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PREFACE 

 

 

 In this dissertation, I describe the generation of a brain tumor mass cytometry dataset and 

an algorithm for unsupervised identification of cell phenotypes and subsets that are correlated 

with clinical variables of interest. Furthermore, I describe the analysis of this dataset in the context 

of tumor location within the brain and the development of additional technical tools for 

investigating brain tumor biology. Not only were novel tumor cell types uncovered and 

investigated as described here, but this work also provides both technical and computational tools 

for studying other malignancies and human diseases. The work described in Chapter II, as well 

as Appendices A and B have been submitted to peer reviewed scientific journals and has been 

inserted into the body of the dissertation in an extended version of the form in which it was 

submitted. None of this work would have been possible without the close collaboration of Dr. 

Jonathan Irish’s lab at Vanderbilt University, especially former graduate student Nalin Leelatian 

and research assistant Sierra Barone. Chapter I introduces the background of the brain tumors 

that are explored in the rest of the dissertation, called gliomas. I will provide a broad overview of 

the literature, as well as review the technological gaps within the field that inspired the research 

questions and technological innovation addressed in this dissertation. The molecular features of 

gliomas and methods for studying them are introduced, followed by a discussion of flow cytometry 

and single cell data analysis tools. Finally, the research objectives of this dissertation are stated. 

The mass cytometry dataset and algorithm are explained in Chapter II and Appendix B, while the 

methods used to generate this dataset are outlined in Appendix A. Chapter III introduces a new 

tool for studying low grade brain tumors using flow cytometry and Chapter IV investigates the 

relationship between high dimensional protein phenotypes and brain tumor location. In Chapter 

V, major conclusions from this body of work are discussed, and future directions are explored.  
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CHAPTER I 

 

 

BACKGROUND AND RESEARCH DIRECTIONS 

 

 

Introduction 

 

Glioblastoma is the most common primary malignancy of the adult brain, and such tumors 

are almost universally fatal, despite considerable efforts over the last few decades to improve 

patient outcomes. Even with the aggressive standard treatment program of surgery followed by 

radiation and chemotherapy, patients will ultimately experience tumor recurrence and succumb 

to disease. Due to the seeming inevitability of tumor recurrence, researchers and clinicians have 

sought to extend survival through targeted or personalized therapies based on tumor-specific 

alterations in gene expression and DNA content (reviewed in [1]). Although many promising drug 

and biologic candidates have entered clinical trials, there have been no improvements to the 

standard of care therapy since its definition 2005 [2]. As single cell technologies gain wider 

acceptance and appreciation for individual differences between glioma cells, especially 

intracellular signaling capacity, grows, the prospect of identifying targetable features of glioma 

cells within patient tumors becomes more attainable. This chapter will describe gliomas, 

especially the most aggressive form, glioblastoma (GBM), progress made in understanding the 

genetic and gene expression changes within tumors and individual tumor cells, as well as the 

application of single cell protein measurements and high dimensional data analysis to studying 

human disease. The goal of this dissertation is to harness the potential of single cell protein 
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measurements to improve overall understanding of GBM and glioma biology broadly, and to 

identify prognostic cells and potential therapeutic targets (Figure 1.1).  

 

 

 

 

Figure 1.1: Investigation of glioma biology using single cell techniques. The goal of this 
work is to investigate cellular phenotypes in gliomas, as they relate to patient outcomes and 
tumor location, and to develop tools that could be broadly applied to other single cell studies of 
human disease. 1) Glioma patient samples were collected from the operating room and 
immediately dissociated into viable, single cells. Part of the sample was also sent to the 
pathology lab for standard diagnostic testing and banking of FFPE tissue. Over 100 patient 
samples were collected in this manner. 2) Single cells were stained for glioblastoma cell 
identification and acquired by mass cytometry 3a) An unsupervised data analysis pipeline was 
developed for this high dimensional, single cell, glioblastoma data. 3b) Additional tools were 
utilized as needed to further interrogate glioma biology, i.e., identify novel cell populations, 
highlight differences between groups of tumors, or inform hypotheses for future glioma studies. 
Adapted from Leelatian and Sinnaeve et al., In press at eLife.  
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Glioma pathology 

Glioblastoma is one subtype of a category of cancers called gliomas, which originate 

within the central nervous system (CNS) and, in contrast to many other solid tumors, are not 

known to metastasize outside the CNS [3]. The majority of gliomas occur in adults, with an 

average age at diagnosis of 64, and Caucasian men are slightly more likely to develop these 

tumors than other racial or gender groups [3]. Historically, gliomas were categorized based on 

histology, their very name is derived from their resemblance to non-malignant glial cells [3]. Based 

on these histological features as well as clinical characteristics these tumors are graded from 

grade I benign masses to grade IV highly aggressive, malignant, glioblastomas (GBMs) [3, 4]. 

Grade I gliomas are generally well-circumscribed, clinically benign, and potentially curable 

through surgery alone [5]. Grades II and III gliomas comprise a diverse array of neoplasms that 

are delineated by molecular features discussed below. They are infiltrative but frequently can be 

managed for years after surgical resection with combinations of clinical monitoring, radiotherapy, 

or chemotherapy [6]. However, eventually these tumors can recur and progress to higher grade 

malignancies, including GBM [5].  Glioblastomas are defined by pathological observations of 

hypervascularization, high mitotic index, infiltration of normal brain, and pseudo-palisading 

necrosis; these features remain an important part of diagnosis to this day [4]. GBM is rapidly fatal, 

with an average overall survival of 14.6 months [3] and a time to progression (also called time to 

recurrence) of 6.9 months from first resection [2]. Upon identification of a suspected glioblastoma 

via magnetic resonance imaging (MRI), the patient undergoes maximal surgical resection 

followed by standard of care concurrent radiation and chemotherapy with the DNA alkylating 

agent temozolomide [2]. Following six weeks of chemo- and radiotherapy, the patient is put on 

adjuvant temozolomide for six cycles, at one cycle per month, or until disease progression. 

Virtually all grade IV tumors will recur and patients will succumb to this progression of their 

disease. Death can occur due to brain stem infiltration, brain herniation, infection, seizure, or 

hemorrhage within the tumor [7, 8]. This standard of care therapy has not changed in the 14 years 
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since temozolomide was added to then standard surgery and radiation, with the addition of 

chemotherapy improving median overall survival by 2.5 months [2]. However, temozolomide is a 

general DNA alkylating agent that is only effective on actively dividing cells and may not be 

effective in those GBM tumors with functional DNA repair machinery, discussed below [9, 10]. 

Generally, tumor recurrence is believed to be due to the survival of infiltrative tumor cells that 

remain outside the margins of resection and escape subsequent radiation and chemotherapy [11, 

12].  Second resections are relatively rare, with only 25% of patients undergoing surgery to 

remove recurrent tumors. This makes recurrent tumor samples from patients difficult to obtain, 

limiting the field’s understanding of how standard of care therapy is changing tumor biology (in 

contrast to untreated tumors which are relatively abundant for research purposes) [13].  

 

 

Molecular features of grade II and III gliomas 

In recent decades, the value of molecular features in defining glioma subtypes has 

emerged [4]. Most notably, mutations in the isocitrate dehydrogenase (IDH1 or IDH2) genes have 

helped to differentiate secondary GBMs, which arise from lower grade, IDH-mutant, lesions and 

progress to grade IV tumors, from primary GBMs, which arise de novo as a grade IV malignancy 

and are IDH-wild type [14, 15].  Lower grade gliomas have likewise been categorized by IDH 

mutation status, as well as changes in chromosomal content of chromosomes 1 and 19. Mutations 

in other tumor suppressors like p53 and ATRX can further delineate lower grade gliomas [4]. 

There is currently no single mutation or chromosomal aberration that defines glioblastoma. 

Approximately 70% of low grade gliomas, as well as up to 45% of glioblastomas, exhibit 

hypermethylation of the promoter region of the DNA repair gene MGMT (O6-methylguanine-DNA 

methyltransferase), however this DNA modification it is not currently used in classification 

schemes [10, 16, 17]. MGMT works by removing alkyl groups from guanine, an action that is in 

direct opposition to the mechanism of action of temozolomide, a DNA alkylating agent. Recent 
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studies suggest that patients with active, unmethylated, MGMT do not benefit from temozolomide 

treatment and some clinical trials have started stratifying treatment groups based on MGMT 

promoter methylation [16]. 

Mutations in isocitrate dehydrogenase genes (IDH1 or IDH2) result in better patient 

outcomes and specific biological alterations in tumor cells (Figure 1.2), and thus are likely to be 

important in future targeted treatment strategies for these patients [18]. Although there are three 

isotypes of IDH in humans, only mutations in IDH1 or IDH2 have been observed in gliomas, and, 

less frequently, in other cancers [14, 15, 19]. Up to 80% of grade II and III gliomas carry a mutation 

in one of the two isoforms, which manifests in an amino acid residue substitution that interferes 

with IDH binding to its substrate, isocitrate [15, 20, 21].  The most common substitution by far, 

occurring in 90% of IDH-mutant gliomas, is the substitution of a histidine residue for arginine 

(R132H) in IDH1 [15, 22, 23].   IDH is an enzyme that reversibly converts isocitrate to alpha-

ketoglutarate (α-KG) as part of the citric acid cycle in mitochondria and in the cytoplasm to 

maintain oxidative homeostasis through NADPH production (Figure 1.2) [24]. When mutated, this 

enzyme loses affinity for its natural substrate, isocitrate, and instead irreversibly converts α-KG to 

2-hydroxygluterate (2HG), causing a decrease in α-KG and NADPH and an increase in 2HG 

(Figure 1.2) [20]. In the cell, this results in wide ranging changes to metabolism, DNA methylation, 

and responses to hypoxia that are not observed in IDH-wild type tumors [25]. Furthermore, IDH1 

and IDH2 mutant tumors frequently have inactive MGMT because of the hypermethylator 

phenotype induced by 2HG competition with α-KG-dependent enzymes [16]. Taken together, 

these molecular alterations have consequences on the impact of chemotherapies that are unique 

to grade II and III gliomas. Further, they provide insight into potentially useful therapeutics such 

as targeting mutant IDH protein or exploiting DNA damage repair deficiencies [6].  Understanding 

the protein expression and signaling consequences of IDH mutations and the resulting epigenetic 

alterations will be instrumental in developing therapies specifically for these patients. 
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Figure 1.2: Mutations in IDH1 alter metabolism in cancer cells resulting in diverse effects. 
Citrate, produced during the TCA cycle in the mitochondria (pink oval), is converted to isocitrate, 
the substrate for IDH1 (gray oval). IDH1 reversibly converts isocitrate to alpha-ketoglutarate 
(αKG) in the cytoplasm. Mutant IDH1 R132H (red outline) irreversibly converts αKG to 2-HG, 
widely considered an oncometabolite. The reduction in αKG and increase in 2-HG has a diverse 
range of effects, included those listed in the boxes (bottom right). Adapted from [26]. 
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Figure 1.3: Cell signaling events and molecular alterations in glioblastoma can be 
measured in single cells. Extracellular ligands (labeled growth factor circles on top) can bind to 
transmembrane receptors (rectangular shapes), initiating a signaling cascade driven by 
intracellular proteins (oval shapes). Each of these signaling pathways may be altered in a tumor 
environment. Red outline indicates a feature that is considered an oncogene and is commonly 
altered in glioblastoma. Blue outline indicates a feature that is considered a tumor suppressor and 
is commonly altered in glioblastoma. Features in yellow were measured in the mass cytometry 
experiments described in this dissertation. 
 

 

Molecular features of glioblastoma 

With the advent of sequencing technologies, investigation into mutations, amplifications, 

deletions, and gene expression differences in gliomas, especially GBM, became commonplace. 

The Cancer Genome Atlas (TCGA) pioneered the deep genetic analysis of GBM beginning in 

2005, collecting over 500 GBM samples, an effort that continues to this day [27, 28]. They 
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performed bulk gene expression analysis using microarrays, copy number analysis, and whole 

exome sequencing on the samples. Largely from these data, as well as confirmation with 

independent datasets [29], a molecular picture of GBM began to come into focus. Key alterations 

were identified, such as amplification of chromosome 7 and deletion of chromosome 10 [28].  

Receptor tyrosine kinases (RTKs), p53, and the retinoblastoma (Rb) pathways and downstream 

signaling were also found to be disrupted in the vast majority of gliomas, with 74% of tumors 

bearing alterations in all three pathways (Figure 1.3) [27]. This includes amplification of RTK 

genes such as EGRF, PDGFRα, and MET, or activating mutations in these and other RTK genes, 

as well as loss of downstream signaling modulators like PTEN or NF1 (Figure 1.3). EGFR 

alterations are especially common, often presenting as extra copies of small extrachromosomal 

fragments called double minutes, or as a truncated protein called EGFRvIII which, due to a 

deletion of exons 2-7, lacks much of the extracellular domain and is constitutively active at low 

levels [30]. Deletion or mutation of p53 is observed in some tumors, while amplification of the p53 

inhibitor MDM2 is observed in others. Similarly, deletion or mutation of either of the tumor 

suppressors CDKN2A or Rb1 is observed in over 60% of patients (Figure 1.3) [27].  Collectively, 

these data provided a wealth of information about common alterations in GBM, including 

downstream signaling pathways that might be appropriate targets for therapeutics and strategies 

for designing genetically engineered mouse models.  

 Between 2005 and 2010, several groups attempted to parse these data to break GBM 

patients into molecular subclasses that might predict patient outcome or guide future therapies. 

Three to four subgroups were described by various research groups [28, 29, 31], perhaps the 

most notable being those proposed by Verhaak et al. in 2010. Their work described four molecular 

subclasses, defined by DNA and RNA alterations, and termed Classical, Proneural, 

Mesenchymal, and Neural [28]. The subclasses were named partly based on the resemblance of 

each group to non-malignant cell counterparts. Classical tumors are defined by characteristic 

chromosome 7 amplification and chromosome 10 loss, EGFR amplification or mutation, and wild 
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type p53. Proneural tumors overexpress PDGFRα, tend to present in younger patients, include 

secondary GBMs, have mutations or loss of heterozygosity in p53, and were named for 

expression of progenitor genes like OLIG2 and SOX2. Mesenchymal tumors expressed markers 

like CD44, Vimentin, MET, and YKL40, were especially hypervascularized, and demonstrated 

increased immune infiltration and necrosis. Finally, neural tumors resembled normal neural cell 

expression and have not been re-identified by subsequent analyses, suggesting that these 

samples may in fact be dominated by non-malignant tissue in the highly infiltrative glioma samples 

that were resected during surgery. Although features resembling the mesenchymal, proneural, 

and classical subclasses have been described in other work [29, 32], patients in different groups 

do not demonstrate different outcomes and no targeted therapies have been successfully 

identified for one group or another [28]. One reason for this is likely due to the fact that these 

subclasses were derived from analyses of bulk tumor samples, and further work has highlighted 

the enormity of variation within and between GBM tumors [12, 33-37]. There is well-documented 

heterogeneity in cell morphology, gene expression, proliferative capacity, tumorigenic capacity, 

protein expression, and potentiated signaling in individual cells in GBM tumors. In fact, 

subsequent single cell RNA-seq experiments demonstrated that individual tumors could contain 

cells from multiple molecular subclasses, and individual cells could even be labeled as high for 

more than one subclass according to gene expression [33]. Further single cell work continues to 

reveal the gene and protein expression heterogeneity that can exist within a single tumor and 

across patients [32, 37, 38]. Such information will be vital to developing personalized therapies 

and ensuring the elimination of all cancer cells to prevent recurrences that lead to patient mortality.  

 

 

Glioblastoma stem cells 

GBM cellular heterogeneity is thought to arise in part due to cancer stem cells, cells that 

are slow cycling, self-renewing, tumorigenic, and that can give rise to all cells in the tumor lineage 
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[39-42]. Broadly, the cancer stem cell theory posits that a fraction of cancer cells are self-renewing 

progenitors at the apex of a cancer cell hierarchy, capable of generating virtually all cell types 

found in a tumor [42].  The concept a cancer stem cell was first proposed and demonstrated in 

leukemias and is thought to be an important part of tumor biology for many other cancers including 

GBM [43]. Glioma stem cells, or GSCs, were identified in 2003 and 2004 as sphere-forming cells, 

derived from patient samples, that express CD133 (also called prominin 1) [39-41]. Functionally, 

GSCs are able to form tumors in immunocompromised mice and to go on to be serially 

transplanted from these xenografts. Furthermore, GSCs were shown to be able to generate 

progeny expressing more differentiated markers of a variety of brain cells and losing expression 

of stem-like markers including CD133. Over the years, it has become clear that CD133 is not the 

only cancer stem cell marker [44-46], but a universal protein that can be used to isolate these 

cells remains elusive. Multiple groups have proposed two to four molecular subclasses of cancer 

stem cells that can transition between states depending on external pressures and internal 

signaling modules [47-49], while others have identified up to seven putative GSC populations in 

a single tumor based on gene expression [37]. The relative percentages of these cells may drive 

tumor aggressiveness and thus patient outcome, and may ultimately be the drivers of the bulk 

molecular subclasses described above.  

 

 

Non-malignant stem cell niche and gliomas 

This text is adapted from Sinnaeve, J., et al. (2018). "Space Invaders: Brain Tumor Exploitation 

of the Stem Cell Niche." Am J Pathol 188(1): 29-38. https://doi.org/10.1016/j.ajpath.2017.08.029  

 

Although there is evidence for the existence of cancer stem cells in GBM tumors, the role 

of non-malignant neural stem cells and the neural stem cell niche in modulating GBM biology is 

not well understood. In mammals there are two known neurogenic niches, the sub-granular zone 

https://doi.org/10.1016/j.ajpath.2017.08.029
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(SGZ) of the dentate gyrus in the hippocampus and the ventricular-subventricular zone (V-SVZ). 

The cellular constituents, intercellular interactions, and extracellular components of these niches 

support stem cell maintenance and differentiation which glioma cells may co-opt for a survival 

advantage (Figure 1.4 and reviewed in [50], [51, 52]). The V-SVZ (sometimes referred to as the 

subventricular zone (SVZ) or the sub-ependymal zone (SEZ)) is the larger of these two niches 

and is located immediately adjacent to the lateral ventricles in the cerebrum.  

Interest in the V-SVZ heightened with the emergence of the cancer stem cell theory, and 

was reinforced by similarities in gene expression between non-neoplastic stem cells and cancer 

cells, as well as by their shared capacity for proliferation [37, 42]. In healthy adult humans, 

neurogenesis appears to be a rare event [53, 54], although adult V-SVZ generation of mature 

neurons can occur in the setting of brain injury, as has been shown in adult rats following ischemic 

stroke (reviewed by [55]). In the setting of brain cancer, it has been proposed that neural stem 

cells of the V-SVZ are cells of origin for brain cancers, although more recent tumor models 

implicate additional progenitor and mature cells in tumor development (reviewed in [56, 57]). The 

development of neoplasia after genetic ablation of tumor suppressors and exogenous 

upregulation of growth factors in the rodent V-SVZ have further supported these hypotheses 

(reviewed in [58]). Recent, single cell studies have identified the expression of many stem-like 

markers in brain tumors and identified a subset of tumor cells that resemble a fetal neural cell 

type called outer radial glia [37, 59]. These data suggest that either outer radial glia persist into 

adulthood and contribute to gliomagenesis, or gliomas co-opt early developmental programs 

resulting in phenotypes of fetal stem cells in adults.  

Recently there has been an increased focus on the role of this niche in high-grade (III and 

IV) gliomas because radiographic tumor contact with this niche is associated with significantly 

decreased overall survival and progression-free survival, independent of the extent of tumor 

resection and other prognosticators [60-62].   Strikingly, GBM contact with the SGZ has not been 

found to influence survival [60]. About 50% of patients present with a V-SVZ contacting tumor and 
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an even higher percentage have contacting tumors at recurrence [61]. Single cells have been 

detected in the V-SVZ at autopsy even when the bulk tumor was not in contact with the region, 

and migration of cells along the subependyma – termed subependymal spread – is a well-

described phenomenon [63-65].  

A variety of explanations might be appropriate for why there is a consistent difference 

between outcome in patients with V-SVZ contacting tumors and those without. Although it is 

tempting to assume that the cell of origin is different for these cases, the cell(s) of origin for GBM 

have not yet been identified, with some arguing for neural stem cells, neural or oligodendrocyte 

progenitors, or even mature astrocytes [56-58, 66]. It is possible that tumors in the V-SVZ arise 

from neural stem cells while those that do not contact the V-SVZ arise from a more differentiated 

cell in the lineage. However, there is no difference in gene expression between contacting and 

non-contacting tumors based on bulk sample microarray data nor do tumors of a specific subtype 

preferentially appear near or far from the V-SVZ [62, 67, 68]. This suggests that there are either 

multiple different cells of origin for tumors in both locations or that they share the same cell of 

origin. Intriguingly, individual tumor cells found in the V-SVZ tended to be of the mesenchymal 

transcriptional subtype regardless of the subtype assigned to the bulk tumor [28, 69]. This finding 

suggests that the V-SVZ niche either imposes a similar gene expression profile upon the glioma 

cells or that a certain cell phenotype is particularly capable of V-SVZ infiltration. Taken together, 

these observations indicate that the V-SVZ, and its unique function as a neural stem cell niche 

with access to niche-derived factors, major white matter tracts, and cerebrospinal fluid (CSF), 

likely plays an important role in tumor biology including glioma growth, therapy resistance, 

dissemination, and immunomodulation (Figure 1.4). 
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Figure 1.4: Geography of the ventricular-sub-ventricular zone. The V-SVZ niche contains 
ependymal cells (gray) that contact the lateral ventricle and CSF (light blue space). Neural stem 
cells (blue) have an apical contact with the CSF and a basal contact with the vasculature (red). In 
the human, astrocytic processes (blue) lie beneath the ependyma. Neurons (green) from the brain 
parenchyma innervate the niche. Surveying or resting microglia (brown) surveil the niche 
microenvironment and can become activated in the presence of tumor cells.  A subset of factors 
demonstrated to be involved in these regions and discussed in the text are listed on the right. 
Adapted from [70] 
 

 



34 
 

V-SVZ composition 

The V-SVZ is comprised of ependymal cells that line the ventricles, neural stem cells with 

a single primary cilium that protrudes through the ependyma into the CSF, GFAP-positive 

processes from mature astrocytes, mature neurons, and blood vessels lined by endothelial cells 

and pericytes (Figure 1.4) [53, 71-77]. Mouse and embryonic or neonatal human V-SVZ also 

contain rapidly dividing neural progenitor cells but adult human brains are largely quiescent unless 

perturbed, although this is an active area of research in the field [53, 78]. The region is rich in 

stimuli and soluble factors that, in healthy brains, serve to maintain the stem cell niche (Figure 

1.4). Cerebrospinal fluid, at once a protective cushion for the central nervous system, reservoir of 

secreted factors, and mechanism for waste removal, contains soluble factors that regulate non-

malignant stem cell quiescence and proliferation [51, 79]. These factors include insulin-like growth 

factor 2 (IGF-2), amphiregulin, and pigment epithelium-derived factor (PEDF), which have been 

shown to regulate glioma cells [80-82]. Moving into the V-SVZ proper, the cellular milieu itself has 

been shown to express various soluble and membrane-bound factors that can modulate glioma 

cell biology. These can include PEDF, noggin, and CXCL12 which suppress glioma stem cell 

differentiation and promote gliomasphere formation [81], maintain glioma cell tumor-initiating 

capacity [83, 84], and induce glioma cell homing to the niche [85, 86], respectively. An 

underappreciated but developing area of research is the impact of neuronal stimulation from non-

malignant neurons onto glioma cells via traditional synapses as well as gap junctions [87-90]. 

Finally, the V-SVZ is highly vascularized but the pericytes that normally tightly ensheath 

endothelial cells are sparse, making vessels more permissive to the exchange of factors like 

growth signals, nutrients, and oxygen [91]. This more promiscuous architecture is exaggerated in 

the tumor setting of highly tortuous and leaky blood vessels, a hallmark of glioblastoma. Soluble 

growth factors like PEDF, BNDF, PIGF-2, and VEGF, hormones, nutrients, and oxygen from the 

blood can access the V-SVZ and the CSF via choroid plexus blood vessels [91-97].  These unique 

features of the V-SVZ may influence GBM cell protein expression, signaling, and behavior via 
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proliferation, migration, or de-differentiation and the topic merits further research. Improvements 

in tumor therapy could include targeting niche factors and disrupting niche-tumor cell interactions. 

Recent advances in both the preparation of single cell suspensions and the collection of high-

dimensional data will enhance our ability to map specific populations of cancer and niche cells, 

providing a better understanding of the impact of V-SVZ niche diversity on tumor behavior [98, 

99]. 

 

 

Single cell interrogation of gliomas 

Single cell technologies have been instrumental in revealing new glioma biology over the 

past decade [12, 32, 33, 37, 38, 47, 99-102].  Single cell RNA-seq, in particular, has been 

elegantly applied to uncovering gene expression features of cells making up tumors. Findings 

from these studies include the vast heterogeneity of gene expression patterns within and among 

tumors [33, 38, 101], reconstructed phylogenies of individual tumors from proposed glioma stem 

cells to clonal progeny [37, 102], and the influence of non-malignant tumor microenvironment cells 

[32, 100]. These reports have illuminated the limitations of the previously identified three or four 

tumor molecular subclasses and emphasized the importance of considering diverse cell types in 

designing future therapies or selecting patients for clinical trials. This is especially apparent in the 

findings that multiple receptor tyrosine kinases are altered in individual cells, which suggests that 

treatments based on blocking a single receptor will be unsuccessful [33, 38]. Tumor cell types are 

also increasingly being related back to non-malignant populations of cells found in developing 

and adult human brains, with implications for tumor cell of origin and strategies for elimination of 

such cells [37, 47, 102]. RNA-seq has also been used to uncover different cell states between 

which individual cells may transition. Such transitions may be a mechanism by which tumor 

heterogeneity is established and maintained, lending GBM cells a plasticity that may be beneficial 

for escaping therapeutic elimination and contributing to eventual tumor progression [47]. On top 
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of these studies, functional examination of single glioma cells or derivative clones have been 

instructive in understanding how cells might respond to putative therapies [12, 37, 99]. Meyer et 

al. (PNAS, 2015) found that clones derived from single GBM cells had differential responses to 

both the standard of care alkylating agent temozolomide and a National Cancer Institute library 

of small molecule drugs. Some clones demonstrated resistance to therapy even before any 

application of drug started, a potential explanation for the fact that current standard of care therapy 

will fail to eliminate all cells that remain after surgery. Subsequent studies demonstrate that even 

new, targeted therapies are likely to be ineffective when used in isolation [99]. Single GBM cells 

were treated with kinase inhibitors and 12 different proteins and phosphoproteins were measured. 

Baseline measurements demonstrated unpotentiated GBM cell signaling and relationships 

between activated pathways but upon treatment with an mTOR inhibitor, compensatory signaling 

mechanisms were uncovered. By combining molecules that targeted mTOR signaling and the 

ensuing alternative signaling cascades, GBM cells were much more effectively inhibited. These 

studies demonstrate the immense potential of single cell protein and functional measurements in 

informing future GBM treatments that may eliminate more total cells, cells that specifically 

contribute to tumor recurrence, or specific cell populations.  Furthermore, single cell technologies 

have advanced the field’s understanding of the vast diversity and potential of glioma stem cells 

from their first description as CD133-positive cells in the early 2000s [39, 40] to over 21 cell types 

expressing glioma stem cell markers in a recent publication [37]. 

 

 

Single cell measurement of protein expression and modification 

It is well-established that GBM tumors are comprised of many different cell types with 

different genetic aberrations and different gene expression [33, 36], and that tumors can be found 

in specialized niches with distinct non-malignant cell types, as described above. However, 

information on how the observed genetic and epigenetic changes or access to growth factors are 
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able to modulate individual cell protein expression and intracellular signaling is sorely lacking. 

Some notable progress has been made using single cell RNA-seq but this technique is limited to 

measuring transcript levels, and current studies are limited to a few hundred to 33,000 total cells 

for analysis [33, 37]. These approaches have not yet improved clinical practice or outcome for 

patients with glioblastoma. Therefore, it would be beneficial to be able to measure many different 

proteins of interest at once to be able to parse lineage markers, signaling events, and stemness 

features (Figure 1.3). 

Mass cytometry is uniquely suited to address this challenge. Mass cytometry is an 

extension of the technology of fluorescence flow cytometry, wherein features are measured in 

single cells using antibodies or oligonucleotides against antigens of interest (Figure 1.5) [103-

107]. In traditional fluorescence flow cytometry, single cells are stained with fluorophore-

conjugated antibodies and are sequentially passed through lasers within a cytometer to excite the 

fluorophores. Emissions from these fluorophores are recorded, and a per-cell measurement of 

fluorescence intensity for each captured signal is reported. In mass cytometry, antibodies are 

instead covalently tagged with non-physiological heavy metals (atomic mass 89-209) and single 

cells are detected by a time of flight mass spectrometer (Figure 1.5). This permits 35+ features to 

be measured on thousands or millions of single cells, without the concerns of spectral overlap 

that currently limit flow cytometry; however, advances in fluorescence flow cytometry have 

increased the number of parameters that can be multiplexed, approaching numbers currently 

considered standard for mass cytometry [105, 108-110].  

Suspension mass cytometry is a potentially valuable platform for solid tumor analysis, as 

it is relatively low cost, well-powered to detect rare and novel cell types, and able to sensitively 

measure many mechanistic determinants of cancer cell identity such as phosphorylated 

transcription factors, which are inaccessible to sequencing modalities [105, 111, 112]. The 

technology has been successfully used to identify cells associated with disease progression or 

patient outcomes in blood cancers [113-115]. However, mass cytometry requires samples that 
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are in single cell suspensions, presenting a technical challenge for analysis of solid tumors. Thus, 

the application of mass cytometry to study solid tumors, especially brain tumors, has lagged 

behind studies in fluid systems, such as the blood [111]. Excluding studies of tumor infiltrating 

immune cells, there are only a handful of studies applying mass cytometry to examine solid 

tissues [98, 116, 117].  The first challenge in employing the technology is to prepare samples in 

a way that is suitable for single cell staining and acquisition (Figure 1.5). Some groups have 

circumvented this challenge by employing mass-based labeling of intact tissue, either for mass-

based imaging [118, 119] or for subsequent dissociation after staining [120]. The next challenge 

is to develop a panel of validated antibodies to detect phenotypes of interest in tumors that have 

primarily been described using gene expression or genome sequencing and derived from tissue 

of which there are few healthy samples for controls. Methods to address both of these challenges 

will be discussed in this dissertation (Chapter III and Appendix A). Once tumor samples have 

been stained with the antibody panel and data acquired on the mass cytometer, there is an 

abundance of high dimensional data that can illuminate biological findings of interest, such as 

what proteins are enriched in specific cell types, how protein expression or cell abundance varies 

between patient groups, and what cells are associated with patient outcomes (Figure 1.1). 

However, despite the potential of high-dimensional data, parsing the vast amount of information 

to gain meaningful insight is a significant challenge.   
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Figure 1.5: Intra-operative patient samples can be dissociated into viable single cell 
suspension for analysis by flow cytometry. Samples are collected from patients undergoing 
standard tumor resections. The samples are transported back to the laboratory where they are 
manually and enzymatically dissociated and viably cryopreserved. Upon thaw, the cells are 
stained with monoisotopic metal-tagged antibodies (atomic mass 89-209) against both 
extracellular and intracellular antigens. Single cells then pass through a nebulizer and are atomize 
and ionized by argon plasma, creating a cloud of ions corresponding to each cell, which is then 
analyzed by time of flight mass spectrometry. Adapted from [112, 121].  
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Table 1.1: Algorithms for the analysis of single cell data 
 

Algorithm* Applications Description Considerations 

PCA 

 

  

[122] 

1. Dimensionality 

Reduction 

Transforms data to new axes in which 

the first component captures most of 

the variance in the dataset 

− Assumes data are parametric 

1. Linear 

DBSCAN  

 

 

 

 

 

[123] 

1. Clustering Density based clustering in which 

points packed closely together (also 

thought of as points with many 

neighbors) are assigned to the same 

cluster 

− Points in low density regions are 

outliers 

1. Unsupervised 

SPADE  

 

 

 

 

 

 

 

 

[124] 

1. Dimensionality 

Reduction 

2. Visualization 

3. Clustering  

First, high dimensional data is density 

downsampled, followed by 

agglomerative clustering, and the 

arrangement of upsampled clusters 

on a minimum spanning tree. 

− User must choose the desired 

number of clusters and the features 

on which to cluster 

− Useful for viewing the global data 

structure 

1. Very limited or 

no prior 

knowledge 

required 

2. Unsupervised 

3. Non-

deterministic  

 

viSNE  

 

 

 

 

 

 

 

 

 

 

[125] 

1. Dimensionality 

Reduction 

2. Visualization 

Based on the t-distributed stochastic 

neighbor embedding algorithm, 

providing a single cell view of high 

dimensional relationships in 2-

dimensional space.  

− Emphasizes local structure while 

giving a view of global structure 

− Limited by the number of cells 

that is computationally feasible to 

analyze 

− Can be valuable to detect 

technical artifacts 

1. Unsupervised 

2. Non-

deterministic 

(optional seed 

available) 
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Automatic 

Classification 

of Cellular 

Expression 

by Nonlinear 

Stochastic 

Embedding 

(ACCENSE)  

[126] 

1. Dimensionality 

Reduction 

2. Clustering 

Combines non-linear dimensionality 

reduction (t-SNE) with density-based 

clustering. 

1. Unsupervised 

Citrus  

 

 

 

 

 

 

 

 

 

 

[127] 

1. Clustering 

2. Phenotype 

Defining 

3. Modeling 

Hierarchical clustering of cells based 

on user-defined features. Clusters and 

features of interest are identified that 

are associated with known endpoints 

of interest. Then Citrus trains a model 

based on identified features. 

− Random subsampling of cells 

(user-defined) 

− Cells can be assigned to >1 

cluster 

− Requires at least 8 samples per 

group 

1. Supervised 

Wanderlust  

 

 

 

 

 

 

 

 

 

 

[128] 

1. Dimensionality 

Reduction 

2. Developmental 

Trajectory 

Generates k-nearest neighbor graphs 

of all single cells and finds the 

average position of each cell, based 

on randomly chosen “waypoint” cells, 

on iterative trajectory calculations on 

the KNN graphs. Infers developmental 

trajectory from the average position of 

the cells in the graph 

− User must define initiating cell 

− Assumes all intermediate cells, 

including rare cells, are in the 

sample 

1. Assumes 

linear cellular 

progression 

(no branched 

development) 

2. Scales well to 

large datasets 

FlowSOM 

 

 

 

 

 

 

 

 

 

 

1. Clustering 

2. Visualization 

First, a self-organizing map is trained 

on the single cell data such cells are 

arranged in nodes based on similarity 

in high dimensional space. Nodes are 

then connected via a minimum 

spanning tree and similar nodes are 

combined into the final clusters. 

− Performs well with respect to 

speed and cluster stability and 

accuracy [130] 

1. Unsupervised  

2. Scales well to 

large datasets 
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[129] 

− Can be sensitive to random starts 

resulting in outlier runs which 

perform worse than others 

Phenograph  

 

 

 

 

 

 

 

[113] 

1. Clustering 

2. Phenotype 

Defining 

Models high-dimensional data using a 

nearest-neighbor graph, identifying 

highly interconnected nodes.  

− Makes no assumptions about 

size, number or form of 

subpopulations 

− Only one user-defined parameter 

− Can scale up to large amounts of 

input data 

1. Unsupervised 

Single-Cell 

Analysis by 

Fixed Force- 

and 

Landmark-

Directed 

maps 

(Scaffold)  

 

[131] 

1. Reference map Builds models using force-directed 

graphs that incorporate prior 

knowledge. Uses landmark 

populations to direct the graphs.  

− Users are able to overlay new 

data onto map 

− Enables systems-level 

comparisons and evaluation of the 

global data structure 

− Can handle millions of cells 

1. Requires prior 

knowledge 

 

Cytosplore  

 

 

 

 

 

 

 

 

 

 

 

 

 

[132] 

1. Workflow 

2. Phenotype 

Description 

First, uses SPADE to partition data, 

followed by A-tSNE to analyze high-

level partitions in detail. Uses 

Gaussian Mean Shift (GMS [133]) to 

determine clusters based on the A-

tSNE results. 

− Designed to deal with multiple 

scales within data from lineage 

defining features (large differences 

between subsets) and subtle 

differences within cell populations 

(features on a smaller scale) 

− Emphasis on visualization and 

interactive features for data 

exploration 

2. Supervised 

3. Assumes prior 

knowledge of 

the system 

and expected 

cell types 

Hierarchical 

Stochastic 

Neighbor 

Embedding 

(HSNE) 

 

1. Dimensionality 

Reduction 

Builds small neighborhoods using k-

nearest neighbor graphs and then 

identifies landmarks within the 

neighborhoods. Each landmark 

defines an area of influence.  

1. Non-linear 
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[134] 

− Shows structure at different 

scales by creating a hierarchical 

representation of data 

− Can be used to avoid 

downsampling cells 

Xshift  

 

 

 

 

 

 

[135] 

1. Clustering Uses K-nearest neighbor density 

estimation to identify clusters and 

arranges the clusters based on the 

number of nearest neighbors. Then 

clusters are merged based on 

mahalanobis distance. 

− Can process large datasets 

without subsampling 

1. Unsupervised 

A-tSNE  

 

 

 

 

[136] 

1. Dimensionality 

Reduction  

2. Visualization 

Uses approximated k-nearest 

neighbors to approximate t-SNE 

embeddings in an adaptation of the t-

SNE algorithm designed to minimize 

computation time. 

− Allows user to interact with and 

modify the analysis as it is ongoing 

 

CellCNN  

 

 

 

 

[137] 

1. Clustering 

2. Phenotype 

Description 

Employs a convolutional neural 

network to identify cell populations 

from single cell measurements and 

associated phenotypes. 

− Designed to detect rare 

populations 

1. Supervised.  

DDPR  

 

 

 

 

 

 

 

 

[114] 

1. Risk 

stratification 

Manually gated, healthy populations 

were analyzed using Principal 

Component Analysis and then 

malignant cells were projected onto 

healthy populations using 

mahalanobis distance.  

− Elastic net machine learning used 

to identify features at the time of 

diagnosis that could predict relapse

  

1. Supervised 

2. Requires prior 

knowledge 

Uniform 

manifold 

approximatio

n and 

projection 

(UMAP)  

 

[138] 

1. Dimensionality 

Reduction 

− Preserves both local and global 

structure 

− Faster than t-SNE  

− Retains information about 

developmental continua  

 

1. Nonlinear 

2. Unsupervised 
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Fourier 

transform 

(FFT)-

accelerated 

interpolation-

based t-SNE 

(FIt-SNE) 

 

 

 

 

 

[139] 

1. Dimensionality 

Reduction 

2. Visualization 

An accelerated variation of t-SNE. 

Instead of comparing each point with 

all other points, FIt-SNE defines a 

small number of interpolation nodes 

and compares each cell to those 

nodes. The nodes are also compared 

to each other. The algorithm then 

interpolates interactions between all 

points from this data. 

− Eliminates the need for 

downsampling 

− Heatmap visualization based on 

one-dimensional t-SNE  

1. Unsupervised 

Opt-SNE  

 

 

 

 

[140] 

1. Dimensionality 

Reduction 

2. Visualization 

An automated tool for choosing the 

optimal t-SNE parameters to facilitate 

embedding of datasets of millions of 

cells 

− Reduces computation time and 

improves visualization  

1. Unsupervised 

 
*In addition to the publications describing each algorithm, this table was informed by [105, 130, 
141-144].  
 

 

High dimensional, single cell data analysis  

Analysis of single cell cytometry data has recently moved from an era of human-driven 

identification of cell types using known markers (expert gating) to embrace machine learning tools 

that can automatically reveal and characterize novel or abnormal cells (Figure 1.1) [144-147]. As 

this shift occurs, many tools for understanding high dimensional flow cytometry data have 

emerged, which can be used alone or in combination (Table 1.1). Several tools, such as t-

distributed Stochastic Neighbor Embedding (t-SNE) and subsequent variations (like hierarchical-

SNE or opt-SNE) and Uniform Manifold Approximation and Projection (UMAP) are used to 

reduced data dimensionality, taking 35+ dimensions and projecting them onto two new axes [125, 

138, 140, 148]. They work by iteratively projecting the high dimensional data onto a two-

dimensional plot, attempting to improve the 2D embedding with each iteration, based on reducing 
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the deviation of cell-cell relationships from the high dimensional cloud. These tools help explore 

the structure of multidimensional data and reveal subpopulations that can be overlooked in expert 

manual analysis as well as gain insight into patterns of marker expression or spot artifacts in 

datasets [125]. However, analysis does not end at dimensionality reduction. The goal of many 

mass cytometry experiments is to identify cell clusters for purposes ranging from describing a 

new cell type, to tracking populations over time or treatment, to comparing subset abundances 

between patients or conditions. To this end, a plethora of clustering algorithms have been 

developed within the past decade whose variety and abundance offer many options for scientists 

to best address their particular question or dataset (Table 1.1).  A key feature of these algorithms 

is whether they are unsupervised (identifying groups of cells based on similar measured features) 

or supervised (identifying groups of cells based on external biological or clinical variables) [130]. 

Spanning-tree Progression Analysis of Density-normalized Events (SPADE), particularly useful 

for finding rare populations, requires users to choose a number of clusters before density-

downsampling and building a minimum spanning tree [124]. FlowSOM also requires a user-

defined cluster number and builds a minimum spanning tree after the construction of a self-

organizing map [129]. Phenograph, meanwhile, automatically determines the number of clusters 

based on a user-defined nearest neighbors parameter [113]. None of these tools requires any 

classification or sorting of the samples prior to analysis. On the other hand, there are tools like 

Citrus, an automated cell subset discovery tool that uses prior knowledge of categorical labels, 

such as “diseased” or “healthy”, to identify cell clusters differentially associated with those labels 

[127].  CellCNN is another supervised analysis tool that requires prospective assignment of 

samples to categories and uses convolutional neural networks to learn a filter that predicts 

whether new cells match one of the groups [137].  Other cell subset discovery approaches do not 

supervise the analysis with knowledge of clinical outcomes but do use prior biological knowledge 

to identify cell subpopulations and then test whether differential outcomes are associated these 

cell subsets, such as developmentally dependent predictor of relapse (DDPR) [114].  At the end 
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of any of these analyses, the user has a number of cell populations that can be probed for 

biologically-relevant phenotypes, associations with clinically-relevant events, or changes between 

conditions. 

Malignant cells in human tumors are remarkably diverse in their functional cell identities, 

and such intra-tumor cellular heterogeneity has been linked to patient outcomes [149, 150].  In 

blood cancers, single cell profiles of signaling networks have revealed cancer cells present at 

diagnosis whose abundance is linked to clinical outcomes, including patient survival [113-115, 

151, 152]. Due to the relative ease of collecting and processing blood and bone marrow, many of 

the above tools were developed for, and bench-marked by, analysis of such samples, where 

known healthy controls are abundant [111].  Unlike these tissues, normal developing brain 

samples are difficult to obtain. Therefore, constructing normal brain cell developmental lineages 

is difficult and thus precludes the use of analytical tools reliant on such a dataset. Furthermore, 

GBMs are not easily divided into meaningful categories, as all patients progress, overall survival 

is very short, and standard of care is universal for every GBM. Therefore, patients are difficult to 

split into good or bad survival or into different therapeutic groups. To address these challenges in 

understanding data obtained from highly aggressive diseases, new experimental and 

computational tools are needed.  

 

 

Conclusions and research objectives 

Primary brain tumors, especially glioblastomas, are striking for their rapid and extremely 

poor prognosis as well as for their cellular heterogeneity at many levels of biological processes. 

This heterogeneity has been examined in the context of genomic and transcriptomic alterations, 

and to some extent, functional measurements of stem cell properties. Such studies have led to 

the definition of molecular subclasses of tumors and been the impetus for clinical trials. Although 

both inter- and intra-tumoral dysregulation of signaling in glioblastoma, particularly the disruption 
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of receptor tyrosine kinase (RTK) homeostasis, is hypothesized to drive disease aggressiveness, 

very little is known about the activation states of signaling effector proteins in glioblastoma and 

how these signaling changes may be associated with cell subpopulations and patient clinical 

outcomes [12, 35]. Disappointingly, the standard of care therapy has not changed since 2005 [2], 

and personalized therapeutic regimens are not available for patients. More recent single cell 

studies suggest that combinatorial therapy approaches may be beneficial to target multiple, 

divergent cell populations or to prevent resistance to a single drug. Novel, molecularly-driven 

criteria may give valuable insights into the biology of tumor progression and identify patients more 

likely to benefit from targeted therapeutics in development for this devastating malignancy.   

A dearth of resources including appropriately prepared samples and validated 

technologies has resulted in few studies of single cell protein measurements in these tumors. This 

dissertation will describe the development of a mass cytometry panel for investigation of single 

glioblastoma cells from primary patient samples. Using this panel and CyTOF® technology 

(Fluidigm), diverse populations of cells were identified in patient samples. The creation of a new 

automated and unsupervised data analysis pipeline was used to further parse the dataset 

generated by mass cytometry. Risk Assessment Population IDentification (RAPID), as the 

algorithm is titled, was able to identify negative and positive prognostic cells within patient tumors. 

These negative and positive prognostic populations had unique phenotypic features, including 

specific intracellular signaling events and co-expression of lineage markers and stem cell 

proteins. Furthermore, the phenotypes were recaptured using a low-dimensional gating approach 

as well as in a new dataset of immunohistochemistry on tissue samples. RAPID was designed to 

be modular, and multiple approaches were tested at each step of the analysis, to ensure that the 

outcomes and workflow did not depend on one specific data analysis technique. Additionally, it 

was tested on an independent dataset from a different cancer and institution.  

A complement to this work was a technical advance, described in Chapter II, for the study 

of lower grade gliomas. An antibody specific to the IDH1 R132H mutant protein, found in a large 
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number of grades II and III gliomas, was optimized for use in flow cytometry [153, 154]. The 

antibody had previously only been used for immunohistochemistry, but a series of epitope 

retrieval trials revealed a strategy for detecting it in glioma cells. It was successfully used on cell 

lines as well as on FFPE tissue using the previously described FFPE-DISSECT protocol [155].  

The technical challenges of using this antibody on dissociated glioma samples were also 

explored. 

In addition to interrogating the prognostic importance of individual cell types, glioblastoma 

mass cytometry data were also analyzed to determine if there were any signaling or protein 

expression differences between GBM tumors that contact the V-SVZ and those that do not. It has 

been described that patients bearing V-SVZ contacting tumors have worse outcomes than 

patients whose tumors do not contact this niche, but available data has not explained why this 

discrepancy exists. Although it is tempting to assume these tumors must contain different DNA 

alterations, gene expression profiles, or protein levels, this dissertation will report no detectable 

differences. Ideas for addressing the biological differences between the two categories of tumors 

are explored in Chapter V.  
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Preface 

 

 Glioblastoma tumors epitomize an urgent, unmet medical need due to their rapid, negative 

prognosis, documented heterogeneity, and dearth of efficacious treatment options. In close 

collaboration with Dr. Jonathan Irish’s lab, and specifically then-graduate student Nalin Leelatian, 

I sought to use mass cytometry to better understand the contribution of protein expression to 

cellular phenotypes and intra- and inter-tumor heterogeneity. This led to the development of a 

mass cytometry antibody panel, specifically for antigens of interest in glioblastoma, and its 

application to 28 glioblastoma patient samples collected at Vanderbilt University Medical Center. 
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It became clear that many of the tools frequently applied to mass cytometry data would not be 

able to answer our questions about our glioblastoma dataset. Based on my work with Nalin 

Leelatian and described in her dissertation [156], I worked with Sierra Barone in the Irish lab to 

develop a new computational tool that could identify tumor cell clusters and indicate if they 

correlated with continuous clinical variables in an unsupervised manner. This work, the generation 

of a mass cytometry dataset on glioblastoma and the analysis of this data using the new algorithm 

are described in this chapter. The tumor processing and mass cytometry methods described in 

this chapter are detailed in Appendix A. Extended data from analysis of the mass cytometry 

experiments are shown in Appendix B.  

 

 

Abstract 

 

A central goal of cancer research is to reveal tumor cell subsets linked to clinical outcomes 

to generate new drug development and biomarker hypotheses.  A key gap in this area is the need 

for tools based on continuous survival outcomes that can identify putative risk stratifying cells in 

pilot cohorts.  We introduce a machine learning algorithm, Risk Assessment Population 

IDentification (RAPID), that is unsupervised and automated, identifies phenotypically distinct cell 

populations, and determines whether these populations stratify patient survival.  With an initial 

mass cytometry dataset of 2 million cells from 28 glioblastomas, RAPID identified tumor cells 

whose abundance independently and continuously stratified patient risk of death.  Statistical 

validation of these populations included repeated runs of stochastic workflow steps, repeated 

subsampling of cells, and testing of different algorithms and settings within the workflow. 

Biological validation used an orthogonal platform common within clinical trials, 

immunohistochemistry, and a larger cohort of 73 glioblastoma patients to confirm the findings 

from the pilot cohort.  RAPID was also validated to find known risk stratifying cells and features 
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using published data from blood cancer.  Cell subsets revealed by RAPID were continuously 

associated with patient outcomes and independent from known prognostic features.  Thus, RAPID 

provides an automated, unsupervised approach for finding statistically and biologically significant 

cells using robust cytometry data from patient cohorts. 

 

 

Introduction  

 

A modern goal of quantitative analysis of single cell data in human cancers is to move 

beyond human-driven identification of cell types using known markers (expert gating) to machine 

learning tools that can reveal and characterize novel and abnormal cells [144-147].  Citrus, an 

automated analysis tool based on assignment of samples to binary categories (e.g. (“healthy” and 

“disease”) before testing whether cell populations are associated with these categories, was 

designed with this purpose in mind (Table 2.1) [127].  However, many important clinical features 

of patient tissue samples are reported as continuous variables, such as time to progression, 

overall survival, or percentage of immune infiltrate, which can be challenging to convert to 

arbitrary binary categories and may not be driven by a single unified cellular phenotype [113, 114, 

117]. Similarly, known, healthy cell populations from different stages of development or 

differentiation may be required for some approaches, such as developmentally dependent 

predictor of relapse (DDPR [114]) or Phenograph ([113], and are not always available or fully 

represented for all datasets.  This is especially acute for some tissues, such as brain, which may 

be quiescent in adults and not routinely sampled in clinical care or research. In phenotypically 

variable diseases such as glioblastoma, it would also be powerful to test whether cell 

subpopulations identified via unsupervised means are associated with differential risk of death on 

a continuous scale [157].  
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Tools are needed, therefore, that can take into account continuous clinical variables that 

may be censored, such as overall survival or progression-free survival, and which operate in an 

unsupervised manner.  In building an automated cytometry workflow, algorithm developers must 

decide whether users will supervise the discovery of cell subsets using clinical knowledge. Tools 

for automated, unsupervised cell discovery and characterization include SPADE [112], t-SNE 

[125], UMAP [138], FlowSOM [129], and Marker Enrichment Modeling (MEM [158]) (additional 

examples are found in Table 1.1).  These tools help explore the structure of multidimensional 

data, review enriched features of groups, and reveal subpopulations that can be overlooked in 

expert manual analysis [144, 145, 147, 158, 159].  Ultimately, tools that work with high 

dimensional data should help users to translate findings from an algorithmic machine learning tool 

to common practice by identifying lower-dimensional correlates that can be used to validate 

signatures using a complementary, clinically tractable approach.  This utility was a focus of the 

tool design and validation strategy used here. A computational workflow should also be validated 

via repeated subsampling of data to ensure the phenotypes identified are robust, by testing of 

different dimensionality reduction tools, by testing across multiple datasets, and by validation of 

prognostic signatures using complementary approaches.  Finally, a practical challenge of modern 

single cell discovery projects is that they may often be at a project point where they are working 

with a smaller initial cohort (around 25 patients).  This study size is powered to closely correlate 

cell subsets with patient outcomes using signaling cytometry data, as this study and others have 

shown for blood cancers [113, 114, 117, 151, 152, 160], but necessitates extensive statistical and 

biological validation, as discussed below. 

RAPID (Risk Assessment Population IDentification) is a newly created algorithm that was 

designed using single cell cytometry data and which addresses the key challenges of clinical 

research using discovery cohorts of patients (https://github.com/cytolab/RAPID).  This open-

access tool can couple single cell experiments to clinical outcome and other variables in an 

unsupervised manner and provide information that can be translated into simplified tests on other 

https://github.com/cytolab/RAPID
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platforms. For this study, the algorithm was assessed for 1) cluster stability [161] for both cells 

and phenotypes; 2) modularity [144, 145], which would allow the algorithm to function with a range 

of dimensionality reduction approaches, such as no dimensionality reduction, t-distributed 

stochastic neighbor embedding (t-SNE [125]), or uniform manifold approximation and projection 

(UMAP [138]), clustering tools, such as FlowSOM [129] or dbscan [162], and enrichment analysis 

tools, such as marker enrichment modeling (MEM [158]);  3) transparency, evaluated as the ability 

to derive simple models of data structure [157], such as decision trees or flow cytometry gating 

hierarchies, so that new datasets could be easily assessed; 4) independence - whether risk 

stratifying cell populations are independent of known predictors (age, others); and 5) 

reproducibility and translational potential, tested by gathering additional data using traditional, 

one-dimensional immunohistochemistry (IHC) that is widely used in clinical testing.   

Here, the utility and validity of the RAPID algorithm were tested using two datasets with 

varying levels of prior knowledge, numbers of patients and cells, and outcome trajectories. The 

first was a new dataset of 28 glioblastoma patient samples and is described in detail below. 

Central findings from this first dataset were then validated using 73 additional samples analyzed 

using a different technology. The second was a previously published dataset of 54 bone marrow 

samples from B cell precursor acute lymphoblastic leukemia [114]. This study was chosen as an 

example of a dataset in which prognostic features had already been independently identified, and 

so validation was assessed by whether known features were revealed by RAPID.  

When applied to single cell cytometry data from human tumors, as shown here, the aim 

of RAPID was to reveal and characterize populations of risk stratifying cells.  For this goal, 

glioblastoma, the cancer type in the first dataset, represents an excellent challenge, since 

glioblastoma is a highly heterogeneous solid tumor that is amenable to single cell approaches 

[98, 116, 117, 146] and where there is a great opportunity for molecular prognostic features to 

have an impact on new treatments and clinical care. Glioblastoma is the most common primary 

brain tumor in adults, is highly aggressive, and the median survival of glioblastoma patients after 
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diagnosis has remained approximately 12-15 months for over a decade [2, 163]. Furthermore, is 

known to contain cells with diverse genomic and transcriptomic features reflecting abnormal 

neural lineages [3, 33, 37, 98, 99]. Previous studies in glioblastomas have either measured 

signaling states in bulk primary tumors [28, 31, 164] or characterized genomic and transcriptomic 

profiles in a limited number of single cells (<33,000) [33, 34, 37, 47, 99, 165]. While differing 

subclasses of glioblastomas were proposed a decade ago [28], these categories do not 

correspond to large differences in prognosis and are not always reflected by individual cells [33]. 

Mosaic amplifications of receptor tyrosine kinase (RTK) genes are commonly observed in subsets 

of cells within a single glioblastoma tumor [35], suggesting that single cell analysis of glioblastoma 

should include signaling measurements.  In other cancer types, phospho-protein signaling has 

repeatedly revealed cancer cell subsets that are closely linked to patient clinical outcomes [113, 

114, 117, 151, 152, 160].  These results suggest that a protein-level approach in a small pilot 

cohort may reveal phenotypically distinct cancer cell subsets whose abundance provides new 

ways to stratify glioblastoma outcomes. While it is known that upstream regulators of pro-growth 

and pro-survival signaling are altered in brain tumors, little is known about the activation states of 

signaling effector proteins in single glioblastoma cells, as these features are inaccessible to 

sequencing modalities [12, 35, 105, 111].   

Another challenge that the RAPID algorithm was designed to address was the need to 

work with heterogeneous cell phenotypes and populations that might be rare and variable across 

patients.  Cytometry data are a good match for this type of algorithm, as a large number of cells 

are collected from each tumor sample, the data have an excellent signal-to-noise ratio and 

support quantitative comparisons, and cytometry enables direct measurement of signaling 

pathway activation [111, 115, 152, 160]. Here, two new technologies were created in parallel: 1) 

a tailored set of 34 antibodies for single cell mass cytometry of glioblastoma focused on phospho-

protein signaling effectors, stem cell and cell identity proteins, and transcription factors critical to 

neural development, and 2) an unsupervised cell discovery workflow termed RAPID (Risk 
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Assessment Population IDentification). RAPID implements t-SNE, FlowSOM, and MEM analysis 

of single cell mass cytometry data to reveal risk stratifying cell populations [157]. The aim of 

combining these technologies was to reveal and characterize populations of risk stratifying 

glioblastoma cells, in the process illuminating new therapeutic targets or combinations of targets 

for patients. Additionally, the RAPID workflow can be applied to any high dimensional, single cell 

data evaluated in the context of a continuous variable. When glioblastoma mass cytometry data 

were analyzed by RAPID, both negative- and positive-prognostic phenotypes were identified, with 

protein-level phenotypes not described by prior studies. Statistical description of prognostic 

phenotypes within the RAPID algorithm then enabled the design of a simple workflow using 

traditional IHC, which stratified outcome in a separate set of 73 glioblastoma patient tissues.  

 

 

Methods 

 

Patient samples 

 Surgical resection specimens of 28 IDH-wild type glioblastomas collected at Vanderbilt 

University Medical Center between 2014 and 2016 were processed into single cell suspensions 

following an established protocol (Appendix A and [121]). Only samples that were confirmed to 

be IDH-wild type glioblastomas by standard pathological diagnosis were used. All samples were 

collected with patient informed consent in compliance with the Vanderbilt Institutional Review 

Board (IRBs #030372, #131870, #181970), and in accordance with the declaration of Helsinki. 

  

 

Patient characteristics and collection of clinical data 

 Additional patient characteristics are included in Table 2.3 for all samples in this study. All 

patients were adults ( 18 years of age) at the time of their maximal safe surgical resection of 
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their cerebral (supratentorial) glioblastomas. Extent of surgical resection was independently 

classified as either gross total or subtotal resection by a neurosurgeon and a neuroradiologist. 

Gross total resection was defined as agreement by both viewers of no significant residual tumor 

enhancement on patients’ gadolinium-enhanced magnetic resonance imaging (MRI) of the brain 

obtained within 24 hours after surgery. All patients were considered for treatment with 

postoperative chemotherapy (temozolomide) and radiation according to the standard of care [2], 

after determination of MGMT promoter methylation status by pyrosequencing (Cancer Genetics, 

Inc., Los Angeles, CA, USA). Multiplex polymerase chain reaction (PCR) was used to determine 

IDH1/2 mutational status. Patients’ postoperative course was followed until February 2019, noting 

time to first, definitive radiographic progression or recurrence of glioblastoma as agreed upon by 

the treating neuro-oncologist and neuroradiologist, and the time to patients’ death. All deaths were 

deemed to be due to the natural course of patients’ glioblastoma.  Median overall survival of the 

analyzed 28 patients with IDH-wild type glioblastoma was 388.5 days (13 months) and median 

PFS was 187.5 days (6.3 months), which is typical for the disease [2, 3]. 

 

 

Mass cytometry analysis 

Cells derived from patient samples were prepared as previously described (Appendix A 

and [121]). A multi-step staining protocol was used, which included 1) live surface stain, 2) 0.02% 

saponin permeabilization intracellular stain, and 3) intracellular stain after permeabilization with 

ice-cold methanol. All antibodies used, including clone information, and the steps when used are 

given in Table 2.4. After staining, cells were resuspended in deionized water containing standard 

normalization beads (Fluidigm) [166], and collected on a CyTOF 1.0 instrument located in the 

Cancer and Immunology Core facility at Vanderbilt University. Mass cytometry standardization 

beads were used to remove batch effects and to set the variance stabilizing arcsinh scale 

transformation for each channel following field-standard protocols [121, 146, 167]. Rhodium 
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viability stain and cleaved caspase-3 antibody were included in staining to exclude non-viable and 

apoptotic cells, respectively. Detection of total histone H3 was used to identify intact, nucleated 

cells [98]. A 34-dimensional mass cytometry antibody panel was used to analyze over 2 million 

viable cells from 28 tumors (ranging from 4,860 to 336,284 cells per tumor). Data were normalized 

with MATLAB-based normalization software [166], and were arcsinh transformed (cofactor 5), 

prior to analysis using the Cytobank platform [168]. Positively identified cells were defined by 

having signal above 10 on any channel on which an antibody was used to detect antigen. A 

patient-specific t-SNE view was generated, using 26 of the measured markers for all tumor and 

stromal cells from each patient’s tumor [125] (Table 2.4). Immune (CD45+) and endothelial cells 

(CD31+) were computationally excluded from each individual patient prior to subsequent 

downstream analysis.  Remaining CD45-CD31- cells were included in a common t-SNE analysis, 

generated using 24 of 34 measured markers (Table 2.4). Distribution of each of the 28 patients’ 

cells on the common t-SNE axes and mass intensity for each marker are shown in Appendix B. 

This common t-SNE analysis was used for automated analysis of risk stratifying cell subsets in 

RAPID (below).   

 

 

Implementation of RAPID in R 

FCS files for each patient sample (28) containing only cells of interest (non-immune, non-

endothelial cells) were input in R (4,710 cells from each patient, 131,880 cells total). Cell subset 

identification was performed using the previously published FlowSOM R package [129]. Original 

features (24 measured markers), t-SNE values (t-SNE1_glioblastoma and t-SNE2_glioblastoma) 

from t-SNE, or UMAP values (UMAP1_gliolbastoma and UMAP2_gliolbastoma) from UMAP 

analysis of CD45-CD31- glioblastoma cells from 28 patients were used as parameters for cell 

subset clustering. Within the RAPID workflow, the optimal number of clusters was determined by 

first identifying, for each feature, the smallest number of clusters that minimizes the intra-cluster 
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signal variance for that feature. Then, the optimal cluster number of the dataset was determined 

by taking the median of the optimal numbers for each individual feature. Once the cluster number 

was determined, the abundance of cell subsets and their clinical significance was assessed using 

outcome-guided analysis. Patients were divided into Low and High groups, based on the 

distribution (interquartile variance, IQR) of the abundance of a given cell subset across the cohort. 

A univariate Cox regression analysis was then used to estimate the effect size (hazard ratio, HR, 

of death) on survival and quantify its statistical significance with a p-value. The RAPID program 

output included: 1) two t-SNE (or UMAP) plots (.png), one color coded by each FlowSOM cluster 

and one color coded by prognostic status and p-value; 2) Kaplan-Meier survival curves for cell 

subsets; 3) .txt files of MEM and Median values for each feature, enrichment scores, and IQR 

values; 4) a new FCS file with File ID, cluster ID, and prognostic status for each cell; and 5) an 

.rds file with survival statistics for each cluster. In this study, abundance of Glioblastoma Negative 

Prognostic (GNP) and Glioblastoma Positive Prognostic (GPP) cells in each tumor was quantified 

as percentages per total glioblastoma cells (i.e. immune and endothelial cells were already 

excluded). Total GNP and GPP cell abundance were determined for each patient by adding the 

events in all GNP (or GPP subsets, respectively) together. GNP high patients were identified as 

containing more GNP cells than the IQR of total GNP abundance. GPP high patients were defined 

in the same manner.  MEM analysis was performed in R, using the previously published R 

package [158]. In short, MEM captured and quantified cell subset-specific feature enrichment by 

scaling the magnitude (median) differences between clusters, depending on the spread (IQR) of 

the data. These values were then computed in comparison to the remaining cells in a given 

dataset. MEM values were interpreted as either being positively enriched (▲, UP positive values) 

or negatively enriched (▼, DN negative values). The variation of a given cellular feature across 

GNP or GPP cell subsets was quantified as ± standard deviations (SD). For the primary dataset 

used in this study (131,880 cells), RAPID ran in 15 minutes from start to finish after dimensionality 

reduction. 
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Cluster stability testing 

 Ten independent t-SNE or UMAP analyses were performed on equal numbers of randomly 

sampled cells from each patient (4,710 cells per patient, 131,880 total cells). RAPID was used to 

analyze each of these ten t-SNE/UMAP runs. For each sub-sampling of cells and the respective 

t-SNE/UMAP, an additional 99 FlowSOM clusterings were performed without setting a seed for 

reproducible results. After each analysis, an F-measure was calculated per cluster, measuring 

both the precision and recall of cell assignment. After 100 total FlowSOM runs, each of the original 

clusters had an average F-measure, interpreted here as a measure of cluster stability.  

 

 

Survival and statistical analysis 

 Time from surgical resection to death (overall survival, OS) and time from surgical 

resection to the initial radiographic recurrence or death before radiographic assessment 

(progression-free survival, PFS) were depicted using right-censored Kaplan-Meier curves and 

analyzed in R. Survival time points were censored if, at last follow up, the patient was known to 

be alive or had not had radiographic progression. Differences in the survival curves of groups 

were compared using the Cox univariate regression model, reporting a hazard ratio (HR) with 

95% confidence intervals between the survival curves.  

 A Cox proportional-hazards regression model was created to assess the influence of GNP 

and GPP cells on OS and PFS as continuous variables while accounting for other factors known 

to affect survival, including age at diagnosis, MGMT promoter methylation status, extent of 

surgical resection (EOR), treatment with temozolomide (TMZ), and radiation (XRT). The hazard 

model can be written as: 

𝐻𝑅 =
ℎ(𝑡)

ℎ0(𝑡)
= 𝑒(𝑏𝐺𝑁𝑃𝐺𝑁𝑃+𝑏𝑎𝑔𝑒𝐴𝑔𝑒+𝑏𝑀𝐺𝑀𝑇𝑀𝐺𝑀𝑇+𝑏𝐸𝑂𝑅𝐸𝑂𝑅+𝑏𝑋𝑅𝑇𝑋𝑅𝑇+𝑏𝑇𝑀𝑍𝑇𝑀𝑍) 
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where 
ℎ(𝑡)

ℎ0(𝑡)
 represents the ratio of hazard comparing the risk of death at time t to the baseline 

hazard (obtained when all variables are equal to zero) and 𝑒𝑏𝑥 represents the hazard ratio of 

variable 𝑥. The data were fit using R software, version 3.5 (R foundation for Statistical Computing, 

Vienna, Austria). The proportional-hazards assumption was tested in all multivariate models and 

supported by a non-significant relationship between Schoenfeld residuals and time for each 

covariate included in the model (p > 0.38; degree of freedom = 1) and the overall model (p = 0.96; 

degrees of freedom = 6 and 7). Statistical significance α was set at 0.05 for all statistical analyses, 

one- or two-tailed noted in figure legends. 

An F-measure was used to quantify the level of agreement between classifications 

of patients or cells between alternative analysis strategies as wells as multiple RAPID iterations. 

The F-measure is the harmonic mean of the precision and recall given by the equation F = 2 * 

(Precision * Recall) / (Precision + Recall) where Precision = True Positive / (True Positive + False 

Positive) and Recall = True Positive / (True Positive + False Negative). An F-measure of 1 

indicates perfect agreement between two different strategies or iterations as opposed to an F-

measure of 0 which would mean no agreement between classifications of patients or cells from 

two strategies or iterations. Patients could be classified as GNP high, GNP and GPP low, or GPP 

high, while cells were classified as GNP, GPP, or neither. None of the patients in this study were 

classified as both GNP high and GPP high. To calculate the F-measure of patient categorization, 

the classification of the 28 patients into the three prognostic groups from the t-SNE 

implementation of RAPID was used as the reference point from which to compare patient 

classification resulting from the UMAP implementation of RAPID. Similarly, the stability of the 

RAPID workflow in assigning cells to GNP, GPP, or non-significant clusters was tested by using 

the t-SNE or UMAP implementation of RAPID (FlowSOM seed 38) as the reference from which 

to compare 100 iterations of RAPID (random FlowSOM seed per iteration). Calculation of the F-

measure was implemented using R software, version 3.5.  
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Computer specifications 

R was downloaded from https://cran.r-project.org/bin/  and implemented using the R 

Studio GUI https://www.rstudio.com/products/rstudio/download/#download. PC users also 

needed to download R Tools https://cran.r-project.org/bin/windows/Rtools/ and MAC users 

needed to download X11 Quartz https://www.xquartz.org/. RAPID was implemented, using these 

tools, on several personal computers. It was developed on a Dell Precision 7820 with a solid-state 

hard drive and 64GB RAM.  

 

 

TMA sample selection 

Formalin-fixed paraffin-embedded (FFPE) glioblastoma specimens were identified using 

the Vanderbilt Surgical Pathology database. The absence of IDH mutation was determined by 

multiplex PCR coupled with base extension assay (SNaPshot reaction mixture, Life Technologies, 

Carlsad, CA, USA), followed by capillary electrophoresis on an ABI Genetic Analyzer 3130XL and 

GeneMapper v.4.1. Following confirmation of the previously rendered histologic diagnosis, 

hematoxylin and eosin stained slides were scanned on the Panoramic P250 (3DHistech) whole 

slide scanner. Areas containing viable tumor were identified and circled by two pathologists (BM, 

NL).  

 

 

TMA construction and staining 

Blocks were delivered to the Vanderbilt University Medical Center TPSR (Translational 

Pathology Shared Resource), where cores were extracted from the encircled areas. Donor blocks 

and recipient blocks were loaded into the Tissue Microarray Grandmaster (3DHistech).  The 

virtual slide images were aligned and overlaid on the tissue block and cores were removed from 

the donor block based on the pathologist annotation.  Three 1mm core samples were collected 

https://cran.r-project.org/bin/
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.rstudio.com%2Fproducts%2Frstudio%2Fdownload%2F%23download&data=02%7C01%7Csierra.barone%40vanderbilt.edu%7Ce7ea3bcecf694a41506408d725792608%7Cba5a7f39e3be4ab3b45067fa80faecad%7C0%7C0%7C637019074568348436&sdata=60ASdoWeKr71JhP5i2Oczwz59wJQEgYUR3KYJqUWXfI%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcran.r-project.org%2Fbin%2Fwindows%2FRtools%2F&data=02%7C01%7Csierra.barone%40vanderbilt.edu%7Ce7ea3bcecf694a41506408d725792608%7Cba5a7f39e3be4ab3b45067fa80faecad%7C0%7C0%7C637019074568358443&sdata=yMo97Q%2BU5xMeO8g43YlGEjHtJ8no3UddDTbISNr9vaw%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.xquartz.org%2F&data=02%7C01%7Csierra.barone%40vanderbilt.edu%7Ce7ea3bcecf694a41506408d725792608%7Cba5a7f39e3be4ab3b45067fa80faecad%7C0%7C0%7C637019074568368426&sdata=DG01HDN5GZt6Qp8SkoZkOBRY9yv2Cmqx2obz4lIeVws%3D&reserved=0
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from each tumor and placed in the recipient block. IHC of serial sections of two TMA blocks (<10 

μm thick) were stained with primary antibodies conjugated to HRP and 3,3′-Diaminobenzidine 

(DAB) detection for EGFR and S100B, and counter stained with Hematoxylin by the Translational 

Pathology Shared Resource (TPSR) at Vanderbilt University. Digital images were obtained with 

an Ariol SL-50 automated scanning microscope and the Leica SCN400 Slide Scanner from VUMC 

Digital Histology Shared Resource. 

Marker Clone Company 

S100B polyclonal Dako 

EGFR A-10 Santa Cruz Biotechnology 

 

 

TMA imaging and analysis 

Whole slide imaging was performed in the Digital Histology Shared Resource at Vanderbilt 

University Medical Center (www.mc.vanderbilt.edu/dhsr).  For each marker, a QuPath project was 

created and all slide images were uploaded to be processed in batch.  In QuPath, regions of 

interest (ROI’s) were designated by circling each tumor core. Each ROI was computationally 

linked to the patient by a unique identifier, allowing cores from the same patient to be grouped.  

For each marker, the “Estimate Stain Vectors” function in QuPath was used to find the appropriate 

deconvolution parameters to isolate the signal intensity contribution from Hematoxylin and DAB 

respectively.  The deconvolution parameters are listed below:  

Marker Hematoxylin DAB Background 

S100B 0.60484 0.67532 0.42204 0.20996 0.50234 0.83879 224 223 221 

EGFR 0.72353 0.63737 0.26508 0.24952 0.52384 0.81445 221 219 220 

 

http://www.mc.vanderbilt.edu/dhsr
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For each ROI, nuclear segmentation on the Hematoxylin Optical Density (OD) was optimized 

using the “Watershed cell detection” function in QuPath, and the cytoplasm around each nucleus 

was estimated by performing a 3 μm expansion from the nuclear outline.  All measurements from 

all detections were exported for analysis in R. In R, specific parameters (Name, 

Cell..DAB.OD.mean, Cytoplasm..DAB.OD.mean, and Nucleus..DAB.OD.mean) were extracted 

for every detection (cell) from every patient.  These parameters identify the ROI/core from which 

the cell was segmented, its corresponding patient ID, the mean optical density of the 

deconvoluted DAB signal in each entire segmented cell, the DAB signal in only the cytoplasm, 

and the signal exclusively in the nucleus respectively.  The full TMA map linking QuPath IDs, 

Patient_IDs, Block, and Core_IDs was also imported.  In addition, for each marker, the median 

DAB intensity was calculated for each patient (averaged over three cores).  The thresholds and 

measurements on which these thresholds were applied are summarized below:  

Marker Measurement Threshold - Block A Threshold - Block B  

S100B Cell_DAB 0.4 0.4 

EGFR Cell_DAB 0.2 0.2 

 

Patients were categorized as GNP-like if their TMA cores had S100B staining intensity above 

the first quartile of S100B intensities (>0.6728) and had EGFR staining below the 50th percentile 

(<0.4199). Patients were categorized as GPP-like if their TMA cores scored in the top tertile of 

EGFR intensity (>0.6929). 

 

 

Data availability 

Annotated flow data files are available at the following link https://flowrepository.org/id/FR-

FCM-Z24K. Patient specific views of population abundance and channel mass signals for all 

analyzed patients are shown in Appendix B.  

https://flowrepository.org/id/FR-FCM-Z24K
https://flowrepository.org/id/FR-FCM-Z24K
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Code availability 

RAPID code is currently available on GitHub, together with a published dataset for 

analysis, at: https://github.com/cytolab/RAPID. 

 

 

Results 

 

RAPID identifies stratifying cell subsets in an automatic and unsupervised manner 

The RAPID algorithm workflow is depicted in Figure 2.1 using results from Dataset 1.  

Following patient-specific identification of major cell types (Figure 2.1a), the algorithm (Figure 

2.1b) randomly sampled an equal number of glioblastoma cells from each patient’s tumor and 

analyzed the cells on a single, common t-SNE.  This even sampling was conducted to generate 

a t-SNE analysis where each patient contributed equally.  Subsequent statistical testing (Figure 

2.1c) included repeated subsampling to ensure that sampled cells were representative of the 

original tumors.  After multiple statistical tests, the most robust and reproducible cell types 

identified by RAPID were validated biologically, including using a new data type and a larger 

cohort (Figure 2.1d).    

The RAPID algorithm was unsupervised and included two key statistical decisions.  The 

first decision was the automation of the number of target clusters sought at the clustering step 

(Figure 2.1b, middle).  This was achieved through repeated analysis with the chosen clustering 

tool, in this case FlowSOM [129], followed by statistical analysis.  RAPID iteratively tested a range 

(cluster number 5-50) of unsupervised self-organizing maps from FlowSOM to identify an 

appropriate number of stable clusters containing phenotypically homogenous cells.  The minimum 

number of clusters that minimized intra-cluster variance for each feature was calculated after all 

iterations were completed and set as the optimized target cluster number (see Methods).  

Clustering with other tools or clustering on untransformed axes, was both slower and less 

https://github.com/cytolab/RAPID
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accurate in identifying stable, phenotypically distinct clusters, consistent with published 

observations (data not shown and [130]).  The second decision was in assessing cluster 

abundance in patients (Figure 2.1b, right).  RAPID assigned patients to high or low abundance 

for each automatically identified cluster based on a statistical cut point, set as the interquartile 

range of the population abundance across the samples (see Methods). These two decisions 

resulted in automation of steps that are typically manual in cytometry analysis. 

After finding clusters in an unsupervised manner and determining which patients’ tumors 

contained a high level of each cluster, the last step in a run of RAPID was to test whether each 

cluster stratified risk of death.  For this last test, RAPID applied a univariate Cox survival analysis 

to determine the correlation between the abundance of tumor cells in each cluster and patient 

survival outcome (Table 2.2). Clusters were identified as prognostic by assessing the hazard ratio 

(HR) of death in patients who had either high or low abundance of the cell cluster.  Negative and 

positive prognostic clusters were colored red or blue, respectively, if they were significantly 

associated (p<0.05) with an HR that was >1 (negative, red) or <1 (positive, blue).  The RAPID 

algorithm used statistical analysis of the common t-SNE, feature variance, and population 

abundance to automatically set all computational analysis parameters, independent of clinical 

outcomes.  

The output of RAPID includes a PDF containing a color-coded, 2D t-SNE plot depicting all 

FlowSOM clusters, a 2D t-SNE plot colored by clusters which were significantly associated with 

patient outcome, and Kaplan-Meier survival plots of patients for each subset (additional files 

described in Methods) (Figure 2.1b).  To compactly report and depict the phenotype of 

algorithmically identified cell subsets, RAPID used Marker Enrichment Modeling (MEM) labels 

[158].  Thus, feature enrichment was reported on a +10 to -10 scale, where +10 indicated that the 

feature was especially enriched in those cells and -10 indicated that the feature was specifically 

excluded from those cells, relative to all other cells in other clusters.  The MEM label here was 

thus an objective description of what made each population distinct from the other clusters 
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identified by RAPID.  In summary, RAPID provided an unsupervised, automated, statistical 

approach to revealing and characterizing clinically significant cells.  
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Figure 2.1: RAPID identifies single cell phenotypes associated with continuous clinical 
variables that are stable and validated via complementary approaches. (a) Graphic of tumor 
processing and data collection. After data collection and standard pre-processing, non-immune, 
non-endothelial glioblastoma cells were computationally isolated for analysis by RAPID. (b) 
RAPID workflow on glioblastoma cells identified from 28 patients and computationally pooled for 
t-SNE analysis. Cell subsets were automatically identified by FlowSOM and were systematically 
assessed for association with patient overall or progression-free survival. 43 glioblastoma cell 
subsets were identified and were color-coded based on hazard ratio of death and p-values (HR>1, 
red; HR<1, blue). Cell density, FlowSOM clusters, and cluster significance are depicted on t-SNE 
plots. (c) RAPID results were tested for stability. Each tumor was randomly subsampled for 4,710 
cells multiple times. Each of these cell subsampling runs was subject to 100 iterative FlowSOM 
analyses and an F-measure was calculated for each cluster. Only clusters with an F-measure of 
greater than 0.5 were considered stable. Then, the phenotype of stable clusters associated with 
patient outcome were assessed via RMSD and used to determine stable phenotypes. (d) 
Validation of the findings from the mass cytometry data was done using lower dimensional gating 
strategies and an orthogonal technology to confirm the biological findings.  
 

 

Identification of risk stratifying glioblastoma cells in Dataset 1  

RAPID was designed for datasets like Dataset 1, a pilot glioblastoma mass cytometry 

dataset including cells collected from 28 patients with isocitrate dehydrogenase (IDH) wild type 

glioblastoma at the time of primary surgical resection (Table 2.3).  This dataset is currently 

available online (https://flowrepository.org/id/FR-FCM-Z24K).  The median progression-free 

survival (PFS) and overall survival (OS) after diagnosis were 6.3 and 13 months, respectively, 

typical of the trajectory of this disease [2]. Resected tissues were immediately dissociated into 

single cell suspensions as previously reported (Appendix A and [121]) and the resulting cells were 

stained with a customized antibody panel, which was designed to capture the expression of 

known cell surface proteins, intracellular proteins, and phospho-signaling events (Table 2.4).  

Collectively, the antigens included in this panel positively identified >99% of viable single cells 

within any given tumor sample (see Methods).  To identify glioblastoma cells prior to RAPID, as 

in Figure 2.1a, a patient-specific t-SNE was created using 26 of the measured markers for the 

tumor and stromal cells from each patient’s tumor [125] (Figure 2.2 and Table 2.4). Patient specific 

t-SNE maps revealed non-glioblastoma populations of immune (CD45+) and endothelial (CD45-

CD31+) cells, consistent with prior mass cytometry and sequencing studies of gliomas [33, 47, 98, 

https://flowrepository.org/id/FR-FCM-Z24K
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146, 158]. Immune and endothelial cells from each individual patient were computationally 

excluded prior to subsequent downstream analysis (Figure 2.1, Figure 2.2), and CD45-CD31- cells 

were labeled as glioblastoma cells.  

Plots of cell density on the t-SNE axes revealed phenotypically distinct subpopulations of 

glioblastoma cells within a single patient’s tumor (example patient LC26, Figure 2.2 and 

visualization of all patients in Appendix B). Intra-tumoral subsets were distinguished by 

differences in expression of core neural identity proteins and by aberrant co-expression of neural 

lineage and stem cell proteins. In the example case of tumor LC26, abnormal phenotypes in 

glioblastoma cells included co-expression of astrocytic S100B and stem-like CD133 or co-

expression of markers associated with different molecular subtypes of glioblastoma, such as 

mesenchymal (CD44) and classical (EGFR) (Figure 2.2) [28].  These results with protein 

confirmed the existence of non-canonical cell types that had previously been observed in single-

cell RNA-seq [33]. The abnormal co-expression of identity proteins seen here, as well as 

previously reported single cell studies relying on inferred DNA alterations [47], indicate that the 

large majority of the CD45-CD31- cells were likely cancer lineage cells.  
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Figure 2.2: Single cell quantification of identity proteins and phospho-protein signaling in 
glioblastoma. (a) t-SNE plots of cell density (left) and major cell types in a patient tumor (LC26) 
colored by expert gating (right) for antigen presenting cells (APC, blue), other immune cells (non-
APC, orange), endothelial cells (Endo, red), and glioblastoma cells (green) using CD45, CD31, 
and HLA-DR to identify cells. Pink lines indicate where expert gates were drawn. (b) MEM protein 
enrichment scores for populations indicated by color in (a), using the other three populations as 
reference. (c) Per-cell expression levels of 21 identity proteins, (d) 9 phosphorylated signaling 
effectors, proliferation marker cyclin B1, apoptotic signaling factor cleaved caspase 3 (cCASP3), 
and DNA damage marker γH2AX in LC26 are depicted. Heat indicates protein or phospho-protein 
expression per cell; scale is specific to each measured feature.   
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Using an equal number of subsampled glioblastoma cells from each patient (see 

Methods), a single, common t-SNE map was created to represent glioblastoma cell protein 

phenotypes across all patients (N = 131,880 cells; 4,710 cells x 28 patients, using 24 measured 

features).  The RAPID algorithm, using the pooled data from all patients, identified 43 

phenotypically distinct cell clusters, and then determined for each tumor whether a patient was 

high or low for a particular cluster using the interquartile range of abundance for that cluster.  For 

example, for glioblastoma cluster 24, the interquartile range was 0.67% to 3.36%, resulting in a 

cut point of 2.69%.  Those patients with ≤ 2.69% were designated ‘low’ for cluster 24 while those 

with > 2.69% were assigned to the ‘high’ group. Additional cut points, based on splitting 

populations into quartiles or tertiles, were tested and resulted in consistent prognostic phenotypes 

(the average F-measure of patients being consistently assigned to the high, low, or neither 

categories identified below was 0.86).   

The RAPID algorithm identified four Glioblastoma Negative Prognostic (GNP) clusters 

(red; clusters 33, 34, 37, and 42) and five Glioblastoma Positive Prognostic (GPP) clusters (blue; 

clusters 2, 3, 4, 5, and 41) whose abundance was associated with overall survival (Figure 2.1b).  

MEM labels were used to identify the enriched features of risk stratifying glioblastoma cells (Figure 

2.3 and 2.4).  MEM labels were calculated for both total proteins (P), such as S100B and EGFR, 

and signaling effectors (S), such as p-STAT5. GNP cells aberrantly co-expressed neural-lineage 

proteins (astrocytic S100B and stem-like SOX2). Additionally, GNP cells displayed 

phosphorylation of RTK signaling effectors known to promote cell survival, growth, and 

proliferation (e.g. p-STAT5Y694, p-S6S235/S236, p-STAT3Y705) (Figure 2.3 and 2.4). The MEM protein 

enrichment values (average and standard deviation) for GNP cells included neural lineage 

determinants (▲S100B+5±1.6, SOX2+5±1) and phospho-proteins (▲p-STAT3+3±2.1, p-STAT5+2±1.8, p-

S6+3±1.4) and identified proteins that were specifically lacking in GNP cells relative to other 

glioblastoma cell clusters (▼EGFR-2±0.1, GFAP-4±0.7, CD44-4±0) (Figure 2.5).  In contrast, GPP cells 

were positively enriched for EGFR (▲EGFR+5±0.8) and consistently lacked pro-survival phospho-
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proteins (▼p-S6-4±3.7, p-STAT5-2±0.8, p-STAT3-2±1.6) and one of the proliferation markers measured 

(▼cyclin B1-3±3.3) (Figure 2.5). 
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Figure 2.3: Quantitative MEM labels of the enriched identity proteins and signaling features 
of all glioblastoma cell subsets identified by RAPID. Enrichment of identity proteins (P) and 
phosphorylated signaling effectors (S) of glioblastoma cell subsets identified by RAPID was 
quantified using MEM. GNP and GPP cells are labeled in red and blue, respectively. Populations 
detected in every patient sample (abundances ranging from 0.02% to 28.05) are outlined in bold. 
Populations deemed unstable (either by F-measure <0.5 or representing phenotypes displayed 
in less than 50% of cell subsampling runs) are faded.  
 

 

 

 
Figure 2.4: Glioblastoma cell subsets showed differential enrichment of identity proteins 
and phosphorylated signaling effectors. Forty-three glioblastoma cell subsets automatically 
identified by FlowSOM are arranged according to their associations with overall survival (HR>1, 
left; HR<1, right) and statistical significance of that association (p-values). The heatmap 
represents the MEM values of glioblastoma cell subsets (columns). GNP cells are labeled in red, 
while GPP cells are labeled in blue. Hierarchical clustering was performed based on MEM values 
and is depicted on the left of the heatmap for measured features. HR = hazard ratio of death. 
Asterisks (*) above indicate that clusters are not stable (F-measure of <0.5 or phenotypes 
identified in less than 50% of cell subsampling runs). 
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Figure 2.5: Divergent phenotypes are associated with patient outcomes. (a) Enrichment 
(upwards arrowhead) or lack (downwards arrowhead) of identity proteins (P) and phosphorylated 
signaling effectors (S) on Glioblastoma Negative Prognostic cell subsets was quantified using 
MEM. Average MEM scores are shown for three GNP subsets ± the standard deviation. (b) 
Combined GNP cell subsets (density contours) were mapped over biaxial plots of all other tumor 
cells (black contours). (c) Overall survival of patients for high (> 2.96%) total GNP content 
compared to patients with low (< 2.96%) GNP content. (d) Histogram plots of GNP cells (red) and 
all other glioblastoma cells (gray) illustrate the expression of identity proteins and phosphorylated 
signaling effectors. (e) Enrichment (upwards arrowhead) or lack (downwards arrowhead) of 
identity proteins (P) and phosphorylated signaling effectors (S) on Glioblastoma Positive 
Prognostic cell subsets was quantified using MEM. Average MEM scores are shown for three 
GNP subsets ± the standard deviation. (f) Combined GPP cell subsets (density contours) were 
mapped over biaxial plots of all other tumor cells (black contours). (g) Overall survival of patients 
for high (> 8.65%) total GPP content compared to patients with low (< 8.65%) GPP content. (h) 
Histogram plots of each GPP cell subset (blue) and all other glioblastoma cells (gray) illustrate 
the expression of proteins and phosphorylated signaling effectors. 
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Non-malignant cells, including immune and endothelial cells, were excluded from initial 

RAPID analyses and subsequent biaxial gating confirmed that the GNP and GPP subsets were 

not unexpected residual CD45+ or CD31+ cells (Figure 2.5). However, infiltrating immune cells 

can comprise a large proportion of non-cancer cells in glioblastomas and have highly variable 

overall abundance across patients [169]. Notably, GPP-high (n= ) patients’ tumors all contained 

more than 9% CD45+ cells (median % = 25.3±13.8), whereas all GNP-high (n=8) patients’ tumors 

contained less than 9% CD45+ cells (median %= 3.3±2.4, p < 0.001, Figure 2.6).  

 

 

 

 

Figure 2.6: Abundance of immune cells correlated with the abundance of prognostic cell 
subsets. Box and whisker plot of immune abundance (%, log10 scale) on the y-axis and patients 
divided into three groups: GNP high (red, >2.96% GNP cells), GPP high (blue, >8.65% GPP), or 
GNP and GPP low (gray). Box encompasses the 25th to 75th percentile, gray horizontal line 
indicates the median, and whiskers extend to the minimum and maximum values.  *** p=0.0008, 
two-tailed t-test. 

 

 

Identification of risk stratifying B-cell leukemia cells in Dataset 2 

FCS files from a previously published mass cytometry study of B-cell precursor acute 

lymphoblastic leukemia (BCP-ALL) by an independent lab were input into the RAPID workflow to 

test whether the RAPID algorithm could re-discover prognostic cell subsets in other disease 
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settings [114]. Dataset 2 is available online (originally: https://github.com/kara-davis-

lab/DDPR/releases, in this study: https://github.com/cytolab/RAPID).  This dataset contained 

almost twice the number of patients (n=54) but less than half the number of total cells compared 

to Dataset 1 (48,600) because of a single patient with only 900 live, lineage-negative blast cells 

[114]. A total of 47 clusters were identified by RAPID, 3 of which were negative prognostic cell 

subsets that were associated with time to relapse (Figure 2.7).   Importantly, features identified in 

the original publication as part of the signature associated with relapse (black text, Figure 2.7) 

were re-identified using RAPID. In the protein feature MEM values, enrichment of CD38 and CD34 

was consistent with previously reported trends in pre-pro B cell-like phenotypes in BCP-ALL. Most 

notably, the signaling features p-S6, p-SYK, and p-4EBP1, which were important features 

positively associated with relapse in the DDPR model, were enriched in the negative prognostic 

populations identified by RAPID.  Thus, RAPID was able to identify cells and features associated 

with time to relapse in another disease setting, generating a signature of negative-prognostic cells 

consistent with the original findings by another research group. 

 

https://github.com/kara-davis-lab/DDPR/releases
https://github.com/kara-davis-lab/DDPR/releases
https://github.com/cytolab/RAPID
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Figure 2.7: RAPID analysis of a published B-cell leukemia dataset to identify negative 
prognostic cell subsets. (a) t-SNE plot of 54 B-cell leukemia patient samples with negative 
prognostic populations (A, B, C) colored in red. (b) MEM labels for three negative prognostic cell 
subsets (NP_A, NP_B, NP_C). Features important in the original discovery of predictors of 
relapse are colored in black. (c) Kaplan-Meier Curve comparing time to relapse in patients with 
high abundance of negative prognostic cells (identified by RAPID) to patients with low abundance 
of negative prognostic cells. 
 

 

Statistical validation 1: Clusters identified by RAPID were statistically robust  

To determine the stability of the clusters identified by RAPID, 99 additional runs of 

FlowSOM were performed within the RAPID workflow (Figure 2.1c). Due to the stochastic nature 

of FlowSOM, the clusters identified in each subsequent run could contain different cells. For each 

of the clusters, an F-measure was calculated, based on the accuracy of cell assignment within a 

cluster in subsequent iterations of FlowSOM (see Methods, Table 2.2).  Of the original 43 clusters, 

five had an average F-measure of less than 0.5 (average F-measure of all clusters = 0.75). These 
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five clusters, including cluster 33, previously identified as a GNP cluster, were considered 

unstable and were not included in subsequent analyses (indicated by shading in Figures 2.1 and 

2.3, and asterisks in Figure 2.4 and Table 2.2).  

 

 

Statistical validation 2: Clusters identified by RAPID were not dependent on individual patients 

or sub-samplings 

A key design decision in RAPID was the use of an equal number of cell events from each 

patient to avoid tumors disproportionately impacting the analysis based on the number of cells 

collected.  However, this decision limits a given RAPID analysis run to a number of cells equal to 

the smallest collected from any one patient.  For the tumors studied here, the number of live 

glioblastoma cells ranged from 4,710 to 330,000 cells per patient.  To test whether the cells 

subsampled for RAPID were representative of the total tumor sample and eliminate the possibility 

that randomly subsampled cells from larger samples are not representative, 9 additional t-SNE 

analyses were generated, each with a different sample of 4,710 cells selected at random, with 

replacement, from each patient (Figure 2.8).  Each of these 9 t-SNE projections were then used 

in a new RAPID analysis, creating 10 total analyses (the original and 9 new tests). Of these, a 

total of 55 clusters from the 10 runs were considered stable (F-measure >0.5) and prognostic 

(see Methods, Figures 2.8 and 2.9).  An F-measure could not be calculated on a cell-by-cell basis 

because the cells varied between analyses, but the average F-measure based on patient 

categorization (GNP-high, GPP-high, and GNP and GPP low) was 0.79 between t-SNE runs. 
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Figure 2.8: GNP and GPP subsets are identified in repeated cell subsampling and t-SNE 
analyses. The representative t-SNE is shown on top (contributed to Figure 2.1, 2.3, 2.4, 2.5, and 
2.13). Nine additional t-SNE plots are generated by subsampling the tumors, with replacement, 
for 4,710 cells (contributed to Figure 2.9). GNP clusters are shown in red colors and GPP clusters 
are shown in blue, as noted in the heat scale.  

 

 

To quantify the degree of similarity between the 47 newly identified prognostic clusters 

and the 8 representative GNP (34, 37, 42) and GPP (2, 3, 4, 5, 41) clusters, the root-mean-square 

deviation (RMSD) in the MEM enrichment values was calculated [158, 170]. GNP subsets from 

subsequent runs were highly similar to the GNP subsets identified by the initial analysis described 
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above, and the same was observed for GPP subsets (Figure 2.9; GNP v GNP average RMSD = 

92.8, GPP v GPP average RMSD = 88.9, and GNP v GPP average RMSD = 80.9).  However, 

some phenotypes were only observed in a small number of t-SNE runs. For example, the 

phenotype representing cluster 41 was only seen in one other t-SNE. Because this cell type was 

not observed in at least 50% of the cell sub-samplings, it was considered phenotypically unstable 

and removed from subsequent analyses (indicated by shading in Figures 2.1 and 2.3, and 

asterisks in Figure 2.4 and Table 2.2).  

 

 

 

 

Figure 2.9. Subsampling of glioblastoma cells repeatedly resulted in GNP and GPP subsets 
with similar phenotypes. RMSD map comparing MEM scores for stable GNP and GPP subsets 
identified in the main figures and from nine additional t-SNE runs. GNP subsets are noted by red 
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circles and GPP subsets are noted by blue circles. Colored boxes to the left of the red or blue 
circles indicate the t-SNE run from which the subset is derived. Median MEM labels (± standard 
deviation) are shown for five major populations to the right. The number of t-SNE analyses 
represented in each group, as well as median p-value and hazard ratio (HR) are noted in the 
bottom right corner of each MEM label. 
 

 

Statistical validation 3: Comparable clusters were identified by RAPID using UMAP instead of t-

SNE 

To test the modularity of RAPID, the algorithm was implemented using different 

dimensionality reduction values as input parameters, replacing t-SNE with UMAP, a tool that 

emphasizes both local and global data structure [138].  RAPID identified 31 populations using 

UMAP input; 4 of these were prognostic and significantly associated with OS (1 GNPUMAP and 3 

GPPUMAP) (Figure 2.10). GNPUMAP MEM scores reflected the characteristic S100B and SOX2 co-

expression observed in the GNP populations along with an active pro-survival basal signaling 

status. GPPUMAP subsets were similarly defined by co-expression of EGFR and CD44 and a 

general lack of the measured phosphorylated signaling effectors (Figure 2.10). When the cells 

identified using t-SNE were overlaid on the UMAP axes, they occupied similar phenotypic space 

as UMAP-identified clusters, and vice versa (F-measure for cell assignment to GNP, GPP, or 

neither = 0.87, Figure 2.10). Thus, when UMAP was used in the RAPID algorithm, GNP and GPP 

populations were identified that had comparable phenotypes to those identified previously in t-

SNE analyses, confirming that RAPID is not dependent upon a specific dimensionality reduction 

tool (Figure 2.10).  
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Figure 2.10: GNP and GPP cells were also identified using dimensionality reduction tool 
UMAP in the RAPID algorithm. (a) UMAP analysis of 131,880 cells from 28 patients. Upper left 
plot - heat on cell density; lower left plot – colored by FlowSOM cluster; right plot – colored by  
GNP (red)/GPP (blue) designation and p-value.  (b) Per-cell expression levels of 5 identity 
proteins, 3 phosphorylated signaling effectors, and proliferation marker cyclin B1 are depicted. (c) 
Enrichment of identity proteins (P) and phosphorylated signaling effectors (S) of glioblastoma cell 
subsets was quantified using MEM. GNP and GPP cells are labeled in red and blue, respectively. 
(d) Histogram analysis depicts the expression of key identity proteins and phosphorylation 
signaling effectors of GNP (red) and GPP (blue) compared to all glioblastoma (GBM) cells (gray, 
top row).  (e) Overall survival curves for four UMAP-identified populations associated with survival. 
Cox-proportional hazard model was used to determine a hazard ratio (HR) of death. Censored 
patients are indicated by vertical ticks. (f) GNP (red) and GPP (blue) cells identified via t-SNE (“t-
SNE GNP” or “t-SNE GPP”) and UMAP (“UMAP GNP” or “UMAP GPP”) are overlaid on either 
UMAP or t-SNE axes. (g) Categorization of each patient (dots) based on GNP high (red), GPP 
high (blue), or neither (gray) according to abundance based on RAPID using t-SNE or RAPID 
using UMAP (F-measure = 0.86). 

 

 

To determine the stability of the clusters identified by RAPID on UMAP, 99 additional runs 

of FlowSOM were performed within the RAPID workflow as described in Statistical Validation 1. 

For each of the clusters an F-measure was calculated (see Methods), and of the original 31 

clusters, two had an average F-measure of less than 0.5 (average F-measure of all clusters = 

0.77). All four of the GNP or GPP clusters identified were stable as determined by an F-measure 

of greater than 0.5.  

Like the t-SNE analyses, UMAP analyses were performed using an equal number of cell 

events. As in Statistical Validation 2, 9 additional UMAP analyses were generated, each with a 

different sample of 4,710 cells selected at random, with replacement, from each patient.  Each of 

these 9 UMAP projections were then used in a new RAPID analysis, creating 10 total analyses 

(the original and 9 new tests). Of these, a total of 16 clusters from the 10 runs were considered 

stable (F-measure >0.5) and prognostic (see Methods, Figure 2.11).  To quantify the degree of 

similarity between the 12 newly identified prognostic clusters and the 4 representative GNP (28) 

and GPP (1, 3, 27) clusters, the root-mean-square deviation (RMSD) in the MEM enrichment 

values was calculated [158, 170]. GNP subsets from subsequent runs were highly similar to the 

GNP subsets identified by the initial analysis described above, and the same was observed for 
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GPP subsets (Figure 2.11: GNP v GNP average RMSD = 95.6, GPP v GPP average RMSD = 

88.8, and GNP v GPP average RMSD = 80.6).  However, like the results observed using t-SNE, 

some phenotypes were only observed in a small number of UMAP runs. 

  

 

 
 
Figure 2.11: Repeated cell subsampling of UMAP analyses resulted in GNP and GPP 
subsets with similar phenotypes. RMSD map comparing MEM scores for stable GNP and GPP 
subsets identified in Figure 2.9 and from nine additional UMAP runs. GNP subsets are noted by 
red circles and GPP subsets are noted by blue circles. Colored boxes to the left of the red or blue 
circles indicate the UMAP run from which the subset is derived. Median MEM labels (± standard 
deviation) are shown for two major populations to the right. The number of UMAP analyses 
represented in each group, as well as median p-value and hazard ratio (HR) are noted in the 
bottom right corner of each MEM label. 
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Although in our experience, mass cytometry data analysis benefits from a dimensionality 

reduction step, this is not required for the implementation of RAPID. In the absence of a such a 

step, the input parameters for FlowSOM are the features measured (in this case, the 24 markers 

used to generate the t-SNE or UMAP plots described above). When RAPID was performed 

without initial dimensionality reduction, 32 FlowSOM clusters were identified. Of these, two were 

significantly associated with patient OS, one GNP and one GPP. These clusters had the 

characteristic phenotypes similar to the GNP and GPP clusters identified using t-SNE or UMAP 

(Figure 2.12). The GNP cluster (GNP_Original Markers) was enriched for SOX2+5 and S100B+4 

as well as the signaling features p-STAT3+3, p-STAT5+2, p-S6+2 and the proliferation marker Cyclin 

B1+2 (Figure 2.12). This cluster was also specifically lacking GFAP-4, CD44-4, and EGFR-2. The 

GPP cluster (GPP_Original Markers) had enriched EGFR+6 while many signaling features were 

absent (Figure 2.12).  
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Figure 2.12: GNP and GPP cells identified using RAPID without a dimensionality reduction 
step stratifies patients. (a) Enrichment (upwards arrowhead) or lack (downwards arrowhead) of 
identity proteins (P) and phosphorylated signaling effectors (S) on the Glioblastoma Negative 
Prognostic cell subset was quantified using MEM. MEM scores are shown for the GNP subset. 
(b) The GNP cell subset (density contours) was mapped over biaxial plots of all other tumor cells 
(black contours). (c) Overall survival of patients for high GNP content compared to patients with 
low GNP content. (d) Histogram plots of GNP cells (red) and all other glioblastoma cells (gray) 
illustrate the expression of identity proteins and phosphorylated signaling effectors. (e) 
Enrichment (upwards arrowhead) or lack (downwards arrowhead) of identity proteins (P) and 
phosphorylated signaling effectors (S) on the Glioblastoma Positive Prognostic cell subset was 
quantified using MEM. MEM scores are shown for the GNP subset. (f) The GPP cell subset 
(density contours) was mapped over biaxial plots of all other tumor cells (black contours). (g) 
Overall survival of patients for high GPP content compared to patients with low GPP content. (h) 
Histogram plots of the GPP cell subset (blue) and all other glioblastoma cells (gray) illustrate the 
expression of proteins and phosphorylated signaling effectors. 
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Statistical validation 4: Risk stratifying cells were continuously associated with outcomes and 

independent of other glioblastoma stratifying features 

At the conclusion of the RAPID analysis, to ensure that results were not an artifact of the 

high-low cut point choice and to determine if the effect of cell subset abundance was continuous 

and independent of other features known to stratify glioblastoma survival, a multivariate Cox 

proportional-hazards model analysis was performed incorporating known predictive features and 

GNP or GPP cell abundance. The included known predictors were age [171, 172], O6-

methylguanine DNA methyltransferase (MGMT) promoter methylation status [10, 173], and 

treatment variables including the extent of surgical resection [174, 175], therapy with 

temozolomide [2], and radiation [176, 177]. Multivariate survival analysis of GNP cell abundance 

on a continuous scale, keeping the other predictors constant, indicated that each 1% increase in 

GNP cells was associated with an approximately 7% increase in mortality compared to 

baseline (OS HR=1.07 [95% CI 1.02-1.12], p=0.003). Similarly, a 1% increase in GPP cells was 

associated with an approximately 7% decrease in mortality rate (OS HR=0.93 [0.87-1.0], 

p=0.05) and an approximately 4% increase in time to tumor progression, as compared to 

baseline (PFS HR=0.96 [0.93-0.998], p=0.04). When GNP and GPP were assessed 

simultaneously, abundance of GNP cells was the primary predictor of mortality (OS HR=1.05 

[1.00-1.10], p=0.04), while abundance of GPP cells was the primary predictor of time to tumor 

progression (PFS HR =0.96 [0.92-1.00]; p=0.03). Thus, the abundances of GNP and GPP cell 

subsets were associated with distinct and contrasting patient outcomes (Figure 2.5), and their 

predictive value was independent of each other and known prognostic factors of patient survival. 

Since assessing progression-free survival (PFS) can be especially useful in the clinic for 

cancers with longer median survival, RAPID was also used for the identification of glioblastoma 

cell clusters with differential PFS, as opposed to OS.  Of the 43 subsets identified by RAPID, 4 

subsets were significantly associated with PFS (subsets 20, 33, and 43 with unfavorable PFS 

(GNPPFS) and subset 3 was associated with favorable PFS (GPPPFS), Figure 2.13).  
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Figure 2.13: RAPID identified four populations associated with time to disease progression.  
(a) Enrichment of identity proteins (P) and phosphorylated signaling effectors (S) of GNP cell 
subsets revealed by analysis of disease progression (GNPPFS) was quantified using MEM. (b) 
Histogram plots of each GNPPFS cell subset (red) and all other glioblastoma cells (gray) illustrate 
the expression of proteins and phosphorylated signaling effectors. (c) Combined GNPPFS cell 
subsets (red circles) were mapped over biaxial plots of all other tumor cells (black contours). (d) 
For each subset, PFS was compared between patients with high vs low cell abundance (see 
Methods).  (e) Enrichment of identity proteins (P) and phosphorylated signaling effectors (S) of 
the GPPPFS cell subset was quantified using MEM. (f) PFS was compared between patients with 
high vs low GPPPFS cell abundance (g) Histogram plots of the GPPPFS cell subset (blue) and all 
other glioblastoma cells (gray) illustrate the expression of proteins and phosphorylated signaling 
effectors. (h) The GPPPFS cell subset (blue circles) was mapped over biaxial plots of all other 
tumor cells (black contours). 
 

 

Tumors are mosaics of multiple subsets, but number of subsets does not correlate with outcome  

In the representative t-SNE run (Figure 2.1), RAPID identified 43 phenotypically distinct 

glioblastoma cell subsets within the tumors analyzed by mass cytometry in this study (Figure 2.1 

and 2.5).  The abundance of the 43 clusters varied extensively across patients (Table 2.2).  

Tumors contained a median of 14 clusters at >1% with a range from 5 cell clusters in LC06 to a 

maximum of 27 cell clusters represented in LC25 (Table 2.2, additional data in Appendix B).  

Although intra-tumor diversity has been hypothesized to contribute to poor response to treatment 

and survival, here, the number of glioblastoma cell clusters present within a tumor at >1% 

abundance (a surrogate for intra-tumor diversity) was not observed to be associated with 

differential survival (ρ=0.04 , p=0.812). In contrast, the abundance of each of the   stable and 

prognostic glioblastoma cell clusters was closely correlated with overall survival (Figure 2.5).  

 

 

Biological validation 1: A transparent algorithm enables creation of a simple cell identification 

strategy that captures the cells identified in Dataset 1 

After patterns are recognized by a machine learning approach, it is useful to learn from 

key features and create a straightforward test using alternative technologies or simpler models.  
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One such model is a decision tree using one- or two-dimensional cytometry gating [157], 

consistent with traditional strategies in immunology and hematopathology. The GNP and GPP 

MEM labels generated using mass cytometry data were therefore used to design a two-

dimensional prognostic strategy based on S100B and EGFR expression (Figure 2.14). Using only 

these two proteins, patients could be grouped as GNP-like, GPP-like or GNP and GPP Low, and 

these groups again exhibited stratified clinical outcomes (HR=6.56, GNP-like median OS = 111.5 

days, GPP-like median OS = 896 days, Figure 2.14). Thus, a simple gating model based on the 

two most divergent features identified by RAPID was able to meaningfully separate patients into 

clinically distinct groups.  

 

 

Biological validation 2: A larger cohort of glioblastoma samples was stratified using IHC based 

on phenotypes discovered by RAPID  

Unlike fluorescence or mass flow cytometry, IHC is routinely used in surgical pathology. 

To confirm the ability of S100B and EGFR in separating clinically distinct patient populations using 

an orthogonal approach, a tissue microarray (TMA) of 73 glioblastoma patient samples was 

developed. Serial TMA sections were stained with antibodies against S100B and EGFR and the 

overall signal intensity was determined using QuPath software for each feature (see Methods). 

By comparing S100B and EGFR staining intensity, patients were scored as GNP-like, GPP-like, 

or GNP and GPP Low (Figure 2.14). A Kaplan-Meier analysis comparing overall survival between 

patients enriched with GNP-like cells to those with GPP-like cells confirmed that GNP-like cell 

enrichment is associated with a shorter overall survival (HR=2.3, GNP-like median OS = 298 

days, GPP-like median OS = 560 days, Figure 2.14).  These results validated the suspension 

mass cytometry findings and demonstrated that once revealed by RAPID, GNP-like and GPP-like 

cells could be identified in new samples by complementary approaches used in laboratory and 

clinical settings. 
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Figure 2.14: A simple gating strategy based on S100B and EGFR can stratify patients using 

mass cytometry or immunohistochemistry data. a) Biaxial plot of S100B (y-axis) and EGFR 

(x-axis). Gray contours depict all 131,880 cells from all patients. Density contour overlays depict 

GNP (top) or GPP (bottom) cells identified by the RAPID algorithm. b) Biaxial plot of S100B (y-

axis) and EGFR (x-axis). Gray contours depict all 131,880 cells from all patients as in a). Red box 

indicates gate for S100B+/EGFR- cells, called GNP-like. Blue box indicates gate for EGFR+ cells, 

called GPP-like. c) Kaplan Meier curve comparing overall survival (in days) of patients with high 

percentages of GNP-like cells in red (red gate in a, > 65.7% =high) and patients with high 

percentages of GPP-like cells in blue (blue gate in a, >31.2% =high). The hazard ratio of death, 

calculated using a cox proportional hazards model, is 6.56 (p=0.0007). d) Example TMA cores 

stained for S100B (left) or EGFR (right). Brown signal is from 3,3′-Diaminobenzidine (DAB). e) 

Graph depicting DAB signal intensity for S100B (y-axis) or EGFR (x-axis) from tissue microarray 

immunohistochemistry on 73 glioblastoma patient samples. The red box outlines patients 

described as GNP-like (S100Bhigh/EGFRlow) and the blue box outlines patients designated GPP-

like (EGFRhigh). All other patients are shown in gray. f) A Kaplan-Meier curve showing overall 

survival (in days) of patients in the GNP-like (red) or GPP-like (blue) groups. The hazard ratio of 

death, calculated using a Cox proportional hazards model, is 2.3 (p-value = 0.03).  
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Discussion 

 

 The focus of this study was the creation of an unsupervised approach that could work with 

pilot datasets to suggest prognostic cell types for validation.  The RAPID workflow automatically 

assigned single tumor cells into computational clusters based on phenotypic similarity, generated 

a quantitative phenotypic descriptor of each population, and determined the correlation between 

the abundance of populations and clinical outcomes. Ultimately, the algorithm was tested using 

numerous statistical approaches, validated with two datasets, and validated as revealing 

biologically robust cells detectable on other platforms in a larger follow up cohort with formalin-

fixed, paraffin-embedded tissue.  Prior workflows and algorithms were developed to identify cell 

populations of interest in cancer samples and emphasized supervised modeling, as with Citrus 

[127] and Cytofast [178], or comparison to known subsets, as with DDPR [114] and Phenograph 

[113].  These approaches could not be used with Dataset 1, either because they required a level 

of prior knowledge about non-malignant adult human brain cells which was not available, or 

because they required supervision using categorical outcomes, which are not always clearly 

delineated for continuous variables.  Another advantage of RAPID is that it does not require a 

target cluster number, which is important when it is not known how many phenotypically distinct 

subsets will be observed in a given cancer type. Cell subsets in tumors can be challenging to 

manually annotate as they may reasonably be assigned to multiple known cell types, as was 

apparent here and in prior studies [33, 47].  RAPID is unsupervised, provides a quantitative label 

of features enriched in each cluster, and is modular, such that a variety of dimensionality reduction 

and clustering tools can be used. Currently, a user inputs raw data files (e.g., FCS files from 

cytometry platforms or equivalent data types from other platforms) and annotated patient survival 

data.  RAPID outputs quantitatively described cell clusters and their significance with respect to 

patient outcome. While the focus of this study was cytometry data, the design is suitable to other 

single cell data types where clinical outcomes or similar continuous variables have been scored 
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for pilot cohorts, typically at least 25 individuals.  Published datasets were not available for single-

cell RNA-seq that matched the criteria for RAPID, including having thousands of cells per sample, 

more than 25 individuals with annotated clinical outcomes, and multiple features scored 

consistently for every cell.  As single cell RNA-seq and imaging cytometry technologies advance, 

we anticipate RAPID will be useful for such datasets, especially given how widespread t-SNE, 

UMAP, and related approaches are within these fields.   

The utility of RAPID includes its ability to identify stable, robust clusters that are 

independent of known prognosticators, provide users with opportunities to customize the workflow 

with a variety of tools, and inform subsequent studies on validation datasets or using different 

technologies. Here, RAPID was extensively probed for its performance in each of these areas. 

By repeated subsampling of each tumor and iterative FlowSOM analyses, clusters with consistent 

cell content and phenotypes observed in the majority of subsamplings were identified (Figure 2.9). 

Furthermore, these clusters were independently associated with continuous clinical variables - 

patient overall survival and progression-free survival. A subsequent, low dimensional decision 

tree applied to both mass cytometry data and a new set of patient samples stained via IHC was 

also able to stratify patients, suggesting that the biology learned from the high dimensional 

approach could be used to inform complementary approaches (Figure 2.14). Critically, RAPID 

was also used to analyze a dataset from different tissue in a different disease collected at a 

different institution, Dataset 2 in Figure 2.7 [114]. In this application of RAPID, features previously 

identified by the original authors to be associated with time to relapse were re-captured, identifying 

cellular phenotypes concordant with prior results without requiring the normal developmental 

trajectory reference used in the original analysis. 

In this study, RAPID analysis of glioblastoma patient samples demonstrated a link 

between altered signaling and possible abnormal lineage programs in glioblastoma [179].  Within 

Dataset 1 analyzing 28 IDH-wild type pre-therapy glioblastoma patient samples, the RAPID 

workflow automatically uncovered two prognostic phenotypic signatures which were independent 
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of other known predictors of outcome.  Glioblastoma Negative Prognostic (GNP) cells, 

characterized by enrichment for expression of S100B, SOX2, p-STAT3, and p-STAT5, were 

associated with decreased overall survival, while Glioblastoma Positive Prognostic (GPP) cells, 

characterized by co-enrichment of EGFR and CD44 proteins, were associated with longer overall 

survival. Once revealed in high-dimensional data, a simple gating scheme using S100B and 

EGFR could be used to stratify outcome in a separate, expanded set of samples using traditional 

pathological approaches.  High-dimensional cytometry and RAPID were critical to revealing novel 

prognostic cells in glioblastoma data in two ways. First, assessment of a large number of cells per 

tumor – over 2 million viable single cells, with at least 4,710 glioblastoma cells from each patient 

– enabled the use of an unsupervised approach in the identification of rare, novel cell subsets 

across patients. Second, per-cell quantification of phosphorylated signaling effector proteins 

revealed potential mechanisms of tumor cell regulation that are not readily apparent in bulk tumor 

data, genomic analyses, or lower dimensional approaches such as one- to four-color imaging. 

Supervised analysis of single cell data has previously uncovered signaling events tied to patient 

survival in hematologic malignancies [113-115, 151], and a similar pattern was observed here.  

Critically, therapeutically targetable signaling events were identified as a signature of prognostic 

cell populations, suggesting potential novel therapeutic strategies for patients with these 

characteristics.  

The GNP signature was defined by abnormal neural development features such as co-

expression of stem cell transcription factor SOX2 and astrocyte lineage marker S100B [180, 181]  

and simultaneous high basal phosphorylation of multiple signaling effectors downstream of 

receptor tyrosine kinases reported to be important in tumor biology [182-187] (Figure 2.5). STAT3 

and S6 phosphorylation, identified here in GNP cells, agreed with prior studies indicating the 

importance of p-STAT3 in T cell suppression [182] and mTOR-dependent signaling in tumor 

formation [186, 187]. STAT3 specifically has been described to drive a proneural to mesenchymal 

transition in glioma cells, with mesenchymal phenotypes generally associated with worse patient 
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outcomes [184, 185].   RAPID also uncovered a connection between p-STAT5 and glioblastoma 

outcome previously unidentified in primary patient samples. STAT5 signaling is required in 

development of many tissues to block apoptosis and drive cell cycle entry [150]; for example, p-

STAT5 is an essential feature of negative prognostic acute myeloid leukemia signaling profiles 

[113, 151]. The signaling events of the negative and positive prognostic cells can now be studied 

in glioblastoma research models, such as patient xenografts and glioblastoma organoids [37, 188-

191], using new combinations of targeted therapies, such as JAK inhibitors that target molecules 

upstream of STAT5 and STAT3, in combination with PI3K/mTOR pathway inhibitors, which will 

target molecules upstream of AKT and S6 signaling.  In this way, new combinations of existing 

therapies may prove useful in targeting the signaling that defines the negative prognostic cells 

seen here.   

It is also of note that while SOX2, a key regulator of early developmental state and adult 

neural stem cells, was enriched in some GNP cells, multiple other markers of stem and progenitor-

like cells (Nestin, CD133, CD15, BMX, ITGA6/CD49f, CD117, SOX10, L1CAM) were measured 

in this study and were not specifically associated with poor outcome, distinct from studies 

proposing a “stemness” transcriptional signature driving aggressive tumors. Recent work using 

single cell gene expression has described the existence of multiple cellular states in glioblastoma 

tumors and the ability of cells to transition between states [47]. Similar to most transcript-based 

studies, RAPID analyses were performed on cells collected at a single timepoint, precluding a 

direct investigation of the ability of GNP or GPP cells to transition to other phenotypes; however, 

it is possible that phosphorylated, active STAT3, STAT5, and S6 may enable transition between 

progenitor-like states as they do in earlier development, and thus influence patient outcome [192, 

193]. Isolation of GNP and GPP cells from primary samples, or the establishment of gliomasphere 

lines from GNP-high and GPP-high tumors, will be invaluable in probing the stability of these 

phenotypic states, the associated gene expression modules, and functional importance of each 

cell type (i.e. sphere formation, tumorigenic potential, and response to therapies).  Another key 
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research question for the future will be whether the signature features of the risk stratifying cells 

seen here will also be seen in other types of intractable human malignancies.  Intriguingly, p-

STAT5 and p-STAT3 signaling profiles reminiscent of the negative prognostic cells from 

glioblastoma have been seen in leukemia [113, 151, 160] and ovarian cancer [117].   

The GPP signature, in contrast, was defined by EGFR and CD44 co-enrichment, 

diminished evidence of proliferation, and specific lack of STAT5 phosphorylation. GPP cells were 

further associated with higher proportions of tumor-infiltrating immune cells.  This result suggests 

an understanding of prognostic cell content or biomarkers may be relevant for immunotherapy 

research in glioblastoma.  Previous DNA and RNA-driven molecular subtyping predicts EGFR 

expression in the classical subset of glioblastoma tumors and CD44 expression in mesenchymal 

tumors [28]. As these categories were primarily based on bulk tumor data, cells co-expressing 

EGFR and CD44 (classified as GPP cells in this study) may have previously been missed, 

although single glioma cells have been shown to simultaneously amplify sequence or co-express 

transcripts for important signaling regulators [33, 35]. EGFR has been extensively studied as a 

driver of gliomas in the past (reviewed in [194]), and the association of this gene and transcript 

with outcome has been a matter of debate [194-196]. Genetically, glioblastomas commonly have 

amplified EGFR [28, 164]; however, we noted examples of tumors with robust EGFR copy number 

amplification that contained both high and low percentages of GPP cells (data not shown), 

highlighting the importance of measuring protein expression in addition to genomic content. 

Although EGFR signaling has been linked with increased p-S6, through mTOR, and p-STAT3/5 

in tumor models, these associations were not observed in the GNP or GPP subsets [197, 198]. 

Instead, some GPP cells showed enrichment of p-NF B (Figure 2.5), a transcription factor that 

activates pro-apoptotic programs and DNA damage repair programs [184, 199, 200].  

This study finds that expression of EGFR protein is associated with better overall survival. 

One reason for the difference between this study and other reports may be that EGFR protein 

levels were measured in individual cells rather than copy number analysis or transcript levels in 
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bulk tumor samples; our own analyses and others’ have indicated that copy number or transcript 

level are not necessarily predictive of protein expression [31, 201, 202]. Although antibody-based 

methods for protein detection, like those used here, depend on the specificity of each selected 

clone, it is important to note that two different, rigorously validated antibodies (mass cytometry, 

clone AY13; TMA, clone A-10) gave the same results (Figure 2.14).  S100B has been explored 

as a serum biomarker [203], and S100B is known for its impact on macrophages, including 

microglia [204]. These features of negative and positive prognostic cells extend the single cell 

phospho-specific flow cytometry approach to a new solid tumor that is in urgent need of new 

biological insights and targets.   

Recent studies have revealed significant variation in immune cell abundance and relative 

proportions of immune cell subsets across glioblastomas [32, 100]. Here, unfavorable GNP cells 

were associated with diminished tumor-infiltrating immune cells and GPP cells were associated 

with higher proportions of immune cells in the tumor microenvironment. These results invite the 

question of whether an altered immune microenvironment precedes development of an 

aggressive glioblastoma or whether more aggressive tumors suppress anti-tumor immunity. 

These findings argue that immunotherapy is likely to be more efficacious in tumors containing 

GPP cells, but additional research is needed to understand whether GNP cells directly suppress 

microglia or immigrant leukocytes. 

When applied to a new glioblastoma dataset as well as a previously published study of 

blood cancer, RAPID reliably identified cells whose abundance was predictive of good or poor 

outcome. Cellular identification was robust, stable, and reproducible, and independent of the 

specific dimensionality reduction tools used. Critically, the discoveries from RAPID were able to 

inform a scoring system for detection of GNP-like and GPP-like phenotypes in IHC data that 

stratified patient outcome in 73 patient samples. RAPID also led to the development of a lower-

dimensional cytometry pipeline which could be optimized for clinical stratification. There is now 

the exciting potential to extend the hypotheses suggested by RAPID into clinical research studies 
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using either traditional flow cytometry or IHC on widely available formalin-fixed, paraffin-

embedded samples, as in the biological validation here (Figure 2.14).  Thus, techniques 

accessible to clinical research, such as IHC, could be informed by the results from RAPID and 

envisioned as a way to assign glioblastoma patients to treatment groups in early phase clinical 

trials. Overall, the combination of single cell analyses and the automated RAPID algorithm can 

be applied to the discovery of critical onco-signaling events in other types of intractable human 

malignancies, providing a needed complement to genomic classification. 
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Table 2.1: Comparison of Citrus and RAPID 

 

*used in the work described above 
  

 Citrus RAPID 

Finding cell 

clusters 

Unsupervised 

(hierarchical clustering, cells may be 

in > 1 cluster) 

Unsupervised 

(various: FlowSOM*, dbSCAN, 

KNN) 

Determining 

number of 

clusters to seek 

Unsupervised 

(must be >5% of sample) 

Unsupervised 

(automatically chosen based on 

prioritizing low intra-cluster 

variance) 

Modeling 

cluster features 

Supervised, multivariate 

(lasso regularized logistic 

regression, nearest shrunken 

centroid) 

Unsupervised, univariate 

(median or MEM statistical 

description of cluster) 

Splitting 

patients into 

groups 

Supervised, prior to clustering 

(expert assigns patients to groups) 

Unsupervised, post-clustering 

(cluster abundance determines cut 

points, tested with a Cox model of 

hazards) 
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Table 2.4 – Mass cytometry antibody panels 

Target Mass Clone 

Signaling & 
proteins 

Stain 

Panel t-SNE Live Sap MeOH 

Rhodium 103 - ●  ✓   

Cyclin B1 139 GNS-1 ●    ✓ 

TUJ1 141 TUJ1 ●    ✓ 

cCasp3 142 5A1E ●    ✓ 

CD117 143 104D2 ●  ✓   

S100B 144 19/S100B ●    ✓ 

CD31 145 WM59 ● * ✓   

ɣH2AX 147 JBW301 ●    ✓ 

CD34 148 581 ●  ✓   

p-4E-BP1 
(T37/T46) 

149 236B4 ●    ✓ 

p-STAT5 (Y694) 150 47 ●    ✓ 

BMX 151 40/BMX ●    ✓ 

p-AKT (S473) 152 D9E ●    ✓ 

p-STAT1 (Y701) 153 58D6 ●    ✓ 

CD45 154 HI30 ● * ✓   

NCAM/CD56 155 HCD56 ●  ✓   

p-p38 (T180/Y182) 156 D3F9 ●    ✓ 

p-STAT3 (Y705) 158 4/P-STAT3 ●    ✓ 

ITGα6 CD49F 159 GoH3 ●  ✓   

CD133 160 AC133 ●  ✓   

PDGFRα 161 16A1 ●  ✓   

SOX2 163 O30-678 ●   ✓  

SSEA-1/CD15 164 W6D3 ●  ✓   

EGFR 165 AY13 ●  ✓   

p-NFκB p65 
(S529) 

166 
K10-

895.12.50 
●    ✓ 

L1CAM 167 5G3 ●  ✓   

Nestin 168 10C2 ●    ✓ 

CD44 169 BJ18 ●  ✓   

GFAP 170 1B4 ●    ✓ 

p-ERK1/2 
(T202/Y204) 

171 D13.14.4E ●    ✓ 

p-S6 (S235/S236) 172 N7-548 ●    ✓ 

SOX10 173 A-2 ●    ✓ 

HLA-DR 174 L243 ●  ✓   

p-HH3 175 HTA28 ●    ✓ 

Histone H3 176 D1H2 ●    ✓ 

 

 

 
 

● = included in the panel 
 = included for generation of t-SNE map 
* Excluded from t-SNE analyses of only glioblastoma cells 
Live = live surface stain 
Sap = 0.02% saponin stain 
MeOH = stain after ice-cold methanol permeabilization 
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Preface  

 

 Although low grade gliomas (grade II/III) have better prognosis than glioblastomas, they 

are also devastating malignancies that can be fatal in their own right or can progress to 

glioblastoma to the same effect. As discussed in the introduction, there are a few key molecular 

features that are unique to lower grade gliomas, specifically mutations in isocitrate 

dehydrogenase (IDH1). However, there are limited tools for detecting this protein in single cell 

studies of gliomas. RNA-seq is limited in its ability to detect specific mutations and cell yield 

measures in the hundreds to tens of thousands. I worked closely with Dr. Bret Mobley to address 
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this issue, developing a protocol to detect mutant IDH1 in glioma cell lines and formalin-fixed, 

paraffin-embedded (FFPE) tissue for analysis using flow cytometry. This chapter details that work, 

identifying two epitope retrieval methods that are sufficient for epitope detection. Furthermore, 

this chapter serves as an example of the thorough and comprehensive approach to antibody 

validation that is prized in the cytometry field and in the Ihrie and Irish labs. It can serve as a 

framework for other scientists looking to validate difficult antibodies and target antigens in other 

contexts. 

 

 

Abstract 

 

Isocitrate dehydrogenase (IDH) mutations are common occurrences in gliomas, and are 

also observed, to a lesser degree, in other tumor types like acute myeloid leukemias. Mutant IDH 

protein expression provides a valuable opportunity to positively identify cancer-lineage cells in 

flow cytometry studies of these tumors. Multiple antigen retrieval and permeabilization methods 

were tested on the glioma cell lines BT142 and U87 to expose the IDH1 R132H epitope. A 

previously described antibody, clone H09 generated against the R132H epitope, was used to 

detect the mutant protein in a novel setting using both fluorescence and mass cytometry. FFPE-

DISSECT, a method for flow cytometry analysis of FFPE tissue, was also used on archival glioma 

samples to analyze dissociated samples. A heat-induced epitope retrieval process using citrate 

buffer successfully exposed the epitope of interest for flow cytometry on dissociated 

gliomaspheres and FFPE tissue. Methanol permeabilization also revealed the epitope on 

dissociated cells. The H09 antibody was conjugated to a fluorophore and a heavy metal for use 

in fluorescence and mass cytometry. These tools were successfully used to detect mutant IDH 

expression in glioma cell lines. The IDH1 R132H protein was also detected in glioma cells lines 

and in archived patient samples by flow cytometry. However, in acutely dissociated patient 
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samples, the mutant protein was detected in equivalent levels in IDH1-wild type tumors and 

tumors with confirmed IDH1 mutations. Flow cytometric detection of IDH1 R132H in acutely 

dissociated primary glioma patient samples therefore presents a technical challenge, and requires 

further troubleshooting before experiments using the D09 clone can be reliably performed on 

these samples. 

 

 

Introduction 

 

Mutations in the genes encoding isocitrate dehydrogenase (IDH), IDH1 or IDH2, are 

present in up to 80% of low-grade and intermediate-grade diffuse gliomas, a subset of brain 

tumors which includes World Health Organization (WHO) grade II and grade III astrocytomas and 

oligodendrogliomas [14, 15]. IDH mutations are also found in secondary glioblastomas (GBMs) 

that are hypothesized to develop from diffuse lower-grade precursors [14, 15, 205]. The presence 

of an IDH mutation in a diffuse glioma is clinically significant because patients exhibit substantially 

longer survival times [14, 23, 205]. Importantly, IDH1 is mutated only in cancer-lineage cells and 

has not been observed to be altered in normal brain tissue [153, 154]. Based on these 

observations, IDH status is now an important component of the WHO classification system of 

gliomas [4, 23]. 

 IDH mutations disrupt core metabolic and epigenetic processes in cells, suggesting that 

these mutations contribute to a mechanistically distinct subclass of cancers from IDH-wild type 

tumors.  Although this is conceivable, the technical limitations of detecting mutations using single 

cell approaches have precluded consistent identification of mutant cells within the tumor mass 

and limited the further study of this idea [100]. Single-cell RNA sequencing is susceptible to 

incomplete or limited coverage of the transcriptome or potentially low transcript abundance, 

meaning that while some cells can be identified as positive for this mutation, there is the potential 
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for a high number of false-negative events [206, 207]. Therefore, detection of the protein product 

of mutated IDH1 presents an opportunity to positively identify cancer lineage cells in 

heterogeneous samples.  

IDH1 encodes isocitrate dehydrogenase 1, a cytoplasmic and peroxisomal protein that 

catalyzes the oxidative carboxylation of isocitrate to α-ketoglutarate (α-KG) [24].  Mutant IDH 

enzymes gain the ability to catalyze the NADPH-dependent reduction of α-KG to the 

oncometabolite 2-hydroxyglutarate (2HG) [20]. 2HG competitively inhibits a multitude of α-KG- 

dependent enzymes important for DNA damage repair, epigenetic modifications, and basement 

membrane generation among other processes [208]. The most frequent mutations in IDH1 involve 

the R132 residue located at the substrate binding site, which interferes with IDH1-isocitrate 

binding [20, 21]. An arginine-for-histidine (R132H) is the most common substitution, present in 

greater than 90% of mutant gliomas [15, 22, 23]. The IDH1 R132H mutation is currently detected 

via immunohistochemistry (IHC) in tissue sections from formalin-fixed, paraffin-embedded (FFPE) 

tumor specimens using an antibody demonstrated to be specific for the R132H mutation [23, 153, 

154].  Neuropathologists routinely use this technique, as well as PCR, in clinical practice to detect 

the mutation.  While these techniques can determine the mutational status of a patient sample, 

PCR does not distinguish which cells have the IDH mutation, nor if the mutant protein is 

expressed, and diagnostic IHC typically measures one antigen of interest in any given cell on any 

given slide. 

Recent work detailing a high degree of genetic heterogeneity in gliomas, as well as the 

importance of measuring multiple features in individual cells to gain an understanding of cellular 

state and function, suggest that flow cytometry can be a useful, complementary technique in 

discovery research studying IDH-mutant gliomas [47, 99, 100, 102]. Flow cytometry has already 

been instrumental in understanding phenotypic heterogeneity in cancers, including identifying and 

describing cell subsets of interest [113, 114, 117, 151, 158].  However, the identification of brain 

cancer cells with this technique is challenging without a method for detection of a cancer-lineage 
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specific antigen.  Thus, detection of mutant IDH1 as a protein marker of cancer cell lineage, 

presents a unique opportunity to positively identify such cells in research studies of these diffusely 

infiltrative tumors. 

In this work, we introduce an approach to detect the IDH1 R132H mutation by flow 

cytometry by adapting a heat-induced epitope retrieval protocol [209, 210]. Using this technique, 

we demonstrate that IDH1 R132H is detected in glioma cell lines, as well as in cells from archived 

formalin-fixed paraffin-embedded (FFPE) material, via flow cytometry.  

  

 

Methods 

 

Cell Culture 

All cells were grown under standard conditions (at 3 ˚C and 5% CO2). BT142 (BT142 

mut/-, ATCC ACS-1018), U87, Ramos, and Jurkat cells were obtained from commercial sources 

(BT142) and collaborators (all other lines). Ramos and Jurkat cells were grown non-adherently in 

tissue culture treated T75 flasks (Grenier Bio-One) in RPMI-1640 (Corning #10-040-CV) with 10% 

FBS and 1x gentamicin according to the distributor’s suggested protocol. Ramos and Jurkat cells 

were grown as single cell suspensions and were passaged approximately every 3 days. BT142 

and U87 cells were grown as non-adherent spheres in sterile, untreated petri dishes in DMEM/F12 

+ Glutamax (Gibco/Life Technologies, MA, #10565018) supplemented with 50µg/mL gentamicin, 

1X hormone mix (0.06% Glucose, 0.01125% NaHCO3, 0.5mM HEPES,40mg Apo-Transferrin, 

3.86mg Putrescine, 4nM progesterone, 6nM sodium selenite, 0.2mg/mL insulin), 5mM HEPES, 

4mg/mL BSA, 20ng/mL EGF, 20ng/mL FGF, and 4µg/mL heparin [211]. Spheres were dissociated 

with Accutase (Stem Cell Technologies) and passaged when they reached a diameter of 200 µm.  
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Immunohistochemistry 

Spheres were harvested, fixed for 10 minutes in 1.6% paraformaldehyde (PFA), 

resuspended in HistoGel (Thermo Scientific), and transferred to a histology cassette for 

processing and paraffin embedding. Sections of paraffin-embedded spheres were dewaxed and 

rehydrated using a xylene/graded ethanol series, and then underwent heat-induced epitope 

retrieval in 10mM citrate buffer (pH 6.0) in a pressure cooker for 12 minutes. Following retrieval, 

slides were incubated for 30 minutes with anti-human IDH1 R132H mouse monoclonal antibody 

(Dianova catalog# DIA H09) at a dilution of 1:400, and developed with the HiDef Detection HRP 

Polymer System (Cell Marque) using a 5 minute 3,3'-Diaminobenzidine (DAB) incubation. 

 

 

Patient samples 

Surgical resection specimens of IDH1-mutant and IDH1-wild type diffuse gliomas were 

collected between 2014 and 2017 with informed patient consent, in compliance with Vanderbilt 

institutional review board (IRB) #131870 approval, in accordance with the Declaration of Helsinki, 

and were de-identified. Paraffin samples were gathered from the surgical pathology archive under 

IRB exemption #180238. Clinical data associated with collected samples was obtained in 

compliance with IRB #181970. Diagnoses were confirmed by standard neuropathological 

analyses of the corresponding archived formalin-fixed paraffin-embedded material, including 

assay for IDH1 and IDH2 mutations by SNaPshot PCR multiplex base extension assay (Life 

Technologies), and for chromosomes 1p and 19q loss of heterozygosity using PCR and primers 

specific to microsatellite markers [212]. To the best of our knowledge, none of the patients with 

glioma had a blood malignancy or whole blood cell count concerning for it. Human gliomas were 

processed into viable single cell suspensions following an established protocol [121]. Briefly, 

glioma samples were transported at room temperature in sterile saline without delay to the 

laboratory and processing began within 30 minutes of resection from patients. Glioma samples 
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were minced with a scalpel in experimental medium (DMEM/F12 + glutamax (Gibco/Life 

Technologies, MA, #10565018) with a defined hormone and salt mix (see above, [211]) and 50 

µg/mL gentamicin) to obtain pieces of approximately 1mm3. Samples were resuspended in 

experimental medium and incubated with 1mg/mL collagenase II (Sigma Aldrich) and 0.25mg/mL 

of DNase I (Sigma Aldrich) for 1 hour in a 37°C incubator with 5% CO2 on a nutating platform 

mixer at 18 rpm. Cell suspensions were then strained with 70 and 40 µm cell strainers. The cells 

were incubated with ACK lysis buffer (Lonza) for 60 seconds and then resuspended in 

experimental medium. The cells were spun down to remove lysis buffer and medium. Cells were 

resuspended to desired volume in experimental medium plus 4mg/mL BSA, 4ug/mL Heparin 

Solution, 20ng/mL EGF (Peprotech) and 20ng/mL bFGF (Sigma Aldrich) (Complete medium). 

Single-cell suspensions were viably cryopreserved in complete medium +10% DMSO.  

 

 

Flow Cytometry 

BT142 and U87 spheres and Jurkat and Ramos cells were collected and spun down at 

200 x g for 10 minutes. Spheres were resuspended in Accutase (2mL per petri dish) and incubated 

for 10 minutes at 3 ˚C; this step was not included for suspension cells (Jurkat and Ramos). Cell 

suspension was triturated and brought to 10mL with control media and spun down at 200 x g for 

10 minutes to obtain single cell suspensions. Glioma patients’ samples were rapidly thawed from 

cryopreservation in a bead or water bath warmed to 3 ˚C and were diluted 1 10 in experimental 

media. Cells were spun down at 200 x g for 5 minutes. Cells were resuspended in 1mL of 

experimental media in a round bottom FACS tube and 2μL of 500x Pacific Blue-succinimidyl ester 

or Alexa 700-succinimidyl ester (50ng/mL) was added. Cells were incubated for 15 minutes at 

3 ˚C to permit dye uptake in permeable (dead) cells. Pacific Blue or Alexa 700 was washed out 

via addition of 1 mL phosphate-buffered saline (PBS) and cells were spun down at 200 x g for 10 

minutes.  Cells were fixed in 1.6% paraformaldehyde in PBS for 10 minutes at room temperature. 
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PFA was washed out with 1mL PBS and cells were spun down at 200 x g for 10 minutes. Cells 

were washed in 1mL PBS with 1% bovine serum albumin (BSA) and resuspended in 10mL of 

10mM citrate buffer (pH 6.0) in a 50mL conical tube for heat-induced epitope retrieval. A 600mL 

beaker containing 300mL ddH2O was microwaved in an Emerson microwave, model MW 8117 

W, for 2.5 minutes. Each conical tube was swirled in the heated water so that the total volume 

(10mL) was submerged for 2 minutes. After 2 minutes, the cells were brought to room temperature 

by incubation on ice (about 10 minutes). The water was heated for an additional 45 seconds prior 

to each subsequent tube. This continued until all tubes had been heated. Cells were spun down 

at 800 x g for 10 minutes, transferred to a 5 mL round bottom tube, and washed in 1mL PBS + 

1% BSA. Cells were incubated for 30 minutes at room temperature in 50μL staining volume with 

the following antibodies: anti-IDH1 R132H (mouse monoclonal unconjugated Dianova catalog# 

DIA H09) at 1 50 (0.2μg per 50μL test), anti-CD45 (rabbit monoclonal D9M8I Cell Signaling Alexa 

Fluor 700 conjugate catalog #32189) at 1:100, anti-CD45 (mouse monoclonal HI30 BD 

Biosciences BV786 conjugate catalog #563716) at 1:40, anti-CD31 (mouse monoclonal WM59 

BD Biosciences BUV395 or Ax647 conjugate catalog #565290/#561654) at 1:50, and where 

applicable anti-IDH1 R132H (mouse monoclonal custom conjugate to Pacific Orange [details 

given in Antibody Conjugation] Dianova catalog# DIA H09) at 1 100 (approximately 0.5μg per 

test). Cells were washed with 1mL PBS+ 1% BSA. For experiments involving U87 and BT142 

cells, secondary antibody was applied (donkey anti-mouse 488 Invitrogen catalog# A21202) at a 

concentration of 1:1000 in PBS+ 1% BSA. Secondary antibody was rinsed out with 1mL PBS + 

1% BSA and cells rinsed with 1mL PBS prior to flow cytometry.  Trials of saponin permeabilization 

(as an alternative to retrieval with heat and citrate) involved one wash of 1mL 0.02% saponin in 

PBS prior to antibody incubation in 0.02% saponin in PBS. Trials of permeabilization with 

methanol involved post-fixation exposure to ice-cold methanol overnight at -20˚C, followed by 

antibody staining on the following day. Flow cytometry was performed on a BD Fortessa or a 5 

laser BD LSRII. Data were analyzed using Cytobank software [168]. 
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Mass Cytometry 

Cell lines were collected for flow cytometry as described above and in Appendix A and 

[121].  A multi-step staining protocol was used, which included 1) live surface stain, 2) when 

necessary, a stain after 0.02% Saponin permeabilization, and 3) intracellular stain after 

permeabilization with ice-cold methanol. Once a single cell suspension was prepared, cells were 

resuspended in 1mL of experimental media in a FACs tube and 2μL of 500x of Rhodium (final 

concentration of 50µM) was added. Cells were incubated for 1 minute at room temperature to 

permit exclusion of dead cells. Rhodium was washed out with 1mL PBS +1% BSA. At this point, 

if live staining was to be performed cells were incubated with antibodies noted in Table 3.1 in a 

total volume of 50 μL. Following live staining, cells were fixed in 1.6% paraformaldehyde in PBS 

for 10 minutes at room temperature. PFA was washed out with 1mL PBS. Cells were washed in 

1mL PBS with 1% bovine serum albumin (BSA) and proceeded to either 0.02% saponin staining, 

methanol permeabilization, or heat-induced epitope retrieval with citrate buffer as described 

above. Following the appropriate permeabilization approach, cells were incubated for 30 minutes 

at room temperature in 50μL staining volume with antibodies indicated in Table 3.1. After staining, 

cells were resuspended in deionized water containing standard normalization beads 

(Fluidigm)[166], and collected on a Helios instrument located in the Mass Cytometry Center of 

Excellence at Vanderbilt University. Mass cytometry standardization beads were used to remove 

batch effects and to set the variance stabilizing arcsinh scale transformation for each channel 

following field-standard protocols [98, 121, 146]. Rhodium viability stain and cleaved caspase-3 

antibody were included in staining to exclude non-viable and apoptotic cells, respectively. 

Detection of total histone H3 was used to identify intact, nucleated cells [98]. A 26-dimensional 

mass cytometry antibody panel was used to analyze 4 million viable cells from 8 tumors (500,000 

cells per tumor). Data were normalized with Fluidigm CyTOF software normalization function, and 

were arcsinh transformed (cofactor 5), prior to analysis using the Cytobank platform [168]. An 
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equal number of live, single events were included in a common t-SNE analysis, generated using 

19 of 26 measured markers (Table 3.1).  

 

 

FFPE-DISSECT and Cytometry of Disaggregated FFPE Material 

50 µm sections were freshly cut from each block of cell lines or glioma tissue and placed 

in 1.5mL Eppendorf tubes (Fisher). Samples were processed as previously reported [213]. Briefly, 

samples were heated to 65°C for 25 minutes to melt wax and then washed three times with 1 mL 

of Histo-Clear (National Diagnostics) for 8 minutes each. Tissues were then rehydrated in two 

washes each of 100%, 70%, and 50% ethanol and then three washes of PBS. Samples were 

washed for 10 minutes in PBS with 0.3% Triton X-100 and then washed for a final time in PBS 

before incubation in the HIER buffer (DAKO). Samples were incubated in the buffer under high 

heat and pressure (pressure cooker) for 20 minutes (actively heating for the first 4 minutes), 

followed by 20 minutes cooling on the bench. Samples were then washed three additional times 

in PBS and stored at 4°C until staining. Tissues were blocked at room temperature for 15 minutes 

in 2.5% normal donkey serum (Jackson ImmunoResearch) in PBS and stained overnight at room 

temperature with IDH1 R132H antibody (Dianova catalog# DIA H09) diluted to a concentration of 

1:200 in the same buffer. Following three washes in PBS, secondary antibody (donkey anti-mouse 

Alexa Fluor 647 conjugate, Life Technologies) was applied at a dilution of 1:500 in 2.5% normal 

donkey serum in PBS for 1 hour at room temperature. After 3 washes in PBS, samples were 

incubated for 30 minutes in 4% PFA to cross-link antibodies to their targets. Samples were 

washed 3 times in PBS and then incubated for 20 minutes at 37°C in 200 µl of PBS with 1 mg/mL 

each of collagenase (Calbiotech) and dispase (Life Technologies). 800µl of PBS with .003% Triton 

X-100 was then added and the tissue was passaged 5 to 10 times through a 27.5-gauge needle 

to mechanically dissociate it into single cells. Cells were filtered through a 35μM filter to remove 
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debris and washed once in 0.003% Triton X-100.  Cells were resuspended in Hoechst dye for 20 

minutes and then washed in 0.003% Triton X-100 before being analyzed on the flow cytometer.  

 

 

Patient Samples for FFPE-DISSECT 

IDH1-wild type and -mutant infiltrating glioma samples were identified from the Vanderbilt 

Surgical Pathology archive under an approved IRB protocol (#141428). Three wild type and three 

mutant cases with sufficient tumor burden, collected between 2013 and 2014, were chosen for 

analysis. The diagnoses were verified by a neuropathologist (B.C.M.). 

 

 

Antibody Conjugation to Pacific Orange 

Purified IDH1 R132H antibody was obtained from Dianova in PBS + 0.05% sodium azide 

(NaN3). NaN3 was diluted out via buffer exchange to PBS using 50kDa filters (Amicon). Briefly, 

120μg of antibody was loaded into a filter ( 5μL). PBS was added to a total of 500μL (425μL PBS) 

and the sample was spun at 12,000 x g for 8 minutes. The flow-through was discarded and the 

remaining volume (~20μL) containing the antibody was collected by addition of PBS (to total 90μL) 

and spinning the inverted filter into a collection tube at 1000 x g for 1 minute. 100μg of buffer 

exchanged antibody, in 90μL PBS, was combined with 1M NaH2CO3 and added to lyophilized 

Pacific Orange supplied by Thermo Scientific (Cat # P30014). Antibody and Pacific Orange dye 

were incubated at room temperature for 1 hour with regular inversion to mix. The conjugated 

antibody was stored in the dark at 4˚C.  

 

 

 

 



118 
 

Antibody Conjugation to 171 

Purified IDH1 R132H antibody was obtained from Dianova in PBS + 0.05% sodium azide 

(NaN3). NaN3 was diluted out via buffer exchange to PBS using 50kDa filters (Amicon).  Metal 

conjugation was performed using the Fluidigm Maxpar® X8 Antibody Labeling Kit. Briefly, 

commercially available metals of interest are incubated with a chelating polymer for 1 hour. The 

purified antibody is partially reduced using tris(2-carboxyethyl)phosphine (TCEP) for 30 minutes 

at 37°C. The metal-polymer is then added to the reduced antibody.  

 

 

Data Analysis and Statistics 

FCS files were uploaded to cytobank.org [168]. For fluorescence flow cytometry 

experiments, compensation was calculated using the automatic compensation calculation tool 

and bead compensation tubes. Intact cells were gated using FSC-A and SSC-A. Singlets were 

gated using FSC-A and FSC-W. Viable cells were gated based on exclusion of Pacific Blue or 

Alexa 700 succinimidyl ester. Single cells were then analyzed for intensity of antibody conjugates. 

Histograms were generated in Cytobank. The arcsinh transformed values of median fluorescence 

intensity (MFI) were compared between tubes. MFI values were input into Prism (Graphpad) and 

a t-test was performed on IDH1 R132H signal from U87, BT142, and glioma patient samples. For 

mass-based experiments, compensation beads were excluded, and intact cells were gated on 

gaussian parameters (fluidigm.com) and Iridium. Viable cells were gated based on exclusion of 

Rhodium and cleaved caspase 3. Single cells were analyzed for mass intensity. Histograms were 

generated in Cytobank. A common t-SNE analysis was performed in Cytobank on equal numbers 

of live patient cells from each sample (n=8) using 20 of the measured markers.   
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Data Availability 

Flow cytometry data files (.fcs) will be available on flow repository pending acceptance of this 

work for publication.  

 

 

Results  

 

IDH1 R132H protein is detected via flow cytometry on BT142 cells 

 

The IDH1 RI32H mutation is retained in BT142 cells, which were generated from a WHO 

grade III IDH1-mutant glioma with oligoastrocytoma histology [214]. The GBM cell line U87 does 

not have a mutation in IDH1 and is reported to be wild type for the protein [215]. The IDH1 status 

of BT142 and U87 cells was first confirmed via immunoperoxidase staining of gliomaspheres 

(Figure 3.1a). These cell lines were used as positive and negative controls, respectively, for all 

subsequent flow cytometry experiments. Antibody titration is an important consideration when 

utilizing an antibody across multiple platforms and the optimal concentration may differ between 

technologies. Therefore, a series of antibody concentrations for flow cytometry were tested, using 

a mix of BT142 and U8  cells. The dilution of 1 50 (0.2μg per 50uL test) resulted in the largest 

difference between median fluorescence intensity of the positive and negative populations (Figure 

3.1b).  
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Figure 3.1: IDH1 R32H is detected via flow cytometry (a) Immunoperoxidase staining for IDH1 
R132H in paraffin-embedded, sectioned BT142 (positive) and U87 (negative) spheres. Scale bars 
= 50μm. (b) Histogram of relative cell count for each condition (y axis) and signal from IDH1 
R132H antibody staining (x axis). First row is unstained cells, second row is anti-mouse secondary 
antibody only, and bottom rows are individual cell lines stained with primary and secondary 
antibodies. (c)  IDH1 R132H antibody titration for flow cytometry using a mixture (U87 and BT142) 
of sphere-derived cells. 1:200, 1:100, and 1:50 dilutions of primary IDH1 R132H antibody are 
depicted in the rows. U87 and BT142 populations are separated computationally and represented 
as separate histograms. Numbers and heat signify median fluorescence intensity of Ax488 signal. 
 

 

Two methods can be used to retrieve the IDH1 R132H epitope for detection  

Due to the cytoplasmic localization of IDH1 R132H, cells must be permeabilized prior to 

detection of the mutant protein.  Commonly used, previously published permeabilization 

techniques that have been used on glioma samples [121] were tested on BT142 and U87 cells, 

followed by cell staining for IDH1 R132H (Figure 3.2a). PBS (no retrieval), 0.02% saponin, or 

citrate buffer alone did not result in specific antibody staining using these control cell lines (Figure 

3.2b). However, 10mM pH 6 citrate buffer combined with gentle heating (see methods) resulted 

in distinct positive (BT142) and negative (U87) populations via flow cytometry. This 

permeabilization method is routinely used for detection of mutant IDH1 in tissue sections by 
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neuropathologists [216, 217].  Similarly, permeabilization via ice cold 100% methanol, which is 

widely used in Western blotting and intracellular staining for flow cytometry [121, 218, 219], 

resulted in robust detection of positive and negative cell populations. All subsequent flow 

cytometry experiments were performed using either citrate and heating or ice-cold methanol, 

noted in each section below.  

 

 

 

 
Figure 3.2: Methanol and citrate buffer with heat are used to expose the IDH1 R132H epitope 
(a) Flow cytometry staining strategy for mixed U87 and BT142 single cells. Cells were fixed and 
then stained directly (No Retrieval), permeabilized with 0.02% saponin for staining (Saponin), 
permeabilized with ice cold 100% methanol overnight (Methanol), or incubated in citrate buffer 
with (Citrate with Heat) or without heating (Citrate) prior to staining. (b)  IDH1 R132H antibody 
signal on mixture of U87 and BT142 cells for each retrieval condition. Histograms depict relative 
cell count for each condition (Y axis) and signal from IDH1 R132H antibody staining (x axis). First 
row of the histogram is secondary antibody staining only. Second row depicts histograms for U87 
(white fill) and BT142 (black fill) populations after staining with 1:50 dilution of IDH1 R132H 
primary antibody and anti-mouse secondary. Methanol condition was collected on a different day 
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from remaining conditions and thus median fluorescence on the arcsinh scale could not be 
calculated on a single scale for this data as in other figures.  

 

 

Heat-induced epitope retrieval can be combined with staining for other antigens 

One major advantage of flow cytometry is the ability to stain for multiple antigens in single 

cells. To test if the heat-induced epitope retrieval method could be combined with staining for 

other antigens, Jurkat and Ramos cells were subjected to this method and then stained with CD31 

or CD45 respectively. Ramos cells displayed similar levels of CD45 staining intensity regardless 

of whether cells were subject to heat-induced epitope retrieval (Figure 3.3). Jurkat cells stained 

for CD31 in three different conditions, 1) live staining, 2) staining prior to heat-induced epitope 

retrieval, and 3) staining after heat-induced epitope retrieval, demonstrated signal for CD31 in all 

conditions (Figure 3.3b). The highest CD31 signal was observed in cells which had been stained 

live without retrieval but staining pre- or post-epitope retrieval was also sufficient to generate 

signal above controls (Figure 3.3b). These results show that heat-induced epitope retrieval did 

not significantly impair the detection of CD45 or CD31 and can be combined with staining for other 

antigens when appropriate controls are included.  
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Figure 3.3: Heat-induced epitope retrieval does not prevent staining for additional antigens 
of interest. (a) Histogram of relative Ramos cell count for each condition (y axis) and signal from 
CD45-BV786 antibody staining (x axis). First row is unstained cells, second row are unstained 
cells treated with heat and citrate buffer. Third and fourth rows contain cells stained with antibody 
either live or after citrate with heat treatment. (b) Histogram of relative Jurkat cell count for each 
condition (y axis) and signal from CD31-Ax647 antibody staining (x axis). First row is unstained 
cells, second row are live stained cells. Third and fourth rows contain cells that been stained with 
antibody either prior to or after citrate with heat treatment. Heat signifies median fluorescence 
intensity of fluorophore indicated below each histogram.  

 

 

IDH1 R132H was custom conjugated for fluorescence and mass cytometry 

 The work described above was completed using a primary antibody against IDH1 R132H 

and a secondary antibody conjugated to a fluorophore for detection. An IDH1 R132H antibody 

directly conjugated to a fluorophore or metal would allow combination with antibodies generated 

in the same species (mouse) and simplify the staining protocol. Anti-IDH1 R132H was therefore 

conjugated to a fluorophore (Pacific Orange) for traditional flow cytometry and a heavy metal for 
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mass cytometry (171Yb) (see Methods).  Staining U87 and BT142 cells with the Pacific Orange 

conjugated antibody resulted in expected staining patterns, with BT142 cells demonstrating IDH1 

R132H signal and U87 cells indistinguishable from unstained controls (Figure 3.4). The primary 

antibody was also conjugated to a heavy metal for use in mass cytometry. Staining of healthy 

peripheral blood mononuclear cells (PBMC) and BT142 cells shows staining on both populations, 

with higher intensity on BT142 cells (Figure 3.5). Healthy PBMC samples are expected to be 

IDH1-wild type, so any observed signal was interpreted as non-specific staining.  By using CD45 

staining, PBMC (CD45+) and BT142 (CD45-) can be separated. When the two populations are 

compared, a dilution of 1:50 reduced observed signal on PBMC while retaining signal on BT142 

cells (Figure 3.5). To test if methanol permeabilization was equivalent to heat-induced epitope 

retrieval on mass cytometry, the metal-conjugated antibody was used to stain U87 and BT142 

cells post-methanol. Based on the separation in median staining intensity between the BT142 

cells and the U87 cells at a dilution of 1:100 (10ug/mL per tube), this condition was chosen for 

subsequent mass cytometry experiments (Figure 3.6). 
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Figure 3.4: Anti-IDH1 R132H conjugated to Pacific Orange specifically stains BT142 cells. 
Histogram of relative cell count for each condition (y axis) and signal from IDH1 R132H-Pacific 
Orange antibody staining (x axis). First and second rows are unstained cells. Third and fourth 
rows depict stained cells. Number and color signify arcsinh-transformed median fluorescence 
intensity of fluorophore, relative to first row, for each histogram.  
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Figure 3.5: After heat-induced epitope retrieval, PBMC cells have non-specific IDH1 R132H 
staining but can be separated from BT142 cells by CD45 staining. (a) Each graph depicts a 
mixture of BT142 and PBMC cells stained with CD45-154 (y axis) and IDH1 R132H -171 (x axis). 
Dot plots (right) show CD45-154 versus decreasing dilutions of IDH1 R132H-171. Cells from 
these plots were gated based on CD45 expression (PBMC = CD45+/Red Box, BT142 = CD45-/ 
Green Box). These populations are depicted in the histograms to the right. (b) Overlaid histogram 
from data in (a). Manually gated CD45 -positive and -negative populations stained for decreasing 
dilutions of IDH1 R132H-171. Heat indicates median mass intensity for IDH1 R132H-171, relative 
to first row. 
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Figure 3.6: IDH1 R132H can be detected via mass cytometry after methanol 
permeabilization. Histogram depicts U87 and BT142 cells permeabilized by ice-cold 100% 
methanol and stained with IDH1 R132H-171. The first two rows are a mass minus one control. 
The next rows depict two different dilutions of IDH1-R132H-171. Heat indicates the arcsinh 
transformed values of median mass intensity based on the first row.  
 

 

IDH1 R132H was not specifically detected in dissociated primary glioma samples 

A primary goal of the development of the IDH1 R132H mutation specific antibody for use 

in flow cytometry was application to patient samples to identify single cells in which the mutant 

protein is expressed. To this end, the antibody, conjugated to either a fluorophore or a heavy 

metal, was used to label freshly dissociated glioma patient samples. In DAPI+, live events from 
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IDH1-wild type (top row) or IDH1 R132H-tumors (bottom row), staining for the mutant protein was 

not increased in the tumor confirmed to bear the mutation (Figure 3.7). Furthermore, in both 

tumors, CD45+ events, which should not contain the mutation, also demonstrated staining by the 

IDH1 R132H antibody (Figure 3.7). To avoid autofluorescence issues and spectral overlap 

concerns, wild type and mutant tumors were stained with the heavy metal tagged antibody. Four 

IDH1-wild type and four IDH1 R132H-tumors were stained for both CD45 (y-axis) and IDH1 

R132H (x-axis, Figure 3.8). As in fluorescent flow cytometry, known wild type tumors 

demonstrated signal in the 171 channel and CD45+ events also displayed 171 staining (Figure 

3.8).  

 

 

 

 
Figure 3.7: IDH1 R132H -Pacific Orange signal is detected in wild type and mutant glioma 
tumors. Dot plots, colored by cell density, depict an IDH1-wild type (WT, top row) and IDH1 
R132H-tumor (bottom row) stained with CD45-BV786 (y axis) and IDH1 R132H-Pacific Orange 
(x axis). Blue lines are quadrant gates to determine percent positive CD45+/IDH1 R132H- (upper 
left), CD45+/IDH1 R132H+ (upper right), CD45-/IDH1 R132H+ (lower right), CD45-/IDH1 R132H- 
(lower left).  
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Figure 3.8: IDH1 R132H-171 signal is detected in IDH1-wild type and IDH1 R132H-mutant 
glioma samples.  Dot plots, with heat depicting cell density, demonstrate CD45-154 (y axis) and 
IDH1 R132H-171 (x axis) are shown for IDH1-wild type (left) and IDH1 R132H-gliomas (right). 
Pink lines indicate a quadrant gate drawn to differentiate double negative, double positive, and 
single positive populations. The percent indicated is the number of cells in the lower right 
quadrant, which are IDH1 R123H-171 positive. 
 

 

In order to determine if IDH1-wild type tumors were picking up IDH1 R132H antibody on 

dead or dying cells, or if these same cells expressed other markers observed in gliomas, a 

larger mass cytometry experiment was performed on four IDH1-wild type and four IDH1 R132H-

tumors. 26 features were measured on 4,000,000 cells (Table 3.1). After gating for intact, live 

events, a t-SNE analysis was performed on an equal number of cells from each sample using 

19 of the measured features. The t-SNE maps indicated that IDH1 R132H is detected in cells 

that express other proteins previously described to be expressed in glioma cells, such as 

S100B, EGFR, and GFAP (Figure 3.9). Additionally, the percent of cells expressing IDH1 

R132H varied between tumors, with no enrichment in IDH1 R132H-mutant tumors (Figure 3.9). 
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Figure 3.9: IDH1 R132H-171 positive cells are positive for other glioma proteins in wild 
type and mutant samples. t-SNE plots for 8 glioma samples (rows) depicting 8 features 
(columns). Contour plots in first column are colored by density. Dot plots in remaining columns 
have heat on each marker listed. The percent of IDH1 R132H – positive cells was determined 
based on the pink gate depicted in the first column (same for all samples). The percent of cells 
in this gate is listed within the density plot (first row) for all samples. A t-test reveals these 
values are not statistically different between IDH1-wild type samples (first four rows) and IDH1 
R132H-mutant samples (last four rows) (p-value = 0.51).  
 

 

Non-specific staining in glioma samples is not affected by antibody conjugation 

 Non-specific staining in glioma samples and healthy PBMC could arise due to a change 

in antibody structure induced during antibody reduction during the conjugation protocol. To test 
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whether staining of primary samples was affected by antibody conjugation, U87, BT142, PBMC, 

and an IDH1 R132H-mutant glioma sample were stained with either IDH1 R132H-171 conjugated 

antibody or IDH1 R132H unconjugated antibody plus an anti-mouse secondary antibody (172). In 

secondary only controls (in which no mouse antibodies are added but the anti-mouse-172 

antibody is included) there was demonstrable background, especially in U87 and BT142 cells 

(Figure 3.10). However, using a secondary antibody to detect either the unconjugated primary 

antibody or the conjugated version resulted in very similar staining patterns, with non-specific 

staining on a subset of PBMC cells when the antibody against IDH1 R132H was included.  

 

 

 

 
Figure 3.10: Anti-mouse secondary antibody detects the same features in different cell 
types as IDH1 R132H-171 antibody. Contour plots (left) depict IDH1 R132H-171 (y axis) and 
anti-mouse-172 (x axis) signal on four different cell types (columns). First row is a secondary only 
control (no IDH1 R132H antibody). The second row depicts cells stained only with the conjugated 
IDH1 R132H-171. The third row contains cells stained with a primary, unconjugated IDH1 R132H 
antibody and the anti-mouse secondary. The fourth row contains both the IDH1 R132H-171 and 
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the anti-mouse-172. Selected conditions are shown as histograms (right), with heat (and x axis) 
showing median mass intensity of measured samples relative to table’s minimum (condition a.13). 
 

 

IDH1 R132H can be detected in disaggregated FFPE patient samples 

As IDH-mutant tumors are a smaller percentage of glioma cases, many research studies 

use paraffin-embedded archival specimens [220-222]. Therefore, the antibody was titrated for use 

on archived tissue using FFPE-DISSECT, a method that involves staining FFPE tissue prior to 

disaggregation for flow cytometry (Figure 3.11) [155].  After choosing 1:200 as the condition that 

maximally separated U87 cells from BT142 (Figure 3.11), six glioma patient FFPE samples were 

examined for IDH1 R132H expression (three IDH1 R132H-mutant gliomas and three IDH1-wild 

type glioblastomas). Expression of mutant protein and genotype was confirmed via 

immunohistochemistry (Figure 3.12) and by SNaPshot PCR multiplex base extension assay, 

respectively (data not shown). Portions of each FFPE block were isolated for FFPE-DISSECT. 

When FFPE samples from the six glioma test samples were dewaxed, rehydrated, stained for 

IDH1 R132H and then dissociated, mutant samples stained positively for IDH1 R132H while the 

wild type GBM samples did not (Figure 3.12). Tumors with more abundant IDH-positive cells by 

IHC staining exhibited similar patterns using flow cytometry. Importantly, the implementation of 

the DISSECT protocol did not increase non-specific staining with the IDH1 R32H antibody or a 

secondary anti-mouse antibody (Figure 3.12). These results indicate that the FFPE-DISSECT 

protocol can be used on glioma tissue and in concert with the IDH1 R132H antibody.   
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Figure 3.11: IDH1 R132H was titrated for FFPE-DISSECT.  Each overlaid histogram plot depicts 
U87 or BT142 cells stained with IDH1 R132H primary antibody and anti-mouse Ax647 secondary 
antibody (x axis). Dilution of the antibody is shown above each graph. Heat and numbers indicate 
median mass intensity for Ax647, relative to first row. 
 
 



134 
 

 

 
Figure 3.12: IDH1 R132H is detected in archival FFPE tissue via FFPE-DISSECT and flow 
cytometry (a) IDH1 R132H detection in U87 and BT142 cells from FFPE blocks of embedded 
spheres. Histograms depict relative cell count for each condition (Y axis) and signal from IDH1 
R132H antibody staining or anti-mouse Ax488 secondary antibody (x axis). Heat = arcsinh 
transformed median fluorescence values, first row set to zero.  (b) IDH1 R132H detection in six 
GBM patient samples, 3 IDH1-mutant and 3 IDH1-wild type (see methods for patient details) from 
FFPE blocks of tissue (left). Immunohistochemistry for IDH1 R132H on same 6 IDH1-mutant and 
-wild type patient gliomas (right). Histograms depict relative cell count for each condition (Y axis) 
and signal from IDH1 R132H antibody staining (x axis). Heat = arcsinh transformed median 
fluorescence values, minimum value set to  ero. Scale bar 50μm. (c) Median fluorescence 
intensities for IDH1 R132H staining on U87 and BT142 cells (top) and 6 glioma patient samples 
(bottom). BT142 and IDH1-mutant glioma samples have significantly higher fluorescent signal 
from IDH1 R132H antibody staining via flow cytometry. 
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Discussion 

 

This chapter describes the use of a mutation-specific antibody against IDH1 R132H in 

glioma cell lines and patient FFPE samples via flow cytometry. A retrieval protocol consisting of 

heat exposure in citrate buffer was employed to detect IDH1 R132H after finding PFA fixation 

alone, citrate buffer alone, and 0.02% saponin permeabilization to be insufficient for specific 

epitope detection. The use of heat-induced epitope retrieval (HIER) for intracellular antigen 

detection has been described previously [209, 210] and is similar to the protocol for protein 

detection using the IDH1 R132H clone H09 antibody in the clinical laboratory.   

Traditional fluorescence flow cytometry now has the capacity to simultaneously and 

quantitatively measure 12-18 antigens on hundreds of thousands of cells [223] and is increasingly 

being incorporated into clinical workflows [224, 225]. Mass cytometry, with the capacity to 

measure even more features, can be used to identify multidimensional cell phenotypes based on 

cell surface proteins, transcription factors, and signaling states [103-105]. Cells identified in this 

manner may be correlated with patient outcome or tumor type, expose vulnerable cell signaling 

states that can be targeted with small molecules, or provide evidence for tumor cell of origin [114, 

151]. Identification of cancer-lineage cells via detection of mutant proteins would be a useful 

addition to such protocols. To this end, the IDH1 R132H antibody was tested using both 

fluorescence and mass cytometry on dissociated gliomaspheres.  

Given the success of using both the fluorophore- and mass-tagged IDH1 R132H antibody 

on glioma cell lines (U87-/BT142+), it was surprising that the antibody did not appear to 

specifically label cancer-lineage cells in IDH1 R132H-mutant glioma tumors. This study and 

others [226, 227] have observed autofluorescence in glioma cells, potentially confounding results 

from the fluorescence flow cytometry experiments. However, the non-specific staining of IDH1-

wild type samples in mass cytometry experiments suggested that this non-specific labeling is not 

solely due to variable autofluorescence across samples or cell types. Using a secondary against 
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the mass-tagged antibody suggested that the primary conjugated IDH1 R132H-171 antibody was 

functioning as expected on U87 and BT142 cells (Figure 3.10). Thus, it is likely that a property 

either inherent to glioma cells or conferred during the retrieval process is exposing an epitope that 

the IDH1 R132H antibody recognizes in both IDH1-wild type and -mutant tumors. The consistent 

use of known control cells (U87, BT142, PBMC),  testing of permeabilization techniques (MeOH 

and HIER), and validation of conjugations with secondary antibodies against the primary 

conjugate (anti-mouse secondaries against either IDH1 R132H-Pacific Orange or IDH1 R132H-

171) were all important in identifying likely sources of this artifact, and underscore the importance 

of proper antibody validation for each platform where a reagent is used [228].  

While dissociated, viably cryopreserved cells exhibited unexpected false positive staining, 

the use of a protocol designed for retrieval from paraffin, staining, and finally dissociation yielded 

events consistent with expected outcomes. FFPE-DISSECT was initially developed for 

interrogation of cell signaling in intact epithelial tissues by flow cytometry [120, 155]. The data 

reported here on the success of IDH1 R132H detection using FFPE-DISSECT with FFPE glioma 

tissue suggest that the antibody studied may be useful in future applications of FFPE-DISSECT 

to larger, retrospective studies of IDH1-mutant patient cohorts. In such studies, protein expression 

and phosphorylation events could be measured, without the disruption of tissue architecture or 

cell-cell contacts via dissociation. Further, it is an avenue to investigate spatial differences in IDH1 

R132H positive cells from a single patient.  By using these techniques, researchers can achieve 

several important objectives: 1) Cancer cells can be positively identified in IDH1-mutant gliomas; 

2) Basal and potentiated signaling can be investigated specifically in IDH1-mutant cancer cells; 

3) IDH1 R132H association with expression of other proteins of interest can be measured; 4) 

retrospective analyses of archived FFPE tissue can be expanded beyond the scope of standard 

immunohistochemistry.  

This work describes the optimal retrieval conditions for IDH1 R132H detection via flow 

cytometry and demonstrates the utility of this protocol for examining cell line models and FFPE 
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tissue. This expands the types of samples that can be considered for use in flow cytometry, 

suspension mass cytometry, and high-dimensional imaging cytometry experiments to include 

archived IDH1-mutant tissue. These studies will allow researchers to more deeply probe the 

phenotypes, signaling states, and metabolic changes in IDH1-mutant glioma cells to understand 

the biology of these tumors.  
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Table 3.1: Glioma CyTOF Panel 

Target Mass Clone 

Signaling & 
proteins 

Stain 

Panel t-SNE Live Sap MeOH 

CD45 89 HI30 ●  ✓   

Rhodium 103 - ●  ✓   

HLA-ABC 141 W3-32 ●  ✓   

cCasp3 142 D3E9 ●    ✓ 

CD117 143 104D2 ●  
✓   

SSEA1/CD15 144 W6D3 ●  
✓   

CD31 145 WM59 ●  ✓   

SYP 148 SP17 ●    ✓ 

SOX10 149 20B7 ●    ✓ 

SOX2 150 O30-678 ●   ✓  

Nestin 151 25/Nestin ●    ✓ 

CD133 152 AC133 ●  
✓   

CD171 154 5G3 ●  ✓   

NCAM/CD56 155 B159 ●  ✓   

PDGFRβ 156 18A2 ●  ✓   

S100B 159 19/S100B ●    ✓ 

TUJ1 160 TUBB3/TUJ1 ●    ✓ 

CD44 161 IM7 ●  ✓   

BMX 163 40/BMX ●    
✓ 

ITGA6/CD49 164 GoH3 ●  ✓   

EGFR 169 D38B1 ●    ✓ 

GFAP 170 1B4 ●    ✓ 

IDH1 R132H 171 H09 ●    ✓ 

CD90 173 5E10 ●  ✓   

HLA-DR 174 L243 ●  ✓   

Histone H3 176 D1H2 ●    ✓ 

CD11b 209 ICRF44 ●  ✓   

 

● = included in the panel 
 = included for generation of t-SNE map 
Live = live surface stain 
Sap = 0.02% saponin stain 
MeOH = stain after ice-cold methanol permeabilization 
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CHAPTER IV 

 

 

ANALYSIS OF PROTEIN EXPRESSION PHENOTYPES FOUND IN TUMORS PRESENTING 

IN DIFFERENT LOCATIONS WITHIN THE BRAIN 

 

 

The following authors contributed to this work: Justine Sinnaeve, Nalin Leelatian, Akshitkumar M. 

Mistry, Allison R. Greenplate, Kyle D. Weaver, Reid C. Thompson, Lola B. Chambless, Bret C. 

Mobley, Jonathan M. Irish, and Rebecca A. Ihrie.  

 

Excerpt from this chapter were previously published in Sinnaeve, J., B.C. Mobley, and R.A. Ihrie, 

Space Invaders: Brain Tumor Exploitation of the Stem Cell Niche. Am J Pathol, 2018. 188(1): p. 

29-38. https://doi.org/10.1016/j.ajpath.2017.08.029  

 

 

Preface 

 

 An unanswered question in the field of glioblastoma is role of the normal neural stem cell 

niche, the ventricular-subventricular zone, on glioma cell biology. It is well documented that 

tumors that have radiologic contact with the ventricular-subventricular zone (V-SVZ) result in 

worse outcomes for patients compared to patients with no apparent contact with this region. 

However, extensive studies to date have failed to identify a mechanism for this observation. I 

sought to approach this question by looking at differences in protein expression, enrichment, and 

https://doi.org/10.1016/j.ajpath.2017.08.029
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complex cellular phenotypes of glioblastoma cells in V-SVZ contacting and non-contacting 

tumors. However, despite extensive analysis of the data collected in Chapter II and explored 

further in this chapter, no differences were identified, in line with previous studies. It is important 

to note that this work does not explore the role of immune cell subsets, which preliminary data 

suggest vary between the tumor types explored here. The work described below could, 

nevertheless, inform future directions for studies of the two tumor groups, explored in this chapter 

and in Chapter V.  

 

 

Abstract 

 

Increasing evidence indicates that the adult neurogenic niche of the ventricular sub-

ventricular zone (V-SVZ) affects the biology of patients with malignant gliomas. Radiographic 

glioblastoma (GBM) contact with this niche predicts worse prognosis, suggesting a supportive 

role for the V-SVZ environment in tumor initiation or progression. Previously reported analyses of 

bulk gene expression and DNA alteration data do not demonstrate differences between tumors 

that contact the niche compared to tumors that do not, suggesting a need to measure features in 

single cells from these tumors. In this chapter, protein expression, enrichment, and basal signaling 

features were explored in glioblastoma cells from a cohort of patients in which V-SVZ niche 

contact stratified survival.  Citrus, a supervised analysis tool, uncovered cell phenotypes that were 

differentially abundant between contacting and non-contacting tumors. Based on these 

observations, future studies should include investigation of cell-cell interactions, soluble factors, 

and extracellular matrix composition of the V-SVZ that may contribute to this tumor-permissive 

environment.  
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Introduction 

 

Extensive work over the past decades has demonstrated the existence of two neurogenic 

niches in the adult mammalian brain: the ventricular-subventricular zone (V-SVZ, sometimes 

referred to as the subventricular zone (SVZ) or the sub-ependymal zone (SEZ)) and the 

subgranular zone (SGZ). The cellular constituents, intercellular interactions, and extracellular 

components of these niches support stem cell maintenance and differentiation (reviewed in [50-

52]). The V-SVZ is the larger of the two niches and is located immediately adjacent to the lateral 

ventricles in the cerebrum. Recently there has been increased focus on the role of this niche in 

high-grade (III and IV) gliomas, the most common primary malignant neoplasms of the adult brain, 

as well as its effects on pediatric pontine gliomas [61, 229, 230].  

Evaluation of clinical data indicates that glioblastoma patients whose tumors contact the 

V-SVZ have worse outcomes. A meta-analysis of multiple studies demonstrated that radiographic 

contact of GBM with the V-SVZ is associated with significantly decreased overall survival [61], 

independent of extent of tumor resection [60]. V-SVZ contacting glioblastomas also display earlier 

recurrence after treatment compared to V-SVZ non-contacting GBMs [60, 61], and recurrent 

tumors are more likely to contact the V-SVZ [231, 232]. Some studies further describe a tendency 

for V-SVZ contacting glioblastomas to be multifocal at the time of diagnosis [60, 232, 233], and to 

recur after treatment at sites distant from the initial tumor site [233-235], although the latter 

observation is debated [60, 236].  Strikingly, GBM contact with the SGZ has not been found to 

influence survival [60], suggesting that features unique to the V-SVZ contribute to outcome. 

Access to the ventricles and cerebrospinal fluid (CSF), the presence of a gap layer, and the 

proximity of the V-SVZ to major white matter tracks are all features unique to the V-SVZ.  At the 

molecular level, niche enriched factors may be derived from different cellular sources, present at 

different levels, or delivered through specific cell-cell contacts.  
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A subset of glioma tumors appears to spread specifically within the ventricular-

subventricular zone (also referred to as subependymal spread) [63-65]. V-SVZ spread is 

evaluated by magnetic resonance imaging (MRI) in pediatric and adult gliomas and is interpreted 

as the presence of contrast enhancement and/or abnormally elevated T2-weighted signal within 

the subependymal region [237-239]. Though microscopic analysis of this region is uncommon 

due to the rarity of resections which include the V-SVZ, histologic sections show increased cell 

density at time of resection, including cytologically atypical glial cells with enlarged, 

hyperchromatic, angular nuclei expressing the cell-cycle associated antigen, Ki67 [53, 69, 78].  

Both isocitrate dehydrogenase (IDH)- wild type and IDH-mutant GBMs as well as brain 

metastases have demonstrated such spread through the subependyma [63, 64]. Although IDH-

mutant gliomas occur more frequently in the frontal lobe than IDH-wild type tumors, there appears 

to be no difference between the two groups in V-SVZ contact [240].  

Analyses of public datasets using bulk tissue analyses have not identified transcriptional 

signatures unique to V-SVZ contacting tumors [67]. Only a limited number of candidate signatures 

have been found, which may not be cancer cell derived [241]. Given that neural stem cell niche 

components may enhance glioma initiation, maintenance, and/or recurrence, the interaction 

between the V-SVZ and tumor cells warrants investigation. In this chapter, single cell mass 

cytometry data on 28 IDH-wild type primary patient samples was used to investigate differences 

between tumors that contact the V-SVZ and tumors that do not contact the niche, based on 

radiographic imaging. A variety of high dimensional data analysis tools were applied to the single 

cell data to parse phenotypes, cell clusters, and protein enrichment. There were no significant 

differences between the two tumor groups in this dataset, as assessed by multiple different 

metrics. Citrus, a supervised data analysis tool, did uncover two cell subpopulations that were 

differentially abundant in V-SVZ contacting and non-contacting tumors. These findings suggest 

that future studies should explore probe the capacity of cells from these tumors to respond to 
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stimuli that might be differentially available in the V-SVZ compared to other sites in the brain or 

contributions of non-cancer lineage cells to differences in tumor behaviors and patient outcomes.  

 

 

Methods 

 

Patient samples 

 Surgical resection specimens of 28 IDH-wild type glioblastomas collected at Vanderbilt 

University Medical Center between 2014 and 2016 were processed into single cell suspensions 

following an established protocol (Appendix A and [121]). Only samples that were confirmed to 

be IDH-wild type glioblastomas by standard pathological diagnosis were used. Samples were 

categorized as V-SVZ contacting or V-SVZ non-contacting as described in [67]. Briefly, magnetic 

resonance images of the brain were available for all patients. The preoperative brain images were 

assessed for V-SVZ contact by a neurosurgeon and neuroradiologist without knowledge of patient 

outcome. Using OsiriX Lite software (version 9.4, Pixmeo, Geneva, Switzerland), VSVZ-

contacting GBMs were identified by the contact or involvement of the post-contrast tumor 

enhancement with the lateral ventricular ependyma. All samples were collected with patient 

informed consent in compliance with the Vanderbilt Institutional Review Board (IRBs #030372, 

#131870, #181970), and in accordance with the declaration of Helsinki. 

 

 

Patient characteristics and collection of clinical data 

 Additional patient characteristics are included in Chapter II (Table 2.3) for all samples in 

this study. All patients were adults ( 18 years of age) at the time of their maximal safe surgical 

resection of their cerebral (supratentorial) glioblastomas. Extent of surgical resection was 

independently classified as either gross total or subtotal resection by a neurosurgeon and a 
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neuroradiologist. Gross total resection was defined as agreement by both viewers of no significant 

residual tumor enhancement on patients’ gadolinium-enhanced magnetic resonance imaging 

(MRI) of the brain obtained within 24 hours after surgery. All patients were considered for 

treatment with postoperative chemotherapy (temozolomide) and radiation according to the 

standard of care [2], after determination of MGMT promoter methylation status by pyrosequencing 

(Cancer Genetics, Inc., Los Angeles, CA, USA). Multiplex polymerase chain reaction (PCR) was 

used to determine IDH1/2 mutational status. Patients’ postoperative course was followed until 

February 2019, noting time to first, definitive radiographic progression or recurrence of 

glioblastoma as agreed upon by the treating neuro-oncologist and neuroradiologist, and the time 

to patients’ death. All deaths were deemed to be due to the natural course of patients’ 

glioblastoma.  Median overall survival of the analyzed 28 patients with IDH-wild type glioblastoma 

was 388.5 days (13 months) and median PFS was 187.5 days (6.3 months), which is typical for 

the disease [2, 3]. 

 

 

Mass cytometry analysis 

Data pre-processing: Cells derived from patient samples were prepared as previously 

described [121]. A multi-step staining protocol was used, which included 1) live surface stain, 2) 

0.02% saponin permeabilization intracellular stain, and 3) intracellular stain after permeabilization 

with ice-cold methanol. All antibodies used, including clone information, and the steps when used 

are given in Table 2.4. After staining, cells were resuspended in deionized water containing 

standard normalization beads (Fluidigm) [166], and collected on a CyTOF 1.0 instrument located 

in the Cancer and Immunology Core facility at Vanderbilt University. Mass cytometry 

standardization beads were used to remove batch effects and to set the variance stabilizing 

arcsinh scale transformation for each channel following field-standard protocols [121, 146, 167]. 

Rhodium viability stain and cleaved caspase-3 antibody were included in staining to exclude non-
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viable and apoptotic cells, respectively. Detection of total histone H3 was used to identify intact, 

nucleated cells [98]. A 34-dimensional mass cytometry antibody panel was used to analyze over 

2 million viable cells from 28 tumors (ranging from 5,875 to 336,284 cells per tumor). Data were 

normalized with MATLAB-based normalization software [166], and were arcsinh transformed 

(cofactor 5), prior to analysis using the Cytobank platform and statistical programming 

environment R via R Studio [168].  

Dimensionality Reduction: A patient-specific t-SNE view was generated on Cytobank, 

using 26 of the measured markers for all tumor and stromal cells from each patient’s tumor [125]. 

Immune (CD45+) and endothelial cells (CD31+) were computationally excluded, via manual 

gating, from each individual patient prior to subsequent downstream analysis.  Remaining CD45-

CD31- cells were included in a common t-SNE analysis, generated using 24 of 34 measured 

markers (equal sampling of 4,710 cells, 20,000 iterations, perplexity 30, theta 0.5). Unless 

otherwise noted, these cells and the common t-SNE analysis were used for the remaining data 

analysis.  

Marker Enrichment Modeling: MEM analysis was performed in R, using the previously 

published R package [158]. In short, MEM captured and quantified cell subset-specific feature 

enrichment by scaling the magnitude (median) differences between clusters, depending on the 

spread (IQR) of the data. These values were then computed in comparison to the remaining cells 

in a given dataset. MEM values were interpreted as either being positively enriched (▲, UP 

positive values) or negatively enriched (▼, DN negative values). The variation of a given cellular 

feature across cell subsets was quantified as ± standard deviations (SD). 

Citrus: Citrus analysis [127] was implemented in Cytobank. Events from the common t-

SNE analysis described above were uploaded to a new experiment and input to the Citrus 

algorithm. Minimum cluster size was set to 1%, cross validation folds was set to 5%, and the false 

discovery rate was set to 1%. The Nearest Shrunken Centroid (PAMR) association model was 

used to assess differences in cluster abundance between two groups, V-SVZ contacting and V-
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SVZ non-contacting (n=14 for each group). Figure 4.8 depicts outputs from this analysis including 

comparison of cluster abundance, histograms of marker expression for each cluster, and a 

hierarchical clustering tree.  

Earth Movers Distance: Earth Movers Distance was performed as described in [146]. 

Briefly, events from each tumor were analyzed on a common t-SNE (equal sampling of 5875 cells 

per tumor, 10,000 iterations, perplexity 30, and theta 0.5). These events were downloaded from 

Cytobank. EMD was calculated between each pair of files using the “transport” library for R 

(https://cran.r-project.org/web/packages/transport/citation.html). The optimizations described in 

[146] were applied as described. R was used to create a heatmap to visualize the calculated EMD 

score. Statistical comparisons of EMD values between groups were calculated using an ANOVA 

in Graphpad Prism.  

Population Abundance Analysis: The abundance of cell populations identified in Chapter 

II from RAPID was compared for all tumors. Percent abundance between V-SVZ contacting and 

V-SVZ non-contacting was compared using a two tailed t-test in Microsoft Excel.  

 

 

Survival and statistical analysis 

 Statistics were calculated in Microsoft Excel or Graphpad Prism software (noted in 

methods for each analysis). Statistical significance α was set at 0.05 for all statistical analyses, 

one- or two-tailed noted in figure legends. Time from surgical resection to death (overall survival, 

OS) was depicted using right-censored Kaplan-Meier curves and analyzed in R. Survival time 

points were censored if, at last follow up, the patient was known to be alive. Differences in the 

survival curves of groups were compared using a univariate Cox regression model to estimate 

the effect size (hazard ratio, HR, of death) on survival with 95% confidence intervals between the 

survival curves, and quantify its statistical significance with a p-value. 

 

https://cran.r-project.org/web/packages/transport/citation.html
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Results 

 

Earth Mover’s Distance comparison of glioblastoma mass cytometry data 

28 primary glioblastoma samples were collected during the time of first resection and 

confirmed to be IDH-wild type. The median progression-free-survival (PFS) and overall survival 

(OS) after diagnosis were 6.3 and 13 months, respectively, typical of the trajectory of this disease 

[2]. A Kaplan Meier curve and univariate cox regression analysis indicated that V-SVZ contact 

stratified overall patient survival (Figure 4.1) as it had in larger cohorts [61]. 

 

 

 
 

 
Figure 4.1: V-SVZ contact stratifies overall survival. A Kaplan Meier curve depicts overall 
survival in days (x-axis) for patients with a V-SVZ contacting tumor (red line) or a tumor that does 
not contact the niche (black line). Percent survival is indicated on the y-axis. Vertical ticks 
represent censored patients who were alive at the indicated time. The hazard ratio of death for V-
SVZ contact is 3.361 with a 95% confidence interval of [1.42-7.99] and a p-value of 0.006.  
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Mass cytometry data was generated for the patient samples using a custom antibody 

panel designed to probe brain lineage proteins, stem cell markers, and phospho-signaling events. 

Data from each patient sample was analyzed to identify live events and remove debris and non-

cellular events. Patient-specific t-SNE analyses were performed using 26 of the measured 

features on all of the cells from the sample (Table 2.4). Immune (CD45+) and endothelial (CD31+) 

cells were evident in varying abundances in each tumor, consistent with prior studies of gliomas 

[33, 98]. CD45+ or CD31+ cells were computationally excluded from each patient prior to 

subsequent analyses. All non-immune, non-endothelial events (CD45-, CD31-) were analyzed in 

the same t-SNE analysis using 24 of the measured features.  

Earth Mover’s Distance (EMD) was used to quantify the differences between the t-SNE 

maps (Figure 4.2). Earth Mover’s Distance can be described as the energy required to take one 

plot of cells and move it to match another [242]. Therefore, the more divergent two t-SNE plots 

are, the higher the EMD score, and the more dissimilar these two samples are in the measured 

feature space. A heatmap was generated to depict the differences between individual patient t-

SNE maps. Dark blue represents an EMD score of zero, indicating that the maps are identical. 

The diagonal dark blue line down the heatmap represents each patient sample compared to itself, 

and the heatmap is reflected over this line. Dark red represents the highest EMD scores and thus 

shows that the two samples are very different. Looking at the EMD heatmap, it is evident that 

non-contacting tumors are not overall more similar to other non-contacting tumors compared to 

contacting tumors in this comparison. This is reflected in the quantification of EMD scores, where 

non-contacting tumors were compared to other non-contacting tumors (intra-group), contacting 

tumors were compared to contacting tumors (intra-group), and non-contacting tumors were 

compared to contacting tumors (inter-group). If tumors within the same category were more 

similar to each other in high dimensional phenotypic space, smaller EMD scores would be 

expected for intra-group comparisons than inter-group comparisons. However, there are no 

significant differences between the three different EMD comparisons (Figure 4.2). This suggests 
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that non-contacting and contacting tumors are equivalently variable in high dimensional space for 

the features measured.  
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Figure 4.2: Earth movers distance evaluation of patient t-SNEs demonstrates that 
contacting and non-contacting tumors are no more similar to tumors of the same category 
than tumors in the other category. (a) Heatmap depicting EMD scores. 28 patient samples are 
arranged according to their contact status (non-contacting tumors: black line; contacting tumors: 
red line). The heatmap is reflected over the diagonal. (b) Box and whiskers plot of EMD values 
when non-contacting tumors are compared to other non-contacting tumors (black), contacting 
tumors are compared to other contacting tumors (red), or non-contacting tumors are compared to 
contacting tumors (gray). Each dot represents a comparison between two tumors. The box 
encompasses the 25th to 75th percentile. Bars extend to the minimum and maximum. The 
horizontal bar denotes the median. An ANOVA analysis indicated no significant difference 
between the EMD values for these three comparisons.  

 

 

Comparison of median protein expression using mass cytometry 

 In order to investigate global differences in protein expression between contacting and 

non-contacting tumors, median protein expression was compared for all measured features 

(Figure 4.3). Box and whisker plots depict the median protein expression for each feature on each 

sample. In some cases, like that of EGFR, non-contacting samples had more tumors with higher 

values compared to contacting tumors. The opposite pattern was observed for Nestin, with 

several contacting tumors having the highest median expression of this protein. However, 

comparing the median mass intensity across all features on all samples, no measured feature 

was significantly different between the two groups (t-test).  
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Figure 4.3: Median mass intensity does not differ for any measured feature between 
contacting and non-contacting tumors. (a) Dot plots comparing median mass intensity (y-axis) 
between non-contacting tumors (black) and contacting tumors (red). Each dot is a single patient 
tumor, the box outlines the 25th to 75th percentile, while bars extend to the minimum and maximum. 
The horizontal line indicates median value. (b) Comparison of basal phospho-signaling, cell cycle 
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protein Cyclin B1, and DNA damage protein, ɣ-H2AX as depicted in a. Each plot was compared 
using an unpaired, two-tailed t-test in Graphpad Prism.  
 

 

Marker Enrichment Modeling identifies features enriched on each patient sample 

 Median protein expression, while insightful, does not encompass all the important 

differences that might be contained in single cell data. In order to gain insight into marker 

expression and variation across a sample, marker enrichment modeling (MEM) was used [158]. 

MEM calculates a score, on a scale from -10 to 10, with -10 indicating that a feature is specifically 

not expressed on a given sample, while a score of 10 indicates that it is highly and specifically 

expressed on that sample. A score of zero indicates that either this feature is heterogeneously 

expressed across the sample or that it is expressed at the same level across all samples. The 

MEM algorithm generates a heatmap (Figure 4.4) of enrichment scores, where light blue 

represents -10 and bright yellow represents +10. It also gives a MEM score for each feature on 

each patient sample (Figure 4.5).  Individual MEM analyses were performed respectively on 

lineage and stem-like proteins together, and on phospho-signaling proteins. By analyzing these 

types of features separately, smaller differences in signaling proteins could be detected without 

the risk of being obscured by high enriched features like S100B. Patient samples are displayed 

by category on the MEM heatmap, with non-contacting tumors (black squares) on the left and 

contacting tumors (red squares) on the right. The heatmap visualization does not illuminate any 

consistent pattern of enrichment between the two groups. For example, there are both non-

contacting and contacting samples that are positively enriched for GFAP and CD44 while others 

are negatively enriched for these proteins (Figure 4.4). To quantitively compare the MEM scores, 

box and whisker plots were generated for each feature, comparing non-contacting tumors to 

contacting tumors (Figure 4.5). Statistical analysis of these plots, using a t-test for each marker, 

resulted in no significant differences between the two types of tumors with respect to marker 

enrichment scores.  
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Figure 4.4: MEM heatmap demonstrates no consistent trends between non-contacting 
samples and contacting samples. 28 patient samples are arranged according to their contact 
status (non-contacting tumors: black squares, left; contacting tumors: red squares, right). A 
heatmap represents the MEM values of glioblastoma tumors (columns). Hierarchical clustering 
was performed based on MEM values and is depicted on the right of the heatmap for measured 
features. Protein features are depicted in the top heatmap and signaling features are depicted 
underneath.  
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Figure 4.5: Marker enrichment modeling scores do not significantly differ for any measured 
feature between contacting and non-contacting tumors. (a) Dot plots comparing MEM score 
(y-axis) between non-contacting tumors (black) and contacting tumors (red). Each dot is a single 
patient tumor, the box outlines the 25th to 75th percentile, while bars extend to the minimum and 
maximum. The horizontal line indicates median value. (b) Comparison of phospho-signaling, cell 
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cycle protein Cyclin B1, and DNA damage protein, ɣ-H2AX as depicted in a. Each plot was 
compared using an unpaired, two-tailed t-test in Graphpad Prism.  
 

 

 Although there were no significant differences between the MEM scores from contacting 

and non-contacting samples, another way to identify broad differences between the two groups 

is to compare enrichment of features in combined files. In this case, all cells from non-contacting 

tumors were concatenated into one file and all cells from contacting tumors were concatenated 

into a second file. MEM was used to analyze these two files and several interesting features were 

identified in the heatmap and reported MEM scores (Figure 4.6). First, neither group was 

positively enriched for any specific feature. This is perhaps not surprising, given the fact that there 

were no significant differences in the MEM scores between patient samples. However, the 

contacting samples are highly negatively enriched for EGFR, meaning that these samples 

specifically lack EGFR compared to non-contacting tumors. Furthermore, when phosphorylation 

events are considered, there are striking trends. Cells from contacting tumors are enriched for 

almost every phospho-protein measured, while cells from non-contacting tumors are lacking 

active signaling events. This is depicted in the MEM labels calculated for each file (Figure 4.6).   
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Figure 4.6: MEM analysis of concatenated files reveals trends in EGFR expression and 
phospho-signaling. 14 non-contacting samples were combined into one file and are represented 
by the first column (black square). 14 contacting samples were combined into one file and are 
depicted in the second column (red square). A heatmap represents the MEM values of these files. 
Hierarchical clustering was performed based on MEM values and is depicted on the right of the 
heatmap for measured features. Protein features are depicted in the top heatmap and signaling 
features are depicted underneath. MEM scores for each file are in rectangular boxes. Non-
contacting file is in black and the contacting file is in red. Positively enriched proteins follow the 
▲ and negatively enriched, or absent proteins follow the ▼. The MEM score is depicted in the 
superscript following each listed feature.   
 



157 
 

Glioma Positive Prognostic phenotypes are more abundant in non-contacting tumors 

The observation that non-contacting tumors contain more EGFR and generally lack active 

phospho-signaling is reminiscent of the phenotypes observed in glioma positive prognostic cells 

described in Chapter II. To determine if glioma positive prognostic (GPP) cells are more abundant 

in non-contacting tumors, the percentage of glioma negative prognostic (GNP) or GPP cells were 

calculated for both non-contacting (black) and contacting (red) tumors (Figure 4.7). Neither GNP 

nor GPP cells were more abundant in contacting or non-contacting tumors. Interestingly, the two 

tumors with the highest percentage of GPP cells and the two tumors with the highest percentage 

of GNP cells were all non-contacting samples (Figure 4.7). The abundance of all 43 of the cell 

populations identified by RAPID in Chapter II were also compared between V-SVZ contacting and 

non-contacting tumors (data not shown). A t-test indicated that no single population significantly 

differed in abundance between these two groups.  

 

 

 

 
Figure 4.7: GNP and GPP cell abundances are not significantly different between contacting 
and non-contacting tumors. Box and whisker plots depict percent of GNP (left) or GPP (right) 
in each tumor, represented by the points. Non-contacting tumors (black) are not significantly 
different from contacting tumors (red) for either GNP or GPP cell abundance (two-tailed t-test). 
Box outlines the 25th to 75th percentile and whiskers extend to the minimum and maximum.  
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GNP and GPP cells were identified using RAPID (Chapter II) which was specifically 

developed to handle continuous variables, like overall survival. However, contact status as 

measured in this study, is not a continuous variable, and is therefore amenable to approaches 

that require samples to be categorized. For this reason, Citrus (cluster identification, 

characterization, and regression) was used to identify any cell populations that were differentially 

abundant between non-contacting and contacting samples [127]. Using this tool, two cell clusters 

were significantly associated with contact status (Figure 4.8). Cluster 131867 was more abundant 

in non-contacting tumors while cluster 131871 was more abundant in contacting tumors. 

Interestingly, these clusters had very similar phenotypes across multiple markers used to denote 

GNP cells (i.e. S100B, SOX2, p-S6, p-STAT5, p-STAT3) but diverged with respect to EGFR, 

GFAP, and CD44, all of which are enriched in the GPP phenotype. Cluster 131867 expressed 

higher levels of EGFR compared to all other clusters including 131871. Cluster 131867 also 

expressed higher levels of GFAP and CD44 compared to most other cells, however, cluster 

131871 cells demonstrated higher GFAP and CD44 expression compared to 131867 (Figure 4.8). 

Overall, this is additional evidence that there are cells with a GPP-like phenotype (high EGFR, 

GFAP, and CD44 and low phospho-signaling) that are enriched in non-contacting tumors. 

Interestingly, there are also cells enriched in contacting tumors that demonstrate some, but not 

all, features of GPP cells (high GFAP and CD44 expression but low EGFR expression).  



159 
 

  
 
Figure 4.8: Citrus identified two cell clusters that were associated with contact status. (a) 
Cell clusters identified by the Citrus algorithm implemented in Cytobank. Significant clusters 
(131867 and 131871) are colored in red. (b) Abundance (y-axis) of each significant cluster in non-
contacting (black) or contacting tumors (red). (c) Histograms of protein expression for a subset of 
the measured features. Purple histogram depicts data for the indicated cluster and white 
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histogram depicts data for all remaining cells not in that cluster. Red arrowhead (▲) indicates if 
the cluster is more or less abundant in contacting tumors while the black arrowhead (▲) indicates 
if the cluster is more or less abundant in non-contacting tumors.  
 

 

In previous analyses reported in Chapter II, tumors with more GPP cells also had higher 

levels of immune cells. To determine if immune cell abundance correlated with tumor contact 

status, the percent of CD45+ cells was compared between contacting and non-contacting tumors 

(Figure 4.9). A t-test revealed that there was no statistical difference in the percent of CD45+ 

immune cells between the two groups.  

 

 

 

 
Figure 4.9: The abundance of immune cells is not significantly different between non-
contacting and contacting tumors. Box and whisker plots depict percent of immune cells in 
each tumor, represented by the points. Non-contacting tumors (black) are not significantly 
different from contacting tumors (red) for either GNP or GPP cell abundance (two-tailed t-test). 
Box outlines the 25th to 75th percentile and whiskers extend to the minimum and maximum.  
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Discussion 

 

The study of neurogenic niches in the adult brain is a rich and active field of research. 

Beyond the function of these sites as generators of new neurons, emerging data reveal significant 

effects of the ventricular-subventricular zone niche on the behavior of malignant gliomas. 

Treatment options for these aggressive neoplasms are limited and patient survival remains 

dismal; therefore, the potential role of this niche in tumor initiation, maintenance, or recurrence 

merits further research. The purpose of this work was to investigate basal protein expression, 

signaling features, or glioblastoma cell subsets that were differentially associated with V-SVZ 

contact. Despite a significant difference in patient outcomes between V-SVZ contacting and non-

contacting (Figure 4.1), no differences were detected in median protein expression, MEM protein 

enrichment values, or specific cell subsets like immune cells or populations automatically 

identified in Chapter II. Furthermore, high dimensional representations of the data (t-SNE plots) 

were not significantly different between the two groups. Interestingly, Citrus uncovered two 

populations that were differentially abundant in contacting and non-contacting tumors. 

These findings are consistent with previous findings, describing a surprising lack of large 

differences in gene expression of single genes or gene networks as well as previously defined 

molecular subclasses between contacting and non-contacting tumors [28, 67, 68]. Investigations 

of expression of common stem-cell genes indicated no correlation between these genes or gene 

sets and V-SVZ contact [68, 243, 244]. Some studies have proposed molecular features that may 

contribute to the phenotypes or development of V-SVZ contacting tumors including proteins 

involved in centromere assembly, cell cycle, chromosome segregation, epigenetic regulation, 

metabolism, and invasion [245, 246]. However, these studies compare the V-SVZ contacting 

tumors to non-malignant brain samples or cultured neural stem cells, not non-contacting tumors 

as is described in this chapter.  
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However, other groups have identified putative differences that were not specifically 

interrogated in this work. Analysis of TCGA gene expression and imaging data from GBM samples 

revealed that proneural and neural tumor subtypes were more frequently found closer to the V-

SVZ compared to classical or mesenchymal tumors when distance to the V-SVZ was measured 

on a continuous scale (rather than a binary contacting versus non-contacting categorization) 

[247]. In a cohort of 23 patients, V-SVZ contact was associated with vascularization gene sets 

and decreased hypoxia signatures while non-contacting tumors had reduced stem cell gene 

expression and an association with inflammation pathways [248]. A later study found an 

association of notch pathway signaling features with V-SVZ contact in gene expression analysis 

of 36 patient samples [241].  

Although this work does not immediately point to a mechanism of action for the negative 

prognostic correlation with neural stem cell niche contact, the clinical data suggest a possible 

distinct, aggressive biology of V-SVZ contacting tumors and it is a prognostic feature that should 

be investigated further. The prognostic value of V-SVZ contact may be due, in part, to the 

specialized contacts and multiple cell types found in the niche, including a prominent vascular 

component, contact with the ventricles and the CSF within, and proximity to the corpus callosum 

(the major white matter tract of the brain). These features might impact signaling between niche 

and tumor cells. Immediate areas for study include in situ measurements of glioma-associated 

proteins and phospho-signaling molecules, to avoid confounding factors like the disruption of 

tissue architecture during dissociation. The abundance of formalin-fixed, paraffin-embedded 

tissue that is collected and prepared from glioma samples and improving imaging technologies 

that can measure many features in a single cell make this an achievable goal [249-251]. 

Additionally, these modalities would allow researchers to determine if there is a distinct cellular 

spatial organization associated with the V-SVZ that may be obscured in dissociated samples. 

Further questions include the capacity for tumor cells to respond to known niche factors like those 

identified in [70] or constituents such as cerebrospinal fluid or media conditioned by stem cells or 
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choroid plexus [79, 230]. Removing tumor cells from the brain microenvironment and thus, 

potentially important sources of stimuli, may stunt key signaling differences ex vivo.  

The ultimate goal of this work is to change patient outcomes, and to this end, patients 

presenting with tumors in different locations may require different treatments. Improvements in 

tumor therapy could include targeting niche factors, like soluble growth factors, cell-cell junction 

proteins, or cell surface ligands, or disrupting niche-tumor cell interactions, with radiotherapeutic 

targeting of the V-SVZ representing a first step along this course [80, 90, 252, 253]. As our 

knowledge of the normal niche continues to expand, newly revealed features may also drive better 

understanding of tumor etiology and therapy response. Areas of interest include the impact of 

cell-to-cell heterogeneity and lineage priming within normal neural stem cells (NSCs) on the 

disease state, and the contribution of microglia, the major innate immune population within the 

brain, to normal and tumor-bearing V-SVZ. Studies from the mouse brain indicate that neural 

stem cells are spatially diverse, meaning that stem cells from different regions of the V-SVZ give 

rise to different progeny [51, 254-259]. Examination of spatial differences in tumor-forming or 

tumor-homing capabilities of heterogeneous NSCs could further inform the design of targeted 

therapies. Detailed investigations of the role of innate and adaptive immune cells in this niche will 

also be critical to understanding how these tumors may evade immune detection or targeted 

immunotherapy approaches (e.g. anti-PD-1/CTLA-4 agents). Microglia help to define and 

maintain the neurogenic niche, and recent studies indicate that the V-SVZ resident population is 

functionally distinct and temporally dynamic, exhibiting an immature phenotype which changes 

with organismal age[76, 260].  

Finally, glioma research currently benefits from the ample available patient tissue from 

primary tumor resections, as well as a plethora of imaging data collected during routine care. One 

persistent challenge is the integration of molecular information (bulk and single-cell genomic and 

proteomic approaches) with spatial information obtained from clinical imaging. Recent advances 

in both the preparation of single-cell suspensions and the collection of high-dimensional data will 
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enhance our ability to map specific populations of cancer and niche cells, providing a better 

understanding of the impact of V-SVZ niche diversity on tumor behavior [98, 99]. 
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CHAPTER V 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

Summary and significance 

 Gliomas are complicated and serious health concerns that, to date, have not benefitted 

from the targeted or personalized medicine revolution that has changed outcomes for 

malignancies like lung cancer, melanoma, leukemia, or breast cancer [261-265]. As single cell 

technologies and sequencing approaches improve, the scientific community continues to learn 

more about the cell types present in glioma tumors, their interactions with the immune system, 

and the differences between patients [37, 47, 266].  In this dissertation, I contribute to this growing 

and important field by leveraging mass cytometry to measure proteins and signaling features in 

single glioma cells. These measurements were used to identify cell types associated with patient 

outcomes and investigate differences in glioblastomas in different brain regions.  

Along with colleagues from the Ihrie and Irish labs, I helped to establish an efficient and 

effective way to isolate single, viable cells from glioma tumors, which directly led to the ability to 

measure proteins and signaling events at the single cell level (Appendix A) [98, 121]. In Chapter 

II, I describe the collection and analysis of mass cytometry data resulting from these advances, 

as well as the development of a new data analysis algorithm to identify prognostic cell subsets, 

called Risk Assessment Population IDentification (RAPID). This algorithm is a valuable tool for 

the field, as it provides a modular, unsupervised, and automatic pipeline for understanding single 

cell data in many disease contexts. Using RAPID, I identified two novel types of glioma cells, 
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glioma negative prognostic cells (GNP) and glioma positive prognostic cells (GPP). The 

phenotypes observed in these cells lend insight into potentially effective therapies for patients 

whose tumors contain these subsets. Further, patients with low percentages of both GNP and 

GPP cells can still benefit from this analysis approach, as single cell phenotypes for the cells 

within their tumors are also characterized by RAPID. This information could change how patients 

are chosen or assigned for clinical trials. 

In Chapter III, I expand the tools that can be used to measure proteins in single cells by 

describing approaches for detection of the mutated isocitrate dehydrogenase (IDH1) R132H 

protein. Currently, there are no definitive methods to detect cancer-lineage cells using proteins in 

glioma tumors. Over 80% of grade II and III tumors contain a mutation in IDH1, and of those, 90% 

contain the IDH1 R132H mutation [14, 15, 22]. The ability to detect this protein in experimental 

samples would be incredibly powerful for the study of cancer-lineage cells specifically. 

Furthermore, understanding the differences in the metabolism and epigenetics of IDH-wild type 

and IDH-mutant tumors will be crucial to establish effective treatment strategies for these two 

groups of patients [267-269]. As described in Chapter III and further elaborated in Appendix A, 

new and modified flow cytometry approaches were critical to detecting IDH1 R132H. However, 

there were significant challenges in detecting the protein in patient samples. This technical 

challenge is an area ripe for future studies. Not only is IDH1 R132H an incredibly important protein 

in the study of glioma biology, but additionally other targets and reagents are being developed at 

an exciting pace. Having the infrastructure to address technical difficulties in the detection of these 

targets will improve researchers’ ability to answer impactful scientific questions. 

 Finally, in Chapter IV, I use mass cytometry data to understand the role of the neurogenic 

ventricular-subventricular zone (V-SVZ) in glioma biology and how GNP and GPP cells might be 

related to V-SVZ niche contact. It is well established that the V-SVZ has a unique and nuanced 

role in the behavior of gliomas [60, 66, 70, 270]. Patients whose tumors contact the V-SVZ have 

worse outcomes than patients whose tumors do not contact the V-SVZ [61, 232, 239]. Tumors 
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that contact the V-SVZ at presentation are more likely to have multifocal recurrences, suggesting 

that the impact of niche contact persists even after surgical resection [61, 233, 236]. Furthermore, 

even in tumors where radiographic evidence suggests the tumors are not in direct contact with 

the V-SVZ, individual cells can be found residing in the V-SVZ, just one example of V-SVZ tropism 

exhibited by tumor cells [63-65, 86, 271]. Although we found no differences in protein expression 

or enrichment, cell subset abundance, or total immune cell infiltration in the tumors studied here, 

these findings lead to alternative hypotheses that can be explored using existing tools, developed 

by our group and others [62, 67, 100, 155]. These ideas are explored below.  

 In summary, this dissertation advances the understanding of brain tumor composition at 

the cellular level, the biology of cells specifically involved in patient prognosis, and describes a 

new tool that can be used to parse different types of data from many different disease contexts. 

Furthermore, building on the methods described here could standardize or improve the field of 

tissue processing and single cell data acquisition. The ultimate goal of this work is to positively 

impact human health, whether it is through better categorization of patients for inclusion in clinical 

trials of targeted therapies or identifying new targets or new combinations of targets for 

therapeutic investigation.  

 

 

Machine learning and the application of RAPID to new datasets 

 In Chapter II, I describe the development and implementation of RAPID, a novel and 

automatic data analysis algorithm for high dimensional single cell data analysis. Chapter II 

outlines many of the validation and testing approaches used to strengthen and legitimize RAPID 

and to generate confidence in its use as a tool for other applications outside of our research group. 

It is my goal that other groups will use this tool on their datasets, to identify prognostic cell subsets 

in other disease settings or cells associated with other continuous variables of interest.  
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Although other workflows and algorithms have been developed to identify cell populations 

of interest in cancer samples (reviewed in Table 1.1), many require a level of prior knowledge, 

which may not always be available, especially for solid tumors. For example, Phenograph and 

developmentally dependent predictor of relapse (DDPR) depend on maps of developmental 

lineage in healthy tissue, while Citrus and Cytofast are both supervised methods that require pre-

clustered data and samples prospectively assigned to a group, but RAPID enables analysis with 

continuous, ungrouped data [113, 114, 127, 178]. In studies of diseased human tissue, especially 

primary glial tumors where healthy samples are infrequently obtained for reference and the 

developmental lineage is largely quiescent in adults, it is difficult to anticipate the number of 

expected unique phenotypic subsets, making it particularly valuable for the analysis to be 

independent of prior knowledge. RAPID is designed to be free from supervision in the 

identification of the number of clusters and in the assessment of cluster abundance in tumors.   

 Additional exploration of RAPID that was outside the scope of this work includes 

substituting additional dimensionality reduction algorithms or clustering algorithms in the place of 

t-SNE and FlowSOM. UMAP is described above as an effective replacement for t-SNE, but other 

iterations of the t-SNE tool, such as opt-SNE, fit-SNE, or H-SNE were not explored [134, 138-

140]. Each of these dimensionality reduction tools has benefits that may be suitable for different 

datasets (Table 1.1). FlowSOM was chosen as the clustering tool in RAPID because it is widely 

recognized to be a useful and efficacious clustering algorithm [129, 130]. However, there are 

many other options that may be more appropriate for different datasets or in different applications. 

dbscan, Phenograph, and X-shift might all be reasonable next steps for substitution within the 

workflow [113, 123, 130, 135].  

 It was a challenge to find additional datasets on which to test RAPID, though I do not 

believe this is due to a lack of existing data. Rather, publications infrequently report both patient 

outcomes and make raw data files publicly available. Although I describe the results from a B-cell 

precursor acute lymphoblastic leukemia dataset analyzed using RAPID, I was unable to procure 
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additional mass cytometry datasets for further validation [114]. However, as RAPID is freely 

available on the GitHub, research groups that have such datasets and access to variables of 

interest (e.g., patient outcome) can use this tool immediately. Additionally, RAPID was designed 

around a test case of mass cytometry data but is intended to work well for any single cell data. 

Such datasets include single cell RNA-seq studies and high dimensional imaging studies, 

including imaging mass cytometry (IMC), multiplexed ion beam imaging (MIBI), or highly 

multiplexed immune-fluorescence imaging [118, 119, 249]. These types of imaging modalities 

have been increasingly used in recent years, especially in cancer studies. One of the benefits of 

these technologies is the spatial information that is retained by studying intact tissue. Distance 

from features of interest (for example the V-SVZ) is a continuous variable that would be very 

amenable to analysis by RAPID.  In this way, phenotypes of cells enriched either near to or far 

from the ventricular surface in brain tumors could be assessed [118].  In other cancers, features 

of interest may include distance from blood vessels, a hypoxic or necrotic core, or the stem cell 

niche of the tissue of origin. Therefore, the application potential of RAPID is quite broad, 

encompassing various diseases, clinical features, and data types.  

 

 

GNP and GPP cells 

 RAPID was applied to glioblastoma mass cytometry data to identify positive and negative 

prognostic cell types, named GPP and GNP respectively. These cells and their respective 

phenotypes were novel findings that had not previously been described in gliomas. The GNP and 

GPP subsets correlated with survival, independent of the effects of other widely accepted 

prognostic factors (age [171, 172], MGMT promoter methylation status [10, 173], and treatment 

including extent of surgical resection [174, 175], therapy with temozolomide [2], and radiation 

[176, 177]). As noted in Chapter II, some aspects of the GNP phenotype were consistent with 

previous findings. S100B and SOX2 are widely expressed in gliomas, and as might be expected, 
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the combination of a stem cell marker and an astrocyte protein is indicative of an aberrant 

phenotype [181, 203, 204, 272]. Additionally, the combination of p-S6, p-STAT3, and p-STAT5 

signaling was of note, as it provides a potential starting point for therapeutic intervention [99]. P-

STAT5, specifically, has not previously been identified as a negative prognostic feature in patient 

samples. An important part of the GNP cell identity was that the cells specifically lacked EGFR, 

GFAP, and CD44. On the other hand, EGFR, and to a lesser extent CD44 and GFAP, were 

important defining features of the GPP phenotype, in combination with lower phospho-signaling 

patterns. This was interesting for several reasons. EGFR and CD44 were previously identified to 

be critical to defining different molecular subclasses based on bulk tumor sequencing analysis 

[28]. Further, the question of the prognostic significance of EGFR in glioma outcomes has 

generated a large and inconclusive body of work [194-196]. Studies report conflicting results, 

including no association with outcome, association with worse outcome when measured at 

recurrence, and moderate negative impact on outcome in some studies of primary samples. 

These findings are at odds with the results reported here, though that is not completely surprising. 

Many of the aforementioned studies were conducted using bulk tumor samples, or focus on copy 

number analysis and gene expression analysis [28, 164]. The study reported in Chapter II is the 

first of its kind to examine protein expression in single glioma cells and to consider multi-

dimensional phenotypes when identifying prognostic features. However, this discrepancy is an 

excellent starting point for further investigation into the GNP and GPP cells identified by the work 

in this dissertation. 

 First, much of the prior work in gliomas and glioblastoma has been focused on gene 

expression and DNA alterations. Therefore, it would be very informative to close the information 

loop of DNA, RNA, and protein in tumor samples generally, as well as specifically with the GNP 

and GPP populations. Using RNA-seq information, the molecular subclass to which tumors with 

high GNP or high GPP content belong could be determined. Even more important would be to 

sequence single cells in the GNP and GPP clusters to determine whether these cells fall into any 
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of the previously defined transcriptional classes [28, 37, 47, 48]. This would also help resolve 

whether alterations in key genes, such as EGFR, or gene expression levels are translating to the 

protein level. Furthermore, in my work, EGFR protein was detected on the cell surface (in mass 

cytometry) or via the c-terminal domain (immunohistochemistry). This does not include specific 

measurement of the common EGFR mutant, EGFRvIII [273]. Sequencing studies could lend 

insight into the expression of this protein in either the GNP or GPP compartment. Given its 

previously described co-expression with wild type EGFR, one would expect to find it in GPP cells, 

however, its expression is generally associated with poor outcomes, suggesting EGFRvIII may 

be enriched in GNP cells [273, 274]. Sequencing studies would also help tease out the impact of 

SOX2, a stem cell transcription factor, and phospho-STAT signaling on gene expression. These 

proteins, through their transcription factor functions, could be driving changes in the proteome 

and thus contribute to the maintenance or transition of GNP cells in a specific cellular state. Such 

cell states, and transitions between them have been increasingly described in the field over the 

past few years [47, 48, 183].If this is the case, that SOX2 or STAT proteins are driving a more 

aggressive or treatment resistant phenotype, downstream effectors whose expression are 

controlled by these transcription factors may be ideal therapeutic targets.  

 Another advance that would push this work forward would be the development of a sorting 

method for isolating GNP and GPP cells. It may be possible to sort live GPP cells using EGFR 

and CD44, but the distinctive features of GNP cells described here are all intracellular, precluding 

live cell sorting at this time. Sequencing to determine other enriched features may highlight cell 

surface targets that could be used to isolate these cells, a strategy employed in other studies [47]. 

Once live cells are isolated, several interesting questions can be interrogated. First, it is known 

that cells grown in culture can vary dramatically from their tumor of origin or the phenotypes 

displayed in vivo [191, 275, 276]. The stability of the GNP and GPP phenotypes in vitro would be 

important information for determining the utility of in vitro experiments. If one were to assume that 

the phenotypes could be preserved in culture, the impact of therapeutics on cell survival, 
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proliferation, and phenotypes could be interrogated. For example, an interesting question would 

be to uncover the plasticity of the GNP phenotype, especially when GNP cells are challenged with 

small molecule inhibitors against p-STAT3, p-STAT5, and p-S6. GNP cells may shift to other 

phospho-signaling cascades to survive such an onslaught or alternatively, be eliminated [99]. If 

cells cannot be outright eliminated, perhaps such a treatment can shift the cells to a less 

aggressive or less harmful phenotype. A culture system that allows researchers to test new 

therapeutics, or new combinations of available reagents would be incredibly powerful. 

Furthermore, this type of system could be employed to co-culture glioma cells with immune cells, 

an increasingly important area of investigation in glioma biology, especially in light of the result 

that immune cell abundance was correlated with GNP and GPP abundance. I would expect that 

GNP cells would have a negative impact on the health of immune cells, while GPP cells would 

tolerate immune presence. These types of interactions would be incredibly important for predicting 

the efficacy of immunotherapies in different patients.  

 If the GNP or GPP cells cannot be maintained in cultures (either they perish outside of the 

in vivo environment or they change phenotypes on plastic culture dishes), they may be able to be 

propagated in patient-derived xenograft models (PDXs). In this case, questions about 

tumorigenicity, tropism to the V-SVZ, and response to therapies in vivo may be addressed. It 

would also permit analysis of the stem-like potential of each of these populations. If xenografts 

derived from GNP cells are made entirely out of GNP cells, it suggests that this population does 

not contain a cell that can repopulate the multitude of phenotypes observed in human patient 

tumors. The same would be true for a GPP-derived xenograph that consisted entirely of GPP 

cells. However, if many cell types are observed, it would lend credence to the idea that these 

populations are plastic and able to generate a number of diverse phenotypes. This capacity has 

been shown for many glioblastoma cell subsets identified in previous work [37, 39, 47].  

A critical question regarding the GNP and GPP cells is whether they are preserved in 

recurrent tumors. Currently, recurrent GBMs are rarely resected because these resections have 
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not been demonstrated to be particularly beneficial for most patients, and because recurrent 

tumors are more likely to be multifocal and infiltrative, complicating the surgical process [13, 277, 

278]. Additionally, at recurrence, patients have a lower Karnofsky Performance Status (an 

indicator of overall health), making additional surgeries riskier. For this reason, second, third, or 

even fourth resections are much less common than primary, untreated tumors, and the 

composition of such resected samples is poorly understood. GNP and GPP cells were identified 

in pre-therapy, untreated patient samples, suggesting that these phenotypes are linked to 

biological mechanisms of therapy response or tumor detection by the immune system. It would 

be very informative to collect recurrent samples, perhaps in collaboration across multiple 

institutions to achieve a meaningful sample size, to determine if the GNP and GPP phenotypes 

persist in recurrent, post-treatment samples. If GNP subsets have the capacity to evade therapy 

and retain their active proliferation properties, recurrent tumors would be expected to contain 

higher proportions of GNP cells and have a more uniform phenotype. Although loss or gain of 

genetic aberrations post-temozolomide and radiation therapies has been investigated, little is 

known about signaling in recurrent tumor cells and thus it is unclear if clonal evolution and/or a 

shift in activated phospho-proteins is necessary for tumor cell survival and repopulation.  I would 

anticipate that the GNP phenotype would persist and be more prevalent in recurrent samples 

compared to primary samples. However, there is certainly the possibility that an entirely new 

phenotype emerges due to the influence of tumor debulking, radiation, or chemotherapy [279, 

280]. If the GNP phenotype does persist, it may reinforce the value of aggressively targeting this 

cell type. If new phenotypes emerge, the role of SOX2 and the STAT proteins as mediators of 

transcription may be responsible for the shift in cell state.  

In Chapter II, I used RAPID to uncover the GNP and GPP cells in patient samples. 

However, there is much to be learned about these populations and how knowledge of their 

existence can change how patients are cared for. I am optimistic that this work is the foundation 

for future studies that can answer some of the questions above.  
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Mutant protein detection in brain tumors 

 In Chapter III, I describe the detection of the mutant IDH1 protein, IDH1 R132H. Using a 

combination of techniques common in flow cytometry and immunohistochemistry, the protein of 

interest was detected in control cell lines and FFPE tissue from patient samples. However, in 

dissociated patient samples, the antibody displayed unexpected and non-specific staining 

patterns. Extensive validation and testing suggest that this is not due to alterations in the antibody 

structure itself after conjugation to a heavy metal (for mass cytometry) or to a fluorophore (for 

fluorescence flow cytometry). Using secondary antibodies to detect the conjugated versions 

provides evidence that they are fully functional in control cell lines. Therefore, additional 

explanations for its non-specific performance in patient samples must be considered. 

First, the preparation of the glioma patient samples may be altering an epitope that 

subsequently becomes available for antibody binding. Thus, although optimization of patient 

sample preparation was an important part of my dissertation work, our current protocol may not 

be ideal for detection of this specific mutant protein (Appendix A) [121]. Alternative preparation 

strategies should be considered, such as the commercially available gentleMACS™, avoiding 

cryopreservation, or additional enzymatic conditions. Another consideration is the difficulty in 

assessing unsorted patient samples via fluorescence flow cytometry. In our hands, we see an 

abundance of debris in glioma samples run through the fluorescence cytometer and, compared 

to cell lines, the cells in tumors are irregular in shape and size, both of which contribute to intrinsic 

fluorescent signal. This makes the platform challenging to use to analyze samples that have not 

been previously enriched for cells of interest.  

 The current inability to use the IDH1 R132H antibody on dissociated samples is contrasted 

by the success of FFPE-DISSECT (FFPE-disaggregation for intracellular signaling in single 

epithelial cells from tissue) on glioma tissue samples. FFPE-DISSECT was designed with 

epithelial tissues in mind, as indicated in the name, so its application to brain tissue is a significant 

advance [155]. In the work described above, FFPE-DISSECT was leveraged to detect IDH1 
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R132H using fluorescence flow cytometry. However, FFPE tissue is also highly amenable to IMC, 

allowing many antigens to be detected at one time in single cells [250]. Knowing that the antibody 

can be conjugated to a heavy metal and that it is specific for mutant tumors in FFPE tissue 

suggests that IMC would be a viable option in this situation. IMC provides many of the same 

advantages as mass cytometry, albeit, at a lower throughput of cells. However, spatial information 

would be retained unlike in dissociated samples.  

Careful examination of possibly rare cancer cells in the infiltrative edges of patient samples 

has the potential to reveal novel biology. By measuring IDH1 R132H in FFPE tissue, the cancer 

cells could be distinguished from the non-malignant surrounding.  The abundance of IDH1 R132H 

positive cells that have infiltrated beyond the radiological border is currently unknown, as is the 

potentially distinct biology of these more infiltrative cells. Measuring multiple parameters such as 

stem cell-like markers, metabolic factors, or intracellular signaling molecules using FFPE-

DISSECT or IMC could illuminate how these cells differ from tumor bulk and how they may be 

specifically targeted. 

The work described in Chapter III highlights the importance of extensive and thorough 

validation of antibody staining conditions, titrations, and testing on a variety of controls (in our 

case, cell lines, peripheral blood mononuclear cells, and glioma patient samples). Although many 

in the flow cytometry community have been aware of the challenges of antibody-based work, 

recent attention has been directed specifically at antibody validation and titration [228]. By 

reporting both the positive and negative results in this dissertation, I hope to provide a roadmap 

for others seeking to validate antibodies in new contexts and for those observing unexpected 

results.  
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V-SVZ contact and glioma biology  

 In Chapter IV, I explore the mass cytometry data first introduced in Chapter II, to 

understand a phenomenon observed in many groups, including our own: patients presenting with 

a glioblastoma that has radiographic contact with the V-SVZ perform worse than patients whose 

tumors present with no evidence of radiographic V-SVZ contact [61, 232].  Although this 

phenomenon is well accepted in the field, a mechanism for this observation remains elusive. 

Previous work by our group indicated that there are no discernable differences in gene expression 

profiles or DNA alternations between these two patient groups [67]. Since gene expression does 

not always reflect protein expression and mass cytometry provides an opportunity to measure 

post-translational modifications, I believe mass cytometry data analysis is a valuable addition to 

this field. I was surprised that despite the myriad of analysis approaches applied, no statistically 

significant differences between V-SVZ contacting and non-contacting tumors was observed in this 

dataset. Individual features were not significantly different, nor were abundances of cell clusters 

first introduced in Chapter II. One interesting finding was that the data analysis tool Citrus was 

able to identify two clusters that were different between the two groups, with one cluster in 

particular resembling the previously described GPP phenotype. This cluster was more abundant 

in non-contacting tumors, perhaps hinting at a mechanism that explains the better outcomes 

observed for non-contacting tumors.  

 An interesting trend uncovered by MEM, demonstrated that V-SVZ contacting tumors 

generally had higher basal phosphorylation than non-contacting tumors. This did not rise to the 

level of statistical significance, but it does suggest that the ability to signal through pro-survival, 

proliferation, or migration pathways is perhaps enhanced by contact with the V-SVZ [70]. As 

outlined in Chapter I and Chapter IV, the V-SVZ contains a multitude of unique cell types that, in 

healthy brain tissue, are important for maintaining the neural stem cell niche [281]. The factors 

that these cells express or secrete could be co-opted by tumor cells in close proximity to facilitate 

escape from therapy and repopulation of the tumor after treatment [50]. One way to address the 



177 
 

potential for these cells to signal in response to V-SVZ-derived factors is to stimulate cells ex vivo 

with factors of interest. In such a scenario, glioblastoma cells from patient samples would be 

exposed to either specific factors in isolation or combinations in conditioned media or 

cerebrospinal fluid. Following stimulation, measurement of phospho-proteins of interest could be 

performed using flow cytometry. Mass cytometry is likely to be best suited for this goal, due to the 

absence of autofluorescence issues and the capacity to measure more features at a single time.  

One hypothesis is that cells from tumors contacting the V-SVZ will have increased signaling 

through key phospho-proteins including p-S6, p-STAT3, p-STAT5, and p-Src after stimulation with 

niche factors than cells from non-contacting tumors.  Alternatively, cells from both tumors may 

respond equivalently, suggesting that it is access to these factors that is variable between 

contacting and non-contacting tumors. One way to address this question would be to implant cells 

from contacting or non-contacting tumors either proximal or distal to the V-SVZ in mouse, 

orthotopic, patient-derived xenografts. By isolating the resulting tumor cells from such xenografts, 

one would expect to find that cells closer to the V-SVZ would be actively signaling and that cells 

further from the niche to would be less active through the measured signaling pathways.   

 This type of analysis could be facilitated by IMC or highly multiplexed immunofluorescence 

imaging [249, 250]. As mentioned above, mass cytometry, though very useful for some 

applications, does not preserve location information. Cell position could be very informative in 

several contexts, not the least of which is in examining V-SVZ influence on GBM. First, IMC may 

help confirm that phenotypes observed in mass cytometry data are representative of in vivo 

phenotypes. Samples for IMC need not be dissociated, a process that almost certainly alters the 

biology of protein expression and phosphorylation in some cells. Therefore, data derived from 

IMC may better reflect the state of cells within the tumor prior to surgery. Location specific 

information would also allow us to investigate whether the cells that are in direct contact with the 

V-SVZ are different from cells in the same tumor that are not in contact with the niche. If access 

to factors is truly important, we would expect to see that cells far away from the V-SVZ resemble 
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cells from non-contacting tumors. However, if contact with the V-SVZ fundamentally alters the 

biology of the tumor, even cells further from the V-SVZ within the sample may exhibit similar 

phenotypes.  

 Another important area for exploration is the role of the immune system in glioblastoma 

tumors, specifically in the context of V-SVZ contact. While the results reported in Chapter IV 

demonstrate that total CD45+ immune cells are not enriched in either contacting or non-contacting 

tumors, I did not explore the abundance or activity of immune cell subsets. Preliminary data from 

our group suggests that specific immune cell subsets are preferentially abundant in contacting 

tumors compared to non-contacting tumors, and that like the glioblastoma cells, these immune 

cells may have differential capacities for signaling. In depth analysis of such subpopulations can 

illuminate which types of cells are present in each tumor, the pro- or anti-tumor activity of each 

subset, and avenues for manipulation that may result in more efficacious applications of 

immunotherapies.  

 Further investigation into the biologic mechanism of differing outcomes between patients 

with contacting tumors compared to non-contacting tumors will be critical to appropriately treat 

these groups. The work described in this dissertation builds on previous work from our own group 

and others that describe these two tumor groups and generates data to support the conclusion 

that basal differences in DNA, RNA, and proteins are not are the root of the differences [62, 67]. 

This opens the door to more complex interactions between tumor cells and non-malignant niche 

cells that can be explored using the tools developed here and elsewhere. 

 

 

Concluding remarks 

 The field of glioblastoma research is ripe for application of new technologies and 

approaches to innovate solutions that will improve patient lives. Collectively, the field has been 

implementing single cell technologies and ex vivo models to better understand cell phenotypes 
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and behaviors [37, 47, 100, 189, 190]. This dissertation builds on this work by developing 

protocols to prepare glioblastoma for mass cytometry analysis, a custom antibody panel for 

interrogation of brain lineage proteins, stem cell makers, and post-translational modifications, a 

new data analysis algorithm to uncover prognostic cells, and techniques for detecting cancer-

lineage specific features [98, 121]. Using these tools, I describe glioma negative and positive 

prognostic cells, as well as interrogate differences in tumors that contact the neural stem cell 

niche (the V-SVZ) compared to tumors that do not contact the V-SVZ. Not only will these 

discoveries advance further glioblastoma research, but the tools can also be implemented across 

a variety of diseases and data types. RAPID specifically has the capacity to change how 

individuals view their high dimensional data from flow cytometry, RNA sequencing, or imaging 

studies. Future studies investigating single cell phenotypes and responses to current or novel 

therapies will be crucial for development of new strategies to treat patients.  
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Preface  

 

 This work has been modified from its published form [121] in this Appendix to include 

staining protocols developed and described in Chapter III. All of the tumors used for mass or 

fluorescence flow cytometry in this dissertation (excluding FFPE samples as noted) were 

prepared as described in this chapter. Furthermore, the steps outlined in basic protocol 2 were 

those for all of the fluorescence and mass cytometry experiments.  

 

 

https://doi.org/10.1002/cpmb.37
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Abstract 

 

 Flow cytometry, encompassing fluorescence and mass cytometry, is a single cell biology 

technique that can sample >500 cells per second and measure 2-45 features per cell. This 

combination of technical assets has powered a series of recent cytomic studies where 

investigators used fluorescence or mass cytometry to measure protein and phospho-protein 

expression in millions of cells, characterize cell types in healthy and diseased tissues, and reveal 

novel, unexpected cells. However, these advances largely occurred in studies of blood, lymphoid 

tissues, and bone marrow, since the cells in these tissues are readily obtained in single cell 

suspensions. This Appendix establishes a primer for single cell analysis of solid tumors and 

tissues and has been tested with mass cytometry, and whose fundamentals are applicable to 

fluorescence-based studies as well. The cells obtained from these protocols can be fixed for 

study, cryopreserved for long-term storage, or perturbed ex vivo to dissect responses to stimuli 

and inhibitors. 

 

 

Introduction 

 

One key method for understanding a tissue or organ is to dissect and identify the diverse 

cells that comprise it. Flow cytometry excels at quantifying the abundance and protein expression 

signatures of hundreds to thousands of cells per second [282] and holds great promise for 

understanding diseases like cancer, where altered protein expression and signaling activity in 

rare cell subsets can contribute to oncogenesis and drive treatment resistance [149, 150]. The 

ability of flow cytometry to quantify proteins on each of millions of cells and reveal signaling in 

rare, 1-in-10,000, cells has made it indispensable to modern immunology and clinical 

hematopathology, where cells in suspension are readily obtained. Fluorescence flow cytometry 
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(FFC) is a decades old technology based on detection of fluorescent molecules in single cells 

[283]. Early experiments measured 2-4 features, while newer cytometers aim to reach up to 50 

parameters. Mass cytometry (MC) is a newly developed form of flow cytometry with the ability to 

measure 35 or more features at a rate of 500 or more cells per second [112, 147, 159, 282, 284]. 

This expanded detection capacity is ideal for characterizing the diverse cells present in human 

tumors, which typically include endothelial cells, epithelial cells, fibroblasts, immune cells, and 

malignant cells [98]. 

Flow cytometry provides outstanding statistical power to detect rare cells and to quantify 

the cellular identity of millions of cells, compared to other techniques that are limited to hundreds 

or thousands of cells [149, 282, 284]. This technology has been implemented in studies of donor 

and patient cells that are obtained as a suspension, such as blood and bone marrow [112, 124, 

167, 285-288] or that can be disaggregated from lymphoid structures by mechanical force alone 

[115, 152, 289-291]. Clinical diagnoses of blood malignancies use fluorescence flow cytometry 

characterization of cell surface marker expression, as well as cell subset quantification [292-295]. 

Additionally, flow cytometry has been used clinically to identify minimal residual disease and to 

detect disease progression in leukemia [125, 296, 297]. Fluorescence flow cytometry has also 

been applied to studies of solid tissues and tumors for research purposes [39, 298-302]. 

In addition to their ability to characterize cell surface markers, flow cytometry technologies 

allow simultaneous detection and quantification of intracellular targets in individual cells [150, 151, 

219]. Commercially available fluorescence flow cytometers generally measure 8 to 12 targets per 

cell using target-specific antibodies conjugated to individual fluorophores [223]. The number of 

targets is limited due to the overlap of emission spectra of different fluorophores, although 

advances in flow cytometry technology continue to increase this number [303, 304]. Mass 

cytometry is a newer flow cytometry–based technology that allows detection of more than 35 

targets in individual cells. Instead of conjugation to fluorescent dyes, mass cytometry antibodies 

are conjugated to isotopically pure heavy metals. Specifically, fundamental elements of mass 
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cytometry include 1) the staining of individual cells with isotope-tagged antibodies to detect 

specific cellular targets; and 2) quantification of the isotopic signal via time-of flight, as in other 

forms of mass spectrometry, which indicates specific antibody binding [103, 105, 112]. Therefore, 

the abundance of a specific metal isotope in each cell corresponds to the abundance of a specific 

cellular target detected by the antibody. The use of metal isotopes and time-of-flight quantification 

in mass cytometry results in relatively little spectral overlap between the channels distinguished 

by isotopes [286, 305, 306]. Additionally, multiple cellular targets of interest can be measured 

simultaneously, and the numbers are greater than those routinely measured in current 

fluorescence-based cytometry [105, 159, 282, 284]. Mass cytometry has the potential to track 

evolving cell subsets and to measure features typically associated with one cell type (e.g., mature 

immune cell or stem cell associated proteins) on all the cells in a sample [147, 307, 308]. This 

type of single-cell systems biology has the potential to reveal unexpected, clinically relevant cell 

types and measure a wealth of features on cells without the need to return to a sample for repeat 

measurements [308] [113, 284, 309, 310].  

Mass cytometry–based characterization of human bone marrow [112], blood [311], and 

tonsil [290] cell subsets has been accomplished in prior studies and described in protocols [167]. 

However, mass cytometry has just recently been developed and applied in solid tissues and 

organs [158]. One of the major limitations for flow cytometry is the need to generate a suspension 

of viable single cells derived from the tissue of interest. Although fluorescence flow cytometry has 

been used to study some solid tissues and cancers, the protocols used to derive viable single 

cells, even from the same organs, can vary significantly between studies [312-314]. Basic 

Protocol 1 below has been optimized to yield viable cells and to preserve known cell subsets from 

a variety of human tissues, including lymph nodes, gliomas, melanomas, and small cell lung 

cancer (SCLC) patient-derived xenografts (PDXs) [98]. It is thus suitable for preparing single cells 

for fluorescence cytometry, mass cytometry, and other applications requiring isolated single cells. 

We also provide a protocol detailing cellular immunostaining for detection of cell-surface and 
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intracellular epitopes in fluorescence and mass cytometry analysis of cells from human tonsils, 

gliomas, and melanomas (Basic Protocol 2), and a section in the Commentary describing 

troubleshooting approaches and other considerations for these experiments [124, 125, 145]. 

 

Caution: When working with human cells, appropriate biosafety practices must be followed. 

Note: All solutions and equipment coming into contact with living cells must be sterile, and aseptic 

technique should be used accordingly. 

 

 

Basic protocol 1: Preparation of viable single cells from human tissue and tumors 

 

This protocol describes preparation of single-cell suspensions from human tissues. It has 

been experimentally tested to preserve cell subsets detected using imaging platforms and 

maximize cell viability for cells from human tonsils, glioma tumors, melanoma tumors, and small 

cell lung cancer (SCLC) patient-derived xenografts (PDX) [98]. Human tonsils, glioma tumors, 

and melanoma tumors were resected from patients and transported directly to the laboratory 

(within 1 hr after collection for human gliomas and melanomas, and within 4 hr after collection for 

human tonsils). SCLC PDXs were flank xenografts in immunocompromised mice, generated from 

patient specimens. When grown as flank tumors, these xenografts form a solid tissue about 1 to 

2 cm in diameter. SCLC PDXs were transported to lab within 1 hr after collection. We expect that 

this protocol will work in other human tissue and cancer types, as well as solid tissues from other 

species. However, it is important to note that 1) choice of enzymes, and 2) total dissociation time 

need to be optimized before routine use of the protocol in tissues not indicated here. 

 

 



185 
 

Materials 

 

1. Tissue sample 

2. Phosphate-buffered saline (PBS; Corning/Mediatech, cat. no. 21040CV,), room 

temperature 

3. Experimental media: 

a. For glioma: DMEM/F12 + GlutaMax (Gibco/Life Technologies, cat. no. 10565018) 

with a defined hormone and salt mix (Reynolds, Tetzlaff, & Weiss, 1992) and 50 

µg/ml gentamicin sulfate (Corning/Mediatech, cat. no. 30-005-CR) 

b. For melanoma: MEM (Corning/Mediatech, cat. no. 10010CV) with 10% FBS 

(Thermo Fisher Scientific, cat. no. 26140079) and 100 U/ml penicillin/100 µg/ml 

streptomycin (add from 100X penicillin-streptomycin solution, GE Healthcare, cat. 

no. SV30010) 

c. For tonsils: RPMI 1640 (Corning/Mediatech, cat. no. 10040CV) with 10% FBS 

(Thermo Fisher Scientific, cat. no. 26140079) and 100 U/ml penicillin/100 µg/ml 

streptomycin (add from 100X penicillin-streptomycin solution, GE Healthcare, cat. 

no. SV30010) 

4. 20X collagenase II: dilute collagenase from Clostridium histolyticum (Sigma, cat. no. 

C6885) to 2500 CDU/ml (20 mg/ml) in PBS (store at –80C) 

5. 100X DNase I: dilute DNase I from bovine pancreas (Sigma-Aldrich, cat. no. DN25) to 

10,000 Kunitz Units/ml in PBS (store at –80ºC) 

6. ACK lysing buffer (Lonza, cat. no. 10-548E) 

7. Trypan blue (Hyclone, cat. no. SV30084.01, prepared as recommended by manufacturer) 

8. DMSO (Catalog no. BP231-1, Fisher Scientific, MA) 

9. 15-ml (Corning Falcon, cat. no. 430055) and 50-ml (Corning Falcon, cat. no. 430829) 

conical tubes  
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10. Benchtop centrifuge with swing-out rotor (Sorvall model ST 16; Thermo Scientific) 

11. 60-mm petri dish (Fisher Scientific, cat. no. FB0875713) 

12. P1000 plastic pipet tips with narrow end cut to make a wide opening (diameter 2 to 3 mm) 

13. Scalpels with blade no.10 (Fisher Scientific, cat. no. 12-460-451) 

14. Incubator set at 37°C, 5% CO2 

15. Nutating platform placed inside incubator, set to 18 rpm (Fisher Scientific, cat. no. 05-450-

213) 

16. 70-µm (Corning Falcon, cat. no. 431751) and 40-µm (Corning Falcon, cat. no. 431750) 

cell strainers sized to fit 50-ml conical tubes 

17. Inverted phase contrast microscope for cell culture (use 10X objective magnification for 

quantifying cell viability) 

18. 1.8-ml cryogenic tubes with cap (Thermo Fisher Scientific, cat. no. 377267) 

19. Additional reagents and equipment for counting viable cells by trypan blue exclusion  

 

 

Perform mechanical dissociation 

This protocol is for preparation of single cells from human tissues from surgical resections. 

Samples should be placed in appropriate experimental medium (see below), phosphate-buffered 

saline (PBS), or normal saline (0.9% NaCl), immediately after surgical resection. The volume of 

medium or normal saline should be enough to immerse the entire sample (Figure A.1). Ideally, 

samples should be transported directly to lab for preparation at room temperature (23°C). 

1. Transfer pieces of human tissue from surgery to a cell preparation laboratory while 

keeping the sample submerged in room temperature PBS (see Time Considerations). 

2. Once in lab, transfer tissue pieces and PBS to one or more 50-ml conical tubes using cut 

P1000 tips, ensure tubes are well balanced, and centrifuge 5 min at 100 x g, room 

temperature, to pellet cells and tissue pieces. 



187 
 

3. Carefully discard supernatant by pipetting and resuspend tissue in 5 ml or more of warm 

(37°C) experimental medium, as needed to cover tissue.  

a. For larger pieces of tissue (larger than 1 cm3), use multiple rounds of mincing as 

in steps 4 and 5.  

b. Dead cells will not pellet effectively at 100 x g and will be present in the supernatant 

with other, non-cellular tissue components and secreted factors.  

c. Experimental medium may vary by cell type, as different cell types may have 

distinct nutrient and supplement requirements. For this protocol, media were 

selected based on established cell culture protocols for each cell type. 

Furthermore, if additional assays, such as a signaling response assay using 

phospho-specific flow cytometry [218, 315], are to be performed, it is important to 

test different types of medium for those specific assays. For example, to preserve 

lymphocyte signaling capability for subsequent detection by phospho-specific flow 

cytometry, medium containing FBS is superior to serum-free medium [152, 289, 

290]. Conversely, multiple growth factor supplements are added to the 

neurosphere culture medium to ensure growth of human glioma cells [275, 316]. 
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Figure A.1: Step-by-step illustration of tissue dissociation protocol. Surgically resected 
patient samples were transported in PBS, normal saline, or experimental medium at room 
temperature. Mechanical dissociation was followed by 1-hr enzymatic dissociation using 
collagenase II and DNase I (see text). ACK lysis was used to eliminate red blood cell 
contamination, prior to cell counting and cryopreservation or experiment. 
 

 

4. Transfer tissue and experimental medium into a 60-mm petri dish using cut P1000 tips. 

5. Mince tissue in experimental medium with scalpel to obtain 1 to 3 mm3 pieces. 

6. Transfer minced tissue and cells in experimental medium into 15- or 50-ml conical tubes, 

as dictated by the total volume of the cell and medium suspension, using cut P1000 tips. 

7. Centrifuge tissue and cells in experimental medium 5 min at 100 x g, room temperature. 

8. Discard supernatant by pipetting and add 4.7 ml of warm experimental medium. 

a. This volume of experimental medium leaves room for 300 µl of enzyme solutions 

in the next step, and is recommended for tissue that was originally 1 cm3 in size. 

For larger pieces of tissue, the volumes in steps 8 and 9 should be increased 

proportionately to match tissue size. For example, 9.4 ml of warm experimental 

medium would be used in step 8 for tissue that was originally 2 cm3 in size. 
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Perform Enzymatic Dissociation 

9. Add 250 µl of 20X collagenase II and 50 µl of 100X DNase I, and mix with serological 

pipet. 

a. The final concentrations of collagenase II and DNase I should be 1 mg/ml and 100 

Kunitz Units/ml, respectively. 

b. Collagenases II, IV, V, and XI displayed equivalent activity on tumor and tissue 

types tested [98]. 

10. Incubate the tube on a nutating platform (18 rpm) in an incubator (37°C, 5% CO2) for 60 

min.  

11. Remove tubes from the incubator and carefully triturate the cell suspension by pipetting 

up and down 25 to 50 times using a 10-ml plastic serological pipet. When complete, the 

cell suspension should look homogeneous and have no visible tissue pieces. 

12. Strain with a 70-µm cell strainer into a new 50-ml conical tube. 

13. Strain flow-through from step 12 with a 40-µm cell strainer into a new 50-ml conical tube. 

14. Wash by passing 10 ml of warm (37°C) experimental medium through the 40-µm strainer 

into the same tube. 

15. Centrifuge the collected strained cell suspension 10 min at 100 x g, room temperature, 

and discard supernatant by pipetting. 
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Figure A.2: Trypan blue stain for viable cell quantification. Trypan blue stain was used to 
quantify cell viability after mechanical and enzymatic dissociation. Representative images of 
dissociated human tissues including tonsil, glioma, and melanoma are shown. Red boxes show 
higher resolution of live (trypan blue–negative, white) and dead cells (trypan blue–positive, black) 
of each tissue type. Note that some pigmented cell types, such as melanocytes or neurons of the 
substantia nigra, can be brown or red and therefore appear dark in monochrome phase-contrast 
images. These cells should be distinguished from dead cells in counting. Scale bars = 100 µm. 
 

 

Remove RBC and quantify Viable Cells 

16. If pellet contains red blood cells or platelets, add 5 ml or more of ACK lysis buffer according 

to the manufacturer’s protocols, mix with a serological pipet, and leave at room 

temperature for 60 sec to allow for hypotonic lysis.  

17. Add 5 ml or more of warm experimental medium (the same volume used in step 16 for 

ACK lysis buffer, for a final 1:1 ratio), centrifuge 10 min at 100 x g, room temperature, and 

discard supernatant. 

18. Resuspend cells in warm experimental medium and count viable cells using trypan blue 

exclusion (Figure A.2). 

a. Cells are now ready to be prepared for mass cytometry analysis. If mass cytometry 

analysis is to be performed on a different day, or if the cells need to be preserved 
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for long-term storage, cryopreservation is required. This can be performed per a 

previously established protocol (Leelatian et al., 2015). In brief, pelleted cells 

should be resuspended in freezing medium (experimental medium with 10% 

DMSO) at a concentration of 10−15 x 106 cells/ml, aliquoted into cryopreservation 

tubes at 1 ml per tube, and fro en slowly at the rate of −1°C min in a −80°C free er 

before transfer into liquid nitrogen the following day. 

 

 

Basic Protocol 2: Preparation of cells for flow cytometry 

 

This section describes a protocol for immunostaining of single-cell suspensions derived 

from cell lines, human tissues, and tumors. Variations of the protocol presented in this Appendix 

was used for the studies presented in Chapters II, III, and IV. In this Appendix, tonsils, glioma 

tumors, and melanoma tumors are presented as examples. Using antibodies listed in Table A.1, 

this protocol allows characterization of immune cell subsets (CD45+) in tonsils, as well as 

infiltrating immune cells in glioma tumors and melanoma tumors. These antibodies allow 

characterization of immune cells into distinct groups: myeloid lineage (CD11b, CD11c, CD14, 

CD16, CD64, CD68, HLA-DR), B cell and plasma cell lineage (CD19, CD38, CD27, IgM, IgD, 

HLA-DR), and T cell lineage (CD3, CD4, CD8, CD8a, CD45RA, CD45RO). Additionally, 

antibodies that were specifically selected for identifying non-immune cell subsets in glioma (CD31, 

TUJ1, S100B, PDGFRα, c-MET, SOX2, CD24, Nestin, CD44, GFAP, αSMA, and CD56) and 

melanoma (CD31, β-catenin, S100B, vimentin, CD49F, cytokeratin, SOX2, Nestin, CD44, αSMA, 

and CD56) tumors were included. The antibodies described here are isotope-tagged antibodies 

for mass cytometry analysis. This protocol was adapted from previously established fluorescence 

flow cytometry protocols [167, 219, 317, 318]. 
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All new antibodies should be titrated prior to use with appropriate positive control cells that 

express the target of interest and negative control cells that are known to not express the target 

of interest. The goal of an antibody titration is to determine the optimal concentration of an 

antibody that separates the true signal of the positive control cells from any background or 

nonspecific signal observed in the negative control cells. Antibody titration is required for every 

combination of antibody clone, tissue preparation technique, and antibody conjugation. This 

extensive validation is necessary because clones can perform differently under different antigen-

exposure conditions, such as permeabilization of cells by detergent or alcohol, and protocols to 

conjugate fluorochrome or metal reporter tags to antibodies can change their binding properties. 

Examples of appropriate validation and titration have been published [218, 315, 317, 319]. For 

each cellular target that the user aims to detect, it must first be determined if the target is exposed 

on the cell-surface (i.e., extracellular) or present within the cell (i.e., intracellular). Most 

extracellular targets are detected with live cell staining (see “Stain viable cells to detect 

extracellular targets” below). However, if the target of interest is an intracellular target, it is 

especially important to optimize the permeabilization technique and reagents [218]. Examples of 

permeabilization reagents include citrate buffer with heat (Perm 1), saponin (Perm 2), methanol 

(Perm 3), ethanol, and Triton X-100, among many others. For the protocol described here, citrate 

buffer with heat (Perm 1; for IDH1 R132H antibody staining) or saponin permeabilization (Perm 

2; for SOX2 antibody staining) is used prior to methanol permeabilization (Perm 3; for staining of 

the remaining intracellular targets) in cell lines, human PBMC, glioma, and melanoma. 

 

 

Materials 

 

1. Perm 1: 10mM citrate buffer, pH 6.0 (heat-induced epitope retrieval: HIER) (Fisher 

Scientific, cat. no. BP327-500) in ddH2O 
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2. Perm 2: room-temperature 0.02% (w/v) saponin (Calbiochem, cat. no. 558255) in PBS 

3. Perm 3: ice-cold 100% methanol (Fisher Scientific, cat. no. A412-4) kept at −20°C until 

immediately prior to adding to cells 

4. Dissociated single cells (Basic protocol 1, or prepared as described below)  

5. Experimental media:  

a. For primary gliomas and gliomaspheres: DMEM/F12 plus GlutaMax (Gibco/Life 

Technologies, cat. no. 10565018) with a defined hormone and salt mix [211] and 

50 µg/ml gentamicin sulfate (Corning/Mediatech, cat. no. 30-005-CR) 

b. For melanoma: MEM (Corning/Mediatech, cat. no. 10010CV) with 10% FBS 

(Thermo Fisher Scientific, cat. no. 26140079) and 100 U/ml penicillin/100 µg/ml 

streptomycin (add from 100X penicillin-streptomycin stock solution, GE 

Healthcare, cat. no. SV30010) 

c. For tonsils and cell lines Ramos and Jurkat: RPMI 1640 (Corning/Mediatech, cat. 

no. 10040CV) with 10% FBS (Thermo Fisher Scientific, cat. no. 26140079) and 

100 U/ml penicillin/100 µg/ml streptomycin (add from 100X penicillin-streptomycin 

stock solution; GE Healthcare, cat. no. SV30010) 

d. For cell lines: Experimental media varies between cell types and sources, cell 

types used in this work are noted above. It is recommended to consult the ATCC 

for additional cell types. 

6. Base media: varies between cell types and sources. It is the media formulation without 

any added growth factors, supplements, or antibiotics. For example, DMEM/F12 plus 

GlutaMax for glioma cell lines. Alternatively, conditioned media, collected from the flask 

prior to Accutase® treatment can be used in the place of base media. 

7. Accutase® (Innovative Cell Technologies, Inc., cat. no. AT104) 

8. Optional: 100X DNase I: dilute DNase I from bovine pancreas (Sigma-Aldrich, cat. no. 

DN25) to 10,000 Kunitz Units/ml in PBS (store at –80ºC) 
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9. Staining medium: 1% (w/v) bovine serum albumin (BSA; Fisher Scientific, cat. no. 

BP9703100) in PBS 

10. Live Stain reagent mix: A combined solution of all relevant antibodies (antibody list in Table 

A.1)  

11. Phosphate-buffered saline (PBS; Corning/Mediatech, cat. no. 21040CV)  

12. 16% paraformaldehyde (PFA; Electron Microscopy Sciences, cat. no. 15710)  

13. HIER Stain reagent mix: A combined solution of all relevant antibodies (antibody list in 

Table A.1) 

14. Saponin Stain reagent mix: A combined solution of all relevant antibodies (antibody list in 

Table A.1)  

15. Methanol Stain reagent mix: A combined solution of all relevant antibodies (antibody list 

in Table A.1)  

16. 1X Four Elements Calibration Beads (Fluidigm, cat. no. 201078) 

17. 15-ml conical tubes (Corning Falcon, cat. no. 430055) 

18. Benchtop centrifuge with swing-out rotor (Sorvall model ST 16; Thermo Scientific)  

19. 5-ml round-bottom FACS tubes without cap (Corning Falcon, cat. no. 352052)  

20. Rotor adapters with round buckets that accommodate 5 ml FACS tubes (Thermo Fisher 

Scientific, cat. no. 75003680)  

21. 5-ml round-bottom FACS tubes with filter caps (Corning Falcon, cat. no. 352235) 
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Table A.1: Tissue-specific antibody panels 

Metal Antibody Clone 

Working 

Dilution 

Volume to use Sample type Staining condition 

conc 
(µg/mL) 

in 100 µL stain 
(µL) 

Ton Glio Mel Surf HIER Sap MeOH 

141Pr HLA-ABC W3-32 Fluidigm 1:200 0.5   ✓ ✓    

142Nd cCasp3 D3E9 Fluidigm 1:200 0.5 ✓ ✓ ✓    ✓ 

144Nd CD11b ICRF44 Fluidigm 1:200 0.5  ✓  ✓    

145Nd 
CD4 RPA-T4 Fluidigm 1:200 0.5 ✓   ✓    

CD31 WM59 Fluidigm 1:200 0.5  ✓ ✓ ✓    

146Nd 

IgD IA6-2 Fluidigm 1:200 0.5 ✓   ✓    

CD64 10.1 Fluidigm 1:200 0.5  ✓  ✓    

CD8a RPA-T8 Fluidigm 1:200 0.5   ✓ ✓    

147Sm β-catenin D10A8 Fluidigm 1:200 0.5   ✓    ✓ 

148Nd CD16 3G8 Fluidigm 1:200 0.5 ✓   ✓    

149Sm CD45RO UCHL1 Fluidigm 1:200 0.5 ✓ ✓ ✓ ✓    

152Sm TUJ1 TUBB3 50 1:100 1  ✓     ✓ 

153Eu 
CD45RA HI100 Fluidigm 1:200 0.5 ✓   ✓    

S100B 19-S100B 100 1:100 1  ✓ ✓    ✓ 

154Gd CD45 HI30 Fluidigm 1:400 0.25 ✓ ✓ ✓ ✓    

155Gd CD27 L128 Fluidigm 1:100 1 ✓   ✓    

156Dy Vimentin RV202 Fluidigm 1:200 0.5   ✓    ✓ 

159Tb 
CD11c Bu15 Fluidigm 1:200 0.5 ✓   ✓    

CD49F GoH3 100 1:100 1   ✓ ✓    

160Gd CD14 M5E2 Fluidigm 1:200 0.5 ✓   ✓    

161Dy 

CD19 HIB19 100 1:100 1 ✓   ✓    

PDGFRα 16A1 200 1:100 1  ✓  ✓    

Cytokeratin C-11 Fluidigm 1:200 0.5   ✓    ✓ 

162Dy c-MET L6E7 100 1:100 1  ✓  ✓    

163Dy SOX2 O30-678 100 1:100 1  ✓ ✓   ✓  

166Er CD24 ML5 Fluidigm 1:200 0.5  ✓  ✓    

167Er CD38 HIT2 Fluidigm 1:200 0.5 ✓   ✓    

168Er 
CD8 SK1 Fluidigm 1:200 0.5 ✓   ✓    

Nestin 10C2 100 1:100 1   ✓    ✓ 

169Tm CD44 BJ18 100 1:100 1  ✓ ✓ ✓    

170Er CD3 SP Fluidigm 1:200 0.5 ✓ ✓ ✓ ✓    

171Yb 

CD68 Y1/82A Fluidigm 1:200 0.5 ✓   ✓    

GFAP 1B4 25 1:100 1  ✓     ✓ 

IDH1R132H H09 100 1:100 1  ✓   ✓   

172Yb IgM MHM-88 Fluidigm 1:200 0.5 ✓   ✓    

173Yb αSMA Ab54723 50 1:100 1  ✓ ✓    ✓ 

174Yb HLA-DR L243 Fluidigm 1:200 0.5 ✓ ✓ ✓ ✓    

175Lu CD56 HCD56 50 1:100 1 ✓ ✓ ✓ ✓    

176Yb Histone H3 D1H2 Fluidigm 1:200 0.5 ✓ ✓ ✓    ✓ 
 

 
Conc = concentration; Ton = tonsil; Glio = glioma; Mel = melanoma; Surf = surface; HIER = heat-induced 
epitope retrieval Sap = saponin; MeOH = post-methanol; Fluidigm = use antibodies provided by Fluidigm 

 

 



196 
 

Prepare Antibody 

1. Example mass cytometry reagent mixes for healthy human tonsil tissue, glioma tumors, 

and melanoma tumors are shown in Table A.1 and separated according to staining step. 

Prepare reagent mixes separately for each staining step: live cell staining (Live), staining 

after heat-induced epitope retrieval with citrate buffer (HIER Stain) staining in 0.02% 

saponin (Saponin Stain), and staining after methanol treatment (Methanol Stain).  

a. Antibodies for mass cytometry are pre-labeled with metal isotopes. Many of 

these antibodies are commercially available (see Table A.1). For antibodies that 

are not commercially available in isotope-tagged formats, they can be labeled 

with a metal isotope using a commercial conjugation kit [320]. The isotope-

labeled antibodies can then be used for immunostaining by following the protocol 

described below 

b. Adaptation of this protocol for phospho-flow should detect cell surface proteins 

following fixation as described in “Live cell staining” even though the cells are no 

longer viable, as described by [167, 218, 315].  

c. This protocol does not use barcoding, but that technique can be useful in 

addressing potential batch effects from staining and collecting data at different 

times [321-323]. 

 

 

Collect viable cells for flow cytometry 

2. Samples of different origins will require different collection protocols. 

a. For tissue samples, follow Basic Protocol 1 above  
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b. For adherent cells, remove media by aspirating or manual pipetting and add 2 ml 

Accutase®1 per T75 flask or 100 mm dish and incubate at 37° (5% CO2) for 10 

minutes. Triturate Accutase® up and down with a P1000 or 5 to 10 ml pipet to 

dislodge cells and collect cells in a 15 ml conical. Rinse plate with experimental 

base media to remove residual cells using a P1000 or 5 to 10 ml pipet. Do not 

exceed total volume of 15 ml. Spin down collected cells at 200 x g for 10 

minutes. Aspirate off supernatant and resuspend in desired volume of base 

media and count cells using a hemocytometer and Trypan Blue 

c. For suspension cells, collect cells in media using pipettor and transfer to 15 ml or 

50 ml conical (use an appropriate conical to fit entire volume). Spin down 

collected cells at 200 x g for 10 minutes, aspirate off supernatant and resuspend 

in desired volume of base media. Count cells using a hemocytometer and Trypan 

Blue.  

d. For spheroids, collect spheres in media using pipettor and transfer to 15 ml or 50 

ml conical (use an appropriate conical to fit entire volume). Spin down collected 

spheres at 200 x g for 10 minutes. Aspirate off supernatant and resuspend the 

pelleted spheres in 2 ml of Accutase® per T75 flask or 100 mm dish and 

incubate at 37° (5% CO2) for 10 minutes. Triturate the pellet in Accutase® 

vigorously, approximately 20 times, with a P1000 to disrupt spheres. Resuspend 

to total volume of 10 ml in base media and spin down at 200 x g for 10 minutes. 

Aspirate off supernatant and resuspend cells in desired volume of base media. 

Count cells using a hemocytometer and Trypan Blue 

 
1 Accutase® is preferred for gliomaspheres or in cases where extracellular targets are to be detected. If only 
intracellular targets are to be measured, Trypsin or other general proteases are suitable.  
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e. For cryopreserved cells, remove cells from liquid nitrogen and immediate transfer 

to 37° bead or water bath to quickly thaw (approximately 2-4 minutes). Transfer 

cells from cryovial to 15 ml conical and add base media to a total volume of 10 ml. 

The goal is to dilute and remove DMSO as quickly as possible after thawing. 

Addition of DNase I may be helpful upon sample thawing to preserve viability. Use 

the same concentration of DNase as used during tissue dissociation (see Basic 

Protocol 1, step 9). Specifically, resuspend the cells in this step in 9.9 ml of warm 

experimental medium, add 100 µl of 100X DNase I to the cell suspension, and 

proceed to the next step. Spin down at 200 x g for 10 minutes. Aspirate off 

supernatant and resuspend cells in desired volume of base media. Count cells 

using a hemocytometer and Trypan Blue. 

 

 

Prepare cells for flow cytometry staining 

3. Aliquot single cells to individual FACS tubes2. If stimulation or drug treatments are to be 

included, they should be performed at this time according to user experimental design 

and as noted in step 1a.  

4. Perform live/dead staining by adding the appropriate staining agent to FACS tubes 

containing single cells. For FFC, Alexa dyes with a succinimidyl-ester group are 

commonly used and for MC, rhodium (103Rh) or cisplatin (195Pt) are commonly used. 

 
2 The optimal number of cells per tube will vary by experiment based on the total number of cells the user aims to 
collect. Assume a 50% loss of cells over the course of experimentation, though the actual loss is likely less. For MC, 
an additional 50-60% loss of cells can be expected during data collection. Furthermore, starting the protocol with 
fewer cells results in worse cell retention over the course of the protocol. Users should also consider how many 
different staining steps or tube transfers will be performed when considering loss of cells.  



199 
 

For example, Alexa 700-SE (at 50ng/ml) incubated for 10 minutes at room temperature. 

For MC, add rhodium (1μM) and incubate for 1-10 minutes3 at room temperature 

5. Wash out live/dead stain with PBS by adding 2 ml of PBS per wash4. Spin down at 200 x 

g for 7 minutes and remove supernatant by pipetting off liquid or decanting. Vortex and 

repeat for second wash. 

a. For all centrifugation steps involving a cell pellet, invert and decant only once. After 

placing the tube upright again, cells typically enter suspension and the pellet can 

detach. Thus, additional decanting significantly lowers viable cell yield. 

6. Proceed to either Live cell staining (Step 7) for surface epitopes or cell fixation for 

intracellular staining (Step 12) 

 

 

Stain viable cells to detect extracellular targets (“Live cell staining”) 

7. Cells are currently in residual PBS from live/dead washes. Add 1ml staining medium and 

vortex. Spin down at 200 x g for 7 minutes. Decant supernatant, vortex, and repeat wash 

with staining medium.  

8. Resuspend cell pellet in staining medium to achieve the transfer volume.  

a. The “transfer volume” is calculated by subtracting the summed volume of staining 

antibodies (the “antibody volume”) from the total volume in which staining will occur 

in step 9. For example, consider a protocol where approximately 10 µl of cells in 

staining medium from step 8 are to be stained with 1 µl each of 30 antibodies in a 

total volume of 100 µl in step 9. In this case, at step 8, at least 60 µl of staining 

medium should be added to the 10 µl of cells in staining medium to achieve a 

 
3 Rhodium incubation should be optimized for individual samples. Dissociated glioma samples had improved 
quality with shorter (1 minute) incubations while other samples were not affected.  
4 As space allows. FACS tubes hold 5ml volume max but it is not recommended to go above 4ml. Use 1ml PBS for 
the first wash if required.  
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transfer volume of 70 µl for step 9. For steps 8 and 9, the volume of antibodies 

varies based on experimental design. For the examples depicted here, volumes 

are specified in Table A.1 for tonsil, glioma, and melanoma. The total volume in 

step 9 is 100 µl (including cells in transfer volume and all antibodies).  

9. Add Live Stain reagent mix (Table A.1) to new FACS tubes labeled for surface staining 

and add cells, in staining medium, to antibody mixture. Vortex to mix cells and antibodies 

and incubate for 30 minutes at room temperature. For FFC, incubate in the dark.  

a. In the work presented here, the total staining volume (cells in staining medium plus 

antibodies) should be exactly 100 µl.  

b. Live Stain reagents in Table A.1 can be combined in a 1.5-ml microcentrifuge tube 

prior to mixing with cells in FACS tubes.  

10. After 30 minutes, add 1 ml of staining medium to the FACS tube and spin down at 200 x 

g for 7 minutes. Decant supernatant, vortex, and repeat wash with PBS. Decant 

supernatant and vortex 

11. Proceed to either cell fixation (step 12) or preparing sample for the cytometer (step 46). 

 

 

Fix cells for intracellular staining (“Cell fixation”) 

12. Cells are currently in residual PBS. Resuspend in 900 ml PBS. Add 100 µl of 16% 

electron microscopy grade PFA (for a final concentration of 1.6% PFA in PBS) and 

vortex to mix. Incubate for 10 minutes at RT 

13. After 10 minutes, add 1 ml of PBS and spin down at 800 x g for 5 minutes. Decant 

supernatant and vortex pellet (see step 5).  

14. Determine the optimal permeabilization conditions required for each intracellular target. If 

a subset of intracellular antigens requires permeabilization with heat-induced epitope 

retrieval, as is the case with IDH1 R132H, include steps 15-20. If some intracellular 
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antigens require saponin, as is the case with antibodies used to stain glioma and 

melanoma, include steps 21-31 If all intracellular antibodies have been shown to 

effectively detect target antigens after permeabilization with ice-cold methanol (as is the 

case for the antibodies that were used to stain tonsils), skip to step 32.  

 

 

Permeabilize cells using heat-induced epitope retrieval with citrate buffer (Perm 1; Figure A.3) 

15. Cells are currently in residual PBS from cell fixation. Resuspend in 1 ml staining medium 

and vortex to mix. Spin down at 800 x g for 5 minutes. Decant supernatant and vortex 

pellet. Resuspend in 200 µl Perm 1 and transfer cells to 50 ml conical. Bring total volume 

in the conical to 10 ml of Perm 1 and cells.  

16. Add 300 ml water to a 600 ml beaker. Microwave on high in a 1000W microwave for 2.5 

minutes. Swirl each conical tube in the heated water so that the entire volume is 

submerged for 2 minutes. After 2 minutes, bring the cells to room temperature by 

incubation on ice (about 10 minutes). Heat the water for an additional 45 seconds prior 

to each subsequent tube. Repeat swirling (2 minutes) and heating of the water (45 

seconds) until all samples have been treated.  

17. Once samples have cooled to room temperature, spin at 800 x g for 10 minutes. 

Aspirate supernatant and resuspend in 1 ml staining medium. Transfer cells in staining 

medium to FACS tube. Rinse 50 ml conical with additional 1 ml of staining medium and 

transfer to FACS tube (final volume of approximately 2 ml in tube). Spin down at 800 x g 

for 5 minutes. Decant supernatant and vortex (see step 5).   

18. Add HIER reagent mix (Table A.1) to new FACS tubes labeled for heat-induced epitope 

retrieval and add cells, in staining medium, to antibody mixture. Vortex to mix cells and 

antibodies and incubate for 30 minutes at room temperature. For FFC, incubate in the 

dark.   
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19. After 30 minutes, add 1 ml of staining medium to the FACS tube and spin down at 800 x 
g for 5 minutes. Decant supernatant, vortex, and repeat wash with PBS. Decant 
supernatant and vortex (see step 5).  

20. Proceed to additional permeabilization steps as needed: Perm 2, step 21 or Perm 3, 

step 32. If no further staining is required, proceed to preparing the sample for the 

cytometer, step 46.  

 

 

 

 

Figure A.3: Step-by-step illustration of Perm1 (HIER) protocol. Surgically resected patient 
samples or gliomaspheres were dissociated and prepared for flow cytometry. Citrate buffer (pH 
6.0) and heat were used to permeabilize the cells and expose the IDH1 R132H epitope. 
Antibodies against the IDH1 R132H antigen were applied after HIER. 
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Permeabilize cells using 0.02% saponin (Perm 2) 

21. Cells are currently in residual PBS from cell fixation or Perm 1.  Resuspend cells in 1 ml 

of Perm 2, pellet 5 min at 800 x g, room temperature, and decant to discard supernatant 

(see step 5). 

22. Repeat step 21 once. 

23. Resuspend cell pellet in appropriate volume of Perm 2 (see step 8). 

24. Add Saponin Stain (Table A.1) reagent mix to the new FACS tubs.  

25. Transfer appropriate volume of cell suspension in Perm 2 to the FACS tubes containing 

the Saponin Stain reagent mix. Briefly vortex to mix cells with antibodies. 

a. Total staining volume (cells in Perm 2 plus antibodies) should be exactly 100 µl. 

Note that the Saponin Stain mix must also contain saponin. 

26. Leave cells at room temperature for 30 min. For FFC, incubate in the dark 

27. Add 1 ml of Perm 2 to the FACS tube, pellet cells 5 min at 800 x g, room temperature, and 

decant to discard supernatant and vortex pellet (see step 5). 

28. Repeat step 27 once. 

29. Add 1 ml of PBS to the FACS tube, pellet cells 5 min at 800 x g, room temperature, and 

decant to discard supernatant (see step 5). 

30. Vigorously vortex cell pellet to resuspend cells in void volume. 

31. Proceed to Perm 3 permeabilization as needed (step 32) or prepare sample for the 

cytometer (step 46).  

 

 

Permeabilize cells using 100% methanol (Perm 3) 

32. Cells are currently in residual PBS from cell fixation, Perm 1, or Perm 2.  

33. Add 1 ml of Perm 3 to cells in the FACS tube. Vortex to thoroughly resuspend cells with 

Perm 3. 
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a. The final concentration of ice-cold methanol after the Perm 3 is added to cells 

should be > 95%. 

34. Keep cells at −20°C for at least 20 min.  

a. Alternatively, cells can be stored in Perm 3 at −20°C overnight, or at −80°C for 

days or weeks before proceeding, if necessary. Cover tubes in parafilm for storage 

longer than 20 minutes.  

35. Remove FACS tubes from −20°C (or −80°C) and add 1 ml of PBS to each tube. 

36. Pellet cells 5 min at 800 x g, room temperature, then decant to discard supernatant and 

vortex pellet (see step 5).  

37. Add 1 ml of staining medium to FACS tubes. Pellet cells 5 min at 800 x g, room 

temperature, then decant to discard supernatant and vortex pellet (see step 5). 

38. Repeat step 37. 

39. Resuspend cell pellet in appropriate volume of staining medium (see step 8). 

40. Add Methanol Stain reagent mix to new FACS tubes labeled for Perm 3.  

a. See step 8 and Table A.1. Total staining volume (cells in staining medium plus 

antibodies) should be exactly 100 µl. Note that Methanol Stain reagent mix does 

not contain methanol.  

b. Methanol Stain reagents in Table A.1 can be combined in a 1.5-ml microcentrifuge 

tube prior to mixing with cells in FACS tubes. 

41. Transfer appropriate volume of cell suspension in staining medium to the FACS tubes 

containing Methanol Stain reagent mix (see step 8). Briefly vortex to mix cells with 

antibodies. Incubate cells at room temperature for 30 min. For FFC, incubate in the dark.  

42. Add 1 ml of staining medium to the FACS tube and pellet cells 5 min at 800 x g, room 

temperature, then decant to discard supernatant and vortex pellet (see step 5). 

43. Repeat step 42 once. 
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44. Add 1 ml of PBS to the FACS tube and pellet cells 5 min at 800 x g, room temperature, 

then decant to discard supernatant (see step 5). 

45. Proceed to preparing sample for the cytometer (step 46). 

 

 

Prepare samples for the cytometer 

46. Cells are in residual PBS from staining or fixation steps.  

47. For FFC: 

a. Resuspend in 300 µl PBS.  

b. Cover in aluminum foil and store at 4°C for no more than 24 hours.  

48. For MC: 

a. Resuspend in PBS + 1.6% PFA and 1x iridium (125 nM). Incubate for 15 minutes, 

up to overnight, at 4°C.  

b. Add 1 ml of PBS to the FACS tube and pellet cells 5 min at 800 x g, room 

temperature, then decant to discard supernatant (see step 5). Vortex pellet. 

c. Add 1 ml of deionized water to the FACS tube and pellet cells 5 min at 800 x g, 

room temperature, then decant to discard supernatant (see step 5). 

d. Resuspend cell pellets in 1X Four Elements Calibration Beads in deionized water 

prior to mass cytometry analysis. Use 1 ml for every 0.5 x 106 cells. 

e. Filter cells using FACS tubes with 0.2µm filter caps. 

 

Cells are now ready for cytometry analysis. 
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Figure A.4: Biaxial analysis of cells derived from human tissue and tumors. Biaxial plots of 
non-apoptotic (cCasp3−), nucleated (HH3+) cells from mass cytometry analysis of (A) tonsil, (B) 
glioma, and (C) melanoma are shown. Intermediate gates are shown in gray, and terminal gates 
are shown in blue. Cell types or protein identity of cells in each gate are indicated. The 
percentages of cells in gates are also specified.  
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Figure A.5: High-dimensional analysis of mass cytometry data using viSNE. Non-apoptotic 
(cCasp3−), nucleated (HH3+) cells from mass cytometry analysis of (A) tonsil (plots of 106,568 
cells), (B) glioma (plots of 65,834 cells), and (C) melanoma (plots of 94,810 cells), are shown. 
The first plot of each tissue type depicts cell density of the viSNE map. The remaining plots display 
expression of indicated protein. viSNE maps of each tissue type were generated separately and 
the markers shown here for each tissue type were used to generate the maps.  
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Commentary 

 

Background Information 

Flow cytometry technologies employing fluorescence- and mass-based reporters have 

been successfully applied to characterize protein phenotype and to quantify the abundance of 

diverse human cell types. Flow cytometry protocols commonly use reporter-conjugated antibodies 

to make relative quantitative measurements for tens of features in each of hundreds of thousands 

of cells in minutes [104, 320, 324-327]. Mass cytometry, a newer form of flow cytometry based on 

mass spectrometry, has gained attention for the relative ease with which more than 35 cellular 

features can be measured [103, 112, 328]. However, as flow cytometry requires individual cells 

in suspension, applications to solid tumors and tissues has previously been modest compared to 

its rapid adoption in immunology and blood cancer research, where samples of viably 

cryopreserved cells have been collected and characterized for decades [128, 285, 287, 296, 308, 

329, 330]. The key limitation has been the perceived difficulty in making cells from solid tissues 

into single-cell suspensions that are viable and representative of different cell types present in the 

original tissue. Furthermore, antibody sets had not been designed and tested to effectively identify 

cells outside the immune system. It is only recently that mass cytometry has been tested and 

applied to solid tissues and tumors [98, 158]. Key to this work was the development of a protocol 

that preserved the viability and diversity of the tissue cells in a way compatible with detection of 

cell surface and intracellular features by mass cytometry. 

 

 

Critical parameters and troubleshooting 

Table A.2 lists some possible problems that may arise in preparing cells for mass 

cytometry, along with their possible causes and solutions. 
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Tissue quality and transportation 

The protocols in this unit are applicable to human tissues extracted by surgery or 

to animal tissues isolated after dissection. To preserve tissue viability, samples should be 

transported to the laboratory for further preparation as rapidly as possible. The 

dissociation protocol presented here was tested on samples that were processed between 

30 min and 4 hr after surgical resection [98]. Additionally, samples should be transported 

in sterile PBS, appropriate experimental medium, or other sterile transport medium that 

has been tested to preserve cell viability and representative cell subsets for specific tissue 

types. Samples should be entirely submerged in the transport medium in a closed 

container. Unless specifically optimized and validated using other conditions, samples 

should be immediately transported at room temperature (23°C) to the laboratory for further 

preparation.  

 

Mechanical dissociation 

As described in Basic Protocol 1, tissue should be mechanically dissociated into 

fine (1 to 3 mm3) pieces to maximize surface contact with dissociation enzymes in 

subsequent steps. During mechanical dissociation in the petri dish, tissue pieces should 

be adequately covered in warm (37°C) experimental medium. For larger samples, the 

tissue should be divided into batches for mincing and combined prior to addition of the 

dissociation enzymes: collagenase II and DNase I. 

 

Selection of enzymes and duration of dissociation 

Dissociation enzymes are incorporated in the protocol to break down the 

extracellular matrix to yield a single-cell suspension. Many types of enzymes are available, 

such as collagenases, trypsin, papain, and HyQTase, among others. These enzymes can 

be used individually or in combination. The types of dissociation enzymes used can affect 
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the viability of single cells derived from the starting tissue. As described above, a suitable 

dissociation protocol will maximize cell viability as well as preserve representative cell 

subsets in the original tissue. Variables to consider when testing the dissociation 

conditions include the use of a single enzyme or combinations of enzymes, and duration 

of dissociation [98]. Additionally, inclusion of DNase I in the dissociation protocol described 

here significantly improves viable cell yield from multiple tissues [98]. Therefore, it is highly 

recommended to include DNase I in the dissociation solution unless it is specifically 

demonstrated experimentally that DNase I is not required to improve cell viability. The 

protocol described here uses 1 hr of enzymatic dissociation, which has been shown to 

result in the highest viable cell yield for various human tissues and tumors [98]. 

Specifically, for most tissues, shorter dissociation time led to release of fewer cells, 

whereas longer dissociation led to increased cell death. It is recommended that the type 

of dissociation enzyme and duration of enzymatic dissociation be tested and optimized for 

a new tissue type to achieve optimal viable cell yield. This can be quantified by using 

trypan blue staining (see Basic protocol 1). In addition to overall cell viability, it is crucial 

to determine preservation of known cell types and cells of interest as part of the 

optimization process. When testing the dissociation on a particular tissue, imaging 

techniques such as colorimetric immunohistochemistry or immunofluorescent detection of 

known cellular targets can be used to characterize the presence of cell subsets in the 

original tissue. 

 

Immunostaining for mass cytometry 

It is highly recommended to optimize the immunostaining protocol for each 

antibody in a panel to ensure target-specific staining and to optimize signal-to-background 

levels [218]. Parameters that need optimization [218] include 1) antibody specificity (which 

can be tested using positive and negative control cells that are known to express and lack 
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the target of interest), 2) antibody concentration (to allow maximal distinction between 

positive and negative cells, and minimize nonspecific background staining), 3) staining 

order (extracellular staining or intracellular staining), and 4) compatibility of 

permeabilization reagents for intracellular targets (HIER, saponin, ice-cold methanol, or 

other reagents). If multiple permeabilization reagents are required for different intracellular 

targets, specificity and sensitivity of the antibodies should be tested to ensure that the 

targets are still detectable after multiple permeabilization steps. For the glioma 

immunostaining presented here, HIER was used for IDH1 R132H detection or saponin 

permeabilization was used for SOX2 detection, prior to subsequent permeabilization by 

ice-cold methanol. It has been previously shown that saponin does not destroy intracellular 

targets normally detectable after methanol permeabilization, and therefore these reagents 

can be used in the same protocol, with the use of saponin preceding methanol [321]. 

However, each antibody should be specifically tested and optimized prior to use. 

 

Treatment of cells with reagents for detection of intact cells via mass cytometry 

In flow cytometry analyses, an initial step is to identify intact cells and remove 

cellular debris or enucleated cells from further analyses. Conventional fluorescence flow 

cytometry relies on measurement of cell size (forward scatter, FSC) and cell granularity 

(side scatter, SSC) to identify cells. Additionally, cellular debris can be distinguished due 

to its smaller size (low FSC) and higher granularity (high SSC) and Alexa dyes with a 

succinimidyl-ester group can be used to identify dead cells. In contrast to fluorescence 

flow cytometry, mass cytometry does not have direct parameters to distinguish intact cells 

from cellular debris. Therefore, mass cytometry analysis requires measurement of indirect 

parameters to identify intact cells. Iridium-conjugated DNA intercalator is commonly used 

to identify intact cells by mass cytometry analysis [331]. The per-cell quantity of DNA-

intercalated iridium provides information about DNA content, which can be used to define 
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intact cells. However, iridium-conjugated DNA intercalator cannot be detected using 

fluorescence flow cytometry. In this protocol, we also used anti-histone H3 antibody 

staining for detection of intact nucleated cells [98]. The advantage of using an antibody-

based technique is that it is readily applied across different flow cytometry platforms 

(fluorescence and mass cytometry). 

 

 

Anticipated results 

The protocols in this unit produce viable single-cell suspensions from solid tumors and 

tissues and are expected to identify most common cell types, including endothelial cells, immune 

cells, epithelial cells, neural cells, and fibroblasts. These protocols have been validated for human 

tonsil tissue, glioma tumors, melanoma tumors, and small cell lung cancer patient–derived 

xenografts. Maximum viable cell yield per gram of tissue from the dissociation of human tonsils, 

glioma, and melanoma using collagenase II plus DNase I should be achieved after 1 hr of 

incubation [98]. Histone H3 staining should allow highly specific identification of nucleated, intact 

cells. Additionally, cells derived from Basic Protocol 1 are suitable for quantitative measurement 

of protein expression in individual cells and cell subset abundance using either fluorescence flow 

or mass cytometry, among other applications. For other tissue types not mentioned above, tissue-

specific optimization of the dissociation protocol that takes into consideration the critical 

parameters described here is highly encouraged. Specifically, a systematic comparison of 

different dissociation durations, as well as different enzyme combinations, is required. For every 

condition, it is crucial to quantify cell viability using techniques such as trypan blue staining. 

Additionally, the relative abundance of known cell subsets after different dissociation conditions 

should be quantified, as has been done above using flow cytometry. These data should be 

compared to prior knowledge of cell types present in the tissue, and possibly with 

immunohistochemistry stains of the original intact tissue (for more details, see [98]).  
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Data Analysis 

Quantification of single-cell protein expression by biaxial analysis 

Biaxial plots are a mainstay in cytometry and are typically used to compare the 

abundance of cells with differing relative intensity of two or more quantified cellular targets. 

A protocol to generate biaxial and other common plots of mass cytometry data was 

previously established [167]. In a typical cytometry analysis workflow [144, 145], cells are 

filtered or assigned to populations based on expression profiles of cellular targets in a 

process called gating (Figure A.4). Gating can be repeated sequentially on increasingly 

refined cell subsets, resulting in a nested hierarchy of cell types that traditionally captures 

a developmental continuum or indicates an increasingly polarized and specific cell identity 

[112, 144, 332]. Figure A.4 shows examples of sequential biaxial gating of cells derived 

from mass cytometry analysis of healthy tonsil (Figure A.4A), a patient glioma (Figure 

A.4B), and a patient melanoma (Figure A.4C; [98, 167]). For samples with known cell 

types, such as healthy peripheral blood mononuclear cells (PBMCs), established sets of 

identity markers can be used to distinguish cell types [333, 334]. However, concepts of 

cell identity are still under active discussion in established single-cell fields like 

immunology [332]. Furthermore, methods of defining and identifying cell populations are 

likely to be re- fined as the field of single-cell biology matures. Key areas of growth include 

measurement platforms like mass cytometry, analysis tools from machine learning [125, 

126, 147, 335], reference knowledge bases of established cell identities [168, 336], 

annotated repositories of single-cell data, and quantitative labels of cell type [158]. 

 

Heat plots and viSNE analysis 

Data collected from the same patients as shown in biaxial analyses in Figure A.4 

were analyzed by viSNE and are shown in Figure A.5 (tonsil, Figure A.5A; glioma, Figure 

A.5B; and melanoma, Figure A.5C). For each sample, a separate pair of t-SNE axes was 
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created (i.e., each sample was analyzed separately in viSNE to create sample-specific 

viSNE plots, each of which has its own, sample-specific t-SNE axes). All computational 

analysis was performed using Cytobank software (http://www.cytobank.org; [168]). 

 

 

Time considerations 

The protocols in this unit were experimentally tested on human gliomas, human 

melanomas, and SCLC PDXs that were transported to the laboratory within 1 hr after surgical 

resection. Human tonsils were transported within 4 hr after resection. After tissue is transported 

to the laboratory, this dissociation protocol can be completed in 2 to 3 hr, depending on the size 

of the tissue sample. The size of the tissue sample determines the time that is needed for 

mechanical dissociation (larger tissue samples take more time to be properly minced, whereas 

smaller tissue samples take less time). The time for enzymatic dissociation is not affected by 

tissue size. The approximate timing of the protocol is: 10 to 30 min for mechanical dissociation, 1 

hr for enzymatic dissociation, 15 to 30 min for cell straining, 10 to 30 min for red blood cell lysis 

and counting, and 10 to 30 min for diluting cells for cryopreservation, if needed (see Basic Protocol 

1). Once viable single cells are obtained (either from immediate dissociation or from 

cryopreservation), live surface immunostaining can be completed in 1 hr, followed by 10 to 15 min 

of cell fixation. Duration of intracellular staining varies depending on whether permeabilization 

and staining with saponin (1 hr) is required for the panel of interest. Permeabilization with 

methanol is usually performed overnight, but can be performed for as little as 10 min [218]. Once 

all cells are permeabilized by ice-cold methanol, an additional 1 hr is required for intracellular 

immunostaining with isotope-labeled antibodies. 
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Table A.2: Potential problems and troubleshooting  

Problems Potential causes Troubleshooting 

Few viable cells 

after 

dissociation 

• Poor sample 

quality 

• Use fresh surgically resected specimens (i.e. avoid 

using fixed samples). 

• Small tissue size • If possible, use tissue at least 0.5 cm3 in size. 

Smaller samples can be used but will yield fewer 

cells. 

• Transport 

medium 

• Use sterile PBS or appropriate experimental 

medium. Other isotonic solutions should be tested 

prior to routine use. 

• Transport 

temperature 

 

• Specimens should be transported at room 

temperature. If transportation at other temperature 

(i.e. on ice) is to be used, it should be compared to 

room temperature. 

• Duration of 

transportation 

 

• Duration of sample transportation should be noted. 

Ideally, samples should be dissociated immediately 

after surgical collection. Longer transportation times 

will decrease cell yield. 

• Dissociation 

enzyme 

 

• Dissociation enzymes should be tested for optimal 

viable cell yield prior to use in a new tissue type. 

• DNase I should be included in the dissociation 

protocol unless shown experimentally to be 

unnecessary. 

• Duration of 

enzymatic 

dissociation 

• Some tissue types may require shorter or longer 

dissociation duration. The dissociation kinetics 

should be tested for the specific types of enzyme 

used in the protocol. Testing of dissociation 

durations ranging from 15 minutes to  6 hours is 

recommended. 

Red blood cell 

or platelet 

contamination 

• ACK lysis is not 

included in the 

protocol 

• ACK lysis should be used when there is visible red 

blood cell contamination. This should be done prior 

to cryopreservation. 

Few viable cells 

after 

cryopreservation 

• Freezing 

medium 

 

• Freezing medium should contain 10-12% DMSO in 

appropriate medium (e.g. FBS, or experimental 

media), which should contain serum or BSA, 

depending on cell types. 

• Freezing 

temperature 

• Temperature of cell cryopreservation should be 

gradually decreased in a controlled environment at ~ 

1C decrease/min in a -80C ultralow freezer. Within 

1 week, cells should be transferred to liquid nitrogen 

for long term storage. 
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• Thawing 

conditions 

• Cells from cryopreservation should be warmed in a 

37C water bath for 1-2 minutes until completely 

thawed. Cell suspension should be immediately 

washed using warm experimental media to remove 

DMSO 

Cell subsets of 

interest were not 

detected 

• Inappropriate 

dissociation 

condition for 

tissue type 

• Antibodies with known specificity (and known 

optimal staining condition) should be used to test if 

the dissociation protocol preserves the cell subsets 

of interest. 

• Antibody 

specificity 

• Antibodies that have been shown to specifically 

detect targets with other techniques (such as 

western blot) might not always work for flow 

cytometry-based technologies. Therefore, new 

antibodies should always be tested for specificity 

prior to use. This should be done using a known 

positive control cell type, and a known negative 

control cell type (rather than relying on an isotype 

control antibody). 

• Antibody 

concentration 

• All new antibodies should be titrated to yield optimal 

concentration prior to use. The ideal concentration 

should allow maximal separation between the 

positive and the negative control cells, while 

minimizing signal of negative control cells (i.e. non-

specific staining, background). 

• Immunostaining 

condition 

• Antibodies that detect surface antigens should be 

used during live surface immunostaining. Note that 

some antibodies that detect surface transmembrane 

antigens were created to detect the intracellular 

portion of the antigen (i.e. cytoplasmic domain) and, 

therefore, should be used during intracellular 

immunostaining. 

• Antibodies that detect intracellular antigens should 

be tested for appropriate permeabilization 

conditions. Different permeabilization reagents might 

be required for different antibodies. Additionally, 

steps of permeabilization with different reagents, if 

needed, should also be tested. 

Non-specific 

staining 

• Antibody 

specificity and 

concentration 

• Every antibody should be tested for their specificity 

and for the appropriate concentration prior to use 

for staining. 
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The figures in this appendix appear as supplemental information in a manuscript in press at 

eLife (6/8/2020).  

 

 

Preface  

 

 Extensive work over the past decade has illuminated the diversity of single cell gene 

expression phenotypes in glioblastoma. However, datasets that explore the diversity of single cell 

protein and signaling phenotypes within and among glioblastomas are scarce.  The development 

of a mass cytometry panel and resulting dataset for such tumors is a major contribution of this 

work. Measuring cell surface proteins, intracellular features, transcription factors, and signaling 

molecules on tumor cells gives scientists the power to observe expression patterns across and 

within tumors. In Chapter II, mass cytometry data for 28 patient samples was generated and 



218 
 

analyzed. As noted in Chapter II, visualization of such high dimensional data can be 

overwhelming. There was not sufficient space in the chapter to depict the scope of cell phenotypes 

within and between tumors. The data presented in this Appendix represents a per-patient view of 

the mass cytometry data and RAPID analysis for each sample. All of the t-SNE plots have 

common axes between patients and are consistent data depicted in Chapter II. However, on each 

page, only the cells for an individual patient are shown. This allows a reader to see which clusters 

were present in each patient sample, what proteins are expressed on the cells, and how a given 

patient’s cellular distribution compares to another.  

 

 

Introduction 

 

 In recent years, single cell RNA-seq tools have been leveraged to explore the complex 

cellular milieu of glioblastoma tissues [33, 37, 47, 101]. These studies have uncovered previously 

undescribed cell types as well as new targets for therapeutic investigation. This dissertation 

expands on this work by profiling protein expression and signaling events in individual tumor cells.  

Specifically, RAPID, described in Chapter II, defines cell clusters within a dataset, that allows 

comparisons of cluster phenotypes and abundance within and between tumors. Chapter II 

focuses on selected clusters that are shown to be differentially associated with patient outcomes. 

These clusters are of particular interest because of their association with important clinical 

outcomes. However, the remaining cell clusters may also provide insight into the targetable 

features of glioblastomas and how different patients might be differentially vulnerable to targeted 

therapies. Table 2.2 reports the abundance of each cell cluster per patient. In order to complement 

this information, a visual representation of cluster abundance and phenotype was prepared for 

each patient, based on the results from RAPID analysis in Chapter II.  
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Methods 

 

Patient samples 

 Patient samples are described in detail in Chapter II methods. Briefly, the data presented 

here are derived from surgical resection specimens of 28 IDH-wild type glioblastomas collected 

at Vanderbilt University Medical Center between 2014 and 2016, processed into single cell 

suspensions following an established protocol (Appendix A and [121]). All samples were collected 

with patient informed consent in compliance with the Vanderbilt Institutional Review Board (IRBs 

#030372, #131870, #181970), and in accordance with the declaration of Helsinki. 

 

 

Patient characteristics and collection of clinical data 

 Patient information can be found in Table 2.3 and Chapter II methods.  

 

 

Mass cytometry analysis 

Cells derived from patient samples were prepared as previously described in Chapter II 

and Appendix A [121].  All antibodies used, including clone information, are detailed in Table 2.4. 

Data was collected on a CyTOF 1.0 instrument located in the Cancer and Immunology Core 

facility at Vanderbilt University. Mass cytometry standardization beads were used to remove batch 

effects and to set the variance stabilizing arcsinh scale transformation for each channel following 

field-standard protocols [121, 146, 167]. Rhodium viability stain and cleaved caspase-3 antibody 

were included in staining to exclude non-viable and apoptotic cells, respectively. Detection of total 

histone H3 was used to identify intact, nucleated cells [98]. Data were normalized with MATLAB-

based normalization software [166], and were arcsinh transformed (cofactor 5), prior to analysis 

using the Cytobank platform [168]. A total of over 2 million viable cells from 28 tumors (ranging 
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from 4,860 to 336,284 cells per tumor) were analyzed. A patient-specific t-SNE view was 

generated, using 26 of the measured markers for all tumor and stromal cells from each patient’s 

tumor [125]. Immune (CD45+) and endothelial cells (CD31+) were computationally excluded from 

each individual patient prior to subsequent downstream analysis.  Remaining CD45-CD31- cells 

were included in a common t-SNE analysis, generated using 24 of 34 measured markers. This 

common t-SNE analysis was used for automated analysis of risk stratifying cell subsets in RAPID 

(below). The distribution of each of the 28 patients’ cells on the common t-SNE axes and mass 

intensity for each marker are shown. 

 

 

Implementation of RAPID in R 

RAPID was performed as described in Chapter II. Cluster abundances and IQR values 

are reported in Table 2.2 For each cluster, patients were divided into Low and High groups, based 

on the distribution (IQR) of the abundance of a given cell subset across the cohort. 

 

 

Cluster Stability Testing 

 Cluster stability was determined as described in Chapter II. Briefly, a F-measure was 

calculated per cluster, measuring both the precision and recall of cell assignment in 99 iterative 

FlowSOM analyses.  

 

 

Results 

 

Resected glioma tissues were immediately dissociated into single cell suspensions as 

previously reported (Appendix A and [121]) and the resulting cells were stained with a mass 
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cytometry antibody panel (Table 2.4).  For each patient, a t-SNE was generated using 26 of the 

measured features [125]. On each patient specific t-SNE map, immune (CD45+) and endothelial 

(CD45-CD31+) cells were identified and computationally excluded prior to subsequent analysis.  

Using 4,710 glioblastoma cells from each patient, a single, common t-SNE map was 

created (N = 131,880 cells; 4,710 cells x 28 patients, using 24 measured features).  The axes of 

this t-SNE map are those in each panel of Figure B.1. The RAPID algorithm, as described in 

Chapter II, identified 43 phenotypically distinct cell clusters in this dataset. For each cluster, the 

abundance (% of tumor cells) was reported for each patient (Table 2.2). Additionally, for each 

cluster a patient was categorized as high or low abundance, based on the interquartile range of 

measured abundances across samples. Four of the clusters were determined to be associated 

with worse overall survival and were called Glioblastoma Negative Prognostic (GNP) clusters 

(red; clusters 33, 34, 37, and 42). Five of the clusters were associated with longer overall survival 

and were called Glioblastoma Positive Prognostic (GPP) clusters (blue; clusters 2, 3, 4, 5, and 

41).  Cluster stability tests, described in Chapter II, based on iterative FlowSOM analyses and 

repeated cell-subsampling, indicated that 5 of the 43 clusters were not stable, denoted in this 

work with asterisks.  

 

 

Figure Legend (for pages 222-249) 

Figure B.1 Individual patient tumors have distinct subpopulations of glioma cells and 
combinations of cell clusters. B.1a – B.1bb represent data from one patient each (noted in 
upper left). All t-SNE plots presented have the same axes, from a combined t-SNE analysis of 28 
patients. Contour plots indicate cell density. Dot plots indicate cell cluster identity or heat on 
protein, noted in labels above each plot. To the right, patient information including OS and PFS 
(top) and cell cluster abundance are provided. Clusters with an * were considered unstable by 
metrics defined in Chapter II. Blue clusters are associated with better (longer) OS. Red clusters 
are associated with worse (shorter) OS. Bold clusters indicate that the patient was in the high 
group for that cluster.   
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Discussion 

 

Plots of cell density on the t-SNE axes revealed phenotypically distinct subpopulations of 

glioblastoma cells within a single patient’s tumor. Intra-tumoral subsets were distinguished by 

differences in expression of core neural identity proteins and by aberrant co-expression of 

neural lineage and stem cell proteins. For example, cells expressing SOX2 and CD133, stem-

cell markers, and S100B, a protein found in mature astrocytes, were observed in multiple 

patients [180, 181]. These plots provide a visual summary of the data generated by mass 

cytometry analysis in 28 patients. The potential for discovery within this cohort, but especially in 

expanded cohorts or other disease settings is extensive. By synthesizing information about cell 

phenotypes, and their presence or absence in individual patients, strategies for eliminating said 

cells can be refined. 
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