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Chapter 1

Introduction

Motivated by their continuous dimension theory, Murray and von Neumann introduced the

notion of t-by-t matrix over a II1 factor M , for any positive real number t > 0, [MvN43]. This is

a II1 factor denoted by M t and called the t-amplification of M . When t ≤ 1 this the isomorphism

class of pM p for a projection p ∈M of trace τ(p) = t and when 1 < t it its the isomorphism

class of p(Mn(C)⊗M )p for an integer n with t/n≤ 1 and a projection p ∈Mn(C)⊗M of trace

(Trn⊗ τ)(p) = t/n. One can see that up to isomorphism the M t does not depend on n or p but

only on the value of t.

The fundamental group, F (M ), of a II1 factor M is the set of all t > 0 such that M t ∼= M .

Since for any s, t > 0 we have (M s)t ∼=M st then one can see F (M ) forms a subgroup of R+. As

the fundamental group is an isomorphism invariant of the factor, its study is of central importance

to the theory of von Neumann algebras. In [MvN43] Murray and von Neumann were able to show

that the fundamental group of the hyperfinite II1 factor R satisfies F (R) =R+. This also implies

that F (M )=R+ for all McDuff factors M . However, besides this case no other calculations were

available for an extended period of time and Murray-von Neumann’s original question whether

F (M ) could be different from R+ for some factor M remained wide open (see [MvN43, page

742] and the discussions in [Po20]).

A breakthrough in this direction emerged from Connes’ discovery in [Co80] that the fundamen-

tal group of a group factor F (L (G)) reflects rigidity aspects of the underlying group G, being

countable whenever G has property (T) of Kazdhan [Kaz67]. This finding also motivated him

to formulate his famous Rigidity Conjecture in [Co82] along with other problems on computing

symmetries of property (T) factors—that were highlighted in subsequent articles by other prolific

mathematicians [Co94, Problem 2, page 551], [Jo00, Problems 8-9] and [Po13, page 9]. Further

explorations of Connes’ idea in [Po86, GN87, GG88, Po95] unveiled new examples of separa-
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ble factors M with countable F (M ), including examples for which F (M ) contains prescribed

countable sets. However despite these advances concrete calculations of fundamental groups re-

mained elusive for more than two decades.

The situation changed radically with the emergence of Popa’s deformation/rigidity theory in

early 2000. Through this novel theory we have witnessed an unprecedented progress towards

complete calculations of fundamental groups. The first successes in this direction were achieved

by Popa and include a series of striking results: examples of factors with trivial fundamental group

[Po01] which answers a long-standing open problem of Kadison [K67] (see [Ge03, Problem 3]);

examples of factors that have any prescribed countable subgroup of R+ as a fundamental group

[Po03]. An array of other powerful results on computations of fundamental groups were obtained

subsequently [IPP05, PV06, Io06, Va07, PV08, Ho09, IPV10, BV12]. Remarkably, in [PV08] it

was shown that many uncountable proper subgroups of R+ can be realized as fundamental groups

of separable II1 factors.

However, despite these impressive achievements, significantly less is known about the funda-

mental groups of property (T) factors as the prior results do not apply to these factors. In fact

there is no explicit calculation of the fundamental group of any property (T) factor available in

the current literature. In section 5 we make progress on this problem by providing examples of

property (T) icc groups G whose factors L (G) have trivial fundamental group. In particular the

result advances [Co94, Problem 2, page 551] and provides the first group examples satisfying the

last conjecture on page 9 in Popa’s list of open problems [Po13].

The first class of groups studied in 5 Γ arise as a minor variant of a construction introduced

by Valette in [Va04]. We briefly describe this construction for readers’ convenience. Denote by H

the division algebra of quaternions and by HZ its lattice of integer points. Let n ≥ 2. Recall that

Λn = Sp(n,1)Z is a lattice in the rank one connected simple real Lie group Sp(n,1) by [BHC61].

Observe that Sp(n,1) acts linearly on Hn+1 ∼= R4(n+1) in such a way that Λn preserves (HZ)n+1 ∼=

Z4(n+1). For every n≥ 2, set Γn =Z4(n+1)oΛn. Throughout this document, we denote the class of
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these groups by V. For Γn ∈ V, we denote by Mn = L (Γn). In combination with Gaboriau’s `2-

Betti numbers invariants [Ga02] and Popa–Vaes’s Cartan rigidity results [PV12] we obtain that the

countable family of type II1 group factors (L (Γn))n≥2 with property (T), with trivial fundamental

group, that possess a unique Cartan subalgebra up to unitary conjugacy, and that are pairwise stably

non-isomorphic. We also show that products of finitely groups in class V give rise to property (T)

type II1 factors with trivial fundamental group. Our proof relies on the same strategy developed in

the seminal papers by Popa and Vaes [PV11, PV12] to show that F (L∞(X)oFn) = 1.

Theorem 1.0.1. [CDHK20, Theorem A] For every n ≥ 2, let Γn = Z4(n+1)oΛn ∈ V, and Mn =

L (Γn). The following properties hold true.

(i) For every n≥ 2, Mn has trivial fundamental group.

(ii) The type II1 factors (Mn)n≥2 are pairwise stably non-isomorphic.

iii) Assume that Γni ∈ V and Γ = Γn1 × ...×Γnk , where ni ≥ 2 for all i. Then the fundamental

group satisfies F (L (Γ)) = {1}.

The second class of groups studied in 5 G were first introduced in [CDK19] and rely on a

Rips construction in geometric group theory developed by Belegradek and Osin in [BO06]. For

convenience we briefly recall this construction. Using results from [Os06], it was shown in [BO06]

that for every finitely generated group Q one can find a property (T) group N such that Q embeds

as a finite index subgroup of Out(N). This gives rise to an action σ : Q→ Aut(N) such that the

corresponding semidirect product group Noσ Q is hyperbolic relative to {Q}. When Q is torsion

free one can pick N to be torsion free as well and hence both N and Noσ Q are icc. Moreover,

when Q has property (T) then N oσ Q has property (T). Throughout this article this semidrect

product Noσ Q will be called the Belegradek-Osin Rips construction and denoted by Rip(Q). Our

examples arise as fiber products of these Rips constructions. Specifically, consider any two groups

N1oσ1 Q,N2oσ2 Q ∈ Rip(Q) and form the canonical fiber product G = (N1×N2)oσ Q where

σ = (σ1,σ2) is the diagonal action. Notice that G has property (T) and the class of all these groups

will be denoted by S(Q).
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Developing a new technological interplay between methods in geometric group theory and

Popa’s deformation/rigidity theory which continues prior investigations in [CDK19] we show that

the factors associated with groups in class S(Q) have trivial fundamental group. Specifically, using

various technological outgrowths of prior methods [Po03, Oz03, IPP05, Io06, IPV10, Io11, PV12,

CIK13, KV15, CD19, CDK19] we are able to show the following more general statement:

Theorem 1.0.2. [CDHK20, Theorem B] Assume that Q1, Q2, P1, P2 are icc, torsion free, residually

finite, hyperbolic property (T) groups. Let Q = Q1×Q2 and P = P1×P2 and consider any groups

(N1×N2)oQ ∈ S(Q) and (M1×M2)oP ∈ S(P). Let p ∈ P(L (M1×M2)oP) be a projection

and let Θ : L ((N1×N2)oQ)→ pL ((M1×M2)oP)p be a ∗-isomorphism.

Then p = 1 and one can find a ∗-isomorphism, Θi : L (Ni)→L (Mi), a group isomorphism

δ : Q→ P, a multiplicative character η : Q→ T, and a unitary u ∈ U(L ((M1×M2)oP)) such

that for all γ ∈ Q, xi ∈L (Ni) we have that

Θ((x1⊗ x2)uγ) = η(γ)u(Θ1(x1)⊗Θ2(x2)vδ (γ))u
∗.

In particular, if we denote by G = (N1×N2)oQ then the fundamental group satisfies F (L (G)) =

{1}.

Concrete examples of countable families of pairwise non-isomorphic property (T) II1 fac-

tors emerged from the prior fundamental works of Cowling-Hageerup [CH89] and Ozawa-Popa

[OP03]. Additional examples were obtained more recently, [CDK19]. Since F (M ) is countable

whenever M is a property (T) factor [Co80, CJ85], it also follows there exist continuum many

pairwise mutually non-isomorphic property (T) factors. But, however, no explicit constructions of

such families exist in the literature till date. The main Theorems A and B canonically provides

such examples.

Corollary 1.0.3. [CDHK20, Corollary C] For any G = NoQ ∈ S(Q) or G = G1× ...×Gn with

Gi ∈ V, the set of all amplifications {L (G)t : t ∈ (0,∞)} consists of pairwise non-isomorphic II1

factors with property (T).
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While Connes’ rigidity conjecture motivated to great effect a significant portion of the main

developments in Popa’s deformation/rigidity theory [Po03, Po04, Io11, IPV10], no example of

a property (T) W ∗-superrigid group is known till date. The first hard evidence towards Connes’

conjecture was found by Cowling and Haagerup in [CH89], where it was shown that uniform

lattices in Sp(n,1) give rise to non-isomorphic factors for different values of n. Later on Ozawa

and Popa were able to show in [OP03] that for any collection {Gn}n of hyperbolic property (T)

groups (e.g. uniform lattices in Sp(n,1)) the group algebras {L (×n
i=1Gi)}n are pairwise non-

isomorphic. However, little is known beyond these two classes of examples. Moreover, the current

literature offers an extremely limited account on what algebraic features that occur in a property

(T) group are completely recognizable at the von Neumann algebraic level. For instance, besides

the preservation of the Cowling-Haagerup constant [CH89], the amenability of normalizers of

infinite amenable subgroups in hyperbolic property (T) groups from [OP07, Theorem 1], and the

direct product rigidity for hyperbolic property (T) groups from [CdSS15, Theorem A], [CU18,

Theorem A] very little is known. Therefore in order to successfully construct property (T) W ∗-

superrigid groups via a strategy similar to the ones used in [IPV10, BV12, B13, CI17] we believe

it is imperative to identify new algebraic features of property (T) groups that survive the passage

to the von Neumann algebraic regime. Any success in this direction will potentially hint to what

group theoretic methods to pursue in order to address Connes’ conjecture.

Motivated the aforementioned problem, in [CDK19] we showed that the semidirect product

feature of groups in class S (Q) described above is completely reconstructible at the von Neumann

algebra level. More precisely, we showed the following:

Theorem 1.0.4 (Theorem 4.0.1). Let Q = Q1×Q2, where Qi are icc, biexact, weakly amenable,

property (T), torsion free, residually finite groups. For i = 1,2 let Nioσi Q ∈ RipsT (Q) and denote

by Γ = (N1×N2)oσ Q the semidirect product associated with the diagonal action σ = σ1×σ2 :

Q y N1×N2. Denote by M = L (Γ) be the corresponding II1 factor. Assume that Λ is any

arbitrary group and Θ : L (Γ)→ L (Λ) is any ∗-isomorphism. Then there exist groups action

by automorphisms H yτi Ki such that Λ = (K1×K2)oτ H where τ = τ1× τ2 : H y K1×K2
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is the diagonal action. Moreover one can find a multiplicative character η : Q→ T, a group

isomorphism δ : Q→ H and unitary w ∈L (Λ) and ∗-isomorphisms Θi : L (Ni)→L (Ki) such

that for all xi ∈ L(Ni) and g ∈ Q we have

Θ((x1⊗ x2)ug) = η(g)w((Θ1(x1)⊗Θ(x2))vδ (g))w
∗. (1.1)

Here {ug : g ∈ Q} and {vh, : h ∈ H} are the canonical unitaries implementing the actions of

QyL (N1)⊗̄L (N2) and H yL (K1)⊗̄L (K2), respectively.

In fact, the above theorem hinted at lurking rigidity properties of group factors arising from

groups in class S (Q). This was one of the main motivations for studying symmetry groups of

these factors in [CDHK20]. We detail the proof of Theorem 1.0.4 in section 4.

The contents of this thesis are based on the joint works [CDK19] and [CDHK20].
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Chapter 2

Preliminaries

In this chapter, we introduce and collect facts about several topics in von Neumann algebras

which will be used throughout this thesis.

2.1 von Neumann Algebras

2.1.1 Definitions

In this section we discuss the notion of von Neumann algebra. One can think of von Neu-

mann algebra as “non commutative analogue of measure space” as the commutative von Neumann

algebra corresponds to measure spaces.

Definition 2.1.1. Let H be a Hilbert space. The locally convex topology on B(H ), defined by

semi norms {T → |〈T (ξ ),η〉|}ξ ,η∈H is called weak operator topology (WOT). Equivalently, the

weak operator topology has the basis of open sets UT,A,B,ε indexed by T ∈B(H ), finite subsets

A,B⊂H and ε > 0

UT,A,B,ε := ∩
η∈A,ζ∈B

{S ∈B(H ) : |〈S(η),ζ 〉−〈T (η),ζ 〉|< ε}.

The strong operator topology (SOT) on B(H ) is the locally convex topology defined by the

family of semi norms {T → ‖T (ξ )‖}ξ∈H . Equivalently, the strong operator topology has the

basis of open sets UT,A,ε indexed by T ∈B(H ), finite subset A⊂H and ε > 0

UT,A,ε := ∩
η∈A
{S ∈B(H ) : ‖S(η)−T (η)‖< ε}.

In particular one can think of the WOT and SOT as follows: If we have a net (Ti)i in B(H ),
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then Ti→ T in WOT if and only if for all η ,ζ ∈H

〈Ti(η),ζ 〉 → 〈T (η),ζ 〉.

Similarly, Ti→ T in SOT if and only if for every η ∈H ,

‖Ti(η)−T (η)‖→ 0.

Remark 2.1.2. Since an operator T ∈B(H ) is normal if and only if ‖T (ξ )‖ = ‖T ∗(ξ )‖ for all

ξ ∈H , the adjoint operator is SOT-continuous on the set of normal operators.

Lemma 2.1.3. Let φ : B(H )→ C be a linear functional. Then the following are equivalent;

1. There exists ξ1,ξ2, · · ·ξn,η1,η2, · · · ,ηn ∈H such that φ(T ) = ∑
n
i=1〈T (ξi),ηi〉, for all T ∈

B(H ).

2. φ is WOT-continuous.

3. φ is SOT-continuous.

Proof. The implication 1.⇒ 2. and 2.⇒ 3. follows from the definition. We need to show 3. ⇒1.

Suppose φ is SOT-continuous. The inverse image of open ball in C is open in SOT and hence by

considering the semi norms which defines the topology we have that there exists a constant K > 0

and ξ1,ξ2, · · ·ξn ∈H such that,

|φ(T )|2 ≤ K
n

∑
i=1
‖T (ξi)‖2.

If we consider {⊕n
i=1T (ξi) : T ∈B(H )} ⊂H ⊕n, and let H0 be its closure, we have that,

⊕n
i=1T (ξi)→ φ(T )

extends to a well defined, continuous linear functional on H0, and hence by Riesz representation
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theorem, there exists η1, · · · ,ηn ∈H such that

φ(T ) =
n

∑
i=1
〈T (ξi),ηi〉

for all T ∈B(H ).

Corollary 2.1.4. Let H be a Hilbert space and K ⊂H be a convex subset then KSOT
= KWOT 1.

Definition 2.1.5. A von Neumann algebra (over a Hilbert space H ) is a ∗-subalgebra of B(H )

which contains 1 and is closed in the weak operator topology.

Remark 2.1.6. Since subalgebras are convex, it follows from corollary 2.1.4 that von Neumann

algebras are also closed under strong operator topology.

Following lemma is a corollary of Lemma 2.1.4

Lemma 2.1.7. Let A⊂B(H ) be a von Neumann algebra. Then (A)1 is compact in the WOT.

If B⊂B(H ), the commutant of B (denoted by B′) is defined as follows,

B′ := {T ∈B(H ) : T S = ST f or all S ∈ B} (2.1)

We also use the notation B′′ = ((B)′)′ for the double commutant of B.

Theorem 2.1.8. Let A⊂B(H ) be a self-adjoint set. Then A′ is a von Neumann algebra.

Proof. We can see that A′ is a self adjoint algebra containing 1. All we need to check is that A′

is closed under WOT. Let (xi)i be a net in A′ such that xi→ x ∈B(H ). Then for any a ∈ A and

ξ ,η ∈H , we have

〈[x,a]ξ ,η〉= 〈xaξ ,η〉−〈axξ ,η〉

= 〈axξ ,η〉−〈xξ ,a∗η〉
1SOT closure and WOT closure respectively
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= lim
i→∞
〈xiaξ ,η〉−〈xiξ ,a∗η〉= lim

i→∞
〈[xi,a]ξ ,η〉= 0.

Corollary 2.1.9. A self adjoint maximal abelian subalgebra A⊂B(H ) is a von Neumann alge-

bra.

Proof. Since A is maximal abelian, we have A = A′.

Lemma 2.1.10. Suppose A⊂B(H ) is a self adjoint algebra containing 1. Then for all ξ ∈H ,

and x ∈ A′′ there exists xi such that lim
i→∞
‖(x− xi)ξ‖= 0.

Proof. Consider the closed subspace K := Aξ , and denote by p the projection onto this subspace.

Since for all a ∈ A we have aK ⊂K , it follows that ap = pap. But since A is a self adjoint it

then also follows that for all a ∈ A we have pa− (a∗p)∗ = (pa∗p)∗ = pap = ap, and hence p ∈ A′.

We therefore have xp = xp2 = pxp and hence xK ⊂K . Since 1 ∈ A it follows that ξ ∈ A and

hence also xξ ∈K .

Theorem 2.1.11 (von Neumann’s double commutant theorem). Suppose A ∈ B(H ) be a self

adjoint algebra containing 1. Then A′′ = AWOT .

Proof. BY Theorem we have A′′ is closed in the weak operator topology, and we have A⊂ A′′. We

need to show that A′′ is dense subset of A in the WOT.

Let ξ1, · · · ,ξn ∈ H and x ∈ A′′ and consider the subalgebra Ā of B(H n) ≡ Mn(B(H ))

consisting of matrices with diagonal coefficients contained in A. Then the diagonal matrix whose

diagonal entries are x is in Ā′′. Hence by Lemma 2.1.10 there exists a net (xi) in A such that

lim
i→∞
‖(x− xi)ξ j‖= 0 for all 1≤ j ≤ n. This shows that A′′ ⊂ A is dense in SOT.

Corollary 2.1.12. Let A⊂B(H ) be a self adjoint algebra. Then A is a von Neumann algebra if

and only if A = A′′.

10



2.1.2 Examples

2.1.2.1 Abelian von Naumann algebra

In this subsection we will be looking at examples of von Neumann algebras. First we would

like to take a look at the abelian case.

Proposition 2.1.13. Let (X ,µ) be a σ -finite measure space. Viewing L∞(X ,µ)⊂B(L2(X ,µ)) as

multiplication operators. Then L∞(X ,µ)′ = L∞(X ,µ), i.e. L∞(X ,µ) is a von Neumann algebra.

Proof. Let us assume that µ is a probability measure. Then we get L∞(X ,µ)⊂ L∞(X ,µ)′. To show

the other inclusion, suppose T ∈ L∞(X ,µ)′. Define f = T (1). We claim that f ∈ L∞(X ,µ) and

‖ f‖∞ ≤ ‖T‖. We have,

‖g f‖2 = ‖gT (1)‖2 = ‖T (g)‖ ≤ ‖g‖2‖T‖

for all g ∈ L∞(X ,µ). Suppose that , ε > 0 and µ{x ∈ X : | f (x)| ≥ ‖T‖+ ε} > 0. Let f = α| f |

where α is a measurable function and |α|= 1 a.e. Set g = ᾱχ{x∈X :| f (x)|≥‖T‖+ε}. Then,

(‖T‖+ε)µ{x ∈ X : | f (x)| ≥ ‖T‖+ε}
1
2 ≤ ‖ f g‖2 ≤ ‖g‖2‖T‖= µ{x ∈ X : | f (x)| ≥ ‖T‖+ε}‖g‖2.

Which is a contradiction, so we have ‖ f‖∞ ≤ ‖T‖.

Now let µ be a σ -finite measure. Then one can fine φ ∈ L1(X ,µ) such that , 0 < φ(x)< ∞ for

almost every x, and ∫
φ(x)dµ(x) = 1.

Set ν = φdµ . Define

U : L2(X ,µ)→ L2(X ,ν), V : L2(X ,ν)→ L2(X ,µ)

as,

U( f ) = f φ
− 1

2 and V ( f ) = f φ
1
2

11



U,V are isometries and inverse to each other. Hence U is unitary. For f ∈L∞(X ,µ)=L∞(X ,ν),ξ ∈

L2(X ,µ) we get ,

U( f ξ ) = fU(ξ )

As, ν is a probability measure, by previous case we have L∞(X ,ν)′ = L∞(X ,ν). Pulling this

identity back vis U we get,

L∞(X ,µ)′ = L∞(X ,µ)

This is indeed the case. We would like to mention the following theorem,

Theorem 2.1.14. Let A ⊂B(H ) be a separable abelian von Neumann algebra, then there exists

a separable compact Hausdorff space K with a Radon probability measure µ on K such that A

and L∞(K,µ) are ∗-isomorphic.

2.1.2.2 Tracial von Neumann algebra

Definition 2.1.15. A tracial von Neumann algebra is a pair (M,τ) where τ is a linear functional

on M satisfying following,

1. τ(1) = 1.

2. τ(x∗x)≥ 0 and τ(x∗x) = 0 if and only if x = 0.

3. τ(xy) = τ(yx).

4. τ is normal, i.e. τ|{x∈M|‖x‖≤1} is WOT continuous.

Given a tracial von Neumann algebra, we define the following inner product on M :

〈x,y〉= τ(y∗x)

for x,y ∈M. Denote L2(M,τ) = M〈·,·〉 be the Hilbert space completion of M with respect to this

inner product. Define a ∗-representation λ : M→ L2(M,τ) and a ∗-anti-representation ρ : M→
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L2(M,τ) by,

λ (x)y = xy, ρ(x)y = yx f or x,y ∈M

Now we verify that ρ and λ are bounded function (L2−L2 bounded). For y ∈M we have,

(xy)∗(xy) = y∗x∗xy≤ ‖x‖2y∗y

‖xy‖2 ≤ ‖x‖‖y‖2

Hence,

‖yx‖2
2 = τ(x∗y∗yx) = τ(yxx∗y∗) (traciality)

≤ ‖x‖2
τ(yy∗) = ‖x‖2

τ(y∗y) = ‖x‖2‖y‖2
2

Which shows that λ and ρ are bounded.

Define the operator J : L2(M,τ)→ L2(M,τ) densely by

J(x) := x∗ f or x ∈M

By traciality we see that ‖J(x)‖2 = ‖x‖2 for all x ∈ M, hence J extends to a conjugate linear

isometry to L2(M,τ).

Theorem 2.1.16. Let (M,τ) be a tracial von Neumann algebra. Let λ ,ρ be the representation and

anti-representation defined above. Then,

1. λ (M)′ = ρ(M)

2. ρ(M)′ = λ (M)

Proof. 1. We have λ (x)ρ(y)a = ρ(y)λ (x)a for all x,y,a∈M. From density it follows that ρ(M)⊂

λ (M)′.

For the other inclusion let T ∈ λ (M)′. To show thet T ∈ ρ(M) it suffices to show that T
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commutes with all S ∈ ρ(M)′ (by double commutant theorem). Set ξ = T (1), then for all x ∈M,

T (x) = T (λ (x)1) = λ (x)T (1) = λ (x)ξ .

〈T ∗(1),x〉= 〈1,T (x)〉= 〈1,λ (x)ξ 〉= 〈x∗,ξ 〉= 〈Jξ ,x〉

Hence T (x) = λ (x)ξ and T ∗(x) = λ (x)Jξ . Similarly we can get η such that S(x) = ρ(x)η and

S∗(x) = ρ(x)Jη for any x ∈M.

For any x,y ∈M we have

〈T S(x),y〉= 〈S(x),T ∗(y)〉= 〈ρ(x)η ,λ (y)Jξ 〉= 〈λ (y∗)ρ(x)η ,Jξ 〉= 〈λ (y∗)η ,ρ(x∗)Jξ 〉

as ρ(M)⊂ λ (M)′. We get,

〈T S(x),y〉= 〈λ (x)ξ ,ρ(y)Jη〉= 〈T (x),S∗(y)〉= 〈ST (x),y〉

This completes the proof for other inclusion.

2.1.2.3 Group von Neumann algebra

Let Γ be a countable discrete group. Define left regular and right (anti) regular representation

as,

λ : Γ→U (`2
Γ)

ρ : Γ→U (`2
Γ)

by

(λ (g) f )h := f (g−1h) (2.2)

(ρ(g) f )h := f (hg−1) (2.3)
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Let L Γ be the von Neumann algebra generated by λ (Γ) and RΓ be the von Neumann algebra

generated by ρ(Γ). Define,

τ : L Γ→ C (2.4)

by τ(x) := 〈xδg,δg〉.

Theorem 2.1.17. The pair (L Γ,τ) is a tracial von Neumann algebra with L Γ′ = RΓ. Let ,

L := {ξ ∈ `2
Γ : ξ ∗ f ∈ `2

Γ f or all f ∈ `2
Γ} (2.5)

R := {ξ ∈ `2
Γ : f ∗ξ ∈ `2

Γ f or all f ∈ `2
Γ} (2.6)

for ξ ∈L ,η ∈R and f ∈ `2Γ define,

λ (ξ ) f := ξ ∗ f and ρ(η) f := f ∗η (2.7)

Then λ (ξ ) and ρ(η) are bounded. Furthermore,

L Γ = {λ (ξ ) : ξ ∈L } and RΓ = {ρ(ξ ) : ξ ∈R} (2.8)

and the map

L →L Γ

ξ → λ (ξ )

is a bijection with ‖ξ‖2 = ‖λ (ξ )‖2.

Proof. It is clear from the definition that τ ∈ L Γ∗, is WOT continuous and τ(λ (g)λ (h)) =

τ(λ (h)λ (g)) for all g,h ∈ Γ. Let x,y ∈L Γ, then there exists nets (xi),(y j) in span{λ (g) : g ∈ Γ}
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such that xi→ x,y j→ y in WOT. From WOT continuity of τ , we get

τ(xy) = lim
WOT

τ(xiy j) = lim
WOT

τ(y jxi) = τ(yx)

From the definition we have τ(x∗x) = ‖xδe‖2
2, i.e. τ(x∗x)≥ 0 for all x ∈L Γ. Suppose τ(x∗x) = 0

for some x ∈L Γ. One can see from the definition and WOT that ρ(Γ)⊂L (Γ)′. Hence ,

‖sδg‖2 = ‖xρ(g)δe‖2 = ‖ρ(g)xδe‖2 = 0

as ‖xδe‖2 = 0 by assumption. Since Span{δg : g ∈ Γ} is dense in `2Γ, we get x = 0. Hence τ is

faithful. Since,

τ(λ (h)−1
λ (g)) = 〈δg,δh〉,

We get a L Γ-equivariant unitary U : L2(L Γ,τ)→ `2Γ by,

U(λ (g)) := δg ∀ g ∈ Γ (2.9)

After identifying L2(L Γ,τ) with `2Γ via U we get ρ(λ (g))= ρ(g). Thus, L Γ′=RΓ by Theorem

2.1.16. The fact that λ (ξ ),ρ(η) are bounded for ξ ∈L and for η ∈R follows from closed graph

theorem. Let x ∈L Γ, set ξ = x(δe),

x(δg) = x(ρ(g)δe) = ρ(g)x(δe) = ξ ∗δg.

Hence x( f ) = ξ ∗ f for all f ∈ Cc(Γ). Let f ∈ `2Γ, choose fn ∈ Cc(Γ) with, ‖ fn− f‖2→ 0. By

Fatou’s lemma,

‖ξ ∗ f‖2 ≤ liminf
n→∞

‖ξ ∗ fn‖2 ≤ liminf
n→∞

‖x‖‖ fn‖2 = ‖x‖‖ f‖2

Thus for ξ ∈ L , λ (ξ )( f ) = limn→∞ λ (ξ ) fn = limn→∞ x( fn) = x( f ). SO x = λ (ξ ) and ‖ξ‖2
2 =
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‖xδe‖2
2 = ‖x‖2

2.

It remains to show that λ (ξ ) ∈L Γ for all ξ ∈L . By double commutant theorem it is enough

to show that λ (ξ ) commutes with RΓ. Since RΓ is generated by ρ(Γ), it is enough to show that

λ (ξ ) commutes with ρ(g) for all g ∈ Γ, which is clear from the fact that λ (ξ ) is left convolution

by ξ and ρ(g) is right convolution by δg.

Let Γ be a countable discrete group, the the von Neumann algebra L Γ defined above is called

the group von Neumann algebra associated with the group Γ.

A von Neumann algebra M is called a factor if it has trivial center i.e, M ∩M ′ = C.

Proposition 2.1.18. Let G be a countable discrete group. L G is a factor if and only if G is i.c.c.2

Proof. Suppose g∈G\{e}, such that Cg := {h−1gh|h∈G} is finite. Let x = ∑k∈Cg uk. Then x /∈C

and ug
∗xug = x for all g ∈ G. Hence x ∈L G∩L G′ = C. Hence LG is not a factor.

Conversely, let G is i.c.c. Let x = ∑g∈G αgug ∈ Z (L G)−C. Then for all h ∈ G we have,

∑g∈G αgug = x = uh
∗xuh = ∑g∈G αguh−1gh = ∑g∈G αhgh−1ug. Thus the Fourier coefficient for x

is constant in conjugacy class. Hence αg = 0 for all g ∈ G\{e}.

2.1.3 Notations and Terminology

Throughout this document all von Neumann algebras are denoted by calligraphic letters e.g.

A , B, M , N , etc. Given a von Neumann algebra M we will denote by U(M ) its unitary

group, by P(M ) the set of all its nonzero projections and by (M )1 its unit ball. Given a unital

inclusion N ⊆M of von Neumann algebras we denote by N ′∩M = {x∈M : [x,N ] = 0}. We

also denote by NM (N ) = {u ∈ U(M ) : uN u∗ = N } the normalizing group. We also denote

the quasinormalizer of N in M by QNM (N ). Recall that QNM (N ) is the set of all x ∈M

for which there exist x1,x2, ...,xn ∈M such that N x ⊆ ∑i xiN and xN ⊆ ∑i N xi (see [Po99,

Definition 4.8]).
2the conjugacy class Cg := {h−1gh|h ∈ G} is infinite for all g ∈ G−{e}
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All von Neumann algebras M considered in this document will be tracial, i.e. endowed with a

unital, faithful, normal linear functional τ : M→C satisfying τ(xy) = τ(yx) for all x,y ∈M . This

induces a norm on M by the formula ‖x‖2 = τ(x∗x)1/2 for all x ∈M . The ‖ · ‖2-completion of

M will be denoted by L2(M ). For any von Neumann subalgebra N ⊆M we denote by EN :

M →N the τ-preserving condition expectation onto N . We denote the orthogonal projection

from L2(M )→ L2(N ) by eN . The Jones’ basic construction [Jo83, Section 3] for N ⊆M will

be denoted by 〈M ,eN 〉.

For any group G we denote by (ug)g∈G ⊂ U(`2G) its left regular representation, i.e. ug(δh) =

δgh where δh : G→ C is the Dirac function at {h}. The weak operatorial closure of the linear

span of {ug : g ∈ G} in B(`2G) is called the group von Neumann algebra and will be denoted by

L (G); this is a II1 factor precisely when G has infinite non-trivial conjugacy classes (icc). If M

is a tracial von Neumann algebra and Gyσ M is a trace preserving action we denote by M oσ G

the corresponding cross product von Neumann algebra [MvN37]. For any subset K ⊆G we denote

by PM K the orthogonal projection from the Hilbert space L2(M oG) onto the closed linear span

of {xug |x ∈M ,g ∈ K}. When M is trivial we will denote this simply by PK .

All groups considered in this article are countable and will be denoted by capital letters A, B,

G, H, Q, N ,M, etc. Given groups Q, N and an action Qyσ N by automorphisms we denote by

Noσ Q the corresponding semidirect product group. For any n∈N we denote by StabQ(n) = {g∈

Q : σg(n) = n}. Given a group inclusion H 6G sometimes we consider the centralizer CG(H) and

the virtual centralizer vCG(H) = {g ∈G : |gH |< ∞}. We also denote by 〈〈H〉〉 the normal closure

of H in G.

2.1.4 Popa’s Intertwining Techniques

Over more than fifteen years ago, Popa introduced in [Po03, Theorem 2.1 and Corollary 2.3]

a powerful analytic criterion for identifying intertwiners between arbitrary subalgebras of tracial

von Neumann algebras. Now this is known in the literature as Popa’s intertwining-by-bimodules

technique and has played a key role in the classification of von Neumann algebras program via
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Popa’s deformation/rigidity theory.

Theorem 2.1.19. [Po03] Let (M ,τ) be a separable tracial von Neumann algebra and let P,Q⊆

M be (not necessarily unital) von Neumann subalgebras. Then the following are equivalent:

1. There exist p ∈ P(P),q ∈ P(Q), a ∗-homomorphism θ : pP p→ qQq and a partial isom-

etry 0 6= v ∈ qM p such that θ(x)v = vx, for all x ∈ pP p.

2. For any group G ⊂ U(P) such that G ′′ = P there is no sequence (un)n ⊂ G satisfying

‖EQ(xuny)‖2→ 0, for all x,y ∈M .

3. There exist finitely many xi,yi ∈M and C > 0 such that ∑i ‖EQ(xiuyi)‖2
2 ≥ C for all u ∈

U (P).

If one of the three equivalent conditions from Theorem 2.1.19 holds then we say that a corner of

P embeds into Q inside M , and write P ≺M Q. If we moreover have that P p′ ≺M Q, for any

projection 0 6= p′ ∈P ′∩1PM 1P (equivalently, for any projection 0 6= p′ ∈ Z(P ′∩1PM 1P)),

then we write P ≺s
M Q. We refer the readers to the survey papers [Po07, Va10b, Io18] for recent

progress in von Neumann algebras using deformation/rigidity theory.

We also recall the notion of relative amenability introduced by N. Ozawa and S. Popa. Let

(M ,τ) be a tracial von Neumann algebra. Let p∈M be a projection, and let P ⊆ pM p, and Q⊆

M be von Neumann subalgebras. Following [OP07, Definition 2.2], we say that P is amenable

relative to Q inside M , if there exists a positive linear functional φ : p〈M ,eQ〉p→ C such that

φ |pM p = τ and φ(xT ) = φ(T x) for all T ∈Q and all x∈P . If P is amenable relative to Q inside

M , we write PlM Q.

For further use we record the following result which controls the intertwiners in algebras arsing

form malnormal subgroups. Its proof is essentially contained in [Po03, Theorem 3.1] so it will be

left to the reader.

Lemma 2.1.20 (Popa [Po03]). Assume that H 6 G be an almost malnormal subgroup and let

GyN be a trace preserving action on a finite von Neumann algebra N . Let P ⊆N oH be
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a von Neumann algebra such that P ⊀N oH N. Then for every elements x,x1,x2, ...,xl ∈N oG

satisfying Px⊆ ∑
l
i=1 xiP we must have that x ∈N oH.

The following result is a mild generalization of [BV12, Lemma 2.3]. For reader’s convenience

we include all the details in our proof.

Theorem 2.1.21. Let G be a group together H � G with a normal subgroup and assume that

Gy (N ,τ) is a trace preserving action on a von Neumann algebra (N ,τ). Consider N oG =

M the corresponding crossed product von Neumann algebra, assume that A ⊂M (possibly

non-unital) and G ⊆ N1A M 1A
(A ) a group of unitaries such that A ,G ” ≺s

M N oH. Then

(A G )”≺s
M N oH.

Proof. Let GH ⊂ G be a section for G/H. Also denote by P = N oH. Since A ,G ′′ ≺s
M P ,

then by [Va10a, Lemma 2.5], for all ε1,ε2 > 0 there exist Kε1 ,Lε2 ⊂ GH such that for all a ∈ (A )1

and b ∈ (G ′′)1 we have 1) ‖PPKε1
(a)− a‖2 ≤ ε1 and 2) ‖PPLε2

(b)− b‖2 ≤ ε2. Here for every

S⊂GH , the map PPS : L2(M )→ span‖·‖2{Pug : g∈ S} is the orthogonal projection. Also notice

that, for all x ∈M , PPS(x) = ∑
s∈S

EP(xus−1)us. In particular, for all x ∈M we have,

‖PPS(x)‖∞ ≤ |S|‖x‖∞ and ‖PPS(x)‖2 ≤ ‖x‖2. (2.10)

Now for all a ∈ (A )1,b ∈ (G ′′)1 we have

‖ab−PPKε1
(a)PPLε2

(b)‖2 ≤ ‖ab−PPKε1
(a)b‖2 +‖PPKε1

(a)b−PPKε1
(a)PPLε2

(b)‖2

≤ ‖a−PPKε1
(a)‖2‖b‖∞ +‖PPKε1

‖∞‖b−PPLε2
(b)‖2 (2.11)

≤ ‖a−PPKε1
(a)‖2 + |Kε1|‖b−PPLε2

(b)‖2

≤ ε1 + |Kε1|ε2. (2.12)

So letting ε1 = ε and ε2 = ε

|Kε1 |
we get that there exists Kε ,Lε finite subsets of the section G/H
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such that

‖ab−PPKε
(a)PPLε

(b)‖ ≤ 2ε. (2.13)

Since H�G, then there exist a finite set Fε ⊆GH such that |Fε | ≤ |Kε ||Lε | and PPFε
(PPKε

(a)PPLε
(b))=

PPKε
(a)PPLε

(b) for all a ∈ U(A ),b ∈ (G ′′)1. Using this fact together with (2.13) we get that

‖PPFε
(ab)−PPKε

(a)PPLε
(b)‖ ≤ 2ε and combining with (2.13) again we get that

‖ab−PPFε
(ab)‖ ≤ 2ε. (2.14)

for all a ∈ U(A ),b ∈ (G ′′)1. Since (U(A )G )” = (A G )”, this already shows that (A G )” ≺P .

Next we argue that we actually have (A G )”≺s P . To see this fix p ∈ (A G )′∩1A ∨G ′′M 1A ∨G ′′ .

Then there exists a finite set Gε ⊆ GH such that

‖p−PPGε
(p)‖ ≤ ε

|Kε ||Lε|
. (2.15)

Combining (2.15) and (2.14) we get that

‖abp−PPFε
(ab)PPGε

(p)‖ ≤ ‖abp−PPFε
(ab)p‖+‖PPFε

(ab)p−PPFε
(ab)PPGε

(p)‖

≤ ‖ab−PPFε
(ab)‖2‖p‖∞ +‖PPFε

(ab)‖∞‖p−PPGε
(p)‖2

≤ 4ε + |Fε | ·
ε

|Kε ||Lε |
< 5ε. (2.16)

Again there exists a finite set Tε ⊂G such that PPTε
(PPFε

(ab)PPGε
(p)) = PPFε

(ab)PPGε
(p) and

|Tε | ≤ |Fε ||Gε |. Using this and (2.16) we get that ‖abp−PPTε
(abp)‖< 10ε for all a ∈U(A ),b ∈

G . This shows that (A G )”≺s
M P , as desired.

We end this section by highlighting a straightforward corollary of Theorem 2.1.21 that we will

be very useful in the sequel.

Corollary 2.1.22. Let H �G be a normal subgroup of G and Gy (N ,τ) be a trace preserving

21



action on a tracial von Neumann algebra (N ,τ). Let M =N oG. Assume that A , B ⊆M are

commuting ∗-subalgebras such that A ≺s
M N oH and B≺s

M N oH. Then A ∨B≺s
M N oH.

Proof. Follows from Theorem 2.1.21 by letting G = U(B).

We continue with the following intertwining result for group algebras which is a generalization

of some previous results obtained under normality assumptions [DHI16]. For reader’s convenience

we also include a brief proof.

Lemma 2.1.23. Assume that H1,H2 6G are groups, let GyN be a trace preserving action on a

tracial von Neumann algebra N and denote by M = N oG the corresponding crossed product.

Also assume that A ≺s N oH1 is a von Neumann algebra such that A ≺M N oH2. Then one

can find h ∈ G such that A ≺M N o (H1∩hH2h−1).

Proof. Since A ≺s N oH1 then by [Va10a, Lemma 2.6] for ever ε > 0 there exist a finite subset

S ⊂ G such that ‖PSH1S(x)− x‖2 6 ε for all (x ∈A )1. Here for every K ⊆ G we denote by PK the

orthogonal projection from L2(M ) onto the closure of the linear span of N ug with g ∈ K. Also

since A ≺M N oH2 then by Popa’s intertwining techniques there exist a scalar 0 < δ < 1 and a

finite subset T ⊂G so that ‖PT H2T (x)‖2> δ , for all x∈ (A )1. Thus, using this in combination with

the previous inequality, for every x∈U(A ) and every ε > 0, there are finite subsets S,T ⊂G so that

‖PT H2T ◦PSH1S(x)‖2 > δ − ε . Since there exist finite subsets R,U ⊂ G such that T H2T ∩ SH1S ⊆

U(∪r∈RH2 ∩ rH1r−1))U we further get that ‖PU(∪r∈RH2∩rH1r−1))U(x)‖2 > δ − ε . Then choosing

ε > 0 sufficiently small and using Popa’s intertwining techniques together with a diagonalization

argument (see proof of [IPP05, Theorem 4.3]) one can find r ∈ R so that A ≺N o(H2∩rH1r−1),

as desired.

In the sequel we need the following three intertwining lemmas, which establish that under cer-

tain conditions, intertwining in a larger algebra implies that the intertwining happens in a ”smaller

subalgebra”.

Lemma 2.1.24. Let A ,B ⊆N ⊆M be von Neumann algebras and assume that there is a group

G⊆NM (A ) such that G′′ = M . If B ≺M A then B ≺N A .
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Proof. Since B ≺M A then by Theorem 2.1.19 one can find x1,x2...xn,y1,y2, ...,yn ∈M and

c > 0 such that ∑
n
i=1 ‖EA (xibyi)‖2

2 ≥ c, for all b ∈U (B). Since G′′ = M then using basic ‖ · ‖2-

approximation for xi and yi and shrinking c> 0 if necessary one can find g1,g2, ...,gl,h1,h2, ...,hl ∈

G and c′ > 0 such that for all b ∈U (B) we have

n

∑
i=1
‖EA (gibhi)‖2

2 ≥ c′ > 0. (2.17)

Also since G normalizes A we see that EA (gibhi) = EgiA g∗i (gibhi) = giEA (bhigi)g∗i . This com-

bined with (2.17) and A ⊆N give 0 < C′ ≤ ∑
l
i=1 ‖EA (bhigi)‖2

2 = ∑
l
i=1 ‖EA ◦EN (bhigi)‖2

2 =

∑
l
i=1 ‖EA (bEN (higi))‖2

2 for all b ∈U (B). Since EN (higi) ∈N then using Theorem 2.1.19 this

clearly shows that B ≺N A .

Lemma 2.1.25. Let Q be a group and denote by diag(Q) = {(q,q) |q ∈Q} the diagonal subgroup

of Q×Q. Let A be a tracial von Neumann algebra and assume that (Q×Q)yσ A is a trace

preserving action. Let B ⊆A be a regular von Neumann subalgebra which is invariant under the

action σ . Let D ⊆A oσ diag(Q) be a subalgebra such that D ≺Aoσ (Q×Q) Boσ diag(Q) . Then

D ≺Aoσ diag(Q) Boσ diag(Q).

Proof. In this proof, we let M̃ = A oσ (Q×Q), and M = A oσ diag(Q). By Theorem 2.1.19,

there exist xi,yi ∈ M̃ , i = 1, ...,n and c > 0 such that:

n

∑
i=1
‖EBodiag(Q)(xidyi)‖2 ≥ c for all d ∈U (D). (2.18)

Since (Q×Q) = (Q×1)oρ diag(Q), where ρ is the action of diag(Q) on (Q×1) by conjugation,

we can ‖ · ‖2-approximate xi’s (resp yi’s) inside the equation 2.18 by finite linear combinations of

the form ∑
m
k=1 ugkzk, (resp ∑

m
k=1 zkugk) where gk ∈ (Q× 1) and zk ∈M . Thus, shrinking c > 0 in

2.18, if necessary, we can assume that there exists finitely many gi,hi ∈ (Q× 1) , zi, ti ∈M and
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c > 0 such that:

n

∑
i=1
‖EBodiag(Q)(ugizidtiuhi)‖

2 ≥ c > 0 for all d ∈U (D). (2.19)

The previous equation further implies that for all d ∈U (D) we have

0 < c≤∑
I
‖EBodiag(Q)(ugizidtiuhi)‖

2
2 +∑

J
‖EBodiag(Q)(ugizidtiuhi)‖

2
2 (2.20)

where I := {i∈ 1,n |gi 6= 1,hi 6= 1}, and J := {i∈ 1,n |gi = 1 or hi = 1}. Let PgiM hi be the orthogo-

nal projection onto the closed subspace span‖·‖2{ugiM uhi}. Note that ugizidtiuhi ∈ span{ugiM uhi}

and therefore

∑
I
‖EBodiag(Q)(ugizidtiuhi)‖

2
2 = ∑

I
‖EBodiag(Q) ◦PgiM hi(ugizidtiuhi)‖

2
2. (2.21)

A direct calculation shows that EBodiagdiag(Q)◦PgiM hi(z)=PB(diag(Q))∩gidiag(Q)hi)(z), where PB(diag(Q))∩gidiag(Q)hi)

is the orthogonal projection onto the closed subspace span{Bg |g ∈ gidiag(Q)hi∩diag(Q)}. Now

if gidiag(Q)hi∩diag(Q) 6= /0 one can find ri,si ∈ diagQ) such that hi = rig−1
i si. Thus gidiag(Q)hi∩

diag(Q)= (gidiag(Q)g−1
i ∩diag(Q))si. We now claim that gidiag(Q)g−1

i ∩diag(Q)= diag(CQ(gi)),

where CQ(gi) is the centralizer of gi in Q. To see this, let (k,k) ∈ gidiag(Q)g−1
i ∩ diag(Q). Then

there exists (v,v) ∈ diag(Q) such that (gi,1)(v,v)(g−1
i ,1) = (k,k). This clearly implies that v = k

and gikg−1
i = k, thereby establishing the claim.

Therefore we have that gidiag(Q)hi∩diag(Q)= diag(CQ(gi))si and hence PB(diag(Q))∩gidiag(Q)hi)(z)=
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PBodiag(CQ(gi))si(z) = EBo(diag(CQ(gi))(zus−1
i
)usi . Using equation 2.21 we get

∑
i∈I
‖EBodiag(Q)ugizidtiuhi)‖

2
2 = ∑

i
‖PB(gidiag(Q)hi∩diagQ))(ugizidtiuhi)‖

2
2

= ∑
I
‖EBodiag(CQ(gi))(ugizidti(urig−1

i si
)us−1

i
)usi‖

2
2

= ∑
I
‖EBodiag(CQ(gi))(ugizidtiriug−1

i
)‖2

2 = ∑
i
‖ugiEBodiag(CQ(gi))(zidtiri)ug−1

i
‖2

2

= ∑
I
‖EBodiag(CQ(gi))(zidtiri)‖2

2.

Combining this with (2.20) and using B ⊆A we see that for all d ∈U (D) we have

0 < c≤∑
I
‖EBodiag(Q)(ugizidtiuhi)‖

2
2 +∑

J
‖EBodiag(Q)(ugizidtiuhi)‖

2
2

≤∑
i∈I
‖EBodiag(CQ(gi)))(zidtiri)‖2

2 + ∑
i∈J,gi=1

‖EBodiag(Q)(zidtiuhi)‖
2
2 + ∑

i∈J,hi=1
‖EBodiag(Q)(ugizidti)‖2

2

= ∑
i∈I
‖EBodiag(CQ(gi))(zidtiri)‖2

2 + ∑
i∈J,gi=1

‖EBodiag(Q)(zidtiEAodiag(Q)(uhi))‖
2
2

+ ∑
i∈J,hi=1

‖EBodiag(Q)(EAodiag(Q)(ugi)zidti)‖2
2 = ∑

i∈I
‖EBodiag(CQ(gi))(zidtiri)‖2

2

+ ∑
i∈J,gi=1,hi=1

‖EBodiag(Q)(zidti)‖2
2.

Using Theorem 2.1.19 again then above inequality establishes that D ≺Aodiag(Q) Bodiag(Q), as

desired.

Lemma 2.1.26. Let C ⊆B and N ⊆M be inclusions of von Neumann algebras. If A ⊆N ⊗̄B

is a von Neumann subalgebra such that A ≺M ⊗̄B M ⊗̄C then A ≺N ⊗̄B N ⊗̄C .

Proof. By Theorem 2.1.19 one can find xi,yi ∈M ⊗̄B, i = 1,k and a scalar c > 0 such that

n

∑
i=1
‖EM ⊗̄C (xiayi)‖2 ≥ c for all d ∈U (A ). (2.22)

Using ‖ · ‖2-approximations of xi and yi by finite linear combinations of elements in M ⊗̄algB
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together with the M ⊗ 1-bimodularity of EM ⊗̄C , after increasing k and shrinking c > 0 if neces-

sary, in (2.22) we can assume wlog that xi,yi ∈ 1⊗B. However, since A ⊆N ⊗̄B then in this

situation we have EM ⊗̄C (xiayi) = EM ⊗̄C ◦EN ⊗̄B(xiayi) = EN ⊗̄C (xiayi). Thus (2.22) combined

with Theorem 2.1.19 give A ≺N ⊗̄B N ⊗̄C , as desired.

In the sequel we need the following (minimal) technical variation of [CI17, Lemma 2.6]. The

proof is essentially the same with the one presented in [CI17] and we leave the details to the reader.

Lemma 2.1.27 (Lemma 2.6 in [CI17]). Let P,Q ⊆M be inclusions of tracial von Neumann

algebras. Assume that QN(1)
M (P)=P and Q is a II1 factor. Suppose there is a projection z∈Z(P)

such that Pz≺s Q and a projection p ∈Pz such that pP p = pQp. Then one can find a unitary

u ∈M such that uPzu∗ = rQr where r = uzu∗ ∈ P(Q).

The next lemma is a mild generalization of [IPV10, Proposition 7.1], using the same techniques

(see also the proof of [KV15, Lemma 2.3]).

Lemma 2.1.28. Let Λ be an icc group, and let M =L (Λ). Consider the comultiplication map ∆ :

M →M ⊗̄M given by ∆(vλ ) = vλ ⊗vλ for all λ ∈Λ. Let A ,B⊆M be a (unital) ∗-subalgebras

such that ∆(A ) ⊆M ⊗̄B. Then there exists a subgroup Σ < Λ such that A ⊆ L (Σ) ⊆B. In

particular, if A = B, then A = L (Σ).

Proof. Let Σ = {s ∈ Λ : vs ∈B}. Since B is a unital ∗-subalgebra, Σ is a subgroup, and clearly

L (Σ)⊆B. We argue that A ⊆L (Σ).

Fix a ∈ A , and let a = ∑λ aλ vλ be its Fourier decomposition. Let I = {s ∈ Λ : as 6= 0}.

Fix s ∈ I, and consider the normal linear functional ω on M given by ω(x) = āsτ(xv∗s ). Note

that (ω ⊗ 1)(a) = |as|2⊗ vs Since ∆(A ) ⊆M ⊗̄B, we have that (ω ⊗ 1)∆(A ) ⊆ C⊗̄B. Thus,

vs ∈B⇒ s ∈ Σ. Since this holds for all s ∈ I, we get that a ∈L (Σ), and hence we are done.

Finally we end this section with the following elementary result.

Lemma 2.1.29. Let M be a finite von Neumann algebra and let N be a type II1 factor, with

N ⊆M a unital inclusion. If there is p ∈ P(N ) so that pN p = pM p then N = M .
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Proof. Without loss of generality, assume τ(p) = 1
n for some n ∈ N. Since N is a type II1 factor,

we can find orthogonal projections pi ∈ P(N), and unitaries ui ∈ U(N) (for i = 2, · · · ,n) such that

∑i pi = 1− p and ui p1u∗i = pi. Then clearly we get that piN pi = piMpi for i = 2, · · · ,n as well. Let

p1 = p, and note that (N ′∩M )pi =Cpi for all i. Let z∈N ′∩M . Then z=∑i zpi =∑i ci pi where

ci =
τ(zpi)
τ(pi)

. Now, τ(zpi) = τ(zui p1u∗i ) = τ(u∗i zui p1) = τ(zp1), as z ∈N ′ ∩M , for i = 2, · · · ,n.

Thus, ci = c1 for all i, as τ(pi) = τ(p1). So, z ∈ C, as ∑i pi = 1. Hence M is a type II1 factor

with N an irreducible subfactor. As pN p = pM p, we have that M ≺M N . Hence by [CD18,

Proposition 2.3], we get that [M : N ] < ∞. In this case, 1 = [pM p : pN p] = [M : N ], which

implies that M = N .

2.1.5 Height of elements in group von Neumann algebras

The notion of height of elements in crossed products and group von Neumann algebras was

introduced and developed in [Io11] and [IPV10] and was highly instrumental in many of the recent

classification results in von Neumann algebras [Io11, IPV10, KV15, CU18]. Following [IPV10,

Section 3] for every x∈L (G) we denote by hG(x) the largest Fourier coefficient of x, i.e., hG(x) =

maxg∈G |τ(xu∗g)|. Moreover, for every subset G ⊆L (Γ), we denote by hG(G ) = infx∈G hG(x), the

height of G with respect to G. Using the notion of height Ioana, Popa and Vaes proved in their

seminal work, [IPV10, Theorem 3.1] that whenever G, H are icc groups such that L (G) = L (H)

and hG(H) > 0, then G and H are isomorphic. The following generalization of this result to

embeddings was obtained by Krogager and Vaes [KV15] and will be used in an essential way to

derive our main Theorem 5.1.6 in the last section.

Theorem 2.1.30 (Theorem 4.1, [KV15]). Let G be a countable group and denote by M = L (G).

Let p ∈ P(M ) be a projection and assume that G ⊆ U(pM p) is a subgroup satisfying following

properties:

1. The unitary representation {Ad v}v∈G on L2(p(M p	Cp) is weakly mixing;

2. For any e 6= g ∈L (G) we have G ”⊀M L (CG(g));
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3. We have hG(G )> 0.

Then p = 1 and there exists a unitary u ∈L (G) such that uG u∗ ⊆ TG.

Next we highlight a new situation when it’s possible to control lower bound for height of unitary

elements in the context of crossed product von Neumann algebras arising from group actions by

automorphisms with no non-trivial stabilizers. Our result and its proof is reminiscent of the prior

powerful techniques for Bernoulli actions introduced in [IPV10, Theorem 5.1] (see also [Io11,

Theorem 6.1]) and their recent counterparts for the Rips constructions [CDK19, Theorem 5.1].

The precise statement is the following

Theorem 2.1.31. Let G and H be countable groups and let σ : G→ Aut(H) be an action by

automorphisms for which there exists a scalar c > 0 satisfying |StabG(h)|< c for all h ∈ H \{e}.

Consider M = L (H oσ G) and let A ⊆M be a diffuse von Neumann subalgebra such that

A ≺s
M L (H). For any group of unitaries G ⊆ L (G) satisfying G ⊆ NM (A ) we have that

hG(G )> 0.

Proof. For ease of exposition denote by N = L (H). Next we prove the following property

Claim 2.1.32. For every x,y ∈ L (G), every finite subsets K,S ⊂ G, every a ∈ spanN K with

EL (G)(a) = 0 and every ε > 0 there exists a scalar κε,K,S,a > 0 such that

‖PN S(xay)‖2
2 ≤ κε,K,S,a‖y‖2

2‖a‖2
2h2

G(x)+ ε‖x‖∞‖y‖∞, (2.23)

where PN S denotes the orthogonal projection from L2(M ) onto span‖·‖2(N S).

Proof of Claim 2.1.32. First fix a finite set L ⊆ H \{e} and let b ∈ span(LK). Observe that using

the Fourier decomposition of x = ∑g xgug and y = ∑ygug, where xg = τ(xug−1) and yg = τ(yug−1),
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basic calculations show that

‖EN (xby)‖2
2 = ‖ ∑

g∈G,k∈K
xgyk−1g−1σg(EN (buk−1))‖2

2

= ∑
g1,g2∈G,k1,k2∈K

xg1yk−1
1 g−1

1
xg2yk−1

2 g−1
2
〈σg1(EN (buk−1

1
)),σg2(EN (buk−1

2
))〉. (2.24)

Furthermore, using the Fourier decomposition b = ∑h bhuh where bh = τ(buh−1) we also see that

〈σg1(EN (buk−1
1
)),σg2(EN (buk−1

2
))〉= ∑

l1,l2∈L
bk1l1bk2l2δσg1(l1),σg2(l2)

= ∑
l1,l2∈L,g−1

2 g1∈Sl1,l2

bk1l1bk2l2,

(2.25)

where for every l1, l2 ∈ L we have denoted by Sl1,l2 = {g ∈ G : σg(l1) = l2}.

Thus, combining (2.24) and (2.25) and using basic inequalities together with |Sl1,l2| ≤ c we get

that

‖EN (xby)‖2
2 ≤ ∑

k1,k2∈K;l1,l2∈L,g1,g2∈G,g−1
2 g1∈Sl1,l2

∣∣∣xg1yk−1
1 g−1

1
bk1l1xg2yk−1

2 g−1
2

bk2l2

∣∣∣
≤ ∑

k1,k2∈K,l1,l2∈L,s∈Sl1,l2 ,g∈G,

∣∣∣xgsyk−1
1 s−1g−1bk1l1xgyk−1

2 gbk2l2

∣∣∣
≤ ( max

l1,l2∈L
|Sl1,l2|)|K|

2|L|2h2
G(x)‖y‖2

2‖b‖2
2 ≤ c|K|2|L|2h2

G(x)‖y‖2
2‖b‖2

2. (2.26)

Using these estimates we are now ready to derive the proof of (2.23). To this end fix ε > 0. Using

basic approximations and ‖EL (G)(a)‖= 0 one can find a finite set L⊂ H \{e} and b ∈ span(LK)

such that

‖a−b‖2 ≤min{ε

2
,‖a‖2} and ‖b‖∞ ≤ 2‖a‖∞. (2.27)

Notice that for all z ∈M we have PN S(z) = ∑EN (zus−1)us and using this formula together with
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estimate (2.27) and Cauchy-Schwarz inequality we get

‖PN S(xay)‖2
2 ≤ 2|S|

(
∑
s∈S
‖EN (xbyus−1‖2

2

)
+ ε|x‖∞‖y‖∞.

Using (2.26) followed by (2.27) we further have that the last inequality above is smaller than

≤ 2c|S||K|2|L|2(∑
s∈S

h2
G(x)‖yus−1‖2

2‖b‖2
2)+ ε|x‖∞‖y‖∞

≤ 4c|S|2|K|2|L|2h2
G(x)‖a‖2

2‖y‖2
2 + ε|x‖∞‖y‖∞. (2.28)

Combining this with (2.27) proves the claim where κε,K,S,a = 4c|S|2|K|2|L|2. �

In the remaining part we complete the proof of the statement. Towards this first notice that,

since A ≺s
M N then by [Va10a, Lemma 2.5] for every ε there exists a finite set S ⊆ K such that

for all c ∈ U(A ) we have

‖c−PN S(c)‖2 ≤ ε. (2.29)

Next we also claim that for every finite set S ⊂ G and every ε > 0 there exists b ∈ U(A ) such

that

‖EL (G) ◦PN S(b)‖2 < ε. (2.30)

Indeed, to see this first notice that ‖EL (G) ◦PN S(b)‖2
2 = ∑

s∈S
|τ(bus−1)|2. As A is diffuse and S is

finite there exists b ∈ U(A ) such that ∑
s∈S
|τ(bus−1)|2 < ε and the claim follows.

Now pick b ∈U(A ) satisfying (2.30). Since a,gsg−1 ∈U(A ) then using (2.29) two times and
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(2.30) we see that

1− ε = ‖gag−1‖2− ε ≤ ‖PN S(gag−1‖2 ≤ ‖PN S(g(PN S(b))g−1)‖2 + ε

≤ ‖PN S(g(PN S(b)−EL (G)(PN S(b)))g−1)‖2 +‖EL (G)(PN S(b))‖2 + ε

≤ ‖PN S(g(PN S(b)−EL (G)(PN S(b)))g−1)‖2 +2ε. (2.31)

Now, taking a = PN S(b)−EL (G)(PN S(b)) and using (2.23) we get that the last inequality above

is smaller than

≤ κε,S,S,bhG(g)‖PN S(b)−EL (G)(PN S(b))‖2 + ε
1/2 +2ε. (2.32)

Thus (2.31) and (2.32) further imply that hG(g) ≥ κ
−1
ε,S,S,b(1− 3ε − ε1/2). Since this holds for all

g ∈ G , letting ε > 0 be sufficiently small we get the desired conclusion.
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Chapter 3

Two Classes of Groups

3.1 A class of groups based on Belegradek-Osin Rips construction

Using the powerful technology from [Os06], Belegradek and Osin showed in [BO06, Theorem

1.1] that for every finitely generated group Q one can find a property (T) group N such that Q

embeds into Out(N) as a finite index subgroup. This canonically gives rise to an action Qyρ N by

automorphisms such that the corresponding semidirect product group Noρ Q is hyperbolic relative

to {Q}. Throughout this document the semidirect products Noρ Q will be termed Belegradek-

Osin’s Rips construction groups. When Q is torsion free then one can pick N to be torsion free as

well and hence both N and Noρ Q are icc groups. Notice that the finite conjugacy radical FC(N)

of N is invariant under the action of Q and hence FC(N) is an amenable normal subgroup G. Since

G is relative hyperbolic it follows that FC(N) is finite and hence it is trivial as G is torsion free; in

particular N is an icc group. Also when Q has property (T) then Noρ Q has property (T). Under

all these assumptions we will denote by RipsT (Q) the class of these Rips construction groups

Noρ Q.

In [CDK19, Sections 3,5] we introduced a class of property (T) groups based on the Belegradek-

Osin Rips construction groups and we have proved several rigidity results for the corresponding

von Neumann algebras, [CDK19, Theorem A]. Next we briefly recall this construction also high-

lighting its main algebraic properties that are relevant in the proofs of our main results in the next

section.

Class S. Consider any product group Q = Q1×Q2, where Qi are any nontrivial, bi-exact, weakly

amenable, property (T), residually finite, torsion free, icc groups. Then for every i = 1,2 consider

a Rips construction Gi = Nioρi Q ∈RipsT (Q), let N = N1×N2 and denote by G = Noσ Q the

canonical semidirect product which arises from the diagonal action σ = ρ1×ρ2 : Q→Aut(N), i.e.

σg(n1,n2) = ((ρ1)g(n1),(ρ2)g(n2)) for all (n1,n2) ∈ N. Throughout this article the category of all
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these semidirect products G will denoted by Class S.

Concrete examples of semidirect product groups in class S can be obtained if the initial groups

Qi are any uniform lattices in Sp(n,1) when n≥ 2. Indeed one can see that required conditions on

Qi’s follow from [Oz03, CH89].

For further reference we record some algebraic properties of groups in class S. For their proofs

the reader may consult [CDK19, Sections 3,4,5] and the references within.

Theorem 3.1.1. For any G = Noσ Q ∈ S the following hold

a) G is an icc, torsion free, property (T) group;

b) Q is malnormal subgroup of G, i.e. gQg−1∩Q = {e} for every g ∈ G\Q;

c) The stabilizer StabQ(n) = {e} for every n ∈ N \{e};

d) The virtual centralizer satisfies vCG(N) = 1;

e) G is the fiber product G = G1×Q G2; thus embeds into G1×G2 where Q embeds diagonally

into Q×Q.

Finally we conclude this section with a folklore lemma related to the calculation of centralizers

of elements in products of hyperbolic groups. We include some details for readers’ convenience.

Lemma 3.1.2. Let Q = Q1×Q2, where Qis are non-elementary torsion free, hyperbolic groups.

For any e 6= g ∈ Q the centralizer CQ(g) is of one of the following forms: A, A×Q2 or Q1×A,

where A is an amenable group.

Proof. Let g = (g1,g2) ∈ Q where gi ∈ Qi and notice that CQ(g) =CQ1(Q1)×CQ2(g2). Therefore

to get our conclusion it suffices to show that for every gi ∈ Qi either CQi(gi) = Qi or CQi(gi) is an

elementary group. However this is immediate once we note that for every gi 6= e the centralizer

satisfies CQi(gi) 6 EQi(gi), where EQi(gi) is maximal elementary subgroup containing gi of the

torsion free icc hyperbolic group Qi, see for example [Ol91].
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3.2 A class of groups V arising from Valette’s examples

We describe a construction of group pairs with property (T) due to Valette [Va04]. Denote by

H the division algebra of quaternions and by HZ its lattice of integer points. Let n≥ 2. Recall that

Sp(n,1) is the rank one connected simple real Lie group defined by

Sp(n,1) = {A ∈ GLn+1(H) | A∗JA = J}

where J = Diag(1, . . . ,1,−1). Since the subgroup Sp(n,1) is the set of real points of an alge-

braic Q-group, the group of integer points Λn = Sp(n,1)Z is a lattice in Sp(n,1) by Borel–Harish-

Chandra’s result [BHC61]. Observe that Sp(n,1) acts linearly on Hn+1 ∼= R4(n+1) in such a way

that Λn preserves (HZ)n+1 ∼= Z4(n+1). For every n ≥ 2, set Γn = Z4(n+1)oΛn. Throughout this

document, we denote the class of these groups by V. For Γn ∈ V, we denote by Mn = L (Γn), and

by An = L (Z4(n+1)). Note that Mn = AnoΛn.

For further use we record some algebraic properties of groups in V, and the von Neumann

algebras Mn.

Theorem 3.2.1. Let Γn ∈ V. Then the following hold true:

(i) For every n≥ 2, Γn is an infinite icc countable discrete group with property T so that Mn is

a type II1 factor with property T.

(ii) For every n≥ 2, An ⊆Mn is the unique Cartan subalgebra, up to unitary conjugacy.

Proof. (i) We use the notation g = (γ,a) ∈ Z4(n+1)oΛn = Γn. Since the lattice Λn/{± id} in the

adjoint Lie group Sp(n,1)/{± id} is icc, the exact same proof as [Va04, Theorem 4, Step 3] shows

that the conjugacy class of any element of the form g = (γ,a) in Γn with γ /∈ {± id} is infinite.

Since the Z4(n+1)-conjugacy class of any element of the form g = (− id,a) in Γn is also clearly

infinite, it follows that Γn is an infinite icc countable discrete group. By [Va04, Proposition 1],

the group pair (R4(n+1)oSp(n,1),R4(n+1)) has relative property (T). Since both Z4(n+1)oΛn <

R4(n+1)oSp(n,1) and Z4(n+1) < R4(n+1) are lattices, the group pair (Z4(n+1)oΛn,Z4(n+1)) also
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has property (T). Since Sp(n,1) has property (T) by Kostant’s result, so does its lattice Λn <

Sp(n,1). Altogether, this implies that Γn has property (T). Hence Mn = L (Γn) has property (T)

by [CJ85].

(ii) We first show that An ⊆Mn is a Cartan subalgebra. Note that it suffices to show that An ⊆Mn

is maximal abelian. To this end, it’s enough to show that the Z4(n+1)-conjugacy class in Γn of any

element of the form g = (γ,0) with γ 6= id is infinite. Indeed, if γ ∈ Λn is such that the Z4(n+1)-

conjugacy class of g= (γ,0) in Γn is finite, since Z4(n+1) is torsion-free, this forces γ to act trivially

on Z4(n+1) and so necessarily γ = id.

Since L∞(T4(n+1)) = An ⊂Mn = L∞(T4(n+1))oΛn is a Cartan subalgebra and since Mn is a type

II1 factor, the probability measure-preserving action Λn yT4(n+1) is essentially free and ergodic.

Then [PV12, Theorem 1.1] shows that An ⊂Mn is the unique Cartan subalgebra, up to unitary

conjugacy.
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Chapter 4

von Neumann Algebraic Rigidity of Semidirect Product

An impressive milestone in the classification of von Neumann algebras was the emergence

over the past decade of the first examples of groups G that can be completely reconstructed from

their von Neumann algebras L (G), i.e. W ∗-superrigid groups [IPV10, BV12, CI17]. The strate-

gies used in establishing these result share a common key ingredient, namely, the ability to first

reconstruct from L (G) various algebraic feature of G such as its (generalized) wreath product de-

composition in [IPV10, BV12], and respectively, its amalgam splitting in [CI17, Theorem A]. This

naturally leads to a broad and independent study, specifically identifying canonical group algebraic

features of a group that pass to its von Neumann algebra. While several works have emerged re-

cently in this direction [CdSS15, CI17, CU18] the surface has been only scratched and still a great

deal of work remains to be done.

A difficult conjecture of Connes predicts that all icc property (T) groups are W ∗-superrigid.

Unfortunately, not a single example of such group is known at this time. Moreover, in the current

literature there is an almost complete lack of examples of algebraic features occurring in a prop-

erty (T) group that are recognizable at the von Neumann algebraic level. For instance, besides the

preservance of the Cowling-Haagerup constant [CH89], the amenablity of normalizers of infinite

amenable subgroups in hyperbolic property (T) groups from [Oz03, Theorem 1] and the product

rigidity for hyperbolic property (T) groups from [CdSS15, Theorem A] very little is known. There-

fore in order to successfully construct property (T) W ∗-superrigid groups via a strategy similar to

[IPV10, CI17] we believe it is imperative to first identify a comprehensive list of algebraic features

of property (T) groups that survive the von Neumann algebraic structure. Any success in this di-

rection will potentially hint to what group theoretic methods to pursue in order to address Connes’

conjecture.

In this section we investigate a new class of property (T) groups that appears as natural fiber
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products of Belegradek-Osin Rips type constructions. Specifically, consider any two groups N1o

Q,N2oQ ∈RipsT (Q) and form the canonical fiber product G = (N1×N2)oQ. Notice that since

property (T) is closed under extensions [BdlHV00, Section 1.7] it follows that G has property

(T). Then for a fairly large family of groups Q we show that the semidirect product feature of

G is an algebraic property completely recoverable from the von Neumann algebraic regime. In

addition, we also have a complete reconstruction of the acting group Q. The precise statement is

the following

Theorem 4.0.1 (Theorem 1.0.4). Let Q=Q1×Q2, where Qi are icc, torsion free, biexact, property

(T), weakly amenable, residually finite groups. For i = 1,2 let Nioσi Q ∈RipT (Q) and denote by

Γ = (N1×N2)oσ Q the semidirect product associated with the diagonal action σ = σ1×σ2 :

Q y N1×N2. Denote by M = L (Γ) be the corresponding II1 factor. Assume that Λ is any

arbitrary group and Θ : L (Γ)→ L (Λ) is any ∗-isomorphism. Then there exist groups action

by automorphisms H yτi Ki such that Λ = (K1×K2)oτ H where τ = τ1× τ2 : H y K1×K2

is the diagonal action. Moreover one can find a multiplicative character η : Q→ T, a group

isomorphism δ : Q→ H, a unitary w ∈ L (Λ), and ∗-isomorphisms Θi : L (Ni)→ L (Ki) such

that for all xi ∈ L(Ni) and g ∈ Q we have

Θ((x1⊗ x2)ug) = η(g)w((Θ1(x1)⊗Θ(x2))vδ (g))w
∗. (4.1)

Here {ug |g ∈ Q} and {vh |h ∈ H} are the canonical unitaries implementing the actions of Qy

L (N1)⊗̄L (N2) and H yL (K1)⊗̄L (K2), respectively.

From a different perspective our theorem can be also seen as a von Neumann algebraic super-

rigidity result regarding conjugacy of actions on noncommutative von Neumann algebras. Notice

that very little is known in this direction as well, as most of the known superrigidity results concern

algebras arising from actions of groups on probability spaces.

We continue with a series of preliminary results that are essential to derive the proof of Theorem

4.0.1 at the end of the section. First we present a location result for commuting diffuse property
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(T) subalgebras inside a von Neumann algebra arising from products of relative hyperbolic groups.

Theorem 4.0.2. For i = 1, ...,n let Hi < Gi be an inclusion of infinite groups such that Hi is residu-

ally finite and Gi is hyperbolic relative to Hi. Denote by H = H1× ...×Hn < G1× ...×Gn = G the

corresponding direct product inclusion. Let N1,N2⊆L (G) be two commuting von Neumann sub-

algebras with property (T). Then for every k ∈ 1,n there exists i∈ 1,2 such that Ni ≺L (Ĝk×Hk),

where Ĝk :=× j 6=kG j.

Proof. Our proof relies heavily on the use of two powerful results in geometric group theory due

to Osin [Os06] and Dahmani-Guirardel-Osin [DGO11] regrading Dehn filling constructions for

relatively hyperbolic groups. Specifically, since Hi is residually finite then using Theorem 2.27

there is a short exact sequence

1→ ker(πi) ↪→ Gi
πi−→ Fi→ 1,

where Fi is a non-elementary hyperbolic group and ker(πi) = 〈〈H0
i 〉〉= ∗t∈Ti(H

0
i )

t , for some subset

T ⊂ Gi and a finite index normal subgroup H0
i �Hi.

Following [CIK13, Notation 3.3] we now consider the von Neumann algebraic embedding

corresponding to πi, i.e. Πi : L (Gi)→L (Gi)⊗̄L (Fi) given by Πi(ug) = ug⊗vπi(g) for all g ∈G;

here ug’s are the canonical unitaries of L (G) and vh are the canonical unitaries of L (Fi). Notice

we canonically have the following embedding Π = ⊗̄n
i=1Πi : L (G)→L (G)⊗̄L (×n

i=1Fi) = M̃ .

From the hypothesis we have that Π(N1),Π(N2)⊂L (G)⊗L (×Fi) are commuting property (T)

subalgebras. Fix A ⊂ Π(N1) any diffuse amenable von Neumann subalgebra. Also fix k ∈ 1,n

and notice that M̃ = L (G)⊗L (× j 6=kFj)⊗̄L (Fk). Using [PV12, Theorem 1.4] we have either

a) A ≺M̃ L (G)⊗̄L (× j 6=kFj), or

b) Π(N2) is amenable relative to L (G)⊗̄L (× j 6=kFj) inside M̃ .

Since the Ni’s have property (T) then so do the Π(Ni)’s. Thus part b) above implies that

Π(N2)≺M̃ L (G)⊗̄L (× j 6=kFj). On the other hand, if case a) above were to hold for all A ’s then
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by [BO08, Corollary F.14] we would get that Π(N1)≺M̃ L (G)⊗̄L (× j 6=kFj). Therefore we can

always assume that Π(Ni)≺L (G)⊗̄L (× j 6=kFj) for i = 1 or 2.

Due to symmetry we only treat i = 1. Using [CK15, Proposition 8.8] we get that N1 ≺

L (Π−1(× j 6=kFj)) =L (Ĝk×ker(πk)). Thus there exist nonzero projections p∈N1, q∈L (Ĝk×

ker(πk)), nonzero partial isometry v ∈M and a ∗-isomorphism φ : pN1 p→B := φ(pN1 p) ⊂

qL (Ĝk×ker(πk))q on the image such that

φ(x)v = vx for all x ∈ pN1 p. (4.2)

Also notice that since N1 has property (T) then so does pN1 p and therefore B ⊆ qL (Ĝk ×

ker(πk))q is a property (T) subalgebra. Since ker(πk) = ∗t∈T (H0
k )

t then by further conjugat-

ing q in the factor L (Ĝk × ker(πk)) we can assume that there exists a unitary u ∈ L (Ĝk ×

ker(πk)) and a projection q0 ∈ L (Ĝk) such that B ⊆ u(q0L (Ĝk)q0)⊗̄L (ker(πk))u∗. Using

property (T) of B and [IPP05, Theorem] we further conclude that there is t0 ∈ T such that

B ≺u(q0L (Ĝk)q0⊗̄L (ker(πk)))u∗
u(q0L (Ĝk)q0⊗L ((H0

k )
t0))u∗. Composing this intertwining with

φ we finally conclude that N1 ≺M L (Ĝk×H0
k ), as desired.

Theorem 4.0.3. Under the same assumptions as in Theorem 4.0.2 for every k ∈ 1,n one of the

following must hold

1) there exists i ∈ 1,2 such that Ni ≺M L (Ĝk);

2) N1∨N2 ≺M L (Ĝk×Hk).

Proof. From Theorem 4.0.2 there exists i ∈ 1,2 such that Ni ≺ L (Ĝk×Hk). For convenience

assume that i = 1. Thus there exist nonzero projections p ∈N1, q ∈L (Ĝk×Hk), nonzero partial

isometry v∈M and a ∗-isomorphism φ : pN1 p→B := φ(pN1 p)⊂ qL (Ĝk×Hk)q on the image

such that

φ(x)v = vx for all x ∈ pN1 p. (4.3)

Notice that q ≥ vv∗ ∈ B′ ∩ qM q and p ≥ v∗v ∈ pNi p′ ∩ pM p. Also we can pick v such that
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s(EL (Ĝk×Hk)
(vv∗)) = q. Next we assume that B ≺L(Ĝk×Hk)

L(Ĝk). Thus there exist nonzero pro-

jections p′ ∈B, q′ ∈L (Ĝk), nonzero partial isometry w ∈ q′L (Ĝk×Hk)p′ and a ∗-isomorphism

ψ : p′Bp′→⊂ q′L (Ĝk)q′ on the image such that

ψ(x)w = wx for all x ∈ p′Bp′. (4.4)

Notice that q ≥ p′ ≥ ww∗ ∈ (p′Bp′)′ ∩ p′M p′ and q′ ≥ w∗w ∈ ψ(p′Bp′)′ ∩ q′M q′. Using

(4.3) and (4.4) we see that

ψ(φ(x))wv = wφ(x)v = wvx for all x ∈ p0Ni p0, (4.5)

where p0 ∈ Ni is a projection picked so that φ(p0) = p′. Also we note that if 0 = wv then

0 = wvv∗ and hence 0 = EL Ĝk×Hk
(wvv∗) = wEL (Ĝk×Hk)

(vv∗). This further implies that 0 =

ws(EL (Ĝk×Hk)
(vv∗)) = wq = w which is a contradiction. Thus wv 6= 0 and taking the polar de-

composition of wv we see that (4.5) gives 1).

Next we assume that B ⊀L (Ĝk×Hk)
L (Ĝk). Since Gk is hyperbolic relative to Hk then by

Lemma 2.1.20 we have that for all x,x1x2, ...,xl ∈M such that Bx ⊆ ∑
l
i=1 xiB we must have that

x ∈ L (Ĝk ×Hk). Hence in particular we have that vv∗ ∈ B′ ∩ qM q ⊆ L (Ĝk ×Hk) and thus

relation (4.3) implies that Bvv∗ = vNiv∗ ⊆L (Ĝk×Hk). Also for every c ∈Ni+1 we can see that

Bvcv∗ = Bvv∗vcv∗ = vNiv∗vcv∗ = vv∗vcNiv∗

= vcNiv∗ = vcNiv∗vv∗ = vcv∗vNiv∗ = vcv∗Bvv∗ = vcv∗B.

(4.6)

Therefore by Lemma 2.1.20 again we have that vcv∗ ∈L (Ĝk×Hk) and hence vNi+1v∗⊆L (Ĝk×

Hk). Thus vNiNi+1v∗ = vv∗vNiNi+1v∗ = vNiv∗vNi+1v∗ ⊆L (Ĝk×Hk), which by Popa’s inter-

twining techniques implies that N1∨N2 ≺L (Ĝk×Hk), i.e. 2) holds.

We now proceed towards proving the main result of this chapter. To simplify the exposition we

first introduce a notation that will be used throughout the section.
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Notation 4.0.4. Denote by Q = Q1×Q2, where Qi are infinite, residually finite, biexact, property

(T), icc groups. Then consider Γi = NioQ ∈RipT (Q) and consider the semidirect product Γ =

(N1×N2)oσ Q arising from the diagonal action σ = σ1×σ2 : Q→Aut(N1×N2), i.e. σg(n1,n2) =

((σ1)g(n1),(σ2)g(n2)) for all (n1,n2) ∈ N1×N2. For further use we observe that Γ is the fiber

product Γ = Γ1×Q Γ2 and thus embeds into Γ1×Γ2 where Q embeds diagonally into Q×Q. Over

the next proofs when we refer to this copy we will often denote it by diag(Q). Also notice that Γ is

an icc group with property (T) as it arises from an extension of property (T) groups.

Theorem 4.0.5. Let Γ be a group as in Notation 4.0.4 and assume that Λ is a group such that

L (Γ) = L (Λ) = M . Let ∆ : M →M ⊗̄M be the “comultiplication along Λ” i.e. ∆(vλ ) =

vλ ⊗ vλ . Then the following hold:

3) for all j ∈ 1,2 there is i ∈ 1,2 such that ∆(L (Ni))≺M ⊗̄M M ⊗̄L (N j), and

4) a) for all j ∈ 1,2 there is i ∈ 1,2 such that ∆(L (Qi))≺M ⊗̄M M ⊗̄L (N j) or

b) ∆(L (Q))≺M ⊗̄M M ⊗̄L (Q); moreover in this case for every j ∈ 1,2 there is i ∈ 1,2

such that ∆(L (Q j))≺M ⊗̄M M ⊗̄L (Qi)

Proof. Let M̃ =L (Γ1×Γ2). Since Γ<Γ1×Γ2 we notice the following inclusions ∆(L (N1)),∆(L (N2))⊂

M ⊗̄M =L (Γ×Γ)⊂L (Γ1×Γ2×Γ1×Γ2). Since Γi is hyperbolic relative to Q then using The-

orem 4.0.3 we have either

5) there exists i ∈ 1,2 such that ∆(L (Ni))≺M̃ ⊗̄M̃ M ⊗̄L (Γ1), or

6) ∆(L (N1×N2))≺M̃ ⊗̄M̃ M ⊗̄L (Γ1×Q)

Assume 5). Since ∆(L (Ni))⊂M ⊗̄L (Γ) then by Lemma 2.1.23 there is a h ∈ Γ1×Γ2×Γ1×Γ2

so that ∆(L (Ni))≺M̃ ⊗̄M̃ L (Γ×Γ∩h(Γ1×Γ2×Γ1)h−1)) = L (Γ× (Γ∩Γ1)) = M ⊗̄L ((N1×

N2)o diag(Q))∩ (N1oQ× 1)) = M ⊗̄L (N1). Note that since ∆(L (Ni)) is regular in M ⊗̄M ,

using Lemma 2.1.24, we get that ∆(L (Ni))≺M ⊗̄M M ⊗̄L (Γ1), thereby establishing 3).

Assume 6). Since ∆(L (N1 ×N2)) ⊂ L (Γ× Γ) then by Lemma 2.1.23 there is h ∈ Γ1 ×

Γ2×Γ1×Γ2 such that ∆(L (N1×N2)) ≺ L (Γ×Γ∩ h(Γ1×Γ2×Γ1×Q)h−1)) = L (Γ× (Γ∩
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(Γ1×h4Qh−1
4 ))) =M ⊗̄L ((N1×N2)odiag(Q))∩ (N1oQ×h4Qh−1

4 )). Since h4 ∈ Γ2 = N2oQ

we can assume that h4 ∈ N2. Notice that ((N1×N2)o diag(Q))∩ (N1oQ×h4Qh−1
4 ) = h4(N1×

N2)odiag(Q))∩(N1oQ×Q)h−1
4 = h4(N1×1)odiag(Q))h−1

4 and hence ∆(L (N1×N2))≺M̃ ⊗̄M̃

M ⊗̄L (N1odiag(Q)). Moreover using Lemma 2.1.25 we further have that ∆(L (N1×N2))≺M ⊗̄M

M ⊗̄L (N1odiag(Q)).

In conclusion, there exist a ∗-isomorphism on its image φ : p∆(L (N1×N2))p→B := φ(p∆(L (N1×

N2))p)⊆ qM ⊗̄L (N1odiag(Q)) and 0 6= v ∈ qM ⊗̄M p such that

φ(x)v = vx for all x ∈ p∆(L (N1×N2))p. (4.7)

Next assume that 3) doesn’t hold. Thus proceeding as in the first part of the proof of Theorem

4.0.3, we get

B ⊀M ⊗̄(N1odiag(Q)) M ⊗̄L (N1) =: M1. (4.8)

Next we observe the following inclusions

M1o1⊗σ diag(Q) = M ⊗̄L (N1)o1⊗σ diag(Q) = M ⊗̄L (N1oσ diag(Q))

⊂M ⊗̄L ((N1×N2)oσ diag(Q)) = M ⊗̄L (N1)⊗̄L (N2)odiag(Q) = M1o1⊗σ N2odiag(Q)

(4.9)

Also since Q is malnormal in N2oQ it follows from Lemma 2.1.20 that vv∗ ∈M ⊗̄L (N1o

diag(Q)) and hence Bvv∗⊂M ⊗̄L (N1odiag(Q)). Pick u∈QN p(M ⊗̄M )p(p∆(L (N1×N2))p)

and using (4.7) we see that there exist n1,n2, ...,ns ∈ p(M ⊗̄M )p satisfying
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Bvuv∗ = Bvv∗vuv∗ = vp(∆(L (N1×N2)))pv∗vnv∗ = vp(∆(L (N1×N2)))pnv∗

⊆
s

∑
i=1

vni p(∆(L (N1×N2)))pv∗ =
s

∑
i=1

vni p(∆(L (N1×N2)))pv∗vv∗

=
s

∑
i=1

vni pv∗v(∆(L (N1×N2)))pv∗ =
s

∑
i=1

vni pv∗Bvv∗ =
s

∑
i=1

vni pv∗B.

(4.10)

Then by Lemma 2.1.20 again we must have that vuv∗ ∈M ⊗̄L (N1o diag(Q)). Hence we have

shown that

vQN p(M ⊗̄M )p(p∆(L (N1×N2))p)v∗ ⊆M ⊗̄L (N1odiag(Q)). (4.11)

Since v∗v∈ p∆(L (N1×N2))p′∩ pM ⊗̄M p⊂QN p(M ⊗̄M )p(p(∆(L (N1×N2)))p then (4.11)

further implies that

vQN p(M ⊗̄M )p(p(∆(L (N1×N2)))p)′′v∗ ⊆M ⊗̄L (N1odiag(Q)). (4.12)

Here for every inclusion of von Neumann algebras R ⊆T and projection p ∈R we used the for-

mula QN pT p(pRp)′′= pQN T (R)′′p [Po03, Lemma 3.5 ]. As vp∆(M )pv∗⊆ vQN p(M ⊗̄M )p(p(∆(L (N1×

N2)))p)′′v∗ we conclude that ∆(M ) ≺L (N1oQ) which contradicts the fact that N2 is infinite.

Thus 3) must always hold.

Next we derive 4). Again we notice that ∆(L (Q1)), ∆(L (Q2))⊂ ∆(M )⊂M ⊗̄M =L (Γ×

Γ)⊂L (Γ1×Γ2×Γ1×Γ2). Using Theorem 4.0.3 we must have that either

7) ∆(L (Qi))≺M̃ ⊗̄M̃ M ⊗̄L (Γ1), or

8) ∆(L (Q))≺M̃ ⊗̄M̃ M ⊗̄L (Γ1×Q).

Proceeding exactly as in the previous case, and using Lemma 2.1.24, we see that 7) implies

∆(L (Qi))≺M ⊗̄M M ⊗̄L (N1) which in turn gives 4a). Also proceeding as in the previous case,
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and using Lemma 2.1.25, we see that 8) implies

∆(L (diag(Q))≺M ⊗̄M M ⊗̄L (N1odiag(Q)). (4.13)

To show the part 4b) we will exploit (4.13). Notice that there exist nonzero projections r ∈

∆(L (Q)), t ∈M ⊗̄L (N1odiag(Q)), nonzero partial isometry w∈ r(M ⊗̄M )t and ∗-isomorphism

onto its image φ : r∆(L (Q))r→ C := φ(r∆(L (Q))r)⊆ t(M ⊗̄L (N1odiag(Q)))t such that

φ(x)w = wx for all x ∈ r∆(L (Q))r. (4.14)

Since L (Q) is a factor we can assume without loss of generality that r = ∆(r1 ⊗ r2) where

ri ∈L (Qi). Hence C = φ(r∆(L (Q))r) = φ(∆(r1L (Qi)r2))⊗̄r2L (Q2)r2 =: C1∨C2 where we

denoted by Ci = φ(∆(riL (Qi))ri) ⊆ t(M ⊗̄L (N1o diag(Q)))t. Notice that Ci’s are commuting

property (T) subfactors of M ⊗̄L (N1odiag(Q)). Since NioQ is hyperbolic relative to {Q} and

seeing C1∨C2 ⊆M ⊗̄L (Niodiag(Q))⊂L (Γ1×Γ2× (N1odiag(Q))) then by applying Theo-

rem 4.0.3 we have that there exits i ∈ 1,2 such that

9) C1 ≺M̃ ⊗̄L (N1odiag(Q)) L (Γ1×Γ2) or

10) C1∨C2 ≺M̃ ⊗̄L (N1odiag(Q)) L (Γ1×Γ2×diag(Q)).

Since C1 ⊂M ⊗̄M then 9) and Lemma 2.1.26 imply that C1 ≺M ⊗̄M M ⊗ 1 which by [Io11,

Lemma 9.2] further implies that C1 is atomic, which is a contradiction. Thus we must have

10). However since C1 ∨C2 ⊂M ⊗̄M then 10) and Lemma 2.1.26 give that C1 ∨C2 ≺M ⊗̄M

M ⊗̄L (diag(Q)) and composing this intertwining with φ (as done in the proof of the first case

in Theorem 4.0.3) we get that ∆(L (Q)) ≺M ⊗̄M M ⊗̄L (diag(Q)). Now we show the moreover

part. So in particular the above intertwining shows that we can assume from the beginning that

C = C1 ∨C2 ⊂ t(M ⊗̄L (diag(Q)))t. Since Qi are biexact, weakly amenable then by applying

[PV12, Theorem 1.4] we must have that either C1≺M ⊗̄L (diag(Q1)) or C2≺M ⊗̄L (diag(Q1))

or C1∨C2 is amenable relative to M ⊗̄L (diag(Q1)) inside M ⊗̄M . However since C1∨C2 has
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property (T) the last case above still entails that C1∨C2 ≺M ⊗̄L (diag(Q1)) which completes the

proof.

Theorem 4.0.6. Let Γ be a group as in Notation 4.0.4 and assume that Λ is a group such that

L (Γ) =L (Λ) =M . Let ∆ : M →M ⊗̄M be the “commultiplication along Λ” i.e. ∆(vλ ) = vλ⊗

vλ . Also assume for every j ∈ 1,2 there is i ∈ 1,2 such that either ∆(L (Qi))≺M ⊗̄M M ⊗̄L (Q j)

or ∆(L (Qi))≺M ⊗̄M M ⊗̄L (N j). Then one can find subgroups Φ1,Φ2 6Φ6 Λ such that

1. Φ1,Φ2 are infinite, commuting, property (T), finite-by-icc groups;

2. [Φ : Φ1Φ2]< ∞ and QN
(1)
Λ
(Φ) = Φ;

3. there exist µ ∈U (M ), z ∈P(Z (L (Φ))), h = µzµ∗ ∈P(L (Q)) such that

µL (Φ)zµ
∗ = hL (Q)h. (4.15)

Proof. For the proof of this result we built upon the strategy used in the proof of [CU18, Claim

5.2]. We encourage the reader to consult this result beforehand as we will focus mainly on the new

aspects of the technique. By hypothesis, using [DHI16, Theorem 4.1] (see also [Io11, Theorem 3.1]

and [CdSS15, Theorem 3.3]), one can find a subgroup Σ < Λ with CΛ(Σ) non-amenable such that

L (Q1) ≺M L (Σ). Also recall that Q < Γ is malnormal and has property (T). Let Ω = vCΛ(Σ).

Let {O1, ...,Ok, ...} be a countable enumeration of the finite orbits under conjugation by Σ, and

note that ∪kOk = Ω. Finally, let Ωk = 〈O1, ...,Ok〉 6 Λ, and note that Ωk ↗ Ω. Then using the

same argument from [CU18, Claim 5.2] one can find nonzero projections a ∈L (Q2), q ∈L (Ωk)

a nonzero partial isometry w ∈ L (Q) a subalgebra D ⊆ ηqL (Ωk)qzµ∗ and a ∗-isomorphism

φ : aL (Q2)a→D such that

4) D ∨D ′∩ηqL (Ωk)qzη∗ ⊆ ηqL (Ωk)qzη∗ is finite index and

5) φ(x)w = wx for all x ∈ aL (Q2)a.
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Let r = ηqzη∗, ww∗ ∈ D ′ ∩ rL (Q)r, w∗w ∈ aL (Q2)a′ ∩ aL (Q)a = L (Q1)⊗Ca. Thus exist

b ∈L (Q1) projection st w∗w = b⊗ a. Pick c ∈U(L (Q))such that w = c(b⊗ a) then (4) gives

that

Dww∗ = wL (Q2)w∗ = c(Cb⊗aL(Q2)a)c∗. (4.16)

Moreover, the same argument from the proof of [CU18, Claim 5.2] shows that we can assume the

following is a finite inclusion of II1 factors

D ⊆ ηqL (Ωk)qzη
∗ (4.17)

Thus if we denote by Ξ = QN Λ(Ωk) using (4.16) and (4.17) above we see that

c(b⊗a)L(Q)(b⊗a)c∗ = ww∗ηqzQN L (Λ)(L (Ωk))
′′qzη

∗ww∗ = ww∗ηqzL(Ξ)qzη
∗ww∗ (4.18)

and also

c(bL (Q1)b⊗Ca)c∗ = (c(Cb⊗aL (Q2)a)c∗)′∩ c(b⊗a)L (Q)(b⊗a)c∗

= (Dww∗)′∩ww∗ηqzL (Ξ)qzη
∗ww∗ = ww∗(D ′∩ηqzL (Ξ)qzη

∗)ww∗.

(4.19)

Also, using (4.17) and [Po02, Lemma 3.1] we have that

D ∨ (ηqzL (Ωk)zqη
∗)′∩ηqzL (Ξ)zqη

∗ ⊆ f D ∨D ′∩ηqzL (Ξ)zqη
∗ ⊆ ηqzL (Ξ)zqη

∗, (4.20)

where the symbol ⊆ f above means inclusion of finite index.

Relation (4.16) also shows that
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D ∨ (ηqzL (Ωk)zqη
∗)′∩ηqzL (Ξ)zqη

∗ ⊆ f ηqzL (Ωk)zqη
∗∨ (ηqzL (Ωk)zqη

∗)′∩ηqzL (Ξ)zqη
∗

⊆ ηqzL (ΩkvCΛ(Ωk))zqη
∗ (4.21)

⊆ ηqzL (Ξ)zqη
∗ (4.22)

Here vCΛ(Ωk) = {λ ∈ Λ : |λ Ωk |< ∞} is the virtual centralizer of Ωk in Λ.

If we let Φ = QN
(1)
Λ
(Ξ) then the same argument as in [CU18, Claim 5.2] shows that Ξ 6 Φ has

finite index.

Combining (4.19), (4.16) (4.18) notice that

ww∗(D ∨D ′∩ηqzL (Ξ)zqη
∗)ww∗ = ww∗ηqzL (Ξ)zqη

∗ww∗ = ww∗ηqzL (Φ)zqη
∗ww∗ (4.23)

In particular (4.23) shows that ηqzL (Ξ)zqη∗≺ηqzL (Ξ)zqη∗ D∨D ′∩ηqzL (Ξ)zqη∗ and using

the finite index condition in (4.20) we get that ηqzL (Ξ)zqη∗≺ηqzL (Ξ)zqη∗ D∨(ηqzL (Ωk)zqη∗)′∩

ηqzL (Ξ)zqη∗. Thus, by (4.21) we further get that ηqzL (Ξ)zqη∗≺ηqzL (Ξ)zqη∗ ηqzL (ΩkvCΛ(Ωk))zqη∗

and since ΩkvCΛ(Ωk) 6 Φ and [Φ : Ξ] < ∞ then using [CI17, Lemma 2.6] we get that [Φ :

ΩkvCΛ(Ωk)]< ∞.

Note that (4.18) also shows that

c(b⊗a)L (Q)(b⊗a)c∗ = ww∗ηqzL (Ξ)zqη
∗ww∗ = ww∗ηqzL (Φ)zqη

∗ww∗. (4.24)

As Q has property (T) then by [CI17] so is Φ (or Ξ) and hence ΩkvCΛ(Ωk) as well. Let {On}n

be an enumeration of all the orbits in Λ under conjugation by Ωk. Denote by Σl := 〈O1, ...,Ol〉.

Clearly Σl 6 Σl+1 and Ωk normalizes Σl for all l. Notice that ΣlΩk 6 Σl+1Ωk for all l and in

fact ΣlΩk ↗ ΩkvCΛ(Ωk). Since ΩkvCΛ(Ωk) has property (T) there exists l0 such that Σl0Ωk =

ΩkvCΛ(Ωk). In particular there exists a finite index subgroup Ω′k 6Ωk such that [Ω′k,Σl0 ] = 1 thus
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Ω′k,Σl0 6
f ΩkvCΛ(Ωk) 6 f Φ are commuting subgroups. Moreover if t = z(ww∗) is the central

support of ww∗ in ηzL(Φ)qzη∗ then by (4.24) we also have that L (Q) ⊇ η0qzL (Ξ)qzη∗0 t. Now

since the Qi’s are biexact the same argument from [CdSS15] shows that the finite conjugacy radical

of Φ is finite. Hence Φ is a finite-by-icc group and this canonically implies that Φ1 := Ω′k and

Φ2 := Σl0 are also finite-by-icc. As Φ has property (T) then so are the Φi’s. To this end we have

shown there exist subgroups Φ1,Φ2 6Φ6 Λ satisfying the following properties:

1. Φ1,Φ2 are infinite, commuting, property (T), finite-by-icc groups;

2. [Φ : Φ1Φ2]< ∞ and QN
(1)
Λ
(Φ) = Φ;

3. there exist µ ∈U (M), d ∈P(L (Φ)), h = µdµ∗ ∈P(L (Q)) such that

µdL (Φ)dµ
∗ = hL (Q)h. (4.25)

In the last part of the proof we show we can actually “bump” d to its central support in L (Q)

and all the required relations in the statement still hold. Since L (Q) is a factor then using

(4.25) one can find v ∈ U (M ) such that vL (Φ)zv∗ ⊆ L (Q) where z := zL (Q)(d) and hence

vL (Φ)zv∗ ⊆ rL (Q)r, where r = vzv∗. Fix e6 z and f 6 d projections (in the factor L (Φ)z) such

that τ( f ) > τ(e). Notice that from (4.25) we have µ f L (Φ) f µ∗ = lL (Q)l and veL (Φ)ev∗ ⊆

roL (Q)ro where ro = vev∗ and l = µ f µ∗. Let vo ∈L (Q) be a unitary such that ro 6 volv∗o. Thus

veL (Φ)ev∗ ⊆ roL (Q)ro ⊆ volL (Q)lv∗o = voµ f L (Φ) f µ∗v∗o and hence

µ
∗v∗oveL (Φ)e⊆ f L (Φ) f µ

∗v∗ov⊂L (Φ)µ∗v∗ov. (4.26)

Next let e+ p1 + p2 + ...+ ps = z where pi ∈ L (Φ)z are mutually orthogonal projection such

that e ∼L (Φ)z pi for all i ∈ 1,s−1 and ps ≺L (Φ) e. Next let ui be unitaries in L (Φ)z such

that ui piu∗i = e for all i ∈ 1,s−1 and us psu∗s = z′o 6 e. Combining this with relation (4.26) we

get µ∗v∗oveL (Φ)pi = µ∗v∗oveL (Φ)u∗i eui = µ∗v∗oveL (Φ)eui ⊆L (Φ)µ∗v∗ovui for all i ∈ 1,s−1.

Similarly we get µ∗v∗oveL (Φ)ps = µ∗v∗oveL (Φ)u∗s z′ous = µ∗v∗oveL (Φ)z′ous⊆ µ∗v∗oveL (Φ)eus⊂
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L (Φ)µ∗v∗ovus. Using these relations we conclude that

µ
∗v∗oveL (Φ) = µ

∗v∗oveL (Φ)z = µ
∗v∗oveL (Φ)(e+ p1 + p2 + ...+ ps)

⊆ µ
∗v∗oveL (Φ)e+

s

∑
i=1

µ
∗v∗oveL (Φ)pi

⊆L (Φ)µ∗v∗ov+
s

∑
i=1

L (Φ)µ∗v∗ovui.

(4.27)

In particular this relation shows that µ∗v∗ove ∈QN
(1)
L (Λ)

(L (Φ)) and since QN
(1)
L (Λ)

(L (Φ))′′ =

L (Φ) by 2. then we conclude that µ∗v∗ove ∈ L (Φ). Thus one can check that veL (Φ)ev∗ =

vev∗v∗oµµ∗voveL (Φ)....= vev∗v∗oµ f L (Φ) f µ∗vovev∗ = vzov∗v∗olL (Φ)lvovev∗ = roL (Q)ro.

In conclusion we have proved that vL (Φ)zv∗⊆ rL (Q)r and for all e6 z and f 6 d projections

in the factor L (Φ)z such that τ( f )> τ(e) we have veL (Φ)ev∗ = roL (Q)ro where ro 6 r = vzv∗.

By Lemma 2.1.29 this clearly implies that vL (Φ)zv∗ = rL (Q)r which finishes the proof.

Lemma 4.0.7. Let Γ be a group as in Notation 4.0.4 and assume that Λ is a group such that

L (Γ) = L (Λ) = M. Also assume there exists a subgroup Φ < Λ, a unitary µ ∈ U (M ) and

projections z ∈Z (L (Φ)), r = µzµ∗ ∈L (Q) such that

µL (Φ)zµ
∗ = rL (Q)r. (4.28)

For every λ ∈ Λ\Φ so that
∣∣∣Φ∩Φλ

∣∣∣= ∞ we have zuλ z = 0. In particular, there is λo ∈ Λ\Φ so

that
∣∣∣Φ∩Φλo

∣∣∣< ∞.

Proof. Notice that since Q < Γ = (N1×N2)oQ is almost malnormal then we have the following

property: for every sequence L (Q) 3 xn → 0 weakly and every x,y ∈ M such that EL (Q)(x) =

EL (Q)(y) = 0 we have

‖EL (Q)(xxky)‖2→ 0, as k→ ∞. (4.29)

Using basic approximations and the L (Q)-bimodularity of the expectation we see that it suffices

to check (4.29) only for elements of the form x = un and y = um where n,m ∈ (N1×N2) \ {1}.
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Consider the Fourier decomposition xn = ∑h∈Q τ(xkuh−1)uh and notice that

‖EL (Q)(xxky)‖2
2 = ‖∑

h∈Q
τ(xkuh−1)δnhm,Qunhm‖2

2

= ‖∑
h∈Q

τ(xkuh−1)δnσh(m)h,Qunσh(m)h‖2
2 = ∑

h∈Q,σh(m)=n−1

|τ(xkuh−1)|2.
(4.30)

Since the action Q y Ni has finite stabilizers one can easily see that the set {h ∈ Q : σh(m) =

n−1} is finite and since xn → 0 weakly then ∑h∈Q,σh(m)=n−1 |τ(xkuh−1)|2 → 0 as k → ∞ which

concludes the proof of (4.29). Using the conditional expectation formula for compression we

see that (4.29) implies that for every sequence L (Q) 3 xn → 0 weakly and every x,y ∈ rM r

so that ErL (Q)r(x) = ErL (Q)r(y) = 0 we have ‖ErL (Q)r(xxky)‖2 → 0, as k→ ∞. Thus using the

formula 4.28 we get that for all µL (Φ)zµ∗ 3 xn → 0 weakly and every x,y ∈ µzM zµ∗ so that

EµL (Φ)zµ∗(x) = EµL (Φ)zµ∗(y) = 0 we have ‖EµL (Φ)zµ∗(xxky)‖2→ 0, as k→ ∞. This entails that

for all L (Φ)z 3 xn→ 0 weakly and every x,y ∈ zM z satisfying EL (Φ)z(x) = EL (Φ)z(y) = 0 we

have

‖EL (Φ)z(xxky)‖2→ 0, as k→ ∞. (4.31)

Fix λ ∈Λ\Φ so that |Φ∩Φλ |=∞. Hence there are infinite sequences λk,ωn ∈Λ so that λωkλ−1 =

λk for all integers k. Since λ ∈ Λ \Φ then EL (Φ)(uλ z) = EL (Φ)z(zuλ−1) = 0. Also we have that

uωkz→ 0 weakly as k→ ∞. Using these calculations we have that

‖EL (Φ)(zuλ zuλ−1z)‖2
2 = ‖EL (Φ)(uλ zuλ−1z)‖2

2 = ‖uλωkλ−1EL (Φ)(uλ zuλ−1z)‖2
2

=‖EL (Φ)(uλωk
zuλ−1z)‖2

2 = ‖EL (Φ)z(zuλ zuωkzuλ−1z)‖2
2→ 0 as k→ ∞.

(4.32)

Also using (4.32) the last quantity above converges to 0 as k→∞ and hence EL (Φ)(zuλ zuλ−1z) = 0

which entails that zuλ z = 0, as desired. For the remaining part notice first that since [Γ : Q] = ∞

then (4.28) implies that [Λ : Φ] = ∞. Assume by contradiction that for all λ ∈ Λ \Φ we have

zuλ z = 0. As [Λ : Φ] = ∞ then for every positive integer l one can construct inductively λi ∈ Λ\Φ
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with i ∈ 1, l such that λiλ
−1
j ∈ Λ \Φ for all i > j such that i, j ∈ 1, l. But this implies that 0 =

zu
λiλ
−1
j

z = zuλiuλ
−1
j

z and hence u
λ
−1
i

zuλi are mutually orthogonal projections when i = 1, l. This is

obviously false when l sufficiently large.

Theorem 4.0.8. Assume the same conditions as in Theorem 4.0.6. Then one can find subgroups

Φ1,Φ2 6Φ6 Λ so that

1. Φ1,Φ2 are infinite, icc, property (T) groups so that Φ = Φ1×Φ2;

2. QN
(1)
Λ
(Φ) = Φ;

3. There exists µ ∈U (M ) such that µL (Φ)µ∗ = L (Q).

Proof. From Theorem 4.0.6 there exist subgroups Φ1,Φ2 6Φ6 Λ such that

1. Φ1,Φ2 are, infinite, commuting, finite-by-icc, property (T) groups so that [Φ : Φ1Φ2]< ∞;

2. QN
(1)
Λ
(Φ) = Φ;

3. There exist µ ∈U (M ) and z ∈P(Z (L (Φ))) with h = µzµ∗ ∈P(L (Q)) satisfying

µL (Φ)zµ
∗ = hL (Q)h. (4.33)

Next we show that in (4.33) we can pick z ∈ Z (L (Φ)) maximal with the property that for

every projection t ∈Z (L (Φ)z⊥) we have

L(Φi)t ⊀M L (Q) for i = 1,2. (4.34)

To see this let z ∈ F be a maximal family of mutually orthogonal (minimal) projections

zi ∈ Z (L (Φ)) such that L (Φ)zi ≺M L (Q). Note that since Φ has finite conjugacy radical

it follows that F is actually finite. Next let z 6 ∑zi := a ∈ Z (L (Φ)) and we briefly argue that

L (Φ)a≺s
M L (Q). Indeed since L (Φ)a′∩aM a = a(L (Φ)′∩M )a =Z (L (Φ))a and the later

is finite dimensional then for every r ∈L (Φ)a′∩aM a there is zi ∈F such that rzi = zi 6= 0. Since
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L (Φ)zi ≺M L (Q) and then L (Φ)r ≺M L (Q) as desired. Thus applying Lemma 2.1.27, after

perturbing µ to a new unitary we get µL (Φ)aµ∗ = hoL (Q)ho. Finally, we show (4.34). Assume

by contradiction there is to ∈ Z (L (Φ)z⊥) so that L (Φi)to ≺M L (Q) for some i = 1,2. Thus

there exist projections r ∈ L (Φ)to, q ∈ L (Q), a partial isometry w ∈M and a ∗-isomorphism

on the image φ : rL (Φ)r→ B := φ(rL (Φ)r) ⊆ qL (Q)q such that φ(x)w = wx. Notice that

w∗w ∈ to(L (Φi)
′ ∩M )to and ww∗ ∈B′ ∩ qM q. But since Q < Γ is malnormal it follows that

B′ ∩ qM q ⊆ qL (Q)q and hence ww∗ ∈ qL (Q)q. Using this in combination with previous

relations we get that wrL (Φi)rw∗ = Bww∗ ⊆ L (Q) and extending w to a unitary u we have

that urL (Φi)ru∗ ⊆ L (Q). Since L (Q) is a factor we can further perturb the unitary u so that

uL (Φi)rou∗ ⊆ L (Q) where r 6 ro 6 to is the central support of r in L (Φi)to. Using malnor-

mality of Q again we further get ro(L (Φi)∨L (Φi)
′∩M )rou∗ ⊆L (Q) and perturbing u we can

further assume that (L (Φi)∨L (Φi)
′∩M )sou∗⊆L (Q) where ro6 so is the central support or ro

in L (Φi)∨L (Φi)
′∩M ). In particular, u(L (Φ)sou∗ ⊆L (Q) and hence L (Φ)so ⊆ u∗L (Q)u.

Since r 6 ro 6 so and r 6 to the previous containment implies that there is a minimal projection

s′ ∈L (Φ)a⊥ so that L (Φ)s′ ≺L (Q) which contradicts the maximality assumption on F . Fi-

nally replacing z with a in our statement, etc our claim follows.

Next fix t ∈Z (L (Φ)z⊥). Since L (Φ1)t and L (Φ2)t are commuting property (T) von Neu-

mann algebras then using the same arguments as in the first part of the proof of Theorem 4.0.5

there are two possibilities: either i) there exists j ∈ 1,2 such that L (Φ j)t ≺M L (N2) or ii)

L (Φ)t ≺M L (N2oQ). Next we briefly argue ii) is impossible. Indeed, assuming ii), Theorem

4.0.2 for n = 1 would imply the existence of j ∈ 1,2 so that L (Φ j)t ≺M L (Q) which obviously

contradicts the choice of z. Thus we have i) and passing to the relative commutants intertwining

we have that L (N1) ≺L (Φ j)t ′∩ tM t = t(L (Φ j)
′∩M )t. Using the relations the Φ j’s we see

that t(L (Φ j)
′∩M )t ⊂ tL (Φ j)∨L (Φ j)

′∩M )t ⊆ tL (Φ jvCΛ(Φ j))t ⊆ tL (Φ)t. In conclusion,

we have

L (N1)≺M tL (Φ)t, for all t ∈Z (L (Φ)z⊥). (4.35)

Let A = {λ ∈ Λ : |Φ∩Φλ | < ∞} and B = {λ ∈ Λ : |Φ∩Φλ | = ∞}. Note that A∪B = Λ and
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A 6= /0. Since N1 is infinite then for every λ ∈ A we have that L (N1) ⊀M L (Φ∩Φλ )z⊥. Thus

using (4.35) together with the same argument from the proof of [PV06, Theorem 6.16], working

under z⊥, we get z⊥EL (Φ)(uλ z⊥xz⊥) = 0 for all x ∈M . This further implies that z⊥uλ z⊥ = 0 for

all λ ∈ A and hence uλ z⊥uλ−1 6 z.

On the other hand by Lemma 4.0.7 we have that for all λ ∈ B we get zuλ z = 0 and hence

uλ zuλ−1 6 z⊥. So if B 6= /0 we obviously have equality in the previous two relations, i.e. uλ zuλ−1 =

z⊥ for all λ ∈ B and uλ z⊥uλ−1 = z for all λ ∈ A. These further imply there exist ao ∈ A and b0 ∈ B

such that A = a0CΛ(z⊥) and B = boCΛ(z); here CΛ(z)6Λ is the subgroup of all elements of Λ that

commute with z and similarly for CΛ(z⊥). Thus Λ = A∪B = aoCΛ(z⊥)∪ boCΛ(z). Thus we can

assume, without loss of generality, that [Λ : CΛ(z)]< ∞. But since Λ is icc this implies that z = 1.

The rest of the statement follows.

Theorem 4.0.9. In the Theorem 4.0.5 we cannot have case 4a).

Proof. Assume by contradiction that for all j ∈ 1,2 there is i ∈ 1,2 such that ∆(L (Qi)) ≺M ⊗̄M

M ⊗̄L (N j). Using [DHI16, Theorem 4.1] and the property (T) on N j one can find a subgroup

Σ < Λ such that L (Qi) ≺M L (Σ) and L (N j) ≺M L (CΛ(Σ)). Since µL (Φ)µ∗ = L (Q) and

Qi are biexact then by the product rigidity in [CdSS15] one can assume there is a unitary u ∈

L (Q) such that uL (Q1)u∗ =L (Φ1)
t and uL (Q2)u∗ =L (Φ2)

1/t . Thus we get that L (Φi)≺M

L (Σ) and hence [Φi : gΣg−1∩Φi]< ∞. So working with gΣg−1 instead of Σ we can assume that

[Φi : Σ∩Φi] < ∞.In particular Σ∩Φi is infinite and since Φ is almost malnormal in Λ it follows

that CΛ(Σ∩Φi) < Φ. Thus we have that L (N j) ≺M L (CΛ(Σ)) ⊆ L (CΛ(Σ∩Φi)) ⊂ L (Φ) =

µ∗L (Q)µ which is obviously a contradiction.

Theorem 4.0.10. Let Γ be a group as in Notation 4.0.4 and assume that Λ is a group such that

L (Γ) = L (Λ) = M . Let ∆ : M →M ⊗̄M be the comultiplication “along Λ” i.e. ∆(vλ ) =

vλ ⊗ vλ . Then the following hold:

i) ∆(L (N1)),∆(L (N2)),∆(L (N1×N2)≺s
M ⊗̄M L (N1×N2)⊗̄L (N1×N2), and

ii) there is a unitary u ∈M ⊗̄M such that u∆(L (Q))u∗ ⊆L (Q)⊗̄L (Q).
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Proof. First we show i). From Theorem 4.0.5 we have that for all j ∈ 1,2 there is ji ∈ 1,2

such that ∆(L (N ji)) ≺M ⊗̄M M ⊗̄L (N j). Notice that since NM ⊗̄M ∆(L (Ni))
′′ ⊃ ∆(M ) and

∆(M )′∩M ⊗̄M =C1 then by [DHI16, Lemma 2.4 part (3)] we actually have ∆(L (N ji))≺s
M ⊗̄M

M ⊗̄L (N j). Notice that for all i 6= k we have ji 6= jk. Otherwise we would have ∆(L (N ji) ≺s

M ⊗̄L (N1) and ∆(L (N ji) ≺s M ⊗̄L (N2) which by [DHI16, Lemma 2.8 (2)] would imply that

∆(L (N ji) ≺s M ⊗̄L (N1 ∩N2) = M ⊗ 1 which is a contradiction. Furthermore using the same

arguments as in [Is16, Lemma 2.6] we have that ∆(L (N1×N2)≺s
M ⊗̄M M ⊗̄L (N1×N2). Then

working on the left side of the tensor we get that ∆(L (N1×N2) ≺s
M ⊗̄M L (N1×N2)⊗̄L (N1×

N2).

Next we show ii). First we claim there is unitary u ∈M ⊗̄M such that u∆(L (Q))u∗ ⊆

M ⊗̄L (Q). To see this notice that 4b) in Theorem 4.0.5 implies that there is φ : p∆(L (Q)p→

C := φ(p∆(L (Q))p)⊆ q(M ⊗̄L (Q))q a ∗-isomorphism so that

φ(x)v = vx for all x ∈ p∆(L (Q))p. (4.36)

We also have vv∗ ∈ C ′∩q(M ⊗̄M )q and v∗v ∈ p∆(L (Q))p′∩ pM ⊗̄M p and moreover we can

assume that s(EM ⊗̄L (Q)(vv∗)) = q. If C ≺M ⊗̄L (Q) M ⊗ 1 then using the same argument form

the first part of the proof of Theorem 4.0.3 we would get that ∆(L (Q)) ≺M ⊗̄M M ⊗ 1 which

contradicts [IPV10, Proposition 7.2.2]; hence C ⊀M ⊗̄L (Q) M ⊗ 1. Since Q is malnormal in Γ

then by Lemma 2.1.20 we have that vv∗ ∈ C ′ ∩ q(M ⊗̄M )q ⊆ C ′ ∩ q(M ⊗̄L (Q))q and hence

relation (4.36) implies that vp∆(L (Q))pv∗ = C vv∗ ⊆M ⊗̄L (Q) since M ⊗̄L (Q) is a factor

there is a unitary w ∈M ⊗̄M such that w∆(L (Q))w∗ ⊆M ⊗̄L (Q), as desired.

To this end we notice that the same arguments as above (in all theorems involved) while work-

ing on the left tensor one can show there is a unitary v ∈M ⊗̄M such that v∆(L (Q))v∗ ⊆

L (Q)⊗̄M . Combining this with the claim above and using [DHI16, Lemma 2.8(2)] we get

that ∆(L (Q)) ≺s
M ⊗̄M L (Q)⊗̄L (Q). As ∆(L (Q)) ⊀M ⊗̄M M ⊗̄1,1⊗̄M then one can iterate

the same argument as in the proof of the claim above to show that one can find a new unitary
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u ∈M ⊗̄M such that u∆(L (Q))u∗ ⊆L (Q)⊗̄L (Q).

4.1 Proof of Theorem 4.0.1

Proof. We divide the proof into separate parts to improve the exposition.

4.1.1 Reconstruction of the Acting Group Q

To accomplish this we will use the notion of height for elements in group von Neumann al-

gebras as introduced in [IPV10, Io11]). From the previous theorem recall that u∆(L (Q))u∗ ⊆

L (Q)⊗̄L (Q). Let A = u∆(L (N1))u∗. Next we claim that

hQ×Q(u∆(Q)u∗)> 0. (4.37)

For every x,y ∈L (Q)⊗̄L (Q) and every a ∈ A ⊗̄A supported on a finite set F ⊂ N = N1×N2

we have that

‖EA ⊗̄A (xay)‖2
2 = ‖∑

q,l
τ(xuq−1)τ(yul)EA ⊗̄A (uqaul−1)‖2

2

= ‖∑
q,l

τ(xuq−1)τ(yul)EA ⊗̄A (σq(a)uql−1)‖2
2

= ‖∑
q

τ(xuq−1)τ(yul)σq(a)‖2
2

= ‖ ∑
q∈Q,n∈N2

τ(xuq−1)τ(yul)τ(aun−1)uσq(n)‖
2
2

= ∑
r∈N2

| ∑
σq(n)=r

τ(xuq−1)τ(yul)τ(aun−1)|2

6 h2
Q×Q(x) ∑

r∈N2

( ∑
q∈Q :σq−1(r−1)∈F

|τ(yul)||τ(auσq−1(r)|)
2

6 h2
Q×Q(x)‖y‖2

2‖a‖2
2 max

r∈N2
|{q ∈ Q : σq−1(r−1) ∈ F}|.

(4.38)

This estimate leads to the following property: for every finite sets K,S⊂Q, every a∈ span{A ⊗̄A ug :
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g ∈ K} and all ε > 0 there exist a scalar C > 0 and a finite set F ⊂ N2 such that for all x,y ∈

L (Q)⊗̄L (Q) we have

‖P∑s∈S A ⊗̄A us(xay)‖2
2 6 |K||S|C(h2

Q×Q(x)‖y‖2
2‖a‖2

2 max
r∈N2
|{q ∈ Q : σq−1(r−1) ∈ F}|)+ ε‖x‖∞‖y‖∞

(4.39)

Note this follows directly from (4.38) after we decompose the a and the projection P∑s∈S A ⊗̄A us .

Next we use (4.39) to prove our claim. Fix ε > 0. Since ∆(A ) ⊀M ⊗ 1, 1⊗M then by

Theorem 2.1.19 one can find a finite subset Fo ⊂ N2 \N × 1∪ 1×N such that aFo ∈ A ⊗̄A is

supported on Fo and ‖a−aFo‖2 6 ε . Since ∆(A )≺s A ⊗̄A there is a finite S⊆ Q×Q such that

‖P∑s∈S A ⊗̄A us(a)−a‖2 6 ε for all a ∈ ∆(A ). (4.40)

Assume by contradiction (4.37) doesn’t hold. Thus there is a sequence gn ∈ Q such that

hQ×Q(tn) = hQ×Q(u∆(ugn)u
∗)→ 0 as n→ ∞. As tn normalizes ∆(A ) then one can see that

1− ε = ‖tnat∗n‖2
2− ε 6 ‖P∑s∈S A ⊗̄A us(tnat∗n)‖2

2

6 ‖|P∑s∈S A ⊗̄A us(tnat∗n)‖2
2 + ε

6 |Fo||S|C(h2
Q×Q(tn)‖tn‖2

2‖aFo‖2
2 max

r∈N2
|{q ∈ Q : σq−1(r−1) ∈ Fo}|)+ ε‖tn‖2

∞

6 |Fo||S|C(h2
Q×Q(tn)max

r 6=1
|StabQ(r)||Fo|)+2ε.

(4.41)

Since the stabilizers sizes are uniformly bounded we get a contradiction if ε > 0 is arbitrary

small. To this end we notice that the height condition together with Theorem 4.0.8 and [CU18,

Lemmas 2.4,2.5] already imply that hQ(µΦµ∗)> 0 and by [IPV10, Theorem 3.1] there is a unitary

µ0 ∈M such that Tµ0Φµ∗0 = TQ.
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4.1.2 Reconstruction of a Core Subgroup and its Product Feature

From Theorem 4.0.10 have that ∆(L (N1×N2)) ≺s
M ⊗̄M L (N1×N2)⊗̄L (N1×N2). Pro-

ceeding exactly as in the proof of [CU18, Claim 4.5] we can show that ∆(A ) ⊆ A ⊗̄A , where

A = uL (N1×N2)u∗. By Lemma 2.1.28, there exists a subgroup Σ < Λ such that A = L (Σ).

The last part of the proof of [CU18, Theorem 5.2] shows that Λ = ΣoΦ. In order to reconstruct

the product feature of Σ, we need a couple more results.

Claim 4.1.1. For every i = 1,2 there exists j = 1,2 such that

∆(L (N j))≺s L (N1×N2)⊗̄L (Ni). (4.42)

Proof of Claim. We prove this only for i = 1 as the other case is similar. Also notice that since

NM⊗M (∆(L (N j)))
′′ ⊇ ∆(M ) and ∆(M )′∩M ⊗̄M = C1 then to establish (4.42) we only need

to show that ∆(L (N j)) ≺ L (N1×N2)⊗̄L (Ni). From above we have ∆(L (N1×N2) ≺M ⊗̄M

L (N1×N2)⊗̄L (N1×N2). Hence there exist nonzero projections ai ∈ ∆(L (Ni)) and b∈L (N1×

N2)⊗̄L (N1×N2), a partial isometry v ∈M ⊗̄M and an ∗-isomorphism on the image Ψ : a1⊗

a2∆(L (N1×N2))a1⊗ a2 → Ψ(a1⊗ a2∆(L (N1×N2)a1× a2) := R ⊆ bL (N1×N2)⊗̄L (N1×

N2)b such that Ψ(x)v = vx for all x ∈ a1⊗a2∆(L (N1×N2))a1⊗a2.

Denote by Di := Ψ(ai∆(L (Ni)))ai)⊆ bL (N1×N2)⊗̄L (N1×N2)b and notice that D1 and D2

are commuting property (T) diffuse subfactors. Since the group N2 is (F∞)-by-(non-elementary hy-

perbolic group) then by [CIK13, CK15] it follows that there is j = 1,2 such that D j≺L (N1×N2)⊗̄L (N1×N2)

L (N1×N2)⊗̄L (N1×F∞). Since F∞ has Haagerup’s property and D j has property (T) this further

implies that D j ≺L (N1×N2)⊗̄L (N1×N2) L (N1×N2)⊗̄L (N1). Composing this intertwining with Ψ

we get ∆(L (N j))≺L (N1×N2)⊗̄L (N1), as desired.

Also, we note that j1 6= j2. Otherwise we would have that ∆(L (N j))≺s L (N1×N2)⊗̄L (N1)∩

L (N2) = L (N1×N2)⊗̄1, which obviously contradicts [IPV10, Proposition 7.2.1]. �

Let A = uL (N1))u∗. Thus, we get that ∆(A ) ≺s L (N1×N2)⊗L (Ni) for some i = 1,2.
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This implies that for every ε > 0, there exists a finite set S ⊂ u∗Qu, containing e, such that ‖d−

PS×S(d)‖2 ≤ ε for all d ∈ ∆(A ). However, ∆(A ) is invariant under the action of u∗Qu, and

hence arguing exactly as in [CU18, Claim 4.5] we get that ∆(A )⊂ (L (Σ)⊗̄uL (Ni)u∗). We now

separate the argument into two different cases:

Case I: i = 1.

In this case, ∆(A ) ⊆ L (Σ)⊗̄A . Thus by Lemma 2.1.28 we get that there exists a sub-

group Σ0 < Σ with A = L (Σ0). Now, A ′ ∩L (Σ) = uL (N2)u∗. Thus, L (Σ0)
′ ∩L (Σ) =

uL (N2)u∗. Note that Σ and Σ0 are both icc property (T) groups. This implies that L (Σ0)
′ ∩

L (Σ) = L (vCΣ(Σ0)), where vCΣ(Σ0) denotes the virtual centralizer of Σ0 in Σ. Proceeding as in

[CdSS17] we can show that Σ = Σ0×Σ1.

Case II: i = 2.

Let B = uL (N2)u∗. In this case, ∆(A ) ⊆L (Σ)⊗̄B. However, Lemma 2.1.28 then implies

that A ⊆B, which is absurd, as L (N1) and L (N2) are orthogonal algebras. Hence this case is

impossible and we are done.

Remarks. 1) There are several immediate consequences of the Theorem 4.0.1. For instance one

can easily see the von Neumann algebras covered by this theorem are non-isomorphic with the

ones arising from any irreducible lattice in higher rank Lie group. Indeed, if Λ is any such lattice

satisfying L (Γ)∼=L (Λ), then Theorem 4.0.1, would imply that Λ must contain an infinite normal

subgroup of infinite index which contradicts Margulis’ normal subgroup theorem.

2) While it well known there are uncountable many non-isomorphic group II1 factors with

property (T) [Po07] little is known about producing concrete examples of such families. In fact the

only currently known infinite families of pairwise non-isomorphic property (T) groups factors are

{L (Gn) |n ≥ 2} for Gn uniform latices in Sp(n,1) [CH89] and {L (G1×G2×·· ·×Gk) |k ≥ 1}

where Gk is any icc property (T) hyperbolic group [OP03]. Theorem 4.0.1 makes new progress

in this direction by providing a new explicit infinite family of icc property (T) groups which gives

rise to pairwise non-isomorphic II1 factors. For instance, in the statement one can simply Qi to

vary in any infinite family of non-isomorphic uniform lattices in Sp(n,1) for any n 6= 2. Unlike
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the other families ours consists of factors which are not solid, do not admit tensor decompositions

[CdSS17], and do not have Cartan subalgebras, [CIK13].

3) We notice that Theorem 4.0.1 still holds if instead of Γ = (N1×N2)o(Q1×Q2) one consid-

ers any finite index subgroup of Γ of the form Γs,r = (N1×N2)o (Qs
1×Qr

2)6 Γ, where Qs
1 6 Q1

and Qr
2 6 Q2 are arbitrary finite index subgroups. One can verify these groups still enjoy all the

algebraic/geometric properties used in the proof of Theorem 4.0.1 (including the fact that N1oQs
1

is hyperbolic relative to Qs
1 and N1oQr

2 is hyperbolic relative to Qr
2) and hence all the von Neu-

mann algebraic arguments in the proof of Theorem 4.0.1 apply verbatim. The details are left to the

reader.
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Chapter 5

Fundamental Groups of Property (T) type II1 Factors

5.1 Fundamental Group of Factors Arising from Groups in Class S

In this section we prove our main result describing isomorphisms of amplifications of property

(T) group factors L (G) associated with groups G ∈ S. These factors were first considered in

[CDK19], where various rigidity properties were established. For instance, in [CDK19, Theorem

A] it was shown that the semidirect product decomposition of the group G = NoQ is a feature

that’s completely recoverable from L (G). In this section we continue these investigations by

showing in particular that these factors also have trivial fundamental group (see Theorem 5.1.6 and

Corollary 5.1.10). In order to prepare for the proof of our main theorem we first need to establish

several preliminary results on classifying specific subalgebras of L (G). Some of the theorems will

rely on results proved in [CDK19]. We recommend the reader to consult these results beforehand

as we will focus mostly on the new aspects of the techniques. Throughout this section we shall use

the notations introduced in Section 3.1.

Our first result classifies all diffuse, commuting property (T) subfactors inside these group

factors.

Theorem 5.1.1. Let NoQ ∈ S. Also let A1,A2 ⊆L (NoQ) = M be two commuting, property

(T), type II1 factors. Then for all k ∈ {1,2} one of the following holds:

1. There exists i ∈ {1,2} such that Ai ≺M L (Nk);

2. A1∨A2 ≺M L (Nk)oQ.

Proof. Let Gk = Nk oQ for k ∈ {1,2}. Notice that by part e) in Theorem 3.1.1 we have that

NoQ6 G1×G2 = G where Q is embedded as diag(Q)6 Q×Q. Notice that A1,A2 ⊆L (N)o

Q⊆L (G1×G2) =: M̃ . By [CDK19, Theorem 5.3] there exists i ∈ {1,2} such that
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a) Ai ≺M̃ L (Gk), or

b) A1∨A2 ≺M̃ L (Gk×Q).

Assume a). Since A1 ∨A2 ⊆ L (N)oQ, by using [CDK19, Lemma 2.3] we further get that

Ai ≺M̃ L (G∩hGkh−1) = L (((N1×N2)odiag(Q))∩ (NkoQ)) = L (Nk) and thus we have that

c) Ai ≺M̃ L (Nk).

Assume b). Then A1∨A2≺M̃ L (Γ∩h(Γk×Q)h−1) =L (h(Nkodiag(Q))h−1). This implies

that d) A1∨A2 ≺M̃ L (Nk)oQ.

Note that by using [CDK19, Lemma 2.5] case d) already implies that A1∨A2 ≺M L (Nk)oQ

which gives possibility 2. in the statement.

Next we show that c) gives 1. To accomplish this we only need to show that the intertwining

actually happens in M . By Popa’s intertwining techniques c) implies there exist finitely many

xi ∈ M̃ , and c > 0 such that

n

∑
i=1
‖EL (Nk)(axi)‖2

2 ≥ c for all a ∈ U(Ai). (5.1)

Using basic approximations of xi’s and increasing n ∈ N and decreasing c > 0, if necessary,

we can assume that xi = ugi where gi ∈ Ĝk×Q. Now observe that EL (Nk)(axi) = EL (Nk)(augi) =

EL (Nk)(EM (augi)) = EL (Nk)(aEM (ugi)). Thus (5.1) becomes

n

∑
i=1
‖EL (Nk)(aEM (ugi))‖

2
2 ≥ c f or all u ∈ U(Ai)

and hence Ai ≺M L (Nk) as desired.

Next we show that actually the intertwining statements in the previous theorem can be made

much more precise.

Theorem 5.1.2. Let NoQ ∈ S. Also let A1,A2 ⊆L (NoQ) = M be two commuting, property

(T), type II1 factors. Then for every k ∈ {1,2} one of the following holds:
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1. There exists i ∈ {1,2} such that Ai ≺M L (Nk);

2. A1∨A2 ≺M L (Q).

Proof. Using Theorem 5.1.1 the statement will follow once we show that A1∨A2≺M L (Nk)oQ

implies A1∨A2 ≺M L (Q), which we do next. Since A1∨A2 ≺M L (Nk)oQ, there exists

ψ : p(A1∨A2)p→ ψ(p(A1∨A2)p) = R ⊆ q(L (Nk)oQ)q (5.2)

∗-homomorphism, nonzero partial isometry v ∈ qM p such that

ψ(x)v = vx for all x ∈ p(A1∨A2)p. (5.3)

Notice that we can pick v such that the support projection satisfies s(EL (NkoQ)(vv∗)) = q. More-

over, since Ai’s are factors we can assume that p = p1 p2 for some pi ∈ P(Ai).

Next let Ri = ψ(piAi pi). Note that R1, R2 are commuting property (T) subfactors such that

R1∨R2 =R ⊆ q(L (Nk)oQ)q. Using the Dehn filling technology from [Os06, DGO11], we see

that there exists a short exact sequence 1→ ∗
γ j

Qγ j
0 → NkoQ→ H → 1 where H is a hyperbolic,

property (T) group and Q0 6 Q is a finite index subgroup. Then using [PV12, CIK13] in the

same way as in the proof of [CDK19, Theorem 5.2] we have either a) Ri ≺L (Nk)oQ L (∗
γ j

Qγ j
0 ),

for some i, or b) R = R1∨R2lL (Nk)oQ L (∗
γ j

Qγ j
0 ). Since Ri’s have property (T) then by [Po01,

Proposition 4.6] so does R and hence possibility b) entails R ≺L (Nk)oQ L (∗
γ j

Qγ j
0 ). Summarizing,

cases a)-b) imply that Ri ≺L (Nk)oQ L (∗
γ j

Qγ j
0 ), for some i. Then using [IPP05, Theorem 4.3]

this further implies R ≺L (Nk)oQ L (Qγ j
0 ) and hence Ri ≺L (Nk)oQ L (Q0) ⊆ L (Q). As Q 6

NkoQ is malnormal, using the same arguments as in the proof of [CDK19, Theorem 5.3] one can

show that R ≺L (Nk)oQ L (Q). Indeed, let φ : rRir→ φ(rRir) := R̃ ⊆ q1L (Q)q1 be a unital

∗-homomorphism, and let w ∈ q1L (NkoQ)r be a nonzero partial isometry such that

φ(x)w = wx for all x ∈ rRir. (5.4)
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Note that ww∗ ∈L (Q) by Lemma 2.1.20 and hence R̃ww∗=wRiw∗⊆L (Q). For every u∈Ri+1

we have

R̃wuw∗ = R̃ww∗wuw∗ = wRiw∗wuw∗ = ww∗wuRiw∗ = wuRw∗

= wuRiw∗ww∗ = wuw∗wRiw∗ = wuw∗R̃ww∗ = wuw∗R̃.

Thus Lemma 2.1.20 again implies that wuw∗ ∈L (Q). Altogether these show that wRi+1w∗ ⊆

L (Q). Combining with the above we get wRw∗=wRiRi+1w∗=ww∗wRiRi+1w∗=wRiw∗wRi+1w∗⊆

L (Q). From relation (5.4) we have that w∗w ∈ R. Also by (5.3) we have Rv = vp(A1 ∨

A2)p and hence v∗Rv = v∗vp(A1 ∨A2)p. Hence there exists p0 ∈ P(p(A1 ∨A2)p) so that

v∗w∗wv = v∗vp0. Next we argue that wvp0 6= 0. Indeed, otherwise we would have wv = 0 and

hence wvv∗ = 0. As w ∈ L (Nk oQ) this would imply that wEL (NkoQ)(vv∗) = 0 and hence

w = wq = ws(EL (NkoQ)(vv∗)) = 0, which is a contradiction. To this end, combining the pre-

vious relations we have wvp(A1 ∨A2)pp0 ⊆ wvp(A1 ∨A2)pv∗vp0 = wvp(A1 ∨A2)pv∗w∗wv =

wRvv∗w∗wv = wRw∗wv ⊆L (Q)wv. Since the partial isometry wv 6= 0 the last relation clearly

shows that A1∨A2 ≺M L (Q), as desired.

Theorem 5.1.3. Let A1,A2 ⊆L (N)oQ = M be two commuting, property (T), type II1 factors

such that (A1∨A2)
′∩ r(L (N)oQ)r = Cr. Then one of the following holds:

a) A1∨A2 ≺s
M L (N), or

b) A1∨A2 ≺s
M L (Q).

Proof. Fix k ∈ {1,2}. By Theorem 5.1.2 we get that either

i) ik ∈ {1,2} such that Aik ≺M L (Nk), or

ii) A1∨A2 ≺M L (Q).

Note that case ii) together with the assumption (A1 ∨A2)
′ ∩ r(L (N)oQ)r = Cr and [DHI16,

Lemma 2.4] already give b). So assume that case i) holds. Hence for all k ∈ {1,2}, there ex-

ists ik ∈ {1,2} such that Aik ≺M L (Nk). Using [DHI16, Lemma 2.4], there exists 0 6= z ∈
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Z (NrM r(Aik)
′∩rM r) such that Aikz≺s

M L (Nk). Since A1∨A2⊆NrM r(Aik)
′′, then NrM r(A1ik)′∩

rM r ⊆ (A1∨A2)
′∩ rM r = Cr. Thus we get that z = r. In particular

Aik ≺
s
M L (Nk). (5.5)

We now briefly argue that k 6= l ⇒ ik 6= il . Assume by contradiction that i1 = i2 = i. Then (5.5)

implies that Ai≺s
M L (N1) and Ai≺s

M L (N2). By [DHI16, Lemma 2.6], this implies that AilM

L (N1) and AilM L (N2). Note that L (Ni) are regular in M and hence by [PV11, Proposition

2.7] we get that AilM L (N1)∩L (N2) =C, which implies that Ai is amenable. This contradicts

our assumption that Ai has property (T ). Thus ik 6= il whenever k 6= l. Therefore we have that

Ai1 ≺s
M L (N1)⊆L (N) and Ai2 ≺s

M L (N2)⊆L (N). Using Corollary 2.1.22 we get that A1∨

A2 ≺s
M L (N), which completes the proof.

Our next result concerns the location of the ”core” von Neumann algebra.

Theorem 5.1.4. Let NoQ,MoP ∈ S. Let p ∈L (MoP) be a projection and assume that Θ :

L (NoQ)→ pL (MoP)p is a ∗-isomorphism. Then there exists a unitary v ∈ U(pL (MoP)p)

such that Θ(L (N)) = vpL (M)pv∗.

Proof. From assumptions there are Q1, Q2, P1, P2 icc, torsion free, residually finite, hyperbolic

property (T) groups so that Q = Q1×Q2 and P = P1×P2. We also have that N = N1×N2 and M =

M1×M2 where Ni’s and Mi’s have property (T). Denoting by M =L (MoP), A =Θ(L (N)) and

Ai = Θ(L (Ni)) we see that A1 and A2 are commuting property (T) subalgebras of pM p. Using

part b) in Theorem 5.1.3 we have that {A1∨A2}′∩N = Θ(L (N)′∩L (NoQ)) =CΘ(1) =Cp.

Using Theorem 5.1.3 we get either

a) A ≺s
M L (M) or,

b) A ≺s
M L (P).

Assume case b) above holds. Then there exists projections r ∈ A , q ∈L (P), a nonzero partial

isometry v ∈ qM r, and a ∗-homomorphism ψ : rA r→ ψ(rA r)⊆ qL (P)q such that ψ(x)v = vx
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for all x ∈ rA r. Arguing exactly as in the proof of [CDK19, Theorem 5.5], we can show that

vQN rM r(rA r)′′v∗ ⊆ qL (P)q.

Now, QN rM r(rA r)′′ = rM r, using [Po03, Lemma 3.5]. Thus, M ≺M L (P) and hence

L (P) has finite index in M by [CD18, Theorem 2.3], which is a contradiction. Hence we must

a), i.e. A ≺s
M pL (M)p.

Repeating the above argument verbatim, we get that pL (M)p ≺pM p A . Let N = L (No

Q) and B = pL (M)p. Note that A ⊆ Θ(N ) and B ⊆ pM p are amplifications of genuine

crossed product inclusions. Also by part d) in Theorem 3.1.1 A is regular irreducible subfactor of

Θ(N ) = pM p, while B is a quasi-regular irreducible subfactor of pM p (as QN pM p(pBp)′′=

pQN M (L (M))p). Thus, we are in the setting of the first part of the proof of [IPP05, Lemma 8.4]

and using the same arguments there we conclude one can find r ∈ P(A ), a unital ∗-isomorphism

ψ : rA r→R := ψ(rA r)⊆ pL (M)p, and a partial isometry v ∈ pM p satisfying v∗v = r, vv∗ ∈

R′ ∩ pM p and ψ(x)v = vx for all x ∈ rA r. Moreover, we have that R ⊆ pL (M)p has finite

index, and R ′ ∩ pL (M)p = Cp. Notice that by [Po02, Lemma 3.1], we have that [R′ ∩ pM p :

(pL (M)p)′∩ pM p]≤ [pL (M)p : R]. As (pL (M)p)′∩ pM p=C, we conclude that R ′∩ pM p

is finite dimensional.

Let x ∈ R ′ ∩ pM p. Since xr = rx for all r ∈ R we have that r∑gxgug = ∑gxgugr, where

x = ∑g∈Pxgug is the Fourier decomposition of x in M =L (M)oP. Thus ∑grxgug = ∑gxgσg(r)ug

and hence rxg = xgσp(r) for all g in r . In particular this entails that

xgx∗g ∈R ′∩ pL (M)p = Cp (5.6)

xgug ∈R ′∩ pM p. (5.7)

From (5.6) we see that xg is a scalar multiple of a unitary in pM p. Hence by normalization we

may assume that each xg is itself either a unitary or zero.

Let K be the set of all g ∈ P for which there exists xg ∈ U(pL (M)p) such that xgug ∈ U(R ′∩

pM p) and notice that K is a subgroup of P. Note that {xgug}g∈K is a τ-orthogonal family in
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R ′∩ pM p. As R ′∩ pM p is finite dimensional, we get that K is a finite subgroup of P. As P is

torsion free (see part a) in Theorem 3.1.1) then K = {e}. In particular this shows that R ′∩ pM p =

R ′∩ pL (M)p =Cp which implies vv∗ = p and since v∗v = r≤ p we get r = p and v ∈U(pM p).

Thus ψ(x) = vxv∗ for all x ∈ rA r and hence R = vrA rv∗ = vA v∗ ⊆ pL (M)p. Let v = Θ(w0),

where w0 ∈ U (L (NoQ)). Thus, we get that L (N) ⊆ w∗0Θ−1(pL (M)p)w0 ⊆L (N)oQ. By,

[Ch78] (see also [CD19, Corollary 3.8]), we deduce that there exists a subgroup L 6 Q such that

w∗0Θ−1(pL (M)p)w0 = L (N)oL. As [w∗0Θ−1(pL (M)p)w0 : L (N)] is finite, we must have that

L is a finite subgroup of the torsion free group Q. Thus L = {e} which gives that Θ(L (N)) =A =

v∗pL (M)pv.

Next we show that in the previous result we can also identify up to corners the algebras associ-

ated with the acting groups. The proof relies heavily on the classification of commuting property

(T) subalgebras provided by 5.1.3 and the malnormality of the acting groups.

Theorem 5.1.5. Let NoQ,MoP ∈ S. Let p ∈L (MoP) be a projection and assume that Θ :

L (NoQ)→ pL (MoP)p is a ∗-isomorphism. Then the following hold

1. There exists v ∈ U(pL (MoP)p) such that Θ(L (N)) = vpL (M)pv∗, and

2. There exists u ∈ U(L (MoP)) such that Θ(L (Q)) = pu∗L (P)up.

Proof. As part 1. follows directly from Theorem 5.1.4 we only need to show part 2.

Recall that Q = Q1×Q2, P = P1×P2, N = N1×N2 and M = M1×M2 where Qi, Pi, Ni and

Mi are icc, property (T) groups. Denote by M = L (MoP), A = Θ(L (N)), B = Θ(L (Q))

and Bi = Θ(L (Qi)). Then we see that B1,B2 ⊂ pM p are commuting property (T) subalgebras

such that B1 ∨B2 = B. Moreover, by part d) in Theorem 3.1.1 we have that {B1 ∨B2}′ ∩

pM p = B′ ∩Θ(L (N oQ)) = Cθ(1) = Cp. Hence by Theorem 5.1.3, we either have that a)

B ≺s
M L (M), or b) B ≺s

M L (P). By part 1. we also know that A ≺s
M L (M). Thus, if a)

holds, then Theorem 2.1.21 implies that pM p = Θ(L (NoQ)) ≺M L (M). In turn this implies

that Q is finite, a contradiction. Hence b) must hold, i.e. B ≺s
M L (P).
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Thus there exist projections q ∈ B, r ∈ L (P), a nonzero partial isometry v ∈M and a ∗-

homomorphism ψ : qBq→R := ψ(qBq)⊆ rL (P)r such that ψ(x)v = vx for all x ∈ qBq. Note

that vv∗ ∈ R′ ∩ rM r. Since R ⊆ rL (P)r is diffuse, and P 6 MoP is a malnormal subgroup

(part c) in Theorem 3.1.1), we have that QNrM r(R)′′ ⊆ rL (P)r. Thus vv∗ ∈ rL (P)r and hence

vqBqv∗ =Rvv∗ ⊆ rL (P)r. Extending v to a unitary v0 in M we have that v0qBqv∗0 ⊆L (P). As

L (P) and B are factors, after perturbing v0 to a new unitary u, we may assume that uBu∗⊆L (P).

This further implies that upu∗ ∈L (P) and since Θ(1) = p we also have

B = pBp⊆ pu∗L (P)up. (5.8)

Next we claim that

pu∗L (P)up≺M B (5.9)

To see this first notice that, since P is malnormal in MoP and P is icc (see parts a) and c) in

Theorem 3.1.1) then (pu∗L (P)up)′ ∩Θ(L (N oQ)) = (pu∗L (P)up)′ ∩ pM p = u∗(L (P)′ ∩

L (MoQ))up = Cp. Thus using Theorem 5.1.3 we have either a) pu∗L (P)up ≺s
pM p A or

b) pu∗L (P)up ≺s
pM p B. Assume a) holds. By part 1. we have pu∗L (P)up ≺s

pM p A =

vpL (M)pv∗; in particular, this implies that L (P) ≺M L (M) but this contradicts the fact that

L (M) and L (P) are diffuse algebras that are τ-perpendicular in M . Thus b) holds which proves

the claim.

Using (5.9) together with malnormality of Θ(L (Q)) inside Θ(L (NoQ)) and arguing exactly

as in the proof of relation (5.8) we conclude that there exists w ∈U (pM p) such that

wpu∗L (P)upw∗ ⊆B. (5.10)

Combining ( 5.8) and ( 2.19) we get that wBw∗⊆wpu∗L (P)upw∗⊆B and hence w∈QNpM p(B)”=
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B. Thus we get

pu∗L (P)up⊆ w∗Bw = B. (5.11)

Combining (5.8) and (5.11) we get the theorem.

Finally, we are now ready to derive the main result of this paper.

Theorem 5.1.6. [CDHK20, Theorem 4.6] Let N oQ,M o P ∈ S with N = N1 ×N2 and M =

M1×M2. Let p ∈L (MoP) be a projection and assume that Θ : L (NoQ)→ pL (MoP)p is

a ∗-isomorphism. Then p = 1 and one can find ∗-isomorphisms, Θi : L (Ni)→L (Mi), a group

isomorphism δ : Q→ P, a multiplicative character η : Q→ T, and a unitary u ∈ U(L (MoP))

such that for all g ∈ Q, xi ∈ Ni we have that

Θ((x1⊗ x2)ug) = η(g)u(Θ1(x1)⊗Θ2(x2)vδ (g))u
∗.

Proof. Throughout this proof we will denote by M = L (N oQ). Using Theorem 5.1.4, and

replacing Θ by Θ ◦Ad(v) if necessary, we may assume that Θ(L (N)) = pL (M)p. By Theo-

rem 5.1.5, there exists u∈U(M ) such that Θ(L (Q))⊆ u∗L (P)u, where M =L (MoP). More-

over Θ(1) = p, upu∗ ∈L (P) and also Θ(L (Q)) = pu∗L (P)up. Next we denote by Γ = u∗Pu

and by G = {Θ(ug) : g ∈ Q}. Using these notations we show the following

Claim 5.1.7. hΓ(G )> 0.

Proof of Claim 5.1.7. Notice that G ⊆ L (Γ) is a group of unitaries normalizing Θ(L (N)).

Moreover, by Theorem 3.1.1 we can see that the action σ : P→Aut(M) satisfies all the conditions

in the hypothesis of Theorem 2.1.31 and thus using the conclusion of the same theorem we get the

claim. �

Claim 5.1.8. Let e 6= g ∈ Γ. Then G ′′ ⊀L (CΓ(g)).
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Proof of Claim 5.1.8. Since Γ is isomorphic to the product of two biexact groups, say Γ1×Γ2,

by Lemma 3.1.2 we get that CΓ(g) = A, Γ1×A, or A×Γ2 for an amenable group A. If CΓ(g) = A

then since G is non-amenable we clearly have G ′′ ⊀ L (CΓ(g)). Next assume CΓ(g) = A×Γ2

and assume by contradiction that G ′′ ≺L (CΓ(g). As Q = Q1×Q2 for Qi property (T) icc group,

then G ′′ = Θ(L (Q1))⊗̄Θ(L (Q2)) is a II1 factor with property (T). Since G ′′ ≺ L (A×Γ2) =

L (A)⊗̄L (Γ) and L (A) is amenable then it follows that G ′′ ≺L (Γ). However by [Oz03, Theo-

rem 1] this is impossible as L (Γ2) is solid and G ′′ is generated by two non-amenable commuting

subfactors. The case CΓ(g) = Γ1×A follows similarly. �

Claim 5.1.9. The unitary representation {Ad(v)}v∈G on L2(pL (Γ)p	Cp) is weakly mixing.

Proof of Claim 5.1.9. First note we have that Θ(L (Q)) = G ′′ = pL (Γ)p. Also since Q is icc

then using [CSU13, Proposition 3.4] the representation Ad(Q) on L2(L (Q)	C) is weak mixing.

Combining these two facts, we get that the representation G on L2(pL (Γ)p	Cp) is weak mixing,

as desired. �

Claims 2-4 above together with Theorem 2.1.30 show that p = 1 and moreover there exists

unitary w ∈L (MoP), a group isomorphism δ : Q→ P and a multiplicative character η : Q→ T

such that Θ(ug) = η(g)wvδ (g)w∗ for all g ∈ Q. Since Θ(L (N)) = L (M) then the same argument

as in proof of [CD19, Theorem 4.5] (lines 10-27 on page 25) shows that i) w∗L (M)w ⊆L (M).

However re-writing the previous relation as vh = η(g)w∗Θ(uδ−1(h))w for all h ∈ P and apply-

ing the same argument as above for the decomposition M = Θ(L (N))oΘ(Q) we get that ii)

wΘ(L (N))w∗ ⊆ Θ(L (N)). Then combining i) and ii) we get that w∗L (M)w = L (M). Now

from the above relations it follows clearly that the map Ψ = ad(w∗) ◦Θ : L (N)→ L (M) is a

∗-isomorphism, and Θ(xug) = η(g)w(Ψ(x)uδ (g))w∗ for all x ∈L (N). Finally, proceeding as in

the proof of [CDK19, Theorem 5.1] one can further show that the isomorphism Ψ arises from a

tensor of ∗-isomorphisms Φi : L (Ni)→L (Mi). We leave these details to the reader.

Corollary 5.1.10. For any G=NoQ∈ S the fundamental group of L (G) is trivial, i.e. F (L (G))=

1.
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While it is well known that there exist many families of pairwise non-isomorphic II1 factors

with property (T), much less is known about producing concrete such examples. Our Corollary

5.1.10 shades new light in this direction.

Corollary 5.1.11. For any G = NoQ ∈ S(Q) or G = G1× ...×Gn with Gi ∈ V then the set of all

amplifications {L (G)t : t ∈ (0,∞)} consists of pairwise non-isomorphic II1 factors with property

(T).

Proof. The statement follows trivially from Corollary 5.1.10, Theorem 5.2.1 and the definition of

fundamental group.

5.2 Fundamental Group of Factors Arising from Class V

In this section we describe another class of examples of property (T) factors with trivial fun-

damental group. These factors arise as group von Neumann algebras L (Γn), with Γn ∈ V. We

refer the reader to section 3.2 for elementary properties of these groups, and their von Neumann

algebras. These factors are a minor variant of group factors studied in [Va04]. In combination with

Gaboriau’s `2-Betti numbers invariants [Ga02] and Popa–Vaes’s Cartan rigidity results [PV12] we

obtain a countable family of type II1 group factors (L (Γn))n≥2 with property (T), with trivial

fundamental group, that possess a unique Cartan subalgebra up to unitary conjugacy (see Theo-

rem 3.2.1), and that are pairwise stably non-isomorphic. We also show that products of finitely

groups in class V give rise to property (T) type II1 factors with trivial fundamental group.

Theorem 5.2.1. [CDHK20, Theorem 5.1] For every n≥ 2, let Γn = Z4(n+1)oΛn ∈ V, and Mn =

L (Γn). The following properties hold true.

(i) For every n≥ 2, Mn has trivial fundamental group.

(ii) The type II1 factors (Mn)n≥2 are pairwise stably non-isomorphic.

iii) Assume that Γni ∈ V and Γ = Γn1 × ...×Γnk , where ni ≥ 2 for all i. Then the fundamental

group satisfies F (L (Γ)) = {1}.
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Proof. (i) Denote by Rn the orbit equivalence relation induced by the essentially free ergodic prob-

ability measure-preserving action ΛnyT4(n+1). Then we have L(Rn) =Mn and [PV12, Theorem

1.4] implies that F (Mn) = F (Rn). Using Borel’s result [Bo83], the n-th `2-Betti number of Λn

is nonzero and finite. Then a combination of [Ga02, Corollaire 3.16] and [Ga02, Corollaire 5.7]

implies that F (Rn) = {1}. This further implies that F (Mn) = {1}.

(ii) Let m,n ≥ 2 and t > 0 so that (Mn) ∼= (Mm)
t . Then [PV12, Theorem 1.4] implies that

Rn ∼= (Rm)
t . Then [Ga02, Corollaire 0.4] (see also [CZ88]) further implies that m = n.

(iii) Using the Kunneth formula for `2-Betti numbers, we see that the n-th `2-Betti number of

Λn1×·· ·×Λnk is nonzero and finite. Arguing exactly as in the proof of (i), we get that F (L (Γ))=

{1}.

Let us point out that we could have directly applied [Va04, Theorem 4] to the adjoint group

of Sp(n,1) in order to obtain examples of icc groups that satisfy the conclusion of the theorem.

Instead, we adapted the explicit and simpler construction given in [Va04, Example 1, (a)] to the

case of Sp(n,1).
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