex-specific models (age, total cholesterol, use of lipid-lowering medication, high-density 

lipoprotein [HDL] cholesterol, systolic blood pressure [SBP], use of antihypertensive medication, and 

diabetes mellitus). Lloyd-Jones et al. also included aspirin therapy in their development of the ASCVD 

Risk Estimator Plus. Because the safety and efficacy of aspirin is being reconsidered,13–16 we have 

excluded it from our models. 

Blood was drawn from participants at each examination cycle following an overnight fast of at 

least 10 hours. Biospecimens were stored at -20 (pre-1990 exams) to -80 C (post-1990 exams) until they 

were assayed. Total cholesterol and HDL cholesterol were directly measured using standardized 

assays.17 Systolic blood pressure was averaged based on two physician readings. Use of lipid-lowering 

medication or antihypertensive medication was self-reported at examination cycles 2-7 and verified by 

study staff upon review of provided medication at examination cycle 8. Participants were classified as 

having diabetes mellitus based fasting blood glucose >126 mg/dL or receipt of medication for the 

treatment of diabetes mellitus.  
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Quantification of smoking status and intensity have been previously described.3,18 Briefly, at the 

baseline examination, participants were categorized as “current,” “former,” or “never” smokers based 

on their responses to questions regarding prior smoking habits. From responses given for age at which 

the participant starting smoking, usual cigarettes smoked per day in the past, age at quitting (former 

smokers), and current number of cigarettes smoked per day (current smokers), we calculated ever 

smokers’ pack years and years since quitting (YSQ) for former smokers. Never smokers were assigned a 

pack-year value of 0. For this analysis our smoking measures included current/former/never smoking 

status, pack-years, and YSQ.  

Years since quitting is a conditionally relevant predictor in that it is intuitive for current smokers 

to have a value of 0 (i.e., they have not yet quit) and for former smokers’ YSQ value to be greater than 0, 

but there is no relevant value for never smokers. Furthermore, we previously observed that YSQ was 

associated with ASCVD risk among heavy ever smokers (>20 pack-years).3 Thus, we used the two-part 

predictor method described by Dziak and Henry19  to adjust for this conditionally relevant predictor in 

heavy ever smokers only. The two variables that represent the effect of YSQ among heavy ever smokers 

are an indicator of when YSQ is relevant (heavy ever smokers), and a mean-centered YSQ value (YSQ*), 

where the mean is calculated in heavy ever smokers only. Never and non-heavy ever smokers’ value of 

YSQ* was then set to 0 so that they would not impact (i.e. exert statistical leverage on) the estimation of 

the effect of YSQ* among heavy ever smokers.  

 

Statistical Analysis 

Summary statistics were stratified by sex; within sex, statistics were pooled over all person-

examinations meeting inclusion criteria. We calculated means and standard deviations for normally 
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distributed variables and medians along with the 25th and 75th percentiles for variables with skewed 

distributions.  Counts and percentages were calculated for categorical variables. 

We performed a series of sex-specific Cox proportional hazards regressions to predict ASCVD 

incidence. We began with the 2013 PCE, in which continuous variables were natural-logarithmically 

transformed. We then modified the 2013 PCE by modeling continuous variables on their natural scale 

and allowed for nonlinearity in the association between these predictors and ASCVD risk through 

inclusion of polynomial terms. Finally, we expanded the list of predictors to include a 3-level smoking 

variable (current/former/never) both alone and in combination with pack-years smoked and years since 

quitting.  

We first fit the sex-specific 2013 PCE in our data, re-estimating both the beta coefficients and 

the baseline hazard in our sample to allow for fair model comparison. This model (Model 1) included 

age, total cholesterol, HDL cholesterol, treated SBP, untreated SBP, current smoking status, and diabetes 

status as predictors. Model 2 used the same predictors as the 2013 PCE with 3 changes:  1) inclusion of 

continuous variables on their natural scale (i.e., not logarithmically transformed); 2) up to third order 

polynomials on continuous variables (and their interactions) to account for non-linearity; and 3) 

adjustment for antihypertensive use rather than classifying SBP as “treated” or “untreated”. In Model 3 

we replaced the binary indicator of current smoking with a 3-level smoking variable to distinguishing 

between former and never smokers. In Model 4, we built upon Model 3 and additionally adjusted for 

pack-years smoked and its interaction with age. Model 5 expanded Model 4 to further adjust for YSQ* 

and its interaction with age.  

To determine whether pack-years smoked and/or years since quitting should be added to the 

current predictors in the 2013 PCE, we evaluated how well these variables meet the American Heart 

Association’s  (AHA) criteria for evaluating an added predictor as described by Hlatky et al.20  These 
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specific criteria can be summarized as: 1) proof of concept (association); 2) prospective validation; 3) 

incremental value; 4) clinical utility; 5) clinical outcomes; and 6) cost-effectiveness.  Criteria 1 and 2 are 

satisfied since the cross-sectional and prospective associations of pack-years smoked with ASCVD are 

well-established and will therefore not be covered in this investigation. Similarly, pack-years and years 

since quitting are easily calculated from information in a patient’s chart or based on a brief battery of 

questions (when they started, have they quit, how many cigarettes per day, etc.) and require no lab 

work, making them highly cost-effective to obtain (criterion 6). Criterion 5, “clinical outcomes,” refers to 

whether the use of the risk marker in clinical management improves clinical outcomes, which is typically 

assessed via a clinical trial.20 However, clinical trials are unethical in this scenario and once pack-years 

are accumulated they cannot be reduced – their impact can just be mitigated over several years of 

cessation. Thus, we refer to our prior work in this cohort which reported lower ASCVD rates among 

lighter smokers compared to heavier smokers, and diminishing ASCVD risk with greater years since 

quitting3 as evidence that criterion 5 is fulfilled. Therefore, we focused on determining whether pack-

years and/or years since quitting satisfy the incremental value and clinical utility criteria. 

 We assessed incremental value via change in Harrell’s c-statistic (Δc)21 and continuous net 

reclassification improvement (NRI(>0)).22–25 Statistical significance of both metrics was evaluated via 

bootstrapped confidence intervals. NRI(>0) values are deemed strong when >0.6, intermediate when 

>0.4, and weak when <0.2;25 to our knowledge, there is no recommended threshold of Δc that is 

uniformly recognized as clinically significant.    To visually assess risk reclassification, we created 

reclassification plots for each model under consideration. In each plot, 10-year predicted probability of 

ASCVD from the base model appeared on the x-axis, and the corresponding probability from each 

comparator model appeared on the y-axis. 

Clinical utility of a variable refers to its ability to sufficiently move an individual across the risk 

spectrum when added to a model; this is reflected by the relative integrated discrimination 
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improvement (rIDI).25 The statistical significance of rIDI can also be assessed using a bootstrapped 

confidence interval. Regarding clinical significance, if a model including a new predictor has rIDI>1/p 

where p is the number of predictors in the base model, this indicates that the added predictor has an 

effect size greater than the average of that possessed by the predictors in the base model.25   

Assessment of NRI(>0) and rIDI requires that models are well-calibrated. Thus, we also 

calculated the D’Agostino and Nam extension of the Hosmer-Lemeshow calibration test26 using 

categories of <5%, 5-7.49%, 7.5-19.9%, and >20% to define low, borderline, intermediate, and high-risk 

groups.1,2 To be thorough in our assessment of pack-years and years since quitting, we evaluated 

goodness-of-fit via likelihood ratio and Nagelkerke’s R2.27,28  

Exploratory analyses compared risk category classification under the re-estimated 2013 PCE 

(Model 1) versus the 2013 PCE on natural scale plus 3-level smoking, pack-years, and years since quitting 

(Model 5) in events and non-events separately within each sex. Categories were defined as low, 

borderline, intermediate, and high using the same cutoffs described above to maintain consistency with 

the ASCVD Risk Estimator Plus.1,2 Although categorical reclassification has been criticized for poor 

statistical properties, particularly when it comes to assigning risk category cut-points,29 reclassification 

tables are useful to visually assess overall patterns of risk classification under different models; it is in 

this capacity that they will be utilized here. 

As mentioned above in the “Study Sample” section, approximately 1% of person-examinations 

were missing covariate data. Since the proportion of missingness was small, we assumed that values 

were missing completely at random. Under this assumption, excluding person-examinations with 

missing data would not bias our results. All analyses were performed in SAS 9.4 (Cary, NC). 
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Results 

We analyzed data from 18,400 person-examinations on 3,908 individuals (Men: 8,395 person 

examinations on 1,895 people; Women: 10,005 person-examinations on 2,013 people).  Most risk 

factors were similar between men and women (Table 1). Nearly a quarter of men and women were 

never smokers, but more men were former smokers (45%) compared to women (36%).  

Correspondingly, a larger proportion of females than males were current smokers (women 42%; men 

32%). However, men who had ever smoked tended to smoke more heavily than their female 

counterparts (Table 1). Median pack years differed by sex among current (men 39; women 32) and 

former (men 22; women 11) smokers. 

Table 1: Sample Characteristics by Sex over all Person-Examinations 

Characteristic* 
Men:  

N = 8,395  
Person-Examinations 

Women: 
N = 10,005 

Person-Examinations 

Age, years 54.8 (9.4) 55.5 (9.6) 

Systolic Blood Pressure, mmHg 129.0 (16.8) 125.5 (18.6) 

Antihypertensive Medication 1864 (22.2) 2068 (20.7) 

Diabetes 643 (7.7) 495 (5.0) 

Total Cholesterol, mg/dL 206.1 (38.4) 211.2 (38.9) 

HDL Cholesterol, mg/dL 44.7 (12.8) 58.4 (16.4) 

Lipid Lowering medication use 752 (9.0) 834 (8.3) 

Smoking Status   

  Current 2684 (32.0) 4187 (41.9) 

  Former 3790 (45.2) 3573 (35.7) 

  Never 1921 (22.9) 2245 (22.4) 

Cigarettes per day† 20.0 (20.0, 30.0) 20.0 (10.0, 30.0) 

Pack-Years   

   Current Smokers 39.1 (27.2, 55.3) 32.0 (19.2, 46.6) 

   Former Smokers 22.0 (10.0, 37.5) 11.0 (4.4, 23.4) 

Years Since Quitting‡ 16.1 (8.5, 25.4) 15.5 (8.1, 24.5) 

* Summary statistics are displayed as: Mean (SD) for age, systolic blood pressure, 
total and HDL cholesterol; Median (Q1, Q3) for cigarettes per day, pack-years, 
and years since quitting; and as N (%) for categorical variables. 

†   Among current smokers only. 
‡   Among former smokers only. 
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 Over a total of 169,484 person-years, 555 incident ASCVD events occurred: 358 in men and 197 

in women. Predictors in the 5 Cox models in each sex (10 models total) are displayed in Table 2.  Results 

of the model fitting procedure in men and women are displayed in Table 3 and Table 4, respectively. All 

models were well-calibrated (Table 3 and Table 4, Supplemental Figure 1 and Supplemental Figure 2).  

Table 2: Model Descriptions 

Variable 

Men Women 

Model Number Model Number 

1 2 3 4 5 1 2 3 4 5 

Age X1 X2 X2 X2 X2 X2 X2 X2 X2 X2 

Total Cholesterol X1* X2* X2* X2* X2* X1* X2* X2* X2* X2* 

HDL Cholesterol X1* X2* X2* X2* X2* X1* X2* X2* X2* X2* 

Non-HDL Cholesterol           

Lipid-Lowering Medication           

Untreated SBP X1     X1     

Treated SBP X1     X1     

SBP  X3 X3 X3 X3  X3 X3 X3 X3 

Antihypertensives  X† X† X† X†  X X X X 

Current Smoking X* X*    X* X*    

Current/Former/Never Smoking   X* X* X*   X* X* X* 

Pack-Years Smoked    X2* X2*    X2* X2* 

Years Since Quitting     X2*     X2* 

Diabetes Mellitus X X X X X X X X X X 

Total Model df 10 23 26 31 36 11 23 26 31 36 

Abbreviations: degrees of freedom (df); systolic blood pressure (SBP) 
An “X” in the cell indicates that the variable was included in the model. Blank cells 
indicate that the variable was not included in the model. 
In model 1, continuous variables were on the natural logarithm scale as in the 2013 PCE. 
Superscripts 1-3 indicate the order of the polynomial used to model continuous variables 
* Interacted with age 
† Interacted with SBP 

 

Model Fitting in Men 

 We began by fitting the 2013 PCE with re-estimated baseline hazard and beta coefficients in our 

sample (Model 1, Table 2). Since this model has 10 degrees of freedom, rIDI values of comparator 

models >0.1 are clinically meaningful. When we refit the 2013 PCE with continuous variables on the 

natural scale and included up to third-order polynomials on these continuous variables to account for 
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Table 3: Model Summaries in Men 

Model 
No. 

Description -2 Log L df Δdf LR χ2 
LR  

p-value 
R2 

Calibration 
χ2  

Calibration 
p-value 

c-statistic 
Δ Harrell’s c 

[95% CI] 
NRI(>0) 

 [95% CI] 
Relative IDI 

[95% CI] 

1 
Re-estimated 
2013 PCE* 

6127.79 10 -- -- -- 6.40% 6.13 0.11 0.7487 -- -- -- 

2 
M1 on Natural 
Scale† 

6110.53 23 -- -- -- 6.77% 6.97 0.07 0.7538 
0.005  

[0.0005, 0.010] 
0.301  

[0.193, 0.409] 
0.071 

[0.001, 0.137] 

3 
M2 + CFN 
Smoke 

6101.89 26 3 8.64 0.02 6.96% 3.62 0.31 0.7559 
0.002 

[-0.002, 0.006] 
0.145 

[0.042, 0.254] 
0.047 

[0.021, 0.075] 

4 
M3 + Pack-
Years 

6086.75 31 8 23.78 <0.01 7.27% 2.72 0.44 0.7596 
0.006 

[0.001, 0.011] 
0.259 

[0.156, 0.358] 
0.175 

[0.092, 0.271] 

5 M4 + YSQ 6084.36 36 13 26.17 0.02 7.32% 3.03 0.39 0.7604 
0.007 

[0.001, 0.120] 
0.233 

[0.132, 0.332] 
0.191 

[0.096, 0.295] 

 

Table 4: Model Summaries in Women 

Model 
No. 

Description -2 Log L df Δdf LR χ2 
LR  

p-value 
R2 

Calibration 
χ2  

Calibration 
p-value 

c-statistic 
Δ Harrell’s c 

[95% CI] 
NRI(>0) 

 [95% CI] 
Relative IDI 

[95% CI] 

1 
Re-estimated 
2013 PCE* 

3339.11 11 -- -- -- 8.90% 4.68 0.20 0.8090 -- -- -- 

2 
M1 on Natural 
Scale† 

3326.30 23 -- -- -- 9.31% 2.93 0.40 0.8123 
0.003  

[-0.002, 0.009] 
0.040  

[-0.109, 0.174] 
0.147 

[0.044, 0.285] 

3 
M2 + CFN 
Smoke 

3323.39 26 3 2.91 0.16 9.41% 2.20 0.53 0.8133 
0.001 

[-0.002, 0.004] 
0.163 

[0.020, 0.303] 
0.026 

[-0.001, 0.053] 

4 
M3 + Pack-
Years 

3310.79 31 8 15.51 0.02 9.80% 5.74 0.13 0.8179 
0.006 

[-0.003, 0.014] 
0.287 

[0.148, 0.424] 
0.098 

[0.046, 0.165] 

5 M4 + YSQ 3306.88 36 13 19.42 0.11 9.92% 3.07 0.38 0.8195 
0.007 

[-0.002, 0.017] 
0.340 

[0.204, 0.478] 
0.112 

[0.052, 0.185] 

 
Abbreviations: Akaike’s Information Criterion (AIC); current/former/never (CFN); confidence interval (CI); degrees of freedom (df); integrated discrimination improvement (IDI); 

likelihood ratio (LR); continuous net reclassification improvement (NRI(>0)); years since quitting smoking (YSQ) 

* This is the reference for Model 2 when calculating Δ Harrell’s c-statistic, NRI(>0), and relative IDI 

† This is the reference for Models 3-5 when calculating the likelihood ratio test, Δ Harrell’s c-statistic, NRI(>0), and relative IDI
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non-linear associations with ASCVD risk (Model 2), we observed a small but statistically significant 

increase in Harrell’s c-statistic and a moderate NRI(>0) when compared to Model 1; rIDI was statistically 

significant but not clinically meaningful (Table 3). Since these model modifications were statistically 

significant, Model 2 became our new “base” model to which we compared the added value of a 3-level 

smoking status variable alone and in conjunction with pack-years and years since quitting. Thus, rIDI 

values for Model 3-5 >1/23=0.043 were considered clinically meaningful.  

 When replacing a binary indicator of current smoking with a 3-level smoking variable that 

further differentiated between former and never smokers (Model 3), this change improved goodness-of-

fit (likelihood ratio and R2), rIDI was both statistically significant and clinically meaningful, NRI(>0) was 

statistically significant but clinically weak, and Δc was not significant. Addition of pack-years to Model 3 

(Model 4) proved significant on all metrics, produced a clinically meaningful rIDI and a moderate 

NRI(>0). Addition of years since quitting to Model 4 (Model 5) was also significant on all metrics, with 

rIDI and c-statistic greater than that of Model 4 but a slightly lower NRI(>0) than that of Model 4. 

 Overall, Model 5 (2013 PCE on natural scale plus 3-level smoking, pack-years, and years since 

quitting) was the best fit to the data: it had the highest likelihood and R2, greatest Harrell’s c-statistic, 

moderate NRI(>0) compared to Model 2, and a statistically significant and clinically meaningful rIDI.  

 

Model Fitting in Women 

 Model fitting in women progressed the same way as in men (Table 4). Changing from the re-

estimated published 2013 PCE to the 2013 PCE on the natural scale produced a clinically meaningful rIDI 

value, but Δc and NRI(>0) were not significant.  Substituting the current smoking indicator for 

current/former/never smoking status did not improve model fit. Addition of pack-years smoked 

improved goodness-of-fit, produced a moderate NRI(>0) and a clinically meaningful rIDI, but did not 
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improve the c-statistic. When years since quitting was added to Model 4, the likelihood ratio test and Δc 

were not significant, but R2 increased, the NRI(>0) was moderate, and rIDI was both statistically 

significant and clinically meaningful (Table 4).  

 

Exploratory Analyses:  Reclassification Tables 

The majority of individuals remained in the same risk category under Models 1 and 5 (Appendix 

A, Supplemental Tables 1-4). Among men, similar proportions of non-events were correctly reclassed at 

lower risk (7.1%) and incorrectly reclassed as higher risk (6.0%) under Model 5 compared to Model 1 

(Table S1). However, 14% of men who experienced ASCVD events within 10 years were classified as 

higher risk under the 2013 PCE on natural scale plus 3-level smoking, pack-years, and years since 

quitting (Model 5) compared to the re-estimated 2013 PCE (Model 1)  while only 6.7% were incorrectly 

reclassified into a lower risk category (Appendix A, Supplemental Table 1). In women, approximately 3% 

of non-events were correctly reclassified into a lower risk category while a similar proportion was 

incorrectly reclassed into a higher category under Model 5 compared to Model 1. In contrast, 15% of 

women with events were assigned a higher risk category under Model 5 versus 1 compared to only 6.1% 

assigned to a lower risk category (Appendix A, Supplemental Table 2). In heavy ever smoking men, 

13.6% of non-events and 11.3% of events were correctly reclassed under Model 5 compared to 7.3% of 

non-events and 9.0% of events who moved in the incorrect direction (Appendix A, Supplemental Table 

3). Reclassification patterns in heavy ever smoking women were similar to those of the full sample 

(Appendix A, Supplemental Table 4).
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Discussion 

In the Framingham Offspring cohort, inclusion of pack-years and years since quitting improved 

ASCVD risk prediction over the 2013 PCE. Specifically, addition of these variables produced moderate 

NRI(>0) values of 0.23 and 0.34 in men and women, respectively, and meaningful rIDI values of 0.19 

(men) and 0.11 (women).  Based on these results, pack-years smoked and years since quitting 

demonstrate incremental value and clinical utility, thus fulfilling the AHA’s 2 remaining criteria for 

evaluating an added predictor.20  

 To our knowledge, this is the first investigation to demonstrate that pack-years and years since 

quitting improve ASCVD risk prediction compared to current tools. The findings are consistent with our 

earlier work demonstrating that relative to never smokers, former heavy smokers’ (i.e. >20 pack-years) 

CVD risk remains significantly elevated beyond 5 years after smoking cessation.3 These findings also 

build upon the work by Lloyd-Jones et al. which distinguished risk between former and never smokers 

during the first 5 years of cessation.1,30 Here, we extended the time period for which former smokers are 

at elevated risk relative to never smokers and incorporated a cumulative measure of smoking history: 

pack-years.  

 These findings have important implications for patients, health care providers, and health care 

spending. As of 2018, there were 55 million former smokers and 34.2 million current smokers in the 

United States.7,31 Our prior work demonstrates that heavy ever smokers carry excess ASCVD risk that is 

not currently captured with tools like the ASCVD Risk Estimator Plus.  However, as our reclassification 

tables showed, including pack-years smoked and years since quitting in this model assigned higher risk 

to a larger proportion of individuals experiencing events than did the 2013 PCE. Using the number of 

former and current US smokers listed above and the proportions observed in our data, we would 

estimate that 46% of former (n=25.3 million) and 66% of current smokers (n=22.572 million) have 

smoked at least 20 pack-years and that 44% of heavy ever smokers are women (n=21,063,680). If 13.4% 
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of these heavy ever smoking men (n=3,592,315) and 7.9% of heavy smoking women (n=1,664,031) are 

reclassified in the correct direction (i.e., nonevents into lower risk categories, events into higher risk 

categories), as we observed in our data, this would equate to approximately 5.2 million Americans with 

>20 pack-years smoked who would be correctly reclassified under our models compared to the 2013 

PCE. On an individual level, this information may motivate smokers to quit smoking or to see their 

provider to discuss other ways to lower their ASCVD risk if they have already quit. For health care 

providers, creating a more accurate risk prediction tool, particularly for heavy ever smokers, may 

identify high risk patients requiring additional attention such as monitoring or even early detection for 

CVD, akin to lung cancer screening in high risk current and former smokers.32 Optimal detection of 

ASCVD risk in current and former smokers could also result in health care savings. Smoking-related 

illnesses cost over $300 billion per year in the United States in medical expenses and lost 

productivity.33,34 Fortunately, smoking cessation is associated with decreased healthcare expenditure 

over time.35–37 Finally, components of the smoking history such as pack years and years since quitting are 

relatively straightforward to capture at point of care and store within the electronic health record.38,39  

 The incorporation of both pack-years smoked and years since quitting in ASCVD risk estimation 

is necessary since they contribute different information. Pack-years reflects cumulative exposure to 

cigarette smoking and distinguishes risk among ever smokers, particularly current smokers, while former 

smokers’ years since quitting quantifies the amount of ASCVD risk attributable to smoking remaining at 

a given assessment time.  

  

Strengths and Limitations 

 The current investigation possesses several strengths, including data on the FHS Offspring 

cohort which spans 45 years from 1971 through December 31, 2016. Furthermore, FHS participants are 
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under continuous surveillance for development of ASCVD events, allowing near complete ascertainment 

of events. The regular assessment of these individuals also enabled us to update smoking status, pack-

years, and years of cessation throughout follow-up to accurately reflect the added value of these 

predictors on ASCVD risk prediction.  Finally, rather than relying on one method, we used several 

metrics of model performance to assess various facets of model utility including goodness-of-fit, 

discrimination, and calibration.  

With regard to our statistical findings, it is important to keep in mind that determination of 

clinical importance is not just dependent on change in the c-statistic. There is an upper limit on how well 

new ASCVD risk estimators can improve c-statistics over existing calculators – particularly when they 

include the same risk factors40 and/or the base model already discriminates well between events and 

nonevents. This is true of the 2013 PCE in our sample which had a Harrell’s c-statistic of 0.75 in men and 

0.81 in women; as such, our model expansions did not have a marked impact on increasing the c-

statistic. However, this is of little concern given that comparison of two c-statistics via Δc is a low-power 

procedure when many observations are censored.41  While Δc was modest, we observed increasing 

Nagelkerke R2 values as we progressively added smoking variables to the model, and observed moderate 

NRI(>0) values and rIDI values that were both clinically and statistically significant when compared to a 

base model without pack-years and years since quitting. Additionally, Nagelkerke’s R2 is scaled to the 

maximum attainable R2 so that its range spans 0 to 1.28 Since our best models only had Nagelkerke R2 

values of 7.32% and 9.92% in men and women, respectively, there still remains a large amount of 

variability in ASCVD risk that has not yet been explained, highlighting the need for further research in 

this area. 

  Although the data source is a strength of this investigation, the FHS Offspring cohort is a 

community-based cohort and the smoking patterns and sociodemographics of the participants may not 

reflect those of US population at large. In addition, FHS participants are mostly white individuals of 
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European ancestry and predominantly middle class, potentially limiting generalizability. Cigarette 

smoking is more prevalent and cessation rates are lower in low socioeconomic groups compared to 

higher ones;42–44 current ASCVD risk assessment tools also tend to underestimate risk in these 

individuals.45,46 Thus, including pack-years smoked in ASCVD risk calculators may help minimize risk 

underestimation. For these reasons, future research should validate these findings in a large, 

contemporary, and sociodemographically diverse sample. A review of coding manuals for the Jackson 

Heart Study, Hispanic Community Health Study, Multiethnic Study of Atherosclerosis, Coronary Artery 

Risk Development in Young Adults Study, and the Omni 2 and Generation 3 FHS cohorts indicates that 

these NHLBI-funded cohorts have the information needed to harmonize ASCVD risk factor definitions, 

including pack-years smoked and years since quitting, which would allow data pooling to further 

investigate this question.  

 

Conclusion 

 In the FHS Offspring cohort, the addition of pack-years smoked and years since quitting 

improved ASCVD risk prediction and these variables satisfied all 6 of the AHA’s criteria for evaluating a 

new risk predictor. 16% of women and 14% of men who experienced ASCVD events in our sample were 

classified into a higher risk group under our model than the 2013 PCE, which serves as the backbone of 

the ASCVD Risk Estimator Plus. The number of former smokers is growing, and such individuals remain 

at excess ASCVD risk relative to never smokers for up to 16 years after quitting. If these findings are 

validated in individuals of other races, ethnicities, and socioeconomic groups, modification of the ASCVD 

Risk Estimator Plus to include both pack-years smoked and years since quitting could mitigate 

underestimation of risk among millions of Americans. 
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CHAPTER 2 

 

INTERACTION BETWEEN SMOKING BEHAVIORS AND POLYGENIC RISK SCORE AND IMPACT ON LUNG 

CANCER RISK 

 

 

Introduction 

Cigarette smoking is responsible for 80-90% of lung cancer deaths47 and the Centers for Disease 

Control and Prevention lists cigarette smoking as the leading cause of preventable death.33 Smoking 

cessation is associated with reduced lung cancer48 risk. In a recent study of Framingham Heart Study 

(FHS) participants, among those who smoked at least 20 pack-years, former heavy smokers demonstrate 

roughly 39% lower risk of lung cancer within 5 years of cessation compared to continuing smokers.18  

However, among these same heavier smokers, risk of lung cancer may persist beyond 25 years since 

quitting compared to those who never smoke.3,18 These findings have important implications for lung 

cancer screening18,49 which excludes former smokers quit for longer than 15 years.32 

 While the United States Preventive Services Task Force (USPSTF) is considering a new set of lung 

cancer screening guidelines which includes ever smokers with at least 20 cumulative pack-years,50 the 

USPSTF currently recommends lung cancer screening via low-dose computed tomography (CT) scan for 

individuals between the ages of 55 and 80 (inclusive) who have accumulated at least 30 pack-years of 

smoking and are current smokers or former smokers quit within the preceding 15 years.49  Tindle et al. 

reported that 41% of the lung cancers among former smokers in the FHS Original and Offspring cohorts 

occurred beyond 15 years since quitting, which exceeds the screening eligibility window.18 It is 

estimated that removing the 15-year threshold from the lung cancer screening guidelines would add 

approximately 3 million individuals to the screening pool,51 with large financial implications given the 

estimated cost of about $242 per screen.52 Other concerns about relaxing current lung cancer screening 
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eligibility criteria include attenuation of the anticipated benefits of screening and potential increased 

harm from screening individuals who are at lower risk than that observed in the National Lung Screening 

Trial, which informed the USPSTF recommendation.32,49,53–55  Thus, additional strategies may be needed 

to identify the subset of individuals at highest risk for developing lung cancer and tailor the guidelines to 

best achieve this goal.   

 One potential avenue to identify those at high risk is the assessment of genetic risk of lung 

cancer. Several genome-wide association studies (GWAS) have identified genes and/or single nucleotide 

polymorphisms (SNPs) associated with lung cancer.56–67 Three genes that are strongly associated with 

lung cancer are nicotinic acetylcholine receptors, CHRNA3, CHRNB4, and CHRNA5,59,64,67,68 all of which 

reside on chromosome 15. These same loci are also associated with smoking behaviors.68–70 Similarly, 

CYP2A6 and CYP2B6 reside on chromosome 19 and encode for enzymes governing nicotine metabolism, 

which influences cigarette consumption, and therefore, lung cancer risk.68,71,72  Thus, it is believed that 

these genes are associated with lung cancer because they increase an individual’s propensity to smoke 

both longer and more heavily.73 Another mechanism of increased lung cancer risk in addition to sheer 

pack-year accumulation is the P450 system which metabolizes and activates tobacco-specific 

nitrosamines, the carcinogens in cigarettes.74,75 Thus, those who metabolize nicotine quickly tend to 

smoke more and are therefore exposed to more carcinogens. These ideas support a gene-by-smoking 

interaction such that those with both a greater cumulative smoking history and higher burden of lung 

cancer risk alleles have a greater risk of lung cancer than those with an increased smoking history or 

high genetic risk alone. If this is the case, inclusion of a polygenic risk score (PRS) in modeling the risk of 

lung cancer among former heavy smokers may aid in identifying individuals who should be screened 

outside the current guidelines.  

 To this end, we applied a PRS to the FHS cohort that was used by Tindle et al. to assess the 

association between smoking habits and lung cancer risk.18 We added this PRS and its interaction with 
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smoking to models predicting lung cancer risk. These analyses allowed us to assess whether a gene-by-

smoking interaction is present, and to estimate the added utility of genetic information (i.e., beyond 

comprehensive smoking history) to identify individuals at high risk for lung cancer development. 
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Figure 3: Sample Flow Diagram 

  
 

a This is the number of individuals who attended the specified exam and provided genetic data 
b In order to accurately capture lifetime smoking exposure, it was essential to know smoking history prior to baseline 
c While genetic samples were provided by these individuals, they did not provide consent for genetic analysis by non-FHS 

investigators 
d Original cohort participants were seen roughly every 2 years. After 5 years without an update (effectively one missed exam plus 

an additional year), individuals were censored to avoid carrying values forward for an extended period without reassessment. 
Similarly, Offspring participants were seen roughly every 4 years and were thus censored after 9 years without an update (also 
corresponding to a single missed exam plus an additional year). 

 

Original Cohort Offspring Cohort 

Exam 4 Attendees 

N = 4,003a 

Exclusions 

• History of lung cancer (0) 

• Unclear smoking historyb (381) 

• No genetic data (3,168)c 

Final Sample 

N = 454 

Update all 

variables every 2 

yearsd 

9,458 person-

examinations 

on 454 

individuals 

Exam 1 Attendees 

N = 3,795a 

Exclusions 

• History of lung cancer (1) 

• Unclear smoking historyb (181) 

• No genetic data (1,140)c 

Final Sample 

N = 2,470 

Update all 

variables every 4 

yearsc 

20,106 person-

examinations 

on 2,470 

individuals 

29,564 person-

examinations 

on 2,924 

individuals 

Pooled Cohort 
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Methods 

Sample Description 

This investigation includes FHS participants in the Original76 and Offspring9 cohorts who attended their 

fourth (1954-1958, n=4,541) and first (1971-1975, n=5,122) examination cycles, respectively since 

smoking data were initially collected from participants at these examinations. Included participants 

were also free of lung cancer at baseline and possessed complete data on smoking history and genetic 

information (Figure 3). Following exclusions, our analytic sample included 2,924 individuals. Participant 

characteristics were assessed regularly via in-person clinic examination throughout follow-up: 

approximately every two years for the Original cohort,76 and every four years for the Offspring cohort.9  

 

Outcome Event 

 All FHS participants are under continuous surveillance for the development of new cancer 

events.77 The outcome of interest in this investigation is lung cancer incidence during a follow-up period 

from the baseline examination (examination cycle 4 for the Original cohort; examination cycle 1 for the 

Offspring cohort) through 2013 or 2017 for the Original and Offspring cohorts, respectively. Lung cancer 

cases in FHS were adjudicated by following standardized protocols which include review of medical 

records and pathology and laboratory reports.77  

 

Quantification of Smoking History and Intensity 

Collection and construction of smoking variables have been previously described.3,78 At the baseline 

examination (cycle 4 for Original cohort, cycle 1 for Offspring cohort), data on current and prior smoking 

habits were collected so that participants could be categorized as “current,” “former,” or “never” 

smokers. For current and former smokers, we obtained information on age at which the participant 

starting smoking, usual number of cigarettes smoked per day in the past, age at quitting smoking 
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(former smokers), and current number of cigarettes smoked per day. From these data, we calculated 

pack-years at baseline for both current and former smokers, as well as years since quitting (YSQ) for 

former smokers. Never smokers were assigned a pack-years value of 0, while their years since quitting 

value was set to missing. Pack-years and YSQ were updated at each examination in the follow-up period 

as described below. 

At post-baseline examinations, data on current smoking status and cigarettes per day were 

collected, allowing us to calculate cumulative smoking exposure. For a given participant, smoking status 

(current, former, never) could change over time such that each participant contributed person 

examinations and person time to the category reflecting his or her status at each assessment. If an 

individual developed lung cancer, this event counted only in the group to which the individual belonged 

at the time of the event. The median number of examinations during which smoking was assessed was 

22 for the Original cohort and 9 for the Offspring cohort. 

In order to avoid carrying smoking information forward for an extended period with no update, 

we censored participants after a single missed exam plus an additional year without an update (5 years 

for Original, 9 years for Offspring). Once censored, participants were ineligible to re-enter the sample 

since their smoking habits in the interim were unknown. An example of timing of examinations is shown 

in Figure 4. 
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Figure 4: Example Timeline 

 

 

Sample timeline of data collection, timing of examinations (i.e., when smoking status is updated), and lung 

cancer incidence in an FHS Offspring participant who attended 9 examinations and was diagnosed with lung 

cancer in 2001. 

 

Observation Time 

Censored Time 
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Genetic Data and Quality Control  

For this analysis, we used genotyping data captured by the Affymetrix GeneChip Human 

Mapping 500K Array and the 50K Human Gene Focused Panel platforms which are included as part of 

the FHS SNP Health Association Resource (SHARe) data available on the database of Genotypes and 

Phenotypes (dbGaP).79 Biospecimens for DNA extraction were collected from FHS participants between 

1971 and 2002 and genotyped on the Affymetrix 500K and MIPS 50K arrays. Genotyping data were 

mapped to genome build 37.79 Depending on when an individual’s DNA was collected, there is potential 

for immortal time bias since there are potentially decades between the baseline examination and DNA 

extraction. A large amount of time between baseline and genetic testing will only bias our results if 

many people die from lung cancer prior to DNA collection. Thus, we examined the baseline 

characteristics of individuals excluded due to a lack of genetic information versus those included in the 

sample. After assessing the possibility of immortal person-time bias but before combining phenotypic 

and genotypic data, we performed quality control procedures of the genotyping data.80  

Prior to imputation and uploading genetic data to dbGaP, standard quality control was 

performed.79 Genotypes were imputed to the 1000 Genomes using MACH (version 1.00.15) and 

HapMap (release 22, build 36, CEU) as the imputation backbone. From the imputed data, we excluded 

SNPs with average call rate <90%, R2<0.7, or minor allele frequency (<5%).81  

We then assessed population substructure since lung cancer risk and distribution of alleles differ 

by genetic ancestry. FHS staff previously conducted a principle component analysis to identify 

population substructure on these individuals using EIGENSTRAT82,83 . In regression models, we adjusted 

for the first principle component, which represents European ancestry.80 
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Polygenic Risk Score 

After following the genotyping quality control protocol outlined above, we began the process of 

building a polygenic risk score (PRS). A PRS is the product of a weight and the corresponding number of 

risk alleles a person possesses at a given locus, summed over all loci (Eq. 1). 

 

Here, we assume that SNPs do not interact with one another to influence lung cancer risk and that an 

additive model describes the SNPs’ effect on lung cancer risk. The weight (Wj) each SNP is given is 

derived in a large discovery sample, while the PRS is calculated in an independent target sample. In this 

analysis, the Framingham Heart Study serves as the target sample and the weights were derived from a 

lung cancer GWAS of the OncoArray Consortium (14,803 cases; 12,262 controls) performed by McKay et 

al.56 The OncoArray genotyping platform covers 533,631 SNPs that passed quality control procedures 

and were included as valid markers;84 of these, 517,482 SNPs passed the filtering algorithm described by 

McKay et al. and were included in their analyses of lung cancer risk.56 Genotypes were then imputed in 

the OnocArray Consortium using the 1000 Genomes (Phase 3) as the reference panel.85 We determined 

the overlap between the OncoArray and the imputed FHS data (4,565,749 SNPs, merged based on base 

pair position), and built our PRS from the shared variants.  

 For our primary analyses, we used the R package PRSice (a p-value thresholding method) to 

develop our PRS and choose which SNPs to include.86 Before performing any analyses, PRSice 

automatically excludes ambiguous (i.e., palindromic) SNPs; here, 708,236 ambiguous SNPs were 

excluded, leaving a total of 3,857,513 SNPs. PRSice further prunes the number of SNPs under 

consideration by removing one from each pair of SNPs in linkage disequilibrium (i.e., one from each pair 

𝑃𝑅𝑆𝑖 = ∑ 𝑊𝑗𝐺𝑖𝑗
𝑀
𝑗=1   Eq. 1 

where N is the total sample size;  𝑖 = 1,… , 𝑁; M is the number of SNPs contributing to the 

calculation of the PRS; Wj is the weight associated with the jth SNP; and Gij is the number of 

risk alleles (0, 1, or 2) that individual i possesses at locus j. 
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of SNPs that are highly correlated), opting to retain the SNP with the greatest association with the 

outcome. From the 83,304 SNPs that remained after this pruning, we used PRSice to construct our PRS.  

   We produced three different types of PRS in PRSice: one unweighted and two weighted. 

Unweighted PRS may be more robust to errors in estimating weights in the discovery sample but tend to 

perform worse than weighted scores when the sample size increases since the sampling error does not 

approach zero.87 An unweighted approach is equivalent to the sum of risk alleles at each locus included 

in the PRS, or a weight equal to 1 for all SNPs in Eq. 1. We use PRSunx to denote the unweighted PRS. The 

second PRS (PRSβ) was weighted by the regression coefficient (log-odds) between the SNP and lung 

cancer risk, i.e., β, and the third (PRSβ/Var(β)) was weighted by the regression coefficient (log-odds) 

between the SNP and lung cancer risk divided by its estimated variance, i.e., β/[Var(β)] in order to 

incorporate a measure of uncertainty. All PRS were centered on their mean for analyses. 

We generated high resolution plots to display the -log10(p-value) of the association between PRS 

and lung cancer across various thresholds for each of the three weighting schemes (Figure 5). To 

examine the distributions of the three PRS generated by PRSice, we then generated distribution plots 

stratified by incident lung cancer (Figure 6). We then created Manhattan plots for the two weighted PRS 

with the y-axis of each Manhattan plot representing the weights given to each SNP in the PRS (Figure 7).  
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Figure 5: High Resolution Plots 

 

 

  

High resolution plots displaying the -log10(p-value) of the association between lung cancer and the PRS in the FHS 

sample (y-axis) versus the threshold below which all SNPs with p-values for their individual association with lung 

cancer in the base sample (OncoArray Consortium) were included (x-axis). i.e., if 20 SNPs had a p-value<5×10-8 for 

their association with lung cancer in the OncoArray Consortium, and a PRS comprised of those 20 SNPs in FHS 

had a p-value of 0.2 when assessing it’s association with lung cancer, then we would plot a point at (x,y)=(5×10-8, 

0.70). Panel A corresponds to PRSunw, Panel B correspods to PRSβ, and Panel C corresponds to PRSβ/Var(β) 

(A) (B) 

(C) 



16 
 

 

Figure 6: Distribution plots of polygenic risk scores by event status 

 

 

Blue shading displays the distribution of the PRS among controls; red is among cases. Clockwise, panels 
display PRSunw (panel A), PRSβ (panel B), and PRSβ/Var(β) (panel C)

(A) (B) 

(C) 
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Figure 7: Manhattan Plots

 

(A) 

(B) 

Panel A shows the weight given to each SNP included in PRSβ with a reference corresponding to an 

odds ratio of 1.1; Panel B shows the weight assigned to each SNP contributing to PRSβ/Var(β) with a 

reference line corresponding to a genome-wide significance level equal to 5×10-8 
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In sensitivity analyses, we included all 83,304 SNPs remaining after LD pruning (R2>0.8) to build 

PRS rather than using p-value thresholding to choose a subset of SNPs. We again built the three PRS 

(one unweighted, two weighted) as described above.   

 

Confounders  

 The directed acyclic graph (DAG) in Figure 8 displays the relationships we believe exist in these 

data based on prior research.56,68,88–94 A confounder is a variable that is associated with both the 

exposure and outcome and does not lie along the causal pathway. Based on the DAG above, population 

structure, age, sex, lung cancer genetics, family history of lung cancer, and education (via socioeconomic 

status) meet this definition of a confounder. Thus, we adjusted for these variables in statistical models 

to produce an unbiased estimate of the association between smoking and lung cancer. However, family 

history of lung cancer is unmeasured in FHS data, and therefore this confounding path could not be 

closed. For our conclusions to be valid, we must assume that the bias incurred by not adjusting for 

family history of lung cancer is small. This assumption is likely valid given that only 0.2% of the American 

population has a current or prior diagnosis of lung cancer.95 

 Quantification of population structure and lung cancer genetics (via PRS) were described above. 

Age was calculated at each FHS examination using a participant’s verified date of birth and examination 

date. Sex and education were self-reported.  

 

Missing Phenotypic Data 

 In the FHS phenotypic data, missingness was relatively low. In the Original cohort, 87% of 

person-exams had no missing data while in the Offspring cohort, 98% of person-exams had no missing 

data. Education level was most frequently missing in the Offspring cohort with a mere 2.1% missingness. 

Smoking status was not assessed at all Original cohort exams and was thus missing at 13% of person-
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examinations. However, smoking status was collected at all Offspring examinations and was therefore 

missing at <1% of person-exams in this cohort. All other variables had <5% missingness. Missing data 

was handled using multiple imputation by chained equations techniques to produce five complete 

datasets for analysis. We imputed continuous variables thorough the use of predictive mean matching96 

in order to produce imputed values that are clinically plausible. Categorical variables were imputed 

using the discriminate function with a non-informative Jeffrey’s prior.97 Results across imputed datasets 

were combined according to Rubin’s rules.98  

 

Statistical Analysis 

 We calculated baseline summary statistics in each FHS cohort separately and pooled. Means and 

standard deviations (SD) were reported for normally distributed continuous variables, while medians 

along with the 25th and 75th percentile were reported for continuous variables with skewed 

distributions.  We report counts and percentages for categorical variables. Data from the Original and 

Offspring cohorts were pooled for all further analyses. Using Poisson regression with an offset term 

equal to the natural-logarithm of follow-up time, we calculated lung cancer incidence rates per 1000 

person-years stratified by smoking status; current and former smokers were further categorized by 

above/below 20 pack-years.  

After asserting that the proportional hazards assumption was not seriously violated via the 

interaction of pack-years and PRS (separately) with the natural logarithm of follow-up time, we fit Cox 

proportional hazards regression models with incident lung cancer as the outcome. Because the FHS 

includes related individuals, we used mixed-effects Cox proportional hazards regression in our analyses 

that incorporated the kinship matrix – a symmetric matrix of dimension equal to the number of subjects 

in the sample (2,924) where each entry represents the proportion of genetic information shared 

between each pair of individuals based on their familial relation – to adjust the variance accordingly.   
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Models included pack-years, an indicator of current smoking status, PRS, population structure, age, sex, 

and education as independent variables. We first assessed whether PRS modifies the effect of the 

association between pack-years and lung cancer risk. Along with the interaction between pack-years 

smoked and PRS, models included the main effect of pack-years, an indicator of current smoking status, 

PRS, population structure, age, sex, and education as independent variables. This test of heterogeneity 

was performed for all 3 versions of the PRS: PRSunw, PRSβ, and PRSβ/Var(β).  

After we determined that there was an interaction between pack-years smoked and PRS, we 

calculated the effect of pack-years at different PRS values: the mean, mean + 1SD, and mean - 1SD. We 

then examined the impact of PRS on lung cancer among never smokers, ever smokers with <20 pack-

years, and ever smokers with >20 pack-years; the 20 pack-year cut point was chosen to be consistent 

with our prior work examining the impact of smoking in this cohort and the new USPSTF guidelines 

under consideration.3,18,50 For the full sample and each subset (never smokers, ever smokers <20 pack-

years, ever smokers >20 pack-years), we fit a Cox proportional hazards regression model for lung cancer 

that included PRS and population structure as predictors to avoid the “Table 2 Fallacy”99 which occurs 

when the effect estimates of secondary exposures are presented in the same manner as the primary 

exposure estimated from the same model.95 Thus, in these models, we did not adjust for other variables 

since only population structure can confound the association between the PRS and lung cancer risk 

(Figure 8).  

Finally, as an exploratory analysis, we sought to determine whether any of the PRS we 

developed could identify individuals who developed lung cancer outside of the USPSTF lung cancer 

screening guidelines under consideration.50 Here, we limited our models to the 80 ever smokers who 

developed lung cancer and performed logistic regression analyses with “eligible for lung cancer 

screening” as our dependent variable predicted from the PRS and population structure. The above 
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analyses were repeated using 3 genome-wide PRS that incorporated all 83,304 SNPs remaining after LD 

pruning and are included in supplemental results.  

A two-sided p-value <0.05 was considered statistically significant except for tests for 

heterogeneity which considered a two-sided p-value <0.2 significant since such tests are typically 

underpowered. Analyses were performed in SAS 9.4 (Cary, NC) and R 4.0.1. All Cox regression was 

performed in R and used the “coxme” function in the “kinship2” package to fit models that accounted 

for the relatedness among FHS participants.  
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Figure 8: Directed Acyclic Graph 

   

Displays the presumed relationships among smoking, lung cancer risk, and the confounders and effect 

modifiers of this association.  
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Results 

Sample Characteristics 

Our sample included 2,924 members of the FHS – 454 from the Original cohort, and 2,470 

Offspring cohort participants.  At baseline, Original cohort participants had an average age of 44 years 

compared to the Offspring cohort, which had an average age of 34 years (Table 5). Both cohorts were 

more than 50% female. 47% of Original cohort members were current smokers at baseline compared to 

40% of Offspring cohort members. Only 6% of Original cohort members were former smokers, while 

20% of the Offspring cohort had previously smoked. Cigarettes per day and pack-years among former 

smokers were similar between cohorts; current smokers in the Original cohort had a median of 17 pack-

years at baseline compared to 12.5 among Offspring cohort participants.  Polygenic risk score 

distributions were similar between cohorts (Table 5).  

 

Polygenic Risk Scores 

Using the p-value thresholding method implemented in PRSice, we determined that including 

the 638 SNPs with a p-value less than 0.00076 produced an unweighted PRS with the highest R2 (Figure 

5 Panel A), and that a PRS including the 120 SNPs with a p-value less than 6x10-5 produced weighted PRS 

with the greatest correlation with lung cancer (Figure 5 Panels B and C). When examining the PRS 

distributions by incident lung cancer status, we found that the distribution of PRSunw was quite similar 

between events and non-events (Figure 6 Panel A), but that PRSβ and PRSβ/Var(β) distributions were 

slightly shifted to the right in events versus non-events indicating a greater burden of risk alleles in 

events than non-events (PRSβ, Figure 6 Panel B; PRSβ/Var(β), Figure 6 Panel C).  Manhattan plots displaying 

the chromosome locations (x-axis) and weights of the PRS (y-axis) are displayed in Figure 7. The top 

panel displays the weights for PRSβ, while the bottom panel corresponds to PRSβ/Var(β). Both weighted 

PRS include SNPs with large weights on chromosome 15 (rs72738786, rs11072774, rs12907065) ; 
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PRSβ/SE2 also assigned large weights to SNPs on chromosome 5 (rs6554758), 6 (rs116822326, 

rs115375792), and 19 (rs11667314). 

 

Table 5: Sample Characteristics at Baseline 

Characteristica 

Pooled Cohort 
(Total N = 2924) 

Original Cohort 
(Total N = 454) 

Offspring Cohort  
(Total N = 2470) 

N Summary N Summary N Summary 

Age, years 2924 35.4 (9.8) 454 43.5 (6.1) 2470 34.0 (9.7) 

Sex 2924 -- 454 -- 2470 -- 

   Male -- 1286 (44.0) -- 172 (37.9) -- 1114 (45.1) 

   Female -- 1638 (56.0) -- 282 (62.1) -- 1356 (54.9) 

Education 2585 -- 452 -- 2133 -- 

  Less than High School Graduate -- 253 (9.8) -- 141 (31.2) -- 112 (5.3) 

  High School Graduate -- 865 (33.5) -- 174 (38.5) -- 691 (32.4) 

  More than High School -- 1467 (56.8) -- 137 (30.3) -- 1330 (62.3) 

Systolic Blood Pressure, mmHg 2923 120.0 (14.9) 454 123.5 (16.9) 2469 119.4 (14.5) 

Diastolic Blood Pressure, mmHg 2923 77.6 (10.1) 454 79.7 (10.2) 2469 77.3 (10.0) 

Antihypertensive Medication 2922 64 (2.2) 454 10 (2.2) 2468 54 (2.2) 

Hypertension 2922 456 (15.6) 454 89 (19.6) 2468 367 (14.9) 

Body Mass Index, kg/m2 2923 24.2 (21.9, 27.0) 453 24.7 (22.6, 27.3) 2470 24.1 (21.7, 26.9) 

Diabetes 2895  13 (0.5) 446 1 (0.2)  12 (0.5) 

Total Cholesterol, mg/dL 2910 198.8 (40.4) 449 228.5 (43.7) 2461 193.4 (37.4) 

Smoking Status 2924 -- 454 -- 2470 -- 

  Current -- 1170 (40.0) -- 211 (46.5) -- 959 (38.8) 

  Former -- 520 (17.8) -- 25 (5.5) -- 495 (20.0) 

  Never -- 1234 (42.2) -- 218 (48.0) -- 1016 (41.1) 

Cigarettes per dayc 1234 20.0 (10.0, 30.0) 218 20.0 (9.0, 20.0) 1016 20.0 (10.0, 30.0) 

Pack-Years -- -- -- -- -- -- 

   Current Smokers 1234 13.4 (5.4, 24.0) 218 17.1 (6.9, 24.8) 1016 12.5 (5.0, 24.0) 

   Former Smokers 520 11.0 (4.0, 22.2) 25 10.2 (3.8, 22.6) 495 11.0 (4.0, 22.0) 

Years Since Quittingd 520 6.0 (3.0, 10.0)  1.0 (1.0, 1.1) 495 6.0 (3.0, 10.0) 

Polygenic Risk Score -- -- -- -- -- -- 

   Unweighted 2924 165.0 (160.0, 170.0) 454 166.0 (161.0, 170.0) 2470 165.0 (160.0, 170.5) 

   Weighted by β 2924 0.2 (0.0, 0.4) 454 0.2 (0.0, 0.4) 2470 0.2 (0.0, 0.4) 

   Weighted by β/Var(β) 2924 13.2 (-0.7, 28.3) 454 14.4 (-1.4, 28.9) 2470 13.1 (-0.6, 28.1) 

 a Summary statistics are displayed as Mean (SD) for age, systolic blood pressure, diastolic blood pressure, and total cholesterol, as 
Median (Q1, Q3) for body mass index, cigarettes per day, pack-years, years since quitting, and polygenic risk scores, and as N 
(%) for categorical variables. 

b  Self-reported consumption of at least one alcoholic beverage per month. 
c   Among current smokers only. 
d   Among former smokers only. 

 

 



25 
 

Effect of Pack-Years Smoked and PRS on Lung Cancer Risk 

We first assessed the lung cancer incidence rate by smoking status and intensity. Among the 

2,924 individuals in our sample, 86 were diagnosed with lung cancer: 6 never smokers, 48 former 

smokers, and 32 current smokers. We observed that both former and current smokers had higher lung 

cancer incidence rates than never smokers, with the highest rates in current smokers (Table 6). When 

stratifying smokers’ incidence rates by above/below 20 pack-years, point estimates were slightly higher 

in former smokers in both categories than current smokers, but confidence intervals overlapped, 

indicating no statistically significant difference.  

 

Table 6: Lung Cancer Incidence by Smoking Status and Intensity 

Smoking Status 
Person-

Examinations 
Person-

Years 
Lung 

Cancers 
Incidence Rate per 

1000PY [95% CI] 

Never 10,848 44,532 6 0.13 [0.06, 0.30] 

Former 9,975 42,904 48 1.12 [0.84, 1.49] 

   < 20 PKY 5,696 25,537 6 0.26 [0.12, 0.57] 

   > 20 PKY 4,279 17,367 42 2.39 [1.76, 3.24] 

Current 6,114 25,194 32 1.27 [0.90, 1.80] 

   < 20 PKY 2,394 10,912 1 0.09 [0.01, 0.65] 

   > 20 PKY 3,720 14,282 31 2.17 [1.53, 3.09] 

Cells are time-updated such that as individuals begin and quit smoking, they contribute 
person-time to various groups. An individual’s lung cancer event only contributes to the 
group he or she was in at the time of diagnosis. Incidence rates and corresponding 95% 
confidence intervals use data from all 5 multiple imputations. Other columns are based 

on the first imputation alone.  
 

We confirmed that the proportional hazards assumption was not severely violated by evaluating 

interactions of pack-years smoked and PRS (individually) with the natural logarithm of follow-up time (all 

p-values>0.2). We then assessed the presence of a gene-by-smoking interaction between PRS and pack-

years smoked on lung cancer risk by performing tests for heterogeneity for each PRS interacted with 

pack-years. All p-values were <0.2 (PRSunw×PKY p=0.18; PRSβ×PKY p=0.09; PRSβ/Var(β)×PKY p=0.10), 

indicating presence of heterogeneity.  Because of this heterogeneity, we analyzed the effect of pack-
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years at the Mean, Mean-1SD, and Mean+1SD for each PRS, and assessed the impact of each PRS within 

strata of pack-years.  Each additional 10 pack-years was associated with a 56% increase in the risk of 

lung cancer at one SD below the mean of each PRS, a 48% increase at the mean PRS, and a 40% increase 

at one SD above the mean of each PRS (Table 7).  In other words, as each PRS increased, the effect of an 

additional pack-year smoked conferred a smaller risk of lung cancer.   

 

Table 7: Effect of Pack-Years at Varying PRS Values 

PRS Value 
HR [95% CI]  

per 10 Pack-Years 
p-value 

PRSunw   
   Mean – 1SD 1.53 [1.38, 1.70] <0.0001 
   Mean 1.46 [1.35, 1.58] <0.0001 
   Mean + 1SD 1.39 [1.25, 1.54] <0.0001 

PRSβ   
   Mean – 1SD 1.56 [1.41, 1.73] <0.0001 
   Mean 1.48 [1.37, 1.60] <0.0001 
   Mean + 1SD 1.40 [1.26, 1.55] <0.0001 

PRSβ/Var(β)   
   Mean – 1SD 1.56 [1.49, 1.63] <0.0001 
   Mean 1.48 [1.37, 1.60] <0.0001 
   Mean + 1 SD 1.40 [1.27, 1.56] <0.0001 

Hazard Ratios are estimated from mixed-effects Cox proportional hazards regression models adjusting for pack-

years, PRS, the interaction between pack-years and PRS, age, sex, current smoking status, education, and 

population structure. The variance structure accounts for familial relationships. 

 

When examining the association between PRS and lung cancer within strata of pack-years 

(never smokers, ever smokers<20 pack-years, ever smokers>20 pack-years) we observed no association 

between any of the PRS and risk of lung cancer (Table 8). However, since number of events were low, 

we also assessed this relationship in the full cohort and observed that each standard deviation higher in 

PRSβ or PRSβ/Var(β) was associated with a 26% higher risk of lung cancer (Table 8).  

 



27 
 

Table 8: Effect of Polygenic Risk Score on Lung Cancer by Smoking Status 

Polygenic Risk Score 
Hazard Ratio [95% CI] 
per SD increase in PRS 

p-value 

PRSunw (SD = 7.65) 

Full Sample 1.10 [0.89, 1.36] 0.39 
   Never Smokers 1.55 [0.72, 3.35] 0.26 
   Ever Smokers <20 PKY 0.85 [0.38, 1.89] 0.69 
   Ever Smokers >20 PKY 1.05 [0.83, 1.33] 0.67 

PRSβ (SD = 0.31) 

Full Sample 1.26 [1.01, 1.56] 0.04 

   Never Smokers 1.56 [0.75, 3.25] 0.23 

   Ever Smokers <20 PKY 1.47 [0.73, 2.95] 0.28 

   Ever Smokers >20 PKY 1.13 [0.89, 1.44] 0.32 

PRSβ/Var(β) (SD = 21.92) 

Full Sample 1.26 [1.01, 1.56] 0.04 

   Never Smokers 1.57 [0.76, 3.28] 0.23 

   Ever Smokers <20 PKY 1.37 [0.66, 2.81] 0.40 

   Ever Smokers >20 PKY 1.14 [0.90, 0.28] 0.28 

Estimates are from a mixed-effects Cox proportional hazards regression model adjusted for population structure; 
the variance structure accounts for familial relationships. Hazard Ratios and corresponding 95% confidence 

intervals are estimated per standard deviation increase in polygenic risk score. 
 

 

Exploratory and Sensitivity Analyses 

Among the 80 ever smokers who developed lung cancer, 31 individuals developed lung cancer 

during a period when they met the USPSTF lung cancer screening guidelines under consideration;50 the 

remaining 61% did not meet lung cancer screening eligibility criteria at the time of diagnosis. In logistic 

regression models to determine whether any of the 3 PRS were associated with lung cancer screening 

eligibility at the time of diagnosis, we observed no significant results (Table 9).  

 

Table 9: Association between PRS and Lung Cancer Screening Eligibility  

PRS Value Odds Ratio [95% CI]  p-value 

PRSunw 0.96 [0.61, 1.51] 0.85 

PRSβ 0.94 [0.57, 1.55] 0.81 

PRSβ/Var(β) 0.87 [0.53, 1.43] 0.59 

Estimates are from a logistic regression model with a binary indicator for “met USPSTF lung cancer screening 

criteria under consideration” as the outcome. PRS and population structure were included as independent 

variables. Odds Ratio is per SD increase in the PRS. 
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In sensitivity analyses where we constructed the 3 PRS from the 83,304 SNPs that remained 

following LD pruning without p-value thresholding, we observed that the distribution of all the PRS were 

almost completely overlapping between events and non-events (Appendix B, Supplemental Figure 5). 

As such, we did not observe an interaction between any PRS and pack-years smoked on lung cancer risk 

(PRSunw×PKY p=0.88; PRSβ×PKY p=0.70; PRSβ/Var(β)×PKY p=0.77), nor did we observe an association 

between PRS and lung cancer risk in the full sample (Appendix B, Supplemental Figure 6 and 

Supplemental Table 6). However, consistent with the primary analyses, the association between pack-

years smoked and lung cancer risk remained highly significant (Appendix B, Supplemental Table 5). 

There remained no association between the weighted PRS and odds of meeting the USPSTF lung cancer 

screening guidelines under consideration at the time of diagnosis among ever smokers, but each 

standard deviation increase in the unweighted PRS was associated with 2.18 times the odds of meeting 

the USPSTF lung cancer screening guidelines at the time of diagnosis among ever smokers (95% CI: [1.36, 

3.49]; Appendix B, Supplemental Table 7). 
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Discussion 

In our sample, the overall effect of the PRS was positively associated with lung cancer such that 

each standard deviation increase in PRS was associated with 26% higher risk of lung cancer. Additionally, 

we confirmed that pack-years remains a strong risk factor for lung cancer, even after accounting for 

genetic contribution. We are among the first to identify an interaction between pack-years smoked and 

PRS on lung cancer risk in a prospective sample, so the effects of these variables should be interpreted 

in that context. After accounting for the interaction, pack-years remained significantly associated with 

lung cancer incidence, but its effect decreased with increasing PRS. At the mean value of the PRS, each 

additional 10 pack-years was associated with a 48% increase in lung cancer risk while at a PRS value 1 

standard deviation above the mean, the effect decreased to a 40% increase in lung cancer risk per 10 

additional pack-years. When we assessed the effect of PRS on lung cancer risk within strata of pack-

years, the association was positive but not statistically significant due to small numbers of events (6 lung 

cancers among never smokers, 7 in ever smokers with <20 pack-years, and 73 in ever smokers with >20 

pack-years).  None of our PRS were associated with development of lung cancer in individuals who were 

ineligible for lung cancer screening under the current USPSTF recommendations under consideration.50  

Presence of a gene-by-smoking interaction has been observed before,100,101 but few have 

examined the interaction between a lung cancer PRS and smoking.101 To our knowledge, this is the first 

of such investigations to observe this interaction in a prospective cohort with multiple assessments of 

smoking habits over several decades and adjudicated lung cancer incidence. While VanderWeele et al. 

were among the first to report a significant gene-by-smoking interaction on lung cancer, they examined 

only 2 SNPs on chromosome 15.100 Additionally, Qian et al. observed significant effect modification 

when incorporating principle components to represent the main genetic effect and its interaction with 

pack-years smoked, but not when incorporating genotypes from the target sample. Our results connect 
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and bolster these prior findings by incorporating genetic information across the genome and using 

genotypes from the target sample rather than principle components. 

Our finding that a PRS is associated with lung cancer risk is also consistent with prior findings. Jia 

et al. used data from 400,812 participants in the UK Biobank to build a PRS for lung cancer based on 19 

SNPs and observed that those with a PRS in the highest quintile had 1.71 times the risk of lung cancer 

compared to individuals with a PRS in the lowest quintile.102 However, they did not adjust for smoking 

status or pack-years smoked and did not assess for effect modification.102 Dai et al. also constructed a 

PRS containing 19 SNPs for lung cancer in a prospective sample of Chinese men and women and found it 

to be associated with diagnosis of lung cancer.103 However, while they did not directly test for effect 

modification of this association by pack-years smoked, they did perform stratified analyses in 

nonsmokers as well as heavy (>30 pack-years) and light smokers (<30 pack-years), and observed 

synergistic effect-modification such that those with the high genetic risk and a >30 pack-year smoking 

history were at the greatest lung cancer risk.103 Although our results differed from those of Dai et al. in 

that we did not observe significant associations of the PRS in strata of smokers, our data did have more 

statistical support on the side of a direct association between the weighted PRS and lung cancer. Given 

that their sample included more than 95,000 individuals compared to less than 3,000 in our sample, the 

lack of a statistically significant association is more likely due to insufficient power than the true absence 

of an association.  

The current results also contribute to the discussion surrounding the construction of PRS. Since 

the OncoArray Consortium had a large sample for their GWAS, the weights we used in constructing our 

weighted PRS were well-defined. As such, PRSβ and PRSβ/Var(β) were more strongly associated with lung 

cancer risk than PRSunw and support the use of weighted PRS over unweighted PRS. There is also debate 

surrounding whether PRS should be constructed from a subset of SNPs via p-value thresholding or other 

methods, or if the entire genome should be used for building PRS.104–106 There is a movement toward 



31 
 

using the full genome to produce PRS for traits that are truly polygenic like cardiovascular disease,105 

which has thousands of regions across the genome that contribute small amounts of information 

regarding its development. However, our results demonstrate that while such an approach works for 

diseases that are highly polygenic, in the case of lung cancer, our weighted PRS using 120 SNPs was 

more highly associated with lung cancer than our weighted PRS that used all 83,304 SNPs that remained 

following LD pruning. Although more research is needed, our results caution against thinking that 

inclusion of more SNPs in PRS construction is always better.   

Our results suggest more work is needed to determine whether incorporating a PRS into the 

lung cancer screening process would be fruitful. It is possible that with a much larger sample, like a 

reanalysis of the UK Biobank data altered to include a genome-wide lung cancer PRS and its interaction 

with pack-years, a PRS may aid in identifying individuals diagnosed with lung cancer outside the current 

screening criteria. However, in our sample of 80 ever smokers who developed lung cancer, 49 of whom 

were not eligible for screening at the time of diagnosis, not only were the results non-significant, the 

odds ratio was also close to the null value of 1. Another potential way to incorporate genetics and/or 

family history into the screening process is to simply ask ever smoking patients if they have a first or 

second degree relative who has developed lung cancer outside the current guidelines. Among the 80 

ever smokers who developed lung cancer in our sample, 21 of them were related to at least one other 

ever smoker who developed lung cancer. These 21 individuals were spread across 10 families: 9 with 2 

members developing lung cancer, 1 with 3 members developing lung cancer. Out of the 10 families, 7 of 

them had all members either eligible or not eligible for lung cancer screening based on the USPSTF 

recommendations under consideration at the time of diagnosis. While more research is certainly 

warranted, this could be one potential option. 

Although our results offer suggested next steps in this line of research, their impact is somewhat 

limited due to lack of power resulting from a relatively small sample size and low number of events. 
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Existence of relatedness among participants further decreased our effective sample size and power. In 

addition, we were unable to completely close all confounding pathways between smoking and lung 

cancer. In particular, although FHS is a study that includes family members, there is no efficient way to 

adjust for family history of lung cancer since participants are never asked about this specifically and only 

about half of the parents of Offspring cohort participants are part of the Original cohort. We also 

assumed that adjusting for highest education achieved prior to the baseline examination was a suitable 

proxy for socioeconomic status. However, socioeconomic status is multifaceted and adjustment for 

educational attainment at a single point in time is likely insufficient to completely account for the 

confounding effect of socioeconomic status in the association between smoking status and lung cancer 

risk. We were also unable to include important regions of the genome, including the CYP2A6 nicotine 

metabolism gene, which is associated with both smoking behavior and lung cancer development, in our 

PRS since this region is notoriously challenging to genotype and was not covered by our chip or 

imputation panel.107 Finally, FHS Original and Offspring cohort participants are mostly white and 

predominantly of European ancestry so results may not generalize to individuals of other genetic 

ancestry.   

In conclusion, our results support the presence of a gene-by-smoking interaction on the effect of 

lung cancer incidence and reinforce the negative effect of continued smoking on lung cancer risk even in 

those with low genetic risk. These results are consistent with prior findings, but it remains unclear 

whether incorporating genetic information into routine lung cancer risk assessment is of value. Larger 

studies with both genetic data and longitudinal smoking information should investigate this further.  
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APPENDIX A. SUPPLEMENTAL TABLES AND FIGURES FOR CHAPTER 1 
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Supplemental Figure 1: Calibration Plots in Men 
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Supplemental Figure 2: Calibration Plots in Women 
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Filled circles indicate individuals who had an ASCVD event, open circles are nonevents 
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Supplemental Figure 3 Predicted Probability of ASCVD in Men: Models 2-5 (y-axis) vs Model 1 (x-axis)  
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Supplemental Figure 4: Predicted Probability of ASCVD in Women: Models 2-5 (y-axis) vs Model 1 (x-axis) 
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Supplemental Table 1: Reclassification of Risk under Models 1 and 5 in Men 

 

                           Model 5 
 

 Non-Events   Events 
 <5% 5-7.49% 7.5-19.9% >20%   <5% 5-7.49% 7.5-19.9% >20% 

Model 
1 

<5% 5245 178 4 0  <5% 105 10 3 0 

5-7.49% 320 713 238 2  5-7.49% 6 39 22 0 

7.5-19.9% 30 181 958 63  7.5-19.9% 2 14 124 15 

>20% 4 3 32 58  >20% 0 0 2 16 

            

  Totals: 570 485 6974   Totals: 50 24 284 

 

Predicted risk under Model 1 in rows; predicted risk under Model 5 in columns 

Green fill indicates a movement in the correct direction (lower risk for non-events, higher risk for events); Red fill indicates a move in the incorrect direction (higher risk for non-

events, lower risk for events); Gray fill indicates no reclassification 
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Supplemental Table 2: Reclassification of Risk under Models 1 and 5 in Women 

 

                           Model 5 
 

 Non-Events   Events 
 <5% 5-7.49% 7.5-19.9% >20%   <5% 5-7.49% 7.5-19.9% >20% 

Model 
1 

<5% 8708 146 31 0  <5% 97 6 5 0 

5-7.49% 167 174 82 2  5-7.49% 7 11 13 0 

7.5-19.9% 9 86 312 25  7.5-19.9% 0 4 40 7 

>20% 0 0 19 39  >20% 0 0 1 6 

            

  Totals: 281 286 9233   Totals: 31 12 154 

 

Predicted risk under Model 1 in rows; predicted risk under Model 5 in columns 

Green fill indicates a movement in the correct direction (lower risk for non-events, higher risk for events); Red fill indicates a move in the incorrect direction (higher risk for non-

events, lower risk for events); Gray fill indicates no reclassification 
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Supplemental Table 3: Reclassification of Risk under Models 1 and 5 in Heavy Ever Smoking (>20 Pack-Years) Men 

 

                           Model 5 
 

 Non-Events   Events 
 <5% 5-7.49% 7.5-19.9% >20%   <5% 5-7.49% 7.5-19.9% >20% 

Model 
1 

<5% 1557 68 9 0  <5% 39 5 0 0 

5-7.49% 258 404 119 1  5-7.49% 5 19 10 0 

7.5-19.9% 25 150 705 55  7.5-19.9% 2 11 99 10 

>20% 5 4 25 54  >20% 0 0 2 19 

            

  Totals: 467 252 2720   Totals: 25 20 176 

 

Predicted risk under Model 1 in rows; predicted risk under Model 5 in columns 

Green fill indicates a movement in the correct direction (lower risk for non-events, higher risk for events); Red fill indicates a move in the incorrect direction (higher risk for non-

events, lower risk for events); Gray fill indicates no reclassification 
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Supplemental Table 4: Reclassification of Risk under Models 1 and 5 in Heavy Ever Smoking (>20 Pack-Years) Women 

 

                           Model 5 
 

 Non-Events   Events 
 <5% 5-7.49% 7.5-19.9% >20%   <5% 5-7.49% 7.5-19.9% >20% 

Model 
1 

<5% 2094 57 22 0  <5% 32 4 3 0 

5-7.49% 97 70 32 0  5-7.49% 5 4 4 0 

7.5-19.9% 28 59 130 22  7.5-19.9% 1 4 18 5 

>20% 0 1 16 24  >20% 0 0 1 8 

            

  Totals: 201 133 2318   Totals: 16 11 62 

 

Predicted risk under Model 1 in rows; predicted risk under Model 5 in columns 

Green fill indicates a movement in the correct direction (lower risk for non-events, higher risk for events); Red fill indicates a move in the incorrect direction (higher risk for non-

events, lower risk for events); Gray fill indicates no reclassification 
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APPENDIX B. SUPPLEMENTAL TABLES AND FIGURES FOR CHAPTER 2 

 

Supplemental Figure 5: Distribution plots of genome-wide polygenic risk scores by event status 

 

Blue shading displays the distribution of the PRS among controls; red is among cases. Clockwise, panels display PRSunw (panel A), 
PRSβ (panel B), and PRSβ/Var(β) (panel C)

(A) (B) 

(C) 
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Supplemental Figure 6: Manhattan Plots for Genome-Wide Polygenic Risk Scores 

 

 

(A) 

(B) 

Panel A shows the weight given to each SNP included in PRSβ with a reference corresponding to 

an odds ratio of 1.1; Panel B shows the weight assigned to each SNP contributing to PRSβ/Var(β) 

with a reference line corresponding to a genome-wide significance level equal to 5×10-8 
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Supplemental Table 5: Effect of Pack-Years Adjusting for Genome-Wide PRS 

 

PRS Value 
Hazard Ratio [95% CI]  

per 10 Pack-Years 
p-value 

PRSunw 1.46 [1.35, 1.58] <0.0001 

PRSβ 1.46 [1.35, 1.58] <0.0001 

PRSβ/Var(β) 1.46 [1.35, 1.58] <0.0001 

Utilizes all 83,304 SNPs that remained following LD pruning in construction of the PRS. Hazard Ratios are estimated 

from mixed-effects Cox proportional hazards regression models adjusting for pack-years, PRS, age, sex, current 

smoking status, education, and population structure. The variance structure accounts for familial relationships. 
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Supplemental Table 6: Effect of Genome-Wide Polygenic Risk Score on Lung Cancer Risk  

 

Polygenic 
Risk Score 

PRS Standard 
Deviation  

Hazard Ratio [95% CI] 
per SD increase in PRS 

p-value 

PRSunw 115.46 1.09 [0.79, 1.51] 0.59 
PRSβ  2.74 1.05 [0.84, 1.31] 0.65 
PRSβ/Var(β) 165.28 1.08 [0.86, 1.34] 0.52 

Estimates are from a mixed-effects Cox proportional hazards regression model adjusted for population structure; 
the variance structure accounts for familial relationships. Hazard Ratios and corresponding 95% confidence 

intervals are estimated per standard deviation increase in polygenic risk score. 
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Supplemental Table 7: Association between PRS and Fulfillment of USPSTF Screening Criteria 

 

PRS Value Odds Ratio [95% CI]  p-value 

PRSunw 2.18 [1.36, 3.49] 0.001 

PRSβ 0.91 [0.58, 1.41] 0.67 

PRSβ/Var(β) 0.89 [0.56, 1.40] 0.60 

Estimates are from a logistic regression model with a binary indicator for “eligible for lung cancer screening based 

on USPSTF guidelines under consideration” as the outcome. PRS and population structure were included as 

independent variables. Hazard Ratio is per SD increase in the PRS. PRS were built from all 83,304 SNPs remaining 

after LD pruning 

 


