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Chapter 1

Introduction

1.1 Motivation

Well-designed composites can effectively utilize the desirable attributes of their con-

stituent phases, resulting in a material greater than the sum of its parts. Structural compos-

ites may be optimized to realize performance which meets some demand threshold for the

structure. The ideal composite material for a structure may be selected based on character-

istics like desired stiffness, strength-weight ratio, thermal or acoustical conductivity, fatigue

life, or some combination of these. The influence of the characteristics of the constituents

and the interfaces at small scales on the continuum scale response of the composite is well

understood. The material properties of the composite treated as a continuum are controlled

by the behavior of individual phases and interactions thereof. All physical systems, natural

or engineered, are prone to some degree of inherent uncertainty. Uncertainty is present at

all scales, from the atomic interactions of a material microstructure to the demand imposed

on the system at the macroscale. Design of composites with engineered microstructures

requires characterization of uncertainties to assess the reliability of material performance

in expected scenarios, so that the design life of the structure is predictable within a desired

level of accuracy.

The main purpose of this research is to formalize and implement a computational frame-

work for the analysis and design of arbitrary composite material microstructures to op-

timize the desired structural performance of the composite. This will enable intelligent

tailoring of a mix of material phases of different types, shapes, and sizes satisfying the

needs of an application in terms of performance, cost, and ease of manufacture. Key to

the approach is the use of machine learning concepts for identifying patterns in higher-

dimensional design spaces based on data from numerical simulations and experiments.
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The framework presented in this research is implemented for two problems from appar-

ently widely different scenarios, described in Sections 1.1.1 and 1.1.2. The first scenario is

concerned with the prediction of mechanical properties of short-fiber reinforced compos-

ites with randomly distributed fibers, widely used in many engineering applications. The

second problem focuses on the vibration of metallic composite wires used in stringed mu-

sical instruments. In each of these two problems, the objective is to identify descriptors

that can be used to characterize a composite morphology, and determine the correlation be-

tween descriptors and the overall performance of the composite. Once a machine learning

model has been successfully trained using data from experiments and/or simulations, it can

be used to efficiently simulate the response of composites with microstructures that have

not been previously tested, allowing for data-based rapid prototyping of composites in a

variety of applications.

1.1.1 Short-Fiber Reinforced Composites

Fiber reinforced composites (FRC) generally consists of short fibers, long fibers, or

some combination of the two embedded in a lower strength matrix material. Both short

fibers and long fibers show advantages for different applications. Fiber inclusions enable

crack bridging, show enhanced ductility, and absorb energy without significantly increas-

ing the weight of the composite. For fibers continuous and straight throughout the material,

it is possible to derive simple phenomenological mechanical property relationships for the

matrix-fiber combination in the form of constitutive equations. It is also possible to es-

timate the failure strength of adequately reinforced aligned long fiber composites using a

mechanics-based approach. A unidirectional FRC lamina is orthotropic in nature. The

toughness is maximum in the direction of the fibers, but relatively weak in a direction

transverse to the fibers. For this reason, unidirectional continuous fibers are useful when

the direction of the load with respect to the material orientation is known with some de-

gree of certainty. For example, some aircraft components use laminates with layers of

2



uniformly oriented fibers designed to specifically handle the unique load profiles imposed

under operating conditions.

In some applications, randomly dispersed short fibers may be preferred due to reduced

directional dependence of strength because irrespective of the load direction some of the

fibers will always share a portion of the load. For example, in blast-resistant structural

design, the location and magnitude of the design load is often unknown. Consequently,

moment reversal may occur in a supporting beam. The toughness of a brittle-matrix com-

posite can be significantly improved by adding a small volume fraction (<2%) of randomly

dispersed higher-strength ductile or brittle short fibers to the matrix. In addition to im-

proved mechanical properties, random short-fiber reinforced composites (SFRC) provide

an advantage in ease of fabrication, as the fibers can simply be added to the matrix as it is

mixed. In the case of SFRC, apart from the strength of the matrix material, its degree of

ductility can be a function of volumetric ratio, physical properties of fiber like diameter,

strength, length, distribution, elastic modulus, and the interfacial mechanical and chemical

bond characteristics of the two. Random SFRC exhibits variation in morphology through-

out the problem domain that must be accounted for in the design. In practical applications,

the designer must select fiber shapes and sizes to achieve optimal performance. This disser-

tation addresses the problem of predicting the response of a random SFRC microstructures

with varying fiber configurations based on state-of-the art methods for material modeling

and machine learning.

1.1.2 Composite Musical Instrument Strings

Stringed instruments produce a signal when a transverse excitation force is applied

to a tensioned string or wire by a plucking, bowing, or striking mechanism. In acoustic

instruments, sound is produced when the wire vibrations coupled with the instrument body

create a pressure wave in the surrounding air. Rather than creating pressure waves in the air,

the vibrations of the metal string on an electric guitar are converted into electrical impulses

3



using a magnetic pickup. The signal is transmitted to an amplifier, which is capable of

producing a signal significantly more powerful than that of an acoustic instrument. The

pitch that the instrument produces is related to the length, density, and stiffness of the

string material, as well as the magnitude of the tension in the string. The effect of each of

these factors must be considered when selecting materials to construct an instrument string.

Composite electric guitar strings consist of a tensioned core wire helically wrapped with

an additional wire that is used to control the fundamental frequency of vibration by manip-

ulating the overall density and stiffness of the composite. Most string producers use either

round or hexagonal core wires wrapped with another round, semicircular, or rectangular

metallic wire. A variety of materials are used for core and wrap wires. Limited data exists

to directly compare composite strings of different materials and geometry, since informa-

tion such as ideal core and wrap wire sizes and precise alloy composition are studied by

corporations in-house and treated as proprietary information. The strings are marketed to

users using subjective, relative terms such as “maximum toughness” and “improved bright-

ness”. Occasionally a manufacturer will provide information such as a frequency response

curve indicating the expected sound of a given set of strings, but limited information is

given regarding the experimental basis of the results. There is a lack of published litera-

ture on the vibrational response of strings with different geometry and material property

combinations. One contribution of the current research is to analyze various strings using

the same series of experiments, to mitigate industrial bias. The development of a method

to optimize string geometries to obtain a desired frequency response and design life is of

interest to manufacturers seeking to modernize their production technology. This research

will compare the performance of commercially available instrument strings with varying

geometries and material properties in an unprecedented manner.
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1.2 Literature Review

Generally, composites may be classified as fibrous composites, particulate composites,

and laminated composites, or some combination of the three [1]. For example, a laminate

may consist of some layup with particulate inclusions and another layup with fiber in-

clusions. Historically composite materials have been characterized on the basis of strength

tests on representative specimens, resulting in a number of empirical relationships that have

been used by engineers [2]. Such empirical characterization methods may be a viable op-

tion for relatively inexpensive bulk materials subjected to quasi-static loads, but the design

of new-age composites for a broad range of applications can be time consuming and ex-

pensive tests may not be an acceptable option. Early phenomenological attempts to model

the behavior of heterogeneous materials used principles of continuum mechanics of mate-

rials to analytically represent the properties [3, 4, 5]. Recent efforts to solve the problem

more realistically are based on micro-mechanical models coupled with numerical homog-

enization [6, 7, 8], which is preferred for its computational efficiency. The representative

volume element (RVE), defined as a volume of heterogeneous material that is sufficiently

large to be statistically representative of the composite [9], is used extensively in numerical

homogenization techniques. The RVE approach generally assumes periodicity in the ma-

terial composition at the small scale, which can be coupled with an appropriate method for

linking the scales of the problem.

The current emphasis on rational performance driven design approaches demands a

more critical consideration of the ways to define the relationship between the constituents

of a material and structural performance [10]. Previous work has investigated the link be-

tween micro- and macroscale behavior for systems of polycrystal grain boundaries [11, 12],

randomly dispersed spheres and spherocylinders [13, 14, 15, 16, 17], randomly dispersed

circular inclusions [18, 19, 20], elliptical inclusions [18], arbitrarily shaped particle inclu-

sions [21, 22, 23, 24], randomly dispersed uniaxial fibers [25, 26, 27], randomly dispersed

voids [28, 19], and long fibers with ellipsoidal cross-sections [29].
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Hierarchical design methods have been proposed [30, 31, 22] in which optimal mi-

crostructure processing techniques and associated characteristics are identified to achieve a

target structural response for a range of composite materials. Fundamental to the approach

is identification of a quantitative relationship between microstructural composition and ma-

terial response [23]. This relationship is viewed as a random function which maps the input

space to the output space. Machine learning is an attractive tool for identifying such map-

pings due to its flexibility and robustness for a wide variety of engineering problems [32].

There has been significant new research on machine learning for material design in recent

years, resulting in the publication of several state-of-the-art reviews of the subject [33, 34].

Machine learning using neural networks was applied to the problem of brittle-matrix FRC

as early as 1996 [35], when the effect of inclusion volume fraction on the stress-strain rela-

tionship of the material was analyzed. Other previous studies have used a descriptor-based

approach to characterize the behavior of heterogeneous cementitious materials containing

voids in the microscale [22]. Some research has focused on accounting for large numbers

of random variables when characterizing random heterogeneous media [36]. Work relevant

to the musical instrument string problem includes the use of a clustering approach for iden-

tifying different modes of damage in composite bridge wires using acoustic emissions data

[37].

1.2.1 Short-Fiber Reinforced Composites

Early tests on fibrous composites showed that for a given matrix material, some fiber

materials provide an increase in stiffness with higher volume fraction, whereas other fiber

materials lead to a decrease in composite stiffness [38] . In a long fiber composite, the

fibers have sufficient bond strength to remain embedded until the fiber fractures. In a short-

fiber composite, however, failure at the interface occurs long before the fibers reach the

stress required to break [39]. Actual interface structures are highly specific to the fiber

and matrix combination. Pullout tests are commonly used to directly characterize interface

6



resistance between the two phases in such material [40, 41]. The pullout test measures the

resisting force as the fiber is pulled out of the matrix, which can be used to experimentally

characterize the traction-separation relationship at the interface. Cohesive properties can

be manipulated in a design by coating fibers with sprayed layers to enhance bond strength

and/or introducing deformities to provide mechanical anchorage [42]. The effect of fiber

crimping on the bond behavior for a polymeric fiber embedded in a cementitious matrix

was studied by Bentur [43].

The Aveston Cooper Kelly (ACK) theory was developed in an early attempt to describe

the tensile stress-strain behavior of FRC with a brittle matrix [44], and serves as the basis

for later attempts to stochastically describe the cracking behavior of such composites [45,

46]. A number of approaches exist for modeling the homogenized behavior of FRC. The

Concrete Damage Plasticity model (CDP) is one constitutive model capable of accurately

predicting the nonlinear, multiaxial behavior of concrete using plasticity theory [47]. The

CDP model is an attractive macroscale model for FRC due to its independent definition of

tensile and compressive stiffness degradation. For a given state of strain in the composite,

the resulting tensile stress is interpolated from data obtained from uniaxial tension and

compression experiments. The work of Jankowiak [48] provides a detailed description of

the parameter calibration process for CDP using experimental results. Nordendale recently

demonstrated the efficacy of the CDP model for simulating the performance of SFRC under

blast and impact loads [49].

While macromechanics is the study of the composite behavior when the material is

treated as homogeneous with averaged apparent properties, micromechanics focuses on

the interaction of the inherent heterogeneities. The scale at which heterogeneities interact

is termed the microscale (or, more appropriately the mesoscale). As a result of advances

in computational tools over the last few decades, numerical multiscale modeling methods

have become a popular tool for analyzing and predicting the response of heterogeneous

materials [50]. In general, multiscale methods are classified as sequential or concurrent.
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Concurrent models solve systems at different scales in parallel, exchanging information

between the models used in each scale [51, 52, 53]. In the process, the macroscale re-

sponse gets influenced by behavior at the microscale, and vice-versa. In a sequential model

[54, 55, 56] simulations at each scale are performed separately. Unknown coarse-scale

parameters are determined using the solution of the microscale problem. A sequential

multiscale approach is particularly useful when a model exists to capture the coarse scale

behavior of the material, but one or more macroscale model parameters are dependent on

the microstructure response. In a sequential multiscale framework, the governing equations

at each scale are uncoupled, so complete scale separation is assumed. The Heterogeneous

Multiscale Method (HMM) [57] was developed as a framework for either sequential or

concurrent multiscale techniques where a different physical or numerical model is needed

at each scale, in contrast to traditional homogeneous multiscale methods.

Previous work has assessed the effect of fiber-matrix interfacial debonding and fiber

orientation on the elastic response of a composite using the finite element method (FEM)

to model the RVE [58, 59] . Unique challenges arise in identifying the RVE of a material

with randomly distributed inclusions, requiring special treatment from a multiscale model-

ing perspective. In the work of Xu [21], random RVEs containing elliptical inclusions were

decomposed into smaller statistical volume elements (SVE) whose response was analyzed

and quantified for upscaling. The approach is similar to Voronoi cell FEM, used by Ghosh

[27], where a statistically equivalent RVE (seRVE) is used to model FRC at the microscale

within the context of a concurrent multiscale model. Greene [31] identifies scenarios where

uncertainties significantly affect macroscale behavior using a statistical description of the

microstructure for three benchmark problems. Recent work by Clement [29] focused on

the development of a database of elementary cells of fiber reinforced polymers contain-

ing arbitrary heterogeneities within the stochastic dimension. One useful aspect of the

present effort is that different microstructures may continue to be modeled and added to the

database, which can be used within a hierarchical multiscale framework.
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As the nonlinear response of a composite is dependent upon the arrangement of fibers at

the fine scale, phenomenological parameters for the coarse scale must be determined exper-

imentally, or through a number of microstructural simulations capable of capturing the local

interaction effect of fibers. While FEM can be used to model fiber-matrix debonding at the

fine scale using cohesive elements at the interfacial phase boundary, conventional FEM

is ill-suited to handle complex microstructure geometries due to the need for extremely

fine meshing of the domain. The extended finite element method (XFEM) has emerged as

a computationally efficient alternative to cohesive zone modeling, and its usefulness has

been demonstrated for woven fibers [60] and random short-fibers [61, 62, 63].

1.2.2 Composite Musical Instrument Strings

The work of Abbott provides a thorough history of stringed instruments [64, 65]. The

earliest musical strings were made of various animal intestines, colloquially known as

catgut. Catgut strings suffered from a lack of homogeneity and as a result their tone and

durability were rather inconsistent. Evidence has shown that metallic strings can be traced

back as early as the 12th century, but technological limitations on the wire drawing process

kept them from becoming commonplace at the time. Early metal strings were made of

brass, copper, or silver since these materials are easy to draw and resist corrosion.

The earliest strings consisted of a single wire with a uniform circular cross section.

Today, such strings are referred to as plain strings. Smaller diameters are used for strings

tuned to higher pitches and larger diameters are used for low frequencies so that the ten-

sion in each string is similar. Instrument makers later realized that they could expand the

frequency range of instruments by wrapping a plain string with an additional wire. In this

configuration, the core wire carries the tensile force, while the wrap wire provides an in-

crease in the effective mass for vibration control. The bond between the core and the wrap

wire relies on the friction between the two materials. Some sources suggest that wrapped

strings were made in Germany as early as the 14th or 15th century, although they did not
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become the norm until several centuries later [66]. These types of strings are referred to

in literature by various names today, including overwrapped strings [67], wound strings

[68, 69, 70], overwound strings [71, 72], and overspun strings [73]. Wound strings may be

further classified by the cross section geometry of the wrap wire. Roundwound strings use

a circular wrap wire, halfwound strings use a semicircular wrap wire, and flatwound strings

use a rectangular wrap wire.

The analysis of vibrating strings dates back to the work of Pythagoras, who noted that

the length of a string is correlated to its fundamental frequency. In 1749, D’Alembert de-

rived the solution to the 1D wave equation, which describes the motion of a plucked string.

The work of Fourier later provided the basis for spectral analysis. Early work on the the-

oretical behavior of strings relied on assumptions of an ideal string, one that is infinitely

long and flexible with rigid supports. Lord Rayleigh derived equations for the vibration of

homogeneous strings with finite stiffness more than a century ago [74]. In 1964, Fletcher

expanded upon this work to account for the effect of material stiffness and wrap wire on the

performance of piano strings [75]. His later work provided a review of equations relating

the physical properties of strings to their nonlinear response, inharmonicity, and damping

[73]. Three sources of damping are present in a vibrating instrument string: energy loss

through the supports, viscous air damping from the surrounding media, and internal mate-

rial damping. Internal damping is generally negligible for solid homogeneous strings, but

very significant in wrapped strings. In 1982, Davis developed a graphical design guide for

flexible strings [69]. The design guide related string diameter, frequency, and stress using

several connected plots with common axes. A few years later Firth developed an updated

design guide that incorporated Fletcher’s equations for a stiff string with inharmonicity

[67, 76]. Pickering later studied the influence of core tension during the manufacturing

process on the performance of a wrapped violin string [71] .

The computer revolution and corresponding improvement in instrumentation allowed

for researchers to experimentally study the response of real strings with increasing fidelity.
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The effect of aging on the frequency response of guitar strings was studied by Allen [77].

It was found that new strings have more upper harmonics present that decay less rapidly

than aged strings. Houtsma attempted to measure the change in these frequency depen-

dent damping parameters as electric guitar strings aged [68]. His experimental work used

a modified Gibson SG guitar body with brass wound steel strings. However, brass is not

commonly used for electric guitar string wrap wire since it is not magnetic and electric

guitars such as the SG generally use magnetic pickups. No detail was provided on how the

signals were measured in the study. Hanson designed an experimental apparatus to study

the response of an isolated wound nylon string (as found on a classical guitar) and an iso-

lated wound steel string (as found on a folk guitar) in an attempt to measure results without

the influence of body coupling [70]. Hancock took a similar approach in his studies on

piano and cello strings [78, 72]. Several anomalies were identified between the theoretical

and real response of the strings. He suggested that flexibility, the indeterminate location

of endpoints, tension gradient among the string length, and coupling between transverse

and longitudinal modes were the cause of deviation. Penttinen showed that it is possible to

identify the location of the pluck based on the harmonics present in the signal [79]. Kemp

studied the effect of two different wrap materials on pitch deviation using an electric guitar

with a tremolo arm that is used by some guitarists to stretch strings while playing [80].

More recent work has investigated characteristic damage in steel instrument strings

using microscopy. Bulbul studied damage modes in steel strings used on a bağlama [81,

82]. Three primary damage mechanisms were identified: abrasion in the neck region from

pressing on the strings, erosion in the body region from plucking, and environmental wear

due to exposure to moisture, oxygen, oil, and dirt. Olver studied a number of fractured

steel strings and identified that the primary cause of failure was the onset of transverse

fatigue crack initiation in the cross section, followed by ductile failure [83]. The majority

of failures occurred in the region where the strings were plucked.

It is important to note that the design and construction of instruments and their strings
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has a significant link to the field of psychoacoustics. Human perception of sound is highly

dependent on social and cultural factors. Based on the way that humans are conditioned,

certain frequencies, intervals, or rhythms may be perceived as pleasing or irritating. For

this reason, there is no consensus among musicians or string manufacturers on what makes

an “optimal” string. However, psychoacoustic studies have identified correlations between

characteristics of a measured sound and perceived quality. One such study was performed

by Dayan, who studied the characteristics of the sound produced by four different types of

string for acoustic guitars [84]. The study attempted to correlate the magnitude of certain

harmonics with subjective quality according to listeners. However, the tests did not specify

the material or geometry of the strings used. Other authors studied the effect of acoustic

guitar body style and material on perceived quality [85]. In this study a professional gui-

tarist performed a variety of musical pieces on 15 different types of guitars from various

makers. From the results, a correlation was determined between the measured properties

in the signal and the perceived quality of the tone. A follow-up study [86] further inves-

tigated the link between perceived quality and constructional details. In these studies the

researchers held constant, or attempted to do so, all the variables except for the different

guitar bodies used. Because the electric guitar transmits signal using electromagnetic pick-

ups rather than acoustic wave propagation, there is less influence of the electric guitar body

geometry and material than in an acoustic guitar [87].

Recently there has been an increased interest in producing instrument sounds using

digital synthesis. Woodhouse developed a synthesis model for plucked guitar string tran-

sients [88] and calibrated the synthesis model using experimental results from a nylon core

string with metal a wrap wire [89]. His later work used this model to generate samples

for a psychoacoustic study measuring the sensitivity of listeners to changes in frequency

dependent damping and other parameters [90]. Synthesis of string vibrations from three

instruments, the Chin, acoustic guitar, and the Pipa, was undertaken by Liang [91]. The

three instruments used nylon-wrapped silk-wound steel, steel wound, and nylon wound
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strings, respectively. Karjalainen developed a digital signal processing technique to modify

the sounds produced by an electric guitar so that they resemble the sound of an acoustic

guitar [92]. These synthesis models provide useful insight into methods for parameterizing

an experimentally measured signal.

Most of the studies discussed previously focused on only a few types of strings. For

example, Woodhouse examined the difference between D’Addario composite nylon strings

and Martin steel strings [90]. Hancock analyzed the response of two types of cello strings

and piano strings [72]. Some of the studies presented experimental results but did not

provide a thorough discussion of the test method. Houtsma, for example, does not provide

any discussion of how the strings were plucked in his study on electric guitar strings [68].

In some cases, the signal recording rig is detailed, but the strings were plucked by the

researcher, so the results are not reproducible.

1.3 Objectives

The objective of this research is to demonstrate the efficacy of a generalized descriptor-

based machine learning framework to identify structure-property relationships in compos-

ite materials. The research synthesizes concepts from multiple fields related to computa-

tional mechanics, including material characterization and modeling, numerical methods,

homogenization, digital signal processing, and machine learning. For the first problem,

a recently developed XFEM approach is implemented to efficiently explore SFRC design

space and study the effect of fiber randomness on composite behavior. In the second prob-

lem an experiment is designed, and a data-driven approach is used to analyze the previously

unexplored relationship between wound electric guitar string geometry, material, and vi-

brational response. In each problem, the complex nonlinear interaction between the two

material phases informs the overall behavior of the composite. Using data from numerical

models and experiments, it is demonstrated that an appropriately trained learning machine

can predict and classify the behavior of the composite using only parameters describing the
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phase properties and geometry. Once trained, the machine can be used to efficiently and

accurately predict the response of untested composites, foregoing the need for expensive

experiments and simulations.

Objectives for SFRC Problem:

1. Identify descriptor variables that influence the response of random SFRC microstruc-

tures and generate SVEs.

2. Numerically model SVEs using XFEM to generate database of composite perfor-

mance.

3. Implement machine learning model to predict composite tensile response using mi-

crostructural descriptors.

Objectives for Composite Music String Problem:

1. Identify descriptor variables that influence the performance of composite electric gui-

tar strings.

2. Design an experiment for capturing the time and frequency dependent response of a

vibrating string in a controlled setting.

3. Implement machine learning approach to classify strings based on features of the

signals they produce.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 formulates the composite material

design problem in the generic sense. Here, a framework for designing a multiphase mate-

rial using concepts of stochastic processes and machine learning is introduced. Methods

for characterizing a multiphase material are discussed in the context of a descriptor variable

approach. The remainder of the document focuses on the two problems discussed above

that can be approached using the framework described in Chapter 2. Chapter 3 addresses
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the SFRC problem. Chapter 4 applies the framework to identifying structure-property re-

lationships in electric guitar strings. Chapter 5 summarizes the findings of the research to

date and gives an outline of potential future work.

15



Chapter 2

Machine Learning of Structure-Property Relationships

In the composite material design problem, let ΩM denote the coarse scale domain of a

simple periodic linear elastic two-phase material with uniformly distributed inclusions and

displacement and traction boundary conditions prescribed on ∂Ωu
M and ∂Ωt

M, as shown in

Figure 2.1. The elastic constants of the matrix and fibers are given as Em, E f , νm, and

ν f , where E is Young’s Modulus, ν is Poisson’s ratio, and the subscripts m and f denote

matrix and fiber, respectively. Assuming the phases to be perfectly bonded, meaning no

slip or delamination can occur at the phase interfaces, the elastic properties Ec and νc, of

the composite in the domain ΩM will be dependent on the elastic constants of the individual

phases, as well as the geometry, or morphology, of the microstructure, which in this case

can be characterized by the inclusion diameter d f and the spacing, s. The matrix and

inclusions interact in the fine scale domain Ωm. Depending on the application of interest,

the designer may wish to determine values of s and d f such that the composite stiffness Ec is

maximized, or select an inclusion material with an optimal stiffness for a fixed particle size

and/or diameter. This example design problem is formalized as a constrained optimization

problem in Equation 2.1:

maximize Ec = F(Em,E f ,νm,ν f ,s,d f )

subject to s ∈ S

d f ∈ D

Em,E f ∈ E

νm,ν f ∈ V

(2.1)

Where S, D, E and V are sets of feasible design values for each parameter. If the material

microstructure is random in nature it is necessary to analyze the structural reliability, which
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Figure 2.1: Example 2-phase microstructure optimization problem.

requires consideration of uncertainty in the material as well as external effects like loading.

Random materials are characterized by higher variability in resistance, which cannot be

neglected in design. Such variability cannot be represented by deterministic approaches

and requires data-driven algorithms based on statistical concepts. Machine learning has

emerged as a powerful tool for analyzing data in high-dimensional spaces obtained from

experiments where randomness is present in the material or loading conditions. In the

material science and computational mechanics community the descriptor-based machine

learning approach has been implemented for prediction of the behavior of composite mate-

rials for a range of design applications. The following section will formalize the composite

material analysis and design problem in this context.

2.1 The Descriptor-Based Machine Learning Approach

In a descriptor-based approach, a correlation is assumed between variables that describe

the material on the fine scale, called descriptors, and measurable material properties. De-

scriptors may be thought of as design variables for an engineered composite optimization

problem, or sources of uncertainty in an analysis problem. The descriptors may be discrete

or continuous, depending on the nature of the parameter being constrained. For example,

consider the design problem outlined in Figure 2.1. If a matrix and fiber material have al-

ready been selected, the engineer is tasked with determining optimal values of s and d f so
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that Ec is maximized. If these are the only two design variables being considered, the de-

scriptor space is 2-dimensional. In practical applications the feasible region D of values for

fiber diameter is dependent on the range of diameters available from a manufacturer, which

in turn depends upon the precision of the machine used for extrusion. Thus, d f is a discrete

random variable with a finite number of possible values defined by the manufacturer. The

spacing s is a continuous random variable with a lower bound set by aggregate size of the

matrix material, and an upper bound dictated by the dimensions of the matrix. To determine

the optimal values of d f and s, each dimension should be uniformly sampled. Random real-

izations of the composite are constructed using various values of d f and s and tested using

experiments or numerical models. If the matrix and fiber materials exhibit a relatively high

degree of homogeneity, in the context of modeling, Young’s modulus and Poisson’s ratio

may be considered deterministic. However, if the matrix and inclusion materials exhibit

high variability, they must also be treated as descriptors with associated probability distri-

butions. The response metric Ec is measured for each realization. By analyzing several

microstructures with differing values of s and d f , a correlation between design parameters

and composite stiffness can be developed. For simple linear elastic systems such as that

depicted in Figure 2.1, the composite properties can be explicitly solved for using mechan-

ics of materials principles. In many applications, however, it is necessary to account for

nonlinear behavior and damage, which requires an alternative modeling approach.

This process of identifying a function that maps descriptor space to response space

can be achieved by machine learning. Using machine learning algorithms, it is possible to

identify complex nonlinear patterns in large data sets obtained from experiments or simula-

tions, enabling researchers to study the effect of input variables in high-dimensional design

spaces in an unprecedented manner. Machine learning can be used to identify a surrogate

model for a random process that can be used to robustly predict the response of an unknown

structure using a database of previously tested samples. Machine learning algorithms can

be paired with optimization tools such as genetic algorithms and simulated annealing to
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(a)

(b)

Figure 2.2: Input/output space view of the descriptor approach with respect to (a) the SFRC
problem, and (b) the composite guitar string problem.

identify optimal material structures. Figure 2.2 depicts the input-output space relationship

for the problems discussed in Chapters 3 and 4. For the SFRC problem, random microstruc-

tures are mapped to composite tensile response using machine learning. For the vibrating

string problem, a machine learning approach is implemented to map between a string’s

material phase, cross-sectional geometry, and the frequency response of the composite.

Machine learning methods generally fall into one of two classes: unsupervised learning

or supervised learning. In unsupervised learning methods, algorithms search for structures

within input data without regard for outputs. In supervised learning approaches, an optimal

model F∗(x) is identified that most accurately generates output data y from input data x.
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Figure 2.3: System diagram of supervised learning framework.

Figure 2.3 illustrates the supervised learning framework. The field of supervised learning

can be further divided into classification and regression problems. In classification prob-

lems, each output falls into some category, and the model seeks to predict the category

of the output from the input. In regression analysis, the output is a real-valued continu-

ous variable. Both classification and regression methods are implemented in this research.

Regression of SFRC properties based on material morphology is undertaken in Chapter 3.

In Chapter 4, a classification method is used to identify composite string properties from

their signals. The generalized learning framework consists of four components that are

described in the following subsections:

1. Identification of descriptors

2. A sampling method to generate random input vectors x

3. A system that produces outputs y for a given x

4. A learning machine that estimates unknown values y∗ at test points x∗ using training

data x, y

2.1.1 Descriptor Selection and Sampling

Identification of descriptors concerns the challenge of reducing the design space into a

finite number of dimensions [93]. Use of too many dimensions creates a complex learning
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problem; whereas, too few dimensions may not be able to accurately model the random

process. Principal component analysis can be used to analyze the sensitivity of a machine

learning model to changes in descriptor values, with the objective of identifying irrelevant

descriptors in order to reduce model complexity. Let a point x in d-dimensional descriptor

space be defined by the row vector x = [x1,x2, ...,xd−1,xd]. Each component of x represents

the value of the descriptor x j, j = 1...d. Each point in the descriptor space corresponds to

a microstructure with a unique set of descriptors. It is assumed that the composite response

y is dependent upon the location of x in the descriptor space. y is a p-dimensional vector

of response quantities measured by experiments or simulations. p is related to the number

of objective functions in the optimization problem. In the problem shown in Figure 2.1,

where maximizing Ec is the only objective, p = 1 and y = Ec. If one wished to maximize

Ec in addition to maximizing or minimizing other parameters, then p > 1. The values of d

and p are selected by the user based on the problem being considered. In the context of the

descriptor approach, the constrained optimization problem in Figure 2.1 is generalized as:

maximize y = F(x)

subject to x j ≥ a j j = 1...d

x j ≤ b j j = 1...d

(2.2)

Here [a j,b j] is the range of feasible design values for descriptor x j. The feasible region

is defined independently in each dimension of the descriptor space. In the case of aligned

or periodic material microstructures, descriptors such as volume fraction, geometry, and

spacing of different material phases are sufficient to describe a unique composite material

structure. This will be the case for the guitar string problem discussed in Chapter 4. For a

composite guitar string, the diameter of the string, the core and wrap geometries, and the

phase material properties sufficiently describe the location of the string in design space.

However, in the case of random heterogeneous materials, such as the SFRC analyzed in

Chapter 3, an infinite number of unique fiber distributions can be obtained using the same
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Table 2.1: 2-phase random short-fiber reinforced composite descriptors and response met-
rics.

Morphological Descriptors Composite Response Features

Fiber Volume Fraction Peak Strength

Fiber Length Elongation

Fiber Diameter Strain Energy Capacity

Bond Characteristics

Table 2.2: Wound musical instrument string descriptors and response metrics.

Morphological Descriptors Composite Response Features

Core Wire Geometry Internal Damping/Sustain Time

Core Wire Material Partial Amplitudes

Wrap Wire Geometry Inharmonicity

Wrap Wire Material

fiber dimensions and volume fraction as inputs to a random microstructure generator. To

address this, several statistically representative realizations of each point in descriptor space

must be tested. Tables 2.1 and 2.2 show the descriptors and output variables considered in

the problems presented in Chapters 3 and 4 respectively. For the SFRC problem, the fiber

dimensions, volume fraction, and bond characteristics are considered as descriptors, while

the matrix and fiber mechanical properties are treated as deterministic. Parameters describ-

ing the tensile stress-strain curve of the material are the response metrics to be predicted

by the learning machine. For the guitar string problem, core and wrap wire material and

geometries are used as descriptors, and signal metrics including modal frequencies and

damping parameters are used as the response.

For material optimization, one must sufficiently explore the feasible region of design

space using some random sampling technique. For the purpose of sampling, a probability

distribution type must be identified for each input descriptor. Descriptors may be contin-

uous or discrete, bounded or unbounded based on the physical property they represent.

Different descriptors may be selected for the structure in a design or analysis problem. For
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a ceramic matrix composite, for example, the matrix material of interest may have some

cracking strength or modulus that can be expressed as a normally distributed random vari-

able. It may be of interest to determine the ideal diameter of fibers for reinforcement, so a

uniform distribution may be used to explore the dimension of the design space correspond-

ing to fiber diameter in an unbiased manner. Let fx j(x) representing the probability density

function (PDF) for the assumed distribution of descriptor x j. For a general continuous

random variable x j with lower bound a j and upper bound b j

fx j(x) = P(x j = x) ∀ x ∈ [a j,b j] (2.3)

P(x j = x) represents the probability that x j is equal to x. The corresponding cumulative

distribution function (CDF) is then defined as

Fx j(x) =
∫ x

a j

fx j(x)dx ∀ x ∈ [a j,b j] (2.4)

The CDF is non-decreasing and varies between 0 and 1 over the domain x∈ [a j,b j]. To gen-

erate random descriptor values for sample xi, a vector of independently generated random

numbers, ri is constructed in the form of Equation 2.5.

ri = [r1,r2, ...,rd−1,rd], r j ∈ (0,1), j = 1...d (2.5)

Using the inverse CDF of each x j, entries of ri are converted into components of the random

sample point xi by Equation 2.6.

xi = [F−1
x1

(r1),F−1
x2

(r2), ...F−1
xd−1

(rd−1),F−1
xd

(rd)] (2.6)

Let N denote the number of samples desired. In order to determine a meaningful relation-

ship between x and y, it is important that the feasible region is appropriately sampled in

23



each dimension of the descriptor space. If components of ri are obtained independently

for each of the N samples, it is possible for multiple random samples to contain similar

values in some dimensions. As a result, some regions of design space may be insufficiently

sampled. To avoid this issue, stratified sampling methods are commonly used.

2.1.2 Random Process Evaluation/Data Acquisition

Experiments or numerical simulations are used to determine the response yi of each

sample. Some post-processing is generally required to obtain the output quantities yi. For

the SFRC problem, the raw data from each simulation is in the form of stress-strain curve.

Calculation of output quantities such as stiffness, strength, and ductility requires digitally

searching the curve for maxima and minima and performing integration. For the musical

instrument string problem, raw data is in the form of an AC signal in the time domain.

Features such as signal rise and fall time, power, and harmonic content must be extracted

from the raw data for learning purposes. Feature extraction for these problems will be

discussed more thoroughly in Chapters 3 and 4.

Machine learning goes hand-in-hand with fields like data mining and knowledge dis-

covery from databases (KDD) [94]. The development of a database is especially useful

for material design and discovery because machine learning models can be updated to take

advantage of new data as it becomes available [29]. It is important that the training data

is representative of the overall system being considered. The data extraction process may

require the user to clean noisy data or remove incomplete or corrupt data. When available,

experimental data is ideal for training the stochastic model. However, due to the expensive

and time-consuming nature of some material tests, data from computational models can

be used to make informed predictions about the behavior of theoretical materials. Previ-

ous work has demonstrated the efficacy of using a combination of experimental data and

numerical simulations to train stochastic models. Numerical models can be used to sup-

plement datasets where some information is obscured or corrupt [93]. When insufficient
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experimental data exists, artificially generated data may be used to complete the set using

the technique of bootstrapping [95]. In Chapter 3, computational models are used to sim-

ulate the response of random SFRC microstructures. In Chapter 4, string vibration data is

obtained experimentally.

2.1.3 The Learning Machine

If the system being modeled is deterministic, it can be expressed simply as a function

y = F(x). However, many real-world systems are not deterministic, or contain missing

data that contributes uncertainty to the model. Rather than fitting an explicit function F(x),

the goal of machine learning is to determine a hypothesis F∗(x) that approximates F(x)

most accurately using sample data {xi,yi}, i = 1...N. This is achieved by testing a number

of functions F∗(x,ω), ω ∈W , where ω are parameters in generalized parameter space

W . The validity of a hypothesis is measured using a loss function L(y,F∗(x,ω)). For a

2-class classification problem, where the machine is tasked with differentiating between

two symbolic values, a common loss function is:

L(y,F∗(x,ω)) =


0, y = F∗(x,ω)

1, y 6= F∗(x,ω)

(2.7)

For regression problems, squared error is a common metric loss function:

L(y,F∗(x,ω)) = (y−F∗(x,ω))2 (2.8)

The expected value of the loss function is given by the risk functional:

R(ω) =
∫∫

L(y,F∗(x,ω))P(x,y) dx dy (2.9)
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The risk functional can be interpreted differently based on the class of problem. For classi-

fication, the risk functional returns a value on the interval [0,1] that indicates the probability

of misclassification. For the regression problem, the risk functional is nonnegative but un-

bounded, with a value close to zero indicating high accuracy. Training the learning machine

is thus a process of determining optimal parameters ω that minimize R(ω).

The final step of the machine learning process is model validation and verification.

Selection of an appropriate function class for a random process is of crucial importance.

There is no one-size-fits-all algorithm for machine learning; generally, the model building

process consists of some trial and error to determine which type of model yields the best

performance for the problem of interest. Several machine learning algorithms are tested

during this phase and reliability analyses are later used to identify the most appropriate

model. In Chapter 3, a Gaussian Process (GP) is used for regression of SFRC properties.

In Chapter 4, a Support Vector Machine (SVM) is used to classify strings based on their

signals.

One issue that must be addressed during validation is the finite nature of the data. For

an asymptotically large number of samples, the measured error will be the true error of

the model. However, for a smaller number of samples it is necessary to estimate the true

error rate of the model given data from only a small portion of the overall population.

This issue can be addressed by properly selecting training and test points from the data.

If too few training points are used, the model may not be general enough to predict points

outside the training set. If too many training points are used, there is a risk of overfitting the

model. An overfitted model captures the noise in the response more than the true response.

Resampling methods are used to address the issues of over and under-fitting, at the expense

of some additional computational cost. The simplest resampling method is re-substitution,

in which all samples are used for training and testing. While straightforward, this approach

generally results in an under-approximation of model error. Another form of resampling

is the holdout method, in which the available data is partitioned into a training set and a
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test set. The response of the trained model at the test points is then compared to the data

to provide a measure of accuracy. Since partitioning the data differently will affect the

performance of the model, an alternative approach is k-fold cross validation. Here, the data

is divided into k equally sized disjoint subsets. One of the subsets is used for testing and

the remaining k− 1 subsets are used for training. The process is repeated k times and the

error is taken as the average over all folds. In this approach, all data is used for training and

validation.
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Chapter 3

Prediction of Random Short-Fiber Reinforced Composite Properties

Random heterogeneous materials are common in nature and also in a number of engi-

neering applications. Accurate prediction of material properties based on microstructural

information requires an approach that combines statistical mechanics, homogenization the-

ory, and stochasticity of geometrical parameters [96]. Materials with microstructures re-

quiring statistical description are defined as random heterogeneous materials. Microstruc-

ture characterization is the process of identifying the stochastic geometry of a microscale

domain, with the eventual goal of determining the correlation between microstructural ge-

ometry and macroscopic material performance [23]. A number of approaches have been

tried to characterize random heterogeneous materials. Sources of heterogeneity can man-

ifest as random distributions of pores of different shape and size, inclusions of different

shape and size, or even as different phases of the same material, as in polycrystals. It is

therefore necessary to consider a variety of microstructure descriptors, depending on the

relevant properties of interest on the macroscopic scale.

The response of a composite is influenced by the volume fraction of the constituents, as

well as their distribution, geometry, size, and interfacial bond properties. It is thus neces-

sary to define a set of effective properties, Ke (Equation 3.1), of the composite, accounting

for the presence of local heterogeneities so that the composite can be treated as a continuum

at the structural scale.

Ke = f (K1,K2, ...KM;φ1,φ2, ...φM;Ω) (3.1)

In Equation 3.1, M is the number of constituent phases in the composite. Ki and φi are the

phase properties and volume fractions, respectively. Ω is a set of higher-order microstruc-

tural information such as interfacial bond descriptors. The rule of mixtures (Equation 3.2)
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is often used to define the effective properties of a composite at the macroscale as the vol-

ume average of phase properties, to predict the response of the composite with uniformly

distributed heterogeneities and perfectly bonded phases.

Ke = φ1K1 +φ2K2 + ...+φMKM (3.2)

While volume fraction and size of inclusion may influence the effective property of the

composite, such descriptors do not completely account for the microstructural geometry of

a random material. The bounds proposed by Hashin and Shtrikman [3] assume a quasi-

isotropic material, signifying that the volume fraction is uniform throughout the composite

domain. Figure 3.1 shows three 2D particle composite microstructures with equal volume

fraction and size of inclusion. In Figure 3.1a the inclusions are uniformly spaced in each

direction, so the geometrical descriptor may simply be defined as the interparticle spacing

s. Figure 3.1b displays an anisotropic microstructure, where two descriptors (s1 and s2) are

needed to adequately describe the geometry. Figure 3.1c depicts a random microstructure

devoid of any uniformity. In this case, a statistical distribution may be used to describe the

locations of the particles in terms of inter-particular distances, such as si j between particles

i and j. For normally distributed particles, the mean and variance of si j may be used to

characterize the stochastic geometry. Figure 3.2 depicts three possible randomly generated

SFRC microstructures in 2D, based on the same input parameters for fiber length and vol-

ume fraction. It can be clearly observed that significant variation in the fiber concentration

exists despite the use of equivalent values of design variables. In addition to local volume

fraction fluctuation, the distance between the fiber tips and orientation of neighboring fibers

also vary, which can influence damage accumulation and the propagation of matrix cracks.

In this chapter, a 2-phase composite is considered, in which the matrix material is a

brittle ceramic and the inclusions are short ductile fibers to improve the tensile performance.

In addition to discussing the influence of design factors on the response of such composites,
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(a) (b) (c)

Figure 3.1: (a) Isotropic aligned, (b) anisotropic aligned, and (c) random microstructures
with interparticle spacing s.

(a) (b) (c)

Figure 3.2: Random SFRC microstructure realizations with λ = 100 mm, φ f = 0.1%,
l f = 3.27 mm.
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the mechanical characterization of a brittle matrix SFRC is used as a test case for the

descriptor-based machine learning (DBML) approach. The organization of this chapter

is as follows: Section 3.1 discusses the behavior of FRC materials subjected to loading.

Section 3.2 gives an overview of multiscale methods for modeling the effect of inclusions

on the composite response. Section 3.3 formalizes the problem in the context of the DBML

method and discusses the results. The conclusions from the study are presented in Section

3.4.

3.1 Characteristic Response of FRC

The ACK theory [44] suggests that the stress-strain curve of FRC may be described

in three phases: pre-cracking, multiple-cracking, and post-cracking. It assumes that fibers

only provide load-bearing capacity along their longitudinal axis only and that the bond

strength between matrix and fiber is weaker than the material strength. Figure 3.3 illustrates

the phases of ACK theory with respect to a typical stress-strain curve for an elastic fiber, a

nonlinear matrix, and their combined composite response. During the pre-cracking phase

(1), the fiber and matrix exhibit elastic behavior, and the elastic response of the composite

is some weighted average of the constituent responses. In this stage, the stress is transferred

between matrix and fibers by cohesive bonds. In the multiple-cracking phase (2), the matrix

begins to crack when the cracking strain εmc is exceeded. The point of crack initiation is

generally at the fiber tips, where stress concentration in the matrix is maximum. The fibers

play the crack-bridging role in the now-damaged matrix. The fibers continue to debond

until the cohesive bond strength is fully exhausted, after which a constant frictional stress is

mobilized between matrix and fiber. The composite exhibits nonlinear response as cracking

spreads throughout the matrix. In the post-cracking phase (3), the matrix is completely

damaged and all loads are carried by the fibers, which eventually fail by fracture when the

local strain exceeds ε f r. In some applications, an elastic structure may be desired so that

the nonlinear behavior of the composite can be ignored. Often, however, it is of interest to
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Figure 3.3: ACK model composite response phases.

study the post-peak behavior of the material in order to assess its total energy absorption

capacity.

Pullout tests are commonly used to directly characterize the interfacial resistance be-

tween two phases in a material [40, 41]. This test measures the variation of the resisting

force as the fiber is pulled out of the matrix, which can be used to experimentally charac-

terize the traction-separation relationship at the interface. Cohesive properties can be ma-

nipulated in design by coating the fibers with sprayed layers to enhance the bond strength

and/or introducing deformities to the fiber, say, by crimping or twisting, to provide ac-

tive mechanical anchorage [42], as shown in Figure 3.4. Figure 3.5 illustrates the effect

of fiber crimping on the bond behavior for a polymeric fiber embedded in a cementitious

matrix [43]. The domain δ corresponds to the measured slip and the range T is the mea-

sured traction force. In Figure 3.5, a bilinear traction-separation model is superimposed on

the experimental data. Such models are commonly fitted to experimental data for use in

cohesive zone models.

The improvement in tensile response provided by fiber reinforcement is well docu-

mented. Fiber compressive strength influences composite compressive strength, but the

effects cannot be easily deciphered because of the occurrence of micro-buckling in fibers
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Figure 3.4: Two types of fiber surface deformities: crimping (top) and twisting (bot-
tom).

Figure 3.5: Example pullout test data for a ductile fiber in a cementitious matrix.
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and imperfections in fiber orientation [39]. The tension and compression behavior of FRC

is identical in the initial elastic stages of loading. Under higher tension, the stiffness de-

grades as multiple cracking and fiber pullout occurs.

In a long-fiber composite, the ratio of fiber length to fiber diameter is large (l f /d f →∞);

whereas, short fibers are typically characterized by a finite aspect ratio in the order of 10 to

102. For full effectiveness, the length of shorter fibers should exceed a critical value given

by lc = σy f d f /2τb, where σy f is fiber yield strength and τb is fiber-matrix bond strength. If

fiber length is greater than 15lc, it can be treated as a continuous fiber. In many situations,

cross-ply and multiaxial laminates are used. The concept of volumetric weighted average

of the individual phases can then be used to determine the load share of each lamina in a

given orientation.

3.2 Multiscale Modeling of SFRC

An engineered FRC at the structural or macroscale (10−1-100 m) may contain thou-

sands of short fibers (∼10−3 m in length). As it is impractical to explicitly discretize every

single fiber in the problem domain, homogenized strength properties are often used, under

the assumption that fibers are uniformly distributed. However, over a large problem do-

main, local heterogeneity may be present, introducing uncertainty in the performance of

the material. Discontinuously reinforced composites often contain regions where the vol-

ume fraction varies significantly from that of the entire composite domain [3]. Figure 3.6

shows a domain containing randomly distributed fibers with a prescribed volume fraction

of 0.1%. A division of this domain into four subdomains shows that the volume fraction

observed in each subdomain appears to differ significantly from the average for the global

domain with a minimum value of 0.047% and a maximum of 0.141%. Therefore, when an

engineer prescribes a design value for the inclusion volume fraction, it cannot be assumed

that the structure behaves in a homogeneous manner.

In the present study, a heterogeneous sequential multiscale modeling approach is de-
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Figure 3.6: Local variation of fiber volume content in a random SFRC domain.

veloped for random SFRC. A database relating the microstructure composition to coarse

scale parameters is developed using numerical methods. The observed composite prop-

erties can then be passed on to the macroscale, where a homogenized nonlinear model

can be used with stochastic finite elements to assess the large-scale performance of the

random composite in an efficient and convenient manner. A schematic of the approach

used is shown in Figure 3.7. Points in the descriptor space are sampled and used to gen-

erate random microstructures over a range of design values. The selection of descriptors

and sampling technique are discussed in Section 3.3. The random samples are analyzed

using XFEM. Gaussian process regression is used to quantify the multivariate nonlinear

relationship between descriptors and measured effective properties. The GP is also used

to predict properties of subdomains in a macroscale model that correspond to unknown

points in the descriptor space. At the macroscale, the material is modeled as homogeneous

with each subdomain described by unique material parameters with stochastic distribution.

Fiber randomness effects are accounted for by locally prescribed variations in macroscale

parameters rather than explicitly modeling the fiber-matrix interaction effects. This enables

assessment of the reliability of a macro structure, accounting for the local randomness of
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Figure 3.7: Proposed sequential multiscale modeling framework for SFRC.

design variables.

3.2.1 Macroscale Model

Several approaches exist for modeling the homogenized behavior of FRC. In 1989,

Lubliner presented a constitutive model capable of accurately predicting the nonlinear, mul-

tiaxial behavior of concrete using plasticity theory [47]. The model is commonly known

today as the Concrete Damage Plasticity (CDP) model and can be easily and efficiently im-

plemented using commercial finite element analysis software such as Abaqus. The model

consists of a yield criterion, a hardening rule, and a flow rule that can be fully defined by

four parameters calibrated to uniaxial tension, uniaxial compression, biaxial compression,

and triaxial compression test data. The CDP model is an attractive macroscale model for

homogenized FRC due to the way it handles stiffness degradation. A stress-strain curve

for the composite material, obtained by experiments or simulations, can be provided by

the user during the model definition. For a given state of strain, the stress in the material

is interpolated from the data. This allows for modeling the effect of fiber reinforcement

without explicitly modeling the fibers.

Jankowiak provided a detailed description of the parameter calibration process using

experimental results [48]. A brief overview of the CDP model is given here for the sake of

36



completeness. The CDP constitutive equation is given by Equation 3.3.

σ̄ = Del
0 (ε−εpl) ∈ {σ̄|F(σ̄, ε̃pl, f ,Kc)≤ 0} (3.3)

where σ̄ is the effective stress, defined in terms of total strain ε, plastic strain εpl , and

initial elasticity matrix Del
0 . F is the yield surface with parameters f , the ratio of the biaxial

compressive strength to the uniaxial compressive strength, and Kc, the ratio of the second

stress invariant on the tensile meridian to the second stress invariant on the compressive

meridian, which shapes the deviatoric load surface. The effective stress is related to the

Cauchy stress tensor σ by Equation 3.4.

σ = [1−d(ε̃pl)]σ̄ (3.4)

where d(ε̃pl) is the scalar damage variable. ε̃pl = [ε̃ pl
c ε̃

pl
t ]T is the hardening variable,

with components corresponding to compression and tension. The value of the hardening

variable is non-decreasing and taken as ε̃pl =
∫ t

0
˙̃εpldt. The evolution of the hardening

variable is given by Equation 3.5.

˙̃εpl =

 ˙̃ε pl
t

˙̃ε pl
c

=

 r( ˆ̄σ) ˆ̇ε pl
max

−[1− r( ˆ̄σ)] ˆ̇ε pl
min

 (3.5)

here r( ˆ̄σ) is a stress weight factor for the multiaxial case that is dependent upon the princi-

pal effective stresses, ˆ̄σ. ˆ̇ε pl
max and ˆ̇ε pl

min are the maximum and minimum eigenvalues of the

plastic strain rate tensor. Equation 3.6 defines the stress weight factor.

r( ˆ̄σ) =
∑

3
i=1〈 ˆ̄σi〉

∑
3
i=1 | ˆ̄σi|

(3.6)

〈·〉 = ((·)+ | · |)/2 represents the Macaulay brackets. The stress weight factor is equal to

1 for pure tension and 0 for pure compression. The scalar damage variable d(ε̃pl) is a
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function of the user-defined uniaxial damage variables dt(ε̃
pl
t ) and dc(ε̃

pl
c ). For multiaxial

stress it is assumed that the damage variable can be calculated using Equation 3.7.

d = 1− (1− stdc)(1− scdt) (3.7)

Computed parameters st and sc are introduced to incorporate stiffness recovery effects into

the model. Equation 3.8 gives the expression for the stiffness recovery parameters.

st

sc

=

 1−wtr( ˆ̄σ)

1−wc[1− r( ˆ̄σ)]

 (3.8)

The parameters wt and wc dictate whether stiffness is recovered when loading changes

from tension to compression. In general, quasi-brittle materials show compressive stiffness

recovery when cracks open in tension and close in compression, but no stiffness is recov-

ered in tension following initiation of cracking. This effect is captured by setting wt = 0

and wc = 1. The influence of the damage variables and recovery parameters on material

stiffness are summarized in Figure 3.8. The non-associative flow rule is given by Equation

3.9.

ε̇pl = λ̇
∂G(σ̄,ψ,ε)

∂ σ̄
(3.9)

Here λ̇ is the non-negative plastic multiplier and ψ and ε are parameters that shape the flow

surface, referred to as the dilation angle and eccentricity, respectively. G is the scalar-valued

flow potential function, given by the Drucker-Prager hyperbolic function in Equation 3.10.

G(σ̄,ψ,ε) =
√
(ε tanψ)2 + q̄2− p̄ tanψ (3.10)

p̄ =−1
3 I1 is the effective hydrostatic pressure with I1 representing the first invariant of the

effective stress tensor and q̄ =
√

3
2 S̄ : S̄ is the Mises equivalent effective stress, defined in

terms of the deviatoric effective stress S̄ = p̄I+ σ̄. Since λ̇ = 0 when F < 0 and λ̇ > 0
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Figure 3.8: CDP model constitutive law.

when F = 0, the Kuhn-Tucker condition is given by λ̇F = 0. The consistency condition

Ḟ = 0 follows from the assumption that when plastic slip is occurring the state of stress

remains on the yield surface.

3.2.2 Microscale Model

In the previous section, a model for the homogenized, coarse-scale response of SFRC

was discussed. In such a model, a characteristic stress-strain curve for the material must be

provided by the user from experiments or simulations. Parameters describing the character-

istic stress-strain curve are sensitive to the local arrangement of fibers and bond properties

between the matrix and fiber. Since there are several design variables that influence these

properties, it is necessary to identify a method for efficiently exploring the design space.

Since fabrication of such materials is expensive and time consuming, a numerical modeling

approach is preferred. This section details an extended finite element method (XFEM) for

modeling random short fibers.
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XFEM has been tailored for a variety of problems in material analysis and design. The

approach can be used to model fracture, dislocations, grain boundaries, and phase inter-

faces [97]. The method has been extensively used to model cracks and inclusions within

multiphase materials. Recently, XFEM has been employed to capture the inelastic response

of textile-reinforced polymers [60], and to stochastically analyze the effect of elliptical in-

clusion aspect ratio on elastic behavior [24]. A method for handling multiple cracks and

crack junctions within an element was proposed by Daux et al. [98]. Later work demon-

strated that the junction of two cracks can be handled more easily by combining two step

enrichments rather than using a special enrichment function for the junction [99]. Modeling

multiple fibers in an element requires superposition of enrichment functions, and charac-

terization of interaction effects. Recent work proposed a displacement approximation for

elements containing multiple inclusions [18].

XFEM uses two-part approximation with a standard part and enrichment part. In the

standard part, regular shape functions are used to approximate the displacement field. The

enrichment part captures the rapid local variation of the displacement field due to the pres-

ence of discontinuities at dissimilar material interfaces resulting from inclusions, or at

cracks. The local enrichment functions are selected a priori according to the nature of

discontinuity and satisfy the partition of unity, so that the local enrichment does not affect

the global solution. If a n-dimensional Ω ∈ ℜn domain is discretized by a finite element

mesh with a set of nodes m, out of which m∗ nodes (m∗ ⊂ m) are subjected to enrichment

with the function ψ j, the general form of the XFEM approximation field can be expressed

as:

u(x) = ∑
i∈m

Ni(x)ui + ∑
j∈m∗

N∗j (x)ψ j(x)a j (3.11)

The first term of this expression is the standard part and the second one is the enrichment

part. Here, u is the displacement; Ni is the standard shape function for node i satisfying the

Kronecker-delta property; N∗j is the partition of unity shape function, normally set equal

to Ni; ψ j is the enrichment function for the inclusion at node j in set m∗; ui are the dis-
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placement of the standard nodes; and a j are coefficients of the enrichment shape functions.

The level-set method, proposed by Osher and Sethian [100] to track moving interfaces, is

based upon the idea of representing an interface as a level-set curve of a higher dimensional

function, to account for, say, the presence of an arbitrarily oriented inclusion within a finite

element. Weakly discontinuous enrichment functions can capture the strain discontinuity

in an element, whereas a strongly discontinuous function can capture discontinuity in the

displacement field. The implementation of XFEM requires addressing the following issues:

• Tracking the interface of different phases by using line segments or using the level-set

method implicitly [101].

• Selecting the node set m∗ for the enrichment region of interest.

• Identifying the enrichment function(s) to reflect the physics of the problem.

• Integrating the non-smooth enrichment functions.

An approach for modeling the behavior of an elastic matrix containing stretchable short-

fiber inclusions with no delamination using XFEM was outlined by Pike and Oskay [61].

The enrichment functions were derived to model the strain discontinuity in an element re-

sulting from an arbitrarily placed high aspect ratio fiber. More recently, the XFEM model

was improved to include the effect of cohesive debonding between the matrix and inclu-

sions. An additional enrichment function was derived to model the displacement disconti-

nuity in an element as a result of debonding [62]. A nonlocal damage model was used to

capture the stiffness degradation of the matrix material. It was demonstrated that with suf-

ficient mesh refinement XFEM is capable of accurately reproducing the local mechanical

response observed in a reference FEM model. The primary advantage of using XFEM for

random SFRC modeling is that the mesh does not need to conform with the morphology

of the problem domain. Depending upon the arrangement of the inclusions, the standard

FEM mesh may prove to be geometrically complex and require an unreasonably large num-

ber of elements to accurately solve the problem. In recent work by the author [63] it was
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shown that multiple fibers in the same element domain can be modeled using XFEM by

superimposing the enrichment functions of each fiber. The XFEM formulation is discussed

briefly in this section, but a complete derivation of the model considered herein is reported

in previous work [61, 62, 63].

The approximation of the displacement field within the composite domain is given by

Equation 3.12.

u(x) = ∑
i∈m

Ni(x)ui + ∑
i∈n f

 ∑
j∈mi

f

N ji(x)
(
ψi(x)a ji +ϒi(x)b ji

) (3.12)

The formulation is similar to Equation 3.11 but contains an additional enrichment func-

tion ϒi(x) to capture debonding along the fiber-matrix interface, while ψi(x) captures the

discontinuity in the strain field. The enrichment functions depend on the location of fiber

i within the domain. n f is the number of fibers in the domain, and mi
f is the number of

nodes enriched by fiber i. ji is the index set of enriched nodes for fiber i. ui, a ji, and b ji

are the nodal coefficients of the standard nodes, fiber motion enrichment, and debonding

enrichment shape functions.

The fibers are assumed to lie entirely within the domain of the composite. The high

aspect ratio fiber is idealized as a line segment. Let the domain x of a fiber be defined as:

x = xc +
x2−x1

2
s; −1≤ s≤ 1; x ∈ Γ (3.13)

Where x1 and x2 are the fiber tips, xc is the fiber midpoint, and s is a normalized length

parameter. The position of a fiber within the domain is defined using level-set functions.

The level-set function along the fiber length, φc, is given by Equation 3.14.

φc (x) = ‖x−P (x)‖ (3.14)
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(a) (b)

Figure 3.9: Visualization of (a) strain discontinuity enrichment function and (b) debonding
enrichment function for an arbitrarily placed fiber in a 5x5 mm element domain.

P (x) is the projection of x onto the fiber, given by:

P (x) = x1 +[(x−x1) · t2]t2 = x2 +[(x−x2) · t1]t1 (3.15)

where t1 and t2 denote the tangent at each of the fiber tips. φc is equal to 0 along the fiber

line segment and takes positive values on either side of the fiber. The level-set function for

each of the fiber tips is given by Equation 3.16.

φλ (x) = (x−xλ ) · tλ ; λ = 1,2 (3.16)

The enrichment function for the strain discontinuity across the fiber is expressed in

terms of the level-set functions by Equation 3.17. The function is smooth and nonzero

everywhere in the domain except along the fiber, as illustrated in Figure 3.9a.

ψi(x) =

[
2

∏
λ=1

H(−φλ )

]
φc(x)+

2

∑
λ=1

H(φλ )dλ (x) (3.17)

H is the Heaviside function and dλ (x) = ‖x− xλ‖ is the distance between x and the fiber

tip.
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The debonding enrichment function was derived using the same level-set functions but

introduces a displacement discontinuity rather than a strain discontinuity along the fiber.

The debonding enrichment function is given by:

ϒi(x) = φp(x)H(r(φc(x)))

(
2

∏
λ=1

H(−φλ (x))

)
(3.18)

r = ±φc is the signed distance function, defined as positive on one side of the fiber level-

set φc and negative on the opposite side. The shape of the debonding enrichment func-

tion is controlled by the discontinuity function φp. In previous work [62] an expression

was derived for φp as a fourth order polynomial subject to constraints that the maximum

debonding along the fiber occurs at the center of the fiber and the ends of the fiber remain

embedded in the matrix:

φp(x) = 1+
tanθd

2
s(x)2(1− s(x)2)− s(x)2(2− s(x)2) (3.19)

where θd is a parameter describing the slope of the discontinuity at the fiber tips. The

resulting enrichment function ϒi is illustrated in Figure 3.9b.

The governing equation for equilibrium in the model domain Ω is given by Equation

3.20:

∇ ·σ(x) = 0; x ∈Ω (3.20)

Using a continuum damage mechanics approach, the constitutive law for the matrix is given

by Equation 3.21:

σ = (1−w(x, t))L : ε(x) (3.21)

In the above equations σ is the stress tensor and ∇(·) is the divergence operator. The stress

is related to strain (ε= ∇su) by the elastic moduli tensor L. w(x, t) is a history-dependent

damage scalar that ranges from 0 (undamaged) to 1 (fully damaged). The displacement and
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traction boundary conditions are defined by Equations 3.22 and 3.23, respectively.

u(x) = ũ(x) ; x ∈ Γu (3.22)

σ ·n= t̃(x) ; x ∈ Γt (3.23)

The boundaries Γu and Γt denote non-overlapping regions of the domain on which ũ and

t̃ are prescribed, with ∂Ω = Γu ∪Γt . The stress in a fiber i is assumed to be axial and

proportional to the axial strain by the relation σ i
f = E f ε i

f , where E f is the elastic modulus

of the fiber. For a fiber of length l f and thickness t f , as t f /l f → 0, the weak form of

Equations 3.20-3.23 can be expressed as:

∫
Ω

σ : δεdΩ+ ∑
i∈n f

t f E f

∫
Ωi

ε
i
f δε

i
f dΩ+ ∑

i∈n f

∫
Γi

T ·δ JuKdΓ−
∫

Γt

t̃ ·δudΓ = 0 (3.24)

Ωi denotes the domain of fiber i and Ω represents the domain of the matrix. Γi is the inter-

face between the matrix and fiber i. δu and δε represent the test function and the gradient

of the test function, respectively. T is the traction resulting at the interface due to jump

discontinuity of displacement across the fiber, JuK. The traction separation relationship is

included in the model using an intrinsic cohesive law with uncoupled normal and shear

components. In this work a bilinear cohesive law is used to characterize the interfacial

bond. Three parameters define the idealized curve shown in Figure 3.5: peak cohesive

strength (Tn), characteristic displacement at the peak cohesive strength (δn) and displace-

ment at bond failure (δmax). The subscript n denotes the normal component of the traction

T and the displacement δ . For the sake of simplicity, the shear parameters are assumed to

be proportional to the normal components in the initial study. A range of values are used

for the cohesive parameters in the numerical studies detailed in Section 3.3, in order to

assess the influence of the bond characteristics on the response of the composite material.

A nonlocal continuum damage model is used to capture the progressive degradation of

matrix stiffness based on the weighted average of the principal strains within a radial basis.
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As the damage parameter increases, the stiffness of the material progressively decreases

until failure. An alternative continuum damage law can easily be used if deemed suitable

for the matrix material of interest. At an arbitrary material point x̂ the evolution of the

damage variable follows the arctangent function of Equation 3.25.

w(x̂, t) =
arctan(a k(x̂, t)−b)+ arctan(b)

π

2
+ arctan(b)

(3.25)

In Equation 3.25, a and b are parameters fit to data from tests on the unreinforced ma-

trix material. k(x̂, t) is an increasing non-negative history dependent variable defined by

Equation 3.26.

k(x̂, t) = max
τ∈[0,t]

(〈v̂(x̂,τ)− vini〉) (3.26)

v̂ is the nonlocal equivalent strain obtained from weighting the local equivalent strains v

within a radial basis defined by λ̂ (x, x̂). vini is a threshold value of equivalent strain below

which damage is assumed not to progress. Equation 3.27 defines the local equivalent strain

in two dimensions as the norm of the positive principle strains ε̂i, which is intended to

simulate stiffness degradation as cracks form in the matrix under tensile loads.

v(x̂, t) =

√√√√ 2

∑
i=1
〈ε̂i(x̂, t)〉2 (3.27)

The nonlocal equivalent strains are then computed using Equation 3.28.

v̂(x̂) =

∫
Ω

λ̂ (x, x̂)v(x, t)dx∫
Ω

λ̂ (x, x̂)dx
(3.28)

The weights are determined using the Wendland Radial Basis Function [102] given by
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Table 3.1: SFRC descriptor variable ranges for numerical models.

Descriptor x j Lower Bound (a j) Upper Bound (b j)

d f , Fiber diameter (x1) 0.005 mm 0.1 mm

l f , Fiber length (x2) 5 mm 15 mm

VF, Fiber volume fraction (x3) .01% 1.5%

Tn, Peak normal cohesive strength (x4) 5 MPa 15 MPa

δn, Characteristic normal cohesive separation (x5) 0.000005 mm 0.0001 mm

δmax, Maximum cohesive separation (x6) 0.0002 mm 0.0005 mm

Equation 3.29, where lc defines the span of the radial basis.

λ̂ (x, x̂) =
(

1− ‖x− x̂‖
lc

)4(
4
‖x− x̂‖

lc
+1
)

(3.29)

3.3 DBML Implementation

3.3.1 Descriptor Selection and Sampling

Given some matrix and fiber material, it is necessary to identify the ideal combination

of fiber length, diameter, volume content, and interfacial cohesive properties to achieve

desirable inelastic response. Here, d = 6 descriptors are selected, as listed in Table 3.1.

In this work a uniform distribution is used for each descriptor so that the entire range of

the feasible region for a descriptor can be considered with equal bias. A continuous distri-

bution is used for each variable in this problem. In reality, possible values of fiber diameter

and cohesive parameters would be discrete variables, with values dictated by what is avail-

able from a manufacturer. Using a uniform distribution, components of xi in Equation 2.6

are calculated as

F−1
x j

(r j) = a j + r j(b j−a j) (3.30)

In this study, no correlation between parameters is used in sampling the descriptor space,

i.e. each descriptor is treated as an independent design variable. Latin Hypercube Sampling

(LHS) was used to generate N = 40 samples in the 6-dimensional descriptor space, the
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Figure 3.10: 2-dimensional feature space visualization of LHS for SFRC.

span of which is defined in Table 3.1. A list of the 40 resulting sample points is given in

Appendix Tables A.1-A.2. LHS partitions each dimension of descriptor space into N equal

intervals. Samples are generated such that only one sample will be drawn from each interval

in each dimension. Figure 3.10 illustrates the LHS method. In this illustration, N = 10

samples were drawn from 3-dimensional descriptor space, with dimensions corresponding

to fiber length, diameter, and volume fraction. Plotting the samples in 2 dimensions shows

that each dimension of space has been partitioned into 10 subregions, each containing 1

sample.

A random sequential addition (RSA) algorithm was used to generate the random short-

fiber microstructures corresponding to each sample point. The RSA process was formalized

in the context of hard spheres being randomly packed into a fixed volume [96]. The center

of a sphere is placed at a randomly selected point within the microstructure domain. From

the remaining unoccupied volume a new random point is selected and the next sphere is

placed. The process is repeated until the desired inclusion volume fraction is reached. A

similar approach is used herein, but with fibers instead of spheres. Figure 3.11 summarizes

the manner in which RSA is implemented algorithmically for the case of short-fiber rein-

forcement. The descriptors listed in Table 3.1 were used as inputs for the RSA algorithm.

The user must define the length l f and diameter d f of the fibers to be placed in the ma-

trix, as well as the target volume fraction φ f ,target . The volume φ f of an individual fiber is
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Figure 3.11: RSA algorithm overview.

computed as (d f · l f ) in 2D or (πd2
f l f /4) in 3D. A trial fiber center x∗ and orientation angle

θ∗ are randomly generated. In 2D, x∗ is 2-dimensional and θ∗ is 1-dimensional. In 3D,

x∗ is 3-dimensional and θ∗ is 2-dimensional. The domain V∗f of the trial fiber is related

to x∗, θ∗, and user-defined fiber dimensions. A check is performed to see if the trial fiber

intersects any of the previously placed fibers. If the trial fiber is found to occupy a unique

region of the microstructural domain, the volume of placed fibers is increased and the exist-

ing fiber domain is updated. In practice, some convergence criteria should be added to the

algorithm to prevent the occurrence of an infinite loop when the maximum packing limit

is reached. Figure 3.12a shows three samples of point x20 (with d f = .027 mm, l f = 6.269

mm,V F = 0.127%) using the RSA algorithm and Figure 3.12b illustrates 3 samples for

point x32 (with d f = 0.081 mm, l f = 12.872 mm,V F = 1.042%).

3.3.2 Random Process Evaluation/Data Acquisition

The XFEM model described in Section 3.2.2 deals with a 2D square matrix reinforced

by 1D fibers subject to uniaxial tension. An SVE domain of 50x50 mm was considered

(so, λ = 50 mm). Based on square elements of 0.5 mm size a 10,000 element mesh was
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(a)

(b)

Figure 3.12: Three random realizations of sample points (a) x20 and (b) x32 obtained using
RSA algorithm.

created. Figure 3.13 depicts the problem domain for a random sample. The left and bottom

boundaries of the matrix are constrained against displacement in their normal directions.

The right boundary of the domain is assigned a displacement of magnitude u0 = 0.1 mm.

The problem was solved using 250 fixed strain increments. Stress vs. strain data was

recorded at each increment of the analysis. Table 3.2 lists the properties of the matrix and

fiber used in the models. While the fiber length, diameter, and cohesive properties were

sampled from descriptor space, the phase material properties were assumed to be constant.

The numerical values used are typical for a cementitious matrix material and steel fiber.

Figure 3.15 illustrates the curves obtained for 20 SVEs at two locations, x20 and x32.

Damage in the matrix material initiated at the fiber tips and propagated through the mate-

rial to the edges of the SVE domain. As a result, higher concentrations of fibers lead to

additional potential damage paths, reducing the peak strength of the composite and pro-

ducing more uncertainty in the post-peak response. At first glance, it can be clearly seen
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Figure 3.13: XFEM problem domain and boundary conditions.

Table 3.2: Phase material property constants for numerical models.

Property Matrix Fiber

Young’s Modulus, E 14,000 MPa 207,000 MPa

Poisson’s Ratio, ν 0.3 0.3

Nonlocal Damage Radius, lc 0.75 mm -

Nonlocal Damage Parameter, a 49,000 -

Nonlocal Damage Parameter, b 19.5 -
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that x32 exhibits lower peak tensile strength and a smaller failure strain than x20. The re-

sponse of each realization appears nearly identical in the elastic range where the response is

controlled by the undamaged matrix material. Increased variation appears in the post-peak

response due to the effect of the random fiber placement. It is observed that the stress-strain

curves follow the general pre- and post-peak behavior described by the ACK model, as dis-

cussed earlier in this chapter. The following piecewise equation is selected to parametrize

the curve:

σ(ε) =


(σi

εi
)ε 0≤ ε < εi

σie−α(ε−εi) εi ≤ ε ≤ ε f

(3.31)

The equation consists of an initial elastic region followed by an exponentially decaying

post-peak softening region. Here σi is the peak stress at which the concrete matrix cracks

and the fibers are engaged and εi is the strain corresponding to σi. ε f is the strain at which

the composite fails. α is an exponential decay parameter that controls the shape of the post-

peak softening region. ε and σ are the strain and stress data to which the equation must

be fit. The failure strain of the composite, ε f , is defined as the strain at which the tensile

stress has degraded to 10% of the peak value. The parameters are shown on a sample

stress-strain curve in Figure 3.14. The area under the stress-strain curve represents the total

strain energy capacity of the material in tension, known as the modulus of toughness, Gt .

The area under the linear elastic region of the curve is known as the modulus of resilience,

denoted by Gr and defined as the amount of energy that can be absorbed by the material

prior to inelastic deformation. The modulus of resilience is calculated using Equation 3.32.

Gr =
∫

εi

0
(
σi

εi
)εdε =

1
2

σiεi (3.32)

The modulus of toughness is obtained by summing the modulus of resilience with the area
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Figure 3.14: Stress-strain curve with elastic and post-peak region defined by param-
eters εi, ε f , and σi.

Table 3.3: Composite response parameters measured in each simulation.

Identifier (yq) Material Property Description

y1 σi Peak tensile stress

y2 εi Tensile strain at peak stress

y3 ε f Strain at failure of composite

y4 Gr Modulus of resilience

y5 Gt Modulus of toughness

under the post-peak region of the stress-strain curve as given by Equation 3.33.

Gt = Gr +
∫

ε f

εi

σie−α(ε−εi)dε (3.33)

The parameters that characterize the FRC stress-strain curve, denoted by yq, q = 1...5,

are listed in Table 3.3. The mean and standard deviation of the computed values for each

sample point are listed in Appendix Tables A.3-A.4.

3.3.3 The Learning Machine

While clear differences may be observed in the curves obtained for x20 and x32 (Fig-

ure 3.15), the complex relationship between descriptor variables and composite properties

cannot be obtained by directly comparing output quantities, because each sample is char-

acterized by a point in the 6-dimensional space. Each of the six descriptors is assumed
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Figure 3.15: Sample tensile stress-strain curves for 20 realizations of 2 random points
x20 and x32.

to have some influence on the measured material properties. To enable mapping from de-

scriptor space to composite response space, Gaussian process regression is implemented

to model the function y = F∗(x) (presented in Chapter 2). The work of Rasmussen pro-

vides a thorough state-of-the-art discussion of GP methods [103]. This section provides

a brief overview of GP, focusing primarily on how the concepts can be applied to SFRC

characterization and property prediction.

A GP is a collection of random variables with joint Gaussian distributions defined by

its mean and covariance functions, similar to a multivariate Gaussian distribution. The

expression for the random function F∗(x) assumed to relate descriptor variables to output

quantities is given by Equation 3.34.

F∗(x)∼GP
(

m(x,ωm),k(xi,x j,ωk)
)

(3.34)

Here, m(x,ωm) and k(xi,x j,ωk) represent the prior mean and covariance functions with

hyperparameters ωm and ωk, respectively. The covariance function governs the manner in
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which the value of F∗(x,ω) changes throughout descriptor space. The squared exponential

covariance function is commonly used in GP regression for its simplicity and flexibility.

This function takes the form:

k(xi,x j) = σ
2
f exp

(
− 1

2l2 (xi−x j)
T (xi−x j)

)
(3.35)

where σ f is a scaling parameter and l is the characteristic length scale parameter. The

squared exponential covariance function provides that for two points xi and x j in close

proximity to each other there is a high likelihood that the function will return similar output

values at each point, with the likelihood decreasing exponentially as the distance between

the points increases. The characteristic length influences the rate of the exponential decay.

However, when the descriptor variables differ significantly in magnitude, it is not reason-

able to assume a common characteristic length scale for all dimensions. In this work, the

following anisotropic equivalent of the squared exponential covariance function is used:

k(xi,x j) = σ
2
f exp

(
− 1

2
(xi−x j)

TΛ−2(xi−x j)
)

(3.36)

where Λ is a dxd diagonal matrix of characteristic correlation length values in each di-

mension of the descriptor space. For a given dataset the covariance matrix is constructed

as:

Ki j = k(xi,x j) (3.37)

The experimental data is partitioned into a training set T and prediction set P. A covari-

ance matrix KT T is constructed using the training points and KPP is constructed using the

predicted points. KT P denote the covariance matrix between training and prediction points.

The hyperparameters of the covariance function are determined such that the log marginal

likelihood (Equation 3.38) is maximized, signifying that the probability of obtaining data
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y from input x using model F∗(x,ω) is optimal.

log p(yT |xT ,ω) =−1
2

yT
T (KT T +σ

2
n I)−1yT −

1
2

log |KT T +σ
2
n I|+ NT

2
log(2π) (3.38)

In this equation NT is the number of training points used, σ2
n is the variance of the noise in

the experimental data, and I is an identity matrix with size equal to that of KT T . Once the

parameters have been determined, the predictive means and variances are calculated using

the following equations:

E[yP] = KT
T P(KT T +σ

2
n I)−1yT (3.39)

Var[yP] = KPP−KT
T P(KT T +σ

2
n I)−1KT P (3.40)

To assess the accuracy of the GP in predicting each response metric yq from the simulation

data, k-fold cross validation was used, with k = 5. The 40 points in descriptor space were

divided into five randomly selected subsets of 8 points each. In the first step, four of the

sets were used as training points, with the remaining set used as test points. The process

was repeated five times, using each of the subsets as test points in successive iterations.

The root mean squared error (RMSE) was calculated using the following equation:

RMSE[y] =

√
N

∑
i=1

(y∗i − yi)2

N
(3.41)

where N = 40, y∗i is the GP predicted value at point xi, and yi is the value at point xi obtained

by XFEM. The RMSE provides a measure of the standard deviation of the model error. By

comparing the RMSE to the magnitude of the mean of the predicted value, the reliability of

the model can be assessed. The measured RMSE is in the same units as the output variable

being predicted. The coefficient of variation (CV) provides a dimensionless measure of

model uncertainty by normalizing the RMSE by the expected value of the output quantity.
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Table 3.4: Comparison of error magnitudes obtained from GP regression of each
output variable.

y E[y] RMSE[y] CV[y]

σi (MPa) 2.58 0.097 3.76%

εi (mm/mm) 1.98x10−4 8.74x10−6 4.41%

ε f (mm/mm) 3.24x10−4 3.55x10−5 10.96%

Gr (mJ/mm3) 2.57x10−4 2.53x10−5 9.20%

Gt (mJ/mm3) 3.92x10−4 3.10x10−5 7.91%

The CV is computed using Equation 3.42:

CV[y] =
RMSE[y]

E[y]
(3.42)

The RMSE calculated between the GP predictions and the model outputs is given in Table

3.4. The results indicate that the GP is very accurate in predicting σi and εi, where the CV

is < 5%. The model shows slightly more variability in predicting the modulus of resilience

and modulus of toughness, but still show < 10% variation. The variability in the total strain

to failure is the highest, with CV[y] = 10.96%.

3.4 Conclusion

In this chapter a method for multiscale modeling of random SFRC using a descriptor-

based machine learning approach was demonstrated. A coarse scale model for the ho-

mogenized behavior of SFRC subjected to tension was presented. Key descriptors influ-

encing the coarse scale model parameters were identified, reducing the design space to a

finite number of dimensions. Samples were drawn from the descriptor space using strat-

ified sampling techniques. Statistically representative microstructures were generated for

each sample point and their tensile response was analyzed using an extended finite ele-

ment method tailored specifically to the case of random SFRC with nonlinear damage. A

Gaussian process was trained from the data and used to predict the coarse scale model pa-
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rameters for several microstructures using only descriptors. The following conclusions can

be drawn from the study:

1. A descriptor-based machine learning approach can be used to predict the elastic and

inelastic response of a random SFRC with a high-degree of accuracy.

2. XFEM is a useful tool for efficiently analyzing the microstructural response of ran-

dom SFRC due to its ability to model complex geometries with a fixed mesh.

3. The GP makes an effective surrogate model for the microstructural domain within the

context of a sequential multiscale modeling approach. It foregoes the need for expen-

sive explicit modeling of the fine-scale domain by using a microstructural database.

4. The GP was most accurate in predicting the peak stress and the corresponding strain

in the composite, but was less accurate in predicting the failure strain of the compos-

ite, which is more strongly influenced by fiber randomness. This may be the result

of non-inclusion of fiber fracture in the XFEM model, which was treated by defining

failure strain as the point corresponding to a 90% reduction in strength.

Since the machine learning model is data-driven and non-parametric it is most useful in

predicting the response in and around the sampled subspace, but can be retrained as more

data becomes available. A discussion of potential future work on this topic is provided in

Chapter 5.
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Chapter 4

Vibrational Response of Composite Musical Instrument Strings

In this chapter a similar approach to characterization and prediction of properties using

descriptors is followed, as was done in the case of random SFRC, to evaluate the response

of pretensioned vibrating electric guitar strings. As opposed to acoustic guitars in which the

sound box acts as an amplifier to produce audible sound, in an electric guitar the vibrations

of plucked strings are captured up by means of electrical pickups (electromagnetic, piezo-

electric, or optical) and amplified to produce audible sound. As a guitar string is plucked, it

vibrates with a certain frequency depending upon its unsupported length, density, tension,

and stiffness. Depending upon these parameters the string has a number of frequencies

at which it will naturally vibrate producing a low intensity sound requiring amplification.

These natural frequencies are known as the harmonics of the guitar string. The durability

and damping characteristics of guitar strings are dependent upon several random variables,

particularly the string material properties and cross section geometry. Due to the availabil-

ity of several new wire materials for musical instrument strings, it is of interest to develop

a computational model capable of linking the vibrational response of a composite string to

its mechanical properties and geometry.

Depending upon the geometric configuration, modern electric guitar strings can be clas-

sified as either plain or wound. A plain string is characterized by a solid homogeneous

circular cross section. The diameter of the string is commonly referred to as a gauge, mea-

sured in thousandths of an inch. For example, a gauge 10 string has a diameter of 0.010”. In

general, strings less than 0.018” in diameter are of plain type. Larger diameter strings have

composite cross sections formed by winding a wrap wire around a plain core wire. When

a composite string is subject to tension, the force is primarily carried by the core wire. The

purpose of the wrap wire is to increase the effective mass of the vibrating string so that
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Figure 4.1: Comparison of geometries of roundwound strings with circular and
hexagonal cores.

lower frequencies can be realized without significantly increasing the tension in the string.

The bond between the core and the wrap wire relies on the friction between the two materi-

als. Hexagonal core wires are typically used to achieve optimal anchorage between the core

and the wrap because the sharp edges of the core tend to restrict slippage between the two.

However, many manufacturers also use round core wires to create a different sound. Figure

4.1 illustrates the geometry of composite strings with circular and hexagonal cores. The

diameter of the composite string, ds, is the sum of the core diameter dc and twice the wrap

diameter dw. The composite geometry can be described by the core-to-wrap ratio (dc/dw),

the diameter of the core relative to the wrap. Different string manufacturers use different

core-to-wrap ratios for a given gauge of string. Wound strings can be further classified

based on the cross section shape of the wrap wire used. Roundwound strings consisting of

a wrap wire with a circular cross section are most commonly used. Use of a semicircular

or rectangular wrap wire results in halfwound and flatwound strings, respectively.

The most common material used for plain strings and core wire is music wire. Per

ASTM A228 [104], music wire is a cold-drawn high-carbon steel consisting of 0.7-1.0%

C, 0.2-0.7% Mn, 0.025% P, 0.03% S, and 0.10-0.30% Si. The material is intended espe-

cially for use in high stress or fatigue prone environments. Some manufacturers use other

60



(a) (b)

Figure 4.2: Surface profiles of gauge 46 roundwound strings with (a) iron-cobalt alloy wrap
and (b) pure nickel wrap.

variations of high-carbon steel (HCS) with unspecified chemical composition. One new

core material is maraging steel, an iron alloy with 6-16% Co, 15-20% Ni, 2-6% Mo, and

<2% Ti [105]. Each core wire material is characterized by high strength, toughness, and

malleability.

The most prevalent wrap wire material is nickel-plated steel (NPS). NPS is produced

by electroplating a low carbon steel wire with 2-8% Ni by weight. Other available wrap

materials include pure nickel, stainless steel (<0.1% C, 10-19% Cr, <4.5% Cu,, 0.2-3.0%

Mn, <6% Mo, 4-10% Ni, <0.05% P, <0.1% S, <1.5% Si) [106], and iron-cobalt alloy

(8-35% Co, 0.25-7% Cr, 0.25-1% Mn, 0.25-7% Ni, 1-5% V) [107]. Figure 4.2 shows the

surface profiles of iron-cobalt and pure nickel wrap wires studied in this work obtained

using a digital microscope. There are significantly more surface defects present in the

iron-cobalt alloy wrap, which will influence the vibration of the string.

The organization of this chapter is as follows: Section 4.1 provides an overview of

the physics of string vibration and methods for modeling the response of idealized and

real strings. Methods for capturing and parameterizing an audio signal are also discussed.

Section 4.2 discusses essential concepts of music theory and describes the electric guitar

as an electromechanical system. Section 4.3 formalizes the problem in the context of the

descriptor-based machine learning approach outlined in Chapter 2 and details an experi-

mental method for measuring the response of strings. Conclusions drawn from the study
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are discussed in Section 4.4.

4.1 Governing Equations

4.1.1 String Vibration

An ideal string has no bending stiffness based on the assumption that the transverse

displacement is small relative to the length of the string. Figure 4.3 depicts the deformed

shape of a string with length l and linear density µ at instant t in time. The string is

subject to a tensile force T , which is assumed to be constant when the displacement y(x, t)

is small. Dynamic equilibrium of net y-component of the tensile force and the inertial force

in the differential element dx at any instant of time yields the equation of motion in the

y-direction:

T
(

θ +
∂θ

∂x
dx
)
−T θ = µdx

∂ 2y
∂ t2 (4.1)

As θ = ∂y
∂x , Equation 4.1 can be rewritten as:

∂ 2y
∂x2 =

1
c2

∂ 2y
∂ t2 (4.2)

where the wave speed c of the vibrating string is related to its tension and density by

Equation 4.3.

c =

√
T
µ

(4.3)

A true end support on a stringed instrument is nearly fixed but may yield slightly [87].

Assuming that the displacement at the ends of the strings is ideally fixed, the solution

y(x, t) to Equation 4.2 must satisfy the elliptic boundary conditions y(0, t) = 0 and y(l, t) =

0. Substitution shows that waves of the form given by Equation 4.4 satisfy the boundary

conditions.

y = Asin(Kx±ωt) (4.4)

ω = 2πv is the angular frequency and K is the wave number. Let y1 =Asin(Kx−ωt) denote
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Figure 4.3: String vibration problem formulation.

a continuous sine wave traveling in the positive x-direction and y2 = Asin(Kx+ωt) is a

similar wave traveling in the opposite direction. If the waves of equal frequency, amplitude,

and speed are reflected perfectly off of the ends, superposition of the waves yields:

y = y1 + y2 = A[sin(Kx−ωt)+ sin(Kx+ωt)] = 2Asin(Kx)cos(ωt) (4.5)

The trigonometric function in Equation 4.5 satisfies the boundary condition y(l, t)= 0 when

K = nπ/l only, where n is a positive integer. Equation 4.5 is expressed in terms of the

vibration mode n in Equation 4.6.

yn = 2An sin(Knx)cos(ωnt) = 2An sin
(nπ

l
x
)

cos
(nπc

l
t
)

(4.6)

When a string with fixed ends is plucked, the response can be expressed as a sum of many

waves in the form of a generalized Fourier series:

y(x, t) =
∞

∑
n=1

[An cos(ωnt)+Bn sin(ωnt)]sin
(nπ

l
x
)

(4.7)

The initial magnitude of each mode of vibration is defined by Fourier coefficients An and
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Figure 4.4: String vibration boundary conditions.

Bn, which are calculated by the following equations:

An =
2

ωnl

∫ l

0
ẏ(x,0)sin

nπx
l

dx (4.8)

Bn =
2
l

∫ l

0
y(x,0)sin

nπx
l

dx (4.9)

The initial conditions y(x,0) and ẏ(x,0) can be used to determine the values of An and

Bn. For a string initially at rest, ẏ(x,0) = 0 and An = 0 for all values of n. The boundary

condition y(x,0) is defined according to the location and amplitude of the pluck, as shown

in Figure 4.4. The initial configuration of the string between the supports is shown by

the solid gray line. The configuration at the time when the pluck is applied is shown as a

dashed line. The location of the pluck is xp and the plucked height is given as h. The initial

displacement boundary condition at t = 0 can then be written as:

y(x,0) =


(

h
xp

)
x 0≤ x≤ xp

h
l−xp

(
1− x

l

)
xp ≤ x≤ l

(4.10)

In Figure 4.5, Bn is plotted for three different plucking point locations along a 25.5” string.

β denotes the normalized location of the pluck along the string, xp/l. The amplitude of

harmonic n changes significantly with a change in xp.

The fundamental frequency of the string is related to its tension and length by the fol-
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Figure 4.5: Harmonic content for three different plucking locations.

lowing equation:

f1 =
1
2l

√
T
µ

(4.11)

An ideal string, which is infinitely flexible, has resonant frequencies which are integer

multiples of the fundamental, that is, harmonics fn will exist at integer multiples of the

fundamental frequency n f1 for n = 2,3,4...∞. However, in real strings, there is some inhar-

monicity due to the stiffness of the material and the presence of geometric nonlinearities.

The stiffness influences particularly the higher vibration modes. Equation 4.2, which gov-

erns the motion of an ideal string, can be modified to account for the stiffness of the string

as:

µ
∂ 2y
∂ t2 = T

∂ 2y
∂x2 −EI

∂ 4y
∂x4 (4.12)

where E is Young’s Modulus of the wire and I is the moment of inertia of the cross section.

Equations 4.13 and 4.14 can be used to calculate the inharmonic frequencies f ∗n of a stiff

string assuming pinned ends and clamped ends, respectively [75].

f ∗n = n f1
(
1+Bn2)1/2

(4.13)
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f ∗n ≈ n f1
(
1+Bn2)1/2

[
1+(2/π)B1/2 +(4/π

2)B
]

(4.14)

where the unitless stiffness parameter B is defined by the relationship:

B =
π2EI
T l2 (4.15)

Calculation of B is straightforward for a plain wire with a uniform cross section. Figure

4.6 shows the theoretical effect of string stiffness on inharmonicity for the first 20 partials.

The results were calculated using Equations 4.13-4.15 for a string of plain geometry. The

length of the scale is 25.5” and the diameter of the circular cross section is 0.017”. Young’s

modulus is 30,000 ksi and the density of the material is 0.284 pci, similar to music wire.

The string is tensioned to 16.6 lbs, which results in a fundamental frequency of 196 Hz.

The y-axis of the plot has been normalized by the partial number for readability. For small

values of n, the deviation between the ideal string and the real string is minimal, but the

difference becomes apparent as n increases. The clamped end approximation yields larger

deviations from the theoretical response than the pinned case. For a wound string, the

composite Young’s modulus is influenced by the bond between core and wrap wire, which

is difficult to characterize. Explicit calculation of the moment of inertia for the composite

string is also a complicated problem since the spiral pattern of the wrap wire creates a

nonuniform cross section. For this reason, previous work [88, 89, 90] on the inharmonic

response of wrapped strings has focused on the inverse problem of fitting Equations 4.13-

4.14 using experimental data.

Musical instruments produce sound using a combination of the vibration of several

system components, which are coupled to some extent. In the case of the electric guitar,

several oscillating strings are attached to the body at the bridge and nut. Each string has

potential energy due to its stiffness and inertial energy due to its mass. The solid body

of the electric guitar is intended not to color the sound significantly, and not to absorb

vibrational energy from the strings [108], however some damping due to body coupling is
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Figure 4.6: Theoretical inharmonicity due to string stiffness.

inevitable. Damping is present in a string due to a combination of air damping, internal

material damping, and energy loss at the supports [73]. Frequency-dependent damping

characteristics of strings have been studied in previous work [68, 89, 90, 109]. Viscous

drag on a string lowers the modal frequencies slightly and produces exponential decay of

amplitude. For the size of strings commonly used in musical instruments, the retarding

force due to air damping is expressed as:

Fr = 2π
2
ρa f vr2l

(√
2

M
+

1
2M2

)
(4.16)

where r is the radius of the string, ρa is the density of air, f is the frequency of vibration, and

v is the velocity. M = (r/2)
√

2π f/ηa. ηa is the kinematic viscosity of air. For oscillation

at a single frequency f , the amplitude decays exponentially with time constant τ1:

τ1 =
ρ

2πρa f

(
2M2

2
√

2M+1

)
(4.17)

Where ρ is the density of the string. In the equation of motion for a string (4.12), the string

is treated as an elastic isotropic material with Young’s Modulus E. In reality, the string
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behavior is viscoelastic; when a stress is applied, there is a slight delay before the corre-

sponding strain is fully realized. To capture this effect, Young’s modulus may be treated

as a complex number, with E = E1 + jE2. Substituting this relationship into Equation 4.12

yields the decay time τ2 due to internal damping:

τ2 =
1

π f
E1

E2
(4.18)

This type of damping is usually negligible for solid metal strings, but there is energy loss

due to internal friction between components in wrapped strings. The decay time due to

energy loss through the supports is given by the following equation:

τ3 =
1

8µl f 2G
(4.19)

G is the conductance, defined as the real part of the mechanical admittance. The decay time

τ in the presence of all three types of damping is calculated by the following equation:

1/τ = 1/τ1 +1/τ2 +1/τ3 (4.20)

For thin metal wires, as in the case of guitar strings, air damping contributes most signifi-

cantly to the total damping force.

4.1.2 Signal Analysis

The signal produced by a vibrating string can be analyzed in the time domain or fre-

quency domain. Within the time domain, it may be of interest to study the decay time of

the vibrations following excitation of the system, or the shape of the decay envelope. In the

frequency domain, it is often useful to study the concentration of power over certain fre-

quency bands. Digital signal processing concepts relevant to the instrument string problem

are discussed in this section, including analog to digital conversion, noise in signals, and
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methods for representing a signal in time and frequency domains.

In the previous section the signal produced by a vibrating string was defined as y(x, t).

Let y(t), t ∈ [0,T ] denote the displacement of the string with respect to time at an arbi-

trary fixed location x, where T is the duration of the signal in seconds. The signal y(t) is

continuous in time and amplitude domains. In order to record and analyze the signal, y(t)

must be discretized in each domain. This is achieved using an analog-to-digital converter

(ADC). An ADC captures samples of the audio at some sample rate, Fs, with the data size

of each sample referred to as bit-depth. Sampling discretizes the signal in the time domain,

while the bit-depth of the samples determines the quantization resolution in the amplitude

domain. Let the discretized signal y[n] be defined as a vector of equally spaced sampled

values from the signal y(t). If the signal is sampled at a rate of Fs (samples/second), the

length of the sample vector y[n] is given by N = FsT . In general, parentheses are used to

indicate functions of continuous variables and brackets are used for the case of discrete

variables.

The work of Nyquist and Shannon [110, 111] showed that in order to accurately sample

a wave of frequency f , a sampling frequency of at least 2 ∗ f Hz is required to detect the

peaks and the troughs. For the musical instrument string problem, the frequency range of

interest is the range of human hearing, which is approximately 20 Hz - 22,500 Hz for the

average person. The average dynamic range of human hearing is 0 dB sound pressure level

(SPL) to 140 dB SPL. According to the Nyquist sampling theorem, a sample rate of at

least 44.1 kHz is required for audio applications to capture the entire spectrum of human

hearing. As the bit depth of each sample is decreased, noise in the signal becomes more

apparent. The equation for signal-to-noise ratio (SNR) as a function of bit-depth Q is:

SNR = 20log10(2
Q) dB (4.21)

Using Equation 4.21 with a bit depth of 24 results in a theoretical SNR of 144.5 decibels,
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which is approximately equal to the range of human hearing. Modern analog-to-digital

conversion technology is capable of capturing 24 bit-samples at a sample rate of 192 kHz.

At this rate, frequencies of up to 96 kHz can be captured with a theoretical dynamic range of

144 dB SPL. Increasing the sample rate results in a digital signal that will more accurately

represent the analog signal. Modern analog-to-digital audio converters commonly use sam-

pling frequencies up to 192 kHz, which results in more than 8 samples per oscillation of a

22,500 Hz wave.

Fourier Transform (FT) is one of the most commonly used tools for frequency domain

decomposition of a signal. The FT, denoted Y (ω), of a continuous signal y(t) is defined in

Equation 4.22.

Y (ω) =
∫

∞

−∞

y(t)e− jωtdt (4.22)

Y (ω) is a complex-valued scalar, defined in the frequency domain, ω ∈ (−∞,∞). The

FT maps a function of a single variable (time) into a function of another single variable

(frequency). For a certain frequency ω the scalar part of Y (ω) indicates the prominence

of ω in the signal, and the imaginary part indicates the phase shift. The components Y (ω)

are averaged over the time domain, so they do not provide precise information on how the

frequency components decay over the duration of the signal.

The FT is derived for a continuous periodic signal of infinite length. For signals that

have been sampled in time, the Discrete Time Fourier Transform (DTFT) applies:

Y [ω] =
∞

∑
n=−∞

y[n]e− jωn (4.23)

In this case, ω ∈ [−π,π]. For a finite length signal sampled in time, the Discrete Fourier

Transform (DFT) is used:

Y [k] =
N−1

∑
n=0

y[n]e− jωkn (4.24)

Where, k is an index corresponding to the sampled frequency ωk =
2πk
N , k = 0,1, ...,N−1.
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N denotes the length of signal y[n] in samples.

When there is a discontinuity between the last sample of one period and the first sample

of the next period (which is the case for a finite length signal), artifacts will be present in the

DFT, which is a phenomenon called spectral leakage. Windowing methods were introduced

in 1946 as an attempt to address the limitations of FT in analyzing finite-length signals

[112]. In this approach, known as the short-time Discrete Fourier transform (STDFT), the

signal y[n] is multiplied by a smooth symmetric function w[n] centered at sample index m.

The spacing and amplitude of artifacts in the frequency spectrum of a non-periodic signal

can be controlled by applying a window function to the signal of interest. The STDFT is

given by Equation 4.25.

Y [k,m] =
N−1

∑
n=0

y[n]w[n−m]e− jωkn (4.25)

The window function is designed to assume nonzero values on the domain n∈ [m−N/2,m+

N/2], where N is the width of the window, and zero elsewhere.

Many types of windows have been introduced in literature for different applications.

Generalized cosine windows are popular due to their smoothness and ease of implementa-

tion. Equation 4.26 defines the raised cosine window function.

w[n] = α−β cos
(

2πn
N−1

)
(4.26)

When α = β = 0.5 the function is known as the Hanning window function. Another popu-

lar variation is the Hamming window, where α = 0.54 and β = 1−α = 0.46. The STDFT

provides a trade-off between frequency resolution and time resolution. The precision of

signal characterization in the time-domain is dependent on the window size. If a large win-

dow is used, high frequency resolution is obtained, but the frequencies are smeared over a

larger region of the time domain. If a short window is used to obtain greater time localiza-

tion, high-frequency components of the signal are lost. Computation of the DFT requires
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N2 floating-point operations and is inefficient for large amounts of data. For this reason,

the fast Fourier transform (FFT) is preferable in many applications. The FFT is a more

efficient algorithm capable of computing the DFT in only N logN operations. Analyzing a

time-based signal using multiple overlapping windows of constant size can provide infor-

mation on how the frequency components of the signal vary over time. A plot that depicts

this change in frequency content with respect to time is known as a spectrogram.

All real signals contain noise from a combination of sources. Noise can be inherent in

the system or in the environment in which it operates, or can be introduced by the tools

used to induce, capture, and transmit the signal. Techniques exist to identify the noise part

and remove it from the measured signal to recover the signal of interest. Such techniques

generally includes signal decomposition, thresholding, and reconstruction [113]. The sim-

plest method for noise elimination is filtering, in which a threshold amplitude is defined

and frequencies below the threshold are neglected. However, in practice, the engineer must

be conscious of the frequency range of interest and choose thresholding values with care,

which can make the process tedious.

4.2 Musical Problem Background

4.2.1 Tuning and Timbre

A musical note is classified by its fundamental frequency. As per international standard

tuning [114], A4 is the name given to a note with fundamental frequency f1 =440 Hz.

An octave is defined as the interval between a note and another note with double or half

of its frequency. Thus, A3 corresponds to f1 =220 Hz and A5 corresponds to f1 =880

Hz. Western music uses a twelve-tone equal temperament system for pitch classification,

where an octave is divided into 12 notes, with the frequency ratio between subsequent notes

of pitch f1 and f2 given by the equation f2/ f1 = 21/12. The interval between subsequent

pitches on a twelve-tone equal-tempered scale is referred to as a semi-tone. Each semitone

is further divided into 100 cents. For reference, Figure 4.7 depicts a standard 88-key piano,
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Figure 4.7: Musical note frequencies and intervals.

with each octave of A labeled with its fundamental frequency. The fundamental frequencies

of the 88 keys range from A0 (27.5 Hz) to C8 (4186.0 Hz). The range of fundamental

frequencies for a 6-string electric guitar with 24 frets is E2-E6 (82.4-1318.5 Hz) in standard

tuning. The notes highlighted in red in Figure 4.7 correspond to the tuning of the 6 strings

of the electric guitar.

A string’s timbre is defined by the unique time-dependent combination of overtones it

produces when the musician plays a note, and can be classified quantitatively using spectral

analysis. The timbre of a string can be fully defined by measuring the magnitude of the par-

tials in the signal, the inharmonicity of the partials, and the frequency-dependent damping

parameters. In the case of the wound electric guitar string, altering the core-to-wrap ratio,

the geometry of the core wire, and the material properties of the wires will influence the

timbre of the sound it produces. Timbre is also influenced by the material properties of

the instrument body, the force mechanism by which sound is produced, and in the case of

electronic instruments, the circuit components in the signal path.

Figure 4.8 compares the frequency spectrum obtained from a guitar and a cello plucking

C4 ( f1 =261.6 Hz) averaged over 2 seconds following the pluck using FFT. The spectrum

is plotted on the interval f ∈ [0,2000] Hz so that the fundamental and following six partials

can be observed. In both cases, the lowest significant frequency component in the signal

is at f1. In the case of the guitar, however, the second harmonic at 523.2 Hz is largest in
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Figure 4.8: 2-second time signal of note C4, f1 =261.6 Hz, plucked on (a) guitar and (b)
cello. Frequency spectrum obtained from FFT for (c) guitar and (d) cello.

magnitude. The guitar and cello are compared here to illustrate a rather extreme difference

in timbre that can be heard as well as visually identified from the plot. The difference

between timbre of different types of electric guitar strings is more subtle, but nonetheless

present, and is examined in Section 4.3.2.

4.2.2 The Electric Guitar System

The development of the electric guitar began in the 1920s. Early models used piezo-

electric sensors or microphones to capture the vibrations of traditional acoustic guitars with

hollow bodies. These models had problems with signal distortion and feedback, as the sig-

nal was influenced more by the body response than the string response. A solution was
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introduced in the form of the electromagnetic pickup, which detects vibrations directly

from the strings rather than the body, and hence requires the use of magnetic strings. Elec-

tromagnetic pickups are the standard for modern electric guitars. The solid body electric

guitar was developed in the 1940s and is the most common and popular type of electric

guitar today. By using a solid slab of wood with increased mass, strings are able to vibrate

for a longer period of time, with less energy transferred to the body at the bridge. In 1948,

Fender released the solid body electric guitar that would later become known as the Tele-

caster, and in 1952 Gibson released the Les Paul. These models remain popular today and

are used around the world. Six-string guitars are most prevalent, but less common models

utilize anywhere between 4 and 8 strings.

Figure 4.9 shows a typical electric guitar configuration. The electric guitar consists of

two main parts - the body and the neck. The length of the span of the vibrating string is

the distance between the bridge on the body and the nut on the neck. These end supports

are illustrated in Figure 4.10. The distance between the bridge and the nut is termed the

scale length. Common values for scale length are 25.5” for Fender guitars and 24.75”

for Gibson guitars. Other makers are known to use different scale lengths that may vary

between 22” and 28”. When a new string is placed on a guitar it is led through a hole in

the bridge where the ball end catches, providing support at one end. The plain end of the

string is typically wound around a post called a tuning peg behind the nut. Rotating the

post changes the tension in the string, which is how the string is tuned to a reference pitch.

The neck has several intermediary supports called fret wires. When the guitarist’s finger

presses the string against a fret wire, the span of the string is shortened to the distance

between the bridge and the fret wire, resulting in a change of pitch. Table 4.1 lists the pitch

and diameter of typical strings for a 6-string guitar with a 25.5” scale in standard tuning.

Smaller diameters are used for strings tuned to higher pitches and large diameters are used

for low frequencies so that the tension in each string is similar and the longitudinal torque

applied to the neck of the guitar is minimized.
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Figure 4.9: Typical electric guitar configuration.

(a) (b)

Figure 4.10: Typical guitar string boundary conditions at the (a) nut and (b) bridge.

Table 4.1: Standard guitar tuning and string configurations.

String Number Note f1 (Hz) Typical Diameter (in) Geometry

1 E4 329.6 0.009-0.011 Plain

2 B3 246.9 0.011-0.014 Plain

3 G3 196.0 0.016-0.018 Plain or Wound

4 D3 146.8 0.024-0.028 Wound

5 A2 110.0 0.032-0.038 Wound

6 E2 82.4 0.042-0.048 Wound
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A magnetic pickup for a standard six-string guitar consists of six poles (one for each

string) wrapped with either one or two multi-turn coils of copper wire. When an oscillat-

ing string moves closer to the pole, the magnetic field relaxes, and when the string moves

away, the magnetic field contracts. This induces a voltage in the coil which is transmitted

to an amplifier or signal processing device via 1/4” phone jack output. The voltage output

from the pickup is proportional to the velocity of the string. The two most common types

of passive pickups are single-coil and double-coil, the latter of which are also known as

humbuckers. Single-coil pickups are susceptible to noise from AC power sources. In the

United States, the AC noise has a frequency of 60 Hz. Humbucking pickups are designed

to suppress the presence of noise in the signal. A humbucker has a second coil wound in the

opposite direction, which removes the noise by way of phase cancellation. Humbucking

pickups have lower resonant frequencies and more high-frequency cutoff than their coun-

terparts. Most pickups are passive and do not require electrical power to transmit signal,

however active pickups that require a power source are sometimes preferred.

The location of the pickup along the string influences the magnitude and frequency of

partials present in the signal [115]. The magnetic field between the string and the pickup

creates a stiffness effect that causes an increase in inharmonicity. Since the magnitude

of the vibrating string’s displacement varies along its length, changing the sensor location

will affect measured inharmonicity. If the pickup is placed at a normalized distance β along

the length of the string, there will be no output of the partial 1/β or any multiple of that

frequency because the partials would have nodes at the pickup location. If the pickup is

placed close to the bridge (β → 0), some of the lower and higher partials will be attenuated,

but the full range of harmonics will be present in the signal. If the pickup is placed closer

to the fingerboard, there will be fewer harmonics in the signal but the strength of the lower

partials will be more significant. Electric guitars typically have 1, 2, or 3 pickups, which

can be alternated between by using a switching system. Using the switch, a user can blend

the signal captured by pickups in different locations.
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Guitarists either use a plectrum called a pick to excite the strings, or their own fingers.

The type of plectrum used will also influence the signal produced by the instrument. The

string is typically in contact with the fingers or plectrum for about 100 ms. While the

plectrum is in contact with the string, there are local torsional and transverse forces acting

on the string. Using a heavier plectrum results in a longer contact period, whereas using a

stiffer plectrum reduces the contact time [108].

Instrument strings undergo damage from mechanical and environmental wear during

their design life. Damage begins to accumulate the moment a new string is placed on an

instrument. When a new string is tuned, the mean force is set in the range of 10-20 lbs

depending on the diameter of the string and the desired fundamental frequency. When a

wound string is initially tensioned, there is some slippage between the core and wrap wire.

When the string is plucked, the force oscillates within a few pounds of the mean stress, with

the magnitude and frequency of the short-scale oscillations dependent upon the musician

and the style of music being played. After some time, the player notices that the strings

have stretched and the mean stress is re-adjusted accordingly to maintain the pitch. As

the strings plastically deform over their lifecycle, the mean stress required to achieve the

desired fundamental frequency may increase. Over time, the cross section of the strings

in the neck region is reduced in area from being repeatedly pressed against the fret wires.

Mechanical wear is also observed in used strings from erosion due to impact where the

plectrum strikes near the pickups and bridge. If the instrument is stored in a particularly

cold or hot environment between uses, the mean stress will increase or decrease as the

strings experience thermal elongation or contraction, requiring the user to retune before

next use. Environmental wear is also present in used strings from exposure to moisture and

oxygen, as well as oils and dirt introduced from the fingers of the musician. For this reason

most manufacturers package their strings in corrosion-inhibiting envelopes for storage and

transport. It is possible for a string to be used well past the onset of damage. While

abrasion, erosion, and corrosion may weaken the string and change its harmonic signature,
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the string is usable as long as it has not fractured.

Finite element models have been used effectively to model the time-dependent response

of a plain undamaged string [116]. To demonstrate this a preliminary experiment was

conducted to capture the signal produced by a round ASTM A228 gauge 17 wire tuned

to G3 (196 Hz). The length of the string was 25.5” and it was plucked at a normalized

distance β = 0.147. A spectrogram of the resulting signal is shown in Figure 4.11a. A

finite element model of the experiment was then constructed in Abaqus. An elastic isotropic

material model was used for the wire with density ρ = 7850 kg/m3, Young’s modulus E =

210.29 GPa, and Poisson’s ratio ν = 0.3. A modal dynamics analysis was used to measure

the response of the string for 10 seconds after it was plucked. In the absence of damping,

the wire will oscillate indefinitely with no decrease in magnitude. Composite damping

was used to model the time-dependent decay observed in the experiment. The damping

parameter was calibrated to minimize the difference between the model and experiment.

A plot of the frequency spectrum with respect to time obtained from the model is shown

in Figure 4.11b. The fundamental and first two harmonics show good agreement between

the two plots. More variation is observed in the upper harmonics. The model accuracy

is limited somewhat by computational efficiency. For the FE analysis, 4,000 steps per

second were used to implicitly solve the problem, which is effectively the sample rate for

the measured signal. As a result, the model is only capable of measuring harmonic content

up to 2 kHz. Attempts to use a higher number of steps to solve the problem caused Abaqus

to crash on a computer with a 3.00 GHz 6-core processor and 12 GB RAM.

While the implementation of FEM for the plain string is relatively straightforward,

modeling of a wound composite string is challenging due to the problem of meshing the

composite geometry, similar to the SFRC problem discussed in Chapter 3. The interaction

between the core and wrap wire cannot be captured using a 1D model, and the length to

diameter ratio of the string is so large that an excessive number of elements are required

for 3D discretization. Modeling the effect of the bond between the core wire and wrap
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Figure 4.11: Comparison of vibrational response measured from (a) experiment and (b)
finite element model of a plain round ASTM A228 wire.

wire further increases computational cost. The composite string cross section cannot be

treated as axisymmetric because of the angle of the helically wrapped wire, which rules out

a 2D model of the cross section. Due to these computational modeling constraints, a data-

driven machine learning approach is implemented in this work to determine a link between

composite string descriptors and response using experimental data.

4.3 DBML Implementation

To implement the DBML approach, a database will first be constructed using recordings

from several samples of new strings and used to train a machine learning model. When a

new audio sample is provided from a randomly chosen string, the model will be used to

deduce what type of material and geometry produced the signal.

4.3.1 Descriptor Selection and Sampling

In Chapter 3, a computational mechanics approach was taken to evaluate samples of

SFRC microstructures, so the descriptors used as model inputs were sampled from a con-

tinuous range of numeric values. In this chapter, a physical experiment is used to measure

the response of strings, so samples are picked from a discrete set of categorical descriptors
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Table 4.2: Description of gauge 46 roundwound sample classes used for experiment.

Class Core
Material

Core
Geometry

Wrap
Material

Unit Mass, µ

(g m−1)
A ASTM A228 Hexagonal NPS 7.21

B ASTM A228 Round NPS 7.24

C High-Carbon Steel Hexagonal NPS 7.02

D Maraging Steel Hexagonal Iron-Cobalt Alloy 7.11

E ASTM A228 Round Pure Nickel 7.50

F ASTM A228 Hexagonal Pure Nickel 7.98

G ASTM A228 Hexagonal Stainless Steel 7.09

based on what is available from manufacturers. As discussed previously, factors influenc-

ing the response of a composite guitar string include the core wire geometry and material

properties, and the wrap wire geometry and material properties.

This study focuses on roundwound strings as they are most widely used. Table 4.2 lists

seven classes of strings available from manufacturers that will be used for the study. These

types were selected because they use a variety of core and wrap material and geometry

combinations. Gauge 46 strings (ds = 0.046′′), tuned to E2 ( f1 = 82.4 Hz), were considered

in this work. Other gauges and tunings are for future study.

4.3.2 Random Process Evaluation/Data Acquisition

As discussed earlier in this chapter, there are many factors aside from material and

geometry that contribute to the signal generated from a vibrating string, including but not

limited to the force with which it is plucked, its vibrating length, and the damping caused

by air and the guitar body to which it is attached. Therefore in order to study the effect of

geometry and material, it was necessary to design an experiment where all other variables

are controlled. Experiments have been designed previously to test the response of a plucked

ideal string [91, 117]. While different authors have taken different approaches to excite the

strings and measure the response, the common theme is to isolate the response of the string
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from the supporting structure. This is achieved by using supports attached to a body with

sufficient mass and stiffness so that the string is lightweight and flexible compared to the

structure. Guitar string manufacturers use their own test methods to analyze frequency

response of their strings for design. However, they do not publish the test methods used to

obtain such curves, and therefore it is not possible to directly compare different types of

strings from such information.

A guitar test rig with a Telecaster-style body was constructed in the lab to be used for

all audio tests, shown in Figure 4.12. The scale length of the guitar is 25.5” and its overall

mass is 3.21 kg. The body is solid basswood and the neck is constructed of maple with a

rosewood fretboard. Two humbucking pickups were installed in the body, labeled as sen-

sors “S1” and “S2”. S1 is located at a distance of 5.875” along the string (β = 5.875”/25.5”

= 0.230) and S2 at 1.625” (β = 0.064). Rather than summing the two pickups to a single

output using a switch as seen in a typical guitar, the pickups were wired separately to two

output jacks so that the signal could be measured at each location independently.

The string is plucked at a distance halfway between the two pickups (β = 0.147) by a

medium Fender 351 Standard Celluloid pick attached to the shaft of a NEMA 23 bipolar

stepper motor. The mass of the pick is 0.48 g. The stepper motor is powered using an

18V DC supply and controlled using an Arduino Uno and TB6600 4A motor driver . A

script was written to control the motor speed and position with respect to time. During

the test, the output from each pickup was recorded using a PreSonus Audiobox USB ADC

and saved as an uncompressed audio file with 24-bit resolution and 44.1 kHz sampling

frequency. The test procedure is as follows:

1. Place new string on guitar.

2. Tune to the target fundamental frequency using a digital tuner ( f1 = 82.4 Hz).

3. Begin recording audio signals from ADC.

4. Pluck the string once forward (counterclockwise motion of plectrum), wait 30 sec-
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onds.

5. Pluck the string once backward (clockwise motion of plectrum), wait 30 seconds.

6. Pluck the string in alternating directions at a rate of 2 Hz until it has been plucked

200 times.

7. Repeat steps 4 to 5.

8. Stop recording audio.

9. Repeat steps 2 to 8 five times.

10. Remove string.

The purpose of the 30 second pause in steps 4 and 5 is to observe the entire decay envelope

of the string. Preliminary tests indicated that 30 seconds is more than enough time for

vibrations to be fully damped out. The purpose of repeating steps 2-8 is to allow the state

of stress in the string to stabilize. It is common for new strings to fall out of tune easily

due to material creep and slippage. It was found from preliminary tests that each string

typically needed to be tuned 2 to 3 times before the fundamental frequency stabilized.

The test procedure was repeated for five samples of each of the seven string classes

listed in Table 4.2. The spectrogram of each recording was obtained by taking the Short-

Time Fourier Transform (STFT) of overlapping windows of 0.1 seconds, or 4410 samples

in length, in order to observe the way the frequency content in the signal changes over

time. Each window of the signal was multiplied by a Hamming window of equal length

before taking the STFT in order to reduce spectral leakage in the finite length signal. The

number of sample points for the discrete Fourier Transform was 10Fs, giving a frequency

domain resolution of 0.1 Hz. The spectrograms are shown in Figures 4.13 and 4.14 for the

neck pickup (S1) and the bridge pickup (S2), respectively. One plot from each string class

is shown. The spectrogram is plotted over the 0-1 kHz range so that the fundamental and

the next ten partials can be observed. The first 15 seconds following the pluck are shown.
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(a)

(b)

Figure 4.12: (a) Experimental system diagram and (b) laboratory setup.
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From visual observation, the partials lie at approximately integer multiples of the funda-

mental. The higher partials decay more quickly than the fundamental and lower partials as

a result of the frequency-dependent damping behavior of the materials. The spectrogram

was computed using the same parameters for each of the audio files recorded during the

experiment.

Using the data from the spectrograms, the inharmonicity of each string class was quan-

tified by measuring the difference in the observed frequency of the nth partial and the ideal

harmonic frequency n f1. The stiffness factor B for each string was calculated by fitting

Equations 4.13 and 4.14 to the experimental data using the method of least squares. The

resulting fitted curves for each class of string are shown in Figure 4.15 for the data obtained

from S1 and in Figure 4.16 for the data obtained from S2. The blue trend lines correspond

to the pinned case and the orange trend lines correspond to the clamped case. The calcu-

lated value of B for each class is indicated in the corresponding plot legend. Analysis of the

spectrogram data indicated that the maximum amplitude of partials n > 12 were less than

10% of the maximum fundamental amplitude for each string sample, so the first 12 partials

were used to calculate B. The data was averaged across the five strings tested from each

class, and the error bars on the plots represent 2 standard deviations above and below the

mean for each partial. For the sake of illustration, the vertical axis was transformed from

frequency to inharmonicity using the following relationship:

∆ fn = 1200 · log2

(
f ∗n

n f1

)
(4.27)

where f ∗n is the experimentally measured value of the frequency of the nth partial. ∆ fn is the

inharmonicity in cents. It should be noted that the equations for B are in terms of frequency

in Hz and were fit prior to this nonlinear transformation, which is why the plotted curves

do not appear to be an exact least squares fit of the data upon visual inspection. Since each

strings is tuned to f1, ∆ f1 = 0 for all samples.

Figures 4.15-4.16 indicate that the data agrees well with Equation 4.13, corresponding
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Figure 4.13: Spectrograms of a sample from each string class measured from S1. Plots
(a)-(g) correspond to Classes A-G.
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Figure 4.14: Spectrograms of a sample from each string class measured from S2. Plots
(a)-(g) correspond to Classes A-G.
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to the pinned end solution, while the form of Equation 4.14 tends to overestimate the inhar-

monicity of the lower partials and underestimate the inharmonicity of the higher partials.

The results indicate that in reality the behavior of the supports on the guitar is somewhere

between pinned and clamped. The second partial (n = 2) was at a slightly higher than

expected frequency for each of the string classes tested, but the data otherwise follows a

smooth increase in inharmonicity with respect to n. The only exception is Class G, where

there are a few decreases observed in ∆ fn with respect to n. The error bars provide insight

into the variance in response observed across the five samples of each class. Classes D, E,

and F showed the most consistent performance among samples, with standard deviations

of only a few cents at each partial, while Classes A, B, and C showed slightly more varia-

tion. As discussed in Section 4.2, the location of the sensor along the string influences the

measured inharmonicity. For each of the string classes, a larger value of B was calculated

from the S2 data compared to S1, as seen in Figures 4.15-4.16.

Using the average calculated values of B for the pinned case and the measured unit

masses reported in Table 4.2, Equations 4.11 and 4.15 were used to approximate EI for

each of the string classes. The results are presented in Table 4.3. By ranking the classes

in order of their stiffness, a few trends become apparent. First, the stiffness of the string is

highly correlated to the wrap material used. Class G was the stiffest string tested, and was

the only class with stainless steel wrap wire. The next highest values of EI were observed

for Classes A, B, and C, which each utilize NPS wrap wire, followed by Classes F and E,

which utilize pure nickel wrap wire. Class D was the most flexible string, with its unique

iron-cobalt alloy wrap and maraging steel core. The data also indicates that hexagonal core

wire provides an increase in stiffness compared to round core wire. Classes A and B use

identical core and wrap material, but the hexagonal core of Class A results in a slightly

higher value of EI than the round core of Class B. The same can be said of Classes E and

F. Each has a music wire core and a pure nickel wrap, but the hexagonal core of Class F

results in a stiffer string than the round core of Class E. The percent difference in stiffness
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Table 4.3: Ranking of string classes by stiffness.

Rank Class
Core Core Wrap S1 EI S2 EI Difference

Material Geometry Material (10−3 lb · in2) (10−3 lb · in2) (%)

1 G ASTM Hex SS 272.6 285.8 4.8

2 A ASTM Hex NPS 254.2 270.0 6.2

3 B ASTM Round NPS 247.9 267.4 7.9

4 C HCS Hex NPS 211.9 234.4 10.6

5 F ASTM Hex Ni 208.6 230.2 10.3

6 E ASTM Round Ni 163.2 173.3 6.2

7 D MS Hex FeCo 154.7 171.5 10.9

measured between S1 and S2 is reported in the final column of the table.

After identifying the inharmonic frequencies of each string, the decay of each partial

with respect to time was analyzed. Let |S( f ∗n , t)| denote magnitude of the spectrogram bin

corresponding to measured inharmonic frequency f ∗n calculated over the 0.1 second STFT

window centered at t. Figures 4.17 and 4.18 show the decay of the first five partials over

10 seconds following a pluck using data measured from S1 and S2, respectively. Some

low frequency oscillation can be seen in the data. This phenomenon has been observed in

previous studies on string vibration [68, 91, 89], and can be attributed to coupling between

the string and guitar body, which is most significant for small values of n. The following

exponential decay model was used to parameterize the data for the nth partial for the first

five seconds after the pluck:

|S( f ∗n , t)|= An exp(αnt) (4.28)

where parameter An is equal to the initial amplitude of the nth partial and αn represents the

time constant for the exponential decay curve. A larger value of αn indicates that the fre-

quency is damped more quickly, whereas smaller values correspond to longer decay times.

An and αn were calculated for each partial of each string class tested by fitting the data to

Equation 4.28. The resulting mean values for An and αn are presented in Appendix Tables
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Figure 4.15: Average measured inharmonicity from S1. Plots (a)-(g) correspond to Classes
A-G.

90



2 4 6 8 10 12
0

10

20

30

40

(a)

2 4 6 8 10 12
0

10

20

30

40

(b)

2 4 6 8 10 12
0

10

20

30

40

(c)

2 4 6 8 10 12
0

10

20

30

40

(d)

2 4 6 8 10 12
0

10

20

30

40

(e)

2 4 6 8 10 12
0

10

20

30

40

(f)

2 4 6 8 10 12
0

10

20

30

40

(g)

Figure 4.16: Average measured inharmonicity from S2. Plots (a)-(g) correspond to Classes
A-G.
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B.1 and B.2, respectively. The coefficients of variation for each parameter are presented in

Appendix Tables B.3-B.4.

Typically, pickups located closer to the bridge, such as S2, measure more high fre-

quency content than a pickup located near the neck. This trend is observed in the results of

Tables B.1-B.2. The values of An indicate that pickup S1 measured significantly more of

partials 1-3 than S2. The average peak amplitude of the second partial A2 measured by S1

is largest for each of the string classes. The subsequent partials tend to decrease in mag-

nitude as n increases. The data from S2 indicates that partials 3-5 are prominent for each

of the string classes. Class G shows the largest average amplitude for most of the partials

presented in the table. This seems to indicate that the stainless steel wrap wire of Class G

exhibits a stronger magnetic attraction to the pickups than the other wrap materials tested,

resulting in an overall louder signal. Incidentally, Class G also exhibited the most inhar-

monicity of any class. However, the values of An computed for the rest of the classes do not

directly correlate to their stiffness ranking. The damping parameters αn tend to increase

with n, indicating that the higher frequencies are damped out more quickly, but the tabu-

lated values do not follow a purely monotonic trend. This phenomenon can be observed in

the spectrograms depicted in Figures 4.13-4.14.

4.3.3 The Learning Machine

To determine whether a clear distinction between the string classes can be established

from the data, a support vector machine was trained to classify the type of string that

produced a randomly selected audio signal. In the SVM approach, a signal produced by

a sample from some class is represented by a point in feature space. The features that

constitute the dimensions of feature space are parameters that can be measured from a

signal, such as B, An, and αn. An algorithmic approach is used to identify hyperplanes in

feature space that optimally separate data from different classes. Nonlinear boundaries can

be determined using a kernel method. The foundation of the SVM dates back to the work
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Figure 4.17: Time-dependent amplitude of first five partials measured from S1 for each
string class. Plots (a)-(g) correspond to Classes A-G.
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Figure 4.18: Time-dependent amplitude of first five partials measured from S2 for each
string class. Plots (a)-(g) correspond to Classes A-G.
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of Vapnik [118], who in 1963 introduced a linear classifier for identifying images . The

modern definition of the SVM was formalized in his later collaborations with Boser [119]

and Cortes [120]. The SVM has since been implemented in speech recognition algorithms

[121], an audio classification problem similar to the guitar string problem considered here.

The theory of SVMs and the algorithms used to train them have been discussed in detail

in the literature, but a brief overview is provided here. A more exhaustive explanation is

available in Vert [122].

Let the dataset used to train the SVM be denoted {xi,yi}, i = 1...N, where xi ∈ℜd , with

d being the number of dimensions of feature space and N being the number of data points.

By this definition, the signal obtained from testing string sample i can be represented as

a point in the feature space denoted by xi = [x1,x2, ...,xd], where each component of xi

corresponds to a random variable measured from the signal. The output yi represents the

class of sample i and can take a value of 1 or -1, with each value corresponding to one of

two classes. Let a classifying hyperplane c(x) be defined by the following linear equation:

c(x) = wTx+b = 0 (4.29)

where w ∈ ℜd is a vector of weights and b is a constant. The model is trained to min-

imize ‖w‖ subject to the constraint yic(xi) ≥ 1 ∀ i. The boundary points in each class,

where yic(xi) = 1, are the support vectors. Once trained, the model outputs c(xi) > 0 for

points where yi = 1 and c(xi) < 0 for points where yi = −1. Figure 4.19a illustrates the

SVM approach to classification for two classes of data, A and B, in a 2-dimensional feature

space with dimensions x1 and x2. SVMs are inherently binary classifiers by the definition

yi ∈ {+1,−1} but may be extended to account for more classes using m ∗ (m− 1)/2 hy-

perplanes, where m is the number of classes, as illustrated in Figure 4.19b for the case of

three classes. In this example, one hyperplane is used to distinguish between Class A and

Class B, another between B and C, and a third between A and C. This is called a one-
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Figure 4.19: Support vector machines for (a) binary classification and (b) multiple classes.

vs-one approach. An alternate method is the one-vs-all approach, where a hyperplane is

identified to separate one class from all other classes, resulting in m hyperplanes. As n

increases, the number of hyperplanes needed using the one-vs-one approach grows much

larger, but the size of the linear system for each hyperplane stays reasonably small because

data is being compared from only 2 classes. Conversely, the one-vs-all approach requires

fewer hyperplanes, but each hyperplane is determined using all of the data, resulting in a

large linear system with a trade-off in computational efficiency. For the size of the dataset

presented here, using a one-vs-all approach does not result in a significant improvement in

computational speed. Training the SVM takes a matter of seconds.

Algorithms for optimizing the weights of the SVM require computation of the dot prod-

uct xi ·x j for all i, j ∈ {1,2, ...,N}. If the points in feature space are not separable by a linear

hyperplane, a nonlinear boundary may be determined by replacing the dot product with a

kernel function, k(xi,x j). A nonlinear kernel is particularly useful for separating data in

high-dimensional spaces. Many kernel functions can be used within the SVM framework.

The training process generally involves testing the performance of different kernel func-

tions to identify the kernel that most accurately separates the classes. In this work, three

kernels were initially considered: a linear kernel (Equation 4.30), a quadratic kernel (Equa-
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Table 4.4: SVM training data organization.

i B ∆ f2 · · · ∆ fn A1 · · · An α1 · · · αn Class

(x1) (x2) (xd) (yi)

1 219·10−6 5.26 21.12 98.23 26.38 0.22 1.76 A

2 204·10−6 4.20 20.13 111.73 23.49 0.21 1.15 A
...

...
...

...
...

...
...

...
...

N 254·10−6 8.39 27.51 177.34 38.83 0.28 1.55 G

tion 4.31), and a Gaussian kernel (Equation 4.32).

k(xi,x j) = xi ·x j (4.30)

k(xi,x j) = (1+xi ·x j)
2 (4.31)

k(xi,x j) = exp
(
−
‖xi−x j‖2

2σ2

)
(4.32)

In Equation 4.32, σ is a scale parameter that is optimized during the training process.

Preliminary results using each of the three functions for training indicated that the quadratic

kernel provides the most accurate predictions for the experimental data, so it was selected

for use.

Table 4.4 shows the manner in which the experimental data is organized for training

the SVM. Each row of the table corresponds to a sample i and each column of the table

is a feature, with the exception of the last column which indicates the known class of the

sample and serves as the output to be predicted. The damping and inharmonicity parameters

presented earlier in this section are used as features for the SVM. The stiffness parameter B

from the pinned case (Equation 4.13) was used since it provided the most accurate fit of the

data. Five recorded plucks were used from each of the five specimen tested from the seven

string classes, resulting in N = 175 samples. Figure 4.20 shows the data obtained from the

seven considered classes plotted in two arbitrary dimensions of the feature space.

Four classification problems were attempted. In the first problem, the SVM was trained
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Figure 4.20: Experimental data for seven classes plotted in two arbitrary dimensions of
feature space, A2 and A8.

to identify which of the seven different sample classes produced a signal of interest, so each

sample was associated with a class yi ∈ {A, B, C, D, E, F, G}. In the second problem, the

algorithm was trained to identify whether a signal was produced by a string with a round or

hexagonal core wire, with classes yi ∈ {Hex, Round}. The third problem was predicting the

core material, with yi ∈ {ASTM A228, High-Carbon Steel, Maraging Steel}. The fourth

problem was concerned with identifying the wrap materials, with yi ∈ {NPS, Iron-Cobalt

Alloy, Pure Nickel, Stainless Steel}.

For each problem, the SVM was trained three times using different combinations of

feature vectors to determine which parameters are most useful for differentiation among

the classes. The SVM was first trained using only inharmonic features, such that x(1)i =

{B,∆ f2, ... ,∆ fn}i, and the number of dimensions of feature space is d = n. ∆ f1 is omitted

because there is no inharmonicity at the fundamental frequency. The SVM was then trained

using only damping features, with x(2)i = {A1, ... ,An,α1, ... ,αn}i, where d = 2n. Finally,

the SVM was trained using all of the parameters for each sample i, so that x(3)i = x(1)i ∪

x(2)i = {B,∆ f2, ... ,∆ fn,A1, ... ,An,α1, ... ,αn}i, and d = 3n.
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The performance of the SVM classifier is assessed by partitioning the available data

into a training set and a test set. The training set is used to determine the weights for the

SVM. The trained SVM is then used to predict the class of each of the points in the test

set. Comparing the predicted class to the known class of each test point indicates whether

or not the SVM is accurate. The performance of the trained SVM is dependent on which

training points are selected. To address this dependency, 5-fold cross validation was used.

The 175 data points in descriptor space were divided into five randomly selected disjoint

subsets of 25 points each. In the first iteration four of the sets were used as training points,

with the remaining set used as test points. The process was repeated four more times, using

each of the subsets as test points in successive iterations. The accuracy of the SVM for

each problem was calculated as the average over all five iterations.

The prediction accuracy of the SVM for each of the problems and feature variable sets is

summarized in Table 4.5. The learning machine exhibited similar accuracy using data from

each of the two sensors. The machine performed better using the partial amplitude and time

constant features, x(2), than using the inharmonic features, x(1), for each of the problems

considered. However, the best performance was obtained by using all features, x(3), for

training. The accuracy of the SVM was greater than 93% for each of the classification

problems using x(3). The SVM was most accurate at differentiating between strings with

different wrap materials (>97%). The SVM demonstrated similar performance between

the core geometry and core material identification problems (94-95%). The seven-class

problem of identifying the particular string that produced a signal was most challenging,

but the classifier still performed with 93.7% accuracy for each sensor.

The results of Table 4.5 were obtained using n = 12. As previously mentioned, the

amplitude of the partials corresponding to n ≥ 13 were less than 10% of the fundamental

amplitude, and in many cases were indistinguishable from the noise floor of the signal.

To show the effect of the number of partials considered on the accuracy of the classifier,

the SVM was trained using the entire feature set, x(3), with values of n ranging from 2 to
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Table 4.5: Accuracy (%) of SVM on four classification problems using different feature
sets for training, n = 12.

Sensor Problem x(1) x(2) x(3)

String Type 90.9 93.1 93.7

1
Core Geometry 90.3 92.0 94.9

Core Material 89.1 90.3 94.9

Wrap Material 93.7 96.0 97.1

String Type 90.3 90.3 93.7

2
Core Geometry 90.3 91.4 95.4

Core Material 91.4 93.1 95.4

Wrap Material 93.7 94.9 97.7

12. The results for each of the four classification problems are shown in Figure 4.21. The

plots indicate that the performance of the SVM improves as more partials are considered

for each of the problems. Figures 4.21a-4.21c exhibit similar trends, with prediction error

>15% when only a few partials are considered. With n≥ 10, the error is reduced to about

5%. Figure 4.21d indicates that the SVM exhibits >90% accuracy in identifying the wrap

material of a string even when only two partials are considered.

Figure 4.22 shows the confusion matrices obtained for each of the four test problems

using x(3) to train the quadratic SVM with n = 12. Plots a, c, e, and g correspond to S1 and

plots b, d, f, and h correspond to S2. In each plots, the rows correspond to the true class

of a test point and the columns correspond to the predicted class of a test point. The green

shaded boxes on the diagonal show the number of correct predictions for each class while

the red shaded boxes show the incorrectly predicted classes. For example, Figure 4.22a

indicates that of the 25 samples from Class A, the SVM correctly identified 23 samples,

while 2 samples were misidentified as belonging to Class C.
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Figure 4.21: SVM prediction error using all features, x(3)i , with respect to number of partials
used for four problems, (a) String Class, (b) Core Geometry, (c) Core Material, (d) Wrap
Material.
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Figure 4.22: SVM confusion matrices using all features for four problems: (a)-(b) String
Class, (c)-(d) Core Geometry, (e)-(f) Core Material, (g)-(h) Wrap Material. The left column
corresponds to S1 data and the right column corresponds to S2 data.
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4.4 Conclusion

A study was performed to analyze the effects of composite guitar string geometry and

material properties on the vibrational signal produced by a plucked string. An experiment

was designed to isolate the response of a string within the context of a typical electric guitar

system. The guitar body material and geometry, sensor type and location, and plectrum ma-

terial and force were used as control variables. Tests were performed on a variety of string

specimen and response was measured via electromagnetic sensors at two locations along

the vibrating length of the string. The measured inharmonicity, stiffness, and frequency-

dependent damping properties of each string class were reported. A support vector machine

was trained to learn the vibrational characteristics of a string based on its morphological

descriptors. The following conclusions can be drawn from this study:

1. The stiffness of the wound string is highly correlated to its wrap material. The strings

with a stainless steel wrap were the stiffest tested, while the iron-cobalt alloy wrap

resulted in the most flexible string.

2. Strings utilizing a hexagonal core wire were stiffer than strings made of the same

materials with round core wires, resulting in more inharmonicity.

3. Oscillations in the time-dependent response of each partial indicate a coupling effect

between the string and the instrument body. Characterization of this coupling will

require future study.

4. The power and frequency of partials in the measured signals are strongly influenced

by the string’s composite morphology. A support vector machine is capable of accu-

rately differentiating between signals produced by different types of strings (>90%

success rate), with a quadratic kernel producing the best performance.

5. The classifier performs most successfully when using features that describe the time-

dependent response of partials in addition to inharmonicity. The accuracy of the

algorithm improves as the number of partials used increases.
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While previous work has shown that modeling the vibration of a homogeneous wire is

straightforward, no analytical method exists to account for wound strings where slippage

between core and wrap wire is present. The results of this study are particularly useful for

a data-driven analysis of this phenomenon. Potential avenues for future work are discussed

in the following chapter.
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Chapter 5

Summary, Conclusions, and Future Work

In this dissertation a generalized framework for predicting the properties of composites

with stochastic geometries using machine learning concepts was proposed and verified

using a combination of numerical models and experimental data. The approach was applied

to solve the problem of a 2-phase random short-fiber composite subject to nonlinear damage

under static tension, as presented in Chapter 3. Suitable computational models for the fine

and coarse scale response of the material were identified. A recently developed XFEM

model was used to account for the effect of randomly located fibers with cohesive bonds in

the matrix. A Gaussian process was used to map from an input space defined by the fiber

size, volume fraction, and bond properties to a characteristic composite response curve.

In Chapter 4, the approach was extended to the case of vibrating composite electric guitar

strings with a variety of phase geometries. An experiment was designed to capture the

response of various strings in a controlled environment. The results constitute the most

extensive study to date on the effect of string material properties and geometry on the

quality of sound produced when plucked. It was shown that using the data a trained support

vector machine classifier can identify the string configuration that produces an arbitrary

signal. In each of the two test cases drawn from distinctly different fields, a link was

established between material morphology on the small scale and the performance of the

global system.

The purpose of this dissertation was to demonstrate how a modern data-driven approach

can be used to solve nonlinear problems in high-dimensional spaces that cannot be treated

as deterministic. In the case of SFRC a numerical microscale model was tailored specifi-

cally for the treatment of random in-plane fibers for a parametric study. The XFEM model

that was used allowed for the treatment of fibers in close proximity using a uniform mesh,
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making the method more computationally efficient than traditional discretization methods.

The GP surrogate model allowed for prediction of properties using only microstructural

descriptors. In the context of a multiscale modeling approach, this will further expedite the

analysis process since effective properties at random material points can be inferred from

the trained GP without resorting to explicit simulation. There is ample room for future

extension of the methods discussed in this work. In the case of SFRC, the following issues

may merit further consideration:

• The XFEM model used in this work does not account for fiber fracture, which dic-

tates the true failure strain and stress of the composite material. In this work a 90%

reduction in strength was defined as failure, but modeling of fiber fracture would

provide a more accurate picture of the point at which the composite fails.

• The physical properties of fiber and matrix were treated as deterministic variables,

while the fiber volume fraction, size, and bond properties were treated as probabilis-

tic. Future work treating the matrix and fiber materials as random may lead to deeper

understanding of the effect of such uncertainties.

• The concept of statistical descriptors for fiber distribution in the matrix was intro-

duced in this work but was not implemented in the machine learning process. In

addition to using volume fraction as a descriptor, future work may consider parame-

ters of an n-point correlation function, lineal path function, misorientation function,

or some other function to better characterize the spatial distribution of fibers. While

the 6-descriptor model used here agreed well with the test cases, it would be inter-

esting to see if an additional higher-order descriptor improves the performance of the

learning machine.

• The work presented here focuses on characterizing random SFRC microstructures,

modeling the response, and predicting the properties using machine learning. The

CDP model was presented as an effective approach to macroscale modeling of SFRC.
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Within a sequential multiscale modeling framework, the results obtained from XFEM

and GP should be passed to the CDP model as stochastic material parameters. The

final step to be addressed is implementation of SFEM on a macroscale structure of

interest using the predictions of the learning machine.

• Scalability of the machine learning model must be addressed as more data becomes

available. A Gaussian process was used in this work, but the GP represents one of

many options for regression using machine learning. While it performed well on this

dataset, its efficiency requires evaluation as more data becomes available.

For the electric guitar string problem an experiment was custom-designed to measure

the response of a string in a realistic operational environment. While previous work has

focused on modeling the response of an electric guitar string, to the knowledge of this

author there is no published work comparing the response of many classes of strings in a

clearly defined, repeatable manner. The ability to correlate composite string descriptors

such as core geometry and wrap material to the sound that they produce when used on a

guitar is of interest to manufacturers seeking to improve their products, as well as musicians

that wish to experiment with alternate timbres. The results of this study can be used to

make informed decisions on material and topology selection for the manufacture of new-

age strings. The following topics have been identified for future study:

• This study considered a single gauge of roundwound strings. Additional gauges

should be analyzed in future work. While less common, some guitarists prefer flat-

wound strings, which are constructed by polishing the outer layer of a roundwound

string to create a smoother surface profile. It is also of interest to study flatwound

strings, and the effect of different polishing techniques on their performance.

• By building upon the results presented here, it is possible to identify optimal string

configurations. The optimization problem is dependent upon mechanical perfor-

mance as well as psychoacoustic response. The optimal string should not only have
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a maximal fatigue life, but also must be acoustically pleasing. A psychological study

in which several types of strings are subjectively ranked by guitarists and listeners

could provide insight into what signal metrics are most desirable.

• Future studies should assess the manner in which string response changes as dam-

age progresses. As discussed in Chapter 4, there are three common damage modes

for the instrument string. Each of the modes results in local variation of material

properties that influence the response, such as a reduction in cross-sectional area,

variation in density, or a loss of stiffness. As it is challenging to artificially induce

realistic damage in strings, an SFEM approach is envisioned for modeling this phe-

nomenon computationally. Using SFEM, “damaged” elements could be randomly

placed throughout the length of the string and their influence on its response mea-

sured.

• No method currently exists for damage identification and prognosis in instrument

strings, so the replacement of used strings often occurs on an arbitrary timetable.

The long term goal of this research is to develop a tool capable of accurately pre-

dicting impending failure of a string by monitoring the manner in which the signal

changes over time. The envisioned approach would utilize the concepts of acoustic

emissions based structural health monitoring. In general, acoustic emissions tech-

niques in structural applications associate acoustic events with sources of damage in

the structure. Detection of a peak in the signal at some time or frequency may indi-

cate a crack in the material. For the musical string application, the problem is not the

explicit identification of cracks associated with signal peaks, but rather characterizing

the modification of signal characteristics as damage occurs.

• To help realize the points listed above, it is of interest to eventually acquire data from

various guitarists who use different guitars and pickups and pluck strings at differ-

ent intensities. These random variables could be treated as additional descriptors in
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the context of the machine learning approach. The envisioned network of sensors

would feed into a database, allowing the learning machine to update as new data be-

comes available. Guitarists commonly use a digital tuner to analyze the fundamental

frequency of a string before playing. These tuners do not make use of higher fre-

quency content in the signal, and they operate in real time, with no memory. The

development of a new type of tuner capable of tracking signal metrics and storing

the information to memory or transmitting it over a network would allow for an un-

precedented in-depth study of the behavior of guitar strings.
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Appendix A

SFRC Descriptor Space Sample Points

Table A.1: SFRC sample points, xi, i = 1...20.

i d f (mm) l f (mm) φ f (%) Tn (N) δn (10−5 mm) δmax (10−4 mm)

1 0.079 7.167 0.97 9.40 7.19 2.44

2 0.043 7.667 1.28 7.19 2.08 4.96

3 0.094 5.421 0.70 14.81 7.91 3.00

4 0.065 11.697 0.84 8.80 1.48 3.26

5 0.050 8.459 0.08 8.26 1.84 4.81

6 0.074 10.969 0.35 6.04 6.43 3.88

7 0.086 12.209 1.07 8.49 3.91 4.66

8 0.096 10.292 0.66 5.22 6.89 3.63

9 0.084 9.793 0.27 12.87 5.87 2.08

10 0.054 6.438 1.46 11.37 8.25 4.35

11 0.099 10.050 0.94 6.96 3.11 3.78

12 0.039 13.376 1.13 6.56 7.97 3.83

13 0.072 8.335 0.55 14.58 9.50 2.15

14 0.025 8.091 0.77 10.28 0.65 3.48

15 0.036 11.120 0.87 7.41 4.08 4.72

16 0.090 11.917 1.20 14.13 4.33 4.44

17 0.044 9.564 1.25 9.12 7.38 2.49

18 0.068 14.796 0.39 12.61 9.41 2.27

19 0.052 6.015 0.74 5.06 4.27 2.02

20 0.027 6.269 0.13 5.40 2.76 3.68

110



Table A.2: SFRC sample points, xi, i = 21...40.

i d f (mm) l f (mm) φ f (%) Tn (N) δn (10−5 mm) δmax (10−4 mm)

21 0.063 6.813 0.91 11.45 0.79 4.32

22 0.058 11.416 0.34 10.07 2.42 3.94

23 0.061 11.241 0.47 12.15 4.66 2.36

24 0.066 5.685 1.40 11.94 5.81 4.28

25 0.088 14.112 1.09 13.46 2.86 2.58

26 0.095 12.548 0.89 7.89 6.62 2.68

27 0.071 12.650 1.42 11.72 5.38 2.34

28 0.049 5.954 0.25 10.68 2.37 2.77

29 0.092 13.787 1.17 9.25 8.99 2.86

30 0.046 14.247 1.15 5.88 1.22 3.04

31 0.015 13.457 0.40 8.88 3.18 3.52

32 0.081 12.872 1.04 11.10 5.51 3.20

33 0.033 10.516 0.59 12.58 1.05 3.24

34 0.077 7.522 0.29 7.26 4.80 4.85

35 0.023 9.237 0.50 7.60 1.44 4.51

36 0.040 6.737 1.31 10.53 1.73 4.00

37 0.056 8.830 0.06 13.82 6.24 2.20

38 0.028 8.699 0.79 12.31 9.72 4.93

39 0.020 12.111 0.44 6.77 8.60 3.40

40 0.017 5.188 0.19 13.74 5.07 2.82
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Table A.3: SFRC model results, xi, i = 1...20.

i σi εi ε f Gr Gt

(MPa) (10−4 mm/mm) (10−4 mm/mm) (10−4 mJ/mm3) (10−4 mJ/mm3)

1 2.55 1.97 3.28 2.52 3.73

2 2.32 1.79 3.39 2.08 3.37

3 2.75 2.16 3.23 2.97 4.35

4 2.65 2.00 3.47 2.65 4.06

5 2.88 2.21 3.04 3.21 4.67

6 2.60 1.97 4.03 2.57 4.61

7 2.51 1.87 3.73 2.35 3.98

8 2.65 2.00 3.20 2.65 4.14

9 2.67 2.08 2.93 2.78 3.83

10 2.38 1.84 3.04 2.19 3.22

11 2.72 2.08 2.99 2.83 4.33

12 2.45 1.89 3.12 2.32 3.33

13 2.57 2.16 3.71 2.79 4.36

14 2.38 1.84 2.99 2.19 3.31

15 2.43 1.89 3.17 2.30 3.36

16 2.61 1.95 2.96 2.55 3.98

17 2.46 1.92 2.67 2.36 3.24

18 2.65 1.97 2.72 2.61 3.70

19 2.51 1.95 3.25 2.45 3.92

20 2.75 2.16 2.96 2.98 4.32
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Table A.4: SFRC model results, xi, i = 21...40.

i σi εi ε f Gr Gt

(MPa) (10−4 mm/mm) (10−4 mm/mm) (10−4 mJ/mm3) (10−4 mJ/mm3)

21 2.57 1.97 2.93 2.53 3.79

22 2.64 1.97 3.25 2.61 4.24

23 2.59 1.95 3.81 2.52 4.24

24 2.49 1.92 3.52 2.39 3.95

25 2.55 1.92 2.72 2.45 3.69

26 2.62 2.00 3.52 2.62 4.34

27 2.53 1.89 3.04 2.39 3.86

28 2.77 2.08 3.20 2.88 4.38

29 2.63 1.97 2.91 2.60 3.90

30 2.53 1.92 2.91 2.43 3.49

31 2.44 1.89 3.25 2.31 3.39

32 2.52 1.92 3.55 2.43 3.88

33 2.53 1.92 3.73 2.43 3.80

34 2.94 2.27 3.92 3.37 5.26

35 2.44 1.89 3.28 2.32 3.59

36 2.27 1.81 3.01 2.06 3.14

37 3.09 2.45 3.23 3.88 5.36

38 2.40 1.87 3.36 2.25 3.53

39 2.43 1.92 3.23 2.34 3.46

40 2.55 2.03 3.31 2.59 3.85
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Appendix B

Guitar String Damping Coefficients

Table B.1: Mean An for each class.

Sensor n A B C D E F G

1 150.1 146.1 145.9 156.6 110.7 122.9 167.0

2 231.9 229.0 196.3 182.6 154.6 156.5 244.1

3 102.6 126.1 106.4 123.9 78.6 80.6 111.2

4 62.1 59.8 49.3 58.6 36.5 32.8 57.5

5 40.0 36.6 28.9 39.3 24.2 24.3 33.7

1
6 36.8 29.5 28.0 44.3 27.2 26.5 42.2

7 20.0 17.8 17.2 20.8 11.5 10.3 26.1

8 17.9 16.7 15.1 12.9 10.0 12.3 20.6

9 8.4 9.0 7.6 9.0 7.0 6.2 9.3

10 29.9 30.8 26.1 32.9 22.2 22.8 31.5

11 39.2 35.3 31.0 39.4 27.2 29.1 36.3

12 22.7 19.8 17.9 18.8 13.2 13.6 17.3

1 57.0 53.1 55.3 63.0 43.0 48.2 65.0

2 82.2 78.5 69.2 63.7 52.5 56.1 87.7

3 62.9 86.6 89.7 89.2 51.6 71.1 105.4

4 94.0 73.1 82.7 96.9 60.6 67.7 96.5

5 71.8 63.3 59.5 76.2 43.8 51.3 60.7

2
6 39.9 36.6 36.9 55.6 34.2 33.3 48.4

7 17.8 17.4 17.2 24.6 14.0 12.3 23.9

8 32.7 29.2 26.1 28.6 15.6 22.1 40.7

9 43.7 47.5 41.4 40.0 31.7 36.3 51.5

10 34.8 34.2 28.4 38.9 21.9 24.8 29.7

11 30.3 25.6 23.9 32.9 19.4 23.2 27.2

12 20.9 17.8 16.7 15.8 10.7 12.2 15.0
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Table B.2: Coefficient of variation of An for each class.

Sensor n A B C D E F G

1 0.06 0.10 0.12 0.13 0.04 0.07 0.03

2 0.18 0.19 0.17 0.14 0.12 0.05 0.08

3 0.41 0.16 0.16 0.14 0.25 0.27 0.12

4 0.36 0.39 0.35 0.26 0.34 0.08 0.10

5 0.50 0.30 0.39 0.19 0.34 0.20 0.18

1
6 0.31 0.21 0.33 0.17 0.22 0.18 0.31

7 0.34 0.12 0.33 0.24 0.32 0.15 0.25

8 0.19 0.26 0.14 0.11 0.05 0.14 0.15

9 0.27 0.09 0.18 0.25 0.08 0.16 0.08

10 0.11 0.20 0.29 0.10 0.08 0.17 0.16

11 0.19 0.18 0.12 0.09 0.10 0.13 0.10

12 0.16 0.17 0.23 0.21 0.09 0.13 0.13

1 0.13 0.08 0.14 0.08 0.04 0.08 0.04

2 0.11 0.13 0.14 0.12 0.13 0.03 0.09

3 0.49 0.25 0.31 0.30 0.32 0.29 0.13

4 0.30 0.20 0.35 0.27 0.13 0.09 0.28

5 0.38 0.13 0.40 0.18 0.28 0.25 0.06

2
6 0.35 0.19 0.28 0.20 0.19 0.22 0.33

7 0.34 0.11 0.31 0.27 0.18 0.11 0.28

8 0.21 0.21 0.19 0.21 0.07 0.21 0.22

9 0.08 0.08 0.17 0.08 0.05 0.10 0.06

10 0.11 0.24 0.23 0.11 0.08 0.19 0.30

11 0.19 0.20 0.18 0.10 0.13 0.14 0.17

12 0.11 0.17 0.25 0.13 0.07 0.12 0.15
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Table B.3: Mean αn for each class.

Sensor n A B C D E F G

1 0.35 0.32 0.35 0.36 0.35 0.33 0.34

2 0.58 0.56 0.51 0.72 0.60 0.76 0.53

3 0.33 0.39 0.29 0.51 0.32 0.31 0.22

4 0.80 0.76 0.76 0.92 0.66 0.66 0.54

5 0.75 0.71 0.74 1.03 0.79 0.71 0.68

1
6 0.60 0.61 0.59 0.65 0.70 0.64 0.92

7 0.78 0.91 0.86 0.63 0.67 0.59 0.80

8 1.60 1.14 1.15 0.78 1.08 1.09 0.94

9 1.15 1.18 1.07 0.87 1.18 1.09 0.91

10 2.50 2.51 2.34 0.97 1.51 1.48 2.84

11 1.98 1.85 1.38 1.24 1.58 1.56 1.53

12 2.71 2.42 2.44 1.52 2.21 1.83 1.64

1 0.36 0.34 0.38 0.37 0.41 0.37 0.34

2 0.59 0.53 0.48 0.69 0.56 0.71 0.48

3 0.13 0.33 0.28 0.32 0.27 0.36 0.41

4 0.59 0.52 0.55 0.87 0.60 0.71 0.63

5 0.55 0.49 0.60 0.73 0.60 0.56 0.54

2
6 0.47 0.52 0.72 0.76 0.69 0.61 0.71

7 0.81 0.75 0.80 0.55 0.71 0.70 0.70

8 1.33 0.93 0.96 1.23 0.88 0.97 1.22

9 1.29 1.28 1.10 0.85 1.17 1.03 1.14

10 2.24 2.11 1.83 1.01 1.26 1.19 1.86

11 2.07 1.69 1.38 1.32 1.36 1.43 1.50

12 2.79 2.45 2.56 1.27 2.03 1.58 1.45
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Table B.4: Coefficient of variation of αn for each class.

Sensor n A B C D E F G

1 0.18 0.12 0.12 0.19 0.08 0.19 0.13

2 0.13 0.22 0.19 0.25 0.15 0.07 0.10

3 0.74 0.47 0.37 0.11 0.49 0.55 0.22

4 0.18 0.20 0.22 0.25 0.41 0.27 0.12

5 0.45 0.51 0.61 0.24 0.43 0.37 0.18

1
6 0.12 0.18 0.23 0.08 0.14 0.38 0.31

7 0.30 0.47 0.34 0.47 0.39 0.38 0.24

8 0.14 0.34 0.14 0.24 0.10 0.23 0.12

9 0.16 0.20 0.09 0.26 0.08 0.18 0.10

10 0.49 0.27 0.54 0.16 0.07 0.26 0.29

11 0.28 0.28 0.13 0.23 0.05 0.22 0.07

12 0.21 0.32 0.36 0.61 0.14 0.41 0.15

1 0.14 0.13 0.10 0.16 0.06 0.22 0.12

2 0.20 0.22 0.19 0.23 0.10 0.06 0.09

3 1.27 0.18 0.32 0.31 0.75 0.61 0.20

4 0.25 0.43 0.29 0.38 0.40 0.33 0.41

5 0.52 0.34 0.63 0.21 0.55 0.45 0.13

2
6 0.15 0.12 0.48 0.20 0.10 0.18 0.27

7 0.16 0.30 0.26 0.23 0.13 0.31 0.20

8 0.14 0.31 0.14 0.23 0.14 0.29 0.31

9 0.22 0.21 0.13 0.33 0.14 0.17 0.14

10 0.27 0.24 0.47 0.19 0.13 0.17 0.26

11 0.25 0.40 0.20 0.25 0.07 0.14 0.17

12 0.19 0.34 0.45 0.44 0.19 0.34 0.17
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