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CHAPTER I 

 

Introduction 

 

Research Motivation 

The rise in available longitudinal patient information in electronic health records (EHRs) and 

their coupling to DNA biobanks has resulted in a dramatic increase in genomic research using EHR data 

for phenotypic information. Simultaneously, high-throughput methods for genotyping have considerably 

decreased the cost of genetic discovery while also improving in accuracy and availability. The benefit of 

leveraging EHRs for genomic research as opposed to prospective cohort-based studies is the ability to 

obtain large sample sizes with relatively less time or expense. This approach has allowed for the 

accumulation of unprecedented cohorts of genotyped individuals with well-defined phenotypes to drive 

genomic discovery.  

Genome-wide association studies (GWAS) and phenome-wide association studies (PheWAS) 

have provided powerful methods for investigating the impact of genetic variation on phenotypes. GWAS 

and PheWAS are modern genetic tools for the exploration of datasets to efficiently identify genomic risk 

factors for disease. PheWAS is a reverse genetics approach that provides a systematic methodology for 

the analysis of many phenotypes, often derived from EHR data, against a specific independent variable, 

such as a genotype.(1) PheWAS has shown the feasibility of analyzing genomic associations with 

thousands of phenotypes across a cohort of individuals and finding novel associations (2–5). This 

approach can also be applied using various predictive attributes in the PheWAS analysis, including 

genetic risk scores, a set of SNPs aggregated into a single continuous score. 
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Specific Aims 

This thesis describes four research projects, presented in five manuscripts, that address important 

gaps in the scientific evidence on the use of genotyping and phenotyping to characterize clinical diseases.  

 

Specific Aim #1: Perform a Comprehensive Review of Approaches to High-throughput Methods of 

Phenotyping and Genotyping 

The first aim of this thesis was to determine the current state of the evidence about the use of 

phenotyping and genotyping to drive research. This aim comprises two manuscripts which detailed a 

comprehensive review examining the current knowledge on using clinical data within EHR to derive 

phenotypes that can further genomic research and drug discovery. To utilize genomic data to drive 

discovery and improvements in clinical care, accurate and efficient phenotyping methods must be 

utilized. These phenotypes include specific diseases or observable traits and are used to decipher the 

genetic determinants of human diseases, physiologic attributes, and medication response.  

We highlighted in these manuscripts the recent advances in phenotyping methods, biobanking, 

and drug development and repurposing accelerated by applying genome-wide association studies 

(GWAS) and phenome-wide association studies (PheWAS) to longitudinal health data information, along 

with limitations of these methods. GWAS and PheWAS do not only provide insight into biology of 

diseases, but also provide opportunities for drug targeting, development, and identification of populations 

at risk for drug-related adverse events. Knowledge of the genetic mechanisms that drive phenotypic and 

drug response variation can help guide diagnosis and the tailoring of medication therapy. In addition to 

summarizing the current data, in this aim we focus on opportunities for future applications of phenotyping 

that can provide linkages between disease-gene associations and therapeutic approaches. 
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Specific Aim #2: Characterize a Rare Clinical Disease, Loxoscelism, using Electronic Health 

Records and Phenotyping Methods 

The second research project described the use of the EHR to characterize a rare disease process, 

loxoscelism, that can arise following a bite from a brown recluse spider. Systemic loxoscelism in its mild 

form consists of nausea, vomiting, fever, chills, or arthralgia. In its more severe form, brown recluse bites 

may cause massive hemolysis, hemoglobinuria, acute renal failure, disseminated intravascular 

coagulation, and rarely death.(6–10) In this study, we described clinical characteristics and outcomes of 

the largest known cohort of individuals with systemic loxoscelism to date, leveraging our large de-

identified electronic clinical data warehouse. We then performed a phenome-wide association study 

(PheWAS) of these individuals matched to a control population to identify key differences in ~1800 

phenotypes between individuals who develop systemic loxoscelism and those who do not. We aimed to 

demonstrate how high-throughput phenotyping methods can provide insight into diseases. In doing so, we 

highlighted clinical characteristics of this rare and potentially lethal illness and uncovered previously 

undocumented phenotypic associations. 

 

Specific Aim #3: Evaluate the Association of a Common Disease, Obesity, and Obesity Genetic Risk 

with Postoperative Complications 

The third research project used genotyping to derive polygenic risk scores coupled with 

phenotyping to evaluate for associations of obesity with postoperative complications. Obesity, defined as 

a body-mass index (BMI) of 30.0 kg/m2 or greater, is known to be a strong predictor of cardiovascular 

morbidity and mortality. Over two-thirds of the adult population in the United States have an overweight 

or obese BMI.(11–14) However, the extent to which obesity and genetics determine post-operative 

complications is incompletely understood. We aimed to determine the influence obesity and genetic risk 

for obesity has on postoperative outcomes using high-throughput methods of both phenotyping and 

genotyping. We leveraged a large EHR population to identify specific postoperative complications, 
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including postoperative infection, incisional hernia, and small bowel obstruction, associated with BMI. In 

a separate cohort, we then used a polygenic risk score for BMI to investigate the relationship between 

genetic risk for obesity and these postoperative complications.(15) We demonstrated that both clinical and 

genomic risk of obesity is associated with the development of postoperative incisional hernia and 

infection.  

 

Specific Aim #4: Evaluate the Association of Obesity and Genome-wide Obesity Genetic Risk with 

Healthcare Disease Burden  

Obesity is known to have a strong influence on the development of comorbidities and increased 

mortality risk. However, the extent of the role obesity has on comorbid conditions across the phenome is 

unknown. Further, while there are data showing obesity is a polygenic disease with a greater proportion of 

the variance in BMI explained with greater coverage of the genome in a polygenic risk score, it is 

unknown if genome-wide polygenic risk scores perform better in phenome-wide association studies. 

Therefore, we identified phenotypes associated with class 3 obesity in a clinical cohort and replicated 

these findings in two separate genetic cohorts using genome-wide polygenic risk scores for BMI, 

elucidating the complex genomic and phenomic characteristics of this prevalent disease. Class 3 obesity 

and polygenic risk for obesity was associated with 199 distinct phenotypes. The burden of disease 

associated with obesity was significant with a predicted 17.1% of disease in obese individuals potentially 

preventable if individuals maintained a normal BMI. 

 

Research Synthesis  

Through these specific aims, we are able to advance the knowledge on approaches to phenotyping 

methods to elucidate patterns of disease. Through the use of different phenotyping methods across diverse 

disease processes, we were able to illustrate the strengths and weaknesses of extracting data for research 

that was curated for clinical medicine. These methods allowed for curation of the largest dataset of 
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individuals with systemic loxoscelism and characterization of this rare disease. This thesis is also the first 

application of genome-wide risk scores in a phenome-wide approach, demonstrating that genome-wide 

polygenic risk scores have improved ability to define disease risk and associations. This body of work 

reduced phenome-wide phenotyping uncertainties by grouping of billing codes, large cohort sizes, and the 

requirement of multiple instances of the billing codes on separate days, providing results that were 

validated across cohorts and with both clinical and genomic predictors. These novel methods allowed us 

to demonstrate the full extent of the role obesity has on postoperative complications and the overall 

burden of disease driven by obesity in society. Translation of these findings could involve applying 

genome-wide risk profiling methods to identification of individuals who would benefit from 

environmental modifications or heightened medical awareness prior to the onset of obesity and its 

comorbid conditions. 
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Abstract  

The rise in available longitudinal patient information in electronic health records (EHRs) and their 

coupling to DNA biobanks has resulted in a dramatic increase in genomic research using EHR data for 

phenotypic information. EHRs have the benefit of providing a deep and broad data source of health-

related phenotypes, including drug response traits, expanding the phenome available to researchers for 

discovery. The earliest efforts at repurposing EHR data for research involved manual chart review of 

limited numbers of patients but now typically involve applications of rule-based and machine learning 

algorithms operating on sometimes huge corpora for both genome-wide and phenome-wide approaches. 

We highlight here the current methods, impact, challenges, and opportunities for repurposing clinical data 

to define patient phenotypes for genomics discovery. Use of EHR data has proven a powerful method for 

elucidation of genomic influences on diseases, traits, and drug-response phenotypes and will continue to 

have increasing applications in large cohort studies. 
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Introduction 

The widespread adoption of electronic health records (EHRs) has raised the possibility of using 

these data in clinical research. Abundant evidence now supports the idea that the EHR repurposed for 

research represents a rich data set of a patient’s health trajectory, including diseases, laboratory and 

radiology tests, and medications and their response, much of which can be hard to acquire in a research 

setting. Simultaneously, high-throughput methods for genotyping have considerably decreased the cost of 

genetic discovery while also improving in accuracy and availability. A key component of these are 

genome-wide association studies (GWAS) and whole genome and exome sequencing technologies, which 

systematically analyze variation across the genome. Since 2005, over 3000 GWAS have identified almost 

40,000 unique SNP-trait associations (1).  

The vast majority of early genomic research studies before 2010 were performed using 

observational cohorts or randomized controlled trial data. Perhaps in part as a result, some of the largest 

GWAS published have been traits that are common to many studies, such as height and body mass index. 

Nearly coinciding with the growth of genetic investigation has been the national adoption of EHRs across 

the United States. The national adoption rate among non-federal acute care hospitals was only 9.4% in 

2008 but reached 94% by 2013 (2). The formation of EHR-linked DNA biobanks that repurpose EHR 

data from their clinical data stores to research-oriented databases, combined with advances in informatics 

tools and terminologies, led to the beginning of successful EHR utilization for genetic studies in 2010 (3–

7) The first EHR-based studies recapitulated non-EHR GWAS by focusing on well-defined clinical 

phenotypes to test against variation in the human genome but later gave rise to other innovative, reverse-

genetics approaches such as phenome-wide association studies (PheWAS), which provide a systematic 

approach to the analysis of many phenotypes potentially associated with a specific genotype (8). 

Critical to discovery through genomic and phenomic investigation is the accumulation of 

sufficiently large sample sizes with well-defined phenotypes. These phenotypes include specific diseases 

or observable traits and are used to decipher the genetic determinants of human diseases, physiologic 
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attributes, and medication response. In this review, we highlight the growth of and approaches to 

phenotyping using clinical data within EHRs as it pertains to genomics research, limitations of these 

techniques, and future opportunities for integration of genotypic and phenotypic clinical data.   

 

Use of Clinical Data in Research 

Cohorts Available for Genetic Study 

Traditional genetic studies have used population- or clinical trial-based cohorts with prospective 

participant enrollment and questionnaires to gather data on specific aspects. While this approach can 

result in high-quality phenotypes, there are significant challenges due to the time and monetary expense 

required for participant accrual, retention, questionnaire completion, and validation (9, 10). Patient 

accrual can take months to years. Further, long-term follow-up and patient retention can be tedious or 

unfeasible, with exclusion of populations of patients important to include, such as those too ill to 

participate or at the extremes of age. Prospective cohorts are also generally guided by a particular clinical 

research question, and thus phenotype data may be limited to those conditions, hindering reuse of these 

data for future studies examining different phenotypes.  

Accordingly, EHRs have emerged as an efficient method for obtaining dense patient information 

for research over the last two decades. Historically, clinical data and documentation has been collected 

primarily to support patient care and administrative functions, such as billing. Thus, cross-sectional 

aggregation and querying of EHR data was not a priority. In 2003, the National Academy of Medicine 

(then the Institute of Medicine) released a report on the key capabilities of an EHR, noting that facilitating 

research is an important secondary use of EHRs (11). Early studies utilizing aggregated EHR data often 

consisted of epidemiological studies performed at early EHR adoption sites with well-maintained 

databases such as the Veterans Health Administration or UK general practice research database (12–14). 

Recent efforts bringing together diverse international healthcare data have been able to study treatment 
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protocols in as many as 250 million individuals (15). Some examples of network initiatives utilizing EHR 

data for genomic research are detailed below. 

 

Current Biobanking Efforts  

Biobanking of genetic data linked to the longitudinal patient data available within the EHR 

aggregates otherwise disparate information, potentially making it available to both clinicians and 

researchers. Some of the earliest biobanks linked to EHR data derived their samples from left over blood 

collected as part of clinical care, and would have otherwise been discarded (9). These include the Harvard 

Crimson, which pursued as-needed sample collection for phenotypes of interest, and Vanderbilt 

University Medical Center’s BioVU, which started as a prospective collection of all individuals who did 

not opt-out of DNA collection as part of their routine consent to treatment (18–25)(16, 17). Since 2015, 

BioVU has converted to an opt-in consent model (electronically requested at the point of care) due to 

changes in the National Institutes of Health (NIH) Genomic Data Sharing policy requiring subject consent 

for data sharing (18). 

Several other initiatives have been launched across the world for the development of very large 

EHR-linked biobanks which have started to deliver biomedical data sets comprising extensive phenotype 

and genotype information on hundreds of thousands of subjects. In the United States, the Electronic 

Medical Records and Genomics Network (eMERGE) and the Million Veteran Program (MVP) represent 

examples (19, 20). The MVP has recruited more than 580,000 participants and is establishing a 

longitudinal study of Veterans for future genomic and clinical research that combines data from survey 

instruments, the EHR, and biospecimens (20). 

One of the more robust EHR phenotyping efforts has been performed by the eMERGE 

consortium, a national network organized and funded by the National Human Genome Research Institute 

with the goal of combining DNA biorepositories with EHRs for high-throughput and generalizable 

genomic discovery. An integral aim of eMERGE is to support the creation, validation, and dissemination 
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of phenotype algorithms by providing tools that guide the user through the stages of development, public 

sharing, and reuse (21).  

In Europe, the UK Biobank is a large prospective study of more than 500,000 individuals to 

investigate the role of genetic factors, environmental exposures, and lifestyle in the causes of major 

diseases (22). Participants aged 40-69 years were enrolled over 4 years in 22 recruitment centers, each 

completing questionnaires and donating biospecimens. The emphasis is now on further phenotyping of 

participants and ascertaining their health outcomes through follow-up and linkages to healthcare-based 

datasets (23). In Asia, the China Kadoorie Biobank also has more than 500,000 individuals and has 

prospectively linked genomic information to both EHR data and participant surveys.  

The All of Us Research Program1 is a NIH-funded initiative to build a United States research 

cohort of more than one million individuals, including prospective participant provided information, 

molecular data (including genomics), and linkage to health information in EHRs (24). Participants will be 

recruited from diverse healthcare centers located across the country and as “direct volunteers”, individuals 

who may not have a direct connection with a recruiting healthcare system.  

 

Repurposing of EHR Data 

Rationale for use of Clinical Data for Genomics Research 

EHRs offer longitudinal patient information in a form that is relatively unbiased to particular 

diseases or research agendas, allowing for study of diverse genomic risk, diseases, and outcomes. The 

rich phenotypic clinical documentation coupled with laboratory data, medication receipt, family history, 

                                                      

 

 

1 Precision Medicine Initiative, PMI, All of Us, the All of Us logo, and The Future of Health Begins With 

You are service marks of the U.S. Department of Health and Human Services. 
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and environmental exposures, makes the EHR a practical data source for reuse in genomic studies. The 

key advantage of repurposing EHRs for research is that they are already created and maintained for 

healthcare delivery and prospectively accrue clinical observations and costly tests at regular intervals 

driven by an individual’s health trajectory.  

To quantify the density of information in the EHR, we explored the data available for BioVU 

participants (Figure 1). We found that individuals had an average of 7.8 years of clinical data, including 

many years before enrollment and up to 33 years of longitudinal recorded information. Much of these 

data are costly and may be infeasible to collect for a research trial. For example, consider the cost to 

obtain and clinically interpret the 3.4 million radiology tests (~14 radiology tests per patient) presented in 

Figure 1; these included over 628,000 computed tomography (CT) scans and nearly 192,000 magnetic 

resonance imaging (MRI) scans, all with clinical interpretations. Assuming a conservative estimate of 

$500 per test, these CT and MRI scans alone would cost $410 million. Thus, there is a significant 

reduction in research time and expense for accrual of large sample sizes with a breadth of clinical data (9, 

25). 
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Figure 1. Density of data in the Vanderbilt EHR-linked biobank, BioVU. While enrollment in BioVU 

and accrual of samples for DNA analysis started in 2007, clinical data within the electronic health record 

on the individuals enrolled dated as far back as 1984. Data points were transformed by taking the square 

root and dividing by 20.   

 

Another potential benefit of linking DNA repositories to EHRs is the inclusivity of EHRs in 

comparison to traditional population-based cohorts, which often will exclude certain diseases, children, 

minority or poor populations, and the elderly. This is critical for both identification of a range of cases as 

well as controls. Because EHR-based cohorts provide significant variability in phenotypic traits, a single 

cohort can be reused many times for many phenotypes or genetic variants examined (9, 26). Once the 

genetic data have been collected, the majority of cost and effort is thus expended at defining, refining, and 

validating phenotypes of interest.  

Large sample sizes for modern genetic research methods, such as GWAS and PheWAS, are 

critical to the discovery of novel findings and afforded by the EHR (27). For both GWAS and PheWAS, 

there is a need to correct for multiple comparisons, increasing the threshold for statistically-significant 

results. For GWAS, the threshold has been established at 5x10-8 (28). While the threshold for statistical 
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significance is less well-established for PheWAS, a Bonferroni correction is often applied in these 

analyses, resulting in a conservative significance level that assumes independence across all phenotypes, 

which is unlikely given that many phenotypes of human diseases and traits are closely related. Since 

statistical power is a function of number of tests performed, effect size (often low for many variants), and 

minor allele frequency, use of this stringent threshold has necessitated use of larger and larger cohorts to 

enable identification of significant associations, especially those that are rare or low-frequency variants of 

moderate-to-large effect.  

 

Classes of Data Available in EHRs for Phenotype Curation 

 EHR phenotyping is the process of identifying individuals with an explicit observable trait from 

large quantities of imperfect clinical patient data (Figure 2) (29). The earliest approach to phenotyping is 

via manual chart review, typically performed by thorough searching of clinical documents, laboratory, 

and medication information by individuals with medical domain knowledge. For automation of 

phenotyping, EHR data, which is stored in both structured and unstructured formats, is extracted and 

utilized for analysis (Table 1). Structured data is typically easier for computerized extraction, with 

examples being billing codes, laboratory results, vital signs, and often medications. A large proportion of 

the EHR is relatively unstructured, including almost all clinical documentation, radiology reports, and 

some test or laboratory results. For many phenotypes, accurate case selection is best achieved through use 

of a combination of structured and unstructured data (10).  
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Figure 2. Methods of electronic health record (EHR)-based phenotyping. Clinical concepts are in 

both structured and unstructured (require machine-extraction) in the EHR. These concepts can be used for 

various forms of phenotyping.  
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Table 1. Common data classes within electronic health records (EHRs).  

 Demographic

s 

Diagnoses Procedure

s 

Medicatio

n records 

Laborator

y results 

Imaging  Clinical text 

documentatio

n 

Data format Structured Structured Structured Partially 

structured 

Mostly 

structured 

Partially 

structured 

Mostly 

unstructured 

Data 

standard 

None ICD9/10  CPT  RxNorm LOINC DICOM 

for images  

SNOMED-CT 

Query 

method 

Simple Simple Simple Simple, 

text 

searching, 

NLP 

Simple, text 

searching 

Simple, 

text 

searching, 

NLP 

NLP 

Recall Moderate Moderate Variable Moderate Moderate Moderate Moderate 

Precision Moderate Low High Moderate High High High 

Affected by 

healthcare 

fragmentatio

n 

No Low/moderat

e (chronic) to 

high (acute) 

High Moderate High High Moderate 

Strengths Easy to query Easy to query Easy to 

query 

High 

validity for 

inpatient 

setting 

High 

validity 

High 

validity 

Most dense 

clinical 

information; 

can capture 

out-of-hospital 

history 

Weaknesses Variable recall 

and precision 

based on 

demographic 

Susceptible to 

inaccuracies 

Susceptible 

to missing 

data 

Susceptible 

to missing 

data 

Variable 

recall and 

precision 

based on 

test; 

susceptible 

to missing 

data 

Susceptibl

e to 

missing 

data; 

difficult to 

process 

raw 

images 

Most difficult 

to process and 

interpret at 

scale 

Used in 

Phenotyping 

Most common Most 

common 

Common Common Somewhat 

common 

Somewhat 

common 

Less common 

*CPT, Current Procedural Terminology; DICOM, Digital Imaging and Communications in Medicine; 

ICD-9/ICD-10, International Classification of Diseases, Ninth Revision/Tenth Revision; LOINC, Logical 

Observation Identifiers Names and Codes; SNOMED-CT; NLP, Natural Language Processing; 

Systematized Nomenclature of Medicine-Clinical Terms 
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Billing data are the most commonly used resource for identifying phenotypes in both clinical and 

genomic research (21, 30). This structured data typically consists of International Classification of 

Diseases (ICD) and Current Procedural Terminology (CPT) codes. The ICD coding system classifies 

diseases, symptomatology, and procedures based on a hierarchical terminology structure maintained by 

the World Health Organization (WHO). CPT codes were created by the American Medical Association, 

and are used to bill for clinical services, such as an imaging study or surgical procedure. Both classes of 

billing data are ubiquitous and easily queried within EHRs, making them highly utilized as at least a 

portion of most phenotyping algorithms. A query of the data types used in phenotyping algorithms in the 

Phenotype Knowledgebase (www.pheKB.org) shows that 122 of 154 (73%) algorithms used ICD codes 

(Table 2), all of which used ICD-9 codes and 26 that used both ICD-9 and -10 codes. This demonstrates 

one challenge of using billing codes within longitudinal patient information as coding systems change 

over time, such as the migration from ICD-9 to ICD-10 coding in 2015 in the US, resulting in the need for 

mapping strategies to combine codes from different systems. Sensitivity and specificity of billing codes 

alone are variable across phenotypes, with one study showing a range of positive predictive values (PPVs) 

for ICD codes from 0.12 to 0.56 across ten diseases (29). ICD codes generally have low specificity but 

are highly sensitive for diseases, as a clinician may bill an ICD code for a diagnosis based upon clinical 

suspicion rather than confirmation of disease (31). CPT codes tend to have higher specificity, as 

procedural coding is quite accurate, but lower sensitivity in comparison to ICD codes due to procedures 

being performed at other institutions, demonstrating fragmentation of EHR data (32).  

Other types of structured data within the EHR, such as laboratory results and medications, are 

also often used to identify phenotypes (Table 2). In particular, 53% of algorithms available on PheKB 

utilize medication data. Record of medication receipt can be in various forms in the EHR; however, 

inpatient computerized provider order entry systems and outpatient drug prescribing systems have 

increased the availability of drug exposures as structured data. Medication data in the absence of 

corroborating evidence has not been found to be especially useful, with area under the receiver operator 
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characteristic curve (AUC) of 0.54 for 10 diseases (29). Importantly, the capture of medications is 

essential to provide exposure data for pharmacogenomic studies (31, 33). Challenges to analyzing 

laboratory data in particular include the repeated measures, naming conventions, and various specimen 

sources, resulting in difficult interpretation. While laboratory and medication data must be placed into 

appropriate clinical context with careful selection, they can improve phenotyping accuracy for many 

conditions. 

 

Table 2. Data modalities used in phenotyping algorithms available on PheKB. Data as of 10/15/2017. 

Non-public algorithms include algorithms in development and those whose performance has not yet been 

validated. 

 
 Public 

(n = 44) 

Non-public  

(n = 110) 

Percent of 

total  

ICD-9 or -10 

codes 

39 73 73% 

Medications 31 51 53% 

CPT codes 23 44 44% 

Natural 

language 

processing 

28 36 42% 

Laboratory test 

results  

21 37 38% 

Vital signs 5 14 12% 

* ICD-9/ICD-10, International Classification of Diseases, Ninth Revision/Tenth Revision; NLP, Natural 

Language Processing; CPT, Current Procedural Terminology 

 

The main source of unstructured data within the EHR is clinical documentation, consisting of the 

most accurate record of the providers’ thoughts and richest information for phenotype algorithms. To be 

useful for electronic-based phenotyping, clinical documentation must be in a format that is computable. 

The majority of clinical notes consist of narrative text, lacking uniform format or structure, thus they must 

be processed with either basic keyword searching or modern tools such as natural language processing 

(NLP), discussed further in the next section.  
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Processing of EHR Text Data 

Narrative clinical documentation includes a wealth of information about diagnoses, signs and 

symptoms, risk factors, treatments, family history, exposures, and clinical decision making, many of 

which are not well captured by structured information in most EHRs. Indeed, the gold standard in 

validating whether a patient has a diagnosis or a given trait generally involves a review of the clinical 

notes (30). NLP is a tool for producing computable representations from this narrative unstructured text 

(34). There are many approaches to NLP, ranging from rule, grammar, and machine learning (ML)-based 

approaches for producing comprehensive “understandings” of the text (so-called “general-purpose” NLP 

systems (35–40)) to focused applications applied to particular tasks (e.g., identifying medications and 

their features (41), or left ventricular ejection fraction (42)). General-purpose NLP systems often seek to 

parse unstructured text documents into phrases that can be mapped to concepts within controlled 

terminologies such as the Unified Medical Language System (UMLS), the Systematized Nomenclature of 

Medicine-Clinical Terms (SNOMED-CT), or RxNorm (for medications) (37, 41, 43–46). Mapping the 

textual elements within clinical free-text documents to a semantic terminology provides a standardized 

method to represent the data for downstream computation. Other tasks that often improve the 

performance of NLP systems include identification of negation and qualifiers (47), semantic role labeling 

(48), word sense disambiguation (49), and temporal analysis (50).  

Some important clinical features often have historically only been found in narrative data, such as 

family history and smoking status. Smoking status has been the focus of many dedicated rule-based, ML, 

and hybrid NLP systems with F-measures ranging from 84-97% (38, 51–53). NLP also has the capacity to 

identify family history information with variable accuracy in prior studies (54–57). Identifying these 

important features within clinical documents allows the features to be reused and add meaningful 

information to diverse research studies. The introduction of Meaningful Use Stages 2 and 3 with the 

requirement for structured data entry for smoking status and family history will make these data more 

available over time with NLP tools (58, 59). Further, functionality such as Duke University’s MeTree, 
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which allows a patient to complete his or her own family history, are providing new avenues for increased 

entry of structured information in the EHR (60, 61). 

Performance for concept extraction varies with recall and precision ranging from 70-90%, 

depending on the specific application of the NLP (36–38, 44, 62). For this reason, EHR-based 

phenotyping algorithms have typically combined NLP features with other data components. Specific 

phenotypes such as adverse events and diseases can be successfully extracted using NLP (63–68), with 

several studies reporting higher predictive capability for case identification through NLP (either alone or 

in combination with other methods) in comparison to use of billing codes alone (19, 32, 34, 64, 69, 70). 

Researchers have used both general-purpose NLP systems and focused applications, but the latter 

have become more common, since most phenotype algorithms do not need to identify all concepts but 

instead require a high-precision text mining approach to identify a set of terms applicable to specific 

concepts. For example, nearly all Vanderbilt phenotypes involving medications have employed a general-

purpose NLP tool for medication extraction (MedEx) (41), but we have used a mix of regular expressions, 

general-purpose NLP tools (66, 71), or ML-based approaches for specific phenotypes (72). While 

general-purpose NLP systems can be utilized across a range of phenotypes, they also generally have 

inferior recall and precision to purpose-built approaches for defined phenotypes. Further, while NLP 

methods have significantly improved in the ability to identify negation and sentence structure, these 

algorithms remain imperfect and secular shifts in documentation, such as the transition from use of 

dictation to typed templates to “point-and-click” note writers, can result in instability of algorithm 

performance.  

 

Challenges of Repurposing EHR Data for Research  

 While EHRs contain a wealth of extractable information for phenotype classification, their 

interface and the data generated within them are used primarily for clinical care and reimbursement, 

typically with little consideration towards research impact. The secondary use of EHRs for clinical, 
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genomic, and pharmacogenomics discovery can be challenged by variable accuracy, lack of 

standardization, irregular follow-up, incompleteness of patient records, and significant amounts of 

unstructured information. Inaccuracy within EHRs can result from clinical uncertainty, omissions, or 

billing errors. Omission can occur due to provider workload and perceptions on what is deemed to be 

clinically relevant to report at the time of the encounter. Due to the lack of EHR centralization, the length 

and depth of a patient’s record can vary greatly due to when a patient inhabits a region, what insurance 

the patient carries and the hospital accepts, and where a patient receives his or her care, with patients 

often seeing multiple disconnected providers within a region. One study to evaluate the effect of potential 

data fragmentation on the accuracy of a phenotyping algorithm for type 2 diabetes found that almost one-

third of cases were missed if EHR data from only a single site was used (73). While completeness of the 

EHR is difficult to define, it is important for researchers to understand the likely limitations of the data 

and how it may affect study findings (74).  

 

Approaches to Identifying Phenotypes in the EHR 

Large-scale, efficient phenotyping methods that utilize data within the EHR provide benefits that 

are not limited to genomic studies. Phenotyping is crucial to the identification of a population of patients 

that satisfy a set of criteria, which is important for clinical trial recruitment, retrospective cohort or 

outcomes studies, and cost analyses, among others. However, identification of patients that belong in a 

particular cohort is time-consuming and challenging. Different approaches to automated phenotyping 

have been pursued; we describe the most frequent and promising (Figure 3, Table 3). 
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Figure 3. Phenotyping methodological approaches differ in their clinical and informatics resources 

needed. The width/height of each oval represents the range of that type of resource needed. 

 

 

Table 3. Strengths and Weaknesses of Current Phenotyping Approaches using Electronic Health 

Records (EHRs). 

 

 Manual chart 

review 

Rule-based 

computerized 

phenotyping 

Supervised 

machine 

learning 

Unsupervised 

machine learning 

Phenome-wide 

approaches 

(PheWAS) 

Description Clinician review 

of medical 

records 

Manually-

created 

Boolean logic 

Classification 

based on a set 

of features 

Phenotypes 

learned through  

clustering of 

computer-

identified features 

Systematic 

analysis of many 

phenotypes, 

usually using 

very simple rule-

based approaches  

Data variables Can be used to 

narrow records 

for manual 

review 

Structured 

data, NLP 

Structured 

data, NLP 

Any Most commonly 

billing codes but 

can be lab or 

NLP  
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Recall High Variable Variable Variable High 

Precision High High High Variable Variable  

Costs High Moderate; 

major cost is in 

algorithm 

development 

Moderate; 

major cost is 

in creating 

training set 

Moderate; usually 

needs very large 

data collections 

and computing 

resources 

Low 

Scalability of 

cohort size 

Poor; costs 

directly 

proportional to 

N 

High High High (large 

cohorts required) 

High 

Scalability of 

phenotype 

number 

Poor Poor Poor High High 

Transportability High Variable but 

often high 

Variable; 

often less 

than rule-

based 

Variable; often 

less than rule-

based 

High 

Expertise 

Required 

Clinical domain 

knowledge 

Clinical 

domain 

knowledge and 

informatics 

support 

Clinical 

domain 

knowledge 

and 

informatics 

support 

Little to no 

clinical domain 

knowledge, 

significant 

informatics 

support needed 

Little to no 

clinical domain 

knowledge, 

minimal 

informatics 

support needed 

Strengths High validity, 

considered gold-

standard; little 

informatics 

support needed 

High validity; 

Ease of 

interpretation 

Typically less 

costly than 

manual 

review 

Can identify 

unspecified 

phenotypes; 

Unbiased; No 

domain expertise 

or manual review 

Ascertain broad 

range of 

phenotypes; can 

be used for very 

large populations 

Weaknesses Significant 

knowledge and 

time required 

Requires 

iterative 

algorithm 

development 

and manual 

review; 

Domain and 

informatics 

expertise 

needed 

Require 

manually 

classified 

training sets; 

may require 

expert feature 

selection 

Potentially poor 

interpretability or 

irrelevant findings 

if not coupled 

with supervised 

approaches 

Often phenotype 

detail and 

accuracy limited 

by billing codes  

Current use Idea for small 

cohorts and 

validation for 

computational 

methods 

Often used in 

GWAS for 

single 

phenotypes 

Often used in 

GWAS for 

single 

phenotypes 

Rare, but 

increasing for 

identifying 

phenotypes from 

unstructured data 

Hypothesis 

generation; drug 

repurposing; 

interpretation of 

novel genomic 

loci 

*PheWAS, Phenome-wide association studies; NLP=natural language processing 
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Logical Constraint-Based Approaches 

The earliest automated approach applied to recognize patients with a particular phenotype of 

interest is through the use of Boolean logic. The simplest example of this is utilizing hierarchical billing 

code structures to determine cases and controls, as is performed in a standard PheWAS analysis. 

However, more commonly these phenotype algorithms are more complex, manually-curated, and based 

upon rules applied in a step-wise fashion (75). Similar to the manner in which a content expert would 

determine case status, the logical constraint-based algorithms incorporate information from various 

sources of the EHR, including billing codes, clinical documents, laboratory data, and medication 

exposures.(19) Structured data, either data that is extracted from the EHR in structured way or is 

processed into a standardized format using methods such as NLP, are necessary as input for the algorithm.  

Construction and validation of Boolean algorithms are typically an iterative process with 

collaborations between clinical domain experts, bioinformaticians, clinical informaticians, NLP experts, 

and genomics researchers. Clinical experts are typically required for creation of the algorithm itself, and 

manual effort is required for review of at least a subset of the case and control cohorts classified by each 

algorithm to ensure the algorithm’s accuracy. The time and effort required is extremely phenotype 

dependent as the algorithms can vary from fairly simple to very complex. For example, the number of 

rules in an algorithm can differ dramatically: a 2012 review of 9 phenotypes found that algorithms 

contained between 8 and 174 rules for case identification (76).  

Logical constraint-based approaches to phenotyping have several advantages. The most profound 

benefit is that they are the simplest to interpret and implement, allowing them to be more readily 

replicable and transferable across different EHRs or clinical enterprises (21, 26, 66). In 2011, a GWAS 

was performed to identify associations with primary hypothyroidism using a phenotyping algorithm 

developed at a single site and implemented to be transportable across EHRs and institutions (26). This 

algorithm incorporated billing codes, laboratory values, text queries, and medication records within five 
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separate EHRs. Overall, the algorithms’ PPVs were 92.4% and 98.5% for cases and controls, respectively. 

For the controls, PPVs at all sites were above 95%, while PPV for cases as varying sites ranged from 82-

98%, with the lowest PPV mainly due to misclassification of individuals who had undergone 

thyroidectomy elsewhere or in the distant past. Experience has shown that algorithms developed for 

identification of rare phenotypes or those including only billing codes for case determination typically 

have the poorest performance. 

These algorithms work well for circumstances in which high validity is needed for a single 

phenotype for a disease or simple trait that may need to be applied across multiple institutions. The ease 

of interpretation makes logical constraint-based algorithms attractive to clinicians, and thus research 

results potentially more translatable to clinical practice, and they can easily be applied to large data sets. 

The principal limitation is that a new algorithm needs to be created for each new phenotype pursued. 

 

Machine Learning (ML) Approaches to Defining Phenotypes 

 ML-based algorithms have been proposed as a method to achieve the improved accuracy and 

breadth needed to scale phenotype annotation. ML approaches can automate the identification of complex 

patterns to classify individuals into different groups, such as a case or control for a given phenotype. The 

traditional approach to ML is that of supervised learning, in which an expert creates a “gold standard” of 

classified individuals and a feature set used for determination and then the trained algorithm can be used 

to make predictions on unlabeled examples (77). When individuals are not labeled into groups, an 

unsupervised learning approach can be applied, which attempts to find natural clusters or patterns of data 

and individuals. An unsupervised approach can also be used for feature extraction and then tested against 

an annotated outcome of interest for creation of the classifier (which can be viewed as a type of 

supervision). Fully unsupervised ML requires no need for domain expert annotation or feature selection; 

thus this approach is high-throughput and scalable but also can lead to greater difficulty in interpretation.  
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Supervised Machine Learning  

Supervised ML requires a set of training examples belonging to either a phenotype case or control 

and then can build a model that can be used on other examples for classification. Several different 

methods can be used for supervised ML, such as support vector machines (SVM) (66, 72, 78, 79), logistic 

regression (66, 80), random forests (70), or neural networks (81, 82).  

While supervised ML has been shown to be extremely effective for individual tasks, the 

requirement for manual annotation, a time-consuming and costly process, and feature selection results in 

limited scalability (83). The conventional approach to building a set of annotated samples is to select a 

random pool of individuals to manually classify. Active learning approaches to ML-based phenotyping 

can potentially overcome the need for large annotated datasets. Chen et al. demonstrated the use of an 

uncertainty sampling algorithm to find and annotate only the most informative samples, those samples 

with the most uncertain features (83). This approach achieved similar classification results with 

annotation of a fraction of samples compared to the use of a randomly annotated set. ICD-9 codes have 

been used as a surrogate for defining training cases and controls to limit manual input; however, this 

confines phenotypes to those defined by billing codes (79, 84).  

Feature selection is the technique of selecting a subset of potential terms or features to use in the 

ML model. ML-based classification algorithms can incorporate a range of features, including billing data, 

clinical documentation extracted with NLP, semantic terminologies, medication exposures, and laboratory 

data. Features can either be chosen from a set of all potential clinical concepts or from a refined set 

through application of algorithms (e.g., using univariate statistical associations, ML approaches, or 

penalized regression models) or by domain expert curation. Potential features within the EHR are vast, 

and for many phenotypes, it is impractical to find an optimal subset of features using manual approaches. 

Prior studies have suggested the use of unrefined feature sets including all clinical concepts to reduce the 

domain knowledge required for phenotyping (72). While this provides effective performance for some 

phenotypes, algorithms using unrefined feature sets typically have lower accuracy than those using 
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expertly curated features, unless very large training sets are used. Bejan et al. proposed statistical feature 

selection by ranking features based upon their association with a case or control to improve algorithm 

performance for phenotype identification of pneumonia (85). Yu et al. created the Automated Feature 

Extraction for Phenotyping (AFEP) approach for disease phenotyping by using NLP applied to 

knowledge sources (such as Medscape and Wikipedia) to develop medical concepts relevant to a disease 

followed by concept screening, in which concepts that were either too rare, too common, or not relevant 

enough were excluded from the feature sets in automated ways (86). AFEP algorithms achieved accuracy 

comparable to the use of expert-curated feature sets for rheumatoid arthritis and coronary artery disease.  

Another approach to limit the need for manually engineered features is to use deep learning. Deep 

learning allows for the construction of a hierarchy of progressively complex feature layers, with 

transformation into more abstract representations at higher levels by training a neural network. The key 

aspect of deep learning is that these layers of features are not designed by domain experts, and rather they 

are learned from the data (87). Gulshan et al. applied supervised deep learning to more than 128,000 

images of patients with diabetic retinopathy along with controls, with the development of algorithms that 

identified diabetic retinopathy with similar performance to ophthalmologists (AUC of 0.99) (81). 

Similarly, Esteva et al. used deep neural networks for automated classification of skin lesions, 

demonstrating the capability of identifying skin cancer with performance comparable to dermatologists 

(82).   

In an early demonstration of deep learning neural networks applied to longitudinal health data, 

Lasko et al. applied an unsupervised feature learning approach to produce phenotypic features from uric-

acid measurements for inputs in a supervised logistic regression classifier, and the model was capable of 

accurately distinguishing (with an AUC of 0.97) between gout and acute leukemia (88). A unique aspect 

of this study was managing the variable representation of time intervals, since labs are taken at irregular 

intervals for patients. Lab values for unobserved times were estimated using Gaussian probability 
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distributions to allow drawing of continuous curves that formed the learned features from the deep 

learning model.  

An important limitation of supervised ML is that the methods require training sets labeled with 

the phenotypes that they will “learn” to find. Thus supervised learning can be successful in finding 

patterns that explain phenotypes we have the knowledge to label, but not when we don’t have the 

knowledge or ability to label the phenotypes and rather aim to discover phenotypes from the data (88).  

  

Unsupervised Machine Learning  

 Unsupervised ML has demonstrated success using an unbiased approach towards phenotype 

discovery. This method could conceivably identify all phenotypes in a data set, including disease 

subtypes, medication response or adverse events, and previously unrecognized disease patterns. There are 

several types of unsupervised ML methods, including clustering, dimensionality reduction techniques, 

and tensor factorization. Prior studies have used unsupervised ML and hierarchical clustering to learn 

subphenotypes (or sets of comorbidities that group together) of autism (89, 90). Others have used 

clustering methods to identify distinct phenotypes of bicuspid aortic valves (91) and bronchiectasis (92). 

Nonnegative tensor factorization has also been shown to have the ability to capture diverse multi-attribute 

phenotypes consisting of combinations of diagnoses and medications with over 80% found to be 

clinically meaningful (93). 

 Unsupervised ML-based approaches may have the potential to scale phenotype classification to 

thousands of phenotypes in a computable and accurate way. The limitation of unsupervised ML models is 

their difficulty with interpretability, necessary for wide adoption by clinical providers (94). Further, ML-

based algorithms are only as useful as the features used for classification, thus ontologies and 

advancement of NLP techniques will continue to improve their predictions as well. 
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Phenotyping for Genomic Research 

Phenotype Creation, Validation, and Implementation for Genomic Research  

Phenotype creation and validation is often an iterative process and critical step in determining the 

success and scalability of the phenotype as shown in Figure 4 (30). Phenotype accuracy has been shown 

in several studies to improve with combinations of data within phenotype algorithms (29, 34, 70). Even 

simply adding the requirement of 2 or more ICD codes can significantly increase PPV and sensitivity of 

algorithms; however, inclusion of EHR components, such as medication records and clinical notes, often 

results in further phenotyping performance improvement (29). Following initial creation and execution of 

the algorithm at the development site, it is important to validate the results at the primary site before 

executing at subsequent sites. Validation is typically performed by manual review of a subset of clinical 

records, and can be achieved by either an “expert review” by a seasoned clinician who reviews the 

clinical record to determine holistically if the patient meets the case definition or not (e.g., does the 

patient clinically appear to be diagnosed by appropriate clinicians with the disease of interest) or using 

formal case review algorithms, which specify finding a number of elements in the chart to verify the case 

is truly a case. The latter may be particularly important for more precise phenotypes, such as defining 

resistant hypertension or a subtype of eye disease, or when a clinical expert is not available for chart 

review.(30) The scope of review can vary based on the phenotype, for example while some algorithms 

may only require review of 1 year of a clinical record, others may require a full review of patient’s health 

record. After validation and tuning at one site, then the algorithm is executed and validated at secondary 

sites, preferably occurring across multiple EHRs and institutions, ensuring its reproducibility and 

transportability.  

Curation and validation of a single or few phenotyping algorithms using the above described 

method to ensure high PPV is feasible and remains a highly-utilized method for GWAS.   
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Figure 4. Phenotype development and validation. A primary site first develops and executes the 

phenotype, and then secondary sites execute the phenotype. At each step feedback to primary and 

secondary sites may lead to revisions in the methods (arrows). 

 

 

Scalability and Portability of EHR-derived Phenotyping Algorithms 

For multi-site collaboration and accrual of large datasets, it is important to consider the portability 

of phenotypes across different institutions with varying EHRs, infrastructures, clinical domain 

knowledge, and informatics support. Researchers within eMERGE and other networks have demonstrated 

the portability of well-defined logical constraint-based phenotyping algorithms and have fostered sharing 

through public availability on PheKB. Kirby et al. described the results of 43 phenotyping algorithms 

including multisite validation data in PheKB, with a median of 3 (range 1–8) external validations per 

algorithm (21). Performances on case and control algorithms for development-site evaluations were 

similar to performance by external-site evaluations, with median case and control PPV over 95% for both. 

PheKB currently contains 154 phenotypes, 44 of which are publicly available (Table 2). As there is 

presently no uniformly-adopted method for data representation and extraction across varying institutions 

and EHRs, the algorithms are typically represented as ‘pseudocode’ to improve transportability and guide 

other sites at implementation, containing all necessary variables and the rules to combine them (30). 

Pathak et al. suggested that standardization of phenotype data dictionaries in these phenotyping 

algorithms using common data elements and biomedical ontologies could also help facilitate multi-site 

and cross-study collaborations (95); these ideas were later expanded into a desiderata for phenotype 
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algorithms which includes logic formalism, use of ontologies, and the need for a common phenotype 

language that removes the need for human reimplementation from pseudocode (96).  

In 2012, Carroll et al. utilized a previously published logistic regression phenotyping algorithm 

for identification of cases and controls for rheumatoid arthritis as a model to demonstrate portability of a 

ML algorithm across institutions (66). Features obtained from structured data were comprised of billing 

codes, laboratory results, medication orders, and use of general-purpose NLP systems. Applying the 

previously published regression phenotyping model to 2 external institutions with different EHRs and 

NLP systems showed an AUC to be similar to that obtained at the development site (92% and 95% at 

external sites compared to 97% at development site).  

Logical constraint-based algorithms are largely rule-based, relying heavily on domain experts for 

curation. Similarly, supervised ML algorithms require annotated sets and often defined features for a 

specific phenotype. While these algorithms achieve high accuracy and portability across institutions, their 

scalability to a phenome-wide approach remains limited. In addition, many traits are not dichotomous but 

present along a continuum in a population. A recent study by Wells et al. demonstrated the use of left 

ventricular function determined by systolic ejection fraction, a continuous measure, to analyze 

associations with drug side effects in a GWAS analysis (97). Other opportunities for defining phenotypes 

include incorporating ontologies such as SNOMED-CT or the human phenotype ontology (HPO), which 

was originally designed to capture phenotypes related to Mendelian disease but has grown to encompass 

an increasing representation of common diseases (98).  

As genotyping costs continue to decline and efforts become more widespread, the limiting factor 

to identification of genotype-phenotype associations will be accurate labeling of phenotype cases and 

controls. Research questions that require identification of many cohorts or phenotypes can become 

exponentially more challenging, with the resultant need for high-throughput phenotyping methods. 

Unsupervised ML algorithms to broadly define phenomes may have potential to scale phenotype 

discovery; however, their current use in genetic association analyses is limited.  
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Phenome-wide Association Studies 

Analogous to a GWAS, PheWAS leverages the breadth of phenotypes in the EHR to perform 

systematic interrogation for associations with an independent variable, typically a genotype. The first 

PheWAS was performed in 2010, in which four known SNP-disease associations were replicated and 

several new proposed (99). Since then, dozens of studies have used PheWAS to explore both genetic and 

phenotypic associations to specific traits. 

The PheWAS method requires a broad set of phenotypes collected in an unbiased approach to 

create a complete phenome of diseases and traits. PheWAS can use thousands of phenotypes; thus manual 

curation and validation is not practical (99–101). Thus to define a complete phenome across a large 

cohort, many PheWAS have used phenotypes derived from custom groupings of ICD-9 codes, also 

referred to as phecodes (99, 102). Typically, 2 or more ICD-9 codes are required for mapping to a single 

phecode. While the phecode groupings have been shown to better align with clinical diseases in practice, 

other methods of phenotype classification also are effective for PheWAS studies (100, 101, 103–105). 

Several studies have reported success with a PheWAS method using raw ICD-9 codes and parent ICD-9 

three-digit groups as phenotypes (100, 103, 104). Leader et al. compared five gold standard phenotypes to 

ICD-9-Clinical Modification (CM) 5-digit and 3-digit diseases and phecodes (103). They found that 

phecodes may not be granular enough for some phenotypes. Others have also used Agency for Healthcare 

Research and Quality (ARHQ) Clinical Classification Software for ICD-9-CM (CCS), which reorganizes 

disparate ICD-9-CM codes into a smaller number of clinically meaningful categories (105, 106). Similar 

to three-digit ICD-9-CM codes or phecodes, CCS provides a hierarchical grouping of ICD-9-CM or ICD-

10-CM codes but at a more aggregate level than other approaches. Wei et al. recently compared different 

diseases studied in prior GWAS to determine which phenotyping method better aligned with clinical 

practice and prior genomic association results and found that phecodes replicated more known SNP-

phenotype associations (153 SNP-phenotype pairs) than use of ICD-9-CM (143) or CCS (139) (105).  
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Finding specific phenotypes that are not captured by billing codes or uncommon disease 

associations is crucial and will require increased granularity and accuracy of phenotyping techniques. An 

example of a trait rarely captured by billing codes alone is that of drug response, important for 

pharmacogenomic studies (107). Hebbring et al. has shown that PheWAS can be performed by defining 

the phenome solely on textual data within clinical documentation (101). Using clinical text extracted 

using NLP along with billing codes and other data available in the EHR could help automate and refine 

phenotypes at the phenome-wide scale. 

PheWAS has shown the feasibility of analyzing genomic associations with thousands of 

phenotypes across a cohort of individuals and finding novel associations (99, 100, 102, 108). This 

approach can also be applied using various predictive attributes in the PheWAS analysis, including 

genetic risk scores, a set of SNPs aggregated into a single continuous score, or gene expression data. 

Krapohl et al. demonstrated how a genetic risk score could be applied to a phenome consisting of 

behavioral or psychiatric traits to explain some of the phenotypic variation seen in a population (109). 

Gamazon et al. have described PrediXcan, a method that predicts tissue-specific gene expression and 

could be used in PheWAS to measure trait associations as well (110). Mosley et al. applied generalized 

linear mixed models in a phenome-wide approach to estimate the additive genetic variance underlying 

phenotypes to prioritize those diseases and traits more likely to have genetic drivers, identifying a few 

conditions for which novel genetic signals were discovered via subsequent GWAS (111).  

The flexibility and ease of application of the PheWAS approach makes the methods highly 

generalizable. Expansion of PheWAS-like methods with other high-throughput phenotyping techniques 

that capture the breadth of phenotypes in clinical practice has the potential to further advance discovery.  
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Challenges and Opportunities of EHR Phenotypes for Genomics Research 

Challenges Learned from Current Phenotyping Efforts 

Several challenges remain to optimizing use of EHR data. In addition to the inherent limitations 

of reusing EHR data for research, such as data fragmentation, variable accuracy, and extent of 

unstructured data, there are significant challenges to phenotype algorithm creation, stability, and 

scalability. Evolving billing standards, such as the transition to ICD-10, changing documentation 

practices, and advancing EHR systems all weaken the stability of phenotyping algorithms. EHR-linked 

biobanks introduce further challenges. In particular, there can be significant loss to follow-up as 

individuals change providers or institutions. Further, many EHR-linked biobanks prevent the ability to 

recontact patients due to de-identification of the EHR prior to the conduct of genotyping and research. 

One major challenge both within EHR-linked biobanks as well as with combining genomic data 

from different institutions in multi-site collaborations is the usage of selected patient cohorts genotyped 

on varying platforms. Often genotyping of all consented individuals at an institution is not financially or 

logistically feasible. Thus, priorities are made for genotyping of individuals with known phenotypes of 

specific research interest or external funding for genotyping expenses. This has resulted in relatively large 

sample sizes of specific phenotypes at any one site, which can also influence what other phenotypes are 

observed in the genotyped population. In addition to population selection for genotyping, a variety of 

different genotyping platforms may be used. These constraints result in specific biases within certain 

biobanks that must be considered by researchers.  

Another challenge is variable success of some algorithms. For example, type 2 diabetes has 

shown replicability with PPV greater than 98% for cases across institutions while the PPV for accurate 

identification of dementia ranged from 73-90% at different sites (30). For dementia in particular, cases 

were compared to a research-quality dementia diagnosis at a specific site obtained through a longitudinal 

cohort study, showing that billing codes and medications alone were not sufficient for accurate prediction 

of a dementia diagnosis. Unfortunately, there is currently no reliable method of determining preemptively 
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which algorithms will perform well across different sites; thus validation, an iterative and time-consuming 

process, remains a crucial step.  

 

Future Directions  

Collaborations between researchers and clinicians could allow for integration of data obtained in 

prospective research initiatives into EHRs. In addition, linkage of EHR data to medical claims data and 

nationally public databases, such as prescription data and national death indices could also improve 

accuracy of phenotyping algorithms (30). In contrast to EHRs, which are used primarily by healthcare 

providers, participant-facing collection of health data has grown dramatically. While not a focus of this 

review, phenotypes for genomic research obtained through consumer-facing organizations such as 

23andMe and the upcoming All of Us Research Program also have the potential to accrue a wealth of 

phenotypic information for genomic research (24, 112–114). Further, as personal health records and 

consumer health tracking applications on smartphones or other consumer devices increase in functionality 

and integration with other aspects of patient health information, these have the potential for the 

development of more refined phenotype definitions (18, 107–109). 

Although use of ML and novel statistical methods for phenotype classification are growing, rule-

based approaches continue to dominate. Use of standard terminologies within phenotype algorithms 

improves portability. Globally, there are challenges with collaboration due to differences in billing 

standards, such as the use of ICD-9, ICD-10, or ICD-10 with Clinical Modifications in the US. For 

example, while SNOMED-CT is the most common emerging terminology used in the United States, the 

United Kingdom has historically used Read codes in general practice clinics.  

With no current unified programming language or phenotype implementation approach, the actual 

code for phenotyping algorithms remains largely non-portable today (118). The Phenotype Execution 

Modeling Architecture (PhEMA) project has the goal of developing reusable and machine-executable 

phenotype algorithms across sites and EHR systems (119). A key challenge, however, is not the 
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programming language itself but the semantic representation of the data within the EHR. The Shared 

Health Research Information Network (SHRINE) has allowed for shared phenotype queries across 

systems implementing the Integrating Biology and the Bedside (i2b2) platform (120). Another promising 

approach to harmonizing data from heterogeneous EHRs is the use of a common data model (CDM) to 

create a common format for the data elements. Several different CDMs are in widespread use, including 

the Observational Medical Outcomes Partnership (OMOP) CDM (121) and the Patient-centered Clinical 

Research Network (PCORnet) CDM (122). When transformed into a CDM, ideally the same code can be 

executed across disparate sites and EHR systems.  

The creation of precision medicine initiatives through biobanks allows for discovery into 

phenotypes across populations of patients with diverse genetic and environmental backgrounds. Genomic 

discovery has historically lacked in ancestral diversity (123, 124). Research collaboration using these 

large cohorts will help to better understand the role of genomics in phenotype variation internationally. 

The overall goal of integration of genomic and phenotypic information with the EHR is not only 

to foster advances in research, but also to drive clinical decision making to support precision medicine 

(125). For example, implementation of algorithms to predict who may be at risk for being placed on 

particular medications could guide who is genotyped prior to medication therapy (126). Phenotyping 

algorithms could improve identifying populations for public health measures and decision support.  

The National Academy of Medicine has recognized that healthcare systems are falling short it the 

ability integrate the wealth of knowledge and innovation into improvement in quality, outcomes, and cost 

(127). Much of the genetic information from genome-wide sequencing or genotyping is either not 

accessible to clinicians, not actionable at this time, or not in a computable form available for clinical 

decision support and future research (128). Providing accessibility of genomic information to clinicians 

through the EHR comes with many challenges, including data storage, structuring, and visualization, and 

can be overwhelming to a clinician (129). A vital step in achieving a learning healthcare system that 

incorporates genomic knowledge is the development of genomic clinical decision support for clinicians. 
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The ability to integrate genomic information into the EHR in a way that is accessible, logical, 

interpretable, and reusable will leverage the translation of genomic discovery to the bedside.  

    

Conclusions 

 While integration of genomic information into EHRs has yet to fully reach its potential, 

significant work in phenotyping and biobanking efforts are providing an improved understanding of 

potential challenges to guide the future. The capability of data collection and extraction in the EHR has 

made it feasible for genomic and phenomic studies to have significant impacts on modern genomic 

research. Efforts towards the centralization of information and design of systems that meet the needs of 

collaborative research along with clinical and billing requirements will greatly facilitate advancement in 

phenotyping studies. Current successful initiatives worldwide provide the framework for phenotyping and 

genomic progress and innovation. Continued advances and standardization in EHR data abstraction and 

visualization, along with structured methods for integrating and representing genomic information will 

afford generalizable approaches to promote precision medicine.  
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Introduction 

Genome-wide association studies (GWAS) and phenome-wide association studies (PheWAS) 

have provided powerful methods for investigating the impact of genetic variation on individual drug 

response and have added extensive knowledge to the understanding of drug targets and effects. We 

highlight here recent advances in drug development, repurposing, and personalization accelerated by 

applying GWAS and PheWAS to longitudinal health data information, along with limitations of these 

methods. 

 

Importance of understanding drug targets and effects 

The challenges facing modern clinical pharmacology can be grouped into two major categories: 

the efficient development of novel therapeutics and understanding individual variability in response. The 

development of novel therapeutics is hampered by the problem that despite major advances in the 

knowledge of disease mechanisms, drug targets, and biomarkers, as well as a continual rise in investment 

into pharmaceutical research, the number of new drugs approved each year has remained steady.(1) Most 

drugs fail in Phase II clinical trials, with 50% of the failures due to lack of efficacy.(2, 3) Thus, there is 

concern that preclinical disease models do not reliably predict efficacy in patients. Human genetics has 

been proposed as a mechanism to prioritize molecular targets early in the stages of drug discovery 

towards potentially more efficacious models.(4, 5)   

The problem of variable drug efficacy and susceptibility to side effects has been recognized since 

the advent of therapeutics. There is now evidence that medication exposure data, outcome data, and 

genetic information linked together via longitudinal electronic health records (EHRs) can provide a more 

thorough understanding of drug effects, including response patterns and individuals at risk for potentially 

rare side effects.(6) Knowledge of the genetic mechanisms that drive drug response variation and adverse 

events can help guide the tailoring of medication therapy. GWAS and PheWAS are modern genetic tools 
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for the exploration of datasets in order to efficiently identify potential targets for novel therapeutics and to 

provide evidence-based individualized therapy. 

 

Overview of GWAS and PheWAS approaches  

GWAS is a hypothesis generating method to systematically analyze variants across the entire 

genome (i.e. “genome-wide”) for association to a phenotype of interest (Figure 1a). Over the past 10 

years, the genotyping assays have evolved from early versions assessing hundreds of thousands of single 

nucleotide polymorphisms (SNPs) to current panels including millions of SNPs.(7) At the same time, 

pipelines for quality control, imputation of genotypes, and statistical analysis for dichotomous, categorical 

and continuous traits have matured and become standardized across high-quality laboratories. The 

threshold for statistically-significant results, given the need to correct for multiple comparisons, has been 

established at 5x10-8. Despite this stringent threshold, use of larger and larger cohorts (including some 

recent cohorts including more than 700,000 individuals) has enabled identification of many SNPs with 

statistically significant p-values.(8) GWAS focuses on detection of associations with relatively common 

variants (e.g., minor allele frequencies 1-5%) so the odds ratios are often small (OR < 1.5). Thus, the 

major outcome of many GWAS is a better understanding of the genetic architecture of complex traits, but 

not a set of high effect size variants that would be clinically actionable.(7) As described below, examining 

drug response with GWAS has provided an interesting counter-example to these generalizations since 

small numbers can yield signals with large enough effect sizes to be considered for implementation. This 

may reflect the idea that drug response represents an example of a controlled environmental intervention 

(drug) interacting with a genome, rather than a multifactorial complex disease state with many potential 

environmental inputs. Since 2005, over 3000 GWAS have identified almost 40,000 unique SNP-trait 

associations within the GWAS catalog provided by the National Human Genome Research Institute 

(NHGRI) and European Bioinformatics Institute (EBI).(7) The rapid increase in knowledge of common 
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genetic variants in complex diseases has provided significant opportunities for analyzing the association 

of genetic variation with disease phenotypes and response to therapies.  

The integration of this wealth of genetic information with phenotypic data by linkage of DNA 

biobanks with EHRs has led to the development of a reverse genetics approach with EHR-based genomic 

studies, termed PheWAS (Figure 1b).(6) The first PheWAS study was performed in 2010, in which 

Denny et al. successfully replicated four known SNP-disease associations.(9) Since then, the use of 

PheWAS has continued to rise in popularity with 58 current PubMed indexed publications. PheWAS 

provides a systematic approach to analyze the many phenotypes potentially associated with a specific 

genotype, with the ability to identify pleiotropy, or the finding of multiple independent associations with a 

single genetic association.(10) The threshold for statistical significance is less well-established for 

PheWAS; therefore, often a Bonferroni correction is applied in the analyses. However, this is highly 

stringent as it assumes independence across all phenotypes, unlikely given that many phenotypes are 

closely related. Despite this, use of large cohorts have allowed for PheWAS to not only replicate known 

findings, but also identify novel associations.   
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Figure 1. 

 

GWAS and PheWAS approaches are complementary, with the ability to replicate and validate the 

other’s findings. Representing the capacity for PheWAS to replicate GWAS, a comprehensive 

comparison of known GWAS associations within the NHGRI GWAS catalog against the PheWAS 

method was performed in 2013, showing that 210 of 751 (28%) known SNP-disease associations were 

replicated with PheWAS, including 66% of those associations that were adequately powered to detect the 

association.(11) This method also identified 63 potentially novel SNP-disease associations, again 

demonstrating pleiotropic effects of the variants. In a pediatric cohort, PheWAS replicated many prior 

known GWAS associations including SNPs associated with juvenile rheumatoid arthritis, asthma, autism 

and pervasive developmental disorder, and type 1 diabetes.(12) Several new SNP-disease associations 

were identified within the pediatric population as well, including a cluster of association near the NDFIP1 
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gene (associated with mental retardation), PLCL1 (developmental delay), and the IL5-IL13 region 

(eosinophilic esophagitis).(12)  

 

Leveraging EHRs for drug-based genomic and phenomic research 

The EHR provides a longitudinal collection of phenotypic information coupled with medication 

exposures, thus making it an important platform for study of drug effects.(6) A broad set of phenotypes 

collected in an unbiased approach is essential to the PheWAS method.(13) To accomplish this, many 

PheWAS have used phenotypes derived from custom groupings of billing codes, also referred to as 

phecodes.(9) The billing codes used for phecode groupings currently are International Classification of 

Diseases, Ninth Revision (ICD9) codes. ICD codes are published and maintained by the World Health 

Organization for classification of diseases and services for reimbursement of medical services. While the 

phecode groupings have been shown to better align with clinical diseases in practice, other methods of 

phenotype classification also are effective for PheWAS studies.(14) Hebbring et al. reported a PheWAS 

method using individual ICD9 codes and parent ICD9 three-digit groups as phenotypes.(15) They not 

only replicated a known association of an HLA class II allele, HLA-DRB1, with multiple sclerosis, but 

also replicated associations of HLA-DRB1 with erythematous conditions and benign neoplasms of the 

respiratory and intrathoracic organs, found to be significant in a prior study by Denny and colleagues.(9, 

15) These and other studies highlight the importance of PheWAS techniques for identifying pleiotropic 

effects.  

Billing codes are not the only source of phenotypes from the EHR. Hebbring et al. have shown 

that PheWAS can be performed by defining the phenome solely on textual data within clinical 

documentation.(16) For drug effects, a phenome based upon billing codes or clinical text alone may not 

accurately capture drug efficacy or adverse events, nor do they provide the necessary information about 

drug exposure, including dosing data. One potential method of obtaining this drug exposure and outcome 

data is to use prospective cohort-based studies. It has been shown that PheWAS can be used with data 
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obtained through clinical trials, representing a more biased, but targeted, approach at defining a 

phenome.(17, 18) 

The benefit of leveraging EHRs for both GWAS and PheWAS as opposed to prospective cohort-

based studies is the ability to obtain large sample sizes with relatively less time or expense. While the 

EHR phenome may be incomplete, it includes conditions that are medically relevant, as opposed to 

clinical trial cohorts in which phenotypes may not represent conditions that necessitate medical attention. 

Biobanking of genetic data linked to the longitudinal patient data available within the EHR provides an 

efficient method for aggregating otherwise disparate information. EHR-based biobanks have the potential 

to integrate genomic data with medication receipt, laboratory results, or textual data, thus refining both 

exposures and phenotypes, essential for research on drug effects.  

 

Genomic investigation aids in understanding drug mechanisms  

Several features of GWAS suggest its potential for elucidating drug mechanism and identifying 

relevant novel drug targets. An estimated 21% of published genes within the GWAS catalog are amenable 

to pharmacological modulation by small molecules.(19) Further, the GWAS gene set is enriched with 

drug targets in comparison to the entire human genome, many of which align with the disease-gene pair 

identified by GWAS analysis.(19)  

Prior studies support the role of using GWAS to identify alleles that contribute to disease risk and 

druggable targets. Early GWAS efforts retrospectively identified the genetic basis for drugs already in use 

for a particular indication. Statins have been used to inhibit 3-hydroxy-3-methylglutaryl coenzyme A 

(HMG-CoA) reductase and treat hyperlipidemia for decades,(20) and GWAS studies in 2008 showed that 

low-density lipoprotein (LDL) levels are associated with variation in HMGCR, the gene which encodes 

HMG-CoA reductase.(21, 22) Further, pharmacogenetics studies have shown that genetic variation in 

HMGCR is associated with statin efficacy.(23, 24) Since then, variants in other genes involved in lipid 

metabolism but not direct targets for statin action (APOE, LPA, SORT1/CELSR2/PSRC1 and SLCO1B1) 
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have been found in GWAS to be associated with the LDL-lowering effect of statin therapy.(25, 26) A 

recent GWAS also found that several variants with the LPA locus appear to be associated with coronary 

heart disease events during statin therapy, independent of the extent of LDL-cholesterol lowering.(27)  

Other examples of drugs with mechanism replicated by GWAS are ustekinumab, a monoclonal 

antibody against interleukin (IL)-12 used for treatment of psoriasis and inflammatory bowel disease(28, 

29), and denosumab, a monoclonal antibody to the receptor activator of nuclear factor-kappaB ligand 

(RANKL) for treatment of osteoporosis.(30) Metformin has long been used to lower blood glucose levels 

in individuals with diabetes; however, a 2011 GWAS of 3920 type 2 diabetes patients clarified the genetic 

basis for its mechanism with polymorphisms in the ATM gene found to be associated with glycemic 

control.(31) Okada et al. evaluated the role of GWAS in validating the current therapeutic drug targets for 

rheumatoid arthritis (RA).(32) Through a comprehensive genetic study with nearly 100,000 subjects, they 

found that 18 of 27 currently approved drugs for RA target genes identified as RA risk loci, and also 

suggest several potential novel therapeutics, some of which had supporting animal studies.(32) These 

early successes fuel enthusiasm for using GWAS to elucidate disease mechanisms and drug targets.(19) 

 

Early evidence for drug discovery using genomic approaches  

In the context of drug development, GWAS advances are relatively recent and are only now being 

applied to have a potential impact on target discovery. Nevertheless, prior linkage and candidate gene 

studies have shown that genetics can drive development of novel therapeutics. The development of 

proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors represents this realization. In 2003, it 

was found that autosomal dominant hypercholesterolemia and an increased incidence of coronary heart 

disease were associated with gain-of-function mutations in the PCSK9 gene.(33) Subsequent candidate 

gene association studies in 2005 and 2006 revealed that PCSK9 loss-of-function mutations correlate with 

reduced levels of LDL cholesterol and a lower incidence of coronary heart disease.(34, 35) In 2012, 

almost 10 years after the first genetic discovery, randomized controlled trials demonstrated that PCSK9-
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specific monoclonal antibodies significantly reduce LDL cholesterol levels.(36, 37) There are now two 

United States Food and Drug Administration (FDA) approved PCSK9 inhibitors. Similar to how 

candidate gene studies led to the target of PCSK9 and subsequent development of a novel therapy for 

familial hypercholesterolemia, GWAS and PheWAS hold promise as means to identify novel drug 

targets. However, the timeline from target to an approved drug is often over 10 years. As findings from 

GWAS have exponentially increased over the last decade and PheWAS is gaining similar recognition, we 

anticipate the next decade will show progress toward utilization of that knowledge and drug development.  

  

GWAS for understanding impact of genetic variation on drug efficacy 

A considerable amount of variability can exist in patient’s response to drug therapy, including 

differing efficacy, adverse side effects, and toxicity. A better understanding of the genetic determinants of 

drug response and mechanism is thought to have potential to individualize drug treatment toward 

improved efficacy and side effect profiles.(38) While candidate gene studies have shown success in 

identifying genetic variants that contribute to drug response and effects, for many drugs, the biological 

mechanism, metabolic pathways, and potential genetic associations impacting individual response is 

unknown, limiting the potential for focused gene analysis. In contrast, GWAS are a hypothesis-free 

method that can be utilized to determine associations of genetic variation with effects of drug treatment 

(Figure 2a).  

Drug efficacy in particular is often considered to be along a continuum in a patient population. 

The known genetic variants contributing to statin efficacy discussed above are an indication of the 

significant clinical and genetic variability that can be seen in a population.(25, 26) A high-yield area of 

pharmacogenetic investigation utilizing GWAS has been the study of drugs with a narrow therapeutic 

window and variable efficacious dosing regimens, such as warfarin. While candidate gene studies were 

used to initially describe the associations of CYP2C9 and VKORC1 with the ability for warfarin to 

achieve anticoagulation,(39-42) subsequent GWAS have confirmed these findings, showing these to be 
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the strongest genetic predictors of warfarin dose required in individuals of European descent.(43, 44) 

Subsequent GWAS in individuals of African ancestry has also found that in addition to the well-known 

CYP2C9*2, CYP2C9*3, and VKORC1 polymorphisms, the CYP2C locus exerts influence by a variant 

outside of those well-established, and this new variant could improve dose prediction in this 

population.(45) Differences in the variants associated with warfarin effect across populations may be due 

to the differences in mean allele frequencies, ancestry-specific gene-gene interactions, or population 

specific gene-environment interactions.  

Response to clopidogrel therapy is also known to be highly variable. Clopidogrel is a prodrug, 

and the bioactivation pathway is largely CYP2C19-dependent.(46) Candidate gene studies of 

cardiovascular events on clopidogrel indicated that CYP2C19 loss of function variants increased risk.(47-

49) Subsequent GWAS in Amish individuals found the most common loss of function allele, 

CYP2C19*2, had the strongest genetic association with the effect of clopidogrel on platelet aggregation; 

however, this single variant only accounts for approximately 12% of the variability in response seen in 

this population.(50) More recently, Zhong et al. identified two novel variants in a Chinese population that 

were associated with the antiplatelet effect of clopidogrel, as measured by P2Y12-mediated platelet 

aggregation, as well as formation of H4, an active metabolite of clopidogrel.(51) They estimate that the 

identified variants, in association with CYP2C19*2, CYP2C19*3 (a variant common in Asian 

populations), and clinical factors, can improve the predictability of clopidogrel effect to 37.7%.  

Another example of GWAS elucidating the genetic underpinnings of variability in drug efficacy 

is in the use of interferon-alpha for treatment of hepatitis C infection. A polymorphism adjacent to IL28B 

has shown to predict treatment response and viral clearance in individuals on interferon-alpha for hepatitis 

C in several GWAS.(52-54) Because the genotype associated with improved response is more common in 

individuals of Asian and European ancestry than African ancestry populations, this genetic polymorphism 

may explain the difference in response rates between patients of African and European ancestry.(52)  
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These GWAS of statin, clopidogrel, and interferon-alpha effects all emphasize that variability in 

drug response is ancestry dependent due to the vast difference in distribution of genetic variants, such as 

CYP2C9, CYPC19, and IL28B, across populations. These findings, along with others, have increased 

focus towards a personalized approach to disease treatment and encouragement of research efforts from 

individuals of diverse backgrounds. Studies across ancestries are needed to fully capture the genetic 

architecture of human traits, including drug response, and ultimately appropriately implement such 

variants in clinical practice.  

 

GWAS for understanding impact of genetic variation on drug toxicity 

GWAS has been used to determine potential associations of drug toxicities and adverse drug 

reactions (Figure 2a). Human leukocyte antigen (HLA) variation, in particular, has been associated by 

GWAS with susceptibility to adverse drug reactions. Drug-induced liver injury (DILI) is a rare but serious 

adverse effect secondary to many drug therapies, with increased susceptibility in HLA regions implicated 

in several studies.(55-57) The first study was in 2008 and focused on ximelagatran, an oral direct 

thrombin inhibitor that was removed from the market in 2006 due to the development of transaminitis in 

some patients. In this study, Kindmark et al. performed a GWAS which suggested an association between 

DILI during use of ximelagatran with HLA class II alleles, which was confirmed with candidate gene 

studies.(58) In 2009, Daly et al. found strong association of HLA-B*5701 with DILI following treatment 

with flucloxacillin.(55) Singer et al., in 2010, identified an association of hepatotoxicity after use of 

lumiracoxib, a selective cyclooxygenase-2 inhibitor, with common HLA class II haplotypes.(56) In 2011, 

Lucena et al. performed GWAS of 201 cases of DILI after treatment with amoxicillin-clavulanate 

compared to 532 controls, finding HLA class I and II SNPs may confer susceptibility to liver injury after 

this antibiotic treatment.(57) Due to the rarity of DILI, the finding of genetic predispositions in GWAS 

may be limited. Nicoletti et al. recently attempted to overcome this limitation by grouping DILI caused by 

any drug other than the common causes (flucloxacillin and amoxicillin-clavulanate) to determine 
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predisposition for DILI.(59) They found a strong association of HLA-A*33:01 with DILI, appearing to be 

heavily influenced by the effects of terbinafine.(59) This demonstrates how novel methods in studies will 

allow researchers in some cases to overcome the power limitations of GWAS and find rare variants with 

large effect size.   

The HLA locus has also been implicated in other adverse drug reactions, including skin 

hypersensitivity. In 2004, Chung et al. reported a strong association in a Han Chinese population between 

HLA-B*1502 and Stevens-Johnson syndrome induced by carbamazepine.(60) Candidate gene studies 

were also used to ascertain an association between variation in the HLA region, HLA-B*5701 (OR = 

117), with abacavir skin hypersensitivity, which has since been elucidated both at a structural and 

mechanistic level.(61, 62) Several subsequent GWAS studies across ancestral populations have shown 

that skin hypersensitivity reactions, ranging from skin rash to severe reactions such as Stevens-Johnson 

syndrome/Toxic Epidermal Necrolysis, can occur secondary to a wide range of drug therapies. In 2011, 

Ozeki et al. identified the HLA-A*3101 allele as a genetic risk factor with a modestly large effect size 

(OR = 10.8) for carbamazepine-induced hypersensitivity in a cohort of 53 cases and 882 controls from 

Japan.(63) McCormack et al. shortly after reported the same genetic association with carbamazepine-

induced hypersensitivity reaction in individuals of European descent, finding a large effect size as well 

(OR = 12.4).(64)  

One important early GWAS example is the study by Link et al., which discovered a single strong 

association of statin-induced myopathy in Europeans with a SNP located within SLCO1B1, known to 

encode an organic anion-transporting polypeptide that regulates the hepatic uptake of statins 

(OATP1B1).(65) While the variant allele frequency of this significant polymorphism is 0.13 in European 

populations, carriage of the variant allele resulted in an 18% incidence of myopathy over 5 years, with 

60% of cases attributable to the variant allele. Thus, further studies are needed to define the mechanism(s) 

underlying this “variable penetrance”. A recent study by Mosley et al. evaluated the association of genetic 

variation with angiotensin-converting enzyme inhibitor (ACEi)-induced cough.(66) Cough is the most 
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common side effect of ACEi therapy with epidemiologic variation that suggests a potential genetic 

predisposition. In GWAS consisting of 1695 cases of ACEi-induced cough compared to 5485 controls, 

SNPs in KCNIP4 were associated with increased risk for developing cough with ACEi. In recent GWAS, 

genetic variation has also been implicated as increasing susceptibility to anthracycline-induced 

cardiotoxicity and reduced left ventricular function.(67, 68) Vancomycin, a commonly used antibiotic, is 

known to be nephrotoxic, with a GWAS suggesting variation at the chromosome 6q22.31locus could 

modulate that risk as well.(69)   

 

PheWAS for understanding drug response variability 

PheWAS also has the potential to uncover associations with drug effects, including therapeutic 

response and side effect profiles (Figure 2b). Neuraz et al. described in 2013 the use of a study population 

with thiopurine exposure to determine associations with clinical traits after drug exposure to identify 

adverse events.(70) They grouped 442 individuals with thiopurine exposure into three categories based 

upon thiopurine S-methyltransferase (TPMT) activity, a quantitative trait available from the EHR for 

patients with clinical TPMT testing. They found that very high TPMT activity was associated with 

diabetes mellitus and iron-deficiency anemia. Similarly, they analyzed associations with laboratory data, 

finding that very high TPMT activity was associated with increased incidence of hyperglycemia and 

anemia by test results. This study shows the ability for PheWAS to identify adverse events potentially 

associated with drug use, as well as the feasibility of cross-validation of conventional PheWAS analyses 

with biological test results.(70) 

Others have noted the potential ability to leverage the identification of pleiotropic effects through 

PheWAS methods to predict potential adverse events. Diogo et al. analyzed associations of RA-protecting 

variants for additional indications and potential adverse events.(71) They did not identify any associations 

with adverse events meeting statistical significance in their study, suggesting that inhibition of tyrosine 

kinase 2 (TYK2) may not result in serious adverse events in the treatment of RA. However, the ranking of 
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associations did potentially prioritize adverse events for study in a trial, and represents an analytical 

framework that could show success in the future. This study also highlights the very large populations 

needed for this study design; among over 20,000 individuals in the PheWAS of one cohort, a total of 

2612 had pneumonia, the potential adverse event most trending toward statistical significance. Using 

PheWAS to suggest deleterious effects of evolving therapeutics early in the drug development stages 

could allow resources to target therapeutics with greater potential or can identify patient populations for 

whom the drug may be contraindicated.  

 

 

Figure 2. Drug-specific outcomes identified through genome-wide association studies (GWAS) and 

phenome-wide association studies (PheWAS). a. Use of drug-specific phenotypes of interest with 

genomic predictor variables such as genome-wide single nucleotide polymorphisms (SNPs), measured or 

predicted gene expression, or genetic risk scores, can be used in GWAS analysis to gain information for 

drug mechanisms and discovery. b. In PheWAS, genetic or clinical variables can be used to search for 
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associations in phenomes curated from different sources of information in the EHR for analysis of drug-

specific associations.  
 

Use of GWAS and PheWAS to identify opportunities for drug repurposing   

In addition to elucidating drug mechanism and response variability, GWAS and PheWAS can be 

used to identify novel treatment methods through drug repurposing (Figure 3).(72, 73) Drug repurposing, 

also termed drug repositioning, is the application of an existing therapeutic drug for new indications. 

Drug repurposing could significantly speed up the typical >10 years lag time for FDA approval and drug 

marketing, as preclinical and phase I clinical trials are already complete. While the GWAS gene set is 

enriched with targets already pursued by drugs that align with the disease-gene pair identified by GWAS 

analysis, there are also mismatches in which the indication for the drug is not congruent with the 

associated disease by GWAS, and examples of pleiotropy, where multiple diagnoses are associated with 

the same genetic signal.(19) By comparing known GWAS-disease associations to the indications of drugs 

with known gene targets, Sanseau et al. identified 92 individual genes that are targets of drug projects that 

mapped to a GWAS trait different than their drug indication.(19) These instances represent potential drug 

repurposing opportunities.  



 

 

 

 

 

 

 

69 

 

Figure 3. Opportunities for drug repurposing using results of genome-wide association studies 

(GWAS) and phenome-wide association studies (PheWAS). Given a known mechanism of action or 

genetic target of a currently approved drug, GWAS and PheWAS reveal drug repurposing opportunities 

through identification of diseases with common genetic associations with the known drug genetic target.  
 

Prior studies have demonstrated success of this approach, for example the use of complement 

inhibitors for the treatment of age-related macular degeneration (AMD). One of the first GWAS in 2005 

found the complement factor H gene to be strongly associated with risk of AMD.(74) At that time, 

complement inhibitors had been developed for the treatment of sepsis and paroxysmal nocturnal 

hemoglobinuria.(75-77) This has led to the targeting of factors in the alternative complement pathway in 

clinical trials with promising findings for reducing the severity of AMD.(78) In addition to validating 

currently approved RA drug therapies, Okada et al. identified several drugs used for other diseases that 

target biological genes containing RA risk SNPs and thus proposed these as drug repurposing 

opportunities.(32) They found that CDK6 and CDK4, targets of three approved drugs for cancer 

(palbociclin, capridine, and flavopiridol), include RA risk SNPs, suggesting they should be investigated 

for efficacy in RA as well.  
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Analogous to the use of GWAS to identify novel drug uses, the ability of PheWAS to identify 

pleiotropic effects creates opportunities for drug repurposing (Figure 3).(13, 73) As PheWAS can identify 

diseases that share a common etiology, one can theorize that drugs used to treat one disease may also 

have efficacy to treat another.(16) A hypothesis-generating study by Rastegar-Mojarad et al. evaluated the 

potential for drug repurposing by linking current drug-targeted genes in DrugBank to the gene-phenotype 

associations in the PheWAS catalog.(73) They validated the disease indications for drugs in 127 cases, 

but also identified 2583 strongly supported potential novel drug-disease associations, available within a 

cataloged database to the public.(79) There are several factors that can influence the ability for a drug-

disease identified in PheWAS and poised for drug repurposing to come to fruition. In particular, methods 

must be developed to narrow the results to candidate drug-disease pairs that are supported in the literature 

or by mechanistic knowledge. Rastegar-Mojarad et al. started this approach by cross-referencing all pairs 

with the clinical trial registry, noting that incorporation of other biomedical databases could also 

significantly improve prioritization.(73) Recently, Pulley et al. specifically described six genes with 

pleiotropic effects identified in PheWAS, three of which are currently underway to study repurposing 

opportunities of drugs with respect to the relevant molecular target.(80)  

Millwood et al. in 2016 used PheWAS methods applied to ICD10 codes in the China Kadoorie 

Biobank to evaluate the potential efficacy of lipoprotein-associated phospholipase A2 (Lp-PLA2) 

inhibitors for the treatment of atherosclerotic disease.(81) Loss-of-function variants in the PLA2G7 gene 

is associated with reduced Lp-PLA2 activity and is relativity common among East Asian populations. 

Through their PheWAS analysis, they determined there was no association of a loss-of-function variant in 

PLA2G7 with improvement in vascular diseases, such as stroke and coronary events, or non-vascular 

diseases in a Chinese population. They note that these findings correlate with the lack of efficacy in a 

2014 randomized controlled trial with the Lp-PLA2 inhibitor darapladib.(82) Use of PheWAS results such 

as these in the design of clinical trials could thus help guide study design, saving time and resources.  
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Challenges of GWAS and PheWAS in drug discovery, drug repurposing, and pharmacogenomics 

Statistical power in GWAS and PheWAS is determined by the size of the study cohort, the 

frequency of the variant, and the effect size of the variant. Both methods are limited by reduced ability to 

achieve statistical significance given the large number of hypotheses tested.(13) While the number of 

phenotypes tested in PheWAS is relatively small compared to the number of genotypes tested in GWAS, 

testing of multiple genotypes against a large set of phenotypes exponentially increases the number of 

statistical tests, requiring smaller and smaller p-values for statistical significance with Bonferroni 

correction. 

GWAS and PheWAS for evaluation of drug effects is challenged by small sample sizes with a 

subsequent lack of power to detect small or moderately sized effects.(83) For example, rare but serious 

adverse events or drug non-responders may be associated with rare variants with clinically relevant effect 

size, but could be potentially missed in traditional GWAS. Due to the rarity of these events in a 

population, sample size is often much smaller than typical in GWAS performed for evaluation of disease 

risk. While the sample size for GWAS in pharmacogenomics studies is typically less than one thousand 

individuals, GWAS for common diseases often use thousands of subjects with meta-analyses containing 

even tens of thousands, realized by the pairing of genomic information with EHRs.(84) Non-EHR cohorts 

often have focused clinical information, lacking drug response trait information. While the EHR can be 

leveraged to identify drug response traits, the rarity of events necessitates collaboration between biobanks 

to reach adequate statistical power. Several efforts to encourage data sharing have evolved over the last 

decade, such as the Electronic Medical Records and Genomics (eMERGE) network, UK Biobank, China 

Kadoorie Biobank, and Million Veterans Project.  

Another challenge facing GWAS and PheWAS is due to the complex architecture of phenotypes 

with non-Mendelian inheritance patterns. Disease-associated alleles, and thus druggable genes, often have 

a very small effect on the overall risk of the disease, thus variability in drug effects can also only be 

partially accounted for by an identified genetic variant.(4) GWAS and PheWAS are designed and 
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powered to detect associations with common genetic variants in a population, with the majority of these 

variants having small genetic effects. Thus, while an association may be present between a drug effect 

and genetic variant, many other environmental and genetic factors are also simultaneously contributing to 

that variation, resulting in a significant proportion of “missing heritability”. Further, GWAS and PheWAS 

results are population-specific, with the majority of large studies being performed in populations of 

European descent.(85, 86) The extent to which these findings can be translated to other populations is 

unknown as there are significant differences in linkage disequilibrium and allele frequencies between 

ancestries.  

While GWAS may identify many alleles contributing to disease risk, not all of those alleles or 

potential gene targets will be disease-causing or able to be modulated for disease treatment.(4) Those 

genes which harbor causal alleles must be differentiated from the rest in order to narrow the search for 

potential drug targets. Once a causal allele is identified, it can be difficult to understand the mechanism by 

which the gene variation contributes to the disease, thus functional studies are required to fully understand 

the disease risk attributed to the gene and the potential mechanism of a modifying drug. Another factor 

that has limited the success of GWAS findings from being translated to marketed therapeutics is the long 

duration, often over 10 years, before a gene target is translated into an approved marketed drug.(19) As 

previously discussed, drug repurposing is a method to potentially decrease this development time. 

The use of GWAS and PheWAS to investigate drug efficacy and adverse events relies upon 

accurate description of the drug response or adverse event. Although EHRs have greatly eased the ability 

for researchers to identify phenotypes in a population, accurate drug response and side effect phenotypes 

remain a challenge to assemble in large cohorts.(83) EHR-based GWAS and PheWAS rely on the ability 

to readily extract structured data from the medical record. For PheWAS, this is often in the form of billing 

codes which are unreliably accurate and rarely used for describing drug effects, drug efficacy, and 

adverse event phenotypes. Thus, manually-curated and validated phenotyping algorithms from the EHR 

must be developed and implemented. While EHRs have allowed for accrual of and access to clinical 
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information, algorithms are necessary to extract this information from the various parts of the EHR, 

including clinical documents, laboratory data, nursing records, etc. Development and validation of these 

algorithms can be time-consuming and require both clinical and technical expertise.  

While curation of a single (or few) phenotypes for a GWAS is manageable, this is much more 

difficult for the thousands of potential phenotypes used in a PheWAS. Phecodes have shown efficacy for 

PheWAS analyses; however, they do not align precisely with clinical diseases and may not have adequate 

granularity or specificity for some phenotypes.(14, 87) Phecodes currently use ICD-9-CM codes as their 

sole source of information. Efforts are underway to map the codes to ICD-10, but more importantly, 

billing codes alone do not capture all medically-relevant phenotypes. For drug effects, while integration 

of billing codes with other portions of information from the EHR can refine phenotypes and exposures, a 

significant limitation in obtaining these well-specified phenotypes from various sources is first the clinical 

expertise to define the phenotype, followed by the informatics support to extract the information from the 

EHR.(88; 89) Curated phenotypes have been developed for individual diseases, but there is currently no 

high-throughput mechanism to produce cases and controls from thousands of detailed phenotype 

algorithms. New methods are needed to study drug exposures with events at scale while appropriately 

assessing the timing of both. Currently, drug response phenotypes are best pursued one-phenotype-at-a-

time. 

As we have previously discussed, drug efficacy can vary significantly in a population. However, 

accurate ascertainment of drug response as a continuous outcome is difficult. For some phenotypes, such 

as blood pressure reduction or blood glucose control, multiple measurements may allow for more accurate 

determination of response; however, for the majority of therapeutics there is not a defined scale for 

response or adverse effect, nor are these measurements made routinely part of clinical care to enable large 

GWAS studies in EHR cohorts. The recent study by Wells et al. shows how a phenotype along a 

continuum, left ventricular function by systolic ejection fraction, can be used as the outcome in a GWAS 

analysis to determine drug side effects, rather than a dichotomous variable, such as the presence or 



 

 

 

 

 

 

 

74 

absence of heart failure.(68) When feasible, GWAS to measure drug-phenotype associations should use 

phenotypes defined along a continuum to allow improved accuracy of prediction.  

Other limitations of EHR-based genetics research are secondary to the current confines of EHRs. 

Due to the decentralization of EHRs, data within the record itself it may be incomplete due to the various 

providers and institutions a patient may visit. Also, EHRs are designed for exchange of clinical 

information and billing purposes, not specifically for research. Thus, inaccuracies can be introduced by 

clinical uncertainty or billing errors, and the amount of information available can vary greatly. Further 

efforts to improve EHR data, centralize information, and allow for phenotype curation from EHR data 

more efficiently and accurately will greatly facilitate advancement in phenotyping studies.   

 

Emerging GWAS and PheWAS-related techniques for pharmacogenomics 

While GWAS methods have provided insight into thousands of variants associated with complex 

traits, the biological mechanisms underlying the associations remain poorly understood. Gene expression 

is an intermediate between genetic information and phenotypes and can play an important role in drug 

response. One proposed method to gain information on biological mechanisms and gene expression is 

through PrediXcan, a technique that estimates the component of gene expression determined by an 

individual’s genetic profile through use of reference transcriptome data sets and correlates that gene 

expression with the phenotype of interest.(90) PrediXcan can be likened to a limited PheWAS using 

imputed gene expression as the PheWAS predictor variable. A major benefit of PrediXcan is its ability to 

increase power by aggregating the effects of SNPs associated with gene expression. PrediXcan also 

provides direction of the effect of the genetic variant, for example increased or decreased gene 

expression. This is significant for drug discovery and repurposing, as the development of therapeutics that 

downregulate a gene, and thus gene expression, is often easier to attain than development of drugs that 

upregulate a gene.(90)  
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In addition to potential opportunities with drug development, PrediXcan can provide insights into 

drug effects. One recent example in which this has been employed is in evaluation of genetically-

determined expression levels association with chemotherapy-induced peripheral neuropathy. Dolan et al. 

analyzed associations with cisplatin-induced peripheral neuropathy using GWAS and PrediXcan.(91) 

While no SNPs met genome-wide significance in GWAS, lower expression of RPRD1B, which is 

predicted by twenty SNPs on chromosome 20 and codes for a protein that regulates transcription of genes 

involved in the cell cycle, was associated with decreased risk for cisplatin-induced peripheral neuropathy 

in PrediXcan (p = 0.0089).(91) These recent findings suggest a promising role for PrediXcan methods in 

the future. 

Techniques such as PrediXcan, which aim to increase the power of GWAS methods, may 

overcome some of the limitations for GWAS to identify associations with rare variants or small effects. 

Further, although analysis of GWAS data often uses stringent thresholds for statistical significance, there 

is likely information that can be gleamed from associations with p-values that fail to meet the 5x10-8 

threshold. Some have proposed analyzing GWAS data using a multiple-locus-based approach, drawing on 

protein pathway- or domain-based data to develop a candidate gene data set, which can then be integrated 

with known drug-gene target sets to identify potential drug repurposing opportunities.(72, 92) This has 

been suggested for a wide range of complex diseases including type 1 and 2 diabetes, bipolar disorder, 

Crohn’s disease, hypertension, coronary artery disease, and RA.(72, 93) 

Although the initial applications of the PheWAS methodology have focused on identification of 

phenotypes that are associated with single SNPs, recent approaches have involved a search for 

associations with aggregated genetic information or other phenotypic data.(94) These advances also aim 

to overcome the power and effect size limitations of traditional PheWAS studies. Use of a set of SNPs as 

the input for a PheWAS can be one way to increase effect size in PheWAS. The set of SNPs can be used 

to generate a genetic risk score derived from GWAS data and weighted based upon individual SNP effect 

size. Krapohl et al. used genetic risk scores of thousands of SNPs derived from GWAS of psychiatric 
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traits to determine associations with phenotypes.(95) They also demonstrate the use of a limited phenome, 

consisting only of behavioral phenotypes only, which can be used to yield greater power.  

Similarly, methods for the joint testing of multiple correlated traits can be performed to increase 

the power in a PheWAS analysis.(96) As many phenotypes are known to be correlated, the Bonferroni 

correction often applied to PheWAS is likely overly conservative, resulting in significant associations 

being missed. Performing the analysis on an a priori grouping of correlated traits could increase 

likelihood of finding associations. Any significant association could then be more closely analyzed 

individually, decreasing the number of tests performed in a single PheWAS compared to analysis using 

the entire phenome.(96)  

It is the curation of the EHR phenome that enables PheWAS, and the technique is not limited to 

the study of genetic effects. PheWAS methods can also be used to investigate the association of other 

factors, such as laboratory parameters or comorbidities, with human traits, an analysis that can be termed 

a phenotype-only PheWAS. Using this approach, Warner et al. demonstrated that elevated white blood 

counts (WBC) in an intensive care unit are associated with diagnoses of Clostridium difficile infection 

and bacterial sepsis.(97) This study also takes advantage of the non-binary features of many clinical traits, 

such as continuous laboratory measurements, to show the varying WBC across the phenome. Limiting 

dichotomization of these features, which could lead to loss of significant information and ability to find 

associations, will be important in future PheWAS.  

Phenotype-only PheWAS can also be used to describe features associated with a disease process 

as shown recently in the description of features associated with systemic loxoscelism.(98) In another 

study, Liao et al. used the predictor in a PheWAS as the presence of autoantibodies among a cohort of 

patients with RA, and determined a significant association between several different epitopes and 

comorbidities.(99) A similar approach was used by Doss et al. to define subgroups of RA patients based 

upon serology for rheumatoid factor, finding that seronegative RA was associated with fibromyalgia and 

seropositive RA was associated with chronic airway obstruction.(100) In addition to demonstrating the 
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use of non-genetic information for PheWAS analyses, these studies show the ability for PheWAS to 

identify subtypes within diseases, for example associations with other diseases, severity of disease, 

variable phenotypic manifestations of disease, or differing response to therapeutics. Outside of clinical 

phenotypes as predictors in PheWAS, another opportunity for the future is to apply PheWAS to 

PrediXcan, in which predictors of gene expression can be used to identify traits associated with predicted 

increased or decreased expression of a gene. Each of these developing techniques have the potential to 

add insight on subgroups of diseases that respond to medication therapy differently, including patient 

populations with the development of adverse effects or lack of efficacy. 

While the potential for evolution of PheWAS techniques are vast, the goal will remain the same – 

to improve the ability for PheWAS to identify novel associations by increasing power and improving 

predictive capacity. 

 

Conclusions 

GWAS and PheWAS do not only provide insight into biology of diseases, but also provide 

opportunities for drug targeting, development, and identification of populations at risk for drug-related 

adverse events. Further investigations using current and future methods will provide the linkages between 

disease-gene associations, cellular mechanisms, and therapeutic approaches. GWAS and PheWAS 

pharmacogenomic studies with larger sample sizes, facilitated by multi-institutional collaboration and 

consistent phenotyping through utilization of EHRs, can allow future studies to achieve greater power to 

identify small to moderate genetic effects on drug response. Techniques such as genetic risk scores to 

analyze all risk genes, including those with small and large effect size in a population, will further 

facilitate greater accuracy in prediction of response to drug therapy.  
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Abstract 

Objective: Systemic loxoscelism is a rare illness resulting from the bite of the recluse spider and, in its 

most severe form, can lead to widespread hemolysis, coagulopathy, and death. We aim to describe the 

clinical features and outcomes of the largest known cohort of individuals with moderate to severe 

loxoscelism.  

Methods: We performed a retrospective, cross sectional study from January 1, 1995 to December 31, 

2015 at a tertiary-care academic medical center, to determine individuals with clinical records consistent 

with moderate to severe loxoscelism. Age-, sex-, and race-matched controls were compared. 

Demographics, clinical characteristics, laboratory measures, and outcomes of individuals with 

loxoscelism are described. Case and control groups were compared with descriptive statistics and 

phenome-wide association study (PheWAS). 

Results: During the time period, 57 individuals were identified as having moderate to severe loxoscelism. 

Of these, only 33% had an antecedent spider bite documented. Median age of individuals diagnosed with 

moderate to severe loxoscelism was 14 years old (IQR 9.0-24.0 years). PheWAS confirmed associations 

of systemic loxoscelism with 29 other phenotypes, e.g., rash, hemolytic anemia, and sepsis. Hemoglobin 

level dropped an average of 3.1 g/dL over an average of 2.0 days (IQR 2.0-6.0). Lactate dehydrogenase 

and total bilirubin levels were on average over two times their upper limit of normal values. Eighteen 

individuals of 32 tested had a positive direct antiglobulin (Coombs’) test. Mortality was 3.5% (2/57 

individuals). 

Conclusion: Systemic loxoscelism is a rare but devastating process with only a minority of patients 

recalling the toxic exposure; hemolysis reaches a peak at 2 days after admission, with some cases taking 

more than a week before recovery. In endemic areas, suspicion for systemic loxoscelism should be high in 

individuals, especially children and younger adults, presenting with a cutaneous ulcer and hemolysis or 

coagulopathy, even in the absence of a bite exposure history. 
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Introduction  

Systemic loxoscelism is a constitutional illness resulting from the bite of spiders of the genus 

Loxosceles, which is distributed worldwide. In parts of the United States, the Loxosceles reclusa, 

commonly referred to as the brown recluse spider, is endemic. Such bites commonly cause local necrosis, 

referred to as necrotic arachnoidism.(1) Systemic toxicity may also occur and in its mild form consists of 

nausea, vomiting, fever, chills, or arthralgia. In its more severe form, brown recluse bites may cause 

massive hemolysis, hemoglobinuria, acute renal failure, disseminated intravascular coagulation, and 

rarely death.(2-5) The most significant morbidity in systemic loxoscelism results from hemolysis and 

coagulopathy.(6, 7) Because hemolysis resulting from loxoscelism is uncommon, there is little known 

about its clinical manifestations, diagnosis, or outcomes.(8) Use of dapsone, once considered a treatment 

for systemic loxoscelism, has declined due to the suggestion of increased risk of hemolysis.(9) The 

underlying pathogenesis of systemic loxoscelism remains incompletely understood, but sphingomyelinase 

D, a component of the venom toxin, has been shown to have a central role in the process.(10-12) Recent 

literature suggests it causes both direct toxin-mediated hemolysis and complement-mediated erythrocyte 

destruction.(8, 11, 13) There is also an indication that hemolysis may be partly immune-mediated, given 

that a certain proportion of individuals reported in the literature have shown positive direct antiglobulin 

testing (DAT; Coombs’) for surface immunoglobulin G (IgG).(7) 

The majority of brown recluse spider bite victims lack systemic symptoms, and severe systemic 

symptoms are even more rare.(14) In 2014, only 1,330 brown recluse spider bites were reported in the 

United States; of these, 481 individuals required treatment in a health care facility.(15) The brown recluse 

spider is endemic to the southeastern and Midwestern United States, and likelihood of envenomation 

outside of these areas is extremely low.(16, 17) Due to the limited geographic nature of the brown recluse 

and infrequent occurrence of systemic loxoscelism, there is little published on the clinical features and 

outcomes of these individuals.  
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In this study, we describe clinical characteristics and outcomes of the largest known cohort of 

individuals with systemic loxoscelism to date, leveraging our large de-identified electronic clinical data 

warehouse. We then performed a phenome-wide association study (PheWAS) of these individuals 

matched to a control population to identify key differences in ~1800 phenotypes between individuals who 

develop systemic loxoscelism and those who do not. PheWAS has previously been successfully applied to 

genomic and laboratory results with high validity to replicate known associations.(18-21) Our goal was to 

highlight clinical characteristics of this rare and potentially lethal illness, and to potentially uncover 

previously undocumented phenotypic associations. 

 

Materials and Methods 

A retrospective, cross-sectional study was performed to analyze suspected cases of loxoscelism at 

Vanderbilt University Medical Center (VUMC), a tertiary-care academic medical center, over a 20-year 

time span. VUMC consists of an adult and children’s hospital in the epicenter of the brown recluse 

geographical range.(17) Data collection was performed using the VUMC Synthetic Derivative (SD), a de-

identified version of over 2.4 million patient electronic health records.(22) Dates are shifted at random +/- 

365 days for each individual with relative time preservation. We identified all records with shifted dates 

between January 1st, 1995 and December 31st, 2015 containing any mention of “loxoscelism” in a clinical 

note, problem list, discharge summary, clinical communication, or letter. A two-person manual review of 

all flagged records was performed, and discrepancies were adjudicated by a third reviewer. This study 

was approved and designated as non-human subject research by the Institutional Review Board of 

Vanderbilt University Medical Center; therefore, consent was not necessary. 

Individuals were manually excluded from the study if they lacked evidence of systemic 

loxoscelism, i.e., absence of fever, chills, abdominal pain, hemolysis or abnormal liver function tests. 

Individuals with moderate to severe loxoscelism were determined by the presence of a documented 
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diagnosis of hemolysis or disseminated intravascular coagulation, need for blood transfusion, or 

hemodynamic instability.  

Control individuals were extracted to be age-, sex-, and race-matched to the cases with a 50:1 

control to case ratio.  

Variable data extracted included demographics and clinical parameters, including length of 

hospital stay, intensive care unit (ICU) admission, need for hemodialysis, and mortality. Race was self-

reported and extracted for population comparisons and matching of controls. We determined individuals 

who received dapsone prior to or during admission to VUMC. The presence of a toxicology consultation 

and/or operative intervention for the cutaneous lesion, if present, were also documented. Laboratory 

values obtained included hemoglobin (HGB), lactate dehydrogenase (LDH), total bilirubin, haptoglobin, 

creatinine, urinalysis, and DAT. We selected for laboratory data 1 week prior to and up 3 weeks after the 

first instance of either “loxoscelism” in a clinical document or ICD-9-CM billing code of 989.5 (toxic 

effect of venom). Descriptive statistics were performed, including mean or median with interquartile 

ranges for continuous variables or frequencies and percentages for categorical variables. Demographic 

differences between case and control groups were assessed using Chi-square or Fisher exact test, as 

appropriate. Wilcoxon rank sum test was used to compare ages of individuals with moderate-severe 

systemic loxoscelism to those with only cutaneous or mild systemic symptoms. PheWAS of cases versus 

controls was applied. PheWAS codes are aggregations of ICD-9-CM codes, as previously described.(19) 

All pairwise PheWAS comparisons were conducted using logistic regression with adjustment for age and 

sex. The minimum number of records to perform a test was 20 individuals in the combined case and 

control groups, with each individual having at least 2 instances of the PheWAS code. All statistical 

analyses were performed with R statistical software(23) using the PheWAS package and PheWAS code 

map version 1.2.(21)  
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Results 

The initial search found 373 possible cases with “loxoscelism” documented within the SD. After 

manual review and exclusion of subjects due to the lack of systemic loxoscelism, 57 individuals with 

moderate to severe loxoscelism were included in the final analysis. Of the excluded individuals, 90 were 

found to have cutaneous-only symptoms consistent with brown recluse spider bite, and 58 individuals had 

mild symptoms of systemic loxoscelism; the remainder had negation terms for loxoscelism (e.g., “this 

presentation is not consistent with loxoscelism.”). The control cohort consisted of 2,850 individuals.  

 

Demographic Characteristics 

Of the individuals identified, 54% were female and the majority Caucasian (37/57 individuals, 

65%). A significantly larger portion of those with loxoscelism was African American (26%) compared to 

the SD population of ever-admitted individuals (15% African American [p = 0.02]).  

The ages of those with moderate to severe loxoscelism were highly skewed towards children and 

young adults with 82.5% (47/57) of subjects under 30 years of age (Figure 1). The median age of included 

individuals was 14 years old (IQR 9.0 - 24.0 yrs), significantly younger (p = 2.0 x10-7) than the median 

age of those identified with only cutaneous or mild systemic symptoms (n = 148, median age 30 years old 

[IQR 19.0 - 46.0 yrs]). Admitted SD individuals were also on average older than those with loxoscelism 

(n = 667,990, median age 33 years old [IQR 12.0 - 58.0 yrs]).  
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Figure 1. Cumulative Distribution of Cases by Age. Each point represents a case of either moderate-

severe (mod-severe, red) loxoscelism or cutaneous/mild loxoscelism (cutaneous or mild, blue). The 

cumulative proportion of patients at or under a specific age are represented by each line. The median age 

of individuals with severe loxoscelism (14 years, IQR 9.0 - 24.0 yrs), was significantly lower than the 

median age (30 years old, IQR 19.0 - 46.0 yrs) of those identified with only cutaneous or mild systemic 

symptoms (p = 2.0 x 10-7).  
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All individuals presented with a cutaneous ulcer consistent with a brown recluse spider bite, but 

many did not recall an antecedent spider bite. According to the documentation present in the SD, only 

33% (19 of 57) witnessed the spider and confirmed site of a brown recluse at the time of the 

envenomation. Ulcer location was most commonly on the upper extremity (27 of 57 individuals, 47%) or 

lower extremity (10 of 57 individuals, 18%). Further demographics and clinical characteristics are in 

Table 1.  
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Table 1. Clinical characteristics and outcomes of systemic loxoscelism. 

 Loxoscelism Cohort 

(n= 57) 

Reference 

Age, median (IQR) 14.0 (9.0-24.0) - 

Sex, No. (%) 

  Male 

  Female 

  Unknown 

 

26 (46%) 

31 (54%) 

0 (0%) 

- 

Race, No. (%) 

  White 

  African American 

  Asian      

  Unknown/ Not Reported 

  Other 

 

37 (65%) 

15 (26%) 

1 (2%) 

4 (7%) 

0 (0%) 

- 

Witnessed brown recluse spider bite), No. (%) 19 (33%) - 

Bite Location, No. (%) 

  Upper extremity 

  Lower extremity 

  Chest 

  Back 

  Abdomen 

  Head/neck 

  Other 

 

27 (47%) 

10 (18%) 

6 (11%) 

6 (11%) 

4 (7%) 

3 (6%) 

1 (2 %) 

- 

Laboratory, median (IQR)   

  HGB (g/dL) 10.2 (8.4-11.7) 11.8-16.0 

  Lowest HGB (g/dL) 8.7 (5.7-10.5) 11.8-16.0 

  Change in HGB (n=43, g/dL) -3.1 (-1.8 to -5.6) - 

  Average time to lowest HGB (n=43, days) 2.0 (2.0-6.0) - 

  LDH (unit/L) 529.0 (265.5-833.5) <226 

  Highest LDH per individual (n=37, unit/L)  739.0 (366.0-1344.0) <226 

  Total Bilirubin (mg/dL) 2.9 (1.5-5.6) 0.2-1.2 

  Highest Total Bilirubin (n=47, mg/dL) 4.3 (1.9-7.4) 0.2-1.2 

  Haptoglobin (mg/dL) 3 16-200 

  Lowest Haptoglobin (n=23, mg/dL) 25.0 (2.5-129.5) 16-200 

  Creatinine (mg/dL) 0.8 (0.6-1.0) 0.70-1.50 

  Highest Creatinine (n=54, mg/dL) 0.9 (0.6-1.2) 0.70-1.50 

Direct Antiglobulin positivity (n=32), No. (%) 18 (56%) Negative 

Dapsone treatment, No. (%) 2 (4%) - 

Operative Intervention, No. (%) 5 (9%) - 

Toxicology Consult, No. (%) 46 (80.7%) - 

ICU Admission, No. (%) 28 (49.1%) - 

Length of Hospital Stay, median days (IQR) 4.0 (2.0-5.0) - 

Dialysis, No. (%) 3 (5.3%) - 

Mortality, No. (%) 2 (3.5%) - 

IQR: Interquartile Range; HGB: Hemoglobin; LDH: Lactate Dehydrogenase; ICU: Intensive Care unit 
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Clinical Parameters 

Laboratory parameters during the period with loxoscelism are in Table 1. Average HGB level at 

presentation was below normal (median 10.2 g/dL, reference 11.8-16.0). Furthermore, the average lowest 

HGB per case was significantly below normal at 8.7 g/dL (IQR 5.7-10.5). HGB decreased after admission 

in most individuals but gradually increased back to baseline, with or without supportive transfusion 

(Figure 2 Parts A-B). Relative decline in HGB was more severe for those admitted or transferred to the 

ICU during their hospitalization, compared to non-ICU areas. Not including the 12 individuals that 

arrived with their lowest recorded HGB, HGB level dropped an average of 3.1 g/dL from the first 

recorded level over an average of 2.0 days (IQR 2.0-6.0). There were 9 individuals with a decline in HGB 

of over 6 g/dL, of which 6 (67%) occurred 5-8 days after the first recorded value.  
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Figure 2. Hemoglobin Fluctuation During Loxoscelism. (A) Each line represents one individual with 

time and hemoglobin (HGB) graphed relative to the time point at the lowest HGB level (HGB Nadir) and 

the highest recorded HGB for each individual. Most HGB levels decline after admission and return to 

baseline. (B) ICU patients have lower interquartile ranges of HGB at presentation and at the HGB nadir, 

as compared to non-ICU patients. By the time of hospital discharge, the relative HGB level is similar 

between the two populations.  
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LDH (529.0 unit/L, reference < 226 unit/L) and total bilirubin (2.9 mg/dL, reference 0.2-1.2 

mg/dL) were over two times their normal values. Median haptoglobin and creatinine levels were within 

normal range. Of the entire cohort, 32 individuals underwent DAT testing and 18 (56%) showed 

positivity. Of the 18 individuals with a positive DAT test, 9 (50%) were positive for C3 and IgG, 6 (33%) 

were positive for only IgG and 3 (17%) positive only for C3.   

 

PheWAS for Loxoscelism Phenotype 

  A PheWAS for phenotypic associations with loxoscelism revealed many strong correlations 

including rash (p = 1.8 x 10-28), toxic effect of venom (p = 1.5 x 10-28), and hemolytic anemia (p = 2.0 x 

10-27), which were also the most frequent phenotypes associated with individuals with loxoscelism 

(Figure 3 Parts A-B). These were clinical parameters used to assist in confirming the loxoscelism 

phenotype. Phenotypes that align with intravascular hemolysis, including coagulation defects (p = 2.3 x 

10-16), hematuria (p = 3.1 x 10-14), and thrombocytopenia (1.1 x 10-6), were also strongly associated. The 

PheWAS analysis found strong associations between loxoscelism and superficial cellulitis/abscess (p = 

2.1 x 10-23), sepsis (p = 3.1 x 10-18), and septicemia (p = 6.7 x 10-12), all possible correlations with 

infection. All statistically significant associations are in Table 2.  
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Figure 3. Phenotypes and PheWAS of Individuals with Moderate-Severe Loxoscelism. (A) 

Manhattan plot representing the number of individuals with moderate to severe loxoscelism with each 

phenotype. The most frequent phenotypes validated the loxoscelism definition and included the toxic 

effect of venom, acquired hemolytic anemia, fever of unknown origin, and rash/skin eruption. (B) 

PheWAS for moderate-severe loxoscelism. The blue line represents significance level without correction 

(p = 0.05). The red line is representative of the adjusted significance threshold using the Bonferroni 

correction for multiple comparisons (p = 1.2 x 10-4). 29 phenotypes showed a significant correlation (p < 

1.2 x 10-4) with the loxoscelism phenotype when compared to controls.  
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Table 2. Significant findings for PheWAS of loxoscelism (adjusted significance level, p < 1.2 x 10-4). 

Clinical Phenotype 

Cases in 

Loxoscelism 

only cohort 

(n = 57),  

No. (%) 

Cases in 

Entire 

Population, 

No. 

Controls in 

Entire 

Population, 

No. OR (95% CI)  p-value 

Rash and other nonspecific 

skin eruption 

18 (32%) 

57 2700 54 (27-110) 1.5x10-28 

Toxic effect of venom 

48 (84%)  

51 2793 

16745 (3714-

130031) 1.8 x10-28 

Acquired hemolytic 

anemias 

29 (51%) 

32 2674 

2459 (700-

12541) 2.0 x10-27 

Superficial cellulitis and 

abscess 

16 (28%) 

65 2696 36 (18-75) 2.1 x10-23 

Sepsis and SIRS 10 (18%) 22 2869 57 (23-144) 3.0 x10-18 

Fever of unknown origin 22 (39%) 207 2484 17 (9-33) 5.3 x10-17 

Other anemias 11 (19%) 93 2674 39 (16-94) 1.1 x10-16 

Coagulation defects 10 (18%) 33 2790 33 (14-75) 2.3 x10-16 

Elevated white blood count 8 (14%) 20 2736 64 (22-186) 8.1 x10-15 

Malaise and fatigue 15 (26%) 113 2616 17 (8-35) 1.1 x10-14 

Hematuria 8 (14%) 25 2630 36 (14-88) 3.1 x10-14 

Disorders of fluid, 

electrolyte, and acid-base 

15 (26%) 

128 2632 12 (6-24) 1.5 x10-12 

Diseases of white blood 

cells 

9 (16%) 

41 2736 23 (9-52) 3.7 x10-13 

Erythematous conditions 7 (12%) 21 2765 44 (15-127) 1.6 x10-12 

Septicemia 7 (12%) 26 2790 26 (10-65) 6.7 x10-12 

Electrolyte imbalance 9 (16%) 57 2632 20 (8-47) 1.8 x10-11 

Tachycardia 8 (14%) 44 2651 18 (7-40) 1.3 x10-10 

Hypopotassemia 5 (9%) 28 2632 22 (7-65) 7.9 x10-8 

Cardiac dysrhythmias 10 (18%) 118 2651 7 (3-15) 3.4 x10-7 

Acute renal failure 5 (9%) 27 2812 14 (5-39) 6.1 x10-7 

Thrombocytopenia 5 (9%) 35 2790 12 (4-32) 1.1 x10-6 

Edema 5 (9%) 31 2825 13 (4-35) 1.7 x10-6 

Purpura and other 

hemorrhagic conditions 

5 (9%) 

38 2790 11 (4-28) 2.2 x10-6 

Renal failure 5 (9%) 35 2812 11 (3-29) 6.1 x10-6 

Respiratory abnormalities 4 (7%) 23 2838 12 (3-34) 1.2 x10-5 

Pleurisy, pleural effusion 4 (7%) 31 2735 11 (3-31) 5.3 x10-5 

Myalgia and myositis 

unspecified 

4 (7%) 

32 2839 12 (3-37) 8.1 x10-5 

Other symptoms of 

respiratory system 

12 (21%) 

229 2441 4 (2-8) 8.2 x10-5 

Hypotension 4 (7%) 31 2834 9 (3-26) 1.2 x10-4 

OR: Odds Ratio; SIRS: Systemic inflammatory response syndrome 
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Treatment and Outcomes 

Clinical outcomes for individuals are reported in Table 1. All individuals were hospitalized 

except for one who died in the Emergency Department. The median length of hospital stay was 4.0 days 

(range, 1-28 days). Of the 57 subjects, 46 (80.7%) had a toxicology consult service assisting in diagnosis 

and management. Only 2 individuals (4%) received dapsone either prior to (per report) or during their 

hospital admission. Approximately half of individuals (49.1%) required initial admission or transfer to an 

ICU due to their critical condition and need for more intensive monitoring. Acute renal injury with a 2-

fold increase in the creatinine level occurred in 6 individuals (10.5%). The increase in creatinine among 

these 6 individuals ranged from 0.7 - 6.9 mg/dL. Few individuals (3; 5.3%) required dialysis due to severe 

acute renal failure.  

Only 2 individuals died during the 20-year study period from loxoscelism. One individual was a 

previously healthy 54-year-old man who developed severe hemolysis 5 days after a witnessed spider bite. 

He proceeded to multi-system organ failure with hemodynamic instability, renal and respiratory failure 

with ultimate cardiac arrest. The other individual was a previously healthy 3-year-old girl who developed 

signs of systemic loxoscelism within 6 hours of witnessed spider envenomation. She progressed to 

significant hematuria, anemia, thrombocytopenia, disseminated intravascular coagulopathy and shock 

within 19 hours of the bite resulting in death.(4)  

 

Discussion 

 This represents, to our knowledge, the largest cohort analyzed with moderate to severe 

loxoscelism to date. In contrast to prior published data consisting only of individuals with life-threatening 

hemolysis from severe loxoscelism(8), our cohort includes a wider phenotypic range consisting of all 

individuals with evidence of hemolysis. The large majority (70%) of individuals with systemic 

loxoscelism in our cohort were under 20 years of age. According to the 2014 annual report of the 

American Association of Poison Control Centers’ National Poison Data System, the majority (63%) of 
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individuals who present in the United States with a brown recluse spider bite are 20 years or older. This 

suggests that although adults suffer from envenomation from brown recluse spiders more frequently 

(which was also seen in our data), children are subject to a much more severe reaction. Prior literature 

shows more frequent case reports of systemic loxoscelism occurring in pediatric individuals(4, 24-26) and 

this large retrospective review corroborates that children are at greater risk for systemic loxoscelism. 

 Hemolysis can occur in severe cases of loxoscelism(3), but may present differently than typical 

intravascular hemolysis. HGB is the most direct indicator of clinical severity in hemolytic disease(27) and 

its level can become extremely low (< 6 g/dL) in severe forms of loxoscelism, as seen in 15 (26%) of the 

individuals in our cohort. LDH is also known to be elevated during states of intravascular hemolysis(27) 

which was also demonstrated in this cohort with loxoscelism, whose average highest LDH was 3 times 

the upper limit of normal. Hyperbilirubinemia is also seen during hemolysis and can rise to > 4 mg/dL in 

severe acute hemolysis(27, 28) as was seen in our cohort of individuals. Haptoglobin is known to be 

decreased in periods of hemolysis(27); however, our cohort only had 11 (19%) individuals with a 

haptoglobin less than normal and an average haptoglobin low within the normal range. Sterile tissue 

injury or infection can initiate a local inflammatory response that mobilizes a systemic acute phase 

reaction, resulting in the induction of genes encoding the acute phase plasma proteins, including 

haptoglobin.(29) Therefore, a state of inflammation from the brown recluse spider bite in many of the 

individuals may result in difficulty in interpretation of the haptoglobin level.(30) 

 In our review, it is important to note that the disease rarely progressed to renal failure. Only 6 

individuals had a significant increase in creatinine level, 5 of which were identified with the PheWAS to 

have renal failure as well. Only 3 of these patients required dialysis. Furthermore, renal failure did not 

correspond with mortality in our series as the individuals who progressed to death did so in such a quick 

and extreme fashion that dialysis was not undertaken. Treatment of systemic loxoscelism is mainly 

supportive.(9) Steroids have been used to prevent kidney failure and hemolysis, but their efficacy is 

subject to debate.(9, 31) Other treatments that may be considered are dapsone, hyperbaric oxygen, and 
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surgical excision.(9) Adverse side effects have been attributed to dapsone including hemolysis, anemia, 

and hyperbilirubinemia.(9) Only two individuals in our cohort received treatment with dapsone, both for 

short time periods. Although not statistically significant, one individual who received dapsone was an 

adult who developed severe hemolysis and subsequently died, whereas the other was a teenage male who 

suffered severe hemolysis that resolved. Omitting these individuals who received dapsone, the remainder 

of the hemolysis within our cohort cannot be attributed to treatment patterns of dapsone use.  

Literature on rates of DAT positivity in systemic loxoscelism is scant; several small case series 

have reported high rates of positive DAT.(7, 32) Our large case series confirms DAT is positive in more 

than 50% of severely affected individuals, although this does not necessarily correlate with severity of 

disease. These prior reports demonstrated both IgG and C3 on the red blood cell surface, as is seen in a 

portion of our cohort with loxoscelism. Our results support the hypothesis that the anemia in loxoscelism 

can result from direct toxin-mediated erythrocyte damage, complement-mediated immune destruction, or 

both. Autoimmune hemolytic anemia(33) as well as other immune-mediated illnesses(34) are known to be 

associated with Human Leukocyte Antigen (HLA) type. HLA-DQ6 has shown in a small case series to 

have a negative association with a positive DAT result in individuals with hemolysis(33); whether our 

cohort is enriched for this genotype is unknown.  

As with most PheWAS analyses based on billing codes, all statistically significant phenotypes 

were of increased prevalence in the case population. We found that the PheWAS analysis recapitulated 

the described phenotype for systemic loxoscelism, and also suggested additional phenotypes of concern. 

Through PheWAS, some significant phenotypes were directly related to the defined definition of 

loxoscelism, whereas other phenotypes were likely due to secondary effects or potentially factors 

increasing risk for the disease process. Phenotypes of loxoscelism strongly replicated include toxic effect 

of venom (OR 16745, 95% CI 3714-130031) and hemolytic anemia (OR 2459, 95% CI 700-12541). The 

phenotype “toxic effect of venom” is mapped to a single ICD-9 code, 989.5, which applies to bites of 

venomous snakes, lizards, ticks, and spiders. We also found that the PheWAS analysis reconfirmed other 
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known clinical findings in loxoscelism that were not within our loxoscelism case definition. These 

included rash or other nonspecific skin eruption (OR 54, 95% CI 27-110), hematuria (OR 36, 95% CI 14-

88), coagulation defects (OR 33, 95% CI 14-75), malaise and fatigue (OR 17, 95% CI 8-35), and fever of 

unknown origin (OR 17, 95% CI 9-33).  

Although hematuria was significant in PheWAS, hemoglobinuria was not. Hematuria and 

hemoglobinuria are both known findings in systemic loxoscelism, with hematuria occurring almost 

invariably in severe disease.(35-39) Urine dipstick analysis for blood is typically the initial screening test 

for hematuria or hemoglobinuria. In subsequent testing, the presence of a red blood cells on microscopic 

urinalysis are indicative of hematuria. However, if the blood is detectable on a dipstick with no or very 

few microscopically visible RBCs, hemoglobinuria or myoglobinuria is suggested.(40) It is possible that 

misclassification of these billing diagnosis codes occurred, resulting in a stronger phenotypic association 

with hematuria. We did note in our cohort that hematuria, sometimes gross hematuria, was a present in 

patients with very severe forms of loxoscelism. 

 Several phenotypes more likely to be secondary effects of loxoscelism were also found to be 

significant in the PheWAS analysis. In particular, there appears to be a strong signal for septicemia (OR 

26, 95% CI 10-63), sepsis and systemic inflammatory response syndrome (OR 56, 95% CI 22-140) – 

suggesting that bacterial superinfection of the local wound site and/or iatrogenic infections are an 

important consideration in this population. There is also a strong signal for cardiac dysrhythmias (OR 7, 

95% CI 3-14) and electrolyte imbalance (OR 20, 95% CI 8-46), suggesting that the systemic loxoscelism 

process or secondary effects (massive fluid resuscitation, renal failure, etc.) lead to significant issues 

requiring intensive medical management. With the well-defined phenotype captured by PheWAS 

analysis, it is possible to construct phenotype risk scores that could capture individuals that may not have 

been formally diagnosed; this remains the subject of future work.(41) 

 There are several limitations to our study. This study was undertaken at a single institution and 

may not be generalizable to others, especially institutions within other countries in North and South 
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America where antivenom is an option for medical treatment. Although the use and efficacy of antivenom 

is controversial, with studies indicating potentially limited capacity of the medication to neutralize the 

systemic effects of loxoscelism due to delayed presentation of illness, further research in this area is 

needed.(42) Our case identification relied on the use of the word “loxoscelism” in clinical notes; this 

word is uncommon in the medical jargon and could be hypothetically misspelled. However, a preliminary 

investigation using the keywords “brown recluse” resulted in a large false positive rate. Another 

limitation is that many of the cases were referred to VUMC for tertiary-level care and had very little 

preceding or subsequent history in the SD, limiting our ability to evaluate for long term sequelae in 

sufferers of systemic loxoscelism. Most importantly, our retrospective chart review was limited by the 

fact that systemic loxoscelism is a clinical diagnosis that is made upon the presence of systemic 

symptoms, a cutaneous lesion consistent with a brown recluse spider bite, and clinical presentation and 

history. There is no confirmatory test for its diagnosis. We believe our criteria to require laboratory 

markers of hemolysis and documented diagnosis of loxoscelism was the most accurate approach to 

determining the true prevalence of loxoscelism within our institution. Furthermore, review was performed 

by physicians to ensure accuracy. More stringent criteria, such as requirement that the spider responsible 

for envenomation is captured and confirmed to be a brown recluse, would likely lead to a profound 

underestimation of the actual occurrence of systemic loxoscelism in endemic areas. Lastly, as the severity 

of loxoscelism occurs along a spectrum without a clear definition of what determines severe disease, we 

did not distinguish between moderate and severe loxoscelism, including in our cohort all individuals with 

systemic signs of hemolysis or disseminated intravascular coagulation, need for blood transfusion, or 

hemodynamic instability. This allowed for greater inclusion of individuals affected by the disease; 

however, it also led to increased variability in our phenotype.  

 In conclusion, systemic loxoscelism is a rare occurrence, but within a region endemic to brown 

recluse spiders, multiple individuals present yearly with moderate to severe loxoscelism. A portion of 

these individuals develops moderate to severe hemolysis. Although children and possibly African 
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Americans appear to be at increased risk, it remains unclear what specific risk factors correlate with 

disease severity. 
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Abstract 

Background: The extent to which obesity and genetics determine post-operative complications is 

incompletely understood.   

Methods: We performed a retrospective study using two population cohorts with electronic health record 

(EHR) data. The first included 736,726 adults with body mass index (BMI) recorded between 1990-2017 

at Vanderbilt University Medical Center. The second cohort consisted of 65,174 individuals from 12 

institutions contributing EHR and genome-wide genotyping data to the Electronic Medical Records & 

Genomics (eMERGE) Network. Pairwise logistic regression analyses were used to measure the 

association of BMI categories with postoperative complications derived from International Classification 

of Disease-9 codes, including postoperative infection, incisional hernia, and intestinal obstruction. A 

genetic risk score (GRS) was constructed from 97 obesity-risk single nucleotide polymorphisms for a 

Mendelian randomization study to determine the association of genetic risk for obesity on postoperative 

complications. Logistic regression analyses were adjusted for sex, age, site, and race/principal 

components.  

Results: Individuals with overweight or obese BMI (≥25 kg/m2) had increased risk for incisional hernia 

(Odds ratio [OR] 1.7-5.5, p<3.1x10-20), and people with obesity (BMI≥30 kg/m2) had increased risk for 

postoperative infection (OR 1.2-2.3, p<2.5x10-5). In the eMERGE cohort, genetically-predicted BMI was 

associated with incisional hernia (OR 2.1 [95% CI 1.8-2.5], p=1.4x10-6) and postoperative infection (OR 

1.6 [95% CI 1.4-1.9], p=3.1x10-6). Association findings were similar after limitation of the cohorts to 

those who underwent abdominal procedures. 

Conclusions: Clinical and Mendelian randomization studies suggest that obesity, as measured by BMI, is 

associated with the development of postoperative incisional hernia and infection.   
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Introduction 

Obesity, defined as a body-mass index (BMI) of 30.0 kg/m2 or greater, is known to be a strong 

predictor of cardiovascular morbidity and mortality.(1–3) Over two-thirds of the adult population in the 

United States have an overweight or obese BMI,(4) and there is significant burden of obesity on 

healthcare worldwide.(5, 6) In addition to the known cardiovascular morbidity associated with obesity, it 

is generally regarded that obesity is a risk factor for increased postoperative complications. This risk has 

growing significance in surgery, as the obesity epidemic has resulted in a rising prevalence of obesity-

related diseases that require operative intervention, thus increasing the number of patients with obesity 

undergoing surgery.(7) Bariatric surgery has also become increasingly common and safe to perform with 

very low reported immediate post-operative complications.(8, 9) However, prior cohort studies have 

suggested an increased incidence of surgical site infections in individuals with obesity undergoing non-

bariatric procedures.(10–23) The majority of these studies consist of cohorts undergoing a limited set of 

procedures such as vascular surgeries,(12, 13) oncologic resections,(14) gynecologic procedures,(15, 16) 

or colorectal resections.(17) Therefore, we aim to determine the influence obesity has on postoperative 

outcomes and if genetic risk for obesity impacts long-term surgical complications. This information can 

provide surgeons with more definitive data on a patient’s operative risk stratification.  

Mendelian randomization (MR) is a method that uses single or sets of genetic variants associated 

with a phenotype of interest as an instrumental variable for association studies.(24) Prior studies have 

used MR to determine the association of obesity-risk single nucleotide polymorphisms (SNPs) with 

medical conditions such as ischemic heart disease,(25, 26) hypertension,(26) type 2 diabetes,(26) 

symptomatic cholelithiasis,(27) deep venous thrombosis,(28) and others.(29–37) However, prior studies 

have not investigated the association of obesity-risk SNPs with postoperative outcomes.  

We leveraged a large electronic health record (EHR) population to identify specific postoperative 

complications associated with BMI. In a second cohort, we then used MR for obesity by estimating BMI-
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risk using 97 SNPs known to strongly correlate with BMI to investigate the relationship between genetic 

risk for obesity and postoperative complications.(38)  

 

Methods  

Vanderbilt Cohort 

We conducted a retrospective study of all adult (≥18 years of age) individuals using the 

Vanderbilt University Medical Center (VUMC) Synthetic Derivative, a de-identified version of over 2.4 

million VUMC patient health records.(39, 40) Inclusion criteria were at least one documented BMI, 

calculated as weight in kilograms divided by height in meters squared (kg/m2), where both weight and 

height were measured at a single encounter. The study protocol was designated as non-human subject 

research by the Institutional Review Board at VUMC. 

All measured BMI values were extracted for each individual, with BMI data obtained during 

pregnancy or with clinically implausible values (less than 10 kg/m2 or greater than 70 kg/m2) excluded. 

Each individual was classified by his or her median BMI into one of 6 BMI categories, as defined by the 

World Health Organization (WHO), including underweight (<18.5 kg/m2), normal (18.5-24.9 kg/m2), 

overweight (25.0-29.9 kg/m2), and obesity class 1 (30.0-34.9 kg/m2), class 2 (35.0-39.9 kg/m2), and class 

3 (≥40.0 kg/m2).(41)  

 

Evaluating the Vanderbilt Cohort for Postoperative Complications 

We evaluated for three of the most prevalent postoperative outcomes in abdominal surgery (e.g., 

postoperative infection, incisional hernia, and intestinal obstruction) using International Classification of 

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes. These outcomes were chosen to not 

only capture immediate postoperative outcomes, but also potential long-term consequences of surgical 

interventions, including those not present on the initial admission. To do so, all distinct ICD-9-CM codes 

from each individuals’ record were captured and translated into PheWAS codes (phecodes).(42, 43) 
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Phecodes are a hierarchical classification system for ICD-9-CM codes and have been previously shown to 

appropriately categorize diseases in clinical practice.(42, 44) Existing phecodes were reviewed by a team 

member with surgical expertise, and these three phecodes were selected as outcomes for this study 

because they represent well-defined surgical complications with explicit ICD-9 billing codes. To improve 

the accuracy of mapping ICD-9 codes to phenotypes, a minimum of 2 instances of a matching ICD-9 code 

on separate days was required to be translated to a phecode. In order to capture long-term sequelae and 

patients who underwent surgery at a separate institution, the full cohort was not limited to patients who 

had undergone surgery at Vanderbilt and no specific timepoint for the postoperative complication 

following abdominal surgery was defined.  

We performed a sequence of logistic regression models adjusted for age, sex, and self-reported 

race, with the predictor being the BMI category and outcomes being each postoperative complication. 

Effect sizes for associations of BMI categories with postoperative outcomes are determined by 

comparison to those individuals with BMI in the normal range. All analyses were performed using the 

PheWAS code map version 1.2.(45) and PheWAS package for R statistical software, version 3.4.3.(46) 

Bonferroni correction for analyses with multiple comparisons was used to adjust the significance 

threshold to a two-sided p-value <0.003. 

 

eMERGE Mendelian Randomization Cohort  

 The cohort utilized for MR analyses was obtained through the Electronic Medical Records and 

Genomics (eMERGE) Consortium, a national network organized and funded by the National Human 

Genome Research Institute (NHGRI).(47) This cohort included all individuals from institutions 

contributing data to the eMERGE network phases I-III. Inclusion criteria were age ≥18 years with extant 

genome-wide genotyping data and ICD-9-CM codes. 
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Genotyping and Imputation in the eMERGE Mendelian Randomization Cohort 

Genotyping and imputation was performed to coalesce genetic results across 12 different sites 

and 78 genotype array batches in the eMERGE Consortium using the Michigan Imputation Server (48) 

and Haplotype Reference Consortium (HRC1.1).(49, 50) The resulting imputed genome wide set consists 

of approximately 40 million single nucleotide variant marker allele doses down to 0.1% minor allele 

frequency (MAF). Genotype array files were referenced to the build 37 genome position using the 

forward genome strand. Quality control included filtering for sample missingness <2.0% and SNP 

missingness <2.0% in data preprocessing. For duplicate samples on differing arrays, the sample with the 

most genotyped variants for that subject was selected for the merged dataset. Principal component 

analysis (PCA) using the first 10 principal components was performed to determine genetic ancestry 

using PLINK (51) with variants having >5% MAF. Single nucleotide variants with a missing rate >10% 

or not meeting the linkage disequilibrium threshold r2 < 0.7 were excluded in PCA. We performed 

identity by descent (IBD) analysis to identify related individuals using probability of zero alleles IBD 

(Z0) < 0.83 and the probability of having one allele IBD (Z1) > 0.10 to capture first through third-degree 

relatives. The oldest family member from each family was included in the cohort analysis. We excluded 

suspected monozygotic twins or duplicates. 

 

Construction of the Obesity Genetic Risk Score (GRS) 

The GRS was calculated from 97 SNPs (Supplementary Table 1) associated with BMI at genome-

wide significance in a prior meta-analysis of genome-wide association studies conducted by the Genetic 

Investigation of ANthropometric Traits (GIANT) Consortium.(38) For the 97 SNPs, the minimum mean 

imputation r2 for any single SNP was 0.83 with an overall mean r2 of 0.95. Using the all-ancestry beta-

coefficients reported by GIANT, we calculated a GRS for obesity for each individual in our cohort. This 

obesity GRS was calculated as a sum of risk allele dosages weighted by the effect estimates. The effect 

estimates are described by the GIANT consortium as beta-coefficients per 1-SD unit of BMI (4.8 kg/m2). 
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We measured the association of the GRS with BMI by calculation of the BMI variance explained 

(adjusted R2) by the associated SNPs using linear regression models adjusted for site, age, sex, and the 

first 10 principal components.  

 

Mendelian Randomization Analyses 

We used MR to assess for association of genetic risk for obesity with the postoperative outcomes. 

We performed logistic regression, adjusted for site, age, sex, and the first 10 principal components, to 

calculate causal effect estimates for genetically-determined BMI on the postoperative complications. To 

adjust for multiple comparison analyses, we used a Bonferroni correction for association, giving a 

conservative significance threshold of p=0.017. Effect estimates are reported per 1-SD difference in BMI 

(derived from beta estimates and SD of 4.8 kg/m2 in a prior cohort of 449,472 individuals).(26) Among 

individuals with both a calculated GRS and reported BMI, the logistic regression analyses were 

performed with additional adjustment for median BMI to assess for residual association between the 

instrumental variable (GRS) with the outcomes (postoperative complications) through a pathway external 

to BMI. Such associations could indicate pleiotropic genes, or genes that can affect multiple, distinct 

phenotypes, were included in the BMI GRS. 

 

Surgical Cohort Analyses 

The analyses were also performed in subsets of the Vanderbilt and eMERGE populations who 

had documentation of undergoing a procedure. These two separate cohorts of surgical patients were 

captured by extracting Current Procedural Terminology (CPT) codes and mapping them to aggregated 

procedure categories including general, urologic, or gynecologic abdominal operations.(52) To further 

ensure that surgical patients undergoing hernia repair were not driving the associations with incisional 

hernia, the analysis was performed with exclusion of individuals with a CPT code corresponding to hernia 
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repair. We also evaluated for the difference in complications in patients who underwent exploratory 

laparotomy versus laparoscopy.  

Lastly, we evaluated for the association of obesity with 90-day postoperative mortality among all 

individuals at Vanderbilt who had undergone an abdominal surgical procedure. We performed a logistic 

regression to measure the association of BMI category with 90-day postoperative mortality, adjusting for 

age, gender, and race.  

 

Results 

Demographics of the Vanderbilt and eMERGE Cohorts 

 After exclusion of adult individuals with only BMI values recorded in pregnancy (12,588 

individuals) or BMI values out of range (354 individuals), there were 736,726 individuals in the 

Vanderbilt cohort. Of these, 68,266 had undergone an abdominal surgical procedure for inclusion in the 

Vanderbilt surgical cohort (Figure 1A). Median follow-up of individuals who underwent a surgical 

procedure was 6.9 years (range 0-30.4 years). In the eMERGE MR cohort, 65,174 individuals had extant 

genotyping and ICD-9 codes for analysis in the entire cohort, of which 15,355 had a CPT code for 

abdominal surgery for inclusion in the eMERGE surgical cohort (Figure 1B). Table 1 describes the 

institutions contributing patients to the eMERGE cohorts. The majority of individuals in all cohorts were 

female and white or European ancestry (Table 2). Median BMI of the Vanderbilt individuals was 27.3 

kg/m2 (IQR 23.6-32.0), which was similar to that in the eMERGE cohort and surgical subpopulations. 

Individuals with overweight or obese BMI comprised 65.2% (480,530 individuals) of the Vanderbilt 

cohort and 67.9% (35,722 individuals) of the eMERGE cohort.  
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Table 1.  eMERGE Sites and Numbers of Individuals Contributing Adult Data  

Site Entire Cohort Surgical Cohort 

Number of subjects, n (%) 

(Total n = 65,174) 

Number of subjects, n 

(%) 

(Total n = 15,355) 

Boston Children’s Hospital 252 (0.4) 0 

Children’s Hospital of Philadelphia 4,649 (7.1)  24 (0.2) 

Cincinnati Children’s Hospital Medical 

Center 

1,331 (2.0) 45 (0.3) 

Columbia University 1,680 (2.6) 686 (4.5) 

Geisinger 2,772 (4.3) 974 (6.3) 

Harvard University 9,689 (14.9) 2,141 (13.9) 

Kaiser Permanente Washington with the 

University of Washington and the Fred 

Hutchinson Cancer Research Center 

3,197 (4.9) 763 (5.0) 

Marshfield Clinic 3,683 (5.7) 1,711 (11.1) 

Mayo Clinic 8,199 (12.6) 2,053  (13.4) 

Mount Sinai 5,701 (8.7) 758 (4.9) 

Northwestern University 4,431 (6.8) 848 (5.5) 

Vanderbilt University 19,590 (30.1) 5,352 (34.9) 

Abbreviations: eMERGE, Electronic Medical Records and Genomics consortium 
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Figure 1. Frequency of Surgical Procedures in Vanderbilt (A) and eMERGE (B) Surgical Cohorts.  
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Table 2. Demographics for Vanderbilt and eMERGE cohorts 

Clinical Variable 

Vanderbilt 

Cohort  

(n = 736,726) 

Vanderbilt  

Surgical Cohort  

(n = 68,266) 

eMERGE  

Cohort  

(n = 65,174) 

eMERGE 

Surgical Cohort  

(n = 15,355) 

Age, median (IQR), years 49.0 (33.0 – 63.0) 54.0 (40.0 – 66.0) 67.0 (51.0 – 79.0) 69.0 (56.0-80.0) 

Sex, No. (%)     

  Female 434,266 (58.9) 41,077 (60.2) 35,997 (55.2) 8,701 (56.7) 

  Unknown 57 (0.1) 0 0 0 

Race (Vanderbilt) or 

Genetic Ancestry 

(eMERGE), No. (%) 

   

 

  White/European ancestry 553,368 (75.1) 55,694 (81.6) 52,760 (81.0) 13,068 (85.1) 

  Black/African ancestry 70,409 (9.6) 8,656 (12.7) 11,323 (17.4) 2,017 (13.1) 

  Asian 11,998 (1.6) 798 (1.2) 1,091 (1.7) 270 (1.8) 

  Other 18,332 (2.5) 1,942 (2.8)  0 0 

  Unknown 82,619 (11.2) 1,176 (1.7) 0 0 

BMI (kg/m2), median (IQR) 27.3 (23.6 – 32.0) 27.8 (24.1 – 32.7)  27.6 (23.9 –  32.1) 
28.3 (24.8 – 

33.1) 

BMI (kg/m2), mean (SD) 28.5 (7.0) 29.1 (7.3) 28.6 (7.0) 29.67 (7.0) 

BMI category, No. (%)     

  Underweight (<18.5) 15,509 (2.1) 1,564 (2.3) 1,961 (3.7) 221 (1.6) 

  Normal (18.5 – 24.9) 240,676 (32.7) 19,630 (28.8) 14,926 (28.4) 3,414 (25.1) 

  Overweight (25.0 – 29.9) 229,630 (31.2) 21,590 (31.6) 17,088 (32.5) 4,576 (33.7) 

  Obesity Class 1 (30.0 – 

34.9) 
135,488 (18.4) 13,317 (19.5) 10,425 (19.8) 

2,827 (20.8) 

  Obesity Class 2 (35.0 – 

39.9) 
64,539 (8.8) 6,702 (9.8) 4,802 (9.1) 

1,407 (10.4) 

  Obesity Class 3 (40.0) 50,873 (6.9) 5,463 (8.0) 3,407 (6.5) 1,146 (8.4) 

  No BMI reported 0 0 12,565 1,764  

Abbreviations: eMERGE, Electronic Medical Records and Genomics consortium; BMI, body mass index; 

IQR, interquartile range; SD, standard deviation 

BMI Associations with Postoperative Complications  

 In the Vanderbilt cohort, we found that overweight or obesity was associated with incisional 

hernia and postoperative infection in both the full and surgical cohorts (Table 3). There was an increased 

association with these postoperative complications with increasing BMI (Figure 2A-B) in both the 

complete and surgical Vanderbilt cohorts. In the entire Vanderbilt cohort, OR for incisional hernia in 

individuals with overweight BMI was 1.7 (95% confidence interval [CI] 1.5-1.8, p=3.1x10-20) and 

increased to an OR of 5.5 (95% CI 5.4-5.6, p=2.2x10-172) in class 3 obesity, a 3.2-fold increase. The 

association of obesity with incisional hernia persisted in the Vanderbilt subpopulation of individuals who 
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had undergone general, urologic, or gynecologic abdominal surgery, with OR in surgical patients with 

overweight BMI of 1.6 (95% CI 1.5-1.7, p=1.2x10-15) and surgical patients with class 3 obesity BMI of 

4.9 (95% CI 4.8-5.1, p=2.5x10-117). Further exclusion of individuals who had undergone hernia repair 

showed persistent associations of obesity with incisional hernia in class 1 (OR 1.7 [95% CI 1.4-2.1], 

p=1.2x10-3), 2 (OR 3.5 [95% CI 3.1-3.8], p=1.6x10-12) and 3 (OR 3.9 [95% CI 3.5-4.3], p=1.2x10-12) 

obesity in the surgical patient population. In patients with both a low (<30 mg/kg2) and high BMI (≥30 

mg/kg2), the large majority of incisional hernias presented themselves in the first 2 years following the 

index operation (Supplementary Figure 1).  
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Figure 2. Association of BMI with Postoperative Complications in Vanderbilt General (A) and 

Surgical (B) Cohorts. Error bars represent 95% confidence interval. Significance threshold of p <0.003. 

BMI, body mass index; SD, standard deviation.  

 

 In the clinical cohort, both underweight (BMI <18.5 kg/m2) and class 1-3 obesity (BMI  30.0 

kg/m2) demonstrated an association with postoperative infection (p<2.5x10-5). The strongest association 

of postoperative infection with BMI class was with class 3 obesity (OR 2.3 [95% CI 2.2-2.3], p=2.3x10-

71) and this relationship persisted in the abdominal surgery subpopulation (OR 2.1 [95% CI 2.0-2.6], 

p=3.0x10-29).  
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 In the full cohort, patients with underweight BMI had an increased risk of intestinal obstruction 

compared to patients with a BMI within the normal range (OR 2.4 [95% CI 2.3-2.5], p=4.6x10-57). In 

contrast, patients with a BMI in the overweight or obese range showed a decreased risk of intestinal 

obstruction in comparison to patients with a normal BMI (Table 3). The finding of an increase in 

obstruction in patients with an underweight BMI and decrease in obstruction in patients with BMI over 

the normal range persisted in the subset of individuals who had undergone an abdominal surgical 

procedure.    
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Table 3. Association of BMI with postoperative complications* 

Entire Vanderbilt Cohort (n = 736,726) 

Phenotype 

Underweight  

<18.5 kg/m2 

OR (95% CI) 

Overweight 

25.0-29.9 kg/m2 

OR (95% CI) 

Obesity Class 1 

30.0-34.9 kg/m2 

OR (95% CI) 

Obesity Class 2 

35.0-39.9 kg/m2 

OR (95% CI) 

Obesity Class 3 

40.0 kg/m2 

OR (95% CI) 

Postoperative 

infection 

(n = 6,228) 

1.59 (1.42-1.76) † 1.08 (1.01-1.15) 1.18 (1.10-1.26) † 1.57 (1.48-1.66) † 2.25 (2.16-2.33) † 

Incisional hernia 

(n = 3,580) 
0.92 (0.55-1.29) 1.65 (1.54-1.76) † 2.51 (2.40-2.62) † 3.62 (3.51-3.75) † 5.48 (5.36-5.60) † 

Intestinal 

obstruction 

(n = 8,525) 

2.37 (2.26-2.47) † 0.72 (0.67-0.78) † 0.67 (0.61-0.74) † 0.67 (0.58-0.76) † 0.72 (0.62-0.82) † 

Vanderbilt Surgical Cohort (n = 68,266) 

Postoperative 

infection 

(n = 2,749) 

1.66 (1.43-1.89) † 0.92 (0.81-1.02) 1.01 (0.89-1.13) 1.36 (1.22-1.49) † 2.13 (2.00-2.26) † 

Incisional hernia 

(n = 3,120) 
0.67 (0.27-1.08) 1.60 (1.49-1.72) † 2.47 (2.35-2.59) † 3.52 (3.39-3.65) † 4.95 (4.81-5.08) † 

Intestinal 

obstruction 

 (n = 5,389) 

2.19 (2.03-2.33) † 0.66 (0.59-0.73) † 0.59 (0.50-0.67) † 0.56 (0.44-0.67) † 0.58 (0.45-0.71) † 

Vanderbilt Exploratory Laparotomy Cohort (n = 2,410) 

Postoperative 

infection 

(n = 432) 

0.95 (0.36-1.55)  1.25 (0.96-1.53) 1.14 (0.81-1.47) 1.39 (0.97-1.80)  2.95 (2.55-3.34) † 

Incisional hernia 

(n = 296) 
0.91 (0.08-1.73) 1.79 (1.42-2.15) † 2.00 (1.59-2.40) † 4.47 (4.03-4.92) † 4.63 (4.16-5.09) † 

Intestinal 

obstruction 

 (n = 688) 

1.11 (0.63-1.59)  0.91 (0.66-1.16)  0.62 (0.32-0.92) † 1.14 (0.75-1.53)  0.66 (0.23-1.10)  

Vanderbilt Laparoscopy Cohort (n = 3,841) 

Postoperative 

infection 

(n = 174) 

1.06 (0.00-2.26)  1.06 (0.60-1.51) 1.17 (0.70-1.65) 1.19 (0.65-1.73)  1.56 (1.10-2.03)  

Incisional hernia 

(n = 250) 
0.89 (0.00-2.35) 1.35 (0.91-1.79)  2.15 (1.71-2.59) † 3.09 (2.63-3.55) † 3.54 (3.10-3.98) † 

Intestinal 

obstruction 

 (n = 327) 

0.37 (0.80-2.26)  0.16 (0.44-1.05) 0.18 (0.21-0.91) † 0.25 (0.00-0.90) † 0.20 (0.15-0.95) 

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); OR, 

odds ratio; CI, confidence interval 
* Reference odds ratio 1.0 represents normal median BMI. Logistic regressions adjusted for sex, age, and reported 

race.† Results significant to Bonferroni corrected p-value of p = 0.003 compared to individuals with normal range 

BMI.  
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 While patients with obesity who underwent exploratory laparotomy or laparoscopy both had 

increased risk for postoperative infection and incisional hernia, the risk was greatest in patients who 

underwent open laparotomy (Table 3). In class 3 obesity, the risk for postoperative infection for patients 

undergoing laparotomy was OR 3.0 (95% CI 2.6-3.3) compared to OR 1.6 (95% CI 1.1-2.0) in patients 

who underwent laparoscopy. Similarly, patients with class 3 obesity who underwent laparotomy had an 

OR of 4.6 (95% CI 4.2-5.1) for incisional hernia compared to OR 3.5 (95% CI 3.1-4.0) in those who 

underwent laparoscopy. 

 In comparison to individuals having normal BMI who underwent abdominal surgical procedure, 

those having an overweight or obese BMI had increased risk for mortality in the 90-day postoperative 

period. Increased BMI was associated with increased risk: overweight BMI had a OR of 1.02 (95% CI 

1.0-1.0, p=0.04) while class 3 obesity had a OR of 1.12 (95% CI 1.1-1.2, p=2.5x10-11).  

 

Mendelian Randomization for Obesity Associations with Postoperative Complications 

 In the eMERGE cohort, the obesity GRS was strongly correlated with mean BMI (p<2.0x10-16), 

aligning with findings from Locke et al.(38) Using a conservative p-value threshold of 0.017, the obesity 

GRS was associated with incisional hernia (OR 2.1 [95% CI 1.8-2.4], p=1.4x10-6) and postoperative 

infection (OR 1.6 [95% CI 1.4-1.9], p=3.1x10-6) in the entire eMERGE cohort (Table 4). Limiting to only 

those individuals who had undergone a general, urologic, or gynecologic abdominal surgery, the obesity 

GRS remained associated with both incisional hernia (OR 2.0 [95% CI 1.7-2.4], p=9.4x10-5) and 

postoperative infection (OR 1.5 [95% CI 1.2-1.8], p=0.01). 

 The obesity GRS was not associated with intestinal obstruction in the complete (OR 1.1 [95% CI 

0.9-1.2], p = 0.59) or surgical cohort (OR 1.0 [95% CI 0.7-1.2], p = 0.80). 

Adjustment for median BMI in MR analyses to assess for residual association not attributable to 

BMI exposure showed attenuation of the associations with postoperative infection (p=0.126) and 
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incisional hernia (p=0.038), suggesting that the association of the obesity-risk GRS with these 

postoperative complications is through BMI. 

 

Table 4. Mendelian randomization genetic risk for obesity association with postoperative 

complications * 

Entire eMERGE Cohort (n = 65,174) 

Phenotype 
OR per 1-SD BMI 

(95% CI) 
p-value 

Incisional hernia † 

(n = 1,620) 
2.14 (1.83-2.45) 1.4 x 10-6 

Postoperative infection † 

(n = 3,709) 
1.64 (1.42-1.86) 3.1 x10-6 

Intestinal obstruction 

(n = 4,523) 
1.05 (0.86-1.24) 0.595 

eMERGE Surgical Cohort (n = 15,355) 

Phenotype 
OR per 1-SD BMI 

(95% CI) 
p-value 

Incisional hernia † 

(n =1,356) 
1.82 (1.66-2.36) 9.4 x 10-5 

Postoperative infection  

(n = 1,938) 
2.01 (1.19-1.79) 0.009 

Intestinal obstruction 

 (n = 2,792) 
0.97 (0.71-1.23) 0.801 

Abbreviations: eMERGE, Electronic Medical Records and Genomics consortium; SE, standard error; OR, odds ratio 
* Logistic regression adjusted for site, sex, age, and first ten principal components. Odds ratio report per 1-SD (4.8 

kg/m2) of BMI 
† Results significant to Bonferroni corrected p-value = 0.017. 

 

Discussion 

This study found that obesity as measured by both BMI and genetic risk is associated with 

postoperative infections and incisional hernias in separate cohorts. The findings from this study are 

supported by prior reports in which overweight and obesity demonstrated an observed association with 

surgical site infections (10–23) and incisional hernias.(17, 53, 54) While these clinical associations have 

been demonstrated previously, the use of Mendelian randomization in this study suggests a possible 

causal role for obesity in the development of postoperative infections and incisional hernias.  
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It has long been studied whether it is obesity itself or the comorbidities found in obese patients, 

such as diabetes mellitus, are the driver for postoperative complications. There are many potential 

explanations for the association between obesity and postoperative infections and incisional hernias with 

the mechanism likely being multifactorial.(55) An increase in subcutaneous adipose tissue and local tissue 

trauma related to retraction could play a role. Subcutaneous tissue oxygenation is reduced in obese 

patients (56) and thus may reduce wound perfusion and predispose to wound infection and decreased 

healing, leading to both postoperative infections and incisional hernias. Lengthened operative time may 

also contribute to the increased incidence of surgical-site infections caused by obesity,(57) and surgical 

site infection itself is known to be a strong risk factor for incisional hernia formation.(58)  

Because BMI itself is a strong predictor of postoperative complications, genetic variants are 

clinically unnecessary for estimation of the risk obesity plays in operative interventions. However, as 

genetic testing becomes less expensive and more common, it is another piece of data that can be 

leveraged in both research and clinical settings to provide for more accurate and validated predictions. 

Further, the use of genetic data to confirm clinical findings as we have demonstrated in this study 

substantiates the role obesity plays in development of postoperative incisional hernias and surgical site 

infections. 

Interestingly, intestinal obstruction showed no association with obesity and, in the clinical cohort, 

was associated underweight BMI. This association is unclear and should be further investigated. 

MR can be particularly useful because genetic variants are not subject to the same biases as 

traditional observational studies due to their random assortment during meiosis, thus allowing for 

potential causal inferences.(24, 59) Despite these advantages, MR and this study has several potential 

limitations. The method relies on BMI recorded in the EHR; however, this measure may not fully capture 

the true causal exposure of lifetime obesity exposure.  Another limitation is that while the sensitivity 

analysis with adjustment of BMI suggested that pleiotropy of genetic variants did not play a significant 

role, pleiotropy is common and cannot be fully excluded. Lastly, the main limitation of this retrospective 
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study is that it relies on both medical and procedural codes within the EHR, which can change over time, 

be inaccurate, and are often incomplete. While the use of ICD and CPT codes captures diagnoses and 

procedures at the study institution, we were unable to capture individuals who had surgery elsewhere or 

who presented to outside institutions with postoperative complications.   

 

Conclusions 

Genetic determinants of BMI suggest that obesity, aside from confounders or other metabolic 

diseases, is associated with the development of postoperative infection and incisional hernia. Thus, BMI 

represents an important risk factor for postoperative complication, warranting appropriate preoperative 

consideration and postoperative awareness.  
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Abstract 

High body mass index (BMI) is associated with many comorbidities and mortality; however, the 

overall phenomic burden of obesity remains unknown. We performed a phenome-wide association 

study (PheWAS) of BMI using electronic health records (EHRs) from a clinical cohort of 736,726 adults 

and then followed it with genetic association studies using 2 separate cohorts with genome-wide 

genotyping data, one consisting of 65,174 adults in the eMERGE Network and another with 405,532 

participants in the UK Biobank. In the clinical cohort PheWAS, class 3 obesity (BMI ≥40 kg/m2) was 

associated with 433 phenotypes, representing 59.3% of all billed ICD9 codes in class 3 obese individuals. 

A polygenic risk score for BMI was also associated with 296 (68.4%) of the associations with class 3 

obesity in the primary cohort, including type 2 diabetes, sleep apnea, hypertension, and chronic liver 

disease. In all 3 cohorts, 199 phenotypes were associated with class 3 obesity and polygenic risk for 

obesity. A predicted 17.1% of disease was attributable to obesity, including 87% of sleep apnea and 72% 

of type 2 diabetes. High BMI is a potentially modifiable risk factor associated with a broad range of 

diseases.  
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Introduction 

Over two-thirds of the adult population in the United States is overweight or obese.(1) The 

prevalence of obesity, defined as having a body-mass index (BMI) of 30.0 kg/m2 or greater, has doubled 

in over 70 countries in the last 3 decades.(2, 3) Prospective large-scale observational studies have shown 

that BMI above the normal range (overweight, BMI  25.0 kg/m2) is associated with significant disease 

morbidity and increased overall mortality.(4–6) However, most prior studies focus on a single disease or a 

set of related diseases, leaving the overall disease burden associated with obesity unknown.  

Obesity has a strong genetic predilection. It is known that rare genetic variants in MC4R(7) and 

LEP(8) and other genes can strongly influence obesity. However, for the large majority of individuals 

with obesity, their genetic risk stems from the cumulative effect of numerous more common genetic risk 

factors with fairly modest effect sizes.(9, 10) To date, the largest genome-wide association studies 

(GWAS) evaluating the genetic basis of obesity evaluated the relationship between 2.1 million common 

variants and BMI in 300,000 individuals, finding 97 single nucleotide polymorphisms (SNPs) associated 

with BMI and accounting for approximately 2.7% of the variation in BMI.(11)  

Prior studies have suggested that obesity-risk SNPs are associated with ischemic heart 

disease,(12, 13) hypertension,(13) type 2 diabetes,(13) atrial fibrillation,(14) symptomatic 

cholelithiasis,(15) osteoarthritis,(16) and deep venous thrombosis,(17) among others.(18–25) These 

studies are limited by the use of either a single or limited number of genetic polymorphisms associated 

with BMI and evaluation for an association with a single comorbid phenotype. Genome-wide polygenic 

risk scores (PRS) have demonstrated the ability to predict disease occurrence and earlier onset of 

disease.(26) A recent study by Khera et al. has shown that incorporation of 2.1 million common variants 

into a quantitative genome-wide PRS for BMI can identify individuals with genetic risk for obesity 

comparable to that of rare monogenic mutations in MC4R.(10) Further, they also found that those 

individuals with a high PRS were at increased risk for six common cardiometabolic diseases, including 

coronary artery disease, diabetes mellitus, hypertension, congestive heart failure, ischemic stroke, and 
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venous thromboembolism. Here, we aim to extend these prior studies by systematically evaluating the 

association of genetic risk for obesity with diseases in both a genome- and phenome-wide approach.     

We leveraged a large electronic health record (EHR) population to perform a phenome-wide 

association study (PheWAS)(27, 28) to provide insights into patterns of disease associated with BMI. We 

then used genomic risk to predict BMI and obesity in two cohorts, using both known common genetic 

variants associated with obesity(11) and a genome-wide polygenic score (Figure 1).(10) These studies 

demonstrated that genetic risk for obesity is associated with increased risk for almost 200 diseases across 

the phenome, 42% of which were attributable to obesity, accounting for 17% of the total disease burden 

in individuals with obesity.  
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Figure 1. Clinical and Genomic Analysis Flow. Clinical analysis performed with PheWAS using BMI against 

1816 traits. Genomic analysis performed in 2 separate cohorts with PheWAS against a 97-SNP PRS and genome-

wide PRS. BMI distribution in the clinical cohort is demonstrated. Genome-wide PRS distribution and correlation 

with BMI in the eMERGE cohort is demonstrated. 199 disease phenotypes across all disease categories were 

associated with class 3 obesity in the clinical cohort and the genome-wide PRS in the eMERGE and UK Biobank 

cohorts.  

 

Results 

Phenotypes Across BMI Categories in Clinical Cohort 

 We first performed a PheWAS in 736,726 adults (age >18 years) in a clinical cohort 

(Supplemental Table 1). Of these individuals, 434,266 (58.9%) were female and the majority reported 

race as Caucasian (553,368, 75.1%). A median of 5 BMI assessments (IQR 2-13) were available per 

individual with a median BMI of 27.3 kg/m2 (IQR 23.6-32.0). Median BMI was classified into one of 6 

BMI categories for analysis, as defined by the Centers for Disease Control and Prevention (CDC) and the 

World Health Organization (WHO), including underweight (<18.5 kg/m2), normal (18.5-24.9 kg/m2), 

overweight (25.0-29.9 kg/m2), and obesity class 1 (30.0-34.9 kg/m2), class 2 (35.0-39.9 kg/m2), and class 

3 ( ≥40.0 kg/m2).(29) Overweight or obese individuals comprised 65.2% of the clinical cohort population. 

 The PheWAS was performed using separate models with both mean BMI and categorical BMI as 

the predictor using Bonferroni significance thresholds. Mean BMI was associated with risk of 504 

phenotypes in the clinical cohort. Obesity class 3 was associated with risk of 433 clinical phenotypes 

(23.8% of 1816 phenotypes included in the analysis; Figure 2A) across all broad disease categories 

compared to normal BMI; 170 phenotypes also demonstrated positive association with overweight and 

lesser obesity classes (Figure 3). The strongest associations of overweight and obesity classes with 

phenotypes of chronic diseases included essential hypertension (odds ratio [OR] 1.48 [95% CI 1.46-1.50) 

- 4.97 [4.94-5.00], p < 1.0 x 10-300), type 2 diabetes (OR 1.68 [1.65-1.71] - 8.28 [8.25-8.32], p<2.1x10-289), 

obstructive sleep apnea (OR 2.68 [2.62-2.74] - 27.36 [27.30-27.42], p<4.0x10-221), and polycystic ovarian 

disorder (OR 3.07 [2.94-3.19] - 23.18 [23.06-23.29], p<1.1x10-72). Across phenotypes, effect sizes were 
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higher for increasing BMI (Table 1). 59.3% of all billed diagnosis codes in individuals with class 3 

obesity corresponded to a disease associated with BMI.  
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Figure 2. A. Association of Class 3 Obesity with Diseases in PheWAS. B. Association of Obesity 97-SNP PRS 

with Diseases in PheWAS in eMERGE Cohort. C. Association of Genome-wide PRS with Diseases in 

PheWAS in eMERGE Cohort. Blue horizontal line represents p = 0.05. Red horizontal line represents Bonferroni 

significance threshold (p = 5.6 x 10-6) for clinical analysis [A] and false discovery rate significance threshold = 0.05 

for genomic analysis [B-C]). Point direction relates to directionality of odds ratio: upward triangles are associated 

with increased risk for patients while downward triangles are associated with decreased risk. D. Risk Attributable 

to Obesity with Normalization of Obesity Classes 1-3 to Normal BMI. Phenotypes shown are 199 phenotypes 

that were associated with class 3 obesity in the clinical cohort and obesity polygenic risk score in both eMERGE and 

UK biobank cohorts. Example phenotypes are annotated. 
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Table 1. Associations Between BMI Categories and Common Phenotypes a 

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); EF, 

ejection fraction; OR, odds ratio; CI, confidence interval 
a Information shown in the table includes the most significant associations to class 3 obesity (by p-value) with 

exclusion of phenotypes definitive for obesity. For redundant phenotypes, those with strongest OR are shown. 

Reference odds ratio 1.0 represents normal median BMI.  
b Results significant to Bonferroni corrected p-value of p = 5.6 x 10-6 compared to individuals with normal range 

BMI 

 

  

  

Phenotype 

Underweight  

<18.5 kg/m2 

OR (95% CI) 

Overweight 

25.0-29.9 kg/m2 

OR (95% CI) 

Obesity Class 1 

30.0-34.9 kg/m2 

OR (95% CI) 

Obesity Class 2 

35.0-39.9 kg/m2 

OR (95% CI) 

Obesity Class 3 

40.0 kg/m2 

OR (95% CI) 

Type 2 Diabetes 

Mellitus 
0.81 (0.71-0.91) 1.68 (1.65-1.71) b 3.06 (3.04-3.10) b 5.24 (5.21-5.27) b 8.28 (8.25-8.32) b 

Polycystic Ovaries 0.45 (-0.05-0.95) 3.07 (2.94-3.19) b 6.44 (6.32-6.56) b 13.36 (13.24-13.48) b 23.18 (23.06-23.29) b 

Vitamin 

Deficiency 
1.26 (1.15-1.37) 1.09 (1.05-1.13) b 1.33 (1.29-1.37) b 1.76 (1.71-1.81) b 2.65 (2.61-2.70) b 

Hyperlipidemia 0.49 (0.40-0.57) b 1.64 (1.62-1.67) b 2.17 (2.15-2.19) b 2.66 (2.63-2.69) b 3.06 (3.03-3.09) b 

Gout 0.60 (0.28-0.92) 1.80 (1.73-1.97) b 2.84 (2.77-2.91) b 4.01 (3.92-4.09) b 5.38 (5.30-5.47) b 

Obstructive Sleep 

Apnea 
0.68 (0.41-0.95) 2.67 (2.62-2.74) b 6.00 (5.94-6.06) b 12.29 (12.23-12.36) b 27.36 (27.30-27.42) b 

Essential 

Hypertension 
0.89 (0.83-0.95) 1.48 (1.46-1.50) b 2.23 (2.21-2.25) b 3.24 (3.22-3.26) b 4.97 (4.94-5.00) b 

Ischemic Heart 

Disease 
1.05 (0.97-1.13) 1.24 (1.21-1.26) b 1.60 (1.57-1.63) b 1.95 (1.91-1.98) b 2.19 (2.15-2.23) b 

Heart Failure with 

Preserved EF 
1.17 (0.93-1.41) 1.35 (1.27-1.43) b 2.40 (2.32-2.49) b 4.52 (4.44-4.62) b 9.05 (8.95-9.14) b 

GERD 1.25 (1.18-1.33) b 1.23 (1.20-1.26) b 1.43 (1.40-1.45) b 1.67 (1.63-1.70) b 2.05 (2.02-2.09) b 

Osteoarthrosis 0.58 (0.48-0.69) b 1.53 (1.50-1.56) b 2.10 (2.07-2.13) b 2.71 (2.67-2.74) b 3.71 (3.67-3.75) b 

Asthma 1.27 (1.17-1.36) b 1.11 (1.08-1.15) b 1.33 (1.29-1.37) b 1.64 (1.59-1.69) b 2.29 (2.24-2.33) b 

Nonalcoholic 

Liver Disease 
1.04 (0.87-1.20) 1.27 (1.22-1.32) b 1.73 (1.68-1.79) b 2.44 (2.37-2.50) b 3.23 (3.18-3.30) b 

Atrial Fibrillation 1.23 (1.13-1.33) 1.08 (1.04-1.11) 1.33 (1.29-1.36) b 1.67 (1.62-1.72) b 2.46 (2.41-2.51) b 

Superficial 

Cellulitis/Abscess 
1.18 (1.08-1.28) 1.00 (0.97-1.04) 1.19 (1.15-1.23) b 1.52 (1.47-1.57) b 2.14 (2.10-2.19) b 
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Figure 3. Trends of Odds Ratios in Phenotypes Significantly Associated with Class 3 Obesity in PheWAS. All 

phenotypes with significance in class 3 obesity are visualized (433 phenotypes with OR >1.0). Gray represents non-

significant findings. Increasing odds ratios are seen with higher BMI for many phenotypes. 

 

To assess the robustness of the clinical associations with obesity, we performed a tipping points 

analysis.(30) We found that 57-82% of all obesity PheWAS associations would still be present assuming 

presence of a hypothetical unmeasured binary confounder with OR=2 (Supplemental Figure 1). 

 

Genetic Risk Score for Obesity  

 For the genomic analysis, we used 2 separate cohorts (Supplemental Table 1). The first consisted 

of 65,174 individuals from 12 institutions within the Electronic Medical Records and Genomics 

(eMERGE) network (Supplemental Table 2). The second cohort consisted of 405,532 participants within 
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the UK Biobank. Overweight or obese individuals comprised 67.9% of the eMERGE cohort and 66.7% of 

the UK Biobank. A majority of both cohorts were of European ancestry (81.0% of eMERGE and 96.3% 

of the UK Biobank).  

 To evaluate the difference using SNPs known to be associated with BMI compared to a genome-

wide association score, we performed the PheWAS analyses using both a limited PRS of 97 SNPs 

(Supplemental Table 3) and a genome-wide PRS of 2.1 million SNPs in both of the genomic cohorts 

(Figure 2B-C, Supplemental Figure 2-3). In the eMERGE cohort, the 97-SNP PRS explained 1.92% [95% 

CI 1.67-2.17] of the variance in mean BMI (p<2.0x10-16) (Supplemental Figure 4A). The genome-wide 

PRS explained 9.51% [9.01-10.11] of the variance in mean BMI (p<2.0x10-16) (Supplemental Figure 4B). 

Pearson correlation coefficient also showed a much stronger correlation between observed BMI and the 

genome-wide PRS (0.26 [95% CI 0.25-0.27]) compared to the 97-SNP PRS (0.11 [95% CI 0.10-0.12]).   

 In the eMERGE cohort, the 97-SNP obesity PRS was significantly associated with 161 (37.2 %) 

of the phenotypes showing association with class 3 obesity in the clinical cohort (Supplemental Table 4) 

with OR demonstrating positive direction of effect (i.e., risk with increasing BMI). Excluding phenotypes 

definitive for obesity (e.g., bariatric surgery, morbid obesity, and localized adiposity), some of the most 

significant associations were with type 2 diabetes (OR 1.99 [95% CI 1.87-2.11], p=7.35x10-32), sleep 

apnea (OR 2.24 [2.10-2.38], p=2.59x10-31), and hypertension (OR 1.82 [1.70-1.94],  p=1.46x10-23). Some 

of the strongest causal effect sizes were seen for panniculitis (OR 4.30 [3.73-4.87], p=5.3x10-7), non-

healing surgical wounds (OR 3.16 [2.71-3.61], p=9.7x10-7), and polycystic ovaries (OR 2.7 [2.17-3.23], 

p=2.4x10-4). Only 8 phenotypes positively associated with the obesity 97-SNP PRS were not clinically 

associated with class 3 obesity (Supplemental Table 5).  

 In the UK Biobank cohort, the 97-SNP obesity PRS was positively associated with 124 (28.6 %) 

of the phenotypes showing association with class 3 obesity in the clinical cohort. We replicated 77 of the 

associations with both class 3 obesity and the 97-SNP obesity PRS in the eMERGE cohort using the UK 

Biobank cohort (Supplemental Table 6). 
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 The PheWAS analysis performed in the eMERGE cohort utilizing the genome-wide PRS (Figure 

2C) showed a positive association with 296 (68.4%) of the phenotypes associated with class 3 obesity in 

the clinical cohort (Supplemental Table 7, replicating 135 more phenotype associations than the PRS with 

only 97 SNPs. PheWAS using the genome-wide PRS in the UK Biobank (Supplemental Figure 3) 

replicated 255 of the phenotype associations seen in class 3 obesity, replicating 131 more phenotypes that 

then 97-SNP PRS. 

 There were 199 phenotype associations replicated in the clinical data set and both genomic data 

sets using the genome-wide PRS (Supplemental Table 8) compared to 77 phenotypes replicated in all 3 

cohorts using the 97-SNP PRS. Disease associations with obesity were replicated in all data sets across all 

predefined PheWAS disease classes: infections (bacterial infection, septicemia), neoplastic (uterine and 

renal cancer), endocrine (diabetes, hypothyroidism), hematologic (anemia), psychiatric (major depressive 

disorder), cardiovascular (hypertension, ischemic heart disease, chronic venous insufficiency), respiratory 

(sleep apnea, pulmonary hypertension), digestive (cholelithiasis, esophagitis, gastroesophageal reflux, 

liver disease), urologic (renal failure), rheumatologic (rheumatoid arthritis, gout), musculoskeletal 

(osteoarthritis, lumbar disc displacement), and dermatologic (psoriasis, hidradenitis).  

 Measured effect sizes for the genomic associations strongly correlated with observed BMI effect 

sizes in the clinical cohort (p <2.2x10-16, R2 = 0.54; Figure 4, Supplemental Table 9). 
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Figure 4. Clinically observed versus Genome-wide Obesity PRS PheWAS Causal Effect Sizes. Each dot 

represents a phenotype significantly associated with both class 3 obesity in clinical cohort and calculated genome-

wide obesity polygenic risk score for obesity in eMERGE and UK biobank cohorts. 199 total phenotypes. Red line 

represents linear regression. Adjusted R2 = 0.544. 

 

Population Attributable Risk Due to Elevated BMI 

 For the 199 phenotypes associated with obesity in genetic association analysis, normalization of 

BMI for obese individuals predicted there were 607,430 cases in the clinical cohort (41.5% of all 

occurrences of the 199 significant phenotypes and 17.1% of all phenotypes in obese individuals) that were 

attributable to obesity (Supplemental Figure 5). The proportions of disease attributable to obesity in the in 

the clinical cohort for the 199 phenotypes associated with both clinical and genetic risk for obesity is 

shown in Figure 2D. There were 87.4% (17,624 cases) of sleep apnea, 71.7% (25,511 cases) of type 2 

diabetes, 70.2% (3,349 cases) of gout, and 20.9% (3,332 cases) of renal failure predicted to be attributable 

to obesity. Our analysis suggested over half of the cases for 47 different diagnoses were attributable to 

obesity (Supplemental Table 10). 

 

Discussion 

Through a combined genome- and phenome- wide approach in both clinical and genomic cohorts, 

this study confirms that obesity is associated with a considerable burden of disease across all disease 

classes. Nearly one-quarter of disease phenotypes, across all major disease domains, were associated with 



 

 

 

 

 

 

 

161 

class 3 obesity. Almost 200 phenotypes were associated with both class 3 obesity and genetic risk for 

obesity in 2 separate cohorts. The phenotypes associated with class 2 and 3 obesity resulted in over 50% 

of billed diagnosis codes in those individuals. Our analysis suggested that at least 17% of all phenotypes 

in the obese population where attributable to obesity.  

The findings from this study are further supported by prior reports in which genetic risk for 

obesity was associated with other comorbidities.(12–18, 31–34) For example, Lyall et al. described 

similar effect estimates of obesity on coronary heart disease, hypertension, and diabetes using an obesity 

PRS comprised of 93 of the 97 SNPs used in construction of the PRS for the current study.(13) Zhu et al. 

also demonstrated the association of a PRS for BMI with disease several diseases including a summation 

of disease count; however, this study limited the PRS calculation to SNPs meeting GWAS 

significance.(35) The replication of findings in prior studies further validates the phenome-wide approach 

coupled with polygenic risk scores in this study. The highly stringent criteria for our final association 

results, which required significance with class 3 obesity in a clinical cohort along with the obesity PRS in 

two separate genotyped cohorts likely resulted in exclusion of some phenotypes with smaller effect sizes 

for association with obesity. For example, Lindstrom et al. demonstrated an association of genetic risk for 

obesity and venous thromboembolism(17), which we identified in the clinical and eMERGE cohorts, but 

not the UK Biobank cohort, possibly as a result of the differing demographics of the UK Biobank with 

fewer individuals with class 2 and 3 obesity.  

The genome-wide approach in this study demonstrated 2.5x the power to detect significant 

associations compared to the limited PRS. Thus, despite the conservative study methods requiring 3 

cohorts and family-wise significance thresholds, the use of a phenome-wide approach coupled to a 

genome-wide PRS allowed this study to identify novel associations of genetically-determined BMI with 

diseases, including increased risk of renal failure, urinary calculus, bundle branch block, cardiomyopathy, 

venous insufficiency, gastroesophageal reflux, spinal stenosis, tendon rupture, and rheumatoid arthritis. 
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Other interesting associations with little previous data were also supported by our study including 

asthma(36), cholelithiasis(15), postoperative complications, and major depression.  

Resolution of obesity in some individuals can reduce disease burden for specific phenotypes. It is 

well-described that bariatric surgery can induce rapid reduction and cure of diabetes, hyperlipidemia, 

hypertension, and obstructive sleep apnea.(38) However, in individuals with obesity, many of the 

associated phenotypes will have already developed and are unlikely to be cured with weight-loss alone, 

and our analysis does not elucidate which diseases may regress with weight loss. For example, obesity 

was strongly associated with end-organ dysfunction, including cardiac, renal, or liver failure, evidence of 

long-standing effects from obesity. These data suggest that treatment of obesity may be a crucial 

component to ameliorate disease progression for a broader range of diseases than previously considered. 

The breadth of disease associated with obesity substantiates the principle that primary obesity prevention 

could have an enormous impact on healthcare, surpassing that of medical or surgical weight-loss alone.  

This study has limitations. The method relies on BMI and billing codes recorded in the EHR; 

however, this measure may not fully capture the true causal exposure for some phenotypes (e.g., lifetime 

exposure of obesity). For some individuals, their entrance into a tertiary care health system occurs 

following a change in their health state that may also have affected his or her presenting BMI. As we 

included all recorded BMI values, we were unable to assess the temporal relationship between 

observations and BMI. As for the phenotypes, for the clinical and eMERGE analyses, ICD10 codes were 

not yet available for use; however, they were minimally used at the time of this data collection. ICD10 

codes were however used in the phenotype mapping in the analysis using data from the UK Biobank. The 

phenotype coding system also can have a significant amount of overlap as it is a hierarchical structure; 

however, we were able to confirm that at least 95 of the phenotype disease associations were clinically 

unique. Although in the eMERGE cohort 17% of individuals were of African ancestry, the majority of the 

3 cohorts primarily consisted individuals of European descent. It has been well-established that the 

predictive power of many PRSs are improved in European populations, and as such our PRS may 
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underestimate the associations of phenotypes with genetic risk for obesity in non-European 

populations.(39) Nonlinearity of some associations may also bias towards the null hypothesis, limited the 

ability to identity those associations with elevated BMI or high genomic risk for elevated BMI.  

This study is among the first to demonstrate the significant role that genetic risk for obesity plays 

in a systematic spectrum of diseases and the overall healthcare burden imposed by obesity. This 

comprehensive evidence on disease risk emphasizes that population-level reduction in BMI with efforts 

toward prevention could have a major impact on the incidence of disease globally. Future studies should 

assess the influence that environmental modifications, such as diet and exercise starting at a young age, in 

the setting of strong polygenic risk for obesity could have on the development of subsequent 

comorbidities. 

 

Methods 

Clinical cohort 

We conducted a retrospective observational study using the Vanderbilt University Medical Center 

(VUMC) Synthetic Derivative, a de-identified version of over 3 million VUMC patient health records 

dating back several decades, depending on data type.(40, 41) The primary site study population consisted 

of all adult individuals (≥18 years of age) with at least one documented BMI. The study protocol was 

designated as non-human subject research by the Institutional Review Board.  

 

Body Mass Index (BMI) Extraction and Categorization 

BMI was calculated as weight in kilograms divided by height in meters squared, where both 

weight and height were measured at a single encounter. All measured BMI values were extracted for each 

adult individual (9,573,624 BMI observations), with BMI data obtained during pregnancy (649,442 

observations) or with clinically implausible values (less than 10 kg/m2 or greater than 70 kg/m2, 6316 

observations) excluded. The median BMI for each individual was classified into one of 6 BMI categories, 
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as defined by the Centers for Disease Control and Prevention (CDC) and the World Health Organization 

(WHO), including underweight (<18.5 kg/m2), normal (18.5-24.9 kg/m2), overweight (25.0-29.9 kg/m2), 

and obesity class 1 (30.0-34.9 kg/m2), class 2 (35.0-39.9 kg/m2), and class 3 ( ≥40.0 kg/m2).(29) 

 

Clinical Cohort BMI Phenome-wide Association Study 

All distinct International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-

9-CM) codes from each individuals’ record were captured and translated into PheWAS codes (phecodes), 

a hierarchical classification system for ICD-9-CM codes.(27, 42) A minimum of 2 instances of a 

matching ICD-9 code on separate days was required to be translated to a phecode using PheWAS code 

map version 1.2. For all PheWAS analyses in this study, as many phenotypes occur rarely, we analyzed 

only those that occurred in a minimum of 20 cases.  

PheWAS was performed using logistic regression models adjusted for age at last BMI recorded, 

sex, and self-reported race to determine the association of BMI categories with phenotypes. Using 

categorical BMI, effect sizes are determined by comparison to those individuals with BMI in the normal 

range. We also used mean BMI as the predictor in the PheWAS model to calculate effect sizes per 

standard deviation (SD)-difference in BMI. All PheWAS analyses were performed using the PheWAS 

package for R statistical software, version 3.4.3(44) and using PheWAS code map version 1.2.(43) Two-

sided p-value <5.6x10-6 was considered as statistically significant using Bonferroni correction for 

multiple comparisons.  

 

Sensitivity Analysis for Unmeasured Confounders  

As a sensitivity analysis, a tipping point analysis(30) was performed to assess the impact of 

unmeasured confounders on the conclusions. For diseases in which abnormal BMI was statistically 

significant, we calculated the minimum effect size of a hypothetical binary unmeasured confounder such 
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that the upper (if OR<1) or lower (if OR>1) bound of the (1-5.6x10-6) x100% confidence interval [CI] for 

BMI would cross 1 for various conditions.     

 

Genomic Cohort Analyses 

 Data for the genomic analyses were derived from two separate cohorts, the first being the 

eMERGE Consortium, a national network organized and funded by the National Human Genome 

Research Institute (NHGRI).(45) eMERGE combines DNA biorepositories with EHRs for large scale, 

high-throughput genetic research. Both the genomic and phenomic data (ICD9 diagnosis codes and 

demographics) were coalesced into a central repository. Of the eMERGE cohort, 19,590 (30.1%) 

individuals were from Vanderbilt University Medical Center and also likely contributed data to the 

clinical cohort, although deidentification limits the ability to confirm overlap. The second genomic cohort 

was derived from a maximal subset of unrelated UK Biobank participants with both genomic and 

phenomic data available. 

 

Genotyping and Imputation in the eMERGE Mendelian Randomization Cohort 

 The eMERGE population in this study consisted of individuals from institutions contributing data 

to the eMERGE network phases I-III (Supplemental Table 1). Inclusion criteria were age ≥18 years with 

extant genome-wide genotyping data and ICD-9-CM codes. The eMERGE Consortium has unified 

genetic results from 12 different sites across 78 genotype array batches through imputation using the 

Michigan Imputation Server (46) and Haplotype Reference Consortium (HRC1.1).(47) This pipeline has 

resulted in an imputed genome wide set of approximately 40 million single nucleotide variant marker 

allele doses down to 0.1% minor allele frequency (MAF). Genotype array files were referenced to build 

37 genome position using the forward genome strand. Quality control included filtering for sample 

missingness <2.0% and SNP missingness <2.0% in the preprocessing of the data before imputation. For 

duplicate samples on differing arrays, the sample with the most genotyped variants for that subject was 
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selected for the merged dataset. Principal component analysis (PCA) using the first 10 principal 

components was performed to determine genetic ancestry using PLINK(48) with variants having >5% 

MAF. Single nucleotide variants with a missing rate >10% or not meeting the linkage disequilibrium 

threshold r2 < 0.7 were excluded in PCAs. We performed identity by descent (IBD) analysis to identify 

related individuals. One individual from suspected monozygotic twins or duplicates were excluded 

randomly. Subject relatedness was determined using probability of zero alleles IBD (Z0) < 0.83 and the 

probability of having one allele IBD (Z1) > 0.10 to capture first through third-degree relatives. The oldest 

family member from each family was included in the cohort analysis. Minimum mean imputation r2 was 

0.83 with a mean r2 of 0.95 across imputed SNPs.  

 

UK Biobank sample selection 

A maximal subset of unrelated UK Biobank participants after application of quality control was 

selected as detailed in Bycroft, et al, Supplemental section 3.3.2.(49) Individuals in this subset where 

chosen to have no other related individuals within 3 degrees within the subset, to have genotyping 

missingness < 2%, to have no mismatch between genetically inferred and reported sex, and to not be 

outliers for heterozygosity or genotype missingness. We additionally removed individuals without a BMI 

measurement at the time of enrollment, as well as those who revoked consent after enrollment. This left 

405,432 UK Biobank participants for analysis. 

 

Construction of Obesity Polygenic Risk Scores (PRS) 

The limited PRS in each genomic cohort was calculated from 97 SNPs (Supplemental Table 3) 

associated with BMI at genome-wide significance in a prior meta-analysis of genome-wide association 

studies conducted by the Genetic Investigation of ANthropometric Traits (GIANT) Consortium.(11) The 

97-SNP polygenic score was computed for each participant by multiplying the effect estimate at each 

allele by the genetic dosage of the effect allele, summing the values across all SNPs for each participant.  
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The genome-wide PRS was computed for each participant with the same procedure, using the 

best performing LDPred-adjusted values—from a model built assuming that 3% of variants are causal, 

and constructed with 2,100,302 variants—as described previously.(10) In this approach, each variant’s 

posterior mean effect is calculated based on the prior effect estimate and a shrinkage based on the 

variant’s correlation structure with other variants from the reference population.(50) As all sets were 

imputed to the same reference standard, we were able to use all SNPs for calculation of the genome-wide 

PRS. Pearson correlation was used to compare the correlation between the PRS and observed BMI. The 

BMI variance explained (adjusted R2) by the associated SNPs was calculated with individual-level 

genotype and phenotype data using linear regression models adjusted for site, age, sex, and the first 10 

principal components.  

 

eMERGE PheWAS 

To calculate effect estimates for genetically-determined BMI on disease phenotypes, PheWAS 

was performed as described above using logistic regression models, adjusted for site, age, sex, and the 

first 10 principal components. For phenotypes already passing a Bonferroni significance threshold for 

association with class 3 obesity in the primary cohort, a false discovery rate (FDR) significance threshold 

<0.05 was used to assess for replication of obesity associations with the genomic score.(44) Effect 

estimates for the 97-SNP score are reported per standard deviation (SD) difference in BMI (derived from 

beta estimates and SD of 4.8 kg/m2 in a prior GIANT cohort of 449,472 individuals).  

The genome-wide PRS was scaled to a mean of 0 and SD of 1 prior to PheWAS analysis. Effect 

estimates were compared using correlation coefficient analysis to determine the similarity between 

clinical and genomic effect sizes.  
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UK Biobank PheWAS 

ICD10 codes for hospitalizations were reported by the UK Biobank. These were translated into 

phecodes using mappings described previously.(51) For each phecode, a logistic regression model was 

computed, predicting the presence or absence of a phecode as a function of the polygenic score, sex, age 

at enrollment, the UK Biobank genotyping array, and the first ten principal components of ancestry. For 

phenotypes already passing a Bonferroni significance threshold for association with class 3 obesity in the 

primary cohort as well as showing significant association in the eMERGE genomic cohort, an FDR 

significance threshold <0.05 was used to assess for replication of obesity associations with the risk 

score.(44) These models were computed separately for the 97-SNP score and the genome-wide polygenic 

score. PRS was scaled to a mean of 0 and SD of 1 prior to PheWAS analysis. Effect estimates between 

cohorts were compared using Pearson correlation analysis.  

 

Prediction of Burden of Disease Attributable to Extremes of BMI 

To estimate the disease phenotypes attributable to BMI in the clinical cohort, for phenotypes 

showing association to obesity both clinically and genetically, we performed logistic regression, adjusted 

for age, sex, self-reported race, and BMI category, and then normalized BMI for the individuals with class 

1-3 obesity by changing their BMI category to be normal and calculating the predicted probability of 

events. The positive differences between the number of phenotypes in the clinical cohort and the number 

of predicted events after normalizing the BMI were reported as the population risk attributable to obesity.  
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Supplemental Table 1. Demographics for Clinical and Genotyped (eMERGE and UK Biobank) 

Cohorts 
 

Clinical Variable 
Clinical cohort  

(n = 736,726) 

eMERGE cohort  

(n = 65,174) 

UK Biobank cohort  

(n = 405,432) 

Age, median (IQR), years 49.0 (33.0 – 63.0) 67.0 (51.0 – 79.0) 58.2 (50.5 – 63.6) 

Sex, No. (%)    

  Female 434,266 (58.9) 35,997 (55.2) 218,818 (54.0) 

  Unknown 57 (0.1) 0 0 

Race (Vanderbilt) or Genetic 

Ancestry (eMERGE), No. (%) 
   

  White/European ancestry 553,368 (75.1) 52,760 (81.0) 390,459 (96.3) 

  Black/African ancestry 70,409 (9.6) 11,323 (17.4) 3,018 (0.7) 

  Asian 11,998 (1.6) 1,091 (1.7) 8,169 (2.0) 

  Other 18,332 (2.5) 0 3,786 (0.9) 

  Unknown 82,619 (11.2) 0 0 

BMI (kg/m2), median (IQR) 27.3 (23.6 – 32.0) 27.6 (23.9 –  32.1) 26.7 (24.1 – 29.9) 

BMI (kg/m2), mean (SD) 28.5 (7.0) 28.6 (7.0) 27.4 (4.8) 

BMI category, No. (%)    

  Underweight (<18.5) 15,509 (2.1) 1,961 (3.7) 2,091 (0.5) 

  Normal (18.5 – 24.9) 240,676 (32.7) 14,926 (28.4) 132,710 (32.7)  

  Overweight (25.0 – 29.9) 229,630 (31.2) 17,088 (32.5) 172.314 (42.5) 

  Obesity Class 1 (30.0 – 34.9) 135,488 (18.4) 10,425 (19.8) 70,662 (17.4) 

  Obesity Class 2 (35.0 – 39.9) 64,539 (8.8) 4,802 (9.1) 19,961 (4.9) 

  Obesity Class 3 (40.0) 50,873 (6.9) 3,407 (6.5) 7,694 (1.9) 

  No BMI reported 0 12,565 (19.3) 0 

Abbreviations: BMI, body mass index; IQR, interquartile range; SD, standard deviation 
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Supplemental Table 2.  Sites and Number of Unique Individuals Contributing Adult Data for 

Genotyped eMERGE Cohort 
 

Site Number of unique subjects,  

n (%) 

(Total n = 65,174) 

Boston Children’s Hospital 252 (0.4%) 

Children’s Hospital of Philadelphia 4,649 (7.1%)  

Cincinnati Children’s Hospital Medical Center 1,331 (2.0%) 

Columbia University 1,680 (2.6%) 

Geisinger 2,772 (4.3%) 

Harvard University 9,689 (14.9%) 

Kaiser Permanente Washington with the University of 

Washington and the Fred Hutchinson Cancer Research 

Center 

3,197 (4.9%) 

Marshfield Clinic 3,683 (5.7%) 

Mayo Clinic 8,199 (12.6%) 

Mount Sinai 5,701 (8.7%) 

Northwestern University 4,431 (6.8%) 

Vanderbilt University 19,590 (30.1%) 
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Supplemental Table 3.  Single Nucleotide Polymorphisms for Obesity 97-SNP Polygenic Risk Score 

Calculation a 

 

SNP Chrom Pos1 Pos2 Gene Effect 

Allele 

Beta b 

rs1558902 16 53803574 53803574 FTO A 0.0809 

rs6567160 18 57829135 57829135 MC4R C 0.0562 

rs13021737 2 632348 632348 TMEM18 G 0.0604 

rs10938397 4 45182527 45182527 GNPDA2, GABRG1 G 0.0399 

rs543874 1 177889480 177889480 SEC16B G 0.0497 

rs2207139 6 50845490 50845490 TFAP2B G 0.0448 

rs11030104 11 27684517 27684517 BDAF A 0.0416 

rs3101336 1 72751185 72751185 NEGR1 C 0.0319 

rs7138803 12 50247468 50247468 BCDIN3D; FAIM2 A 0.032 

rs10182181 2 25150296 25150296 ADCY3; POMC; NCOA1; 

SH2B1; ABOBR 

G 0.0309 

rs3888190 16 28889486 28889486 ATXN2L; SBK1; 

SULT1A2; TUFM 

A 0.0311 

rs1516725 3 185824004 185824004 E7V5 C 0.0448 

rs12446632 16 19935389 19935389 GPRC5B; IQCK G 0.0399 

rs2287019 19 46202172 46202172 QPCTL; GIPR C 0.0354 

rs16951275 15 68077168 68077168 M4P2K5; LBXCOR1 T 0.0304 

rs3817334 11 47650993 47650993 MTCH2; C1QTNF4; SPI1; 

CELF1 

T 0.0256 

rs2112347 5 75015242 75015242 PCO5; HMGCR; 

COL4A3BP 

T 0.0254 

rs12566985 1 75002193 75002193 FPGT-TNNI3K G 0.0237 

rs3810291 19 47569003 47569003 ZC3H4 A 0.0285 

rs7141420 14 79899454 79899454 NRXN3 T 0.0227 

rs13078960 3 85807590 85807590 CADM2 G 0.029 

rs10968576 9 28414339 28414339 LINGO2 G 0.0247 

rs17024393 1 110154688 110154688 GNAT2; AMPD2 C 0.0611 

rs657452 1 49589847 49589847 AGBL4 A 0.0227 

rs12429545 13 54102206 54102206 OLFM4 A 0.0324 

rs12286929 11 115022404 115022404 CADM1 G 0.0211 

rs13107325 4 103188709 103188709 SLC39A8 T 0.0472 

rs11165643 1 96924097 96924097 PTBP2 T 0.0221 

rs7903146 10 114758349 114758349 TCF7L2 C 0.0235 

rs10132280 14 25928179 25928179 STXBP6 C 0.0221 

rs17405819 8 76806584 76806584 HNF4G T 0.0221 

rs6091540 20 51087862 51087862 ZFP64 C 0.0185 

rs1016287 2 59305625 59305625 LINC01122 T 0.0228 

rs4256980 11 8673939 8673939 TRIM66; TUB G 0.0205 

rs17094222 10 102395440 102395440 HIF1AN C 0.0249 
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rs12401738 1 78446761 78446761 FUBP1; USP33 A 0.0202 

rs7599312 2 213413231 213413231 ERBB4 G 0.0214 

rs2365389 3 61236462 61236462 FHIT C 0.0195 

rs205262 6 34563164 34563164 C6orf106; SNRPC G 0.021 

rs2820292 1 201784287 201784287 NAV1 C 0.0181 

rs12885454 14 29736838 29736838 PRKD1 C 0.0204 

rs9641123 7 93197732 93197732 CALCR; has-miR-653 C 0.0193 

rs12016871 13 28017782 28017782 MTIF3; GTF3A T 0.0298 

rs16851483 3 141275436 141275436 RASA2 T 0.0478 

rs1167827 7 75163169 75163169 HIP1; PMS2L3; PMS2P5; 

WBSCR16 

G 0.02 

rs758747 16 3627358 3627358 NLRC3 T 0.0225 

rs1928295 9 120378483 120378483 TLR4 T 0.0182 

rs9925964 16 31129895 31129895 KAT8; ZNF646; VKORC1; 

ZNF668; STX1B; FBXL19 

A 0.0198 

rs11126666 2 26928811 26928811 KCNK3 A 0.0201 

rs2650492 16 28333411 28333411 SBK1; APOBR A 0.0205 

rs6804842 3 25106437 25106437 RARB G 0.0183 

rs12940622 17 78615571 78615571 RPTOR G 0.0183 

rs7164727 15 73093991 73093991 LOC100287559; BBS4 T 0.0189 

rs11847697 14 30515112 30515112 PRKD1 T 0.0374 

rs4740619 9 15634326 15634326 C9or93 T 0.017 

rs492400 2 219349752 219349752 PLCD4; CYP27A1; USP37; 

TTLL4; STK36; ZNF142; 

RQCD1 

C 0.015 

rs13191362 6 163033350 163033350 PARK2 A 0.0285 

rs3736485 15 51748610 51748610 SCG3; DMXL2 A 0.016 

rs17001654 4 77129568 77129568 NUP54; SCARB2 G 0.0304 

rs11191560 10 104869038 104869038 NT5C2; CYP17A1; SFXN2 C 0.031 

rs2080454 16 49062590 49062590 CLBLN1 C 0.0171 

rs7715256 5 153537893 153537893 GALNT10 G 0.0168 

rs2176040 2 227092802 227092802 LOC646736; IRS1 A 0.0147 

rs1528435 2 181550962 181550962 UBE2E3 T 0.0175 

rs2075650 19 45395619 45395619 TOMM40; APO3; APOC1 A 0.0256 

rs1000940 17 5283252 5283252 RABEP1 G 0.0184 

rs2033529 6 40348653 40348653 TDRG1; LRFN2 G 0.0183 

rs11583200 1 50559820 50559820 ELAVL4 C 0.0174 

rs7239883 18 40147671 40147671 LOC284260; RIT2 G 0.0152 

rs2836754 21 40291740 40291740 ETS2 C 0.0169 

rs9400239 6 108977663 108977663 FOXO3; HSS00296402 C 0.0173 

rs10733682 9 129460914 129460914 LMX1B A 0.0188 

rs11688816 2 63053048 63053048 EHBP1 G 0.0148 

rs11057405 12 122781897 122781897 CLIP1 G 0.0304 
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rs9914578 17 2005136 2005136 SMG6; N29617 G 0.0201 

rs977747 1 47684677 47684677 TAL1 T 0.0168 

rs2121279 2 143043285 143043285 LRP1B T 0.0242 

rs29941 19 34309532 34309532 KCTD15 G 0.0177 

rs11727676 4 145659064 145659064 HHIP T 0.0365 

rs3849570 3 81792112 81792112 GBE1 A 0.0183 

rs9374842 6 120185665 120185665 LOC285762 T 0.0196 

rs6477694 9 111932342 111932342 EPB41L4B; C9orf4 C 0.0169 

rs4787491 16 30015337 30015337 MAPK3; KCTD13; 

INO80E; TAOK2; YPEL3; 

DOC2A; FAM57B 

G 0.0151 

rs1441264 13 79580919 79580919 MIR548A2 A 0.0172 

rs7899106 10 87410904 87410904 GRID1 G 0.0379 

rs2176598 11 43864278 43864278 HSD17B12 T 0.0185 

rs2245368 7 76608143 76608143 PMS2L11 C 0.0288 

rs17203016 2 208255518 208255518 CREB1; KLF7 G 0.0211 

rs17724992 19 18454825 18454825 GDF15; PGPEP1 A 0.0196 

rs7243357 18 56883319 56883319 GRP T 0.0219 

rs16907751 8 81375457 81375457 ZBRB10 C 0.0326 

rs1808579 18 21104888 21104888 NPC1; C18orf8 C 0.016 

rs13201877 6 137675541 137675541 IFNGR1; OLIG3 G 0.0236 

rs2033732 8 85079709 85079709 RALYL C 0.0176 

rs9540493 13 66205704 66205704 MIR548X2; PCDH9 A 0.0182 

rs1460676 2 164567689 164567689 FIGN C 0.0209 

rs6465468 7 95169514 95169514 ASB4 T 0.016 

Abbreviations: SNP, single nucleotide polymorphism 
a Information shown in the table includes significant associations in prior GWAS meta-analysis at 5 x10-8 (Locke et 

al, Nature, 2015). 
b Beta-coefficients are derived from the all-ancestry meta-analysis.  
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Supplemental Table 4.  Phenotype Associations of 97-SNP PRS for Obesity in eMERGE that 

Replicate Associations with Class 3 Obesity a 

 

Phenotype Cases Controls Beta SE OR p-value 

Morbid obesity 7275 57899 1.80 0.08 6.08 5.67x10-112 

Obesity 16524 48650 1.25 0.06 3.48 1.51x10-102 

Overweight, obesity and other 

hyperalimentation 
21061 44113 1.10 0.05 3.02 6.16x10-93 

Bariatric surgery 1892 63282 2.06 0.15 7.85 9.47x10-45 

Type 2 diabetes 17364 47810 0.69 0.06 1.99 7.35x10-32 

Sleep apnea 9819 55355 0.81 0.07 2.24 2.59x10-31 

Diabetes mellitus 18620 46554 0.67 0.06 1.95 6.01x10-31 

Eating disorder 1465 63709 1.86 0.17 6.44 3.32x10-29 

Hypertension 39206 25968 0.60 0.06 1.82 1.46x10-23 

Obstructive sleep apnea 7599 57575 0.76 0.08 2.13 9.66x10-23 

Essential hypertension 38654 26520 0.58 0.06 1.79 1.40x10-22 

Gastrointestinal complications 2981 62193 1.00 0.12 2.72 1.51x10-17 

Other chronic nonalcoholic liver disease 5029 60145 0.77 0.09 2.17 5.32x10-17 

Chronic liver disease and cirrhosis 5471 59703 0.74 0.09 2.10 5.96x10-17 

Insulin pump user 4489 60685 0.77 0.10 2.15 1.62x10-14 

Edema 13670 51504 0.44 0.06 1.56 2.02x10-12 

Type 1 diabetes 4985 60189 0.64 0.09 1.90 1.07x10-11 

Type 2 diabetes with neurological 

manifestations 
4352 60822 0.67 0.10 1.96 3.62x10-11 

Localized adiposity 642 64532 1.63 0.25 5.12 4.54x10-11 

Other disorders of intestine 7062 58112 0.51 0.08 1.67 8.76x10-11 

Acute renal failure 9186 55988 0.47 0.07 1.61 1.20x10-10 

Osteoarthrosis 22861 42313 0.37 0.06 1.45 1.68x10-10 

Osteoarthrosis NOS 18362 46812 0.37 0.06 1.45 6.23x10-10 

Respiratory failure, insufficiency, arrest 6684 58490 0.49 0.08 1.63 3.04x10-09 

Osteoarthrosis, localized, primary 6124 59050 0.51 0.09 1.66 3.89x10-09 

Renal failure 15129 50045 0.36 0.06 1.43 6.86x10-09 

Shortness of breath 19815 45359 0.32 0.06 1.38 9.51x10-9 

Polyneuropathy in diabetes 3597 61577 0.63 0.11 1.87 1.14x10-8 

Encounter for long-term (current) use of 

anticoagulants 
10310 54864 0.40 0.07 1.48 1.66x10-8 

Coronary atherosclerosis 17803 47371 0.35 0.06 1.42 1.77x10-8 

Cardiomegaly 9268 55906 0.41 0.07 1.51 1.90x10-8 

Congestive heart failure (CHF) NOS 9979 55195 0.40 0.07 1.49 5.38x10-8 

Congestive heart failure; nonhypertensive 11702 53472 0.37 0.07 1.45 5.75x10-8 

Respiratory failure 4502 60672 0.52 0.10 1.68 1.38x10-7 

Chronic venous insufficiency [CVI] 3708 61466 0.57 0.11 1.76 1.51x10-7 

Pulmonary heart disease 7098 58076 0.42 0.08 1.52 1.59x10-7 
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Heart failure with reduced EF [Systolic or 

combined heart failure] 
4181 60993 0.54 0.10 1.72 1.83x10-7 

Atrial fibrillation and flutter 10191 54983 0.37 0.07 1.45 3.82x10-7 

Type 2 diabetes with renal manifestations 3453 61721 0.57 0.11 1.76 5.05x10-7 

Panniculitis 461 64713 1.46 0.29 4.30 5.28x10-7 

Atrial fibrillation 9935 55239 0.37 0.07 1.45 5.62x10-7 

Ischemic Heart Disease 20357 44817 0.30 0.06 1.35 5.73x10-7 

Gastrojejunal ulcer 271 64903 1.86 0.38 6.42 7.39x10-7 

Cardiac pacemaker/device in situ 4020 61154 0.52 0.10 1.68 7.96x10-7 

Other venous embolism and thrombosis 7287 57887 0.39 0.08 1.47 8.45x10-7 

Chronic ulcer of skin 5649 59525 0.44 0.09 1.55 8.75x10-7 

Non-healing surgical wound 716 64458 1.15 0.23 3.16 9.72x10-7 

Arthropathy NOS 9057 56117 0.36 0.07 1.43 1.06x10-6 

Superficial cellulitis and abscess 13672 51502 0.30 0.06 1.35 1.07x10-6 

Type 2 diabetes with ophthalmic 

manifestations 
2447 62727 0.65 0.13 1.91 1.11x10-6 

Incisional hernia 1620 63554 0.76 0.16 2.14 1.43x10-6 

Septicemia 5395 59779 0.43 0.09 1.53 2.52x10-6 

Chronic pulmonary heart disease 4900 60274 0.44 0.10 1.56 3.10x10-6 

Postoperative infection 3709 61465 0.49 0.11 1.64 3.14x10-6 

Other arthropathies 9647 55527 0.33 0.07 1.39 3.31x10-6 

Cholelithiasis 5031 60143 0.43 0.09 1.53 4.68x10-6 

Other disorders of the kidney and ureters 10875 54299 0.31 0.07 1.37 4.80x10-6 

Dysmetabolic syndrome X 1084 64090 0.88 0.19 2.40 4.82x10-6 

Cholelithiasis and cholecystitis 5727 59447 0.40 0.09 1.49 5.37x10-6 

Pulmonary collapse; interstitial and 

compensatory emphysema 
10304 54870 0.32 0.07 1.38 5.45x10-6 

Other chronic ischemic heart disease, 

unspecified 
8263 56911 0.35 0.08 1.43 6.30x10-6 

Osteoarthritis; localized 12113 53061 0.30 0.07 1.35 7.76x10-6 

Chronic ulcer of leg or foot 3479 61695 0.49 0.11 1.64 8.97x10-6 

Cellulitis and abscess of leg, except foot 4227 60947 0.45 0.10 1.57 9.00x10-6 

Spinal stenosis of lumbar region 4915 60259 0.42 0.10 1.52 1.17x10-5 

Cardiac pacemaker in situ 3163 62011 0.51 0.12 1.66 1.35x10-5 

Chronic renal failure [CKD] 11487 53687 0.30 0.07 1.34 1.43x10-5 

Diabetic retinopathy 2674 62500 0.55 0.13 1.74 1.68x10-5 

Dependence on respirator [Ventilator] or 

supplemental oxygen 
1443 63731 0.71 0.17 2.04 2.20x10-5 

Cardiac defibrillator in situ 1877 63297 0.63 0.15 1.87 2.47x10-5 

Cardiac dysrhythmias 27872 37302 0.22 0.05 1.25 2.54x10-5 

Osteomyelitis 1739 63435 0.65 0.15 1.91 2.54x10-5 

Swelling of limb 10189 54985 0.29 0.07 1.34 2.71x10-5 

Asthma 11096 54078 0.28 0.07 1.32 3.11x10-5 
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Encounter for long-term (current) use of 

anticoagulants, antithrombotics, aspirin 
7013 58161 0.34 0.08 1.41 3.31x10-5 

Ventral hernia 1887 63287 0.61 0.15 1.84 3.54x10-5 

Decubitus ulcer 2278 62896 0.56 0.14 1.75 3.65x10-5 

Pulmonary congestion and hypostasis 3727 61447 0.44 0.11 1.56 4.22x10-5 

Spinal stenosis 6326 58848 0.35 0.09 1.41 4.74x10-5 

Iron deficiency anemias 8970 56204 0.29 0.07 1.34 5.62x10-5 

Wheezing 3946 61228 0.42 0.10 1.52 6.23x10-5 

Intestinal malabsorption (non-celiac) 1168 64006 0.73 0.18 2.08 6.73x10-5 

Portal hypertension 724 64450 0.94 0.24 2.55 6.86x10-5 

Myocardial infarction 8758 56416 0.30 0.08 1.35 7.23x10-5 

Fluid overload 3837 61337 0.42 0.11 1.52 7.53x10-5 

Hyperlipidemia 34558 30616 0.22 0.06 1.25 8.68x10-5 

Hypertensive heart and/or renal disease 11631 53543 0.26 0.07 1.30 1.01x10-4 

Chronic tonsillitis and adenoiditis 1295 63879 0.70 0.18 2.02 1.15x10-4 

Abnormal weight gain 3618 61556 0.41 0.11 1.51 1.26x10-4 

Dermatophytosis of nail 6482 58692 0.32 0.09 1.38 1.50x10-4 

Barrett's esophagus 925 64249 0.78 0.21 2.19 1.51x10-4 

Degeneration of intervertebral disc 9858 55316 0.27 0.07 1.30 1.72x10-4 

Infection/inflammation of internal prosthetic 

device; implant; and graft 
2852 62322 0.45 0.12 1.57 1.93x10-4 

Heart failure with preserved EF [Diastolic heart 

failure] 
3819 61355 0.40 0.11 1.49 1.95x10-4 

Deep vein thrombosis 3311 61863 0.42 0.11 1.52 2.15x10-4 

Other symptoms of respiratory system 35281 29893 0.19 0.05 1.21 2.22x10-4 

Gout 4917 60257 0.35 0.10 1.42 2.36x10-4 

Polycystic ovaries 578 64596 0.99 0.27 2.70 2.39x10-4 

Sinoatrial node dysfunction (Bradycardia) 2471 62703 0.48 0.13 1.62 2.42x10-4 

Bacterial infection NOS 8419 56755 0.27 0.07 1.31 2.74x10-4 

Disorders of adrenal glands 2252 62922 0.49 0.13 1.63 2.75x10-4 

Disorders of lipoid metabolism 35419 29755 0.21 0.06 1.23 2.78x10-4 

Mixed hyperlipidemia 8620 56554 0.27 0.08 1.31 2.92x10-4 

Corns and callosities 3552 61622 0.40 0.11 1.49 3.01x10-4 

Acquired acanthosis nigricans 437 64737 1.16 0.32 3.19 3.21x10-4 

Paroxysmal ventricular tachycardia 3201 61973 0.41 0.12 1.51 3.50x10-4 

Atrial flutter 3193 61981 0.41 0.12 1.51 3.55x10-4 

Vitamin deficiency 10640 54534 0.24 0.07 1.28 3.63x10-4 

Diabetes type 2 with peripheral circulatory 

disorders 
1446 63728 0.61 0.17 1.84 3.74x10-4 

Osteomyelitis, periostitis, and other infections 

involving bone 
2244 62930 0.48 0.14 1.62 3.92x10-4 

Dermatophytosis 9887 55287 0.25 0.07 1.29 4.05x10-4 

Type 1 diabetes with neurological 

manifestations 
1067 64107 0.69 0.20 1.99 4.70x10-4 
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Other forms of chronic heart disease 6657 58517 0.29 0.08 1.34 4.71x10-4 

Chronic Kidney Disease, Stage IV 2754 62420 0.43 0.13 1.54 5.49x10-4 

Encounter for long-term (current) use of aspirin 6484 58690 0.29 0.09 1.34 5.59x10-4 

Ovarian dysfunction 807 64367 0.78 0.23 2.18 5.95x10-4 

Acquired foot deformities 7020 58154 0.28 0.08 1.32 6.02x10-4 

Iron deficiency anemias, unspecified or not due 

to blood loss 
7682 57492 0.27 0.08 1.30 6.20x10-4 

Gout and other crystal arthropathies 5801 59373 0.30 0.09 1.35 7.04x10-4 

Intervertebral disc disorders 12542 52632 0.22 0.06 1.24 7.42x10-4 

Mood disorders 16737 48437 0.19 0.06 1.21 8.20x10-4 

Hypothyroidism NOS 10724 54450 0.23 0.07 1.25 9.37x10-4 

Arrhythmia (cardiac) NOS 9842 55332 0.23 0.07 1.26 9.41x10-4 

Dermatophytosis / Dermatomycosis 10419 54755 0.23 0.07 1.26 9.48x10-4 

Unstable angina (intermediate coronary 

syndrome) 
5570 59604 0.30 0.09 1.35 9.55x10-4 

Thoracic or lumbosacral neuritis or radiculitis, 

unspecified 
6140 59034 0.28 0.09 1.33 9.89x10-4 

Other dyspnea 19187 45987 0.18 0.06 1.20 0.001 

Abnormal coagulation profile 2503 62671 0.42 0.13 1.52 0.001 

Cholelithiasis with other cholecystitis 1878 63296 0.47 0.15 1.61 0.001 

Dislocation 4381 60793 0.31 0.10 1.37 0.001 

Vitamin D deficiency 8786 56388 0.23 0.07 1.26 0.002 

Hypertensive chronic kidney disease 8311 56863 0.24 0.08 1.28 0.002 

Flat foot 1773 63401 0.48 0.15 1.61 0.002 

Hypertensive heart disease 5029 60145 0.30 0.10 1.35 0.002 

Chronic obstructive asthma 2077 63097 0.45 0.14 1.56 0.002 

Respiratory abnormalities 4122 61052 0.32 0.10 1.37 0.002 

Acute pulmonary heart disease 2762 62412 0.38 0.12 1.46 0.002 

Shock 1881 63293 0.46 0.15 1.58 0.002 

Candidiasis of skin and nails 1357 63817 0.53 0.17 1.70 0.002 

Depression 15718 49456 0.18 0.06 1.20 0.002 

Nonspecific chest pain 28569 36605 0.16 0.05 1.17 0.002 

Nonrheumatic aortic valve disorders 6091 59083 0.27 0.09 1.31 0.002 

Ingrowing nail 2743 62431 0.38 0.12 1.46 0.002 

Sleep disorders 13053 52121 0.19 0.06 1.21 0.003 

Chronic kidney disease, Stage I or II 2369 62805 0.40 0.13 1.49 0.003 

Hypoventilation 1481 63693 0.49 0.17 1.64 0.003 

Gouty arthropathy 2091 63083 0.42 0.14 1.52 0.003 

Heart failure NOS 4067 61107 0.30 0.10 1.35 0.004 

Hereditary and idiopathic peripheral 

neuropathy 
5570 59604 0.26 0.09 1.30 0.004 

Arthropathy associated with neurological 

disorders 
328 64846 1.01 0.35 2.76 0.004 

Coagulation defects 6539 58635 0.24 0.08 1.27 0.004 
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Osteoarthrosis involving more than one site, 

but not specified as generalized 
2277 62897 0.40 0.14 1.50 0.004 

Liver abscess and sequelae of chronic liver 

disease 
1339 63835 0.50 0.17 1.65 0.004 

Hypothyroidism 11256 53918 0.19 0.07 1.21 0.005 

Bursitis 3396 61778 0.31 0.11 1.37 0.005 

Umbilical hernia 1708 63466 0.43 0.15 1.54 0.005 

Cardiomyopathy 5291 59883 0.26 0.09 1.29 0.005 

Calcaneal spur; Exostosis NOS 2988 62186 0.33 0.12 1.39 0.005 

Pulmonary embolism and infarction, acute 2547 62627 0.35 0.13 1.43 0.005 

Chronic pain 4649 60525 0.27 0.10 1.31 0.006 

Spondylosis without myelopathy 11736 53438 0.19 0.07 1.20 0.006 

Abbreviations: PRS, polygenic risk score; SE, standard error; OR, odds ratio 
a Information shown in the table includes significant associations (Bonferroni corrected p-value of p = 5.6 x 10-6 

compared to individuals with normal range BMI) with class 3 obese BMI that are replicated 97-SNP polygenic risk 

score for obesity (results significant to FDR-adjusted p-value 0.006). Logistic regression models are adjusted for 

age, sex, site, and 10 principal components. 
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Supplemental Table 5.  Phenotype Associations with Obesity 97-SNP Polygenic Risk Score not 

Clinically Associated with Class 3 Obesity a 
 

Phenotype Cases Controls beta SE OR p-value 

Tobacco use disorder 15683 49491 0.34 0.06 1.41 9.61x10-9 

Hypopotassemia 9712 55462 0.38 0.07 1.46 1.30x10-7 

Other anemias 23113 42061 0.27 0.05 1.31 7.06x10-7 

Peripheral vascular disease, 

unspecified 
7270 57904 0.40 0.08 1.49 1.10x10-6 

Electrolyte imbalance 16621 48553 0.28 0.06 1.32 3.07x10-6 

Respiratory insufficiency 1611 63563 0.70 0.16 2.01 1.14x10-5 

Debility unspecified 4141 61033 0.45 0.10 1.57 1.22x10-5 

Pain in limb 26025 39149 0.22 0.05 1.25 1.85x10-5 

Abbreviations: SE, standard error; OR, odds ratio 
a Information shown in the table includes phenotypes having association with obesity 97-SNP PRS meeting 

Bonferroni significance threshold (p = 2.8 x 10-5 ) with no clinical association to class 3 obesity. Logistic regression 

models are adjusted for age, sex, site, and 10 principal components. 
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Supplemental Table 6. Phenotype Associations with Obesity 97-SNP Polygenic Risk Score in UK 

Biobank that Replicate Associations in eMERGE cohort and Class 3 Obesity a 
 

Phenotype Cases Controls Beta SE OR p-value 

Obesity 16524 48650 1.2 0.1 3.5 1.51x10-102 

Overweight, obesity and other 

hyperalimentation 

21061 44113 1.1 0.1 3.0 6.16x10-93 

Type 2 diabetes 17364 47810 0.7 0.1 2.0 7.35x10-32 

Sleep apnea 9819 55355 0.8 0.1 2.2 2.59x10-31 

Diabetes mellitus 18620 46554 0.7 0.1 1.9 6.01x10-31 

Hypertension 39206 25968 0.6 0.1 1.8 1.46x10-23 

Essential hypertension 38654 26520 0.6 0.1 1.8 1.40x10-22 

Other chronic nonalcoholic liver disease 5029 60145 0.8 0.1 2.2 5.32x10-17 

Chronic liver disease and cirrhosis 5471 59703 0.7 0.1 2.1 5.96x10-17 

Edema 13670 51504 0.4 0.1 1.6 2.02x10-12 

Type 1 diabetes 4985 60189 0.6 0.1 1.9 1.07x10-11 

Type 2 diabetes with neurological 

manifestations 

4352 60822 0.7 0.1 2.0 3.62x10-11 

Other disorders of intestine 7062 58112 0.5 0.1 1.7 8.76x10-11 

Acute renal failure 9186 55988 0.5 0.1 1.6 1.20x10-10 

Osteoarthrosis 22861 42313 0.4 0.1 1.4 1.68x10-10 

Osteoarthrosis NOS 18362 46812 0.4 0.1 1.4 6.23x10-10 

Respiratory failure, insufficiency, arrest 6684 58490 0.5 0.1 1.6 3.04x10-9 

Osteoarthrosis, localized, primary 6124 59050 0.5 0.1 1.7 3.89x10-9 

Renal failure 15129 50045 0.4 0.1 1.4 6.86x10-9 

Shortness of breath 19815 45359 0.3 0.1 1.4 9.51x10-9 

Coronary atherosclerosis 17803 47371 0.3 0.1 1.4 1.77x10-8 

Cardiomegaly 9268 55906 0.4 0.1 1.5 1.90x10-8 

Congestive heart failure  9979 55195 0.4 0.1 1.5 5.38x10-8 

Congestive heart failure; nonhypertensive 11702 53472 0.4 0.1 1.5 5.75x10-8 

Respiratory failure 4502 60672 0.5 0.1 1.7 1.38x10-7 

Chronic venous insufficiency  3708 61466 0.6 0.1 1.8 1.51x10-7 

Pulmonary heart disease 7098 58076 0.4 0.1 1.5 1.59x10-7 

Atrial fibrillation and flutter 10191 54983 0.4 0.1 1.4 3.82x10-7 

Type 2 diabetes with renal manifestations 3453 61721 0.6 0.1 1.8 5.05x10-7 

Ischemic Heart Disease 20357 44817 0.3 0.1 1.4 5.73x10-7 

Chronic ulcer of skin 5649 59525 0.4 0.1 1.6 8.75x10-7 

Superficial cellulitis and abscess 13672 51502 0.3 0.1 1.3 1.07x10-6 

Type 2 diabetes with ophthalmic 

manifestations 

2447 62727 0.6 0.1 1.9 1.11x10-6 
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Chronic pulmonary heart disease 4900 60274 0.4 0.1 1.6 3.10x10-6 

Postoperative infection 3709 61465 0.5 0.1 1.6 3.14x10-6 

Cholelithiasis 5031 60143 0.4 0.1 1.5 4.68x10-6 

Cholelithiasis and cholecystitis 5727 59447 0.4 0.1 1.5 5.37x10-6 

Pulmonary collapse; interstitial and 

compensatory emphysema 

10304 54870 0.3 0.1 1.4 5.45x10-6 

Other chronic ischemic heart disease, 

unspecified 

8263 56911 0.4 0.1 1.4 6.30x10-6 

Osteoarthritis; localized 12113 53061 0.3 0.1 1.3 7.76x10-6 

Chronic ulcer of leg or foot 3479 61695 0.5 0.1 1.6 8.97x10-6 

Spinal stenosis of lumbar region 4915 60259 0.4 0.1 1.5 1.17x10-5 

Chronic renal failure  11487 53687 0.3 0.1 1.3 1.43x10-5 

Diabetic retinopathy 2674 62500 0.6 0.1 1.7 1.68x10-5 

Cardiac dysrhythmias 27872 37302 0.2 0.1 1.3 2.54x10-5 

Ventral hernia 1887 63287 0.6 0.1 1.8 3.54x10-5 

Pulmonary congestion and hypostasis 3727 61447 0.4 0.1 1.6 4.22x10-5 

Spinal stenosis 6326 58848 0.3 0.1 1.4 4.74x10-5 

Iron deficiency anemias 8970 56204 0.3 0.1 1.3 5.62x10-5 

Myocardial infarction 8758 56416 0.3 0.1 1.4 7.23x10-5 

Hyperlipidemia 34558 30616 0.2 0.1 1.2 8.68x10-5 

Hypertensive heart and/or renal disease 11631 53543 0.3 0.1 1.3 1.01x10-4 

Barrett's esophagus 925 64249 0.8 0.2 2.2 1.51x10-4 

Degeneration of intervertebral disc 9858 55316 0.3 0.1 1.3 1.72x10-4 

Other symptoms of respiratory system 35281 29893 0.2 0.1 1.2 2.22x10-4 

Gout 4917 60257 0.4 0.1 1.4 2.36x10-4 

Polycystic ovaries 578 64596 1.0 0.3 2.7 2.39x10-4 

Bacterial infection NOS 8419 56755 0.3 0.1 1.3 2.74x10-4 

Disorders of adrenal glands 2252 62922 0.5 0.1 1.6 2.75x10-4 

Disorders of lipoid metabolism 35419 29755 0.2 0.1 1.2 2.78x10-4 

Diabetes type 2 with peripheral circulatory 

disorders 

1446 63728 0.6 0.2 1.8 3.74x10-4 

Type 1 diabetes with neurological 

manifestations 

1067 64107 0.7 0.2 2.0 4.70x10-4 

Other forms of chronic heart disease 6657 58517 0.3 0.1 1.3 4.71x10-4 

Chronic Kidney Disease, Stage IV 2754 62420 0.4 0.1 1.5 5.49x10-4 

Ovarian dysfunction 807 64367 0.8 0.2 2.2 5.95x10-4 

Acquired foot deformities 7020 58154 0.3 0.1 1.3 6.02x10-4 

Iron deficiency anemias, unspecified or not 

due to blood loss 

7682 57492 0.3 0.1 1.3 6.20x10-4 

Gout and other crystal arthropathies 5801 59373 0.3 0.1 1.4 7.04x10-4 

Intervertebral disc disorders 12542 52632 0.2 0.1 1.2 7.42x10-4 
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Mood disorders 16737 48437 0.2 0.1 1.2 8.20x10-4 

Hypothyroidism  10724 54450 0.2 0.1 1.3 9.37x10-4 

Unstable angina (intermediate coronary 

syndrome) 

5570 59604 0.3 0.1 1.4 9.55x10-4 

Cholelithiasis with other cholecystitis 1878 63296 0.5 0.1 1.6 0.001 

Hypertensive chronic kidney disease 8311 56863 0.2 0.1 1.3 0.002 

Acute pulmonary heart disease 2762 62412 0.4 0.1 1.5 0.002 

Depression 15718 49456 0.2 0.1 1.2 0.002 

Nonspecific chest pain 28569 36605 0.2 0.1 1.2 0.002 

Nonrheumatic aortic valve disorders 6091 59083 0.3 0.1 1.3 0.002 

Sleep disorders 13053 52121 0.2 0.1 1.2 0.003 

Hypoventilation 1481 63693 0.5 0.2 1.6 0.003 

Heart failure NOS 4067 61107 0.3 0.1 1.4 0.004 

Hypothyroidism 11256 53918 0.2 0.1 1.2 0.005 

Umbilical hernia 1708 63466 0.4 0.2 1.5 0.005 

Cardiomyopathy 5291 59883 0.3 0.1 1.3 0.005 

Calcaneal spur; Exostosis  2988 62186 0.3 0.1 1.4 0.005 

Pulmonary embolism and infarction, acute 2547 62627 0.4 0.1 1.4 0.005 

Spondylosis without myelopathy 11736 53438 0.2 0.1 1.2 0.006 

Abbreviations: SE, standard error; OR, odds ratio 
a Information shown in the table includes significant associations (Bonferroni corrected p-value of p = 5.6 x 10-6 

compared to individuals with normal range BMI) with class 3 obese BMI that are replicated with 97-SNP risk score 

for obesity in UK Biobank and eMERGE cohorts (results significant to FDR-adjusted p-value 0.006). Logistic 

regression models are adjusted for age, sex, and 10 principal components. 
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Supplemental Table 7.  Phenotype Associations of Genome-wide PRS for Obesity in eMERGE that 

Replicate Associations with Class 3 Obesity a 

 

Phenotype Cases Controls Beta SE OR p-value 

Overweight, obesity and other 

hyperalimentation 
21061 44113 2.8 0.1 16.4 0 

Obesity 16524 48650 3.3 0.1 26.7 0 

Morbid obesity 7275 57899 4.3 0.1 77.0 0 

Type 2 diabetes 17364 47810 1.9 0.1 6.8 3.00x10-154 

Diabetes mellitus 18620 46554 1.9 0.1 6.4 7.84x10-151 

Bariatric surgery 1892 63282 4.7 0.2 110.6 3.01x10-150 

Sleep apnea 9819 55355 1.9 0.1 6.5 6.21x10-109 

Eating disorder 1465 63709 4.1 0.2 61.2 5.92x10-93 

Obstructive sleep apnea 7599 57575 1.8 0.1 5.8 9.40x10-78 

Other chronic nonalcoholic liver disease 5029 60145 2.1 0.1 7.9 1.73x10-75 

Chronic liver disease and cirrhosis 5471 59703 2.0 0.1 7.1 1.67x10-73 

Hypertension 39206 25968 1.3 0.1 3.7 3.94x10-73 

Essential hypertension 38654 26520 1.3 0.1 3.6 2.80x10-70 

Gastrointestinal complications 2981 62193 2.5 0.1 12.3 4.37x10-70 

Insulin pump user 4489 60685 2.0 0.1 7.7 2.03x10-62 

Type 2 diabetes with neurological 

manifestations 
4352 60822 2.0 0.1 7.3 3.61x10-58 

Polyneuropathy in diabetes 3597 61577 1.9 0.1 6.9 8.04x10-47 

Type 1 diabetes 4985 60189 1.6 0.1 5.1 6.35x10-45 

Type 2 diabetes with renal manifestations 3453 61721 1.9 0.1 6.5 7.61x10-42 

Edema 13670 51504 1.0 0.1 2.7 1.17x10-38 

Type 2 diabetes with ophthalmic 

manifestations 
2447 62727 2.1 0.2 8.2 2.69x10-38 

Osteoarthrosis 22861 42313 0.9 0.1 2.4 1.81x10-36 

Other disorders of intestine 7062 58112 1.2 0.1 3.3 2.27x10-36 

Diabetic retinopathy 2674 62500 2.0 0.2 7.2 2.43x10-36 

Congestive heart failure (CHF) NOS 9979 55195 1.1 0.1 2.9 2.05x10-34 

Coronary atherosclerosis 17803 47371 0.9 0.1 2.5 2.80x10-33 

Acute renal failure 9186 55988 1.1 0.1 2.9 3.29x10-33 

Congestive heart failure; nonhypertensive 11702 53472 1.0 0.1 2.7 6.08x10-33 

Osteoarthrosis NOS 18362 46812 0.9 0.1 2.4 2.00x10-32 

Ischemic Heart Disease 20357 44817 0.8 0.1 2.3 1.84x10-30 

Renal failure 15129 50045 0.9 0.1 2.3 7.93x10-30 

Shortness of breath 19815 45359 0.7 0.1 2.1 2.39x10-26 

Hypertensive heart and/or renal disease 11631 53543 0.9 0.1 2.4 3.47x10-25 



 

 

 

 

 

 

 

191 

Gout 4917 60257 1.2 0.1 3.3 5.57x10-25 

Cardiomegaly 9268 55906 0.9 0.1 2.5 1.13x10-24 

Abnormal weight gain 3618 61556 1.3 0.1 3.8 1.67x10-24 

Myocardial infarction 8758 56416 0.9 0.1 2.5 4.62x10-23 

Chronic venous insufficiency [CVI] 3708 61466 1.3 0.1 3.6 4.65x10-23 

Panniculitis 461 64713 3.4 0.4 31.2 8.51x10-23 

Encounter for long-term (current) use of 

anticoagulants 
10310 54864 0.8 0.1 2.3 1.66x10-22 

Fluid overload 3837 61337 1.3 0.1 3.5 4.54x10-22 

Respiratory failure, insufficiency, arrest 6684 58490 1.0 0.1 2.6 4.76x10-22 

Cellulitis and abscess of leg, except foot 4227 60947 1.2 0.1 3.2 8.28x10-22 

Hyperlipidemia 34558 30616 0.7 0.1 1.9 8.68x10-22 

Heart failure with preserved ejection 

fraction [Diastolic heart failure] 
3819 61355 1.3 0.1 3.5 1.11x10-21 

Gout and other crystal arthropathies 5801 59373 1.0 0.1 2.8 2.45x10-21 

Chronic renal failure [ 11487 53687 0.8 0.1 2.2 7.09x10-21 

Hypertensive chronic kidney disease 8311 56863 0.9 0.1 2.4 1.32x10-20 

Depression 15718 49456 0.7 0.1 1.9 1.43x10-20 

Diabetes type 2 with peripheral circulatory 

disorders 
1446 63728 1.9 0.2 7.0 1.79x10-20 

Ventral hernia 1887 63287 1.6 0.2 5.2 2.27x10-20 

Disorders of lipoid metabolism 35419 29755 0.6 0.1 1.9 2.41x10-20 

Mood disorders 16737 48437 0.6 0.1 1.9 3.29x10-20 

Pulmonary heart disease 7098 58076 0.9 0.1 2.5 3.76x10-20 

Gastrojejunal ulcer 271 64903 4.1 0.4 61.0 6.09x10-20 

Chronic pulmonary heart disease 4900 60274 1.0 0.1 2.8 2.22x10-19 

Dysmetabolic syndrome X 1084 64090 2.1 0.2 8.0 3.69x10-19 

Asthma 11096 54078 0.7 0.1 2.1 4.87x10-19 

Chronic ulcer of skin 5649 59525 1.0 0.1 2.6 4.89x10-19 

Superficial cellulitis and abscess 13672 51502 0.7 0.1 1.9 6.88x10-19 

Heart failure with reduced ejection fraction 

[Systolic or combined heart failure] 
4181 60993 1.1 0.1 3.0 8.09x10-19 

Mixed hyperlipidemia 8620 56554 0.8 0.1 2.2 3.78x10-18 

Vitamin deficiency 10640 54534 0.7 0.1 2.0 5.18x10-18 

Other venous embolism and thrombosis 7287 57887 0.8 0.1 2.3 5.19x10-18 

Postoperative infection 3709 61465 1.1 0.1 3.0 8.45x10-18 

Localized adiposity 642 64532 2.6 0.3 13.0 1.11x10-17 

Pulmonary collapse; interstitial and 

compensatory emphysema 
10304 54870 0.7 0.1 2.1 1.30x10-17 

Osteoarthritis; localized 12113 53061 0.7 0.1 2.0 1.71x10-17 

Respiratory failure 4502 60672 1.0 0.1 2.8 1.86x10-17 
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Other dyspnea 19187 45987 0.6 0.1 1.8 3.60x10-17 

Cholelithiasis and cholecystitis 5727 59447 0.9 0.1 2.4 5.67x10-17 

Other disorders of the kidney and ureters 10875 54299 0.7 0.1 2.0 6.54x10-17 

Other chronic ischemic heart disease, 

unspecified 
8263 56911 0.8 0.1 2.2 6.57x10-16 

Atrial fibrillation 9935 55239 0.7 0.1 2.0 1.03x10-15 

Cholelithiasis 5031 60143 0.9 0.1 2.4 1.67x10-15 

Incisional hernia 1620 63554 1.5 0.2 4.5 2.64x10-15 

Bacterial infection NOS 8419 56755 0.7 0.1 2.0 8.39x10-15 

Atrial fibrillation and flutter 10191 54983 0.7 0.1 2.0 8.52x10-15 

Osteoarthrosis, localized, primary 6124 59050 0.8 0.1 2.2 1.37x10-14 

Septicemia 5395 59779 0.8 0.1 2.3 1.43x10-14 

Other peripheral nerve disorders 10170 55004 0.6 0.1 1.9 2.41x10-14 

Chronic ulcer of leg or foot 3479 61695 1.0 0.1 2.8 2.92x10-14 

Encounter for long-term (current) use of 

anticoagulants, antithrombotics, aspirin 
7013 58161 0.7 0.1 2.1 4.58x10-14 

Wheezing 3946 61228 1.0 0.1 2.6 4.95x10-14 

Dependence on respirator [Ventilator] or 

supplemental oxygen 
1443 63731 1.5 0.2 4.6 8.13x10-14 

Heart failure  4067 61107 0.9 0.1 2.5 1.88x10-13 

Swelling of limb 10189 54985 0.6 0.1 1.8 2.76x10-13 

Chronic airway obstruction 9300 55874 0.6 0.1 1.9 2.87x10-13 

Nephritis and nephropathy in diseases 

classified elsewhere 
1849 63325 1.3 0.2 3.8 3.26x10-13 

Pulmonary congestion and hypostasis 3727 61447 0.9 0.1 2.6 4.97x10-13 

Arthropathy  9057 56117 0.6 0.1 1.9 9.59x10-13 

Vitamin D deficiency 8786 56388 0.6 0.1 1.9 1.03x10-13 

Respiratory abnormalities 4122 61052 0.9 0.1 2.4 1.53x10-12 

Chronic obstructive asthma 2077 63097 1.2 0.2 3.4 1.64x10-12 

Other arthropathies 9647 55527 0.6 0.1 1.8 1.65x10-12 

Angina pectoris 7300 57874 0.7 0.1 2.0 2.27x10-12 

Cellulitis and abscess of trunk 2431 62743 1.1 0.2 3.1 2.36x10-12 

Encounter for long-term (current) use of 

aspirin 
6484 58690 0.7 0.1 2.1 2.50x10-12 

Proteinuria 2890 62284 1.0 0.1 2.8 3.60x10-12 

Acquired acanthosis nigricans 437 64737 2.8 0.4 16.3 3.63x10-12 

Primary/intrinsic cardiomyopathies 4871 60303 0.8 0.1 2.2 5.20x10-12 

Cirrhosis of liver without mention of 

alcohol 
1523 63651 1.4 0.2 4.0 8.36x10-12 

Decubitus ulcer 2278 62896 1.1 0.2 3.1 1.10x10-11 

Iron deficiency anemias 8970 56204 0.6 0.1 1.8 2.33x10-11 
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Chronic Kidney Disease, Stage III 6548 58626 0.7 0.1 2.0 2.57x10-11 

Other forms of chronic heart disease 6657 58517 0.7 0.1 2.0 2.90x10-11 

Cardiomyopathy 5291 59883 0.7 0.1 2.1 5.32x10-11 

Hypertensive heart disease 5029 60145 0.8 0.1 2.1 7.23x10-11 

Unstable angina (intermediate coronary 

syndrome) 
5570 59604 0.7 0.1 2.0 9.59x10-11 

Spinal stenosis of lumbar region 4915 60259 0.7 0.1 2.1 1.05x10-10 

Hypoventilation 1481 63693 1.3 0.2 3.7 1.37x10-10 

Chronic Kidney Disease, Stage IV 2754 62420 1.0 0.2 2.7 1.65x10-10 

Hypercholesterolemia 18414 46760 0.4 0.1 1.6 1.80x10-10 

Candidiasis of skin and nails 1357 63817 1.3 0.2 3.8 1.88x10-10 

Obstructive chronic bronchitis 2752 62422 1.0 0.2 2.6 2.61x10-10 

Carbuncle and furuncle 1396 63778 1.3 0.2 3.7 2.88x10-10 

Type 1 diabetes with neurological 

manifestations 
1067 64107 1.5 0.2 4.6 2.93x10-10 

Gouty arthropathy 2091 63083 1.1 0.2 2.9 8.58x10-10 

Hypoglycemia 1818 63356 1.1 0.2 3.1 9.04x10-10 

Osteoarthrosis, generalized 3751 61423 0.8 0.1 2.2 9.22x10-10 

Liver abscess and sequelae of chronic liver 

disease 
1339 63835 1.3 0.2 3.7 9.26x10-10 

Deep vein thrombosis 3311 61863 0.8 0.1 2.3 1.05x10-9 

Iron deficiency anemias, unspecified or not 

due to blood loss 
7682 57492 0.6 0.1 1.8 1.78x10-9 

Umbilical hernia 1708 63466 1.1 0.2 3.1 2.24x10-9 

Polycystic ovaries 578 64596 2.0 0.3 7.0 2.69x10-9 

Staphylococcus infections 3035 62139 0.8 0.1 2.3 3.49x10-9 

Paroxysmal ventricular tachycardia 3201 61973 0.8 0.1 2.3 5.29x10-9 

Other symptoms of respiratory system 35281 29893 0.4 0.1 1.4 6.09x10-9 

Acute bronchitis and bronchiolitis 8554 56620 0.5 0.1 1.7 6.64x10-9 

Abnormal function study of cardiovascular 

system 
4760 60414 0.7 0.1 2.0 7.66x10-9 

Diseases of esophagus 23509 41665 0.4 0.1 1.4 1.34x10-8 

Peritoneal adhesions (postoperative) 

(postinfection) 
1424 63750 1.2 0.2 3.2 1.52x10-8 

Osteomyelitis 1739 63435 1.1 0.2 2.9 1.70x10-8 

Nephritis and nephropathy without 

mention of glomerulonephritis 
2760 62414 0.9 0.2 2.4 1.76x10-8 

Renal failure  3058 62116 0.8 0.1 2.3 1.81x10-8 

Other specified erythematous conditions 1984 63190 1.0 0.2 2.6 1.88x10-8 

Megaloblastic anemia 1427 63747 1.1 0.2 3.2 1.91x10-8 

Chronic bronchitis 3433 61741 0.8 0.1 2.1 2.09x10-8 

Hypothyroidism  10724 54450 0.5 0.1 1.6 2.12x10-8 
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Portal hypertension 724 64450 1.6 0.3 4.8 3.04x10-8 

Spinal stenosis 6326 58848 0.6 0.1 1.8 3.63x10-8 

Bundle branch block 4474 60700 0.7 0.1 1.9 3.65x10-8 

Calcaneal spur; Exostosis  2988 62186 0.8 0.1 2.2 3.68x10-8 

Shock 1881 63293 1.0 0.2 2.7 4.10x10-8 

Primary pulmonary hypertension 1266 63908 1.2 0.2 3.3 5.18x10-8 

Osteoarthrosis involving more than one 

site, but not specified as generalized 
2277 62897 0.9 0.2 2.5 5.32x10-8 

Bursitis 3396 61778 0.7 0.1 2.1 5.33x10-8 

Hyperglyceridemia 2924 62250 0.8 0.1 2.2 5.49x10-8 

Cardiac pacemaker/device in situ 4020 61154 0.7 0.1 2.0 6.22x10-8 

Cardiac defibrillator in situ 1877 63297 1.0 0.2 2.6 7.24x10-8 

Vitamin B-complex deficiencies 2607 62567 0.8 0.2 2.3 7.50x10-8 

Non-healing surgical wound 716 64458 1.5 0.3 4.6 7.72x10-8 

Orthopnea 576 64598 1.7 0.3 5.7 1.09x10-7 

Hypothyroidism 11256 53918 0.4 0.1 1.5 1.10x10-7 

Cholelithiasis with other cholecystitis 1878 63296 0.9 0.2 2.6 1.18x10-7 

Gastroesophageal reflux disease 20873 44301 0.3 0.1 1.4 1.54x10-7 

Intestinal malabsorption (non-celiac) 1168 64006 1.2 0.2 3.2 1.92x10-7 

Nephritis; nephrosis; renal sclerosis 4173 61001 0.7 0.1 1.9 1.95x10-7 

Benign neoplasm of adrenal gland 477 64697 1.8 0.3 6.1 2.15x10-7 

Esophagitis, Gastroesophageal reflux 

disease and related diseases 
22561 42613 0.3 0.1 1.4 2.17x10-7 

Osteomyelitis, periostitis, and other 

infections involving bone 
2244 62930 0.9 0.2 2.4 2.32x10-7 

Infection/inflammation of internal 

prosthetic device; implant; and graft 
2852 62322 0.8 0.1 2.1 2.57x10-7 

Ill-defined descriptions and complications 

of heart disease 
10680 54494 0.4 0.1 1.5 2.80x10-7 

Cardiac conduction disorders 15497 49677 0.4 0.1 1.5 2.99x10-7 

Arthropathy associated with neurological 

disorders 
328 64846 2.2 0.4 8.6 4.72x10-7 

Sleep disorders 13053 52121 0.4 0.1 1.5 5.20x10-7 

Acute pulmonary heart disease 2762 62412 0.7 0.1 2.1 7.53x10-7 

Cardiac pacemaker in situ 3163 62011 0.7 0.1 2.0 7.74x10-7 

Left bundle branch block 2454 62720 0.8 0.2 2.2 8.68x10-7 

Asthma with exacerbation 2887 62287 0.7 0.2 2.1 1.12x10-7 

Dermatophytosis 9887 55287 0.4 0.1 1.5 1.45x10-7 

Cellulitis and abscess of foot, toe 1652 63522 0.9 0.2 2.5 1.64x10-6 

Other vitamin B12 deficiency anemia 906 64268 1.2 0.3 3.4 2.15x10-6 

Sinoatrial node dysfunction (Bradycardia) 2471 62703 0.7 0.2 2.1 2.22x10-6 
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Malignant neoplasm of uterus 703 64471 1.4 0.3 3.9 2.42x10-6 

Coagulation defects 6539 58635 0.5 0.1 1.6 3.11x10-6 

Hereditary and idiopathic peripheral 

neuropathy 
5570 59604 0.5 0.1 1.7 3.12x10-6 

Intervertebral disc disorders 12542 52632 0.4 0.1 1.4 3.33x10-6 

Chronic venous hypertension 377 64797 1.8 0.4 6.1 3.60x10-6 

Dermatophytosis of nail 6482 58692 0.5 0.1 1.6 3.75x10-6 

Chronic kidney disease, Stage I or II 2369 62805 0.8 0.2 2.1 4.19x10-6 

Phlebitis and thrombophlebitis 2869 62305 0.7 0.1 1.9 4.27x10-6 

Joint effusions 5967 59207 0.5 0.1 1.6 4.49x10-6 

Chronic ulcer of unspecified site 1914 63260 0.8 0.2 2.3 4.53x10-6 

Other deficiency anemia 2699 62475 0.7 0.2 2.0 5.17x10-6 

Hidradenitis 385 64789 1.9 0.4 6.4 7.96x10-6 

Pain 9394 55780 0.4 0.1 1.5 8.43x10-6 

Difficulty in walking 3926 61248 0.6 0.1 1.8 8.67x10-6 

Dermatophytosis / Dermatomycosis 10419 54755 0.4 0.1 1.4 1.01x10-5 

Thoracic or lumbosacral neuritis or 

radiculitis, unspecified 
6140 59034 0.5 0.1 1.6 1.20x10-5 

Abdominal hernia 11852 53322 0.3 0.1 1.4 1.27x10-5 

Displacement of intervertebral disc 5319 59855 0.5 0.1 1.6 1.66x10-5 

Ovarian dysfunction 807 64367 1.2 0.3 3.3 1.70x10-5 

Neuralgia, neuritis, and radiculitis  3284 61890 0.6 0.1 1.8 1.84x10-5 

Postphlebitic syndrome 280 64894 1.9 0.4 6.8 1.87x10-5 

Nonspecific chest pain 28569 36605 0.3 0.1 1.3 1.90x10-5 

Varicose veins of lower extremity 4119 61055 0.5 0.1 1.7 2.04x10-5 

Complication of internal orthopedic device 2205 62969 0.7 0.2 2.0 2.16x10-5 

Pulmonary embolism and infarction, acute 2547 62627 0.7 0.2 1.9 2.33x10-5 

Other hypertensive complications 3536 61638 0.6 0.1 1.8 2.36x10-5 

Atrial flutter 3193 61981 0.6 0.1 1.8 2.75x10-5 

Varicose veins of lower extremity, 

symptomatic 
2444 62730 0.7 0.2 1.9 3.13x10-5 

Athlete’s foot 2929 62245 0.6 0.1 1.8 3.19x10-5 

Cholecystitis without cholelithiasis 1710 63464 0.8 0.2 2.2 3.43x10-5 

Disorders of parathyroid gland 2164 63010 0.7 0.2 2.0 3.56x10-5 

Disorders of adrenal glands 2252 62922 0.7 0.2 2.0 3.59x10-5 

Ingrowing nail 2743 62431 0.6 0.1 1.8 4.32x10-5 

Other local infections of skin and 

subcutaneous tissue 
3436 61738 0.5 0.1 1.7 4.74x10-5 

Chronic pain 4649 60525 0.5 0.1 1.6 5.14x10-5 

Arrhythmia (cardiac) NOS 9842 55332 0.3 0.1 1.4 7.42x10-5 
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Cardiac dysrhythmias 27872 37302 0.3 0.1 1.3 7.66x10-5 

Bronchitis 6016 59158 0.4 0.1 1.5 8.03x10-5 

Fasciitis 4089 61085 0.5 0.1 1.6 8.32x10-5 

Flat foot 1773 63401 0.7 0.2 2.1 9.17x10-5 

Endometrial hyperplasia 625 64549 1.2 0.3 3.3 1.01x10-4 

Phlebitis and thrombophlebitis of lower 

extremities 
1838 63336 0.7 0.2 2.0 1.18x10-4 

Nonrheumatic aortic valve disorders 6091 59083 0.4 0.1 1.5 1.24x10-4 

Cardiac arrest and ventricular fibrillation 1490 63684 0.8 0.2 2.2 1.24x10-4 

Dislocation 4381 60793 0.5 0.1 1.6 1.30x10-4 

Degeneration of intervertebral disc 9858 55316 0.3 0.1 1.4 1.36x10-4 

Barrett's esophagus 925 64249 0.9 0.2 2.6 1.40x10-4 

Back pain 24723 40451 0.2 0.1 1.3 1.58x10-4 

Disorders of sweat glands 1107 64067 0.9 0.2 2.5 1.70x10-4 

Sleep related movement disorders 2593 62581 0.6 0.2 1.8 1.72x10-4 

Atherosclerotic cardiovascular disease 1821 63353 0.7 0.2 2.0 1.78x10-4 

Spondylosis and allied disorders 12335 52839 0.3 0.1 1.3 1.84x10-4 

Other abnormal blood chemistry 10148 55026 0.3 0.1 1.4 2.08x10-4 

Restless legs syndrome 1834 63340 0.7 0.2 1.9 2.16x10-4 

Synovitis and tenosynovitis 6449 58725 0.4 0.1 1.5 2.18x10-4 

Cardiac arrest 1056 64118 0.9 0.2 2.4 2.43x10-4 

Symptoms and disorders of the joints 13943 51231 0.3 0.1 1.3 2.45x10-4 

Methicillin resistant Staphylococcus 

aureus 
1063 64111 0.9 0.2 2.4 2.49x10-4 

Hyperparathyroidism 1866 63308 0.7 0.2 1.9 2.65x10-4 

Varicose veins 4735 60439 0.4 0.1 1.5 2.78x10-4 

Spondylosis without myelopathy 11736 53438 0.3 0.1 1.3 3.22x10-4 

Other disorders of synovium, tendon, and 

bursa 
11380 53794 0.3 0.1 1.3 3.59x10-4 

Arthropathy associated with other 

disorders classified elsewhere 
506 64668 1.2 0.3 3.4 4.03x10-4 

Internal derangement of knee 4467 60707 0.4 0.1 1.5 4.15x10-4 

Noninfectious disorders of lymphatic 

channels 
1432 63742 0.7 0.2 2.1 4.19x10-4 

Chronic tonsillitis and adenoiditis 1295 63879 0.8 0.2 2.2 4.20x10-4 

Secondary/extrinsic cardiomyopathies 1820 63354 0.6 0.2 1.9 5.77x10-4 

Infective connective tissue disorders 260 64914 1.6 0.5 5.2 5.87x10-4 

Other abnormal glucose 9056 56118 0.3 0.1 1.3 6.61x10-4 

Abnormal coagulation profile 2503 62671 0.5 0.2 1.7 7.20x10-4 

Elevated sedimentation rate 898 64276 0.8 0.3 2.3 8.93x10-4 

Spondylosis with myelopathy 1289 63885 0.7 0.2 2.0 9.14x10-4 
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Acquired foot deformities 7020 58154 0.3 0.1 1.4 0.001 

Adrenal hyperfunction 520 64654 1.1 0.3 3.0 0.001 

Diabetes type 1 with peripheral circulatory 

disorders 
339 64835 1.4 0.4 3.9 0.001 

Corns and callosities 3552 61622 0.4 0.1 1.5 0.001 

Acute pain 6249 58925 0.3 0.1 1.4 0.001 

Abnormal glucose 11626 53548 0.3 0.1 1.3 0.002 

Chronic pain syndrome 1118 64056 0.7 0.2 2.1 0.002 

Acute and chronic tonsillitis 1774 63400 0.6 0.2 1.8 0.002 

Other disorders of pancreatic internal 

secretion 
884 64290 0.8 0.3 2.3 0.002 

Acute sinusitis 8984 56190 0.3 0.1 1.3 0.002 

Rupture of tendon, nontraumatic 1588 63586 0.6 0.2 1.8 0.002 

Hemorrhagic disorder due to intrinsic 

circulating anticoagulants 
885 64289 0.8 0.3 2.2 0.002 

Sciatica 4206 60968 0.4 0.1 1.5 0.002 

Urinary incontinence 7483 57691 0.3 0.1 1.3 0.002 

Postlaminectomy syndrome 759 64415 0.9 0.3 2.4 0.002 

Dysthymic disorder 4404 60770 0.4 0.1 1.4 0.002 

Diverticulitis 2360 62814 0.5 0.2 1.6 0.002 

Cancer of kidney and renal pelvis 1245 63929 0.7 0.2 1.9 0.002 

Precordial pain 3106 62068 0.4 0.1 1.5 0.003 

Cushing's syndrome 296 64878 1.3 0.4 3.7 0.003 

Atrioventricular block 4901 60273 0.3 0.1 1.4 0.003 

Urinary calculus 5298 59876 0.3 0.1 1.4 0.004 

Hypersomnia 1359 63815 0.6 0.2 1.8 0.004 

Otitis externa 3150 62024 0.4 0.1 1.5 0.004 

Retinal edema 845 64329 0.8 0.3 2.2 0.004 

Myopathy 1272 63902 0.6 0.2 1.8 0.005 

Cellulitis and abscess of fingers/toes 3489 61685 0.4 0.1 1.5 0.005 

Benign neoplasm of other endocrine 

glands and related structures 
1477 63697 0.6 0.2 1.7 0.005 

Hirsutism 617 64557 0.9 0.3 2.4 0.005 

Suppurative and unspecified otitis media 4431 60743 0.3 0.1 1.4 0.006 

Abnormal electrocardiogram  9068 56106 0.2 0.1 1.3 0.006 

Other disorders of soft tissues 1898 63276 0.5 0.2 1.6 0.006 

Psoriasis 2054 63120 0.5 0.2 1.6 0.006 

Diaphragmatic hernia 6702 58472 0.3 0.1 1.3 0.006 

Other symptoms involving abdomen and 

pelvis 
7188 57986 0.3 0.1 1.3 0.008 

Other disorders of lipoid metabolism 1556 63618 0.5 0.2 1.7 0.008 
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Intervertebral disc disorder with 

myelopathy 
606 64568 0.8 0.3 2.3 0.008 

Psoriasis vulgaris 1869 63305 0.5 0.2 1.6 0.008 

Otitis media 5557 59617 0.3 0.1 1.3 0.010 

Diabetes insipidus 180 64994 1.5 0.6 4.3 0.010 

Pilonidal cyst 232 64942 1.3 0.5 3.7 0.010 

Rheumatoid arthritis and other 

inflammatory polyarthropathies 
4073 61101 0.3 0.1 1.4 0.01 

Acquired spondylolisthesis 2036 63138 0.4 0.2 1.6 0.01 

Rotator cuff (capsule) sprain 2399 62775 0.4 0.2 1.5 0.01 

Posttraumatic stress disorder 1053 64121 0.6 0.2 1.9 0.01 

Other nondiabetic retinopathy 1341 63833 0.5 0.2 1.7 0.01 

Other alveolar and parietoalveolar 

pneumonopathy 
825 64349 0.7 0.3 2.0 0.01 

Peripheral enthesopathies and allied 

syndromes 
17614 47560 0.2 0.1 1.2 0.01 

Major depressive disorder 5339 59835 0.3 0.1 1.3 0.01 

Personality disorders 1206 63968 0.5 0.2 1.7 0.01 

 Abbreviations: PRS, polygenic risk score; SE, standard error; OR, odds ratio 
a Information shown in the table includes significant associations (Bonferroni corrected p-value of p = 5.6 x 10-6 

compared to individuals with normal range BMI) with class 3 obese BMI that are replicated with genome-wide PRS 

for obesity (results significant to FDR-adjusted p-value 0.015). Logistic regression models are adjusted for age, sex, 

site, and 10 principal components. 
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Supplemental Table 8.  Phenotype Associations of Genome-wide PRS for Obesity in UK Biobank 

that Replicate Associations in eMERGE cohort and Class 3 Obesity 
 

Phenotype Cases Controls Beta SE OR p-value 

Essential hypertension 89669 315763 0.2 0.0 1.2 0 

Hypertension 89898 315534 0.2 0.0 1.2 0 

Diabetes mellitus 27240 378192 0.3 0.0 1.3 0 

Type 2 diabetes 25470 379962 0.3 0.0 1.4 0 

Overweight, obesity and other 

hyperalimentation 15258 390174 0.6 0.0 1.8 0 

Obesity 15138 390294 0.6 0.0 1.8 0 

Osteoarthrosis 46919 358513 0.2 0.0 1.2 7.63x10-233 

Osteoarthritis; localized 39428 366004 0.2 0.0 1.2 9.48x10-204 

Hyperlipidemia 42442 362990 0.1 0.0 1.2 1.14x10-109 

Disorders of lipoid metabolism 42579 362853 0.1 0.0 1.2 1.76x10-109 

Sleep apnea 5483 399949 0.4 0.0 1.4 3.06x10-105 

Hypercholesterolemia 39485 365947 0.1 0.0 1.2 8.85x10-104 

Ischemic Heart Disease 34324 371108 0.1 0.0 1.2 5.91x10-93 

Sleep disorders 6746 398686 0.3 0.0 1.3 7.26x10-91 

Other peripheral nerve disorders 13266 392166 0.2 0.0 1.2 3.21x10-90 

Cholelithiasis and cholecystitis 17141 388291 0.2 0.0 1.2 5.05x10-81 

Osteoarthrosis  12600 392832 0.2 0.0 1.2 4.12x10-80 

Other chronic ischemic heart 

disease, unspecified 17061 388371 0.2 0.0 1.2 1.15x10-78 

Osteoarthrosis, localized, primary 13382 392050 0.2 0.0 1.2 3.49x10-71 

Cholelithiasis 14538 390894 0.2 0.0 1.2 8.81x10-70 

Chronic airway obstruction 15454 389978 0.2 0.0 1.2 7.15x10-63 

Angina pectoris 17877 387555 0.2 0.0 1.2 9.92x10-63 

Renal failure 17488 387944 0.1 0.0 1.2 2.03x10-53 

Hypothyroidism NOS 16456 388976 0.1 0.0 1.2 3.51x10-50 

Hypothyroidism 18439 386993 0.1 0.0 1.1 6.55x10-50 

Cardiac dysrhythmias 28797 376635 0.1 0.0 1.1 1.10x10-44 

Myocardial infarction 13690 391742 0.1 0.0 1.2 2.19x10-44 

Coronary atherosclerosis 21097 384335 0.1 0.0 1.1 8.29x10-44 

Atrial fibrillation and flutter 17559 387873 0.1 0.0 1.1 1.08x10-43 

Osteoarthrosis, generalized 7278 398154 0.2 0.0 1.2 2.06x10-42 

Chronic renal failure 6697 398735 0.2 0.0 1.2 2.34x10-40 

Bacterial infection  10374 395058 0.2 0.0 1.2 5.39x10-38 

Internal derangement of knee 15615 389817 0.1 0.0 1.1 1.08x10-37 

Type 1 diabetes 3520 401912 0.3 0.0 1.3 1.62x10-36 
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Esophagitis, GERD and related 

diseases 38281 367151 0.1 0.0 1.1 2.67x10-36 

Acute renal failure 11750 393682 0.1 0.0 1.2 2.97x10-35 

Chronic ulcer of leg or foot 1473 403959 0.4 0.0 1.5 2.10x10-34 

Diseases of esophagus 42030 363402 0.1 0.0 1.1 4.30x10-34 

Cholelithiasis with other 

cholecystitis 5901 399531 0.2 0.0 1.2 2.03x10-33 

Umbilical hernia 4336 401096 0.2 0.0 1.2 2.11x10-33 

Congestive heart failure; 

nonhypertensive 5488 399944 0.2 0.0 1.2 6.03x10-33 

Shortness of breath 7444 397988 0.2 0.0 1.2 8.17x10-33 

Other symptoms of respiratory 

system 10543 394889 0.1 0.0 1.2 1.74x10-32 

Diaphragmatic hernia 31231 374201 0.1 0.0 1.1 5.46x10-30 

Type 2 diabetes with neurological 

manifestations 694 404738 0.5 0.0 1.7 1.87x10-28 

Other disorders of intestine 18417 387015 0.1 0.0 1.1 2.06x10-28 

Chronic ulcer of skin 2747 402685 0.2 0.0 1.3 1.38x10-26 

Chronic liver disease and cirrhosis 10226 395206 0.1 0.0 1.1 1.87x10-26 

Respiratory failure 2779 402653 0.2 0.0 1.3 1.05x10-25 

Pulmonary heart disease 5231 400201 0.2 0.0 1.2 8.39x10-25 

Chronic bronchitis 4005 401427 0.2 0.0 1.2 2.02x10-24 

Respiratory failure, insufficiency, 

arrest 2992 402440 0.2 0.0 1.3 3.09x10-24 

Unstable angina (intermediate 

coronary syndrome) 5407 400025 0.2 0.0 1.2 5.33x10-24 

Major depressive disorder 16072 389360 0.1 0.0 1.1 6.70x10-24 

Depression 16072 389360 0.1 0.0 1.1 6.70x10-24 

Chronic Kidney Disease, Stage III 3605 401827 0.2 0.0 1.2 1.32x10-23 

Heart failure NOS 4202 401230 0.2 0.0 1.2 2.02x10-23 

Cardiomegaly 3481 401951 0.2 0.0 1.2 3.09x10-23 

Obstructive chronic bronchitis 3426 402006 0.2 0.0 1.2 3.18x10-23 

Diabetic retinopathy 3991 401441 0.2 0.0 1.2 5.70x10-23 

Other chronic nonalcoholic liver 

disease 3957 401475 0.2 0.0 1.2 8.02x10-23 

Abdominal hernia 55987 349445 0.1 0.0 1.1 2.69x10-22 

Iron deficiency anemias, 

unspecified or not due to blood 

loss 9812 395620 0.1 0.0 1.1 3.27x10-22 

Gout 2747 402685 0.2 0.0 1.2 4.81x10-22 

Type 2 diabetes with ophthalmic 

manifestations 3582 401850 0.2 0.0 1.2 6.53x10-22 

Gout and other crystal 

arthropathies 3271 402161 0.2 0.0 1.2 6.95x10-22 
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GERD 18715 386717 0.1 0.0 1.1 1.37x10-21 

Postoperative infection 4888 400544 0.2 0.0 1.2 7.18x10-21 

Iron deficiency anemias 10253 395179 0.1 0.0 1.1 7.19x10-21 

Staphylococcus infections 3518 401914 0.2 0.0 1.2 1.57x10-20 

Spondylosis and allied disorders 12774 392658 0.1 0.0 1.1 3.24x10-20 

Ventral hernia 3967 401465 0.2 0.0 1.2 3.46x10-20 

Mood disorders 17088 388344 0.1 0.0 1.1 7.8x10-20 

Edema 2256 403176 0.2 0.0 1.3 2.39x10-19 

Spondylosis without myelopathy 11730 393702 0.1 0.0 1.1 4.97x10-19 

Intervertebral disc disorders 7038 398394 0.1 0.0 1.1 1.74x10-18 

Congestive heart failure  1967 403465 0.2 0.0 1.3 2.30 x10-18 

Pulmonary embolism and 

infarction, acute 4225 401207 0.2 0.0 1.2 2.62x10-18 

Acute pulmonary heart disease 4225 401207 0.2 0.0 1.2 2.62x10-18 

Cholecystitis without cholelithiasis 2902 402530 0.2 0.0 1.2 6.13x10-18 

Diabetes type 2 with peripheral 

circulatory disorders 489 404943 0.5 0.1 1.6 1.15x10-17 

Psoriasis 2660 402772 0.2 0.0 1.2 8.09x10-17 

Other disorders of synovium, 

tendon, and bursa 18192 387240 0.1 0.0 1.1 1.35x10-16 

Spinal stenosis 4723 400709 0.1 0.0 1.2 2.34x10-16 

Psoriasis vulgaris 2015 403417 0.2 0.0 1.2 2.39x10-16 

Rheumatoid arthritis and other 

inflammatory polyarthropathies 4052 401380 0.2 0.0 1.2 8.08x10-16 

Precordial pain 4435 400997 0.1 0.0 1.2 9.39x10-16 

Nonspecific chest pain 4435 400997 0.1 0.0 1.2 9.39x10-16 

Back pain 7049 398383 0.1 0.0 1.1 8.69x10-15 

Nonrheumatic aortic valve 

disorders 3277 402155 0.2 0.0 1.2 3.86x10-14 

Peripheral enthesopathies and 

allied syndromes 25714 379718 0.1 0.0 1.1 2.71x10-13 

Spinal stenosis of lumbar region 3481 401951 0.1 0.0 1.2 5.36x10-13 

Degeneration of intervertebral disc 3433 401999 0.1 0.0 1.2 6.01x10-13 

Symptoms and disorders of the 

joints 4064 401368 0.1 0.0 1.1 6.35x10-13 

Septicemia 5245 400187 0.1 0.0 1.1 6.80x10-13 

Hypertensive heart and/or renal 

disease 1801 403631 0.2 0.0 1.2 1.13x10-12 

Peritoneal adhesions 

(postoperative) (postinfection) 3906 401526 0.1 0.0 1.1 1.49x10-12 

Other local infections of skin and 

subcutaneous tissue 2779 402653 0.2 0.0 1.2 6.83x10-12 

Superficial cellulitis and abscess 2438 402994 0.2 0.0 1.2 1.21x10-11 
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Hypertensive chronic kidney 

disease 1586 403846 0.2 0.0 1.2 1.95x10-11 

Varicose veins of lower extremity 11285 394147 0.1 0.0 1.1 3.13x10-11 

Phlebitis and thrombophlebitis 1339 404093 0.2 0.0 1.2 4.05x10-11 

Varicose veins 11806 393626 0.1 0.0 1.1 4.84x10-11 

Urinary incontinence 4369 401063 0.1 0.0 1.1 5.14x10-11 

Phlebitis and thrombophlebitis of 

lower extremities 968 404464 0.2 0.0 1.3 1.10x10-10 

Hypoventilation 124 405308 0.7 0.1 2.0 1.28x10-10 

Liver abscess and sequelae of 

chronic liver disease 6660 398772 0.1 0.0 1.1 1.98x10-10 

Other forms of chronic heart 

disease 2809 402623 0.1 0.0 1.2 2.19x10-10 

Disorders of sweat glands 719 404713 0.3 0.0 1.3 2.38x10-10 

Cardiac conduction disorders 7173 398259 0.1 0.0 1.1 4.38x10-10 

Hidradenitis 189 405243 0.5 0.1 1.7 5.20x10-10 

Noninfectious disorders of 

lymphatic channels 918 404514 0.2 0.0 1.3 5.84x10-10 

Other deficiency anemia 1347 404085 0.2 0.0 1.2 3.24x10-9 

Megaloblastic anemia 1282 404150 0.2 0.0 1.2 6.11x10-9 

Varicose veins of lower extremity, 

symptomatic 823 404609 0.2 0.0 1.3 7.79x10-9 

Chronic pulmonary heart disease 1099 404333 0.2 0.0 1.2 1.21x10-8 

Calcaneal spur; Exostosis NOS 790 404642 0.2 0.0 1.3 1.68x10-8 

Thoracic or lumbosacral neuritis or 

radiculitis, unspecified 4436 400996 0.1 0.0 1.1 4.06x10-8 

Cardiomyopathy 1572 403860 0.2 0.0 1.2 4.60x10-8 

Displacement of intervertebral disc 3415 402017 0.1 0.0 1.1 4.63x10-8 

Urinary calculus 7934 397498 0.1 0.0 1.1 5.25x10-8 

Primary/intrinsic cardiomyopathies 1533 403899 0.2 0.0 1.2 5.94x10-8 

Rupture of tendon, nontraumatic 5459 399973 0.1 0.0 1.1 6.52x10-8 

Abnormal glucose 852 404580 0.2 0.0 1.3 6.82x10-8 

Vitamin deficiency 2934 402498 0.1 0.0 1.1 7.68x10-8 

Other disorders of pancreatic 

internal secretion 1307 404125 0.2 0.0 1.2 8.08x10-8 

Other specified erythematous 

conditions 1254 404178 0.2 0.0 1.2 9.24x10-8 

Hypoglycemia 1279 404153 0.2 0.0 1.2 1.26x10-7 

Synovitis and tenosynovitis 8584 396848 0.1 0.0 1.1 1.32x10-7 

Sciatica 1583 403849 0.2 0.0 1.2 1.95x10-7 

Type 2 diabetes with renal 

manifestations 423 405009 0.3 0.1 1.4 1.96x10-7 

Incisional hernia 293 405139 0.4 0.1 1.4 2.42x10-7 
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Vitamin B-complex deficiencies 1647 403785 0.2 0.0 1.2 2.45x10-7 

Fluid overload 750 404682 0.2 0.0 1.3 2.85x10-7 

Renal failure NOS 1618 403814 0.2 0.0 1.2 5.28x10-7 

Acquired foot deformities 10733 394699 0.1 0.0 1.1 8.24x10-7 

Ingrowing nail 848 404584 0.2 0.0 1.2 8.38x10-7 

Acquired spondylolisthesis 1733 403699 0.1 0.0 1.2 1.15x10-6 

Malignant neoplasm of uterus 1548 403884 0.1 0.0 1.2 1.33x10-6 

Other alveolar and parietoalveolar 

pneumonopathy 440 404992 0.3 0.1 1.3 1.57x10-6 

Nephritis; nephrosis; renal 

sclerosis 7532 397900 0.1 0.0 1.1 2.17x10-6 

Bundle branch block 4465 400967 0.1 0.0 1.1 3.05x10-6 

Atrioventricular block 2846 402586 0.1 0.0 1.1 4.43x10-6 

Otitis externa 959 404473 0.2 0.0 1.2 5.49x10-6 

Primary pulmonary hypertension 504 404928 0.2 0.1 1.3 7.96x10-6 

Difficulty in walking 216 405216 0.4 0.1 1.4 8.67x10-6 

Pulmonary collapse; interstitial and 

compensatory emphysema 2840 402592 0.1 0.0 1.1 8.70x10-6 

Cirrhosis of liver without mention 

of alcohol 838 404594 0.2 0.0 1.2 1.08x10-5 

Decubitus ulcer 1342 404090 0.1 0.0 1.2 1.44x10-5 

Cellulitis and abscess of trunk 680 404752 0.2 0.0 1.2 1.45x10-5 

Joint effusions 1640 403792 0.1 0.0 1.1 1.52x10-5 

Respiratory abnormalities 609 404823 0.2 0.0 1.2 1.63x10-5 

Polycystic ovaries 264 405168 0.3 0.1 1.4 2.02x10-5 

Chronic Kidney Disease, Stage IV 557 404875 0.2 0.1 1.2 2.53x10-5 

Chronic venous insufficiency 271 405161 0.3 0.1 1.3 4.24x10-5 

Other venous embolism and 

thrombosis 592 404840 0.2 0.0 1.2 5.51x10-5 

Mixed hyperlipidemia 182 405250 0.4 0.1 1.4 6.28x10-5 

Other disorders of the kidney and 

ureters 4840 400592 0.1 0.0 1.1 6.52x10-5 

Barrett's esophagus 3516 401916 0.1 0.0 1.1 9.99x10-5 

Other abnormal blood chemistry 558 404874 0.2 0.1 1.2 1.02x10-4 

Other arthropathies 1934 403498 0.1 0.0 1.1 1.44x10-4 

Other abnormal glucose 496 404936 0.2 0.1 1.2 1.94x10-4 

Complication of internal 

orthopedic device 362 405070 0.2 0.1 1.3 2.51x10-4 

Other disorders of soft tissues 1288 404144 0.1 0.0 1.1 3.21x10-4 

Pilonidal cyst 511 404921 0.2 0.1 1.2 3.37x10-4 

Hereditary and idiopathic 

peripheral neuropathy 534 404898 0.2 0.1 1.2 3.88x10-4 
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Localized adiposity 77 405355 0.5 0.1 1.6 4.24x10-4 

Benign neoplasm of other 

endocrine glands and related 

structures 1100 404332 0.1 0.0 1.1 4.54x10-4 

Cardiac arrest and ventricular 

fibrillation 861 404571 0.1 0.0 1.1 6.90x10-4 

Ovarian dysfunction 306 405126 0.2 0.1 1.3 6.93x10-4 

Swelling of limb 215 405217 0.3 0.1 1.3 8.94x10-4 

Type 1 diabetes with neurological 

manifestations 178 405254 0.3 0.1 1.3 9.68x10-4 

Diabetes type 1 with peripheral 

circulatory disorders 97 405335 0.4 0.1 1.5 0.001 

Benign neoplasm of adrenal gland 237 405195 0.3 0.1 1.3 0.001 

Wheezing 326 405106 0.2 0.1 1.2 0.001 

Disorders of adrenal glands 3146 402286 0.1 0.0 1.1 0.001 

Portal hypertension 708 404724 0.1 0.0 1.2 0.001 

Osteomyelitis 324 405108 0.2 0.1 1.2 0.002 

Suppurative and unspecified otitis 

media 822 404610 0.1 0.0 1.1 0.003 

Osteomyelitis, periostitis, and 

other infections involving bone 363 405069 0.2 0.1 1.2 0.003 

Cardiac arrest 478 404954 0.2 0.1 1.2 0.004 

Endometrial hyperplasia 982 404450 0.1 0.0 1.1 0.004 

Left bundle branch block 2343 403089 0.1 0.0 1.1 0.005 

Acute and chronic tonsillitis 2063 403369 0.1 0.0 1.1 0.005 

Arthropathy associated with 

neurological disorders 74 405358 0.4 0.1 1.5 0.006 

Otitis media 1820 403612 0.1 0.0 1.1 0.007 

Atrial fibrillation 1104 404328 0.1 0.0 1.1 0.008 

Sinoatrial node dysfunction 

(Bradycardia) 556 404876 0.1 0.1 1.1 0.009 

Cancer of kidney and renal pelvis 1504 403928 0.1 0.0 1.1 0.009 

Infective connective tissue 

disorders 104 405328 0.3 0.1 1.4 0.009 

Other symptoms involving 

abdomen and pelvis 4125 401307 0.0 0.0 1.0 0.010 

Bronchitis 731 404701 0.1 0.0 1.1 0.010 

Chronic tonsillitis and adenoiditis 1122 404310 0.1 0.0 1.1 0.011 

Cellulitis and abscess of 

fingers/toes 658 404774 0.1 0.0 1.1 0.012 

Flat foot 197 405235 0.2 0.1 1.2 0.012 

Myopathy 322 405110 0.2 0.1 1.2 0.012 

Gouty arthropathy 215 405217 0.2 0.1 1.2 0.014 

Bariatric surgery 42 405390 0.4 0.2 1.6 0.016 
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Coagulation defects 1190 404242 0.1 0.0 1.1 0.017 

Abbreviations: PRS, polygenic risk score; SE, standard error; OR, odds ratio 
a Information shown in the table includes significant associations (Bonferroni corrected p-value of p = 5.6 x 10-6 

compared to individuals with normal range BMI) with class 3 obese BMI that are replicated with genome-wide PRS 

for obesity in UK Biobank and eMERGE cohorts (results significant to FDR-adjusted p-values of 0.019 and 0.015, 

respectively). Logistic regression models are adjusted for age, sex, site, and 10 principal components. 
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Supplemental Table 9.  Effect Sizes of Phenotypes Associated with Obesity Clinically and with PRS 

for Obesity in eMERGE and UK Biobanks  
 

Phenotype Clinical 

Effect Size 

(per 1-SD 

BMI) a 

eMERGE 

PRS Causal 

Effect Size b 

 

UK Biobank 

PRS Causal 

Effect Size c 

Obesity 3.78 2.06 1.83 

Overweight, obesity and other hyperalimentation 3.34 1.85 1.82 

Localized adiposity 2.81 1.76 1.62 

Bariatric surgery 2.38 2.81 1.56 

Sleep apnea 2.30 1.51 1.43 

Type 2 diabetes with neurological manifestations 2.06 1.55 1.66 

Polycystic ovaries 2.04 1.54 1.37 

Chronic venous insufficiency  1.92 1.33 1.35 

Diabetes type 2 with peripheral circulatory disorders 1.92 1.53 1.59 

Type 2 diabetes with renal manifestations 1.90 1.51 1.36 

Endometrial hyperplasia 1.88 1.30 1.12 

Type 2 diabetes 1.88 1.52 1.36 

Ovarian dysfunction 1.86 1.30 1.26 

Diabetes mellitus 1.79 1.50 1.34 

Arthropathy associated with neurological disorders 1.79 1.60 1.47 

Type 2 diabetes with ophthalmic manifestations 1.75 1.59 1.22 

Gouty arthropathy 1.66 1.26 1.22 

Essential hypertension 1.63 1.32 1.21 

Hypertension 1.63 1.33 1.21 

Gout 1.61 1.30 1.25 

Malignant neoplasm of uterus 1.60 1.35 1.16 

Incisional hernia 1.60 1.39 1.44 

Ventral hernia 1.59 1.44 1.19 

Noninfectious disorders of lymphatic channels 1.58 1.17 1.28 

Gout and other crystal arthropathies 1.58 1.25 1.23 

Other disorders of intestine 1.58 1.30 1.11 

Osteoarthrosis, localized, primary 1.56 1.19 1.21 

Hypertensive heart and/or renal disease 1.56 1.21 1.23 

Hypoventilation 1.56 1.33 2.01 

Osteoarthritis; localized 1.54 1.16 1.22 

Hidradenitis 1.54 1.50 1.73 

Disorders of sweat glands 1.53 1.22 1.33 

Calcaneal spur; Exostosis  1.52 1.19 1.27 
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Osteoarthrosis  1.52 1.21 1.23 

Diabetes type 1 with peripheral circulatory disorders 1.51 1.35 1.49 

Osteoarthrosis 1.49 1.21 1.22 

Umbilical hernia 1.48 1.28 1.25 

Edema 1.47 1.25 1.26 

Cardiomegaly 1.45 1.22 1.23 

Diabetic retinopathy 1.44 1.54 1.21 

Disorders of lipoid metabolism 1.43 1.15 1.15 

Hyperlipidemia 1.43 1.15 1.15 

Mixed hyperlipidemia 1.43 1.19 1.44 

Chronic ulcer of leg or foot 1.42 1.25 1.47 

Hypertensive chronic kidney disease 1.42 1.21 1.23 

Other chronic nonalcoholic liver disease 1.42 1.57 1.21 

Vitamin B-complex deficiencies 1.40 1.20 1.17 

Pilonidal cyst 1.40 1.33 1.21 

Angina pectoris 1.40 1.16 1.17 

Cellulitis and abscess of trunk 1.39 1.28 1.22 

Other specified erythematous conditions 1.39 1.24 1.20 

Unstable angina (intermediate coronary syndrome) 1.39 1.17 1.18 

Congestive heart failure; nonhypertensive 1.39 1.24 1.22 

Cholelithiasis with other cholecystitis 1.39 1.23 1.21 

Congestive heart failure  1.38 1.27 1.27 

Type 1 diabetes with neurological manifestations 1.38 1.39 1.35 

Osteoarthrosis, generalized 1.38 1.19 1.21 

Spinal stenosis of lumbar region 1.37 1.18 1.16 

Abnormal glucose 1.37 1.06 1.25 

Flat foot 1.36 1.17 1.24 

Chronic liver disease and cirrhosis 1.35 1.54 1.14 

Chronic Kidney Disease, Stage III 1.35 1.16 1.22 

Benign neoplasm of adrenal gland 1.34 1.49 1.29 

Ingrowing nail 1.34 1.14 1.22 

Hypercholesterolemia 1.33 1.10 1.15 

Chronic pulmonary heart disease 1.33 1.26 1.23 

Varicose veins of lower extremity, symptomatic 1.32 1.15 1.27 

Other arthropathies 1.32 1.14 1.11 

Benign neoplasm of other endocrine glands and 

related structures 1.32 1.13 1.14 

Type 1 diabetes 1.32 1.43 1.29 
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Fluid overload 1.31 1.32 1.25 

Vitamin deficiency 1.31 1.17 1.13 

Pulmonary heart disease 1.31 1.22 1.19 

Swelling of limb 1.31 1.14 1.31 

Acute pulmonary heart disease 1.31 1.17 1.18 

Pulmonary embolism and infarction, acute 1.31 1.15 1.18 

Heart failure NOS 1.30 1.23 1.21 

Atrial fibrillation 1.30 1.17 1.10 

Coronary atherosclerosis 1.30 1.22 1.13 

Ischemic Heart Disease 1.29 1.20 1.15 

Cholelithiasis 1.29 1.22 1.20 

Infective connective tissue disorders 1.29 1.43 1.36 

Other chronic ischemic heart disease, unspecified 1.29 1.18 1.20 

Acquired spondylolisthesis 1.29 1.10 1.15 

Atrial fibrillation and flutter 1.28 1.16 1.14 

Spinal stenosis 1.28 1.13 1.16 

Other abnormal glucose 1.28 1.07 1.23 

Primary pulmonary hypertension 1.28 1.30 1.27 

Wheezing 1.27 1.23 1.24 

Sleep disorders 1.26 1.09 1.35 

Varicose veins of lower extremity 1.26 1.12 1.08 

Phlebitis and thrombophlebitis of lower extremities 1.26 1.16 1.28 

Psoriasis 1.26 1.11 1.21 

Cholelithiasis and cholecystitis 1.25 1.22 1.20 

Superficial cellulitis and abscess 1.25 1.16 1.18 

Precordial pain 1.25 1.10 1.16 

Other forms of chronic heart disease 1.25 1.16 1.16 

Chronic Kidney Disease, Stage IV 1.24 1.24 1.24 

Bronchitis 1.24 1.09 1.12 

Rupture of tendon, nontraumatic 1.24 1.14 1.09 

Postoperative infection 1.24 1.27 1.18 

Barrett's esophagus 1.23 1.23 1.08 

Shortness of breath 1.23 1.17 1.18 

GERD 1.22 1.08 1.09 

Cirrhosis of liver without mention of alcohol 1.22 1.35 1.20 

Left bundle branch block 1.22 1.19 1.07 

Psoriasis vulgaris 1.22 1.11 1.25 

Other local infections of skin and subcutaneous tissue 1.22 1.13 1.17 
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Degeneration of intervertebral disc 1.22 1.07 1.16 

Other peripheral nerve disorders 1.21 1.15 1.24 

Abdominal hernia 1.21 1.08 1.06 

Thoracic or lumbosacral neuritis or radiculitis, 

unspecified 1.21 1.10 1.10 

Other disorders of pancreatic internal secretion 1.21 1.20 1.20 

Cancer of kidney and renal pelvis 1.20 1.16 1.08 

Spondylosis without myelopathy 1.20 1.07 1.11 

Other alveolar and parietoalveolar pneumonopathy 1.20 1.16 1.32 

Urinary incontinence 1.20 1.07 1.13 

Hypothyroidism NOS 1.20 1.11 1.15 

Chronic renal failure  1.20 1.19 1.22 

Sciatica 1.19 1.09 1.17 

Cholecystitis without cholelithiasis 1.19 1.18 1.21 

Esophagitis, GERD and related diseases 1.19 1.08 1.08 

Chronic tonsillitis and adenoiditis 1.19 1.19 1.10 

Hypothyroidism 1.19 1.10 1.15 

Spondylosis and allied disorders 1.19 1.07 1.10 

Disorders of adrenal glands 1.19 1.16 1.07 

Displacement of intervertebral disc 1.19 1.11 1.12 

Internal derangement of knee 1.19 1.10 1.13 

Myocardial infarction 1.18 1.22 1.16 

Intervertebral disc disorders 1.18 1.08 1.14 

Sinoatrial node dysfunction (Bradycardia) 1.18 1.18 1.14 

Renal failure 1.18 1.21 1.15 

Acute renal failure 1.17 1.27 1.15 

Other venous embolism and thrombosis 1.17 1.20 1.22 

Diseases of esophagus 1.17 1.08 1.08 

Other disorders of soft tissues 1.17 1.11 1.13 

Diaphragmatic hernia 1.16 1.06 1.08 

Primary/intrinsic cardiomyopathies 1.16 1.19 1.18 

Cardiomyopathy 1.16 1.17 1.18 

Varicose veins 1.16 1.10 1.08 

Portal hypertension 1.16 1.41 1.15 

Acute and chronic tonsillitis 1.16 1.14 1.08 

Otitis externa 1.15 1.09 1.19 

Nonspecific chest pain 1.15 1.06 1.16 

Bundle branch block 1.15 1.16 1.09 
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Suppurative and unspecified otitis media 1.15 1.08 1.13 

Peripheral enthesopathies and allied syndromes 1.14 1.04 1.06 

Complication of internal orthopedic device 1.14 1.17 1.26 

Acquired foot deformities 1.14 1.07 1.06 

Phlebitis and thrombophlebitis 1.14 1.16 1.24 

Cardiac arrest 1.14 1.21 1.17 

Other symptoms of respiratory system 1.14 1.08 1.15 

Other abnormal blood chemistry 1.13 1.07 1.22 

Hypoglycemia 1.13 1.28 1.20 

Respiratory abnormalities 1.13 1.21 1.23 

Difficulty in walking 1.13 1.13 1.44 

Hereditary and idiopathic peripheral neuropathy 1.13 1.12 1.20 

Otitis media 1.13 1.06 1.08 

Cellulitis and abscess of fingers/toes 1.13 1.09 1.13 

Atrioventricular block 1.13 1.08 1.11 

Liver abscess and sequelae of chronic liver disease 1.13 1.33 1.10 

Synovitis and tenosynovitis 1.13 1.09 1.07 

Other disorders of synovium, tendon, and bursa 1.13 1.06 1.08 

Rheumatoid arthritis and other inflammatory 

polyarthropathies 1.12 1.07 1.17 

Joint effusions 1.12 1.11 1.14 

Nephritis; nephrosis; renal sclerosis 1.11 1.15 1.07 

Cardiac arrest and ventricular fibrillation 1.11 1.18 1.15 

Renal failure NOS 1.11 1.20 1.16 

Osteomyelitis, periostitis, and other infections 

involving bone 1.11 1.21 1.21 

Back pain 1.11 1.05 1.12 

Peritoneal adhesions (postoperative) (postinfection) 1.11 1.29 1.15 

Urinary calculus 1.11 1.07 1.08 

Chronic ulcer of skin 1.11 1.24 1.28 

Depression 1.10 1.16 1.10 

Major depressive disorder 1.10 1.06 1.10 

Osteomyelitis 1.10 1.26 1.23 

Megaloblastic anemia 1.10 1.29 1.22 

Myopathy 1.09 1.14 1.18 

Mood disorders 1.09 1.15 1.09 

Nonrheumatic aortic valve disorders 1.09 1.09 1.17 

Symptoms and disorders of the joints 1.09 1.06 1.15 

Cardiac conduction disorders 1.08 1.09 1.09 
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Other disorders of the kidney and ureters 1.08 1.16 1.07 

Iron deficiency anemias, unspecified or not due to 

blood loss 1.08 1.13 1.13 

Pulmonary collapse; interstitial and compensatory 

emphysema 1.08 1.17 1.11 

Other symptoms involving abdomen and pelvis 1.07 1.06 1.05 

Respiratory failure 1.07 1.25 1.27 

Iron deficiency anemias 1.07 1.14 1.12 

Other deficiency anemia 1.05 1.16 1.21 

Coagulation defects 1.04 1.11 1.09 

Staphylococcus infections 1.03 1.20 1.21 

Respiratory failure, insufficiency, arrest 1.03 1.24 1.25 

Cardiac dysrhythmias 1.03 1.06 1.11 

Chronic bronchitis 1.02 1.18 1.22 

Obstructive chronic bronchitis 1.02 1.23 1.23 

Bacterial infection NOS 1.01 1.17 1.17 

Septicemia 0.99 1.21 1.13 

Decubitus ulcer 0.94 1.28 1.15 

Chronic airway obstruction 0.91 1.15 1.18 

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); SD, 

standard deviation; OR, odds ratio; PRS, polygenic risk score 

a Clinical effect size determined using the association of linear mean BMI with phenotypes. Effect size = 

exp(beta*population SD). SD of BMI in population is 6.99 kg/m2. Logistic regression models are adjusted for age, 

sex, and self-reported race.  
b Logistic regression models are adjusted for age, sex, site, and 10 principal components. Obesity genome-wide PRS 

scaled to mean of 0 and SD of 1.  
c Logistic regression models are adjusted for age, sex, and 10 principal components. Obesity genome-wide PRS 

scaled to mean of 0 and SD of 1.  
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Supplemental Table 10.  Disease Attributable to Obesity with Normalization of BMI in Obese Individuals a 

 

Phenotype Attributable 

Disease Events 

Attributable Risk 

Proportion (%) 

Obesity 39910 98 

Overweight, obesity and other hyperalimentation 43785 96 

Bariatric surgery 3829 94 

Sleep apnea 17624 87 

Ovarian dysfunction 2602 85 

Type 2 diabetes with neurological manifestations 4741 84 

Diabetes type 2 with peripheral circulatory disorders 745 80 

Arthropathy associated with neurological disorders 317 79 

Type 2 diabetes with renal manifestations 3116 78 

Hidradenitis 338 77 

Endometrial hyperplasia 340 75 

Type 2 diabetes with ophthalmic manifestations 1635 75 

Gouty arthropathy 1185 75 

Calcaneal spur; Exostosis  381 72 

Type 2 diabetes 25512 72 

Disorders of sweat glands 565 70 

Gout 3349 70 

Incisional hernia 1411 70 

Chronic venous insufficiency  736 69 

Diabetes mellitus 25916 68 

Gout and other crystal arthropathies 3367 68 

Osteoarthrosis, localized, primary 7119 66 

Cholelithiasis with other cholecystitis 480 64 

Osteoarthritis; localized 8147 64 

Ventral hernia 931 62 

Pilonidal cyst 159 62 

Umbilical hernia 720 61 

Benign neoplasm of adrenal gland 251 61 

Malignant neoplasm of uterus 580 60 

Diabetic retinopathy 1349 60 

Osteoarthrosis  7360 59 

Mixed hyperlipidemia 9874 57 

Angina pectoris 2213 57 

Noninfectious disorders of lymphatic channels 693 55 

Osteoarthrosis 13270 55 



 

 

 

 

 

 

 

213 

Spinal stenosis of lumbar region 2523 55 

Benign neoplasm of other endocrine glands and related structures 865 55 

Unstable angina (intermediate coronary syndrome) 2018 54 

Hypertensive heart and/or renal disease 5126 54 

Flat foot 217 53 

Other chronic nonalcoholic liver disease 3281 53 

Diabetes type 1 with peripheral circulatory disorders 71 53 

Other disorders of intestine 2856 52 

Acquired spondylolisthesis 904 50 

Edema 5420 50 

Cellulitis and abscess of trunk 947 48 

Osteoarthrosis, generalized 1568 48 

Hyperlipidemia 22612 48 

Disorders of lipoid metabolism 22847 48 

Essential hypertension 33929 48 

Type 1 diabetes with neurological manifestations 464 48 

Cholelithiasis 1746 48 

Hypercholesterolemia 6118 47 

Hypertension 34763 47 

Other specified erythematous conditions 176 47 

Spinal stenosis 2782 47 

Cardiomegaly 3554 47 

Chronic liver disease and cirrhosis 3291 46 

Other arthropathies 2051 46 

Chronic Kidney Disease, Stage III 1661 45 

Abnormal glucose 4234 45 

Psoriasis 859 45 

Hypertensive chronic kidney disease 2341 45 

Chronic ulcer of leg or foot 786 45 

Ingrowing nail 408 44 

Rupture of tendon, nontraumatic 584 44 

Vitamin B-complex deficiencies 1031 43 

Type 1 diabetes 2683 42 

Precordial pain 461 42 

Other alveolar and parietoalveolar pneumonopathy 363 41 

Cholelithiasis and cholecystitis 1914 41 

Other chronic ischemic heart disease, unspecified 2153 41 

Barrett's esophagus 212 40 
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Thoracic or lumbosacral neuritis or radiculitis, unspecified 1621 40 

Sciatica 756 40 

Vitamin deficiency 4265 39 

Psoriasis vulgaris 529 39 

Hypoventilation 217 39 

Pulmonary embolism and infarction, acute 775 39 

Displacement of intervertebral disc 1318 39 

Wheezing 674 39 

Degeneration of intervertebral disc 3139 38 

Acute pulmonary heart disease 860 38 

Other disorders of pancreatic internal secretion 197 38 

Other peripheral nerve disorders 2788 38 

Internal derangement of knee 1598 38 

Phlebitis and thrombophlebitis of lower extremities 228 38 

Congestive heart failure; nonhypertensive 5115 38 

Coronary atherosclerosis 7995 37 

Fluid overload 1412 37 

Swelling of limb 1210 37 

Spondylosis without myelopathy 2522 37 

Bronchitis 377 37 

Varicose veins of lower extremity, symptomatic 301 37 

Ischemic Heart Disease 9207 36 

Other abnormal glucose 2549 36 

Sleep disorders 3892 36 

Congestive heart failure  3357 36 

Spondylosis and allied disorders 2803 35 

Pulmonary heart disease 2050 35 

Chronic pulmonary heart disease 1179 35 

Cancer of kidney and renal pelvis 630 35 

GERD 6945 35 

Primary pulmonary hypertension 236 34 

Intervertebral disc disorders 4148 34 

Other forms of chronic heart disease 1526 34 

Chronic tonsillitis and adenoiditis 434 33 

Heart failure  1045 33 

Left bundle branch block 267 33 

Cholecystitis without cholelithiasis 322 33 

Diaphragmatic hernia 849 33 
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Urinary incontinence 1456 32 

Cirrhosis of liver without mention of alcohol 1103 32 

Atrial fibrillation 3628 31 

Esophagitis, GERD and related diseases 6761 31 

Chronic Kidney Disease, Stage IV 504 31 

Other local infections of skin and subcutaneous tissue 548 31 

Disorders of adrenal glands 662 31 

Atrial fibrillation and flutter 3633 30 

Superficial cellulitis and abscess 3106 30 

Hypothyroidism  4139 30 

Portal hypertension 410 30 

Hypothyroidism 4743 30 

Myocardial infarction 1795 30 

Peripheral enthesopathies and allied syndromes 4001 29 

Varicose veins of lower extremity 307 29 

Joint effusions 639 29 

Shortness of breath 6060 28 

Acquired foot deformities 1186 28 

Abdominal hernia 2234 28 

Diseases of esophagus 6642 28 

Suppurative and unspecified otitis media 604 28 

Acute and chronic tonsillitis 440 27 

Otitis externa 354 27 

Hereditary and idiopathic peripheral neuropathy 1018 26 

Infective connective tissue disorders 73 26 

Other disorders of synovium, tendon, and bursa 1960 26 

Synovitis and tenosynovitis 985 26 

Complication of internal orthopedic device 490 26 

Chronic renal failure 2373 26 

Other abnormal blood chemistry 1069 25 

Rheumatoid arthritis and other inflammatory polyarthropathies 1130 25 

Other venous embolism and thrombosis 1265 24 

Otitis media 695 23 

Nonspecific chest pain 8202 23 

Other disorders of soft tissues 78 23 

Sinoatrial node dysfunction (Bradycardia) 546 23 

Bundle branch block 301 23 

Primary/intrinsic cardiomyopathies 998 23 
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Cardiomyopathy 1156 22 

Liver abscess and sequelae of chronic liver disease 487 22 

Cardiac arrest 152 21 

Renal failure 3332 21 

Phlebitis and thrombophlebitis 192 20 

Nephritis; nephrosis; renal sclerosis 383 19 

Difficulty in walking 314 19 

Urinary calculus 838 19 

Atrioventricular block 309 19 

Back pain 4508 18 

Acute renal failure 1634 18 

Major depressive disorder 1140 18 

Other symptoms of respiratory system 7856 17 

Cardiac arrest and ventricular fibrillation 171 17 

Symptoms and disorders of the joints 1492 17 

Depression 2912 16 

Varicose veins 223 16 

Cellulitis and abscess of fingers/toes 203 16 

Mood disorders 3212 15 

Peritoneal adhesions (postoperative) (postinfection) 73 14 

Nonrheumatic aortic valve disorders 487 13 

Other symptoms involving abdomen and pelvis 575 12 

Megaloblastic anemia 129 12 

Respiratory abnormalities 309 12 

Cardiac conduction disorders 1021 11 

Osteomyelitis, periostitis, and other infections involving bone 246 11 

Myopathy 154 11 

Osteomyelitis 194 11 

Other disorders of the kidney and ureters 734 10 

Renal failure NOS 142 10 

Pulmonary collapse; interstitial and compensatory emphysema 1177 9 

Iron deficiency anemias, unspecified or not due to blood loss 314 8 

Hypoglycemia 61 7 

Iron deficiency anemias 290 6 

Chronic ulcer of skin 206 6 

Other deficiency anemia 46 3 

Coagulation defects 142 3 

Chronic bronchitis 49 3 
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Respiratory failure 154 2 

Cardiac dysrhythmias 551 2 

Obstructive chronic bronchitis 18 1 
a Information shown in the table includes the number of predicted attributable disease events if individuals with 

class 1-3 obesity have BMI normalized for phenotypes showing association in all 3 cohorts (class 3 obesity in 

clinical cohort and obesity PRS in eMERGE and UK biobanks). Logistic regression models are adjusted for age, 

sex, and self-reported race.  
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Supplemental Figure 1. Tipping Point Analysis for Possible Unmeasured Confounders 

 

  
 

Trends of estimated odds ratios of confounders needed to change significant phenotype associations. Control is 

normal BMI category. The prevalence rate difference between the specific BMI category and normal BMI is 10%. 

Only phenotypes meeting Bonferroni significance threshold (p = 5.6 x 10-6) in at least one of the BMI categories are 

shown. Gray represents non-significant findings. Most phenotypes with association with class 3 obesity would need 

an unmeasured confounder with OR greater than 2 to bias association findings. Among the 644 phenotypes 

associated positively or negatively with class 3 obesity, 528 (82.0%) required the hypothetical unmeasured binary 

confounder to have an OR>2 to change the significance conclusion when its prevalence rate difference between 

class 3 obesity and normal BMI was 10%. The percentages were 77.2%, 67.4%, 57.2%, and 79.0% for class 2 

obesity, class 1 obesity, overweight, and underweight, respectively. 
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Supplemental Figure 2.  Association of Obesity 97-SNP PRS with Diseases in PheWAS in UK 

Biobank Cohort 
 

 
 

Blue horizontal line represents p = 0.05. Red horizontal line represents Bonferroni significance threshold p = 3.1 x 

10-5. Point direction relates to directionality of odds ratio: upward triangles are associated with increased risk for 

patients while downward triangles are associated with decreased risk. 
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Supplemental Figure 3.  Association of Genome-wide PRS with Diseases in PheWAS in UK 

Biobank Cohort 
 

 
 

Blue horizontal line represents p = 0.05. Red horizontal line represents Bonferroni significance threshold p = 3.1 x 

10-5. Point direction relates to directionality of odds ratio: upward triangles are associated with increased risk for 

patients while downward triangles are associated with decreased risk. 
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Supplemental Figure 4. A. 97-SNP Obesity PRS Compared to Measured Body Mass Index B. 

Genome-wide Obesity PRS Compared to Measured Body Mass Index 
 

A. 

 
B. 

  
Among individuals with measured body mass index (BMI) in the eMERGE cohort, the calculated 97-SNP polygenic 

risk score for obesity explained 1.92% of the variance in mean BMI and the calculated genome-wide polygenic risk 

score for obesity explained 9.51% of the variance in mean BMI. 
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Supplemental Figure 5.  Clinically Observed versus Genome-wide Obesity PRS PheWAS Causal 

Effect Sizes for All Phenotypes 
 

 
1816 total phenotypes with each dot representing the observational versus genomic effect size (in the eMERGE 

cohort). Red line represents linear regression. Adjusted R2 = 0.32. 
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Supplemental Figure 6. Number of Disease Events Attributable to Obesity with Normalization of 

Obesity Classes 1-3 to Normal BMI 

 
 

 
Phenotypes shown are 199 phenotypes that were associated with class 3 obesity in the clinical cohort and obesity 

polygenic risk score in both eMERGE and UK biobank cohorts. Example phenotypes are annotated.  
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CHAPTER VII 

 

Summary 

 

The body of research in this dissertation demonstrates that secondary use of clinical data within 

the EHR along with linkage of genetic data provides an efficient method for aggregating otherwise 

disparate information for research. Use of EHR data has proven a powerful method for elucidation of 

genomic influences on diseases, traits, and drug-response phenotypes and will continue to have increasing 

applications in large cohort studies with the goal of driving personalized medicine. Through the research 

and findings in this dissertation, I have made significant advancements to the multidisciplinary field of 

biomedical informatics by elucidating patterns of clinically enigmatic disease processes using novel 

phenotyping methods and genome-wide risk association analyses.  

 

Contributions to EHR Phenotyping 

The first main contribution this body of work makes to the field of biomedical informatics is 

development of phenotyping methods to demonstrate patterns of disease. Through the use of different 

phenotyping methods and dissimilar disease processes, we were able to illustrate the ability to use data 

that was curated for clinical medicine to improve the current knowledge on both common and rare 

diseases.  

Systemic loxoscelism is extremely rare. In this research, we aimed to determine the incidence and 

refine the phenotype of this uncommon disease. The first phenotyping method utilized in this study used a 

programmed search of the medical record, by which text data of “loxoscelism” was extracted from 

clinical documents. Over a 25-year period at Vanderbilt Medical Center in Nashville, TN, a location 

endemic to the brown recluse spider, there were only 373 text occurrences of “loxoscelism” in the clinical 

records. Through the use of regular expressions, negation was identified in 168 of these individuals and, 
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after clinical review, true systemic moderate or severe loxoscelism classified only 57 individuals. Thus, 

this rare disease only occurred 2-3 cases/year at a large academic medical center in an endemic region, yet 

this study represents the largest cohort of individuals with systemic loxoscelism to date. It would be 

virtually impossible to, without the use of informatics techniques and computerized text mining, to 

retrospectively identify these individuals. Denny et al. previously demonstrated the ability to show that 

the phenotype of hippus, or repetitive oscillation of the pupils, is very rare in the literature, but a 

comprehensive search of the EHR can identify much larger numbers.(1) Our evaluation for individuals 

with loxoscelism again demonstrates that retrospectively repurposing the EHR can identify rare diseases 

in numbers previously unachievable. 

Unfortunately, while the addition of the requirement for “brown recluse”, specific ICD codes, or 

other clinical markers could have improved sensitivity in our search for individuals with loxoscelism, it 

did not improve the phenotyping accuracy. Thus, manual review of the deidentified patient records was 

chosen for the accuracy desired in this study. Due to the sample size, this was feasible. While a 

combination of text mining and clinical review resulted in a highly accurate phenotype for systemic 

loxoscelism, this method would be challenging if there were thousands of individuals with “loxoscelism” 

in the patient records.  

Larger cohorts often require more high-throughput methods, such as applying Boolean 

phenotyping algorithms that can be applied across institutions and EHRs. Clinical expertise nevertheless 

is required for highly accurate phenotyping during the process of curating a precise phenotyping 

algorithm. This method performs well for applying a single phenotyping algorithm to a large sample size, 

but not for the capture of a multitude of phenotypes. In our search for individuals with loxoscelism, use of 

negation and other markers included in Boolean phenotype algorithm creation and validation would have 

the ability to reach comparative precision.  

The second phenotyping method in this study was to evaluate for phenotypes seen in individuals 

diagnosed with loxoscelism using a phenome-wide phenotyping approach, PheWAS. Analogous to a 
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GWAS, PheWAS leverages the breadth of phenotypes in the EHR to perform systematic interrogation for 

associations with an independent variable, typically a genotype. In addition to being applied to large 

cohorts, PheWAS can utilize thousands of phenotypes determined by billing codes at a scale for which 

manual curation and validation of individual phenotypes is not practical.(2–4) This use of a phenome-

wide approach to characterization of this rare disease allowed for an agnostic approach to disentangling 

the presentation of this severe, but challenging to diagnose, illness. 

The final two aims of this dissertation expanded on the use of phenome-wide approaches by 

application to large sample sizes to identify phenotypes and phenotypic associations with PheWAS. In the 

third aim of this dissertation, grouping of ICD codes into phecodes was used for phenotyping of three 

separate common postoperative complications, demonstrating that associations with phecodes 

representing postoperative complications could be replicated across EHRs and using both clinical and 

genomic predictors. In this study, both postoperative infection and incisional hernia demonstrated an 

association with clinical BMI and genetically-determined BMI in different cohorts. Further, this method 

showed translation of the phecode mapping and association findings across EHRs and medical systems. 

On an even larger scale, the fourth aim demonstrated replicability of 199 phenotype associations with 

BMI and genetic risk for obesity across 3 separate cohorts. It is worth noting that billing codes derived 

from ICD-9 were used in 2 of the cohorts (Vanderbilt clinical cohort and eMERGE cohorts) and ICD10 

codes were used in the UK Biobank cohort. Regardless of the ICD billing code system used, mapping of 

the ICD code to a phecode was performed to delineate phenotypes. This is one of the first studies showing 

replication of association findings with phecodes derived from different ICD coding structures, 

demonstrating the validity of the phecode mapping systems. This is important because as ICD codes 

change over time, phecodes are more constant and the only update required is additional mapping. While 

the creation of mapping systems for billing codes to a single phecode system can be laborious, once 

completed it allows for the use of billing codes from different sources in research.  
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It has been previously well demonstrated that billing codes in the medical record have variable 

accuracy in representing the diagnoses of patients, with one study showing a range of positive predictive 

values (PPVs) for ICD codes from 0.12 to 0.56 across ten diseases.(5) In a recent study by Cohen et al., 

629 of 780 patients with congenital heart disease were correctly categorized using ICD-10 codes 

(sensitivity 0.81, 95% confidence interval 0.78-0.83), with a high degree of specificity of 0.99 (95% 

confidence interval 0.99-1).(6) Another study showed fairly high accuracy (sensitivity and specificity of 

82.3% and 78.3%, respectively) of ICD-9 codes for the identification of surgical patients with sepsis.(7) 

In contrast, among 4,400 individuals in a community cohort, the use of ICD-9 codes for peripheral arterial 

disease demonstrated poor sensitivity of 38.7% but high specificity (92.0%).(8) Further, in other 

populations, such as trauma, the sensitivity of diagnosis codes is even lower. Evaluation of all patients 

with proximal tibia fractures in the 2011 and 2012 American College of Surgeons' National Trauma Data 

Bank showed that ICD-9 codes compared to manual chart review for 12 comorbidities ranged in 

sensitivities from 18.8% for previous myocardial infarction to 2.4% for alcoholism.(9)  

It is well accepted that ICD codes generally have low specificity but are highly sensitive for 

diseases, as a clinician may bill an ICD code for a diagnosis based upon clinical suspicion rather than 

confirmation of disease.(10, 11) However, as discussed above, sensitivity for some phenotypes may be 

lower, especially for phenotypes without a specifically representative ICD code, diseases that are 

challenging to clinically diagnose, or phenotypes with clinical similarities to others. For example, it is not 

uncommon for a patient to be diagnosed with ulcerative colitis and later be found to have inflammatory 

bowel disease outside the colon or rectum, representative of a Crohn’s disease diagnosis instead.(10) 

Thus, the phenotyping using billing codes alone is highly variable, with much of the dependency being 

the population studied and the phenotype of interest.   

ICD codes are generated for billing purposes and similar to other data within the EHR, must be 

captured retrospectively and repurposed for research. While EHRs contain a wealth of extractable 

information for phenotype classification, their interface and the data generated within them are used 



 

 

 

 

 

 

 

228 

primarily for clinical care and reimbursement, typically with little consideration towards research impact. 

The secondary use of EHRs for clinical, genomic, and pharmacogenomics discovery can be challenged by 

variable accuracy resulting from clinical uncertainty, omissions, or billing errors as discussed above, 

along with lack of standardization, irregular follow-up, incompleteness of patient records, and significant 

amounts of unstructured information. Due to the abscense of EHR centralization, the length and depth of 

a patient’s record can vary greatly due to where a patient receives his or her care, with patients often 

seeing multiple disconnected providers within a region. A study to evaluate the effect of potential data 

fragmentation on the accuracy of a phenotyping algorithm for type 2 diabetes found that almost one-third 

of cases were missed if EHR data from only a single site was used.(12) While completeness of the EHR is 

difficult to define, it is important for researchers to understand the likely limitations of the data and how it 

may affect study findings.(13) Billing codes are often used secondarily for research; thus, quality 

assessments to understand their strengths and weaknesses along with methods to validate research 

findings are critical to the advancement of clinical research informatics. 

 Due to the variability in billing code accuracy in studies in which billing codes are used for 

phenotyping, each individual study must incorporate methods to minimize both the phenotyping 

inaccuracy and its effects on results. This body of work has validated that a successful method of reducing 

inaccuracy in billing codes is grouping of ICD codes into clinically relevant categories.  

In the two final aims of this work, we demonstrated the ability of phecodes to overcome the 

limitations of individual ICD codes and validated their ability to provide enhanced statistical power by 

identifying genomic associations with disease as well as to reflect actual clinical disease patterns seen in 

practice. Billing codes were captured from the deidentified clinical record of individuals and grouped into 

phecode categories which do not have the granularity of the original billing codes.(2, 14) However, the 

granularity of the original code may not be necessary for the analysis to be performed. For example, in the 

final aim of this dissertation, we found a strong association between genetic risk for obesity and major 

depressive disorder. This single phecode for major depressive disorder incorporates 14 ICD codes. In this 
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analysis, we did not need the granularity of the individual ICD codes, as it was not relevant to the 

research study if the individual had “Major depressive disorder, single episode”, “Major depressive 

disorder, recurrent episode”, or “Major depressive disorder, single episode, moderate degree”, etc. This 

grouping allows for a single test to be performed, rather than 14 separate association tests, which would 

result in significantly reduced statistical power. This example also demonstrates why phecode groupings 

have been shown to better align with clinical diseases in practice.(15) It is much more likely for a 

clinician to accurately diagnose “Major depressive disorder” than to accurately determine the number of 

episodes or degree of severity of the episode. Grouping of billing codes into clinically relevant categories 

to limit the number of association testings performed in these large analyses gives significantly greater 

power to find associations. While these phecodes do not have the detail provided by clinical expertise or 

well-curated phenotypes developed using a combination of concepts from multiple locations in the 

clinical record, phecodes do provide the ability to evaluate the entire phenome of an individual with ease.  

In addition to grouping of ICD codes, another method demonstrated by this research to improve 

the accuracy of ICD codes is the requirement of 2 or more ICD codes on separate dates for mapping to a 

single phecode in the PheWAS analyses. We employed this approach in our studies to improve specificity 

at a minimum to incorporate only codes that are present within the clinical chart at least twice on separate 

days.(5) In an analysis of ten diseases, using two or more ICD codes (billed on different days) improved 

the average positive predictive value from 0.71 to 0.84; however, with increasing requirement for ICD 

code instances, there was a reduction in sensitivity.(5) This suggested the requirement for two or three 

codes, depending on the phenotype, will maximize precision. We demonstrated the validity of these 

methods by showing replicability of associations findings across cohorts and using both clinical and 

genomic predictors. 

Lastly, large sample sizes and a phenome-wide approach allows for accrual of adequate case and 

control numbers to overcome some degree of inaccurate phenotype labeling for identification of 

associations in research. Validation of the association results in multiple cohorts, spanning providers and 
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institutions, can reduce the likelihood that findings are secondary to biases of practice patterns or EHRs at 

a single institution. Further demonstrated in the final two aims, the use of both a trait and an instrumental 

variable such as genetics as the predictor in a PheWAS analysis can substantiate results as well.  

 

Contributions to EHR-linked Genomic Analyses 

 The second contribution that this dissertation makes to the field of biomedical informatics is that 

it is the first application of genome-wide risk scores in a phenome-wide approach, demonstrating its 

ability to greater define disease risk and associations. These methods represent a novel approach to 

combining genome and phenome-wide data, and the described research makes contributions the 

component disciplines and application areas of genomics, phenotyping, clinical research informatics, and 

clinical medicine.  

This dissertation uses genome-wide polygenic risk scores for BMI to identify associations with 

phenotypes. We showed that a genome-wide PRS correlated much more strongly with clinically observed 

BMI than a PRS composed of only 97 SNPs. The genome-wide PRS explained 9.51% of the variance in 

BMI compared to 1.92% for the 97-SNP PRS. Pearson correlation coefficient also showed a much 

stronger correlation between observed BMI and the genome-wide PRS (0.26 [95% CI 0.25-0.27]) 

compared to the 97-SNP PRS (0.11 [95% CI 0.10-0.12]). Prior studies have demonstrated that genome-

wide PRSs have greater correlation with the trait in coronary artery disease, atrial fibrillation, type 2 

diabetes, and inflammatory bowel disease.(16) However, for these 4 diseases, only 2-4% of the variance 

was explained by the trait-specific genome-wide polygenic risk score. This suggests the PRS for BMI 

utilized in this study was very strongly correlated with BMI.  

Not only does broader inclusion of the genome for obesity explain almost 5x the variance in BMI 

compared to a 97-SNP PRS, it has the benefit of actually performing better in genetic association 

analyses. Genome-wide PRSs have been applied to obesity in prior studies; however, a genome-wide PRS 

for BMI has not been assessed for association with phenotypes in a phenome-wide approach. We were 
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able to demonstrate disease associations with BMI across all disease categories and encompassing almost 

200 phenotypes, including associations not previously described in the literature, which represent 

contributions to clinical medicine. It is important to note that phenotypes can have some degree of 

redundancy, especially when utilizing a hierarchical coding system such as the phecode mapping system. 

In our study, we reviewed each of the disease associations and confirmed that 95 of the 199 phenotypes 

associated with clinical BMI and genetically-determined BMI are unique “parent” phenotypes. This is 

unprecedented compared to other analyses of comorbidities associated with obesity. The genome-wide 

PRS found 2.2x more associations than the 97-SNP PRS (296 compared to 135), suggesting increased 

power of the genomic instrument with greater inclusion of the genome. Future studies to assess the 

association of phenotypes with a genetic risk score for a trait should not focus only on those SNPs known 

to be associated with that trait, but instead consider the use of genome-wide PRSs.  

 PRSs for diseases have been applied in a phenome-wide approach in prior studies. The first of 

these explored the association of PRS calculations for various cancers with the phenome.(17, 18) In one 

study, different thresholds of p-value significance in GWAS studies and LDpred models were used in 

construction of the PRS for various cutaneous cancers.(18) In contrast to our findings, they concluded that 

as the p-value threshold incorporated less significant GWAS SNPs, the predictive ability of the PRS to 

find associations was not improved.  

Another remarkable finding of this body of work was the strong concordance between 

observational effect sizes for the association of BMI with phenotypes and genomic effect sizes for the 

association of the genome-wide PRS with phenotypes (R2 = 0.54). This finding further substantiates the 

strong association between these disease phenotypes and obesity. In review of the literature, we cannot 

identify a study performing a similar correlation test of the clinical PheWAS to the genetically-predicted 

PheWAS between two populations as performed in this study to compare the observational and PRS 

effect sizes. However, a couple of reference studies have shown that the predicted phenomic heritability 

from family history has an R2 ~ 0.3 (19) and a comparison of effect sizes for the PheWAS of systolic 
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blood pressure genetic risk score between white individuals in the Million Veterans Program and the UK 

Biobank was R2 ~ 0.5.(20) 

In this study, we did not address the non-linearity of some genetic associations (e.g., phenotypes 

that may be increased in both underweight and overweight populations). The observational cohort showed 

several phenotypes with evidence of nonlinear associations with BMI, including asthma and 

gastroesophageal reflux disease which were increased in all BMI categories compared to individuals with 

a normal BMI. Nonlinearity would generally bias towards the null hypothesis, thus some associations 

with obesity may not be demonstrated. Further, all BMI values were included in the determination of each 

individual’s median BMI in the PheWAS analysis. As we included all recorded BMI values, we were 

unable to assess the temporal relationship between observations and BMI. Many conditions may be 

entered into the EHR after they actually occurred. An analysis of diagnosis timing with respect to BMI 

would need to be considered on an individual phenotype basis, evaluating each as chronic or acute, and 

considering ways to differentiate between new-onset and potentially newly entered but extant diseases, 

instead of the more phenome-wide approach deployed in this research. For this dissertation, my aim was 

to focus on the increased phenotypic risk associated with obesity and genetic risk for increased BMI over 

the course of a lifetime, but further research should focus on phenotypes increased in underweight 

populations and the temporality of BMI changes with diseases. 

As this research demonstrates a significant association of genetic risk for obesity with 

phenotypes, it suggests a possible causal role for obesity in the occurrence of these diseases. Mendelian 

randomization is the process of using genomic variants associated with a trait as an instrumental variable 

in association studies. The main advantage of using Mendelian randomization is that genetic variants are 

not subject to the same biases as traditional observational studies due to their random assortment in the 

population and determination at conception, thus allowing for causal inferences.(21, 22) There are three 

main assumptions that underlie the MR approach and must hold true for a causal role to be concluded. 

The first is that the SNPs selected for the genetic instrument must be associated with the trait, in this 
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circumstance BMI. We found a very strong association of the genome-wide PRS with BMI, thus the first 

assumption is met in this study. The second assumption is that the genetic instrument is not associated 

with confounders, and the third assumption is that the instrument is associated with disease exclusively 

through their effect on the trait (i.e., obesity).(23) These assumptions are included to ensure that 

pleiotropic effects of the SNPs are not leading to confounding or apparent associations. We were able to 

demonstrate that adjustment for observed BMI diminished the statistical association between the genetic 

instrument and many of the phenotypes, which supports BMI as the causal mediator of the association 

between the PRS and phenotypes, arguing against a major contribution from pleiotropic effects. However, 

as evaluation for pleiotropy on a genome-wide and phenome-wide scale is not practical, this study does 

not claim a causal association.  

There are many prior studies that have suggested that genetic risk for obesity, and thus elevated 

BMI, has a causal role in development of comorbidities through the use of other techniques such as MR-

Egger analysis.(24, 25) MR-Egger is a linear regression of estimated SNP effects for the risk allele on 

exposure against the corresponding estimates of SNPs on the outcome weighted by the inverse variance 

of the SNP on outcome effect estimates.(24) This approach can demonstrate the presence of pleiotropic 

SNPs in the instrument that can bias causal estimates, increase the rate of false positives (i.e., type I 

errors), or introduce bias to the null. MR-Egger, however, provides a causal estimate (making certain 

assumptions) that is robust to such pleiotropy. In this study, we further explored the potential impact of 

directional pleiotropy by conducting MR-Egger regression to estimate the average directional pleiotropic 

effect of the 97 SNPs for a strongly associated phenotype, coronary artery disease, to evaluate for the 

causal effect of BMI. We found that the intercept from MR-Egger regression was not significantly 

different from zero (0.00, 95% CI −0.01, 0.01; P = 0.96) suggesting no directional pleiotropy. Further 

studies should focus on the use of MR-Egger methods in a genome and phenome-wide approach, 

requiring a methodical evaluation using effect sizes of each SNP for the instrumental variable trait and 

effect sizes of each SNP on all phenotypes.  
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Contributions to Translational Medicine 

EHR-based biobanks have the potential to integrate genomic data with billing codes, medication 

receipt, laboratory results, and textual data, thus allowing for greater coverage of the phenome in genomic 

association studies. This depth of data can be used to drive personalized medicine approaches for more 

targeted disease treatment, earlier disease detection, identification of risk factors, and prevention 

strategies. The goal of personalized medicine, a term often used interchangeably with precision or 

individualized medicine, is to tailor medical decisions and practices to the individual based on each 

patient’s unique subset of factors, including genetic, phenotypic, biomarker, or psychosocial variables that 

distinguish a given patient from other patients with similar clinical presentations.(26)  

In regards to medical care, the application of personalized medicine could minimize harmful side 

effects, create a more successful result, and potentially be more cost effective by reducing the use of less 

successful and less direct treatment pathways. The application of this to pharmacology has the ultimate 

goal to provide ‘the right drug, with the right dose at the right time to the right patient’.(27) While 

genomics is only a portion of the realm of personalized medicine, translation of genetic risk profiles to 

clinical medicine have the potential to elevate benefits and reduce risks to patients by targeting both 

prevention and treatment more effectively. 

Genetic risk information can prevent disease only if it improves the use of behavioral or medical 

interventions. The strongest case can be made when a unique intervention is needed for individuals with a 

particular genotype. For example, testing for BRCA risk variants represents a case in which individuals 

with increased risk for breast cancer may be both screened and treated differently than the rest of the 

population. Magnetic resonance imaging studies for screening as well as prophylactic mastectomies or 

oophorectomies for prevention are pursued in many of these patients. However, many screening protocols 

are provided for individuals regardless of genetic risk based upon known clinical risk factors, for example 

screening for cervical or prostate cancer. Many disease prevention strategies involve recommendations 

for healthy lifestyles including no smoking, healthy diets, and exercise, which are best applied to the 
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entire population.(28) Further, current research suggests that genetic risk counseling does not significantly 

alter self-reported motivation or prevention program adherence when applied to overweight individuals at 

risk for diabetes.(29) However, there is evidence that genomic risk profiling can increase physician 

follow-up and does not result in adverse changes in psychological health or follow-up related distress for 

the patients.(30) Thus, the optimism is that the knowledge of genetic risk for a disease would lead to 

changes in recommendations for prevention or treatment provided by physicians and choices made by 

patients.  

When these concepts are applied to obesity, one can imagine the opportunities for identifying 

individuals at risk for obesity based upon risk factors early in life. While some of those risk factors may 

include environmental exposures (e.g., socioeconomics, exercise, diet), this research confirms the strong 

genetic risk component to increased BMI. We demonstrate also that it is not a few SNPs that contribute 

solely to that risk, but rather summation of genetic risk across the genome elucidates further aspects of 

this complex disease. The use of genome-wide risk profiling could be applied to identification of 

individuals who would benefit from environmental modifications or heightened medical awareness prior 

to the onset of obesity and its significant associated morbidities.  

A potential opportunity for change in treatment strategies of individuals with genetic risk for 

obesity is undergoing more aggressive weight loss interventions (i.e. bariatric surgery) earlier in life than 

otherwise would have been recommended and prior to the development of comorbidities. In the absence 

of severe class 3 obesity, comorbidities such as type 2 diabetes or severe sleep apnea are typically 

required for insurance approval for weight loss surgery in individuals with less extreme classes of obesity. 

Prior research has shown that individuals who have undergone bariatric surgery have a higher genome-

wide PRS.(31) A combined analysis of 922 bariatric surgery participants in the UK Biobank and Partners 

HealthCare System found a high genome-wide PRS in 319 (34.6%) of the patients. Compared with the 

remainder of the individuals analyzed, a high genome-wide PRS was associated with a 5.0-fold increased 

risk of severe obesity treated with bariatric surgery. We similarly identified a significantly higher 
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genome-wide PRS in individuals who had undergone bariatric surgery (p < 2.2x10-16). It certainly would 

be plausible that individuals with obesity and a high PRS, in the absence of comorbidities, may benefit 

from consideration for bariatric surgery prior to the progression of the many comorbidities that develop 

over a lifetime with obesity. Further studies may even be able to elucidate if certain individuals, at a given 

BMI, are at greater genomic risk for obesity-related comorbidities. 

 

Conclusion 

The body of research presented in this dissertation has made significant contributions to the 

multidisciplinary field of biomedical informatics, including its component disciplines of genomics, 

phenotyping, and clinical research informatics, along with important discoveries in clinical medicine that 

could impact the care provided to patients. This dissertation describes new approaches to defining the 

clinical impact of common and rare conditions using the electronic health record, phenotyping methods, 

and genomic associations. The research here advanced phenomic and genomic informatics methods to 

characterize a common disease, obesity, which has significant previously uncharacterized associations 

with a broad range of diseases. This analysis is the first application of genome-wide risk scores for 

obesity in a phenome-wide approach. The novel methodologies developed with the use of genetic risk 

scores to analyze all risk genes, including those with small and large effect size in a population, have 

greater accuracy and improved ability to find associations. This body of work has established the 

framework methodology and validated the use of PheWAS techniques across multiple cohorts and using 

both clinical and genomic predictors. I am also providing here the first evidence that genome-wide 

polygenic risk scores show strong concordance with observational effect sizes in phenome-wide 

association studies. The methods described here demonstrate improved ability for PheWAS techniques to 

identify novel associations by increasing power and improving predictive capacity. Investigations using 

methods such as these will help provide the linkages between disease-gene associations, cellular 



 

 

 

 

 

 

 

237 

mechanisms, and therapeutic approaches, making critical advances to informatics and treatment of 

patients. 

And lastly, this dissertation also has significant impact to clinical medicine, as it defines the 

phenotype of a poorly characterized rare disease and also highlights the burden of disease in society 

attributable to the very common phenotype, obesity. This in itself has significant impacts on clinical 

medicine, but also further applications of the methodology in this dissertation could make additional 

discoveries regarding other phenotypes and improve the understanding of polygenic risk for disease. The 

overall translation of genetic risk profiles to clinical medicine has the potential to increase benefits and 

reduce risks to patients by targeting both prevention and treatment more effectively. These methods and 

opportunities do not apply only to obesity, but can impact the way we as informaticians and clinicians 

think about and treat all polygenic diseases. 

Some have advocated for the tempering of the claims for precision or personalized medicine to 

improve overall medical care due to the lack of generalizability to the majority of disease that a 

personalized approach brings.(32) In contrast, I advocate that we continue to think outside of the 

traditional scopes of medical practice to identify opportunities to use existing data within the healthcare 

record to identify disease patterns, promote research, and translate findings into clinical care. A crucial 

component to this advancement will be the comprehensible incorporation and visualization of genomic 

and pharmacogenomic information inside and outside of the EHR with the development of clinical 

decision support to guide clinicians on treatment strategies and drug dosing. As further information is 

gained about the polygenic risk for complex diseases, its inclusion in the EHR and medical care will need 

to be constructed in a pointed manner that also provides for evaluation of its effect on both patients and 

providers. With the continued accrual of new data comes possibilities for translation with new 

technologies to improve medical care, and this confluence of research with clinical care will continue to 

drive evolution of the field of biomedical informatics.  
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