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Chapter 1

Introduction

1.1 Motivation

Well-designed composites can effectively utilize the desirable attributes of their con-
stituent phases, resulting in a material greater than the sum of its parts. Structural compos-
ites may be optimized to realize performance which meets some demand threshold for the
structure. The ideal composite material for a structure may be selected based on character-
istics like desired stiffness, strength-weight ratio, thermal or acoustical conductivity, fatigue
life, or some combination of these. The influence of the characteristics of the constituents
and the interfaces at small scales on the continuum scale response of the composite is well
understood. The material properties of the composite treated as a continuum are controlled
by the behavior of individual phases and interactions thereof. All physical systems, natural
or engineered, are prone to some degree of inherent uncertainty. Uncertainty is present at
all scales, from the atomic interactions of a material microstructure to the demand imposed
on the system at the macroscale. Design of composites with engineered microstructures
requires characterization of uncertainties to assess the reliability of material performance
in expected scenarios, so that the design life of the structure is predictable within a desired
level of accuracy.

The main purpose of this research is to formalize and implement a computational frame-
work for the analysis and design of arbitrary composite material microstructures to op-
timize the desired structural performance of the composite. This will enable intelligent
tailoring of a mix of material phases of different types, shapes, and sizes satisfying the
needs of an application in terms of performance, cost, and ease of manufacture. Key to
the approach is the use of machine learning concepts for identifying patterns in higher-

dimensional design spaces based on data from numerical simulations and experiments.



The framework presented in this research is implemented for two problems from appar-
ently widely different scenarios, described in Sections 1.1.1 and 1.1.2. The first scenario is
concerned with the prediction of mechanical properties of short-fiber reinforced compos-
ites with randomly distributed fibers, widely used in many engineering applications. The
second problem focuses on the vibration of metallic composite wires used in stringed mu-
sical instruments. In each of these two problems, the objective is to identify descriptors
that can be used to characterize a composite morphology, and determine the correlation be-
tween descriptors and the overall performance of the composite. Once a machine learning
model has been successfully trained using data from experiments and/or simulations, it can
be used to efficiently simulate the response of composites with microstructures that have
not been previously tested, allowing for data-based rapid prototyping of composites in a

variety of applications.

1.1.1  Short-Fiber Reinforced Composites

Fiber reinforced composites (FRC) generally consists of short fibers, long fibers, or
some combination of the two embedded in a lower strength matrix material. Both short
fibers and long fibers show advantages for different applications. Fiber inclusions enable
crack bridging, show enhanced ductility, and absorb energy without significantly increas-
ing the weight of the composite. For fibers continuous and straight throughout the material,
it is possible to derive simple phenomenological mechanical property relationships for the
matrix-fiber combination in the form of constitutive equations. It is also possible to es-
timate the failure strength of adequately reinforced aligned long fiber composites using a
mechanics-based approach. A unidirectional FRC lamina is orthotropic in nature. The
toughness is maximum in the direction of the fibers, but relatively weak in a direction
transverse to the fibers. For this reason, unidirectional continuous fibers are useful when
the direction of the load with respect to the material orientation is known with some de-

gree of certainty. For example, some aircraft components use laminates with layers of



uniformly oriented fibers designed to specifically handle the unique load profiles imposed
under operating conditions.

In some applications, randomly dispersed short fibers may be preferred due to reduced
directional dependence of strength because irrespective of the load direction some of the
fibers will always share a portion of the load. For example, in blast-resistant structural
design, the location and magnitude of the design load is often unknown. Consequently,
moment reversal may occur in a supporting beam. The toughness of a brittle-matrix com-
posite can be significantly improved by adding a small volume fraction (<2%) of randomly
dispersed higher-strength ductile or brittle short fibers to the matrix. In addition to im-
proved mechanical properties, random short-fiber reinforced composites (SFRC) provide
an advantage in ease of fabrication, as the fibers can simply be added to the matrix as it is
mixed. In the case of SFRC, apart from the strength of the matrix material, its degree of
ductility can be a function of volumetric ratio, physical properties of fiber like diameter,
strength, length, distribution, elastic modulus, and the interfacial mechanical and chemical
bond characteristics of the two. Random SFRC exhibits variation in morphology through-
out the problem domain that must be accounted for in the design. In practical applications,
the designer must select fiber shapes and sizes to achieve optimal performance. This disser-
tation addresses the problem of predicting the response of a random SFRC microstructures
with varying fiber configurations based on state-of-the art methods for material modeling

and machine learning.

1.1.2  Composite Musical Instrument Strings

Stringed instruments produce a signal when a transverse excitation force is applied
to a tensioned string or wire by a plucking, bowing, or striking mechanism. In acoustic
instruments, sound is produced when the wire vibrations coupled with the instrument body
create a pressure wave in the surrounding air. Rather than creating pressure waves in the air,

the vibrations of the metal string on an electric guitar are converted into electrical impulses



using a magnetic pickup. The signal is transmitted to an amplifier, which is capable of
producing a signal significantly more powerful than that of an acoustic instrument. The
pitch that the instrument produces is related to the length, density, and stiffness of the
string material, as well as the magnitude of the tension in the string. The effect of each of
these factors must be considered when selecting materials to construct an instrument string.

Composite electric guitar strings consist of a tensioned core wire helically wrapped with
an additional wire that is used to control the fundamental frequency of vibration by manip-
ulating the overall density and stiffness of the composite. Most string producers use either
round or hexagonal core wires wrapped with another round, semicircular, or rectangular
metallic wire. A variety of materials are used for core and wrap wires. Limited data exists
to directly compare composite strings of different materials and geometry, since informa-
tion such as ideal core and wrap wire sizes and precise alloy composition are studied by
corporations in-house and treated as proprietary information. The strings are marketed to
users using subjective, relative terms such as “maximum toughness” and “improved bright-
ness”. Occasionally a manufacturer will provide information such as a frequency response
curve indicating the expected sound of a given set of strings, but limited information is
given regarding the experimental basis of the results. There is a lack of published litera-
ture on the vibrational response of strings with different geometry and material property
combinations. One contribution of the current research is to analyze various strings using
the same series of experiments, to mitigate industrial bias. The development of a method
to optimize string geometries to obtain a desired frequency response and design life is of
interest to manufacturers seeking to modernize their production technology. This research
will compare the performance of commercially available instrument strings with varying

geometries and material properties in an unprecedented manner.



1.2 Literature Review

Generally, composites may be classified as fibrous composites, particulate composites,
and laminated composites, or some combination of the three [1]. For example, a laminate
may consist of some layup with particulate inclusions and another layup with fiber in-
clusions. Historically composite materials have been characterized on the basis of strength
tests on representative specimens, resulting in a number of empirical relationships that have
been used by engineers [2]. Such empirical characterization methods may be a viable op-
tion for relatively inexpensive bulk materials subjected to quasi-static loads, but the design
of new-age composites for a broad range of applications can be time consuming and ex-
pensive tests may not be an acceptable option. Early phenomenological attempts to model
the behavior of heterogeneous materials used principles of continuum mechanics of mate-
rials to analytically represent the properties [3, 4, 5]. Recent efforts to solve the problem
more realistically are based on micro-mechanical models coupled with numerical homog-
enization [6, 7, 8], which is preferred for its computational efficiency. The representative
volume element (RVE), defined as a volume of heterogeneous material that is sufficiently
large to be statistically representative of the composite [9], is used extensively in numerical
homogenization techniques. The RVE approach generally assumes periodicity in the ma-
terial composition at the small scale, which can be coupled with an appropriate method for
linking the scales of the problem.

The current emphasis on rational performance driven design approaches demands a
more critical consideration of the ways to define the relationship between the constituents
of a material and structural performance [10]. Previous work has investigated the link be-
tween micro- and macroscale behavior for systems of polycrystal grain boundaries [11, 12],
randomly dispersed spheres and spherocylinders [13, 14, 15, 16, 17], randomly dispersed
circular inclusions [18, 19, 20], elliptical inclusions [18], arbitrarily shaped particle inclu-
sions [21, 22, 23, 24], randomly dispersed uniaxial fibers [25, 26, 27], randomly dispersed

voids [28, 19], and long fibers with ellipsoidal cross-sections [29].



Hierarchical design methods have been proposed [30, 31, 22] in which optimal mi-
crostructure processing techniques and associated characteristics are identified to achieve a
target structural response for a range of composite materials. Fundamental to the approach
is identification of a quantitative relationship between microstructural composition and ma-
terial response [23]. This relationship is viewed as a random function which maps the input
space to the output space. Machine learning is an attractive tool for identifying such map-
pings due to its flexibility and robustness for a wide variety of engineering problems [32].
There has been significant new research on machine learning for material design in recent
years, resulting in the publication of several state-of-the-art reviews of the subject [33, 34].
Machine learning using neural networks was applied to the problem of brittle-matrix FRC
as early as 1996 [35], when the effect of inclusion volume fraction on the stress-strain rela-
tionship of the material was analyzed. Other previous studies have used a descriptor-based
approach to characterize the behavior of heterogeneous cementitious materials containing
voids in the microscale [22]. Some research has focused on accounting for large numbers
of random variables when characterizing random heterogeneous media [36]. Work relevant
to the musical instrument string problem includes the use of a clustering approach for iden-
tifying different modes of damage in composite bridge wires using acoustic emissions data

[37].

1.2.1 Short-Fiber Reinforced Composites

Early tests on fibrous composites showed that for a given matrix material, some fiber
materials provide an increase in stiffness with higher volume fraction, whereas other fiber
materials lead to a decrease in composite stiffness [38] . In a long fiber composite, the
fibers have sufficient bond strength to remain embedded until the fiber fractures. In a short-
fiber composite, however, failure at the interface occurs long before the fibers reach the
stress required to break [39]. Actual interface structures are highly specific to the fiber

and matrix combination. Pullout tests are commonly used to directly characterize interface



resistance between the two phases in such material [40, 41]. The pullout test measures the
resisting force as the fiber is pulled out of the matrix, which can be used to experimentally
characterize the traction-separation relationship at the interface. Cohesive properties can
be manipulated in a design by coating fibers with sprayed layers to enhance bond strength
and/or introducing deformities to provide mechanical anchorage [42]. The effect of fiber
crimping on the bond behavior for a polymeric fiber embedded in a cementitious matrix
was studied by Bentur [43].

The Aveston Cooper Kelly (ACK) theory was developed in an early attempt to describe
the tensile stress-strain behavior of FRC with a brittle matrix [44], and serves as the basis
for later attempts to stochastically describe the cracking behavior of such composites [45,
46]. A number of approaches exist for modeling the homogenized behavior of FRC. The
Concrete Damage Plasticity model (CDP) is one constitutive model capable of accurately
predicting the nonlinear, multiaxial behavior of concrete using plasticity theory [47]. The
CDP model is an attractive macroscale model for FRC due to its independent definition of
tensile and compressive stiffness degradation. For a given state of strain in the composite,
the resulting tensile stress is interpolated from data obtained from uniaxial tension and
compression experiments. The work of Jankowiak [48] provides a detailed description of
the parameter calibration process for CDP using experimental results. Nordendale recently
demonstrated the efficacy of the CDP model for simulating the performance of SFRC under
blast and impact loads [49].

While macromechanics is the study of the composite behavior when the material is
treated as homogeneous with averaged apparent properties, micromechanics focuses on
the interaction of the inherent heterogeneities. The scale at which heterogeneities interact
is termed the microscale (or, more appropriately the mesoscale). As a result of advances
in computational tools over the last few decades, numerical multiscale modeling methods
have become a popular tool for analyzing and predicting the response of heterogeneous

materials [50]. In general, multiscale methods are classified as sequential or concurrent.



Concurrent models solve systems at different scales in parallel, exchanging information
between the models used in each scale [51, 52, 53]. In the process, the macroscale re-
sponse gets influenced by behavior at the microscale, and vice-versa. In a sequential model
[54, 55, 56] simulations at each scale are performed separately. Unknown coarse-scale
parameters are determined using the solution of the microscale problem. A sequential
multiscale approach is particularly useful when a model exists to capture the coarse scale
behavior of the material, but one or more macroscale model parameters are dependent on
the microstructure response. In a sequential multiscale framework, the governing equations
at each scale are uncoupled, so complete scale separation is assumed. The Heterogeneous
Multiscale Method (HMM) [57] was developed as a framework for either sequential or
concurrent multiscale techniques where a different physical or numerical model is needed
at each scale, in contrast to traditional homogeneous multiscale methods.

Previous work has assessed the effect of fiber-matrix interfacial debonding and fiber
orientation on the elastic response of a composite using the finite element method (FEM)
to model the RVE [58, 59] . Unique challenges arise in identifying the RVE of a material
with randomly distributed inclusions, requiring special treatment from a multiscale model-
ing perspective. In the work of Xu [21], random RVEs containing elliptical inclusions were
decomposed into smaller statistical volume elements (SVE) whose response was analyzed
and quantified for upscaling. The approach is similar to Voronoi cell FEM, used by Ghosh
[27], where a statistically equivalent RVE (seRVE) is used to model FRC at the microscale
within the context of a concurrent multiscale model. Greene [31] identifies scenarios where
uncertainties significantly affect macroscale behavior using a statistical description of the
microstructure for three benchmark problems. Recent work by Clement [29] focused on
the development of a database of elementary cells of fiber reinforced polymers contain-
ing arbitrary heterogeneities within the stochastic dimension. One useful aspect of the
present effort is that different microstructures may continue to be modeled and added to the

database, which can be used within a hierarchical multiscale framework.



As the nonlinear response of a composite is dependent upon the arrangement of fibers at
the fine scale, phenomenological parameters for the coarse scale must be determined exper-
imentally, or through a number of microstructural simulations capable of capturing the local
interaction effect of fibers. While FEM can be used to model fiber-matrix debonding at the
fine scale using cohesive elements at the interfacial phase boundary, conventional FEM
is ill-suited to handle complex microstructure geometries due to the need for extremely
fine meshing of the domain. The extended finite element method (XFEM) has emerged as
a computationally efficient alternative to cohesive zone modeling, and its usefulness has

been demonstrated for woven fibers [60] and random short-fibers [61, 62, 63].

1.2.2  Composite Musical Instrument Strings

The work of Abbott provides a thorough history of stringed instruments [64, 65]. The
earliest musical strings were made of various animal intestines, colloquially known as
catgut. Catgut strings suffered from a lack of homogeneity and as a result their tone and
durability were rather inconsistent. Evidence has shown that metallic strings can be traced
back as early as the 12th century, but technological limitations on the wire drawing process
kept them from becoming commonplace at the time. Early metal strings were made of
brass, copper, or silver since these materials are easy to draw and resist corrosion.

The earliest strings consisted of a single wire with a uniform circular cross section.
Today, such strings are referred to as plain strings. Smaller diameters are used for strings
tuned to higher pitches and larger diameters are used for low frequencies so that the ten-
sion in each string is similar. Instrument makers later realized that they could expand the
frequency range of instruments by wrapping a plain string with an additional wire. In this
configuration, the core wire carries the tensile force, while the wrap wire provides an in-
crease in the effective mass for vibration control. The bond between the core and the wrap
wire relies on the friction between the two materials. Some sources suggest that wrapped

strings were made in Germany as early as the 14th or 15th century, although they did not



become the norm until several centuries later [66]. These types of strings are referred to
in literature by various names today, including overwrapped strings [67], wound strings
[68, 69, 70], overwound strings [71, 72], and overspun strings [73]. Wound strings may be
further classified by the cross section geometry of the wrap wire. Roundwound strings use
a circular wrap wire, halfwound strings use a semicircular wrap wire, and flatwound strings
use a rectangular wrap wire.

The analysis of vibrating strings dates back to the work of Pythagoras, who noted that
the length of a string is correlated to its fundamental frequency. In 1749, D’ Alembert de-
rived the solution to the 1D wave equation, which describes the motion of a plucked string.
The work of Fourier later provided the basis for spectral analysis. Early work on the the-
oretical behavior of strings relied on assumptions of an ideal string, one that is infinitely
long and flexible with rigid supports. Lord Rayleigh derived equations for the vibration of
homogeneous strings with finite stiffness more than a century ago [74]. In 1964, Fletcher
expanded upon this work to account for the effect of material stiffness and wrap wire on the
performance of piano strings [75]. His later work provided a review of equations relating
the physical properties of strings to their nonlinear response, inharmonicity, and damping
[73]. Three sources of damping are present in a vibrating instrument string: energy loss
through the supports, viscous air damping from the surrounding media, and internal mate-
rial damping. Internal damping is generally negligible for solid homogeneous strings, but
very significant in wrapped strings. In 1982, Davis developed a graphical design guide for
flexible strings [69]. The design guide related string diameter, frequency, and stress using
several connected plots with common axes. A few years later Firth developed an updated
design guide that incorporated Fletcher’s equations for a stiff string with inharmonicity
[67, 76]. Pickering later studied the influence of core tension during the manufacturing
process on the performance of a wrapped violin string [71] .

The computer revolution and corresponding improvement in instrumentation allowed

for researchers to experimentally study the response of real strings with increasing fidelity.
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The effect of aging on the frequency response of guitar strings was studied by Allen [77].
It was found that new strings have more upper harmonics present that decay less rapidly
than aged strings. Houtsma attempted to measure the change in these frequency depen-
dent damping parameters as electric guitar strings aged [68]. His experimental work used
a modified Gibson SG guitar body with brass wound steel strings. However, brass is not
commonly used for electric guitar string wrap wire since it is not magnetic and electric
guitars such as the SG generally use magnetic pickups. No detail was provided on how the
signals were measured in the study. Hanson designed an experimental apparatus to study
the response of an isolated wound nylon string (as found on a classical guitar) and an iso-
lated wound steel string (as found on a folk guitar) in an attempt to measure results without
the influence of body coupling [70]. Hancock took a similar approach in his studies on
piano and cello strings [78, 72]. Several anomalies were identified between the theoretical
and real response of the strings. He suggested that flexibility, the indeterminate location
of endpoints, tension gradient among the string length, and coupling between transverse
and longitudinal modes were the cause of deviation. Penttinen showed that it is possible to
identify the location of the pluck based on the harmonics present in the signal [79]. Kemp
studied the effect of two different wrap materials on pitch deviation using an electric guitar
with a tremolo arm that is used by some guitarists to stretch strings while playing [80].

More recent work has investigated characteristic damage in steel instrument strings
using microscopy. Bulbul studied damage modes in steel strings used on a baglama [81,
82]. Three primary damage mechanisms were identified: abrasion in the neck region from
pressing on the strings, erosion in the body region from plucking, and environmental wear
due to exposure to moisture, oxygen, oil, and dirt. Olver studied a number of fractured
steel strings and identified that the primary cause of failure was the onset of transverse
fatigue crack initiation in the cross section, followed by ductile failure [83]. The majority
of failures occurred in the region where the strings were plucked.

It is important to note that the design and construction of instruments and their strings
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has a significant link to the field of psychoacoustics. Human perception of sound is highly
dependent on social and cultural factors. Based on the way that humans are conditioned,
certain frequencies, intervals, or rhythms may be perceived as pleasing or irritating. For
this reason, there is no consensus among musicians or string manufacturers on what makes
an “optimal” string. However, psychoacoustic studies have identified correlations between
characteristics of a measured sound and perceived quality. One such study was performed
by Dayan, who studied the characteristics of the sound produced by four different types of
string for acoustic guitars [84]. The study attempted to correlate the magnitude of certain
harmonics with subjective quality according to listeners. However, the tests did not specify
the material or geometry of the strings used. Other authors studied the effect of acoustic
guitar body style and material on perceived quality [85]. In this study a professional gui-
tarist performed a variety of musical pieces on 15 different types of guitars from various
makers. From the results, a correlation was determined between the measured properties
in the signal and the perceived quality of the tone. A follow-up study [86] further inves-
tigated the link between perceived quality and constructional details. In these studies the
researchers held constant, or attempted to do so, all the variables except for the different
guitar bodies used. Because the electric guitar transmits signal using electromagnetic pick-
ups rather than acoustic wave propagation, there is less influence of the electric guitar body
geometry and material than in an acoustic guitar [87].

Recently there has been an increased interest in producing instrument sounds using
digital synthesis. Woodhouse developed a synthesis model for plucked guitar string tran-
sients [88] and calibrated the synthesis model using experimental results from a nylon core
string with metal a wrap wire [89]. His later work used this model to generate samples
for a psychoacoustic study measuring the sensitivity of listeners to changes in frequency
dependent damping and other parameters [90]. Synthesis of string vibrations from three
instruments, the Chin, acoustic guitar, and the Pipa, was undertaken by Liang [91]. The

three instruments used nylon-wrapped silk-wound steel, steel wound, and nylon wound
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strings, respectively. Karjalainen developed a digital signal processing technique to modify
the sounds produced by an electric guitar so that they resemble the sound of an acoustic
guitar [92]. These synthesis models provide useful insight into methods for parameterizing
an experimentally measured signal.

Most of the studies discussed previously focused on only a few types of strings. For
example, Woodhouse examined the difference between D’ Addario composite nylon strings
and Martin steel strings [90]. Hancock analyzed the response of two types of cello strings
and piano strings [72]. Some of the studies presented experimental results but did not
provide a thorough discussion of the test method. Houtsma, for example, does not provide
any discussion of how the strings were plucked in his study on electric guitar strings [68].
In some cases, the signal recording rig is detailed, but the strings were plucked by the

researcher, so the results are not reproducible.

1.3 Objectives

The objective of this research is to demonstrate the efficacy of a generalized descriptor-
based machine learning framework to identify structure-property relationships in compos-
ite materials. The research synthesizes concepts from multiple fields related to computa-
tional mechanics, including material characterization and modeling, numerical methods,
homogenization, digital signal processing, and machine learning. For the first problem,
a recently developed XFEM approach is implemented to efficiently explore SFRC design
space and study the effect of fiber randomness on composite behavior. In the second prob-
lem an experiment is designed, and a data-driven approach is used to analyze the previously
unexplored relationship between wound electric guitar string geometry, material, and vi-
brational response. In each problem, the complex nonlinear interaction between the two
material phases informs the overall behavior of the composite. Using data from numerical
models and experiments, it is demonstrated that an appropriately trained learning machine

can predict and classify the behavior of the composite using only parameters describing the
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phase properties and geometry. Once trained, the machine can be used to efficiently and
accurately predict the response of untested composites, foregoing the need for expensive
experiments and simulations.

Objectives for SFRC Problem:

1. Identify descriptor variables that influence the response of random SFRC microstruc-

tures and generate SVEs.

2. Numerically model SVEs using XFEM to generate database of composite perfor-

mance.

3. Implement machine learning model to predict composite tensile response using mi-

crostructural descriptors.
Objectives for Composite Music String Problem:

1. Identify descriptor variables that influence the performance of composite electric gui-

tar strings.

2. Design an experiment for capturing the time and frequency dependent response of a

vibrating string in a controlled setting.

3. Implement machine learning approach to classify strings based on features of the

signals they produce.

1.4 Dissertation Organization
This dissertation is organized as follows. Chapter 2 formulates the composite material
design problem in the generic sense. Here, a framework for designing a multiphase mate-
rial using concepts of stochastic processes and machine learning is introduced. Methods
for characterizing a multiphase material are discussed in the context of a descriptor variable
approach. The remainder of the document focuses on the two problems discussed above

that can be approached using the framework described in Chapter 2. Chapter 3 addresses
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the SFRC problem. Chapter 4 applies the framework to identifying structure-property re-
lationships in electric guitar strings. Chapter 5 summarizes the findings of the research to

date and gives an outline of potential future work.
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Chapter 2

Machine Learning of Structure-Property Relationships

In the composite material design problem, let Qj,; denote the coarse scale domain of a
simple periodic linear elastic two-phase material with uniformly distributed inclusions and
displacement and traction boundary conditions prescribed on dQ}; and dQ),, as shown in
Figure 2.1. The elastic constants of the matrix and fibers are given as E,, Er, Vy,, and
V¢, where E is Young’s Modulus, v is Poisson’s ratio, and the subscripts m and f denote
matrix and fiber, respectively. Assuming the phases to be perfectly bonded, meaning no
slip or delamination can occur at the phase interfaces, the elastic properties E. and V., of
the composite in the domain €, will be dependent on the elastic constants of the individual
phases, as well as the geometry, or morphology, of the microstructure, which in this case
can be characterized by the inclusion diameter dy and the spacing, s. The matrix and
inclusions interact in the fine scale domain €,,. Depending on the application of interest,
the designer may wish to determine values of s and d such that the composite stiffness E, is
maximized, or select an inclusion material with an optimal stiffness for a fixed particle size
and/or diameter. This example design problem is formalized as a constrained optimization

problem in Equation 2.1:

maximize  E. = F(E,Ef, Vin, Vy,5,dy)
subject to ses
dreD (2.1)
En.Ef € E

Vi, Ve €V

Where S, D, E and ¥ are sets of feasible design values for each parameter. If the material

microstructure is random in nature it is necessary to analyze the structural reliability, which
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requires consideration of uncertainty in the material as well as external effects like loading.
Random materials are characterized by higher variability in resistance, which cannot be
neglected in design. Such variability cannot be represented by deterministic approaches
and requires data-driven algorithms based on statistical concepts. Machine learning has
emerged as a powerful tool for analyzing data in high-dimensional spaces obtained from
experiments where randomness is present in the material or loading conditions. In the
material science and computational mechanics community the descriptor-based machine
learning approach has been implemented for prediction of the behavior of composite mate-
rials for a range of design applications. The following section will formalize the composite

material analysis and design problem in this context.

2.1 The Descriptor-Based Machine Learning Approach
In a descriptor-based approach, a correlation is assumed between variables that describe
the material on the fine scale, called descriptors, and measurable material properties. De-
scriptors may be thought of as design variables for an engineered composite optimization
problem, or sources of uncertainty in an analysis problem. The descriptors may be discrete
or continuous, depending on the nature of the parameter being constrained. For example,
consider the design problem outlined in Figure 2.1. If a matrix and fiber material have al-

ready been selected, the engineer is tasked with determining optimal values of s and dy so
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that E. is maximized. If these are the only two design variables being considered, the de-
scriptor space is 2-dimensional. In practical applications the feasible region D of values for
fiber diameter is dependent on the range of diameters available from a manufacturer, which
in turn depends upon the precision of the machine used for extrusion. Thus, dy is a discrete
random variable with a finite number of possible values defined by the manufacturer. The
spacing s is a continuous random variable with a lower bound set by aggregate size of the
matrix material, and an upper bound dictated by the dimensions of the matrix. To determine
the optimal values of dy and s, each dimension should be uniformly sampled. Random real-
izations of the composite are constructed using various values of dy and s and tested using
experiments or numerical models. If the matrix and fiber materials exhibit a relatively high
degree of homogeneity, in the context of modeling, Young’s modulus and Poisson’s ratio
may be considered deterministic. However, if the matrix and inclusion materials exhibit
high variability, they must also be treated as descriptors with associated probability distri-
butions. The response metric E, is measured for each realization. By analyzing several
microstructures with differing values of s and dy, a correlation between design parameters
and composite stiffness can be developed. For simple linear elastic systems such as that
depicted in Figure 2.1, the composite properties can be explicitly solved for using mechan-
ics of materials principles. In many applications, however, it is necessary to account for
nonlinear behavior and damage, which requires an alternative modeling approach.

This process of identifying a function that maps descriptor space to response space
can be achieved by machine learning. Using machine learning algorithms, it is possible to
identify complex nonlinear patterns in large data sets obtained from experiments or simula-
tions, enabling researchers to study the effect of input variables in high-dimensional design
spaces in an unprecedented manner. Machine learning can be used to identify a surrogate
model for a random process that can be used to robustly predict the response of an unknown
structure using a database of previously tested samples. Machine learning algorithms can

be paired with optimization tools such as genetic algorithms and simulated annealing to
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Figure 2.2: Input/output space view of the descriptor approach with respect to (a) the SFRC
problem, and (b) the composite guitar string problem.

identify optimal material structures. Figure 2.2 depicts the input-output space relationship
for the problems discussed in Chapters 3 and 4. For the SFRC problem, random microstruc-
tures are mapped to composite tensile response using machine learning. For the vibrating
string problem, a machine learning approach is implemented to map between a string’s
material phase, cross-sectional geometry, and the frequency response of the composite.
Machine learning methods generally fall into one of two classes: unsupervised learning
or supervised learning. In unsupervised learning methods, algorithms search for structures
within input data without regard for outputs. In supervised learning approaches, an optimal

model F*(x) is identified that most accurately generates output data y from input data x.
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Figure 2.3: System diagram of supervised learning framework.

Figure 2.3 illustrates the supervised learning framework. The field of supervised learning
can be further divided into classification and regression problems. In classification prob-
lems, each output falls into some category, and the model seeks to predict the category
of the output from the input. In regression analysis, the output is a real-valued continu-
ous variable. Both classification and regression methods are implemented in this research.
Regression of SFRC properties based on material morphology is undertaken in Chapter 3.
In Chapter 4, a classification method is used to identify composite string properties from
their signals. The generalized learning framework consists of four components that are

described in the following subsections:
1. Identification of descriptors
2. A sampling method to generate random input vectors X
3. A system that produces outputs y for a given x

4. A learning machine that estimates unknown values y* at test points X* using training

data x,y

2.1.1 Descriptor Selection and Sampling
Identification of descriptors concerns the challenge of reducing the design space into a

finite number of dimensions [93]. Use of too many dimensions creates a complex learning
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problem; whereas, too few dimensions may not be able to accurately model the random
process. Principal component analysis can be used to analyze the sensitivity of a machine
learning model to changes in descriptor values, with the objective of identifying irrelevant
descriptors in order to reduce model complexity. Let a point X in d-dimensional descriptor
space be defined by the row vector X = [x},x2, ...,Xs_1,X4]. Each component of X represents
the value of the descriptor x;, j = 1...d. Each point in the descriptor space corresponds to
a microstructure with a unique set of descriptors. It is assumed that the composite response
y is dependent upon the location of x in the descriptor space. y is a p-dimensional vector
of response quantities measured by experiments or simulations. p is related to the number
of objective functions in the optimization problem. In the problem shown in Figure 2.1,
where maximizing E, is the only objective, p =1 and y = E.. If one wished to maximize
E. in addition to maximizing or minimizing other parameters, then p > 1. The values of d
and p are selected by the user based on the problem being considered. In the context of the

descriptor approach, the constrained optimization problem in Figure 2.1 is generalized as:

maximize y=F(x)
subject to Xj 2> aj j=1.d (2.2)

xj<bj j=1..d

Here [aj,b;] is the range of feasible design values for descriptor x;. The feasible region
is defined independently in each dimension of the descriptor space. In the case of aligned
or periodic material microstructures, descriptors such as volume fraction, geometry, and
spacing of different material phases are sufficient to describe a unique composite material
structure. This will be the case for the guitar string problem discussed in Chapter 4. For a
composite guitar string, the diameter of the string, the core and wrap geometries, and the
phase material properties sufficiently describe the location of the string in design space.
However, in the case of random heterogeneous materials, such as the SFRC analyzed in

Chapter 3, an infinite number of unique fiber distributions can be obtained using the same
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Table 2.1: 2-phase random short-fiber reinforced composite descriptors and response met-
rics.

Morphological Descriptors Composite Response Features

Fiber Volume Fraction Peak Strength
Fiber Length Elongation
Fiber Diameter Strain Energy Capacity

Bond Characteristics

Table 2.2: Wound musical instrument string descriptors and response metrics.

Morphological Descriptors ~ Composite Response Features

Core Wire Geometry Internal Damping/Sustain Time
Core Wire Material Partial Amplitudes

Wrap Wire Geometry Inharmonicity

Wrap Wire Material

fiber dimensions and volume fraction as inputs to a random microstructure generator. To
address this, several statistically representative realizations of each point in descriptor space
must be tested. Tables 2.1 and 2.2 show the descriptors and output variables considered in
the problems presented in Chapters 3 and 4 respectively. For the SFRC problem, the fiber
dimensions, volume fraction, and bond characteristics are considered as descriptors, while
the matrix and fiber mechanical properties are treated as deterministic. Parameters describ-
ing the tensile stress-strain curve of the material are the response metrics to be predicted
by the learning machine. For the guitar string problem, core and wrap wire material and
geometries are used as descriptors, and signal metrics including modal frequencies and
damping parameters are used as the response.

For material optimization, one must sufficiently explore the feasible region of design
space using some random sampling technique. For the purpose of sampling, a probability
distribution type must be identified for each input descriptor. Descriptors may be contin-
uous or discrete, bounded or unbounded based on the physical property they represent.

Different descriptors may be selected for the structure in a design or analysis problem. For
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a ceramic matrix composite, for example, the matrix material of interest may have some
cracking strength or modulus that can be expressed as a normally distributed random vari-
able. It may be of interest to determine the ideal diameter of fibers for reinforcement, so a
uniform distribution may be used to explore the dimension of the design space correspond-
ing to fiber diameter in an unbiased manner. Let fi, (x) representing the probability density
function (PDF) for the assumed distribution of descriptor x;. For a general continuous

random variable x; with lower bound a; and upper bound b;
fij(x) =P(xj=x) YV x&]aj,bj] (2.3)

P(x; = x) represents the probability that x; is equal to x. The corresponding cumulative

distribution function (CDF) is then defined as

Fy(x) = /:ij(x)dx vV x¢€laj,bj 2.4)

The CDF is non-decreasing and varies between 0 and 1 over the domain x € [a},b;]. To gen-
erate random descriptor values for sample x;, a vector of independently generated random

numbers, r; is constructed in the form of Equation 2.5.
I‘i:[l”l,l’27...,l’d_1,rd], VjE(O,l), j=1..d (2.5

Using the inverse CDF of each x;, entries of r; are converted into components of the random

sample point x; by Equation 2.6.
xi=[F, ' (r),F, ' (r2),.F ' (ra-1),F ' (rq)] (2.6)

Let N denote the number of samples desired. In order to determine a meaningful relation-

ship between x and y, it is important that the feasible region is appropriately sampled in
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each dimension of the descriptor space. If components of r; are obtained independently
for each of the N samples, it is possible for multiple random samples to contain similar
values in some dimensions. As a result, some regions of design space may be insufficiently

sampled. To avoid this issue, stratified sampling methods are commonly used.

2.1.2  Random Process Evaluation/Data Acquisition

Experiments or numerical simulations are used to determine the response y; of each
sample. Some post-processing is generally required to obtain the output quantities y;. For
the SFRC problem, the raw data from each simulation is in the form of stress-strain curve.
Calculation of output quantities such as stiffness, strength, and ductility requires digitally
searching the curve for maxima and minima and performing integration. For the musical
instrument string problem, raw data is in the form of an AC signal in the time domain.
Features such as signal rise and fall time, power, and harmonic content must be extracted
from the raw data for learning purposes. Feature extraction for these problems will be
discussed more thoroughly in Chapters 3 and 4.

Machine learning goes hand-in-hand with fields like data mining and knowledge dis-
covery from databases (KDD) [94]. The development of a database is especially useful
for material design and discovery because machine learning models can be updated to take
advantage of new data as it becomes available [29]. It is important that the training data
is representative of the overall system being considered. The data extraction process may
require the user to clean noisy data or remove incomplete or corrupt data. When available,
experimental data is ideal for training the stochastic model. However, due to the expensive
and time-consuming nature of some material tests, data from computational models can
be used to make informed predictions about the behavior of theoretical materials. Previ-
ous work has demonstrated the efficacy of using a combination of experimental data and
numerical simulations to train stochastic models. Numerical models can be used to sup-

plement datasets where some information is obscured or corrupt [93]. When insufficient
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experimental data exists, artificially generated data may be used to complete the set using
the technique of bootstrapping [95]. In Chapter 3, computational models are used to sim-
ulate the response of random SFRC microstructures. In Chapter 4, string vibration data is

obtained experimentally.

2.1.3 The Learning Machine

If the system being modeled is deterministic, it can be expressed simply as a function
y = F(x). However, many real-world systems are not deterministic, or contain missing
data that contributes uncertainty to the model. Rather than fitting an explicit function F(x),
the goal of machine learning is to determine a hypothesis F*(x) that approximates F(x)
most accurately using sample data {x;,y;}, i = 1...N. This is achieved by testing a number
of functions F*(x,®), @ € W, where @ are parameters in generalized parameter space
W. The validity of a hypothesis is measured using a loss function L(y,F*(x,®)). For a
2-class classification problem, where the machine is tasked with differentiating between

two symbolic values, a common loss function is:

0, y=F"(x,0)
L(y,F*(x,0)) = 2.7)

1, y#F*(x,0)

For regression problems, squared error is a common metric loss function:
L(y,F*(x,0)) = (y — F*(x,0))? (2.8)
The expected value of the loss function is given by the risk functional:

R(®) = / / L(y, F*(x, ®))P(x,y) dx dy (2.9)
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The risk functional can be interpreted differently based on the class of problem. For classi-
fication, the risk functional returns a value on the interval [0,1] that indicates the probability
of misclassification. For the regression problem, the risk functional is nonnegative but un-
bounded, with a value close to zero indicating high accuracy. Training the learning machine
is thus a process of determining optimal parameters @ that minimize R(®).

The final step of the machine learning process is model validation and verification.
Selection of an appropriate function class for a random process is of crucial importance.
There is no one-size-fits-all algorithm for machine learning; generally, the model building
process consists of some trial and error to determine which type of model yields the best
performance for the problem of interest. Several machine learning algorithms are tested
during this phase and reliability analyses are later used to identify the most appropriate
model. In Chapter 3, a Gaussian Process (GP) is used for regression of SFRC properties.
In Chapter 4, a Support Vector Machine (SVM) is used to classify strings based on their
signals.

One issue that must be addressed during validation is the finite nature of the data. For
an asymptotically large number of samples, the measured error will be the true error of
the model. However, for a smaller number of samples it is necessary to estimate the true
error rate of the model given data from only a small portion of the overall population.
This issue can be addressed by properly selecting training and test points from the data.
If too few training points are used, the model may not be general enough to predict points
outside the training set. If too many training points are used, there is a risk of overfitting the
model. An overfitted model captures the noise in the response more than the true response.
Resampling methods are used to address the issues of over and under-fitting, at the expense
of some additional computational cost. The simplest resampling method is re-substitution,
in which all samples are used for training and testing. While straightforward, this approach
generally results in an under-approximation of model error. Another form of resampling

is the holdout method, in which the available data is partitioned into a training set and a
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test set. The response of the trained model at the test points is then compared to the data
to provide a measure of accuracy. Since partitioning the data differently will affect the
performance of the model, an alternative approach is k-fold cross validation. Here, the data
is divided into k equally sized disjoint subsets. One of the subsets is used for testing and
the remaining k — 1 subsets are used for training. The process is repeated k times and the
error is taken as the average over all folds. In this approach, all data is used for training and

validation.
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Chapter 3

Prediction of Random Short-Fiber Reinforced Composite Properties

Random heterogeneous materials are common in nature and also in a number of engi-
neering applications. Accurate prediction of material properties based on microstructural
information requires an approach that combines statistical mechanics, homogenization the-
ory, and stochasticity of geometrical parameters [96]. Materials with microstructures re-
quiring statistical description are defined as random heterogeneous materials. Microstruc-
ture characterization is the process of identifying the stochastic geometry of a microscale
domain, with the eventual goal of determining the correlation between microstructural ge-
ometry and macroscopic material performance [23]. A number of approaches have been
tried to characterize random heterogeneous materials. Sources of heterogeneity can man-
ifest as random distributions of pores of different shape and size, inclusions of different
shape and size, or even as different phases of the same material, as in polycrystals. It is
therefore necessary to consider a variety of microstructure descriptors, depending on the
relevant properties of interest on the macroscopic scale.

The response of a composite is influenced by the volume fraction of the constituents, as
well as their distribution, geometry, size, and interfacial bond properties. It is thus neces-
sary to define a set of effective properties, K, (Equation 3.1), of the composite, accounting
for the presence of local heterogeneities so that the composite can be treated as a continuum

at the structural scale.

Ke:f(KlaKZ’"'KM;¢17¢27"'¢M;Q) (31)

In Equation 3.1, M is the number of constituent phases in the composite. K; and ¢; are the
phase properties and volume fractions, respectively. Q is a set of higher-order microstruc-

tural information such as interfacial bond descriptors. The rule of mixtures (Equation 3.2)
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is often used to define the effective properties of a composite at the macroscale as the vol-
ume average of phase properties, to predict the response of the composite with uniformly

distributed heterogeneities and perfectly bonded phases.

Ke = 1K1+ 02K + ... + oy Ky (3.2)

While volume fraction and size of inclusion may influence the effective property of the
composite, such descriptors do not completely account for the microstructural geometry of
a random material. The bounds proposed by Hashin and Shtrikman [3] assume a quasi-
isotropic material, signifying that the volume fraction is uniform throughout the composite
domain. Figure 3.1 shows three 2D particle composite microstructures with equal volume
fraction and size of inclusion. In Figure 3.1a the inclusions are uniformly spaced in each
direction, so the geometrical descriptor may simply be defined as the interparticle spacing
s. Figure 3.1b displays an anisotropic microstructure, where two descriptors (s and s;) are
needed to adequately describe the geometry. Figure 3.1c depicts a random microstructure
devoid of any uniformity. In this case, a statistical distribution may be used to describe the
locations of the particles in terms of inter-particular distances, such as s;; between particles
i and j. For normally distributed particles, the mean and variance of s;; may be used to
characterize the stochastic geometry. Figure 3.2 depicts three possible randomly generated
SFRC microstructures in 2D, based on the same input parameters for fiber length and vol-
ume fraction. It can be clearly observed that significant variation in the fiber concentration
exists despite the use of equivalent values of design variables. In addition to local volume
fraction fluctuation, the distance between the fiber tips and orientation of neighboring fibers
also vary, which can influence damage accumulation and the propagation of matrix cracks.

In this chapter, a 2-phase composite is considered, in which the matrix material is a
brittle ceramic and the inclusions are short ductile fibers to improve the tensile performance.

In addition to discussing the influence of design factors on the response of such composites,
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Figure 3.1: (a) Isotropic aligned, (b) anisotropic aligned, and (c) random microstructures
with interparticle spacing s.
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Figure 3.2: Random SFRC microstructure realizations with A = 100 mm, 0r = 0.1%,
lf =3.27 mm.
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the mechanical characterization of a brittle matrix SFRC is used as a test case for the
descriptor-based machine learning (DBML) approach. The organization of this chapter
is as follows: Section 3.1 discusses the behavior of FRC materials subjected to loading.
Section 3.2 gives an overview of multiscale methods for modeling the effect of inclusions
on the composite response. Section 3.3 formalizes the problem in the context of the DBML
method and discusses the results. The conclusions from the study are presented in Section

3.4.

3.1 Characteristic Response of FRC

The ACK theory [44] suggests that the stress-strain curve of FRC may be described
in three phases: pre-cracking, multiple-cracking, and post-cracking. It assumes that fibers
only provide load-bearing capacity along their longitudinal axis only and that the bond
strength between matrix and fiber is weaker than the material strength. Figure 3.3 illustrates
the phases of ACK theory with respect to a typical stress-strain curve for an elastic fiber, a
nonlinear matrix, and their combined composite response. During the pre-cracking phase
(1), the fiber and matrix exhibit elastic behavior, and the elastic response of the composite
is some weighted average of the constituent responses. In this stage, the stress is transferred
between matrix and fibers by cohesive bonds. In the multiple-cracking phase (2), the matrix
begins to crack when the cracking strain g, is exceeded. The point of crack initiation is
generally at the fiber tips, where stress concentration in the matrix is maximum. The fibers
play the crack-bridging role in the now-damaged matrix. The fibers continue to debond
until the cohesive bond strength is fully exhausted, after which a constant frictional stress is
mobilized between matrix and fiber. The composite exhibits nonlinear response as cracking
spreads throughout the matrix. In the post-cracking phase (3), the matrix is completely
damaged and all loads are carried by the fibers, which eventually fail by fracture when the
local strain exceeds €¢,. In some applications, an elastic structure may be desired so that

the nonlinear behavior of the composite can be ignored. Often, however, it is of interest to
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Figure 3.3: ACK model composite response phases.

study the post-peak behavior of the material in order to assess its total energy absorption
capacity.

Pullout tests are commonly used to directly characterize the interfacial resistance be-
tween two phases in a material [40, 41]. This test measures the variation of the resisting
force as the fiber is pulled out of the matrix, which can be used to experimentally charac-
terize the traction-separation relationship at the interface. Cohesive properties can be ma-
nipulated in design by coating the fibers with sprayed layers to enhance the bond strength
and/or introducing deformities to the fiber, say, by crimping or twisting, to provide ac-
tive mechanical anchorage [42], as shown in Figure 3.4. Figure 3.5 illustrates the effect
of fiber crimping on the bond behavior for a polymeric fiber embedded in a cementitious
matrix [43]. The domain & corresponds to the measured slip and the range T is the mea-
sured traction force. In Figure 3.5, a bilinear traction-separation model is superimposed on
the experimental data. Such models are commonly fitted to experimental data for use in
cohesive zone models.

The improvement in tensile response provided by fiber reinforcement is well docu-
mented. Fiber compressive strength influences composite compressive strength, but the

effects cannot be easily deciphered because of the occurrence of micro-buckling in fibers
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Figure 3.4: Two types of fiber surface deformities: crimping (top) and twisting (bot-
tom).
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Figure 3.5: Example pullout test data for a ductile fiber in a cementitious matrix.
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and imperfections in fiber orientation [39]. The tension and compression behavior of FRC
is identical in the initial elastic stages of loading. Under higher tension, the stiffness de-
grades as multiple cracking and fiber pullout occurs.

In a long-fiber composite, the ratio of fiber length to fiber diameter is large (I /dy — o0);
whereas, short fibers are typically characterized by a finite aspect ratio in the order of 10 to
102. For full effectiveness, the length of shorter fibers should exceed a critical value given
by l. = 0y rdy /27, where Oy is fiber yield strength and 7, is fiber-matrix bond strength. If
fiber length is greater than 15/, it can be treated as a continuous fiber. In many situations,
cross-ply and multiaxial laminates are used. The concept of volumetric weighted average
of the individual phases can then be used to determine the load share of each lamina in a

given orientation.

3.2 Multiscale Modeling of SFRC

An engineered FRC at the structural or macroscale (1071-10° m) may contain thou-
sands of short fibers (~1073 m in length). As it is impractical to explicitly discretize every
single fiber in the problem domain, homogenized strength properties are often used, under
the assumption that fibers are uniformly distributed. However, over a large problem do-
main, local heterogeneity may be present, introducing uncertainty in the performance of
the material. Discontinuously reinforced composites often contain regions where the vol-
ume fraction varies significantly from that of the entire composite domain [3]. Figure 3.6
shows a domain containing randomly distributed fibers with a prescribed volume fraction
of 0.1%. A division of this domain into four subdomains shows that the volume fraction
observed in each subdomain appears to differ significantly from the average for the global
domain with a minimum value of 0.047% and a maximum of 0.141%. Therefore, when an
engineer prescribes a design value for the inclusion volume fraction, it cannot be assumed
that the structure behaves in a homogeneous manner.

In the present study, a heterogeneous sequential multiscale modeling approach is de-
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Figure 3.6: Local variation of fiber volume content in a random SFRC domain.

veloped for random SFRC. A database relating the microstructure composition to coarse
scale parameters is developed using numerical methods. The observed composite prop-
erties can then be passed on to the macroscale, where a homogenized nonlinear model
can be used with stochastic finite elements to assess the large-scale performance of the
random composite in an efficient and convenient manner. A schematic of the approach
used is shown in Figure 3.7. Points in the descriptor space are sampled and used to gen-
erate random microstructures over a range of design values. The selection of descriptors
and sampling technique are discussed in Section 3.3. The random samples are analyzed
using XFEM. Gaussian process regression is used to quantify the multivariate nonlinear
relationship between descriptors and measured effective properties. The GP is also used
to predict properties of subdomains in a macroscale model that correspond to unknown
points in the descriptor space. At the macroscale, the material is modeled as homogeneous
with each subdomain described by unique material parameters with stochastic distribution.
Fiber randomness effects are accounted for by locally prescribed variations in macroscale
parameters rather than explicitly modeling the fiber-matrix interaction effects. This enables

assessment of the reliability of a macro structure, accounting for the local randomness of
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Figure 3.7: Proposed sequential multiscale modeling framework for SFRC.

design variables.

3.2.1 Macroscale Model

Several approaches exist for modeling the homogenized behavior of FRC. In 1989,
Lubliner presented a constitutive model capable of accurately predicting the nonlinear, mul-
tiaxial behavior of concrete using plasticity theory [47]. The model is commonly known
today as the Concrete Damage Plasticity (CDP) model and can be easily and efficiently im-
plemented using commercial finite element analysis software such as Abaqus. The model
consists of a yield criterion, a hardening rule, and a flow rule that can be fully defined by
four parameters calibrated to uniaxial tension, uniaxial compression, biaxial compression,
and triaxial compression test data. The CDP model is an attractive macroscale model for
homogenized FRC due to the way it handles stiffness degradation. A stress-strain curve
for the composite material, obtained by experiments or simulations, can be provided by
the user during the model definition. For a given state of strain, the stress in the material
is interpolated from the data. This allows for modeling the effect of fiber reinforcement
without explicitly modeling the fibers.

Jankowiak provided a detailed description of the parameter calibration process using

experimental results [48]. A brief overview of the CDP model is given here for the sake of
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completeness. The CDP constitutive equation is given by Equation 3.3.
5 =Df(c—e") € {a|F (5,6, f.K) < 0} (3.3)

where & is the effective stress, defined in terms of total strain €, plastic strain eP!, and
initial elasticity matrix Df)l . F is the yield surface with parameters f, the ratio of the biaxial
compressive strength to the uniaxial compressive strength, and K, the ratio of the second
stress invariant on the tensile meridian to the second stress invariant on the compressive
meridian, which shapes the deviatoric load surface. The effective stress is related to the

Cauchy stress tensor o by Equation 3.4.

o=[1—dE")& (3.4)

~pl

where d(éP!) is the scalar damage variable. &' = [/ &’ I]T

& |" is the hardening variable,
with components corresponding to compression and tension. The value of the hardening
variable is non-decreasing and taken as &7 = [} &P!dt. The evolution of the hardening

variable is given by Equation 3.5.

2 pl a\apl
anl _ Slp B r(a)s,ﬁax (3.5)
" [1—r(&))0,

A

here r(&) is a stress weight factor for the multiaxial case that is dependent upon the princi-

. A 2pl ~pl
pal effective stresses, &. &hq, and &7

in are the maximum and minimum eigenvalues of the

plastic strain rate tensor. Equation 3.6 defines the stress weight factor.

a Z?:] < ci>
&) — Li=110 3.6
r( ) Z?——l |6-l| ( )

(- = ((-)+|-])/2 represents the Macaulay brackets. The stress weight factor is equal to

1 for pure tension and O for pure compression. The scalar damage variable d(&”') is a
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function of the user-defined uniaxial damage variables d, (& l) and d,. (& l). For multiaxial

stress it is assumed that the damage variable can be calculated using Equation 3.7.
d=1—(1—-sd.)(1—s.dy) 3.7

Computed parameters s; and s, are introduced to incorporate stiffness recovery effects into
the model. Equation 3.8 gives the expression for the stiffness recovery parameters.

St 1 —wr(o)

= (3.8)

Se 1—we[l—r(6)]
The parameters w; and w. dictate whether stiffness is recovered when loading changes
from tension to compression. In general, quasi-brittle materials show compressive stiffness
recovery when cracks open in tension and close in compression, but no stiffness is recov-
ered in tension following initiation of cracking. This effect is captured by setting w; = 0
and w, = 1. The influence of the damage variables and recovery parameters on material

stiffness are summarized in Figure 3.8. The non-associative flow rule is given by Equation

3.9.
9G(5,v,¢€)

é A o

(3.9)

Here A is the non-negative plastic multiplier and Y and € are parameters that shape the flow
surface, referred to as the dilation angle and eccentricity, respectively. G is the scalar-valued

flow potential function, given by the Drucker-Prager hyperbolic function in Equation 3.10.
G(F,y,€) =/ (etany)2 + G — ptany (3.10)

p= —%11 is the effective hydrostatic pressure with I representing the first invariant of the
effective stress tensor and § = /3S : § is the Mises equivalent effective stress, defined in

terms of the deviatoric effective stress S = pI+ &. Since A=0when F<0Oand A >0
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Figure 3.8: CDP model constitutive law.

when F = 0, the Kuhn-Tucker condition is given by AF =0. The consistency condition
F = 0 follows from the assumption that when plastic slip is occurring the state of stress

remains on the yield surface.

3.2.2 Microscale Model

In the previous section, a model for the homogenized, coarse-scale response of SFRC
was discussed. In such a model, a characteristic stress-strain curve for the material must be
provided by the user from experiments or simulations. Parameters describing the character-
istic stress-strain curve are sensitive to the local arrangement of fibers and bond properties
between the matrix and fiber. Since there are several design variables that influence these
properties, it is necessary to identify a method for efficiently exploring the design space.
Since fabrication of such materials is expensive and time consuming, a numerical modeling
approach is preferred. This section details an extended finite element method (XFEM) for

modeling random short fibers.
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XFEM has been tailored for a variety of problems in material analysis and design. The
approach can be used to model fracture, dislocations, grain boundaries, and phase inter-
faces [97]. The method has been extensively used to model cracks and inclusions within
multiphase materials. Recently, XFEM has been employed to capture the inelastic response
of textile-reinforced polymers [60], and to stochastically analyze the effect of elliptical in-
clusion aspect ratio on elastic behavior [24]. A method for handling multiple cracks and
crack junctions within an element was proposed by Daux et al. [98]. Later work demon-
strated that the junction of two cracks can be handled more easily by combining two step
enrichments rather than using a special enrichment function for the junction [99]. Modeling
multiple fibers in an element requires superposition of enrichment functions, and charac-
terization of interaction effects. Recent work proposed a displacement approximation for
elements containing multiple inclusions [18].

XFEM uses two-part approximation with a standard part and enrichment part. In the
standard part, regular shape functions are used to approximate the displacement field. The
enrichment part captures the rapid local variation of the displacement field due to the pres-
ence of discontinuities at dissimilar material interfaces resulting from inclusions, or at
cracks. The local enrichment functions are selected a priori according to the nature of
discontinuity and satisfy the partition of unity, so that the local enrichment does not affect
the global solution. If a n-dimensional © € R" domain is discretized by a finite element
mesh with a set of nodes m, out of which m* nodes (m* C m) are subjected to enrichment
with the function y;, the general form of the XFEM approximation field can be expressed

as:

u(x) =Y NM(xui+ Y Nj(x)w;(x)a; (3.11)

icm jem*
The first term of this expression is the standard part and the second one is the enrichment
part. Here, u is the displacement; N; is the standard shape function for node i satisfying the
Kronecker-delta property; N}‘ is the partition of unity shape function, normally set equal

to N;; y; is the enrichment function for the inclusion at node j in set m*; u; are the dis-
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placement of the standard nodes; and a; are coefficients of the enrichment shape functions.
The level-set method, proposed by Osher and Sethian [100] to track moving interfaces, is
based upon the idea of representing an interface as a level-set curve of a higher dimensional
function, to account for, say, the presence of an arbitrarily oriented inclusion within a finite
element. Weakly discontinuous enrichment functions can capture the strain discontinuity
in an element, whereas a strongly discontinuous function can capture discontinuity in the

displacement field. The implementation of XFEM requires addressing the following issues:

* Tracking the interface of different phases by using line segments or using the level-set

method implicitly [101].
* Selecting the node set m* for the enrichment region of interest.
* Identifying the enrichment function(s) to reflect the physics of the problem.

* Integrating the non-smooth enrichment functions.

An approach for modeling the behavior of an elastic matrix containing stretchable short-
fiber inclusions with no delamination using XFEM was outlined by Pike and Oskay [61].
The enrichment functions were derived to model the strain discontinuity in an element re-
sulting from an arbitrarily placed high aspect ratio fiber. More recently, the XFEM model
was improved to include the effect of cohesive debonding between the matrix and inclu-
sions. An additional enrichment function was derived to model the displacement disconti-
nuity in an element as a result of debonding [62]. A nonlocal damage model was used to
capture the stiffness degradation of the matrix material. It was demonstrated that with suf-
ficient mesh refinement XFEM is capable of accurately reproducing the local mechanical
response observed in a reference FEM model. The primary advantage of using XFEM for
random SFRC modeling is that the mesh does not need to conform with the morphology
of the problem domain. Depending upon the arrangement of the inclusions, the standard
FEM mesh may prove to be geometrically complex and require an unreasonably large num-

ber of elements to accurately solve the problem. In recent work by the author [63] it was
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shown that multiple fibers in the same element domain can be modeled using XFEM by
superimposing the enrichment functions of each fiber. The XFEM formulation is discussed
briefly in this section, but a complete derivation of the model considered herein is reported
in previous work [61, 62, 63].

The approximation of the displacement field within the composite domain is given by

Equation 3.12.

ux)= Y Ni(x)wi+ Y | Y Ni(x) (wi(x)aji + Xi(x)bji) (3.12)
iem ieny | jem,

The formulation is similar to Equation 3.11 but contains an additional enrichment func-
tion Y;(x) to capture debonding along the fiber-matrix interface, while y;(x) captures the
discontinuity in the strain field. The enrichment functions depend on the location of fiber
i within the domain. ny is the number of fibers in the domain, and m} is the number of
nodes enriched by fiber i. ji is the index set of enriched nodes for fiber i. w;, aj;, and bj;
are the nodal coefficients of the standard nodes, fiber motion enrichment, and debonding

enrichment shape functions.
The fibers are assumed to lie entirely within the domain of the composite. The high

aspect ratio fiber is idealized as a line segment. Let the domain x of a fiber be defined as:

X2 —Xq

X=X+ s; —1<s<1l;xel (3.13)

Where x; and x, are the fiber tips, X, is the fiber midpoint, and s is a normalized length
parameter. The position of a fiber within the domain is defined using level-set functions.

The level-set function along the fiber length, ¢., is given by Equation 3.14.

9 (x) =[x = Z (x)]| (3.14)
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(b)

Figure 3.9: Visualization of (a) strain discontinuity enrichment function and (b) debonding
enrichment function for an arbitrarily placed fiber in a 5x5 mm element domain.

2 (x) is the projection of x onto the fiber, given by:
P (x) =x1+[(x—x1) btz =% +[(x—X2) - t1]ts (3.15)

where t; and t; denote the tangent at each of the fiber tips. ¢, is equal to O along the fiber
line segment and takes positive values on either side of the fiber. The level-set function for

each of the fiber tips is given by Equation 3.16.
0y (x)=(x—xy)-t;; A=1,2 (3.16)

The enrichment function for the strain discontinuity across the fiber is expressed in
terms of the level-set functions by Equation 3.17. The function is smooth and nonzero

everywhere in the domain except along the fiber, as illustrated in Figure 3.9a.

2 2
Yi(x) = [H H(—m)] 0c(x)+ Y H(92)ds (%) (3.17)
A=1 A=1
H is the Heaviside function and d; (x) = ||x — x; || is the distance between x and the fiber

tip.
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The debonding enrichment function was derived using the same level-set functions but
introduces a displacement discontinuity rather than a strain discontinuity along the fiber.

The debonding enrichment function is given by:

2
Ti(x) = 9p(x) H(r(9c(x))) (,II H(—(PA(X))) (3.18)
=1

r = £¢. is the signed distance function, defined as positive on one side of the fiber level-
set ¢. and negative on the opposite side. The shape of the debonding enrichment func-
tion is controlled by the discontinuity function ¢,. In previous work [62] an expression
was derived for ¢, as a fourth order polynomial subject to constraints that the maximum
debonding along the fiber occurs at the center of the fiber and the ends of the fiber remain

embedded in the matrix:

tan 6,

s(x)2(1 —s(x)?) —s(x)3(2 — 5(x)?) (3.19)

Pp(x) =1+

where 0, is a parameter describing the slope of the discontinuity at the fiber tips. The
resulting enrichment function Y; is illustrated in Figure 3.9b.
The governing equation for equilibrium in the model domain Q is given by Equation
3.20:
V.oo(x)=0; xeQ (3.20)

Using a continuum damage mechanics approach, the constitutive law for the matrix is given
by Equation 3.21:
o= (1—wx,))L:e(x) (3.21)

In the above equations o is the stress tensor and V() is the divergence operator. The stress
is related to strain (¢ = V*u) by the elastic moduli tensor L. w(x,?) is a history-dependent

damage scalar that ranges from O (undamaged) to 1 (fully damaged). The displacement and
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traction boundary conditions are defined by Equations 3.22 and 3.23, respectively.

u(x)=1u(x); xel, (3.22)

o-n=tkx); xel (3.23)

The boundaries I';, and I'; denote non-overlapping regions of the domain on which @ and
t are prescribed, with dQ = I', UT,. The stress in a fiber i is assumed to be axial and
proportional to the axial strain by the relation G} =F fej’}, where E is the elastic modulus
of the fiber. For a fiber of length [, and thickness 77, as 77 /1 r — 0, the weak form of

Equations 3.20-3.23 can be expressed as:

:8edQ+ Y tE / e.8eldQ+ /T~5 dr—/f-6 dCL=0 (3.24
/;20'5 foglff Zri [[u]] I u ( )

i€ny i€ny

Q; denotes the domain of fiber i and € represents the domain of the matrix. I'; is the inter-
face between the matrix and fiber i. du and Oe represent the test function and the gradient
of the test function, respectively. T is the traction resulting at the interface due to jump
discontinuity of displacement across the fiber, [u]]. The traction separation relationship is
included in the model using an intrinsic cohesive law with uncoupled normal and shear
components. In this work a bilinear cohesive law is used to characterize the interfacial
bond. Three parameters define the idealized curve shown in Figure 3.5: peak cohesive
strength (7},), characteristic displacement at the peak cohesive strength (5,) and displace-
ment at bond failure (9,,4x). The subscript n denotes the normal component of the traction
T and the displacement §8. For the sake of simplicity, the shear parameters are assumed to
be proportional to the normal components in the initial study. A range of values are used
for the cohesive parameters in the numerical studies detailed in Section 3.3, in order to
assess the influence of the bond characteristics on the response of the composite material.
A nonlocal continuum damage model is used to capture the progressive degradation of

matrix stiffness based on the weighted average of the principal strains within a radial basis.

45



As the damage parameter increases, the stiffness of the material progressively decreases
until failure. An alternative continuum damage law can easily be used if deemed suitable
for the matrix material of interest. At an arbitrary material point X the evolution of the

damage variable follows the arctangent function of Equation 3.25.

_arctan(a k(X,t) — b) +arctan(b) (3.25)

w(X,1) 7
5 + arctan(b)
In Equation 3.25, a and b are parameters fit to data from tests on the unreinforced ma-
trix material. k(X,#) is an increasing non-negative history dependent variable defined by
Equation 3.26.

k(%,1) = max (($(&, T) — vini)) (3.26)
7€[0,¢]

v is the nonlocal equivalent strain obtained from weighting the local equivalent strains v
within a radial basis defined by p) (X,X). Vip; is a threshold value of equivalent strain below
which damage is assumed not to progress. Equation 3.27 defines the local equivalent strain
in two dimensions as the norm of the positive principle strains &, which is intended to

simulate stiffness degradation as cracks form in the matrix under tensile loads.

(3.27)

The nonlocal equivalent strains are then computed using Equation 3.28.

A(A)_/Qi(x,f()v(x,t)dx

i (3.28)
/ A(x,%)dx
Q

The weights are determined using the Wendland Radial Basis Function [102] given by
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Table 3.1: SFRC descriptor variable ranges for numerical models.

Descriptor x; Lower Bound (a;) Upper Bound (b))
dy, Fiber diameter (x;) 0.005 mm 0.1 mm
Iy, Fiber length (x2) 5 mm 15 mm
VF, Fiber volume fraction (x3) .01% 1.5%
T,,, Peak normal cohesive strength (x4) 5 MPa 15 MPa
0y, Characteristic normal cohesive separation (xs) 0.000005 mm 0.0001 mm
Omax>» Maximum cohesive separation (x¢) 0.0002 mm 0.0005 mm

Equation 3.29, where /. defines the span of the radial basis.

A(x,%) = (1—M>4 (4M+1> (3.29)
le le
3.3 DBML Implementation
3.3.1 Descriptor Selection and Sampling

Given some matrix and fiber material, it is necessary to identify the ideal combination
of fiber length, diameter, volume content, and interfacial cohesive properties to achieve
desirable inelastic response. Here, d = 6 descriptors are selected, as listed in Table 3.1.

In this work a uniform distribution is used for each descriptor so that the entire range of
the feasible region for a descriptor can be considered with equal bias. A continuous distri-
bution is used for each variable in this problem. In reality, possible values of fiber diameter
and cohesive parameters would be discrete variables, with values dictated by what is avail-
able from a manufacturer. Using a uniform distribution, components of x; in Equation 2.6
are calculated as

F'(rj)=aj+rj(bj—aj) (3.30)

Xj

In this study, no correlation between parameters is used in sampling the descriptor space,
1.e. each descriptor is treated as an independent design variable. Latin Hypercube Sampling

(LHS) was used to generate N = 40 samples in the 6-dimensional descriptor space, the
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Figure 3.10: 2-dimensional feature space visualization of LHS for SFRC.

span of which is defined in Table 3.1. A list of the 40 resulting sample points is given in
Appendix Tables A.1-A.2. LHS partitions each dimension of descriptor space into N equal
intervals. Samples are generated such that only one sample will be drawn from each interval
in each dimension. Figure 3.10 illustrates the LHS method. In this illustration, N = 10
samples were drawn from 3-dimensional descriptor space, with dimensions corresponding
to fiber length, diameter, and volume fraction. Plotting the samples in 2 dimensions shows
that each dimension of space has been partitioned into 10 subregions, each containing 1
sample.

A random sequential addition (RSA) algorithm was used to generate the random short-
fiber microstructures corresponding to each sample point. The RSA process was formalized
in the context of hard spheres being randomly packed into a fixed volume [96]. The center
of a sphere is placed at a randomly selected point within the microstructure domain. From
the remaining unoccupied volume a new random point is selected and the next sphere is
placed. The process is repeated until the desired inclusion volume fraction is reached. A
similar approach is used herein, but with fibers instead of spheres. Figure 3.11 summarizes
the manner in which RSA is implemented algorithmically for the case of short-fiber rein-
forcement. The descriptors listed in Table 3.1 were used as inputs for the RSA algorithm.
The user must define the length [/ and diameter d of the fibers to be placed in the ma-

trix, as well as the target volume fraction @ ;4r¢e;. The volume ¢ of an individual fiber is
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lr = _f % Define individual fiber length

df = dg % Define individual fiber diameter
¢F = % Initialize total volume of fibers added
’Vf =0 % Initialize domain of fibers added

While (pf < qbf, target

x* =rand() % Generate trial fiber center

6" = rand() % Generate trial fiber angles

Vf*fv(x*, 0,1, ds) % Define trial fiber domain

qb}'v (Lg, df) % Compute trial fiber volume

if V]f nNV,=0 % If trial fiber domain does not intersect existing fibers
Ve =Vr U 'I?; % Add trial fiber domain to existing fiber domain

¢ = dp + gb; % Add volume of new fiber to total volume

Figure 3.11: RSA algorithm overview.

computed as (dy-lr) in 2D or (ndj%l r/4) in 3D. A trial fiber center x* and orientation angle
0* are randomly generated. In 2D, x* is 2-dimensional and 6* is 1-dimensional. In 3D,
X" is 3-dimensional and 6" is 2-dimensional. The domain V7 of the trial fiber is related
to x*, 6%, and user-defined fiber dimensions. A check is performed to see if the trial fiber
intersects any of the previously placed fibers. If the trial fiber is found to occupy a unique
region of the microstructural domain, the volume of placed fibers is increased and the exist-
ing fiber domain is updated. In practice, some convergence criteria should be added to the
algorithm to prevent the occurrence of an infinite loop when the maximum packing limit
is reached. Figure 3.12a shows three samples of point Xyo (with dy = .027 mm,/; = 6.269
mm,VF = 0.127%) using the RSA algorithm and Figure 3.12b illustrates 3 samples for

point X35 (with dy = 0.081 mm, [; = 12.872 mm,VF = 1.042%).

3.3.2 Random Process Evaluation/Data Acquisition
The XFEM model described in Section 3.2.2 deals with a 2D square matrix reinforced
by 1D fibers subject to uniaxial tension. An SVE domain of 50x50 mm was considered

(so, A = 50 mm). Based on square elements of 0.5 mm size a 10,000 element mesh was
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Figure 3.12: Three random realizations of sample points (a) Xy and (b) x3, obtained using
RSA algorithm.

created. Figure 3.13 depicts the problem domain for a random sample. The left and bottom
boundaries of the matrix are constrained against displacement in their normal directions.
The right boundary of the domain is assigned a displacement of magnitude uy = 0.1 mm.
The problem was solved using 250 fixed strain increments. Stress vs. strain data was
recorded at each increment of the analysis. Table 3.2 lists the properties of the matrix and
fiber used in the models. While the fiber length, diameter, and cohesive properties were
sampled from descriptor space, the phase material properties were assumed to be constant.
The numerical values used are typical for a cementitious matrix material and steel fiber.
Figure 3.15 illustrates the curves obtained for 20 SVEs at two locations, X0 and Xx3;.
Damage in the matrix material initiated at the fiber tips and propagated through the mate-
rial to the edges of the SVE domain. As a result, higher concentrations of fibers lead to
additional potential damage paths, reducing the peak strength of the composite and pro-

ducing more uncertainty in the post-peak response. At first glance, it can be clearly seen
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Figure 3.13: XFEM problem domain and boundary conditions.

Table 3.2: Phase material property constants for numerical models.

Property Matrix Fiber
Young’s Modulus, E 14,000 MPa 207,000 MPa
Poisson’s Ratio, v 0.3 0.3
Nonlocal Damage Radius, /. 0.75 mm -

Nonlocal Damage Parameter, a 49,000 -

Nonlocal Damage Parameter, b 19.5 -
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that x3, exhibits lower peak tensile strength and a smaller failure strain than x,y. The re-
sponse of each realization appears nearly identical in the elastic range where the response is
controlled by the undamaged matrix material. Increased variation appears in the post-peak
response due to the effect of the random fiber placement. It is observed that the stress-strain
curves follow the general pre- and post-peak behavior described by the ACK model, as dis-
cussed earlier in this chapter. The following piecewise equation is selected to parametrize

the curve:

(Se 0<e<g
o(e) = (3.31)

cie *EE) g <e<egs
The equation consists of an initial elastic region followed by an exponentially decaying
post-peak softening region. Here o; is the peak stress at which the concrete matrix cracks
and the fibers are engaged and ¢&; is the strain corresponding to G;. €; is the strain at which
the composite fails. o is an exponential decay parameter that controls the shape of the post-
peak softening region. € and o are the strain and stress data to which the equation must
be fit. The failure strain of the composite, €, is defined as the strain at which the tensile
stress has degraded to 10% of the peak value. The parameters are shown on a sample
stress-strain curve in Figure 3.14. The area under the stress-strain curve represents the total
strain energy capacity of the material in tension, known as the modulus of toughness, G'.
The area under the linear elastic region of the curve is known as the modulus of resilience,
denoted by G” and defined as the amount of energy that can be absorbed by the material
prior to inelastic deformation. The modulus of resilience is calculated using Equation 3.32.

- & 0o 1
G :/ (%ede = ~aye; (3.32)
0o & 2

The modulus of toughness is obtained by summing the modulus of resilience with the area
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Figure 3.14: Stress-strain curve with elastic and post-peak region defined by param-
eters &, &, and o;.

Table 3.3: Composite response parameters measured in each simulation.

Identifier (y,) Material Property Description
V1 o; Peak tensile stress
2 & Tensile strain at peak stress
y3 Ef Strain at failure of composite
V4 G Modulus of resilience
Vs G Modulus of toughness

under the post-peak region of the stress-strain curve as given by Equation 3.33.

t r & —a(e—¢g)
G =G+ o;e de (3.33)

&

The parameters that characterize the FRC stress-strain curve, denoted by y,, g = 1...5,
are listed in Table 3.3. The mean and standard deviation of the computed values for each

sample point are listed in Appendix Tables A.3-A.4.

3.3.3 The Learning Machine

While clear differences may be observed in the curves obtained for x;¢ and x3, (Fig-
ure 3.15), the complex relationship between descriptor variables and composite properties
cannot be obtained by directly comparing output quantities, because each sample is char-

acterized by a point in the 6-dimensional space. Each of the six descriptors is assumed
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Figure 3.15: Sample tensile stress-strain curves for 20 realizations of 2 random points
X0 and x3».

to have some influence on the measured material properties. To enable mapping from de-
scriptor space to composite response space, Gaussian process regression is implemented
to model the function y = F*(x) (presented in Chapter 2). The work of Rasmussen pro-
vides a thorough state-of-the-art discussion of GP methods [103]. This section provides
a brief overview of GP, focusing primarily on how the concepts can be applied to SFRC
characterization and property prediction.

A GP is a collection of random variables with joint Gaussian distributions defined by
its mean and covariance functions, similar to a multivariate Gaussian distribution. The
expression for the random function F*(x) assumed to relate descriptor variables to output

quantities is given by Equation 3.34.
F*(x)~GP (m(x,wm),k(xi,xj,wk)> (3.34)

Here, m(x,wy,) and k(X;,X;,wy) represent the prior mean and covariance functions with

hyperparameters w,, and wy, respectively. The covariance function governs the manner in
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which the value of F*(x,w) changes throughout descriptor space. The squared exponential
covariance function is commonly used in GP regression for its simplicity and flexibility.

This function takes the form:

1

5 (Xi —x;)" (x; —Xj)> (3.35)

k(xi,%;) = oFexp( —

where o0y is a scaling parameter and / is the characteristic length scale parameter. The
squared exponential covariance function provides that for two points x; and x; in close
proximity to each other there is a high likelihood that the function will return similar output
values at each point, with the likelihood decreasing exponentially as the distance between
the points increases. The characteristic length influences the rate of the exponential decay.
However, when the descriptor variables differ significantly in magnitude, it is not reason-
able to assume a common characteristic length scale for all dimensions. In this work, the

following anisotropic equivalent of the squared exponential covariance function is used:
a2 1 T A2
k(Xi,Xj) = Gfexp<—§(x,-—xj) A (X,'—Xj)) (336)

where A is a dxd diagonal matrix of characteristic correlation length values in each di-
mension of the descriptor space. For a given dataset the covariance matrix is constructed
as:

Kij = k(X,‘,Xj) (337)

The experimental data is partitioned into a training set 7" and prediction set P. A covari-
ance matrix K77 is constructed using the training points and Kpp is constructed using the
predicted points. K7p denote the covariance matrix between training and prediction points.
The hyperparameters of the covariance function are determined such that the log marginal

likelihood (Equation 3.38) is maximized, signifying that the probability of obtaining data
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y from input x using model F*(x,w) is optimal.
I 7 2 -1 1 2 Nr
log p(yr[xr, ) = —3y7 (Krr + 0, 1) yr — 5 log [Krr + 0, 1| + —~log(2m)  (3.38)

In this equation N7 is the number of training points used, 62 is the variance of the noise in
the experimental data, and I is an identity matrix with size equal to that of K77. Once the
parameters have been determined, the predictive means and variances are calculated using
the following equations:

Elyp] = KIp(K77 +621) " lyr (3.39)
Varlyp] = Kpp — KT p (K77 4+ 621) "' K7p (3.40)

To assess the accuracy of the GP in predicting each response metric y, from the simulation
data, k-fold cross validation was used, with k = 5. The 40 points in descriptor space were
divided into five randomly selected subsets of 8 points each. In the first step, four of the
sets were used as training points, with the remaining set used as test points. The process
was repeated five times, using each of the subsets as test points in successive iterations.

The root mean squared error (RMSE) was calculated using the following equation:

N (vr
RMSE[y] =/} 22 07 =) y’ (3.41)
i=1

where N =40, y7 is the GP predicted value at point x;, and y; is the value at point x; obtained
by XFEM. The RMSE provides a measure of the standard deviation of the model error. By
comparing the RMSE to the magnitude of the mean of the predicted value, the reliability of
the model can be assessed. The measured RMSE is in the same units as the output variable
being predicted. The coefficient of variation (CV) provides a dimensionless measure of

model uncertainty by normalizing the RMSE by the expected value of the output quantity.
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Table 3.4: Comparison of error magnitudes obtained from GP regression of each
output variable.

y E[y] RMSE[y]  CV[y]

o; (MPa) 2.58 0.097 3.76%
g (mm/mm) 1.98x107% 8.74x107° 4.41%
g/ (mm/mm) 3.24x107* 3.55x107° 10.96%
G" (mJ/mm?) 2.57x10~% 2.53x10™> 9.20%
G' (m)/mm3) 3.92x10~* 3.10x10™° 7.91%

The CV is computed using Equation 3.42:

RMSE[y]

CV]y| = Bl

(3.42)

The RMSE calculated between the GP predictions and the model outputs is given in Table
3.4. The results indicate that the GP is very accurate in predicting o; and &;, where the CV
is < 5%. The model shows slightly more variability in predicting the modulus of resilience
and modulus of toughness, but still show < 10% variation. The variability in the total strain

to failure is the highest, with CV[y|] = 10.96%.

3.4 Conclusion

In this chapter a method for multiscale modeling of random SFRC using a descriptor-
based machine learning approach was demonstrated. A coarse scale model for the ho-
mogenized behavior of SFRC subjected to tension was presented. Key descriptors influ-
encing the coarse scale model parameters were identified, reducing the design space to a
finite number of dimensions. Samples were drawn from the descriptor space using strat-
ified sampling techniques. Statistically representative microstructures were generated for
each sample point and their tensile response was analyzed using an extended finite ele-
ment method tailored specifically to the case of random SFRC with nonlinear damage. A

Gaussian process was trained from the data and used to predict the coarse scale model pa-
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rameters for several microstructures using only descriptors. The following conclusions can

be drawn from the study:

1. A descriptor-based machine learning approach can be used to predict the elastic and

inelastic response of a random SFRC with a high-degree of accuracy.

2. XFEM is a useful tool for efficiently analyzing the microstructural response of ran-

dom SFRC due to its ability to model complex geometries with a fixed mesh.

3. The GP makes an effective surrogate model for the microstructural domain within the
context of a sequential multiscale modeling approach. It foregoes the need for expen-

sive explicit modeling of the fine-scale domain by using a microstructural database.

4. The GP was most accurate in predicting the peak stress and the corresponding strain
in the composite, but was less accurate in predicting the failure strain of the compos-
ite, which is more strongly influenced by fiber randomness. This may be the result
of non-inclusion of fiber fracture in the XFEM model, which was treated by defining

failure strain as the point corresponding to a 90% reduction in strength.

Since the machine learning model is data-driven and non-parametric it is most useful in
predicting the response in and around the sampled subspace, but can be retrained as more
data becomes available. A discussion of potential future work on this topic is provided in

Chapter 5.
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Chapter 4

Vibrational Response of Composite Musical Instrument Strings

In this chapter a similar approach to characterization and prediction of properties using
descriptors is followed, as was done in the case of random SFRC, to evaluate the response
of pretensioned vibrating electric guitar strings. As opposed to acoustic guitars in which the
sound box acts as an amplifier to produce audible sound, in an electric guitar the vibrations
of plucked strings are captured up by means of electrical pickups (electromagnetic, piezo-
electric, or optical) and amplified to produce audible sound. As a guitar string is plucked, it
vibrates with a certain frequency depending upon its unsupported length, density, tension,
and stiffness. Depending upon these parameters the string has a number of frequencies
at which it will naturally vibrate producing a low intensity sound requiring amplification.
These natural frequencies are known as the harmonics of the guitar string. The durability
and damping characteristics of guitar strings are dependent upon several random variables,
particularly the string material properties and cross section geometry. Due to the availabil-
ity of several new wire materials for musical instrument strings, it is of interest to develop
a computational model capable of linking the vibrational response of a composite string to
its mechanical properties and geometry.

Depending upon the geometric configuration, modern electric guitar strings can be clas-
sified as either plain or wound. A plain string is characterized by a solid homogeneous
circular cross section. The diameter of the string is commonly referred to as a gauge, mea-
sured in thousandths of an inch. For example, a gauge 10 string has a diameter of 0.010”. In
general, strings less than 0.018” in diameter are of plain type. Larger diameter strings have
composite cross sections formed by winding a wrap wire around a plain core wire. When
a composite string is subject to tension, the force is primarily carried by the core wire. The

purpose of the wrap wire is to increase the effective mass of the vibrating string so that
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Figure 4.1: Comparison of geometries of roundwound strings with circular and
hexagonal cores.

Hexagonal Core d,

lower frequencies can be realized without significantly increasing the tension in the string.
The bond between the core and the wrap wire relies on the friction between the two materi-
als. Hexagonal core wires are typically used to achieve optimal anchorage between the core
and the wrap because the sharp edges of the core tend to restrict slippage between the two.
However, many manufacturers also use round core wires to create a different sound. Figure
4.1 illustrates the geometry of composite strings with circular and hexagonal cores. The
diameter of the composite string, d;, is the sum of the core diameter d. and twice the wrap
diameter d,,. The composite geometry can be described by the core-to-wrap ratio (d./d,),
the diameter of the core relative to the wrap. Different string manufacturers use different
core-to-wrap ratios for a given gauge of string. Wound strings can be further classified
based on the cross section shape of the wrap wire used. Roundwound strings consisting of
a wrap wire with a circular cross section are most commonly used. Use of a semicircular
or rectangular wrap wire results in halfwound and flatwound strings, respectively.

The most common material used for plain strings and core wire is music wire. Per
ASTM A228 [104], music wire is a cold-drawn high-carbon steel consisting of 0.7-1.0%
C, 0.2-0.7% Mn, 0.025% P, 0.03% S, and 0.10-0.30% Si. The material is intended espe-

cially for use in high stress or fatigue prone environments. Some manufacturers use other
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Figure 4.2: Surface profiles of gauge 46 roundwound strings with (a) iron-cobalt alloy wrap
and (b) pure nickel wrap.

variations of high-carbon steel (HCS) with unspecified chemical composition. One new
core material is maraging steel, an iron alloy with 6-16% Co, 15-20% Ni, 2-6% Mo, and
<2% Ti [105]. Each core wire material is characterized by high strength, toughness, and
malleability.

The most prevalent wrap wire material is nickel-plated steel (NPS). NPS is produced
by electroplating a low carbon steel wire with 2-8% Ni by weight. Other available wrap
materials include pure nickel, stainless steel (<0.1% C, 10-19% Cr, <4.5% Cu,, 0.2-3.0%
Mn, <6% Mo, 4-10% Ni, <0.05% P, <0.1% S, <1.5% Si) [106], and iron-cobalt alloy
(8-35% Co, 0.25-7% Cr, 0.25-1% Mn, 0.25-7% Ni, 1-5% V) [107]. Figure 4.2 shows the
surface profiles of iron-cobalt and pure nickel wrap wires studied in this work obtained
using a digital microscope. There are significantly more surface defects present in the
iron-cobalt alloy wrap, which will influence the vibration of the string.

The organization of this chapter is as follows: Section 4.1 provides an overview of
the physics of string vibration and methods for modeling the response of idealized and
real strings. Methods for capturing and parameterizing an audio signal are also discussed.
Section 4.2 discusses essential concepts of music theory and describes the electric guitar
as an electromechanical system. Section 4.3 formalizes the problem in the context of the
descriptor-based machine learning approach outlined in Chapter 2 and details an experi-

mental method for measuring the response of strings. Conclusions drawn from the study
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are discussed in Section 4.4.

4.1 Governing Equations

4.1.1 String Vibration

An ideal string has no bending stiffness based on the assumption that the transverse
displacement is small relative to the length of the string. Figure 4.3 depicts the deformed
shape of a string with length / and linear density u at instant ¢ in time. The string is
subject to a tensile force T, which is assumed to be constant when the displacement y(x, )
is small. Dynamic equilibrium of net y-component of the tensile force and the inertial force
in the differential element dx at any instant of time yields the equation of motion in the

y-direction:

00 9%y
T|(0+—=—dx)|—T0=udx——5 4.1
( "o x> KXo D
As 0 = %, Equation 4.1 can be rewritten as:
2 2
oy _19% 4.2)

ox2 2912

where the wave speed ¢ of the vibrating string is related to its tension and density by
Equation 4.3.

- (4.3)

A true end support on a stringed instrument is nearly fixed but may yield slightly [87].
Assuming that the displacement at the ends of the strings is ideally fixed, the solution
y(x,1) to Equation 4.2 must satisfy the elliptic boundary conditions y(0,7) = 0 and y(/,1) =
0. Substitution shows that waves of the form given by Equation 4.4 satisfy the boundary
conditions.

y = Asin(Kx+ wr) (4.4)

@ =27y is the angular frequency and K is the wave number. Let y; = A sin(Kx— wr) denote
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Vibrating String

Figure 4.3: String vibration problem formulation.

a continuous sine wave traveling in the positive x-direction and y, = Asin(Kx + or) is a
similar wave traveling in the opposite direction. If the waves of equal frequency, amplitude,

and speed are reflected perfectly off of the ends, superposition of the waves yields:
y=y1+y2 =A[sin(Kx — @t) + sin(Kx+ ot)] = 2A sin(Kx) cos(wr) 4.5)

The trigonometric function in Equation 4.5 satisfies the boundary condition y(/,7) = 0 when
K = nzt/l only, where n is a positive integer. Equation 4.5 is expressed in terms of the

vibration mode 7 in Equation 4.6.

yn = 24, sin(K,x) cos(my,t) = 2A, sin (?x) cos <n77[ct> (4.6)

When a string with fixed ends is plucked, the response can be expressed as a sum of many

waves in the form of a generalized Fourier series:

y(1) = Y [Ancos(@nt) + By sin(@,)] sin (?Q 4.7)

n=1

The initial magnitude of each mode of vibration is defined by Fourier coefficients A, and
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Figure 4.4: String vibration boundary conditions.

B,,, which are calculated by the following equations:

3(x,0) s1nn—mdx 4.8)

An = a)nl

2 1l
Bi=7 / V(x,0) sinndex 4.9)
0

The initial conditions y(x,0) and y(x,0) can be used to determine the values of A, and
B,,. For a string initially at rest, y(x,0) = 0 and A,, = 0 for all values of n. The boundary
condition y(x,0) is defined according to the location and amplitude of the pluck, as shown
in Figure 4.4. The initial configuration of the string between the supports is shown by
the solid gray line. The configuration at the time when the pluck is applied is shown as a
dashed line. The location of the pluck is x, and the plucked height is given as h. The initial

displacement boundary condition at = 0 can then be written as:

(}Cﬁ)x 0<x<xp
y(x,0)=4q V" (4.10)
h
l—xp(l_)fc) x, <x <1

In Figure 4.5, B,, is plotted for three different plucking point locations along a 25.5” string.
B denotes the normalized location of the pluck along the string, x,/I. The amplitude of
harmonic n changes significantly with a change in x,.

The fundamental frequency of the string is related to its tension and length by the fol-
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Figure 4.5: Harmonic content for three different plucking locations.

lowing equation:

LE (4.11)

fi= 2\ u
An ideal string, which is infinitely flexible, has resonant frequencies which are integer
multiples of the fundamental, that is, harmonics f,, will exist at integer multiples of the
fundamental frequency nf) for n =2,3,4...cc. However, in real strings, there is some inhar-
monicity due to the stiffness of the material and the presence of geometric nonlinearities.
The stiffness influences particularly the higher vibration modes. Equation 4.2, which gov-

erns the motion of an ideal string, can be modified to account for the stiffness of the string

as:

02 0?2 04
Y 12 _p2Y

Hor = Toe ~Hoa (12

where E is Young’s Modulus of the wire and / is the moment of inertia of the cross section.
Equations 4.13 and 4.14 can be used to calculate the inharmonic frequencies f,; of a stiff

string assuming pinned ends and clamped ends, respectively [75].

£r=nfi (1+8n2)" 4.13)

n
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fimnfi (1+8n%)"? [1 +(2/m)BY? + (4/7%)B (4.14)

where the unitless stiffness parameter B is defined by the relationship:

2
n°El

Calculation of B is straightforward for a plain wire with a uniform cross section. Figure
4.6 shows the theoretical effect of string stiffness on inharmonicity for the first 20 partials.
The results were calculated using Equations 4.13-4.15 for a string of plain geometry. The
length of the scale is 25.5” and the diameter of the circular cross section is 0.017”. Young’s
modulus is 30,000 ksi and the density of the material is 0.284 pci, similar to music wire.
The string is tensioned to 16.6 1bs, which results in a fundamental frequency of 196 Hz.
The y-axis of the plot has been normalized by the partial number for readability. For small
values of n, the deviation between the ideal string and the real string is minimal, but the
difference becomes apparent as n increases. The clamped end approximation yields larger
deviations from the theoretical response than the pinned case. For a wound string, the
composite Young’s modulus is influenced by the bond between core and wrap wire, which
is difficult to characterize. Explicit calculation of the moment of inertia for the composite
string is also a complicated problem since the spiral pattern of the wrap wire creates a
nonuniform cross section. For this reason, previous work [88, 89, 90] on the inharmonic
response of wrapped strings has focused on the inverse problem of fitting Equations 4.13-
4.14 using experimental data.

Musical instruments produce sound using a combination of the vibration of several
system components, which are coupled to some extent. In the case of the electric guitar,
several oscillating strings are attached to the body at the bridge and nut. Each string has
potential energy due to its stiffness and inertial energy due to its mass. The solid body
of the electric guitar is intended not to color the sound significantly, and not to absorb

vibrational energy from the strings [108], however some damping due to body coupling is

66



202 T T T T T T T T T

Ideal string (harmonic)
201 - Stiff string, pinned ends (inharmonic)
200 Stiff string, clamped ends (inharmonic)
N
= 199
£ 108
NS

195 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

Partial Number, n

Figure 4.6: Theoretical inharmonicity due to string stiffness.

inevitable. Damping is present in a string due to a combination of air damping, internal
material damping, and energy loss at the supports [73]. Frequency-dependent damping
characteristics of strings have been studied in previous work [68, 89, 90, 109]. Viscous
drag on a string lowers the modal frequencies slightly and produces exponential decay of
amplitude. For the size of strings commonly used in musical instruments, the retarding

force due to air damping is expressed as:

2 1
F =272 pafvitl (% + M) (4.16)

where r is the radius of the string, p, is the density of air, f is the frequency of vibration, and
v is the velocity. M = (r/2)v/27f/N,. N, is the kinematic viscosity of air. For oscillation

at a single frequency f, the amplitude decays exponentially with time constant 7;:

p 2M? )
_ 4.17
T apf (2\/§M+ 1 “417)

Where p is the density of the string. In the equation of motion for a string (4.12), the string

is treated as an elastic isotropic material with Young’s Modulus E. In reality, the string
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behavior is viscoelastic; when a stress is applied, there is a slight delay before the corre-
sponding strain is fully realized. To capture this effect, Young’s modulus may be treated
as a complex number, with E = E| + jE5. Substituting this relationship into Equation 4.12

yields the decay time 7, due to internal damping:

1 E

= ﬂ_fE_z (4.18)

(7]

This type of damping is usually negligible for solid metal strings, but there is energy loss
due to internal friction between components in wrapped strings. The decay time due to

energy loss through the supports is given by the following equation:

1

=~ SHI7G (4.19)

3

G is the conductance, defined as the real part of the mechanical admittance. The decay time

7 in the presence of all three types of damping is calculated by the following equation:
I/t=1/t1+1/mn+1/13 (4.20)

For thin metal wires, as in the case of guitar strings, air damping contributes most signifi-

cantly to the total damping force.

4.1.2 Signal Analysis

The signal produced by a vibrating string can be analyzed in the time domain or fre-
quency domain. Within the time domain, it may be of interest to study the decay time of
the vibrations following excitation of the system, or the shape of the decay envelope. In the
frequency domain, it is often useful to study the concentration of power over certain fre-
quency bands. Digital signal processing concepts relevant to the instrument string problem

are discussed in this section, including analog to digital conversion, noise in signals, and
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methods for representing a signal in time and frequency domains.

In the previous section the signal produced by a vibrating string was defined as y(x,?).
Let y(¢), t € [0,T] denote the displacement of the string with respect to time at an arbi-
trary fixed location x, where T is the duration of the signal in seconds. The signal y(¢) is
continuous in time and amplitude domains. In order to record and analyze the signal, y(7)
must be discretized in each domain. This is achieved using an analog-to-digital converter
(ADC). An ADC captures samples of the audio at some sample rate, Fy, with the data size
of each sample referred to as bit-depth. Sampling discretizes the signal in the time domain,
while the bit-depth of the samples determines the quantization resolution in the amplitude
domain. Let the discretized signal y[n| be defined as a vector of equally spaced sampled
values from the signal y(z). If the signal is sampled at a rate of F; (samples/second), the
length of the sample vector y[n] is given by N = F,;T. In general, parentheses are used to
indicate functions of continuous variables and brackets are used for the case of discrete
variables.

The work of Nyquist and Shannon [110, 111] showed that in order to accurately sample
a wave of frequency f, a sampling frequency of at least 2 x f Hz is required to detect the
peaks and the troughs. For