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1.1 MOTIVATION 
 

Snow is a recurring form of precipitation across much of the planet for several months of the 

year. Snow that falls over land and ice changes the albedo of the surface, substantially impacting 

the radiative energy balance of the planet (Déry and Brown 2007). Snow defines the landscape 

for many biomes of the planet, and numerous species have evolved to occupy niches that require 

the regular accumulation of snowpack. When snow falls in higher latitudes, it can form seasonal 

snowpack or freeze into perennial glaciers. These mountain icepacks form “water tower” 

hydrology systems that represent the source of drinking water for over a billion people on the 

planet and the source of river water fundamental to whole ecosystems. At the most extreme 

latitudes, snowfall represents the dominating source of mass gain for the Greenland and 

Antarctic ice-sheets.  

 

There is also a large amount of snow on the planet that is currently forming and falling through 

the atmosphere. This falling snow is important to understand for several reasons. Falling snow 

represents the beginning stages of over half of the precipitation on the planet (Field and 

Heymsfield 2015). Falling snow particles represent the biggest particles in frozen clouds, and 

they can bias the energy budget in climate models if they are not modeled appropriately (Waliser 

et al. 2011; Li et al. 2016a). Time-averaged measurements of falling snow can be used to verify 

climate and reanalysis models (Behrangi et al. 2016; Chen et al. 2016; Palerme et al. 2017b, a), 

and to measure snow precipitation in regions of the planet where direct measurements are scarce 

or impossible (Boening et al. 2012; Kulie et al. 2016; Liu 2009; Milani et al. 2018; Kulie and 

Milani 2018) 

 

Falling snow is impossible to measure in the atmosphere directly, but it can be estimated from 

radar measurements. In locations that do not have surface radars, the only radar measurements 

come from satellites. There are three satellites that can measure falling snow: CloudSat, Tropical 

Rainfall Measurement Mission (TRMM) and Global Precipitation Measurement (GPM). Each of 

CHAPTER 1 INTRODUCTION 



 

 

2 

these satellites have several outstanding limitations for conducting global snow research. 

CloudSat is the only satellite that takes measurements in polar latitudes, but it uses a thin W-

band wavelength that is unreliable in moderate-to-heavy precipitation (Norin et al. 2015). The 

TRMM and GPM Ku band radars can measure the heaviest snowfall rates with no loss of 

accuracy, but they can only measure moderate-to-heavy snowfall rates; a high minimum 

detectable reflectivity leaves these radars blind to most frozen hydrometeors on the planet. 

Partially for these reasons, there have been few science applications of satellite precipitation 

radars to study research questions related to falling snow, even though these radars currently 

provide the only global information on falling snow.  

 

1.2 OVERVIEW 
 

In this dissertation, I study radar measurements that can retrieve snowfall information from 

satellite platforms.  

 

In Chapter 2, I quantify the role of melting snow in the ocean surface heat flux using satellite 

measurements and atmospheric reanalysis models. This work was published in Geophysical 

Research Letters 2018, Volume 45 (Duffy and Bennartz 2018).  Melting snow had previously 

been considered to be an unimportant contributor to the ocean surface heat flux. After converting 

global snowfall rates over oceans to heat transfers, I find that melting snow can theoretically 

become the largest heat flux during heavy snow storms and that it can represent a considerable 

fraction of the ocean surface heat flux during sea-ice formation and melting seasons. 

 

In Chapter 3, I evaluate a novel retrieval of snowflake size from GPM measurements using 

experimental observations. This chapter provides the first empirically derived relationship 

between the dual-wavelength ratio and the mass-weighted mean diameter, parameters which are 

properly defined in Section 2. This research is in preparation for submission to the Journal of the 

Atmospheric Sciences with coauthors Ralf Bennartz, Greg McFarquhar, and Stephen Nesbitt. 

 

In Chapter 4, I evaluate theoretical predictions of snowflake scattering and morphological 

properties, as well as the specific assumptions in the GPM precipitation retrieval algorithm, 
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through comparisons with the empirical relationship determined in the previous chapter. The 

main results from this chapter are that the measured relationship between DWR and Dm cannot 

be simulated based on the measured properties of snowflakes and that the relationship between 

DWR and Dm in the publicly provided GPM database is likely retrieving strongly biased 

properties of measured clouds. 
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2.1 INTRODUCTION 
 

2.1.1 MOTIVATION 
 

Storms can have a profound effect on the high-latitude ocean surface energy budget. Across most 

of the Nordic seas, cold-air outbreaks are responsible for 60-80% of the turbulent heat flux in 

winter months (Papritz and Spengler 2017). The median estimates of turbulent flux under these 

storms vary from 250 to below 100 𝑊 𝑚!⁄ , but in other parts of the world the most extreme 

cold-air outbreaks have been estimated to draw up to 2,500 𝑊 𝑚!⁄  of heat energy (Jensen et.al, 

2011). The latent heat that dominates this turbulent heat flux is inherently linked to precipitation 

through the water cycle, and this precipitation has important thermodynamic implications in 

freezing regions: evaporation will lead to snowfall, and this snow will draw heat energy if it falls 

and melts into the ocean. While the energetic importance of ocean snowstorms have been 

discussed with respect to the radiative impacts of large cloud particles (Wolf et al. 2014; Waliser 

et al. 2011), there has not yet been any attention paid to the latent cooling implications of snow 

melting in the ocean, despite the fact that melting snow will draw 15% of the cooling energy of 

an identical volume of evaporating water. Since annual snowfall amounts are expected to 

decrease across the world’s oceans as a consequence to climate change, It is important to 

understand the current state and significance of this cooling flux (Bintanja and Andry, 2017). 

Satellites provide a crucial role in researching this topic, as they provide the only global 

measurements of snow storms over ocean waters. 

 

2.1.2 RESEARCH STATEMENT AND ORGANIZATION 
 

In this study, I use satellite observations and climate reanalysis to quantify the role of melting 

snow in the ocean surface heat budget. In Section 2.2, I provide the equations required to 

calculate the heat flux from melting snow. In Section 2.3, I provide an overview of the data. In 

CHAPTER 2 ESTIMATING THE ROLE OF MELTING SNOW IN THE OCEAN SURFACE 
HEAT BUDGET WITH CLOUDSAT SNOWFALL MEASUREMENTS 
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Section 2.4 I provide results on the heat flux underneath individual storms, and in Section 2.5 I 

provide results on the average heat flux into the ocean on seasonal time scales.   

 

 

2.2 THEORY 
 

The ocean surface heat budget is modulated by the net ocean surface heat flux (Qnet), 

 
𝑄!"# = 𝑄$% + 𝑄&% + 𝑄'"!' + 𝑄()* + 𝑄'!+,  

Equation 2-1 

where QLW is the net longwave radiation flux, QSW is the net shortwave radiation flux, Qsens is the 

sensible heat flux at the ocean-air boundary, Qvap is the latent heat flux lost or gained from gas-

liquid phase transitions, and Qsnow is the latent heat flux from melting snow. 𝑄"#$" is often 

approximated as  

 
𝑄'"!' = 𝜌)𝑐*𝐶'𝑈(𝑇' − 𝑇))  

Equation 2-2 

where 𝜌% is the density of air, 𝑐& is the specific heat capacity of air at constant pressure, 𝐶" is the 

bulk transfer coefficient for sensible heat, 𝑇" is the temperature at the water surface, 𝑈 is the 

average wind speed, and 𝑇% is the temperature of the air, assumed herein to be 2 meters above 

the ocean surface.  𝑄'%& is approximated as: 

 

𝑄()* = 𝜌)𝐿()*𝐶"𝑈(𝑞' − 𝑞)) 

Equation 2-3 

 where 𝐿'%& is the latent heat of vaporization, 𝐶# is the bulk transfer coefficient for latent heat, 𝑞" 

is the specific humidity at the water surface, and 𝑞% is the specific humidity of the air. 𝑞" is 

estimated through the saturation specific humidity formula 
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𝑞' = 0.622
𝑒'
𝑃  

Equation 2-4 

where 𝑃 is surface pressure and 𝑒" is the saturation vapor pressure, estimated through the 

Clausius-Clapeyron relationship  

 

𝑒' = 0.6112𝑒-
./.1/2!
345.672!

8 

Equation 2-5 

Finally, 𝑄"$() is calculated as 

 

𝑄'!+, = −𝐿9𝑆 

Equation 2-6 

where Lf is the latent heat of fusion for water and S is the mass flux of melting snow. Snow can 

also provide a cooling flux through the temperature difference between frozen snowflakes and 

liquid water, but, for realistic temperature differences between a melting snowflake and the 

ocean water, back-of-the-envelope calculations prove this effect to be negligible compared to the 

latent heat of melting snow.  

 

 

2.3 DATA 
 

For the measurement of instantaneous heat fluxes, all values of Equation 1 are provided by the 

CloudSat Data Processing Center (DPC) or calculated from DPC products. CloudSat carries a 

W-band satellite radar which has been measuring reflectivity profiles of clouds and precipitation 

since its launch in 2006. DPC products use CloudSat and A-Train satellite retrievals alongside 

European Centre for Medium Range Weather Forecasts (ECMWF) atmospheric profile estimates 

to retrieve various atmospheric properties (Stephens et.al, 2002). 𝑄*+ and 𝑄,+ are provided in 

the CloudSat 2B-FLXHR-LIDAR data product (Henderson et.al, 2011). Cloudsat ECMWF-AUX 

(Partain, 2007) provides atmospheric variables of air temperature, specific humidity, and 
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pressure, and CloudSat 2C-PRECIP-COLUMN-R05 (Haynes et al., 2009) provides variables of 

sea surface temperature and wind speed, all necessary to calculate to calculate 𝑄'%& and 𝑄"#$".  

The CloudSat 2C-SNOW-PROFILE-R05 data product (Wood et.al, 2013, 2014) provides 

Bayesian estimates of surface snowfall rates with an a-posteriori retrieval uncertainty that varies 

between 150 and 250%.  I set the instantaneous melting mass flux values of S for 𝑄"$() equal to 

the liquid equivalent surface snowfall rates from the CloudSat 2C-SNOW-PROFILE-R05 data 

product (R05 was released in June 2018). This is a possibly biased assumption. Snowflakes 

might partially melt before they fall into the ocean, though previous studies that measure 

snowfall rates over the ocean typically ignore this effect (Behrangi et al. 2016). Snowflakes may 

also sublimate within the 500-100 meters between the ocean surface and the lowest retrievable 

radar bin, where radar contamination from surface interactions prevent meaningful precipitation 

retrieval. This could particularly be an issue for Southern Ocean snowstorms, where katabatic 

winds of low, dry air tend to partially or entirely dissolve coastal precipitation (Grazioli et al. 

2017). Finally, it is conceivable that snowflakes deposited in the ocean may sometimes create a 

slush which would grow faster than it melted, delaying the cooling of the ocean and reducing the 

overall cooling flux from melting snow.  

 

For measurements of seasonal snowfall, estimates from climate reanalysis models are used in 

place of CloudSat satellite measurements. Climate reanalysis combines global forecast models 

with measurements from multiple data-sources to adjust forecasts to witnessed phenomena. In 

this way, climate reanalyses provide a best estimate of global atmospheric properties for years 

when models and measurements are available. In regions where sea ice extent is variable, where 

annual snowfall tendencies can be determined by climate modes, or simply in mid-latitude 

oceans, the infrequent measurements of CloudSat often yield noisy and unsatisfying seasonal 

snowfall climatologies. Snowfall estimates from climate reanalyses have uniform grid cell 

coverage at most latitudes and can provide information on ocean snowfall for several decades 

before the launch date of CloudSat. I take advantage of the Arctic Observation and Reanalysis 

Integrated System (ArORIS) dataset, which provides collocated values of monthly averaged heat 

fluxes and precipitation rates from reanalyses and CloudSat at a 2.5° latitude and longitude scale 

(Christensen et al. 2016). In order to focus on open oceans where there is no additional flux from 
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melting or forming sea ice, monthly values for a coordinate are only considered when the sea ice 

fraction for that month is below 0.01. 

 

While there are several global reanalysis models that provide snowfall estimates, ECMWF 

Reanalysis-Interim (ERAI) in particular has been recommended based on agreement with 

Cloudsat 2C-SNOW-PROFILE in reanalysis evaluations (Palerme et.al, 2014; Behrangi et al., 

2016; Palerme et al., 2017). More recent results may dispute this corroboration, however. For 

example, another comparison of ERAI snowfall estimates with CloudSat in the Southern Ocean 

demonstrates relative differences in annual snowfall up to 50% (Milani et al. 2018) which were 

not seen in Behrangi et.al 2016. I find similar discrepancies between CloudSat and the Modern 

Era Retrospective analysis for Research and Applications (MERRA), a reanalysis model that has 

also been recommended for estimates of snowfall (Behrangi et al. 2016), in the NH . In the 

Southern Ocean, MERRA yields a much larger relative difference of snowfall rates compared to 

CloudSat estimates, and in the opposite direction. The highest resolution reanalysis snowfall 

estimates in the Arctic would come from the Arctic System Reanalysis version 2 (ASRv2; 

Bromwich et al., 2018), but only provides data over a limited domain and does not include the 

southern hemisphere. Snowfall estimates from ERAI are higher than those from ASRv2, 

generally yielding a 10-20% difference over oceans (Bromwich et al. 2018). Reanalysis models 

in general tend to suffer in high latitudes due to a scarcity of validating measurements, and noted 

biases in temperature that could impact the fraction of precipitation that is modeled to fall as 

snow. ERAI has been highlighted for agreements with independently measured temperatures and 

atmospheric variables in the Arctic (Chaudhuri et.al 2014; Jakobson et al., 2012). Results from 

Section 4.5 are presented in ERAI for this chapter.  

 

 

2.4 INSTANTANEOUS HEAT FLUX 
 

Figure 2.1 presents the median values of ocean surface heat fluxes underneath snow events 

ranked by snowfall rate. For clarity, the standard deviations of the range of 𝑄,+, 𝑄*+ , 𝑄'%&,	and 

𝑄"#$" about snowfall strength percentiles are not shown in the figure, but the associated values 

are 150-200, 10-20, 30-35, and 40-60 𝑊 𝑚!⁄ , respectively. 𝑄,+, 𝑄*+ , 𝑄'%&,	and 𝑄"#$" also carry 
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their own measurement uncertainties, but with over 50,000 retrievals included in each percentile, 

I assume these measurement uncertainties will converge. A second x-axis shows the ocean 

snowfall rates corresponding to selected percentiles.  Because of the numeric value of Lf, a 

snowfall rate of 1.1 𝑚𝑚 ℎ⁄  roughly corresponds to a cooling flux of 100 𝑊 𝑚!⁄ , so snowfall 

rates can also be used to infer values of 𝑄"$() when values are too low to resolve visually from 

the graph. Clearly, many snow events are not powerful enough to substantially impact 𝑄$#-. The 

lowest quartile of snow events barely draws 1 𝑊 𝑚!⁄  from the ocean, though it is debatable 

whether such low retrievals constitute or represent precipitation. The strength of snowstorms 

exponentially increases with decreasing likelihood, however, and 𝑄"$() rapidly becomes an 

influential component of 𝑄$#- as snowstorms increase in strength beyond 0.1 𝑚𝑚 ℎ⁄ .  

 

Figure 2.1 is separated into daytime and nighttime storms. Snowstorms occur more often in long 

nights of cold seasons, but when 𝑄,+ exists it tends to provide a dominating influence on all but 

the strongest snowstorms. The mostly increasing relationship between 𝑄,+ and snowfall rate 

may seem counterintuitive, but natural changes of surface shortwave heating with seasons are 

one to two orders of magnitude greater than the attenuation from snowflakes (Waliser et al. 

2011), so the curve of 𝑄,+ is mostly  mirroring that of top-of-atmosphere insolation. Apparently 

the majority of snow events tend to have higher snowfall rates during higher insolation, but the 

most powerful snowstorm events tend to occur most often during the lowest insolation, in winter 

months and/or at the highest latitudes. Another curious feature revealed by Figure 2.1 is the 

tendency for other cooling fluxes to minimize as 𝑄"$() becomes more powerful. Some of this 

behavior can be expected from the natural preconditions of snowstorms: thicker clouds that emit 

downwelling longwave radiation minimize 𝑄*+, increased relative humidity near the surface 

under heavy precipitation decrease potential 𝑄'%&, and decreased temperature gradients between 

the ocean and the atmosphere in heavy snow events decrease 𝑄"#$". These explanations are not 

totally satisfying, however, as this trend is not consistent across the globe. Turbulent heat fluxes 

of 𝑄"#$" and 𝑄'%& become weaker with increasing snowfall rate for snow events in the Northern 

Hemisphere (NH), while they are stronger and effectively constant for snow events in the 

Southern Hemisphere (SH). These differences might be owed to different types of snowfall 

events, but I are not yet certain why there is a difference between snowstorms in different 

hemispheres, or what other changes in curvature at tail ends of snowfall rates imply. A future 
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study that delves deeper into the nature of different kinds of ocean snowstorms in different 

locations and seasons could resolve these questions.  

 

Based on Figure 2.1, 𝑄"$() appears to be the dominant cooling influence in the ocean during the 

top 20th percentile of snowfall events. Considering that Cloudsat has noted limitations in 

retrieving snowfall rates above 1 mm/h when compared with surface radar (Norin et.al, 2015), it 

is likely that heavier snowfall rates which could lead to the most powerful cooling fluxes are 

undercounted. Further considering that calculations of 𝑄"$() are based on an uncertain 

assumption that the satellite retrieved rate of snowfall will equal the rate of snowmelt, the exact 

threshold when melting snow could become the dominant cooling flux is not confident. With 

snowfall rates growing in strength exponentially as other heat fluxes tend to decrease towards 

zero, however, it is clear that my estimate of 𝑄"$() rapidly becomes several times stronger than 

average values of other cooling fluxes during heavy snowstorms. Even considering possible 

𝑄"$() overestimates from idealized assumptions, these results demonstrate that melting snow 

will be a powerful heat flux contributor during many ocean snow events. 
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2.5 SEASONALLY AVERAGED HEAT FLUX 
 

Figure 2.2 presents average 𝑄"$() values for NH (top) and SH (middle) during the four 

meteorological seasons: December-January-February (DJF), March-April-May (MAM), June-

July-August (JJA), and September-October-November (SON). Snowfall climatologies 

responsible for 𝑄"$() tendencies are simple, and tend to follow broad symmetries. In the SH, 

average snowfall rates decrease northward from shorelines. In the NH, average snowfall rates are 

strongest directly to the south and east of shorelines, ultimately decreasing to zero in the 

northwest Pacific and Atlantic Oceans where temperatures remain warm enough for precipitation 

to fall as rain year-round. Average snowfall rates tend to be heavier in the SH; 𝑄"$() is generally  

-1 – -3 𝑊 𝑚!⁄  stronger in the respective polar seasons of winter, autumn, and spring, and the SH 

annual average heat fluxes are roughly double those in the NH (bottom). The biggest difference 

Figure 2.1 
  Median surface heat fluxes under ocean snowstorms, ranked by surface snowfall rate, separated into daytime and 

nighttime storms.  
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in the snowfall climatologies of the two regions comes in polar summer. In the SH, snowfall is 

weakest during DJF, but still substantial; close to annual averages of NH values. In the NH JJA, 

however, ocean snowfall amounts are scarcely above zero until past 75° N. Annual zonal 

averages of snowfall are fairly constant in the NH – tending between -1 and -2 𝑊 𝑚!⁄  past 50 °N 

– and J-shaped in the SH – decreasing from 0 to -4 𝑊 𝑚!⁄  between -50 and -60°, leveling off 

between -60 and -70°, and rising again to the coast.  

 

 

 

Figure 2.2 
 Seasonal average values of QSNOW, presented as gridded averages in the NH (top row), SH (middle row), and as 

zonal averages across the entire planet (bottom row). Annual zonal averages are also presented. NH = Northern 
Hemisphere; SH = Southern Hemisphere; ERAI = ERA-Interim; DJF = December, January, February; MAM = 

March, April, May; JJA = June, July, August; SON = September, October, November. 
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Seasonal average values of 𝑄"$() are low, but not too far below ocean turbulent heat fluxes at 

high latitudes, which tend to have annual averages between -20 and -50 W/m2 (Smith, et.al, 

2011; Sorteberg et.al, 2007). Especially considering the fact that the warming flux 𝑄,+ acts in 

opposition to the cooling fluxes of 𝑄*+, 𝑄"#$", and 𝑄#'%&, 𝑄"$() could become influential when 

𝑄$#- becomes balanced and approaches 0. In order to explore the importance of 𝑄"$() with 

respect to the average net ocean heat budget, I define a Snowfall Impact Metric (SIM) as  

 

𝑆𝐼𝑀 = 100 × 9
|𝑄'!+,|

𝑀𝐴𝑋(|𝑄!"#|, |	𝑄'!+,|)
? 

Equation 2-7 

and map this metric for every year in the ArORIS ERAI record.  The metric is made bipartite in 

order to ensure that the metric does not diverge when  𝑄$#- approaches zero. Whenever the 

absolute value of QSNOW is larger than the absolute value of QNET, 𝑆𝐼𝑀  yields on a percentage 

scale the relevance of Qsnow relative to Qnet.  If |QNET| is smaller than |QSNOW|, 𝑆𝐼𝑀  will result in 

𝑆𝐼𝑀  = 100% (but not exceed 100%), indicating that the magnitude of QSNOW is as large as QNet 

or larger.   

  

Figure 2.3 presents 𝑆𝐼𝑀 averaged across the Northern and Southern hemispheres between 1979 

and 2012. Regions with substantial values of	𝑆𝐼𝑀 indicate areas where	𝑄"$() may play an 

influential role in the ocean heat budget on seasonal time scales. It is important to note that, since 

Figure 2.3 represents the average value of 𝑆𝐼𝑀, similar values can represent different ocean heat 

budget behavior. Specifically, the 𝑆𝐼𝑀 values in the Southern Ocean during JJA are the result of 

a consistent average value of 5-10%, while the 𝑆𝐼𝑀 values in the Atlantic and Pacific are the 

result of wider inter-annual variations between 0 and 50%. In general, 𝑆𝐼𝑀 values are broader 

and more consistent in the SH, while they are more varied and heterogeneous in the NH.  

 

According to Figure 2.3, 𝑄"$() barely appears to make a large difference in the ocean heat 

budget globally in JJA or DJF months, despite the fact that 𝑄"$() is strongest in polar winter. 

Clearly, the lack of sunlight and large differences between water surface and air temperature all 

lead to turbulent and radiative cooling fluxes that dwarf any contribution from snow. During 
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MAM and SON however, there are ocean regions with 𝑆𝐼𝑀 values between 20% and 30%, 

indicating a substantial influence from melting snow. Wide regions of the high latitude Pacific, 

Atlantic, and Southern oceans are noticeably impacted by melting snow, even though 𝑄"$() in 

these seasons often average just a few 𝑊 𝑚!⁄ . Some of the strongest and most consistent 𝑆𝐼𝑀 

values appear in the highest latitude Arctic and Southern Oceans during SON and MAM, 

respectively. These regions represent waters that are only ice-free for a few months of a year, and 

in the Arctic Ocean, waters that have only begun melting seasonally within the past few decades. 

𝑄"$() may therefore play an important role during critical periods of sea-ice recovery in climate-

sensitive oceans. 

 

Figure 2.3 
 Seasonal averages of SIM in the NH (top row) and SH (bottom row). SIM = Snowfall Impact Metric; NH = 

Northern Hemisphere; SH = Southern Hemisphere; ERAI = ERA-Interim; DJF = December, January, February; 
MAM = March, April, May; JJA = June, July, August; SON = September, October, November. 
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2.6 CONCLUSION 
 

Snow is a regular experience for many of the world’s oceans, and as it melts it draws heat energy 

from the ocean’s surface. Intuitively, the impact of melting snow in the overall ocean surface 

heat budget may seem inconsequential; snow affects a minority of the world’s ocean during a 

small part of the year with a fraction of the cooling potential of the latent heat of vaporization for 

an identical volume of water. Through satellite measurements and reanalysis estimates, however, 

I find that the cooling influence of melting snow can often be relatively important. The cooling 

flux from melting snow is often on the order of radiative and turbulent cooling fluxes for 

snowstorms with snowfall rates greater than 0.1 𝑚𝑚 ℎ⁄ , roughly 40% of the snow events in the 

world. Melting snow is likely most powerful heat flux in the ocean surface during particularly 

intense snowstorms.   

 

The influence of melting snow is important on longer time scales as well. Using snowfall 

estimates from ERAI, I find that seasonal cooling fluxes can be as low as -10 𝑊 𝑚!⁄  off high 

latitude coastlines in winter, though it is much more often between 0 and -6 𝑊 𝑚!⁄  depending on 

season and latitude. The impact of melting snow in the ocean heat budget is largest in the 

Western Pacific and Atlantic oceans in MAM and in the Southern Ocean in MAM and SON. 

Melting snow also appears influential in the heat budgets of high latitude Arctic and Southern 

oceans during SON and MAM, respectively, indicating a possible importance of melting snow in 

ocean thermodynamics during sea-ice freezeup. 

 

With warmer temperatures from climate change disproportionately affecting high latitude 

regions, snow events over the ocean will soon become less frequent, being replaced with rain 

events that do not provide a latent cooling flux. Especially in regions where 𝑄"$() makes up a 

large component of the seasonal ocean surface heat flux, this loss of cooling energy may impact 

calculations of future sea ice and ocean dynamics. Estimates of snowfall over oceans are still 

uncertain in models and measurements, so when there is a difference between the two it can not 

be certain which one is closest to the truth. It is likely that ERAI and/or CloudSat estimates of 

snowfall are biased by up to 50% in the Southern Ocean (Milani et al. 2018), which could impact 
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the  𝑄"$() values in Sections 2 and/or 3 by large margins. Outstanding questions of snow 

sublimation and melting in the surface clutter zone and reflectivity-snowfall rate relationship 

validations over oceans will need to be addressed to improve my understanding of snowfall over 

the ocean and the influence of melting snow in the ocean heat budget. 



 

 

17 

 

3.1 INTRODUCTION 
 

3.1.1 MOTIVATION 
   

Section CHAPTER 2 provided one example of the kind of unique and valuable information that 

satellite snowfall measurements can provide for the Earth’s climate. GPM does not have a polar 

orbit and it cannot detect the majority of falling snow events, so it is not as capable of providing 

similar information. The Dual Frequency Precipitation Radar (DPR) on board the GPM does, 

however, hold the potential for the most powerful and novel observation of frozen precipitation 

above rain clouds currently possible. This observation comes through the Dual Wavelength Ratio 

(DWR)  

 
𝐷𝑊𝑅 = 10𝑙𝑜𝑔.:(𝑍.) − 10𝑙𝑜𝑔.:(𝑍3)  

Equation 3-1 

, with Z1 and Z2 representing reflectivities with different wavelengths, assumed herein to be the 

ZKu and ZKa measurements of the DPR. DWR is predicted to have a strong relationship to the 

mass weighted mean diameter, or Dm, defined as 

 

𝐷; =
∫ 𝑛(𝐷)𝑚(𝐷)𝐷𝑑𝐷<"#$
<"%&

∫ 𝑛(𝐷)𝑚(𝐷)𝑑𝐷<"#$
<"%&

, 

Equation 3-2 

with m(D) representing a mass distribution, n(D) representing a measured or modeled particle 

size distribution (PSD), D representing a one-dimensional measurement of particle size, and Dmin 

and Dmax representing the largest and smallest particles considered for the PSD. Dm is a 

fundamental parameter which determines the size distribution of precipitation in retrieval 

CHAPTER 3 EMPIRICAL RELATIONSHIPS BETWEEN DUAL FREQUENCY RADAR 
MEASUREMENTS AND MASS-WEIGHTED MEAN DIAMETER IN FROZEN 
PRECIPITATION 
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algorithms. Single wavelength reflectivity (Z) has a relationship to Dm, but Z is also influenced 

by snowflake mass and concentration. DWR is predicted to be largely insensitive to changes in 

concentration, density, or particle shape (Liao et al. 2005), leading to an expectedly superior 

retrieval of Dm in global measurements of diverse clouds compared to Z. A comparison of 

empirical relationships between DWR, Z, and Dm from different environments can confirm or 

refute this prediction.  

 

 

3.1.2 RESEARCH STATEMENT AND PROCEDURE 
 

The goal of this study is to answer three research questions: “What is the relationship between 

DWR and Dm in clouds, and how does it compare to the relationship between Z and Dm?”, “How 

do the relationships between radar measurements and Dm vary between different 

environments?”, and “Does the DWR-based Dm retrieval method provide more accurate and 

consistent results than a Z-based Dm retrieval method?”. For the purposes of this study, 

“environments” refers to cloud types (e.g., convective or stratiform), storm types (e.g., 

synoptically forced or lake-effect), cloud temperature, and storm location.  

 

To answer these questions, we generate a large dataset of collocated reflectivity and Dm from 

three different GPM Ground Validation (GV) experiments: the GPM Cold Season Precipitation 

Experiment (GCPEX; Skofronick-Jackson et al., 2015), the Midlatitude Continental Convective 

Clouds Experiment (MC3E; Jensen et al., 2016), and the Olympic Mountains Experiment 

(OLYMPEX; Houze et al., 2017). GCPEX studied precipitation in winter snowstorms, including 

lake effect snow. It was conducted from January through February 2012 near Barrie, Ontario. 

MC3E studied precipitation in springtime convective storms. It was conducted from April 

through June of 2011 near Lamont, Oklahoma. OLYMPEX studied precipitation in winter 

orographic storms. It was conducted from November through December 2015 near and offshore 

of the Olympic Peninsula in Washington over and surrounding the Olympic Mountains. Periods 

during experiments when the aircraft were sampling storms are referred to as “Intensive 

Observation Periods,” or IOPs. During these IOPs, at least one airplane with a radar flew above 

clouds, while another airplane carrying in-situ probes conducted measurements inside of 
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clouds. Collocated measurements refer to periods of time when the two planes were sampling 

similar volumes.  

 

IOPs in this study are denoted according to the first letter of the experiment, followed by two 

numbers representing the month, and two numbers representing the day.  For example, the 

OLYMPEX December 1st IOP is referred to as “O1201”. A depiction of the flight patterns that 

provided collocated measurements for this IOP is provided in Figure 3.1.The process used to 

match in-situ and reflectivity measurements to the same time series is described in Section 3.2. 

The functions used to derive empirical relationships are described in Section 3.3. The results of 

the study are presented in Section 3.4 and discussed in Section 3.5. 
 

 

 

Figure 3.1 
Flight paths of a radar aircraft (green) flying above an in-situ aircraft (blue) during the O1201 IOP. In-situ 

measurements that are collocated with radar measurements are highlighted in red (See Section 2 for the 
definition of “collocated” used in this study.) 
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3.2 GENERATING A MATCHED DM – DWR DATASET 
 

 

3.2.1 DM MEASUREMENTS 
  

Dm is calculated from measured PSDs through Equation 2. PSDs were derived from one-

dimensional sizes of imaged snow particles (Dmeas) by the National Center of Atmospheric 

Research (NCAR) at 1 s resolution. To make the results of this study comparable to NASA-

retrieved GPM measurements of Dm, liquid equivalent diameters of snow particles (Dliq) - 

referring to the diameter of a liquid drop with the same mass as a measured or simulated snow 

particle - are preferred for calculations of Equation 2. Dliq is related to Dmeas through 

 

𝐷=>? = K
6𝑎
𝜌,𝜋

N
.
5
𝐷;")'

@
5 ,  

Equation 3-3 

where 𝜌) represents the density of water and a and b represent the mass coefficient and exponent 

parameters used to estimate the mass of a snow particle through a power-law mass distribution 

 

𝑚(𝐷;")') = 𝑎𝐷;")'@ . 

Equation 3-4 

This is not to be confused with the mass distribution for 𝐷./0 necessary to calculate Dm from 

Equation 2, defined as 

 

𝑚5𝐷./06 = 𝜌)
𝐷1

6 . 

Equation 3-5 

For the rest of this paper, D inherently refers to Dliq.  Snow particles are assumed to follow the 

Heymsfield et al. (2010) mass distribution of a = 0.007 g cm-2.2 and b = 2.2 for frozen particles in 

unspecified convective or stratiform clouds.  
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Dmeas is defined in image processing algorithms as the maximum measured dimension in any 

direction for a completely imaged snowflake, or the maximum measured dimension in any 

direction of a reconstructed image for a partially imaged snowflake (Heymsfield and Parrish 

1978). PSDs were constructed drawing Dmeas < 1 mm from 2-Dimensional Cloud Imaging Probe 

(2D-C), 2D Stereo (2D-S), or Cloud Imaging Probe (CIP) images and Dmeas > 1 mm from High-

Volume Precipitation Spectrometer 2 or High Volume Precipitation Spectrometer 3 (HVPS2, 

HVPS3) images. Probes used to image particles in different experiments are listed in Table 1. 

The PSDs collected during an example IOP are visualized in Figure 3.2. 

 

 

 

3.2.2 DWR MEASUREMENTS 
 

Radar measurements either come from the High Altitude Wind and Rain Airborne Profiler 

(HIWRAP;  Li et al., 2016) radar, which was deployed on the NASA ER-2 high altitude aircraft, 

or the Advanced Precipitation Radar (APR; Sadowy et al., 2003) 2 or 3, which was deployed on 

Figure 3.2 
PSDs from the M0520 IOP that are used in this study	
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the DC-8 aircraft. Radars used in different experiments are listed in Table 3.1. The HIWRAP 

was set up to provide collocated Ku/Ka reflectivities at a nadir scan for GV experiments. The 

HIWRAP has nominal Ku and Ka frequencies of 13.9 and 35.6 GHz, respectively. The HIWRAP 

has a minimum detectable reflectivity of 0 and -5 dB at Ku and Ka wavelengths, respectively.  

The APR 2 and APR 3 contain Ku and Ka scanning radars with nominal frequencies of 13.4 and 

35.6 GHz respectively, though just the nadir pointing Ku and Ka reflectivity scans are used in 

this study. The APR has minimum detectable reflectivities of 5 dB at both Ku and Ka 

wavelengths. Initial radar gate widths were 30 m wide for APR measurements, 37 m wide for 

HIWRAP during OLYMPEX, and 75 m wide for HIWRAP during MC3E. Radar range gates 

were smoothed along radar profiles with an approximately 250 m boxcar average in mm6m-3 

units to have a similar resolution to the DPR. 

 
Experiment Radars Imaging probes 
GCPEX APR2 2DC, CIP, HVPS2 
MC3E HIWRAP 2DC, CIP, HVPS2 

OLYMPEX APR3, HIWRAP 2DS, HVPS3 

Table 3.1 
Radars and imaging probes used during each experiment 

 

Sources of DWR unrelated to Dm could have a negative influence on the empirical relationships. 

Attenuation – the decrease of measured reflectivity due to radiation absorption from water and 

atmospheric gasses – is stronger at Ka band than Ku, and can increase a measured DWR along a 

radar path. Independently varying Ku and Ka radar noise combine to form random DWR errors 

inside of clouds, and differences between Ku and Ka radar sensitivities lead to DWR artifacts 

along the tops of clouds. Ku and Ka components of the HIWRAP and APR also experience 

independent calibration errors, and any differences in these errors will uniformly bias DWR 

measurements. With the exception of cloud-edge artifacts, which can be very large but are easily 

identifiable and removed, these errors should be relatively minor. Calibration errors should be on 

the order of 1 or less dB. Supercooled liquid water that could cause attenuation along a radar 

profile is unmeasurable, and is therefore considered as a possible source of error.  This effect  

has previously been considered ignorable for ZKa measurements through orographic and 
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stratiform snow clouds (Chase et al. 2018; Matrosov 2007), but these assumptions may not apply 

for DWR snow retrievals through convective clouds.  

 

The procedure used in this study to identify and remove DWR not related to Dm is depicted 

through a series of subplots in Figure 3.3. The DWR presented in Figure 3.3a has already 

received the 250 m weighted average, reducing some of the random DWR error. Since 

attenuation and Dm will both increase along a radar path due to increasing liquid water pathand 

the growth of snowflakes, the DWR related to these processes will tend to be minimized at 

cloud-top. Any consistent non-zero DWR at cloud-top should be a fair representation of 

calibration error, but since DWR artifacts visibly dominate cloud-top reflectivity, the minimum 

DWR along a radar profile (referred to as DWRmin for the remainder of this section) is used 

instead (Figure 3.3b).  
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As visible in Figure 3.3, the time series of DWRmin has a visibly consistent offset throughout 

M0520. This consistency is evident for all IOPs used in this study, indicating that a single value 

can be used to debias DWR measurements during an IOP. The distribution of DWRmin is 

displayed in Figure 3.3c, and the mean, mode, and standard deviation of DWRmin for each IOP 

are shown in Table 3.2. The mode of DWRmin values is used as the DWR offset to avoid the 

influence of high DWRmin outliers, visible in Figure 3.3a and Figure 3.3b near 17 h. DWR offsets 

from Table 3.2 are subtracted from all DWR measurements.  

 

 

Figure 3.3 
A visual depiction of calibration bias identification during M0520. Figure 3a displays a time series of 
vertical profiles of the DWR reflectivity. Figure 3b displays the time series of DWRmin along vertical 
profiles. Figure 3c displays a histogram of the DWRmin from Figure 3b, with the mode provided in the 

legend. 
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IOPs Mode (mm) Mean (mm) Standard Deviation (mm) 
G0212 1.03 1.45 1.35 
G0224 0.24 1.65 1.44 
M0425 0.01 2.36 4.25 
M0520 0.17 0.20 0.86 
M0523 -0.52 0.12 2.48 
O1201(HIWRAP) 0.23 0.37 0.81 
O1212 (HIWRAP) 0.28 1.13 1.86 
O1201 (APR) 0.16 0.52 0.79 
O1212 (APR) 0.23 0.73 0.91 
O1218 (APR) 0.20 0.73 0.97 

Table 3.2 
Mode, mean, and standard deviations of DWRmin for each experiment 

 

 

3.2.3 TEMPORAL AND SPATIAL MATCHING.  
 

A nearest-neighbor algorithm is used to join the radar and in-situ measurements to the same time 

series; the closest horizontal point of reflectivity is matched to the Citation’s location for every 

second of flight time. Matched in-situ and radar measurements are averaged into discrete 10 s 

intervals, corresponding to an in-situ measurement path of little more than a kilometer. Data are 

then excluded if the spatial distance (dr) and time difference (dt) between the in-situ and radar 

observations fall beyond chosen boundaries. dr and dt are chosen on the basis of a sensitivity test 

that determine the number of IOPs, the number of total data points, and the average rank 

correlation coefficient (𝜌̅) between DWR and Dm at different dr and dt (Figure 3.4). ρ is chosen 

as the correlation coefficient since it can be used to identify non-linear relationships between two 

variables, and the relationship between DWR and Dm is predicted to be non-linear across the full 

span of measured DWR (Liao et al. 2016). 𝜌̅ represents the average of correlation coefficients 

among individual IOPs, not to be confused with the correlation of the combined data set. IOP 

data is only incorporated into Figure 3.4 if it displays a statistically significant ρ, here considered 

to have a corresponding p < 0.01 (99% statistically significant), and provides more than five 

measurements. There is a broad region where all IOPs have p < 0.01, meaning all data sets 

provide statistically significant relationships between DWR and Dm. This region is shaded in 

black in Figure 3.4a, and only values within this region are considered. 𝜌̅ is broadly similar under 
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a wide range of thresholds until there is a general drop with increasing dr and dt after dt > 3.5 

min and dr > 12 km. “Collocated data” is accordingly defined with a dr and dt of 12 km and 3.5 

min, respectively. 

 

 

Any data with dt less than 10 s is removed to eliminate the possibility of reflection from the 

aircraft being included in the dataset. Data is removed if the temperature is warmer than -3°C to 

remove liquid precipitation and melting snow. An example of the final collocated data, 

demonstrating the approximate location of the Citation during radar measurements and the time 

series of collocated DWR and Dm data during G0224, is presented in Figure 3.5.  

Figure 3.4 
Number of IOPs (N IOPs; 2a), number of measurements (N meas.; 2b) and average rank correlation coefficient (ρ; 

2c) resulting from every presented combination of dr and dt thresholds. 
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3.3 FIT FUNCTIONS FOR EMPIRICAL RELATIONSHIPS 
 

Measured relationships between Z and Dm (or its inverse counterpart, Λ) have been observed to 

follow a power law (Matrosov and Heymsfield 2017; Skofronick-Jackson et al. 2019). The same 

convention is followed in this study, with 

 

𝐷;(𝑍AB) = 𝑐.𝑍ABC' 

Equation 3-6 

Z has units of mm-6m-3 in Equation 6, but in the results it is plotted with units of dBZ. 

 

The relationship between DWR and Dm has not been observed before this study, but it has been 

simulated by applying scattering models to model size distributions. Three simulated 

relationships resulting from different scattering models are presented in Figure 3.6. Reflectivity 

is calculated as  

Figure 3.5 
3a shows the measured DWR reflectivity during G0224, with in-situ altitudes during collocated measurements 

laid on top. 3b shows the DWR and Dm matched to the same time series. 
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Equation 3-7 

with Kw representing the Clausius-Mossotti expression for the dielectric constant of water, 𝜎2(𝐷) 

representing the backscattered cross-section distribution of snow particles and, λ representing the 

radar wavelength. The dendrite aggregate and needle aggregate models are simulated through the 

Self-Similar Rayleigh Gans Approximation, with habit specific parameters drawn from Mason et 

al. 2019. Spheroid models are calculated with PyTmatrix (Leinonen 2014), incorporating the 

shape and orientation parameterizations for ice particles from Hogan et al. (2012). All simulated 

relationships follow the Heysmfield et al. 2010 mass parameterization used throughout this 

study, and snow PSDs are represented by an exponential function (Heymsfield et al. 2008; Liao 

et al. 2016; Borque et al. 2019)  

 

𝑛(𝐷) = 𝑁:𝑒
E	 4<"

<  

Equation 3-8 

, with N0 representing the intercept parameter. The parameterization of N0 is inconsequential for 

calculations of DWR and Dm, and Dm is set to the range witnessed in the GV experiments.  

 

Figure 3.6 
Simulated relationships between DWR and Dm generated from different scattering models 
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The simulated relationship is characterized with an origin at 0, a negative curvature at lower 

DWR, and a positive curvature at high DWR. The Dm where positive curvature begins varies 

with different scattering models. Both dendrite and needle aggregate scattering models begin to 

gain a positive curvature after Dm exceeds 1 mm, and they are both defined by near-vertical 

slopes after Dm = 1.75, but these vertical slopes are associated with different maximum DWR (8 

dB and 9 dB for needle aggregates and dendrite aggregates, respectively). The spheroid curve 

barely shows any sign of positive curvature within the figure bounds, which represent the range 

of measured data.  

 

To allow for the change of inflection, a second power law is added for the 𝐷3(𝐷𝑊𝑅) regression 

function. In practice, an odd function that predicts negative values for Dm is necessary to ensure 

that the average of random DWR noise about zero leads to a 0 mm Dm. The complete form of the 

DWR-Dm empirical relationships is presented as 

 

𝐷;(𝐷𝑊𝑅) = T							𝑐5𝐷𝑊𝑅
C( + 𝑐6𝐷𝑊𝑅C) ,													𝐷𝑊𝑅	 >= 	0

−𝑐5|𝐷𝑊𝑅|C( −	𝑐6|𝐷𝑊𝑅|C) ,								𝐷𝑊𝑅	 < 	0  

Equation 3-9 

DWR remains in units of dB in Equation 9. To ensure the function follows the desired shape, 

Equation 9 is bounded with c1 > 0,  0.25 < c2 < 1,  c3 > 0, and c4 > 1. 0.25 is a lower boundary for 

c2 to prevent the term from minimizing to zero and simulating a non-physical y-intercept in the 

results. In certain results where high-influence outliers or small ranges of DWR led to visibly 

inappropriate overfitting, c3 and c4 were set to 0.  

 

 

 

3.4 RESULTS 
 

3.4.1 EMPIRICAL RELATIONSHIPS BETWEEN REFLECTIVITY AND DM  
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 The first set of results addresses the questions "What is the relationship between DWR 

and Dm in clouds?" and "How does it compare to the relationship between Z and Dm?" The 

different measured relationships between radar measurements and Dm are presented in Figure 

3.7. Constants that define the three empirical relationships are provided in Section 3.4.2.  

 

The scattered ZKu and Dm data form a wedge shape. Maximum Dm values increase from 0.75 to 2 

mm with increasing ZKu, but minimum Dm values are relatively constant at 0.25 mm for all but 

the highest ZKu. The scattered ZKa and Dm display no visible correlation. The scattered DWR and 

Dm data display a visibly linear relationship with a similar thickness about the central regression 

across all DWR values. The linear region of the DWR-Dm relationship exceeds the boundary of 

maximum DWR for the simulated heterogeneous scattering models. The correlation between 

DWR and Dm is highest (ρ = 0.77), followed by ZKu and Dm (ρ = 0.52), and the correlation 

between ZKa and Dm is the lowest (ρ = 0.3).  

 

3.4.2 SENSITIVITY OF EMPIRICAL RELATIONSHIPS TO DIFFERENT ENVIRONMENTS 
 

The second set of results addresses the question "How do the relationships between radar 

measurements and Dm vary in different environments?". Most results in this section refer to 

scatterplots and empirical regressions of radar measurements and Dm from different subsets of 

the matched dataset. Dm, ZKu, ZKa, and DWR all tend to have different ranges for different data 

Figure 3.7 
Scattered data and fit functions from the combined data set with respect to ZKu (a), ZKa (b), and DWR (c) 
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subsets, and the ranges of these properties for different subsets are provided alongside regression 

function constants, the number of measurements, and correlation coefficients in Table 3.3, 

Error! Reference source not found., and Table 3.5. Empirical relationships for different data 

subsets are only plotted within the ranges where radar data is represented. 

 

 

Table 3.3 
Regression values of empirical relationships through different data subsets 

 c1 (ZKu) c2 (ZKu) c1 (ZKa) c1 (ZKa) c3 c4 c5 c6 

all 0.32 0.19 0.56 0.06 0.43 0.25 0.06 1.17 

GCPEX 0.43 0.18 0.53 0.18 0.59 0.25 0.01 1.65 

MC3E 0.37 0.11 0.43 0.07 0.42 0.27 0.04 1.00 

OLYMPEX 0.29 0.18 0.31 0.18 0.44 0.25 0.07 1.00 

G0128 0.42 0.12 0.56 0.00 0.56 0.11 0.00 0.00 

G0212 0.66 0.10 0.92 0.06 0.78 0.25 0.01 1.00 

G0224 0.43 0.20 0.60 0.16 0.62 0.25 0.00 2.68 

M0425 0.55 0.00 0.62 -0.03 0.51 0.25 0.00 1.00 

M0520 0.18 0.27 0.18 0.28 0.34 0.48 0.00 0.00 

M0523 0.70 0.00 0.73 -0.02 0.57 0.24 0.00 0.00 

O1201 0.28 0.19 0.57 0.05 0.52 0.33 0.00 1.00 

O1212 0.31 0.16 0.32 0.17 0.49 0.25 0.01 2.73 

O1218 0.13 0.38 0.25 0.29 0.70 0.25 0.00 3.72 

T4 0.59 0.00 0.66 -0.02 0.52 0.28 0.00 0.00 

T3 0.30 0.17 0.36 0.12 0.45 0.25 0.04 1.00 

T2 0.26 0.25 0.41 0.17 0.39 0.25 0.10 1.00 

T1 0.48 0.12 0.89 -0.03 0.42 0.25 0.06 1.10 
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 ρ (DWR) ρ (ZKu) ρ (ZKa) N 

all 0.77 0.52 0.19 1442 

GCPEX 0.73 0.73 0.54 461 

MC3E 0.62 0.37 0.26 595 

OLYMPEX 0.68 0.64 0.53 386 

G0128 0.67 0.40 0.05 88 

G0212 0.60 0.36 0.13 93 

G0224 0.56 0.60 0.39 280 

M0425 0.54 0.00 -0.09 191 

M0520 0.83 0.91 0.87 211 

M0523 0.42 -0.09 -0.17 193 

O1201 0.72 0.48 0.12 108 

O1212 0.59 0.59 0.54 260 

O1218 0.67 0.94 0.47 18 

T4 0.50 -0.03 -0.18 174 

T3 0.64 0.62 0.52 309 

T2 0.70 0.68 0.36 391 

T1 0.69 0.25 -0.13 547 
 

Table 3.4 
Correlation Coefficients and Number of measurements in different data subsets 
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Table 3.5 

Ranges of radar measurements and in-situ properties for different data subsets 

 

Dm 
min 
(mm) 

Dm 
max 
(mm) 

DWR 
min 
(mm) 

DWR 
max 
(dB) 

 ZKu 
min 
(dBZ) 

ZKu  
max 
(dBZ) 

ZKa  
min 
(dBZ) 

ZKa 
max 
(dBZ) 

T 
min 
(°C) 

T max 
(°C) 

all 0.2 1.9 -0.2 10.6 3.3 33.2 0.6 28.7 -43 -3 

GCPEX 0.3 1.9 -0.2 10.6 7.1 30.2 5.7 24.2 -23 -4 

MC3E 0.2 1.2 -0.2 6.7 3.3 33.2 0.6 28.7 -43 -5 

OLYMPEX 0.3 1.4 0.3 9.0 6.0 30.4 6.2 27.6 -23 -3 

G0128 0.3 0.9 -0.2 3.8 7.1 15.9 6.2 12.8 -23 -4 

G0212 0.4 1.7 -0.2 8.3 10.6 30.2 7.2 24.2 -18 -11 

G0224 0.3 1.9 0.5 10.6 8.3 28.4 5.7 19.8 -18 -4 

M0425 0.3 0.9 0.1 6.7 5.5 24.8 6.3 24.2 -35 -18 

M0520 0.2 0.8 -0.2 3.6 5.8 20.0 6.4 19.6 -23 -5 

M0523 0.4 1.2 0.9 5.7 3.3 33.2 0.6 28.7 -43 -22 

O1201 0.5 1.1 0.7 9.0 15.9 28.8 15.5 23.0 -6 -3 

O1212 0.3 1.4 0.3 4.8 6.0 30.4 6.2 27.6 -23 -4 

O1218 0.4 1.4 1.7 6.4 16.1 27.1 13.0 23.2 -8 -5 

T4 0.3 1.1 0.2 5.7 5.5 33.2 5.4 28.7 -40 -30 

T3 0.2 1.2 -0.2 6.7 5.8 24.8 6.2 24.2 -30 -20 

T2 0.3 1.7 -0.2 10.3 7.0 30.2 6.7 24.2 -20 -10 

T1 0.3 1.9 0.7 10.6 7.6 30.4 5.7 27.6 -10 -3 

 

 The scattered ZKu and Dm data are first grouped differently in different experiments (Figure 3.8). 

The ZKu and Dm data from GCPEX form a visibly-correlated linear relationship that is similar in 

form to the GCPEX DWR-Dm relationships. The ZKu and Dm data from MC3E displays no 

visible correlation. The ZKu and Dm from OLYMPEX form a curved wedge. ZKu is associated 

with a mostly constant Dm value for ZKu < 17 dBZ, but as ZKu increases, the maximum Dm 

increases while the minimum Dm remains mostly unchanged. The scattered DWR and Dm data 

for different experiments all have the same grouping as the combined dataset in Figure 3.7c, but 

extended out to different maximum DWR values.  
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The empirical relationships between ZKu and Dm from different experiments all deviate from the 

ZKu-Dm relationships in Figure 3.7a. GCPEX data always retrieves higher Dm than the empirical 

relationships drawn from MC3E, OLYMPEX, or the combined dataset. The GCPEX and 

OLYMPEX ZKu-Dm relationships have similar curvature, while the poorly correlated MC3E ZKu-

Dm relationship has a flatter slope. Because of this, ZKu-Dm empirical relationships for MC3E 

and OLYMPEX are similar for ZKu < 17 dBZ, but OLYMPEX retrieves larger Dm as ZKu 

increases beyond 17 dBZ. the ZKa and Dm results are similar to ZKu and Dm results, such that the 

empirical relationships appear more correlated during GCPEX and OLYMPEX.  

 

Figure 3.8 
As in Figure 3.7, but data is separated with respect to different experiments. Empirical regressions from different 

experiments are presented for ZKu (d), ZKa (h), and DWR (l), respectively.	
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The empirical relationships between DWR and Dm for individual experiments all begin similarly. 

MC3E and OLYMPEX relationships peel off from the combined relationship towards lower Dm 

at the highest DWR provided by the respective experiments. In both cases this deviation mostly 

occurs in regions where data appears to be represented by sparse and high influence outliers. 

GCPEX data is similar to the combined relationship across the entire range of Dm, though it 

predicts slightly higher Dm for DWR < 5 dB. 

 

ZKu and Dm also have different ranges and grouping during different IOPs (Figure 3.9), though in 

several cases, the grouping and relationships between different IOPs appear similar. The three 

OLYMPEX IOPs each had different ranges of ZKu, but the empirical relationships from O1201 

and O1212 are almost identical, and they overlap with the empirical relationship from O1218.  

ZKu and Dm data had similar ranges of data and grouping during G0212 and G0224. During 

G0128, ZKu and Dm were much lower, so the empirical relationships do not overlap well with the 

other two IOPs, but the G0128 scattered data still lies in a similar regime as the low reflectivity 

data from G0224.  MC3E IOPs had similar ranges of Dm between IOPs, and Zku and Dm are both 

uncorrelated during M0425 (ρ = 0) and M0523 (ρ = -0.09), but they are highly correlated during 

M0520 (ρ = 0.87). Scattered ZKa and Dm data have similar grouping as ZKu and Dm, but Zka and 

Dm are only visibly correlated during M0520 and O1212 for ZKa < 12 dBZ (Figure 3.10). 
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Figure 3.9 
As in Figure 3.7, but just for ZKu, and data are separated into different IOPs. Empirical regressions are presented 

for GCPEX (d) , MC3E (h) , and OLYMPEX (l) IOPs.	
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Figure 3.10 
As in Figure 3.9, but for Zka.	



 

 

38 

 

 

DWR and Dm from different IOPs have mostly similar grouping, even if they come from 

different experiments (Figure 3.11). G0128, M0425, M0520, M0523, and O1201 all provide data 

that is mostly described by a linear relationship with DWR < 6 dB and Dm < 1 mm, and aside 

from some systematic tendencies for higher and lower Dm during M0425 and M0520 that don’t 

greatly impact the empirical relationships, the IOPs all describe a similar relationship. G0212, 

G0224, and O1212 are the only IOPs that provide large amounts of Dm  > 1 mm. G0212 and 

G0224 have a notably loose grouping relative to other IOPs, with Dm > 1 mm corresponding to 

the entire range of witnessed DWR. Dm > 1 mm during O1212, by contrast, is limited between 3 

and 5 dB. The looser grouping during GCPEX IOPs is likely because the high DWR 

observations came from thin cloud features with sharp DWR and Dm gradients, where individual 

measurements sometimes changed by a full dB or mm from one measurement to the next (Figure 

Figure 3.11 
As in Figure 3.9, but for DWR. 
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5). Minor time lags between collocated radar and in-situ measurements or differences in average 

PSDs of changing environments between different sample volumes could both decrease 

correlation during those IOPs. The G0212 DWR-Dm empirical relationship has negative and 

linear curvature across its entire span. The G0224 DWR-Dm empirical relationship has a negative 

and linear curvature until DWR exceeds 8 dB, whereupon it begins to curve upward slightly. The 

O1212 DWR-Dm empirical relationship begins to gain a positive curvature as DWR exceeds 3 

dB. 

 

 Data are finally separated into four subsets based on temperature in Figure 3.12. These groups 

are referred to as T4 (-40 < T < -30), T3 (-30 < T < -20), T2 (-20 < T < -10), and T1 (-10 < T < 0). 

The differences between temperature-dependent empirical relationships are mostly related to a 

maximum Dm of 1 mm that only exists for temperatures below -20°C. Otherwise, the grouping of 

radar measurements and Dm fill out the same shape as those from Figure 3.7. The ZKu and Dm 

subsets have different correlations, so the corresponding empirical relationships have different 

slopes. The ZKa and Dm subsets are all very poorly correlated, and half of the relationships imply 

decreasing ZKa with increasing Dm. The DWR-Dm empirical relationships have similar shapes, 

but slightly different curvatures that lead to consistent differences in retrieved Dm. T2 retrieves 

the highest Dm for a given DWR, T1 retrieves slightly lower Dm, followed by T3, and then T4.  
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There was at least one intersection where Dm only appeared to be related to DWR (Figure 3.13). 

During O1212 at 19.5 h, Dm decreased from 6 mm down below 3 mm at 19.52 h, rising back up 

to 5 mm at 19.56 h. During this same time period, DWR began at 5dB, dropped to 3dB at 19.52 

hr, and rose to 4 dB at 19.56. ZKu remained around 22.5 dBZ during this whole time period, even 

Figure 3.12 
As	in	Figure	3.7,	but	for	different	temperature	ranges.	Empirical regressions from different 

temperature ranges are presented in Figures 10m, 10n, and 10o for ZKu, ZKa, and DWR, respectively. 
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though reflectivity is known to be influenced by particle sizes. It is beyond the scope of this 

study to investigate why ZKu wasn’t correlating with Dm as would be expected, but this 

intersection provides a clear and simple example where DWR provided unique information on 

Dm that couldn’t be gathered from a single wavelength radar. 
 

Figure 3.13 
A sample of collocated data during O1212, displaying collocated DWR profiles and Citation altitude (a), 

collocated DWR and Dm (b), collocated ZKu profiles and Citation altitude (c), and collocated ZKu and Dm (d). 
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3.4.3 RETRIEVAL EVALUATIONS 
 

The third set of results addresses the question: “Does a DWR-based Dm retrieval method provide 

more accurate and consistent results than a Z-based Dm retrieval method?” Three retrieval 

methods are considered: the empirical relationship through the combined dataset (C), a set of 

empirical relationships for each experiment (E), and a set of empirical relationships for the four 

temperature regimes (T). These relationships were derived in Section 3.4.2. Empirical 

relationships are considered for DWR, ZKu, and ZKa, resulting in nine retrieval methods. The Dm 

retrieved from the combined data set through these nine methods (Dm ret.) are compared with the 

measured Dm (Dm meas.) in Figure 3.14. RMSE and bias for the nine methods across the data 

subsets defined in Section 3.4.2 are presented in Table 3.6 and Table 3.7. 
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Figure 3.14 
Evaluations of Dm retrieved through different empirical retrieval methods (Dm ret.) against Dm measured 

by the Citation.	
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Retrieval Bias (mm) 

 DWR-C ZKu-C ZKa-C	
GCPEX -0.06 -0.22	 -0.26	
MC3E 0.05 0.10	 0.15	
OLYMPEX -0.02 0.10	 0.07	
G0128 -0.02 -0.04	 0.08	
G0212 -0.22 -0.25	 -0.44	
G0224 -0.02 -0.26	 -0.31	
M0425 0 0.13	 0.18	
M0520 0.15 0.16	 0.25	
M0523 -0.01 0.00	 0.02	
O1201 0 0.11	 0.04	
O1212 -0.01 0.11	 0.10	
O1218 -0.19 -0.07	 -0.24	
T4 0.01 0.08	 0.11	
T3 0.01 0.07	 0.16	
T2 -0.04 -0.03	 -0.04	
T1 0.02 -0.04	 -0.10	

Table 3.6 
Bias of between Dm ret. and Dm meas. for different data subsets from DWR-C, Zku-C, and ZKa-C retrieval 

methods. Bolded numbers represent the minimum bias for a data subset 

 

Retrieval RMSE (mm) 

 DWR-C DWR-E DWR-T ZKu-C ZKu-E ZKu-T ZKa-C ZKa-E ZKa-T 
All Data 0.19 0.18 0.18 0.25 0.20 0.24 0.30 0.22 0.28 
GCPEX 0.25 0.24 0.24 0.34 0.25 0.31 0.42 0.30 0.37 
MC3E 0.15 0.14 0.15 0.20 0.16 0.18 0.23 0.17 0.22 
OLYMPEX 0.16 0.16 0.16 0.21 0.18 0.21 0.22 0.20 0.21 
G0128 0.14 0.16 0.14 0.12 0.18 0.09 0.14 0.26 0.17 
G0212 0.33 0.30 0.30 0.41 0.34 0.38 0.55 0.37 0.50 
G0224 0.24 0.24 0.24 0.36 0.24 0.33 0.42 0.28 0.36 
M0425 0.13 0.13 0.13 0.21 0.15 0.19 0.23 0.14 0.20 
M0520 0.17 0.13 0.17 0.17 0.12 0.18 0.27 0.14 0.27 
M0523 0.14 0.15 0.14 0.22 0.20 0.17 0.16 0.21 0.19 
O1201 0.10 0.09 0.10 0.16 0.11 0.18 0.14 0.14 0.17 
O1212 0.17 0.17 0.17 0.23 0.20 0.23 0.24 0.21 0.22 
O1218 0.28 0.27 0.29 0.16 0.26 0.20 0.33 0.32 0.33 
T4 0.12 0.12 0.11 0.21 0.15 0.13 0.18 0.15 0.13 
T3 0.14 0.14 0.13 0.17 0.16 0.15 0.23 0.17 0.17 
T2 0.24 0.22 0.24 0.30 0.23 0.28 0.38 0.26 0.37 
T1 0.19 0.19 0.19 0.28 0.21 0.27 0.30 0.24 0.28 

Table 3.7 
RMSE between Dm meas. and Dm ret. for different data subsets from all retrieval methods. Bolded numbers 

refer to the minimum RMSE for a data subset, ignoring the italicized results from DWR-E and DWR-T 
methods.	
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The range of Dm ret. changes with different retrieval methods. Broader ranges of Dm ret. that 

match the measured range of Dm appear to have the best agreement with measured data, and they 

are distributed more evenly about the 1:1 line. Retrieval methods that provide smaller ranges of 

Dm ret. provide disproportionately large underestimates of Dm ret. Dm ret. spans the full length 

of measured Dm for all DWR-based retrievals, and there is little improvement associated with 

more sensitive retrieval methods. The range of Dm ret. is mostly between 0.4 and 1.25 mm for 

the ZKu-C method, but this range increases as more sensitive retrieval methods are used. The ZKa-

C retrieval method has the smallest range of Dm ret., just between 0.6 and 0.9.  

 

In all but one data subset, the combined DWR-Dm empirical relationship either provides the 

lowest bias, or it agrees with the method that provides the lowest bias within 0.01 mm. The Dm 

ret. from the DWR-C retrieval method are biased less than 0.02 mm across most data subsets. 

The Dm ret. from Z-C retrieval methods regularly exceed 0.1 mm.  

 

The DWR-C retrieval also tends to provide lower RMSE across the combined data set and across 

all data subsets than any Z-based retrieval, including the environmentally-dependent retrieval 

methods. The environmentally dependent retrieval methods tend to reduce the RMSE from the 

Z-based retrievals, but across most data subsets, they only provide a 0.01 mm improvement in 

RMSE for the DWR-based retrieval. ZKa retrieval methods had a substantial increase in retrieval 

accuracy when experiment-specific relationships were used. The ZKa-E RMSE is greater than the 

ZKu-E RMSE for the combined dataset, but it is less than the ZKa-T RMSE. 

 

3.5 DISCUSSION AND CONCLUSION 
 

GPM’s DPR can conduct novel DWR-based retrievals of Dm. This DWR-based method is 

believed to be superior to a single wavelength Z-based method, but to our knowledge, the 

capabilities of the two methods had not been compared against each other with measured data. In 

this study, empirically generated Z and DWR-based retrievals of Dm were evaluated in diverse 

snow clouds. Data came from three experiments, GCPEX, OLYMPEX, and MC3E, which 

represented winter synoptic and lake-effect storms near Ontario, winter orographic, and synoptic 

storms near the Olympic Mountains, and late-spring convective storms in Oklahoma. Collocated 
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data and empirical relationships were presented for the combined data set, for subsets of 

individual experiments, IOPs, and temperature ranges. 

 

The relationships between DWR and Dm across all experiments, IOPs, and temperature ranges in 

this study were adequately described with a common relationship defined by Equation 5, with c3 

= 0.43, c4 = 0.25, c5 = 0.06, and c6 = 1.17. The relationships between ZKu and Dm were 

inconsistent between different environments. In IOPs that had similar ranges of DWR, such as 

G0128, O1201, and M0425, ZKu had completely different ranges across the full span of observed 

reflectivity. The relationships between ZKu and Dm were uncorrelated during M0425 and M0523, 

but they were strongly correlated during M0520.  

 

The DWR-based retrieval demonstrates a decreased RMSE and bias across most data subsets 

compared to Z-based retrievals, even when Z-based retrievals are allowed to incorporate 

environmental-specific retrieval methods. The DWR-Dm relationship from the combined data set 

represents the first empirically based retrieval method of Dm that can be applied to DWR 

measurements, and it would be straightforward to apply this relationship to global retrievals of 

Dm from DPR measurements. 

 

The relationship between DWR and Dm is in agreement with theoretical relationships between 

DWR and Dm (Figure 3.15). It is worth noting that PSDs with Dm > 1 mm were mostly provided 

by two IOPs, namely G0212 and G0224. These IOPs describe a mostly linear relationship for all 

DWR and Dm that is most similar to the predictions from a spheroidal scattering model. The only 

non-GCPEX IOP to provide a considerable amount of Dm data was from O1212, and this high 

Dm data generates the only DWR-Dm relationship from any IOP with a positive curvature below 

6 dB (Figure 11l). This relationship is more similar to the predictions from a heterogeneous 

scattering model. However, Dm in this range of DWR is also found in G0212 and G0224, and 

there is not a comparably large amount of data from O1212 above 1 mm, so it is not certain 

whether this grouping truly represents a positively curved DWR-Dm relationship or whether it 

represents a region of data within the uncertainty of the same DWR-Dm relationship described by 

the GCPEX data. It would be valuable to repeat this study with more Dm >1 mm to investigate 

the predicted differences in DWR-Dm relationships from different snowflake habits at large Dm. 
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The grouping of ZKu and Dm between different IOPs in Figure 9 revealed an unexpected result: 

ZKu – Dm relationships appear to fall into different modes that consistently correspond with 

different environments: GCPEX clouds, non-GCPEX clouds with temperatures colder than -

20°C, and non-GCPEX clouds with temperatures warmer than -20°C. These results are 

rearranged to demonstrate these common modes in Figure 16. These different cloud types can be 

more abstractly described in several ways (e.g.: snowing clouds and raining clouds, stratiform 

clouds and convective clouds), and the -20°C temperature demarcation separates the different 

cloud regimes where large snowflake aggregation can or cannot occur. However, a full 

investigation of this matter is beyond the scope of this study. A convincing identification of 

environmentally distinct and consistent single-wavelength empirical retrieval relationships would 

be valuable for the satellite radar community, and a dedicated investigation into these proposed 

regimes with a larger and more diverse collocated Z-Dm dataset is encouraged. 

 

 

 

 

Figure 3.15 
The empirical DWR-Dm relationship and collocated data are compared with the theoretical relationships from 

Figure 3.6. 
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DWR measurements of precipitation are a unique source of information that GPM can provide. 

Through the evaluations in this study, we have demonstrated that DWR provides an improved 

retrieval of Dm compared to Z-based retrievals, and we have demonstrated that ranges of 

collocated Z and DWR can vary considerably, implying that some microphysical properties 

which only change the single-wavelength reflectivity of a cloud might be identifiable through a 

combination of single and dual wavelength reflectivity measurements. More studies involving 

collocated dual-frequency radar and in-situ measurements may continue to reveal valuable 

information that can only be gathered from the GPM core satellite.  

 

 

 

Figure 3.16 
A rearrangement of Figure 3.9 to reveal common modes between different IOPs 
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4.1 INTRODUCTION 
 

4.1.1 MOTIVATION 
 

An essential component of NASA precipitation retrievals is the retrieval of Dm from DWR. The 

snow particle scattering model used to simulate DWR-Dm relationships in the GPM 2A-DPR 

retrieval product (Seto et al. 2013; hereafter referred to as the GPM algorithm) was not modified 

significantly modified from the TRMM retrieval algorithm used to retrieve PSDs in tropical 

storms, however. Several of the assumptions in this algorithm that model snowflakes as spherical 

particles in clouds with high liquid water content run against the consensus from in-situ 

observations of midlatitude snowing clouds (Leinonen et al. 2018; Chase et al. 2018; Yin et al. 

2017; Kneifel et al. 2015; Petty and Huang 2010; Hogan et al. 2012). Since there has not yet 

been an evaluation of the GPM algorithm against measured data, however, it has not been known 

whether these assumptions amount to any problematic biases in retrieved data. In fact, without 

the measured relationship between DWR and Dm provided in this dissertation, there has not yet 

been a direct evaluation of the DWR-Dm relationship predicated by any of the models that 

portray snowflake scattering processes with different shape assumptions.  

 

 

4.1.2 RESEARCH STATEMENT AND METHOD 
 

The matched DWR and Dm data generated in the previous chapter provides a novel method to 

evaluate assumptions in retrieval algorithms. Each scattering model is linked to a unique 

simulated DWR-Dm relationship, and the empirical relationship provides the best current 

estimate of the relationship between DWR and Dm in real snow clouds. Therefore, simulated 

DWR-Dm relationships that deviate from the empirical relationship are likely to indicate a poor 

representation of the snow particles within typical snowing clouds. In this chapter, I conduct the 

CHAPTER 4 EVALUATIONS OF SNOWFLAKE SCATTERING MODELS AGAINST 
EXPERIMENTAL MEASUREMENTS 
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first comparisons between theoretical and measured DWR-Dm relationships. The theoretical 

relationships are introduced in Section 4.2, evaluations are conducted in Section 4.3, and the 

study is summarized in Section 4.4. 

 

 

4.2  THEORY 
 

4.2.1  MODEL ASSUMPTIONS 
 

Model PSDs are calculated following Equation 3-8. DWR is simulated by applying PyTmatrix 

(Leinonen 2014)spheroidal cross-sections to Equation 3-1 and Equation 3-7. Spheroids are 

initially calculated with sizes of Dmeas, so they can use the same mass parameterizations as 

imaged particles (e.g., Heymsfield et al. 2010). Spheroids can take the form of “oblate 

spheroids,” with two major axes and one minor axis, or “prolate spheroids,” with two minor axes 

and one major axis.  Oblate or prolate spheroids are generated in PyTmatrix with AR greater-

than or less-than one, respectively. AR is referred to alongside an abbreviation of (Ob) or (Pr), 

referring to oblate or prolate spheroids, respectively. ODFs are described by Gaussian probability 

distribution functions with assumed 0° average orientations representing “fluttering” snowflakes 

(G-σ, with σ representing the standard deviation), delta functions centered on 0° representing 

horizontally oriented snowflakes (HO), or uniform probability distribution functions representing 

randomly oriented snowflakes (RO). 

 

As previously mentioned, the GPM algorithm assumes a spherical particle with a constant 

density (implying a b of 3). If a radar bright band (BB) is detected, referring to the layer of 

melting snow that has a visibly higher reflectivity than the clouds above or below it, the GPM 

algorithm has a temperature-dependent set of DWR-Dm relationships. If no bright band is 

detected (noBB), just a single DWR-Dm relationship is used. The justification for these 

assumptions is unclear. A b of 3 for is a valid assumption for graupel particles, but in stratiform 

clouds where large dendritic snowflakes will often dominate the measured PSDs, b has 

consistently been derived as closer to 2 (Heymsfield et al. 2010; Brown and Francis 1995; 

Locatelli and Hobbs 1974). There is also little physical difference between a cloud of frozen 
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precipitation that continues to the ground as snowfall versus a cloud of frozen precipitation that 

melts closer to the surface, so the rationale behind the conditionally temperature-dependent 

DWR-Dm is also unclear. On the contrary Figure 3.7 displayed a remarkably similar DWR-Dm 

relationship among data drawn from noBB clouds (GCPEX) and BBclouds (MC3E, 

OLYMPEX).  

 

The GPM DWR-Dm relationships are difficult to recreate numerically or analytically, so they are 

iimplied through collocated DWR and Dm data drawn from 100 random 2A-DPR single-orbit 

data sets. ZKu (ZKa) reflectivity comes from the NS (MS) – SLV -zFactorCorrected groups of 2A-

DPR files. Dm comes from the NS-SLV-paramDSD group of the same files.  

 

 

4.2.2 SIMULATED RELATIONSHIPS 
 

Given the lack of commonly accepted recommendations for snow particle microphysical 

properties, many different parameterizations are similarly plausible. Figure 4.1 demonstrates the 

sensitivity of spheroid-based simulated relationships to different combinations of literature-

recommended snow particle parameterizations (Leinonen et al. 2012; Heymsfield et al. 2010; 

Hogan et al. 2012; Brown and Francis 1995; Seto et al. 2013; Liao et al. 2016; Mason et al. 

2018; Jiang et al. 2019). The parameterizations corresponding to each curve are provided in 

Table 4.1. 



 

 

52 

 

 

 

 

 

 

 

 

 

Figure 4.1 
Sensitivity tests for simulated DWR-Dm relationships resulting from variations in the ODF (left), AR 

(middle), and mass (right) parameterizations for spheroid scattering models. 
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a ( g cm-b ) b AR ODF 

Base 0.007 2.2 0.6 (Ob) G-40 

ODF = HO 0.007 2.2 0.6 (Ob) HO 

ODF = RO 0.007 2.2 0.6 (Ob) RO 

AR = 0.3 (Ob) 0.007 2.2 0.6 (Ob) G-40 

AR = 1 0.007 2.2 1 N/A 

AR = 0.6 (Pr) 0.007 2.2 0.6 (Pr) G-40 

Light 0.002 1.9 0.6 (Ob) G-40 

Heavy 0.1 3 0.6 (Ob) G-40 

Max Dm 0.1 3 0.3 (Ob) HO 

Min Dm 0.002 1.9 0.6 (Pr) RO 

Table 4.1 
Parameterizations for the simulated DWR-Dm relationships in Figure 4.1 

 

DWR-Dm relationships parameterized with a narrower ODF, a heavier mass parameterization, 

and higher AR for oblate spheroids will all increase retrieved Dm. AR is peculiar in that the 

retrieved Dm will deviate from a spherically-generated relationship in opposite directions with 

decreasing AR depending on whether the spheroids are prolate (decreasing Dm) or oblate 

(increasing Dm). Interactions between parameters can introduce less-visible sensitivities. For 

example, there is a noted sensitivity to changes in ODF from the base relationship, but since 

symmetry forbids this sensitivity for spheres, it can be inferred that the sensitivity from ODF is 

dependent on AR. Also, while changes in AR and ODF only affect simulated DWR, changes in a 

and b will also impact calculations of Dm. Therefore, the “Dm” of simulated DWR-Dm 

relationships with different mass will represent different moments of a modeled size distribution. 

Finally, AR changes the geometric scattering properties of snow particles, but it also changes the 

density through changes in spheroid volume. Therefore, changes in AR are inherently linked to 

changes in mass parameterizations, and prolate particles will be more sensitive to changes in a 

and b than oblate particles. When the interacting sensitivities of the DWR-Dm relationship are 

optimized, it results in the incomparable maximum and minimum DWR-Dm relationships of 

Figure 4.1d. It is important to emphasize here that, while the parameterizations in Figure 4.1d are 
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drawn independently from literature sources, they have never explicitly been recommended in 

combination. 

 

The BB and noBB GPM DWR-Dm relationships are visualized in Figure 4.2 and colored by 

temperature. As previously mentioned, the DWR-Dm relationship is temperature independent in 

clouds with no BB, but it is temperature-dependent in clouds with a BB. The two relationships 

are identical at very cold temperatures, but they differ substantially at warmer temperatures. The 

temperature-dependent noBB relationship leads to some unrealistic implications. If one imagines 

a snow cloud carrying some constant DWR located in a cloud at -5°C, according to the GPM 

algorithm, this cloud can have a Dm that changes by a mm, sometimes doubling in size, 

depending on whether it is snowing or raining at the surface. Such a difference in precipitation 

phase can come from just a few degrees change in surface temperature or even a change in 

elevation within the same storm, so there is no physical basis for such a distinction. The noBB 

DWR-Dm relationship also predicts that a negative DWR can correspond to over half of the 

retrievable range of Dm at warm temperatures. For frozen particles, Ku reflectivity should always 

be larger than Ka reflectivity, and Ka attenuation will always be larger than Ku attenuation, so a 

negative DWR should not be permissible.  

  

 

 

Figure 4.2 
2A-DPR simulated DWR-Dm relationships for no BB (left) and BB (right) scenarios implied by collocated DWR 

and Dm data points. 
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4.3 RESULTS 
 

4.3.1  EVALUATIONS OF SPHEROID-BASED DWR-DM RELATIONSHIPS 
 

In Figure 4.3, spheroid DWR-Dm relationships using different parameterizations of AR (AR = 

0.3 (Ob), AR = 0.6 (Ob), AR = 0.6 (Pr)) and ODF are evaluated against the combined dataset. 

Figure 4.3 provides some implications of snow microphysical properties that are otherwise un-

measurable in clouds through typical in-situ and radar methods.  First, while ODF has previously 

been considered to be an unimportant parameter (Leinonen et al. 2012; Liao et al. 2016), it can 

have a moderate impact on the simulated DWR of snow particles with very low AR. Such low 

AR have been suggested as a result of overestimated 2D imagery by Jiang et al. (2017). For 

exponential size distributions, models based off of randomly aligned snow particles tend to 

underestimate the measured data to some degree. Simulated relationships that can recreate the 

empirical relationship, or that can account for measurements that fall above the empirical 

relationship, require some preferential alignment to approach or exceed the empirical 

relationship. This provides some evidence that DPR-visible snow PSDs are closer to being 

horizontally oriented than randomly oriented, a distinction that is still poorly known (Hogan et 

al. 2012; Jiang et al. 2019). Second, simulated DWR-Dm relationships based off of prolate 

spheroids are very low-biased, both with respect to the measured data and to the other scattering 

models considered in this study. This is a surprise, as prolate spheroids are claimed to be a better 

description of the kind of snowflakes that were measured during GCPEX (Jiang et al. 2019) 
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A near-perfect replication of the empirical relationship can be simulated from a spheroid 

scattering model under an AR = 0.6 (Ob), μ = 0 parameterization. Remarkably, this 

parameterization is very similar to the Hogan et al. (2012) recommendation for cloud-ice 

hydrometeors, just using the Heymsfield et al. (2010) mass parameterization in place of Brown 

and Francis (1995). This could be an important difference. Changes in a and b will both change 

the moment of the measured PSD represented by Dm, but only changes in b will impact a 

spheroid-simulated DWR, and neither will impact the measured DWR used to derive an 

empirical relationship. Therefore, one may expect that simulated and empirical DWR- Dm 

relationships will have different sensitivities to changes in mass parameterizations. Simulated 

and empirical DWR-Dm relationships are generated for spheroids with three different mass 

parameterization in Figure 4.4. b is varied between 1.9, 2.1, and 2.3, and corresponding a 

parameters of 0.003, 0.006, and 0.015 are calculated through the method described in Mason et 

al., (2018). Other parameters remain fixed with a horizontal orientation, AR = 0.6 (Ob). While 

the empirical and simulated DWR-Dm relationships both become steeper in response to heavier 

mass parameterizations, an expected result considering Dm will get larger as a and b increase, the 

corresponding increase between the relationships is disproportionate. Lower b values lead to an 

increase in simulated DWR that amplifies the effect of the increased Dm, leading to a 

Figure 4.3 
Simulated DWR-Dm relationships generated with a variety of microphysical assumptions, compared with the 

matched data and singular empirical DWR-Dm relationship from Figure 3.7 
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systematically high (low) offset for simulated Dm compared to to the empirical relationship as b 

increases above (decreases below)  

 

 

 

4.3.2 EVALUATION OF 2A-DPR RETRIEVALS 
  

The assumptions in the 2A-DPR dataset represent the most widely used DWR-based retrievals in 

the world today, so they adequately represent the real behavior of snow PSDs. In Figure 4.5, 2A-

DPR data are evaluated against relevant GV data. GCPEX measurements of snowing clouds 

above snowstorms are matched to the  -5°C < T < -20°C DPR noBB measurements in Figure 

4.5a, and MC3E and OLYMPEX measurements of snowing clouds above rainstorms are 

matched to DPR-BB measurements in Figure 4.5b.  

 

Figure 4.4 
Comparison between the empirical relationship and the simulated curve using different mass parameterizations 
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Figure 4.5 demonstrates that the 2A-DPR assumptions are biased with respect to the witnessed 

DWR and Dm in snow clouds. The bias is the largest for the DPR-noBB relationship. This is 

because the GCPEX DWR-Dm relationship follows the same trajectory as the OLYMPEX and 

MC3E data, while the temperature-dependent DWR-Dm relationship from the 2A-DPR algorithm 

differs by a mm between BB and no-BB. The poor recreation of measured DWR-Dm 

relationships from 2A-DPR assumptions implies a bias for GPM retrievals of snow clouds. To 

visualize how this bias manifests in real GPM measurements, Figure 4.6 provides the DWR, 

GPM-retrieved Dm (GPM-Dm), the Dm retrieved through the singular empirical relationship from 

Chapter 3 (Duffy-Dm), and the difference between the two Dm measurements (ΔDm) from two 

selected examples of GPM DWR measurements of storm clouds.  

Figure 4.5 
Evaluation of 2A-DPR noBB (left) and BB (right) simulated DWR-Dm relationships against comparable 

experimental data from Chapter 3 
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Figure 4.6 
Two selected DPR storm overpasses. Top row displays the DPR, second row displays the GESC-retrieved Dm, 

third row displays the empirically retrieved Dm, bottom row displays the difference between the two Dm 
measurements. 
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The left and right column of Figure 4.6 depict storms that were likely formed through similar 

processes. They both have cloud tops that mostly fall below -20° degrees and surface 

temperatures a little above 0°C, typical of stratiform precipitating clouds that may generate 

snow, sleet, or rain depending on the boundary layer temperature profile. The storm in the left 

column has no bright band and a DWR mostly below 2 DWR, save for a few profiles near 2530 

s. The storm in the right column has a DPR-detected bright band, and a DWR approaching 6 dB. 

Based on the relationship between DWR and Dm predicted from theory (Figure 3.15) and 

visualized in data (Figure 3.8), the storm with a bright band would therefore be expected to 

contain a proportionally larger Dm. However, this is only the case for the empirically retrieved 

Dm, and the difference between the two retrieval algorithms results in the GPM algorithm 

providing a similar Dm for both storm clouds. As a result, the difference between the Emp-Dm 

and GESC-Dm for the two storms changes by more than 1.5 mm, despite any apparent evidence 

that the DWR of the two storms should reflect different cloud properties.  

 

 

4.4 CONCLUSION 
 

In this chapter, I used experimentally collocated data to evaluate simulated DWR-Dm 

relationships. I evaluate different realizations of the “spheroid” scattering model and the DWR-

Dm relationship used to retrieve precipitation in the DPR-2A algorithm. The results are 

summarized in the following bullets. 

 

• The empirical relationship is almost near-perfectly represented by a simulated DWR-Dm 

relationship generated from a spheroid scattering model with an AR of 0.6 (Ob), a 0° delta 

function (horizontally oriented) ODF, a μ = 0 (exponential) gamma size distribution, an a of 

0.007 and a b of 2.2. This parameterization represents the assumption for cloud ice 

recommended in Hogan et al. (2012) combined with a mass parameterization for unspecified 

snow particles from Heymsfield et al. (2010). The agreement between the two relationships 

fails if other a and b are considered, however. Therefore, the Hogan et al. (2012) shape and 

orientation parameterizations can therefore be used to underestimate, overestimate, or 

accuraretly account for the empirically retrieved Dm depending on the choice of mass 
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parameterization. This result demonstrates how similarly justifiable assumptions can lead to 

differing, or even opposing, results when comparing measured and simulated snow PSD 

properties. 

 

• All prolate-spheroid based relationships substantially underestimate the Dm of the measured 

data. This result is problematic since prolate spheroids have recently been identified as the 

best shape to account for the large snow particles that will dominate DPR measurements 

(Jiang et al. 2019). Therefore, Figure 4.3 implies that a spheroid must be parameterized 

against the best current knowledge of measured snow particles in order to provide the best 

agreement to measured data. Considering how pervasive the oblate spheroid approximation is 

in multiple frequency simulations of snow PSDs (Kneifel et al. 2015; Chase et al. 2018; 

Leinonen et al. 2012; Liao et al. 2016), this paradox should be a subject of future study. 

 

• The temperature-dependent retrieval assumptions for noBB clouds in the 2A-DPR algorithm 

implies a very different DWR-Dm relationship for snow clouds above frozen precipitation 

than for snow clouds above liquid precipitation. This relationship is not witnessed in 

measured data; rather, snow clouds above rainstorms and snowstorms previously displayed a 

remarkable level of consistency about a singular empirical relationship. The BB-conditional 

temperature-dependant DWR-Dm retrieval method in the GPM algorithm leads to visibly 

unrealistic results in DPR data, where similar clouds will have full mm differences in Dm 

depending on whether they lie on top of a snowing storm or a rainstorm. In GPM retrievals of 

storm clouds, the GPM algorithm leads to unexplainably similar measurements of Dm from 

clouds with very different DWR signatures. 

 

These findings can be summarized into two important problems for satellite retrievals of frozen 

precipitation. First, the assumptions for frozen precipitation in the GPM algorithm are 

demonstrably incorrect, both in their basis and in the resulting predictions for precipitation 

reflectivity. Second, there is not currently a scattering model which is able to adequately recreate 

measured DWR reflectivity and be parameterized according to measured properties of 

snowflakes. A temperature-independent horizontally aligned spheroid is likely a better choice to 

base the retrieval model in the 2A-DPR algorithm on than the model currently implemented, at 
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least for mid-latitude clouds that were represented in Section 2. However, it is problematic that 

this model requires a knowingly improper assumption for snow axial ratio. High-resolution 

imagery of the large snowflakes which the DPR specializes in measuring have only become 

possible within the past few years, and the discovery that the aggregates fall as prolate particles 

was published just within this past year. Other properties of large snow aggregates may be 

revealed in coming years which could lead to a DWR-Dm relationship that aligns better with 

measured values. Further studies on the microphysical properties of large snow aggregates, such 

as density or orientation, will be valuable to unite my observations of snow particles with 

predictions from my most naturally representative model
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Measurements of falling snow represent some of the most poorly understood precipitation on the 

planet, and only recently have satellite radars been developed which can retrieve snowfall rates 

over all surfaces and inside of clouds. During my time at Vanderbilt University and the 

University of Illinois at Urbana-Champaign, I conducted the following research related to 

satellite radar measurements of snowfall: 

 

• I used in-situ and radar measurements of falling snow to develop empirical relationships 

between DPR measurements and Dm across orographic, convective, and stratiform 

snowfall in temperatures ranging from 0 to -40°C. Through this research, I demonstrated 

the superiority of a DWR retireval method, and I generated the first empirical relationship 

between DWR and Dm that can be recommended for GPM use across the planet. 

 

• I evaluated contemporary scattering models used to represent falling snow in simulations 

and retrieval algorithms. I demonstrated that there are no current scattering models based 

on our best available knowledge of snow properties which can recreate the measured 

relationships between DWR and Dm, and that the current assumptions in the GPM 

algorithm are particularly unrealistic for stratiform snow clouds. Therefore, the empirical 

relationship between DWR and Dm from chapter two is encouraged for global retrievals 

in place of the current 2A-DPR provided values. 

 

• I used CloudSat snowfall measurements in conjunction with climate reanalysis models to 

determine the impact of melting snow on the ocean surface heat budget, and found it to 

be influential on instantaneous and seasonal time scales 

 

This dissertation has improved our capabilities to retrieve falling snow information from satellite 

radars, it has provided new information on the physical tendencies of falling snow, and it has 

demonstrated new importance of falling snow to planetary processes. Importantly, it also 

quantifies some of the limitations that the current generation of precipitation radar satellites face 

in conducting research on global snowfall. The next generation of precipitation radar satellites 

CHAPTER 5 CONCLUSION 
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are currently in development, and these studies provide essential information on what new 

capabilities are necessary for future satellites to improve our snow-related knowledge of the 

planet. 
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