
Manipulating Elections by Selecting Issues

By

Jasper Lu

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May, 2019

Nashville, Tennessee

Approved: Date:

Professor Yevgeniy Vorobeychik

Professor Xenofon Koutsoukos

Abstract

Constructive election control considers the problem of an adversary who seeks to sway

the outcome of an electoral process in order to ensure that their favored candidate wins.

In this thesis, we first consider the computational problem of constructive election control

via issue selection. In this problem, a party decides which political issues to focus on to

ensure victory for the favored candidate. We also consider a variation in which the goal

is to maximize the number of voters supporting the favored candidate. We present strong

negative results, showing, for example, that the latter problem is inapproximable for any

constant factor. On the positive side, we show that when issues are binary, the problem

becomes tractable in several cases, and admits a 2-approximation in the two-candidate

case. Finally, we develop integer programming and heuristic methods for these problems.

We also consider the related problem of constructing ideological point estimates for a pop-

ulation when given the past voting history of that population. We develop a technique to

generate point estimates in any number of dimensions using a simple neural network, and

relate how the derived point estimates can be used in an instance of constructive election

control via issue selection.

Dedicated to my parents, and to Dr. Yevgeniy Vorobeychik for giving me the opportunity

to learn in his classes, even when I was just a sophomore.

ii

Contents

Page

DEDICATION . ii

List of Tables . v

List of Figures . vi

1 Introduction . 1

2 Background and Related Work . 3

2.1 Spatial Theory of Elections . 3

2.1.1 Median Voter Theorem . 5

2.1.2 Ideal Point Estimation . 5

2.2 Election Control . 6

2.3 Artificial Neural Networks . 6

2.3.1 Word Embeddings . 9

3 Election Control Through Issue Selection . 11

3.1 The Model . 12

3.1.1 Observations . 12

3.2 Problem Definition . 14

3.3 Real-Valued Issues . 14

3.3.1 Issue Selection with a Single Voter 14

3.3.2 Issue Selection with Two Candidates 17

3.4 Binary Issues . 22

3.4.1 Binary Issue Selection with 1, 2 and 3 Voters 22

3.4.2 Binary Issue Selection with Two Candidates 28

iii

3.5 Algorithmic Approaches . 31

3.6 Experiments . 33

3.6.1 Setup . 33

3.6.2 Results . 34

4 Point Estimation via Neural Networks . 36

4.1 The Model . 37

4.2 Experimental Setup . 39

4.3 Results . 40

5 Conclusion . 43

Bibliography . 44

iv

List of Tables

Table Page

3.1 Theorem 3.4.7. Voters’ profile construction. Block 2. 29

v

List of Figures

Figure Page

2.1 A simplified version of the Nolan Chart 4

2.2 An example neural network diagram . 8

3.1 A three-candidate election in 2-dimensional space and each candidate’s

electoral zone (image taken from [1]) . 13

3.2 Plots of experimentally observed approximation ratios as functions of the

numbers of candidates, voters, and issues in synthetic test cases for binary

(left) and continuous (right) versions of MAX SUPPORT. 34

4.1 Point estimates for the U.S. House of Representatives in 1996 36

4.2 Generated point estimates for 104th congress, colored according to yea

(red) or nay (blue) votes on a roll-call . 38

4.3 A set of point estimates on the 106th House of Congress 40

4.4 Performance of our model as we increase the dimensionality of our point

estimates . 41

vi

Chapter 1

Introduction

When a politician decides to enter an election, they likely come in with a pre-developed

stance on a number of political issues. However, although a candidate might have their own

opinions on a large variety of different political issues, only a few key issues play a major

role in determining the results of a given election season. Gallup, using data collected in

every presidential election season from 2004 to 2020, has isolated six specific issues as im-

portant to voters in those elections: terrorism / national security, the economy, healthcare,

the federal budget deficit, immigration, and taxes. The relative importance of those issues

to each other changes with each election season [2].

When politicians and their campaigns promote some issues over others, they can influ-

ence the importance of different issues to the voters. Depending on what issues become

most salient, or what issues voters care most about, in an election season, more voters

may choose to align themselves with one candidate over the other. This thesis studies the

scenario of a politician deciding which issues to promote in their platform. More specifi-

cally, given a good idea of what stances an electorate has on a number of different issues,

and given the politician’s own chosen platform, which issues should a politician choose to

promote?

To illustrate this problem, take three political issues: universal healthcare, immigration,

and gun control. Suppose that all voters want universe healthcare and environmental regu-

lation, and a slight majority wishes to restrict immigration. Now, consider two candidates

in an election: one who supports universal healthcare, environmental regulation, and im-

migration, and a second who is opposed to all three. Clearly, in an election in which the

electorate cares equally about three issues, the former candidate would win in a landslide.

1

However, if one party is able to skew discourse entirely towards immigration, the second

candidate may narrowly win.

This thesis sets forth a model of elections in which this problem can be studied compu-

tationally. More specifically, we deal with the problem of election control through ma-

nipulating issues. In the model we present, we assume that voters and candidates can be

represented as points in a vector space, which we refer to as an ideological space. In this

space, each index of the vector represents one’s (voter’s or candidate’s) position on a polit-

ical issue. Furthermore, the preference ranking of candidates by a voter is determined by

the distance between the voter and all candidates in this ideological space.

The following chapter will go over some background and related work into election control

and the spatial model of elections, a framework in which our research operates in. Chapter 3

will go in depth on the main focus of our research, putting forth a model of election control

which focuses on manipulating elections by selecting issues for voters to focus on. Chapter

4 will propose a model which can generate point estimates of voters in an electorate given

a history of their voting patterns. Such point estimates can then be studied in our model of

election control.

2

Chapter 2

Background and Related Work

Our work here is related to two areas of research on social choice: the spatial theory of

elections and election control.

2.1 Spatial Theory of Elections

In modern political discourse, we often speak of candidates and people in terms of a politi-

cal spectrum – a continuum among which we identify a person’s ideology [1] For example,

given two candidates c1 and c2, we might say ”c1 is to the left of c2, or c2 is to the right of

c1 to mean that a candidate is more or less conservative than another. A natural extension

of this is to think of candidates and people as points in a one-dimensional space, where the

greater the value of the point, the more conservative that candidate is. In this space, given

points for two candidates c1 and c2, where c1 6= c2, we can say that c1 > c2 or c2 < c1 if c2

is more conservative than c1.

Although we tend to make generalizations to a one-dimensional ideological spectrum in

political discourse, quantifying a person’s ideology is much more complicated than that.

To overcome this limitation, some political scientists have in the past attempted to quantify

political ideology in a two-dimensional space [3] This is what led to the creation of the

Nolan Chart, (figure 2.1) which quantifies political ideology along two axes, one represent-

ing a person’s economic freedom ”score” and the other a representing a person’s personal

freedom ”score”.

The Nolan Chart does a better job of quantifying ideologies than the previous left-right

spectrum However, there is no reason we cannot use an arbitrary number of dimensions in

3

Figure 2.1: A simplified version of the Nolan Chart

our quantification, with each dimension representing an arbitrary type of ”score.” Our work

is done primarily with this n-dimensional ideology space, in which a voter or candidate is

represented by an n-dimensional real-valued vector.

Models such as the ones described above, first introduced by Hotelling [4] in 1929, are

referred to colloquially as spatial models of elections. Since the introduction of the idea,

extensive research has been done in the field. The following subsections will go over two

key developments in the field of research.

Unfortunately, algorithmic work into spatial models of voting have been rather sparse, but

there have been several recent studies focusing on social choice functions and distortion

relative to a natural social choice function caused by common voting rules, such as plurality

voting [5, 6, 7]

4

2.1.1 Median Voter Theorem

A major focus area of research in the spatial model of elections is that of a candidate

choosing where to locate in a policy space [8, 9]. One key development in this field is the

Median Voter Theorem (MVT), which dictates where a candidate should place themself in

the one-dimensional version of the problem. Specifically, the median voter theorem states

that ”a majority rule voting system will select the outcome most preferred by the median

voter [9].” So, given the choice, a candidate should place themself at the location of the

median voter if they want to win an election.

However, although the median voter theorem was an important discovery in this model of

elections, the assumptions the theorem relies on are rather unrealistic. The first assumption

is that there is only one issue being voted on at a time. Or, reframed in the context of

our specific model, we assume that voters and candidates can be represented in a single

dimension. A second assumption that the MVT makes is that politicians care only about

maximizing votes, and not about staying true to their beliefs. A third assumption is that

voter’s preferences are single-peaked. This means that voters have one alternative that they

factor more than any other.

Research which aims to produce more realistic models of elections continue today. [10, 11].

2.1.2 Ideal Point Estimation

Given a spatial model, ideal point estimation deals with the problem of inferring from sam-

ple data a best guess of where a legislators and policies lie in a (generally) low-dimensional

space. A large body of research into the field focuses on inferring ideal point estimates

from congressional roll call data. These point estimates are then often used interest groups

to produce ”ratings” of legislators along policy dimensions, or to test legislative behavior

theories.

5

One common technique for inferring point estimates, known as Nominal Three-Point Es-

timation (NOMINATE), uses a nonlinear logit model to infer one-dimensional and two-

dimensional point estimates given a number of roll call voting records [12]. Another

approach to point estimation in low-dimensional space makes use of a quadratic utility

function, rather than the Gaussian one used in NOMINATE [13]. Some more recent re-

search into ideal point estimation techniques uses neural networks and other deep learning

techniques to infer ideal points for a variety of legislative uses [14].

2.2 Election Control

Election control research focuses on the problem of tampering with an election to either

ensure that a candidate wins or loses an election. The spatial theory of elections aims to

explain why voters vote the way they do by modeling an election system as sets of voters

and candidates as positions in an n-dimensional policy space, in which voters vote for those

candidates closest to them in Euclidean distance.

The computational problem of constructive election control, in which an adversary manip-

ulates an election to ensure that a candidate wins was first studied by Bartholdi et al. [15],

while Hemaspaandra et al. [16] initiated the study of destructive control. Much work since

then has been done in election control under different voting systems, such as range voting

[17], approval voting [18], and others [19, 20, 21, 22], as well as in bribery [23, 20, 24, 25].

2.3 Artificial Neural Networks

Artificial neural networks (ANNs) are a machine learning technique inspired in part by

the way neural networks in our brain work. Usually used for classification problems, the

technique trains a number of connected artificial neurons to recognize patterns in a given

training dataset. We will provide a brief explanation on the way ANNs are trained and learn

6

to classify data. For a more comprehensive overview, refer to online sources such as [26].

The basic unit of an artificial neural network is the neuron (also referred to as a node),

which receives a number of inputs and then uses that input to spit out a single output. Let’s

say we have a neuron which takes n inputs. Then, we can let its input be a vector x ∈ Rn,

where each xi denotes the value of input i. In a basic neural network (also known as a

feedforward nueral network), each neuron is generally associated with three attributes: a

vector of w of weights in Rn, a bias b∈R, and a nonlinear activation function f which both

takes and outputs a single number. One example of a common activation function is the

sigmoid function, which takes a real-valued number and puts it somewhere between 0 and

1:

σ(x) = 1/(1+ exp(−x))

Given an input x, the output of the neuron will be f (wT x+b).

An artificial neural network generally consists of a number of hidden layers of neurons,

where one layer of the network consists of neurons which all share the same input, but may

have varying weights and biases. Figure 2.2 gives an example of such an artificial neural

network with one hidden layer.

Assume we have a layer of an ANN with m neurons. Then, the layer will equivalently

produce an output vector y ∈ Rm. In an artificial neural network designed for classification

between ` categories, the final layer of our ANN will consist of ` nodes. Most commonly,

these nodes will share a softmax activation function, the purpose of which is to transform

its input into an ` length output of values which sum up to 1. Each of these ` values

corresponds to a probability that the input belongs to one of these categories.

Since the job of a neural network is to perform pattern recognition on a set of data, we

must be given a set of training inputs X and corresponding outputs Y in order to train our

neural network. One technique through which to train a neural network is through gradient

7

Figure 2.2: An example neural network diagram

descent with backpropagation. This technique has the neural network start out with random

weights and biases. The network is run on all the training inputs, and an error is calculated

between the outputs of our neural network and the true outputs. The network then adjusts

the weights of the output layer to produce an output closer to the true outputs. Error is

propagated backwards through the network via backpropagation.

We will not go over the specifics of backpropagation here, but the technique essentially

passes the gradent of the error function from the final layer back through all of the previous

hidden layers, so that we can adjust the weights and biases of each layer of the network.

8

2.3.1 Word Embeddings

Word embeddings are a way of modeling a language by mapping words or phrases from

that vocabulary onto vectors of real numbers. They are useful because word embeddings

can provide a way to encode phrases or words in a way that provides some kind of meaning

to the computer, as opposed to just using a one-hot encoded vector to represent words.

There are a variety of techniques through which word embeddings can be created. These

include neural network models, dimensionality reduction techniques, or more probabilistic

models. Perhaps the most popular technique used (and most relevant to our work here) is a

technique developed by Google known as word2vec [27, 28].

Word2vec takes a corpus of text and uses it to derive word embeddings which can loosely

represent relationships between words. Assume that we are given a set W of n words,

indexed by Wi. We will represent each word Wi as a n-length one-hot encoded vector,

where the i’th entry of the vector is a 1 but all other entries are 0. Then, given a corpus

of text, we then create a training dataset as follows: take a sliding window of k words at

a time, where k is an odd number. The middle word in these windows will become our

training output. Then, the k
2 words on either side of that word will be our training input.

Thus, from each window we can generate k−1 pieces of training data.

We train a shallow neural network (just one hidden layer) on this dataset. The network will

take in a n-length vector as input, have m nodes in its hidden layer, and have n nodes in its

output layer. Essentially, through this technique we will train a neural network to predict

the likelihood of a word appearing, given the words surrounding it. However, we are not

interested in the output of our neural network here, but rather the m-dimensional output of

its hidden layer.

It has been shown that these word embeddings can provide very useful semantic infor-

mation about words and their relationships to one another. Famously, researchers showed

9

that the models produced via word2vec are good at determining association relationships

between words, such as king:queen::man:woman, or Rome:Italy::Beijing:China.

10

Chapter 3

Election Control Through Issue Selection

Our work in controlling elections by manipulating issues uses a representation of candi-

dates as voters and vectors in a multi-dimensional space. In our model, we refer to these

vectors as a person’s ”belief vector.” Each dimension of a belief vector is meant to represent

that person’s stance on a particular political issue. Within this framework, our study then

investigates the problem of a candidate or third-party controlling an election by selecting

issues to manipulate.

We study several related variations of this problem: the decision problem in which the in-

terested party aspires to have a candidate of their choice win, and the optimization problem

of maximizing the support (total number of votes) for a target candidate. All of our work

here is done in the context of plurality elections, in which a candidate must receive more

votes than any other candidate in order to win.

We obtain a series of strong negative results. First, we show that not only is the general

problem of controlling elections through manipulating issues NP-Hard for both the decision

problem and the variant aiming to maximize support, it is actually inapproximable for any

constant factor for the latter variant. Moreover, the problem remains hard whether one

breaks ties in favor of the target candidate, or not, and even when there is either a single

voter, or two candidates. Second, we show that the problem remains hard if we restrict

issues to be binary. On the other hand, we observe that under certain restrictions we can

obtain positive results. For example, the problem is tractable if there is only a single voter

(unlike in the general case), and maximizing support is 2-approximable when there are two

candidates. Finally, we provide solution approaches for these problems based on integer

11

linear programming, as well as a greedy heuristic.

3.1 The Model

Out model uses a multi-dimensional space to quantify political ideologies: consider a col-

lection of ` political issues, and a space X ⊆R` of possible positions on the issues. Then, a

vector x ∈ X represents a vector of positions on all issues in this space, with xk quantifying

the position on (opinion about) issue k. In our setting, we have a collection of m candidates,

C = {ci}m
i=1, and n voters, V = {v j}n

j=1, where each candidate i and voter j is characterized

by a position vector (representing their respective positions on all ` issues), which we de-

note by ci and v j, respectively, with ci,v j ∈ X . We use cik (or v jk) to denote the position of

candidate i (voter j) on issue k, and we refer to the vector of a candidate’s or voter’s beliefs

as their belief vector.

Denote by [a : b] the interval of all natural numbers from a to b, and suppose that voters

consider a nonempty subset of issues, S⊆ [1 : n],S 6= /0, in deciding which candidate to vote

for. This set S captures those issues which are salient to voters, for example, due to a focus

on these during campaigning. We assume that a voter v j will rank candidates in order of

their relative agreement on issues, as captured by an lp norm for integral p≥ 1 with respect

to the set of issues S. Henceforth, we focus on plurality elections, so that a voter v j would

vote for a candidate ci which minimizes ‖vS
j − cS

i ‖p, where xS denotes a restriction of x to

issues in S.

3.1.1 Observations

Given a set of candidates C, as well as a set of voters V , we know that each voter v j will

vote for that candidate ci which minimizes ‖vS
j − cS

i ‖p. Or, put another way, a voter v j will

vote for the candidate they are closest to in ideological space. Pratt observes that, since

12

voters vote for the candidate they are closest to in ideological space, each candidate ci ends

up commanding what he calls an electoral zone in that space [1]. Each voter captured by

a specific electoral zone will end up voting for the candidate that that zone is owned by.

These electoral zones actually end up being the Voronoi tessellations of the ideological

space, given a set of candidates as the tesellating points, as shown by figure 3.1.

Figure 3.1: A three-candidate election in 2-dimensional space and each candidate’s elec-
toral zone (image taken from [1])

This would mean that, given a distribution or a set of voters V , one can predict the outcome

of an election by creating a Voronoi tessellation of the space, and then counting the number

of voters in each electoral zone. As a callback to the Median Voter Theorem, one can

imagine a problem in which a candidate tries to find the point in n-dimensional space

which gets them a plurality of voters in that space.

13

3.2 Problem Definition

We consider two constructive control problems within this framework: control through is-

sue selection (ISSUE SELECTION CONTROL (ISC)), and maximizing support (MAX SUP-

PORT), which are defined formally as follows:

Definition 3.2.1 (ISSUE SELECTION CONTROL (ISC)). Given a set of candidates C, vot-

ers V , and ` issues, is there a nonempty subset of issues S ⊆ [1 : `] such that a target

candidate c1 wins the plurality election?

Definition 3.2.2 (MAX SUPPORT). Given a set of candidates C, voters V , and ` issues, find

a nonempty subset of issues S ⊆ [1 : `] which maximizes the number of voters who vote for

a target candidate c1.

For both problems, we must define a rule by which to break ties. We consider both the

best-case of undecided voters choosing the target candidate c1, and the worst-case of unde-

cided voters choosing another candidate. We use the same tie-breaking rule when several

candidates are tied.

3.3 Real-Valued Issues

We begin our study of election control by analyzing its algorithmic hardness when issue

positions are unrestricted, i.e., X = R`. We show that the problem is computationally

intractable, even for a single voter or with only two candidates. However, the problem is

tractable when the number of issues is bounded by a constant.

3.3.1 Issue Selection with a Single Voter

Consider election control through issue selection with only a single voter, v, which we

term SINGLE-VOTER (SVIS). We start by assuming that ties are broken in candidate c1’s

14

favor (best-case tie breaking). Note that in this setting, and MAX SUPPORT are essentially

equivalent: in either case, we ask whether there exists a nonempty subset of issues S⊆ [1 : `]

such that when restricted to these issues, candidate c1 wins the voter v (with a maximum

support of 1 if c1 wins, and 0 if it loses). Equivalently, we ask if there exists a nonempty

subset S such that

∑
k∈S
|c1k− vk|p ≤ ∑

k∈S
|cik− vk|p ∀i ∈ [2 : m] (3.1)

where vk is the sole voter’s position on issue k. Observe that condition (3.1) holds if and

only if

∑
k∈S
|cik− vk|p−|c1k− vk|p ≥ 0 ∀i ∈ [2 : m]

Thus, setting the entries of an auxiliary (m−1)× ` matrix M

Mi−1,k = |cik− vk|p−|c1k− vk|p, i ∈ [2 : m],k ∈ [1 : `] (3.2)

we can equivalently ask whether there exists a nonempty subset S of the columns of M

such that the restriction of M to these has nonnegative row sums. We will refer to such a

restriction of an election as ”highlighting” a set of issues.

Theorem 3.3.1. SVIS with best-case tie breaking is NP-complete for any lp norm.

Proof. First observe that SVIS is in NP. Indeed, given an instance of SVIS and a proposed

subset S, it is trivial to verify whether S satisfies condition (3.1) in polynomial time.

We now show that SVIS is NP-hard via reduction from 0-1 INTEGER LINEAR PROGRAM-

MING, which is well-known to be NP-complete. In this problem, we are given a matrix

A ∈ Zm×` and a vector b ∈ Z`, and we ask if there exists a vector x ∈ {0,1}` such that

Ax≥ b componentwise.

Given an arbitrary instance (A,b) of 0-1 INTEGER LINEAR PROGRAMMING (ILP), we

15

construct an (m+1)× (`+1) matrix M as follows:

Mi,k := Ai,k i = 1, . . . , ` k = 1, . . . , `

Mi,`+1 :=−bi i = 1, . . . ,m

Mm+1,k :=− 1
`+1

k = 1, . . . , `

Mm+1,`+1 := 1.

This construction is motivated by the observation that choosing a subset S of columns of M

so that c1 wins the election is analogous to choosing the positions of ones in a vector x that

satisfies Ax≥ b. Each row of M corresponds to a candidate belief vector with the constraint

vector b included as an added issue. We force this issue to be considered by creating a

dummy candidate whose beliefs coincide with c1 on all but that issue.

We now construct an instance of SVIS by setting the voter belief vector v to be the zero

vector and constructing a sequence of candidate belief vectors C = {ci}m
i=2 from M.

c1k := p

√∣∣∣∣min
i

Mik

∣∣∣∣ k ∈ [1 : `+1]

ci+1,k := p
√

Mik + cp
1k i ∈ [1 : m+1], k ∈ [1 : `+1]

We do this because we want to arrange that Mik = |cik|p−|c1k|p, using positive values of cik

for simplicity. It is then straightforward to see that the original instance of 0-1 INTEGER

LINEAR PROGRAMMING is satisfiable if and only if our constructed instance of SVIS is

satisfiable, by constructing a 0-1 vector x with ones at precisely the indices in S \{`+1},

or vice versa.

Theorem 3.3.2. The worst-case version of SVIS is at least as hard as the best-case version

of SVIS.

Proof Sketch. Consider an m× ` matrix M representing an arbitrary instance of the best-

16

case version of SVIS and define

ε = min
i∈[1:m],k∈[1:`]

1
2

∣∣∣∣∣ ∑
k′∈R(k)

Mi,k′

∣∣∣∣∣,
where the set R(k) = {

(r
k

)
,r ∈ [1..`]}. We can create a new (m+2)× (`+1) matrix M′ as

follows:

M′i,k := Mi,k i = 1, . . . ,m k = 1, . . . , `

M′m+1,k := 0 k = 1, . . . , `

M′i,k+1 :=
ε

2
i = 1, . . . ,m+1

M′m+2,k := ε k = 1, . . . , `

M′m+2,`+1 :=−ε

2
.

Recall that in the worst-case version of SVIS, a voter will default to other candidates in

cases of a tie. So, we are forced to include issue `+1 in S in order to win against candidate

m+ 1. Once we include issue `+ 1, we bias the voter towards the target candidate and

against each other candidate by a small amount. Because of our choice of ε , this bias will

only affect the election in instances where the candidates are tied. However, we still have

to include at least one other issue from [1 : `] to win against candidate m+2.

This construction then turns into the best-case version of SVIS once we begin to consider

combinations of issues from [1 : `] with issue m+1.

3.3.2 Issue Selection with Two Candidates

While issue selection is hard even with a single voter, we now ask whether it remains hard if

we have only two candidates. We term the resulting restricted problem TWO-CANDIDATE

(TCIS). We show that both of the considered problem variants remain NP-hard. Fur-

17

thermore, MAX SUPPORT is actually inapproximable to any constant factor even in this

restricted setting.

Theorem 3.3.3. TCIS with best-case tie breaking is NP-complete.

Proof. First, observe that TCIS is in NP because, given a set S of issues to highlight, we

can easily check if c1 wins the election in polynomial time. We use a reduction from 0-1

INTEGER LINEAR PROGRAMMING to prove it’s NP-Hard.

Next, consider the issue selection problem with two candidates and a set of voters V . Note

that we successfully control the election iff the following condition holds for at least half

of the voters v j (remember that ties are broken in c1’s favor):

∑
k∈S

∣∣c1k− v jk
∣∣p ≤ ∑

k∈S

∣∣c2k− v jk
∣∣p (3.3)

We now construct a matrix M with entries

M j,k =
∣∣c2k− v jk

∣∣p− ∣∣c1k− v jk
∣∣p, j ∈ [1 : n],k ∈ [1 : `]. (3.4)

We can equivalently ask for a nonempty subset S of columns of M such that the restriction

of M to those columns maximizes the number of indices j s.t. ∑k∈S M jk ≥ 0.

Let A be our ILP matrix, and b - the ILP constraints. Then, we can reduce ILP to TCIS by

creating the following (2n+1)× (`+1) matrix M:

M j,k := A j,k j ∈ [1 : n] k ∈ [1 : `]

M j,k :=−1 j ∈ [n+1 : 2n+1] k ∈ [1 : `]

M j,`+1 :=−b j j ∈ [1 : n]

M j,`+1 := 0 j ∈ [n+1 : 2n]

M2n+1,`+1 := `+1

18

As in our reduction of SVIS, we represent the constraint vector b as an issue that must be

put in S in order for S to win. We also create n dummy voters with all negative entries. This

will force us to look for assignments of S that satisfy all rows that correspond to constraints

of ILP. If c1 can win the given election, we return yes for ILP, and no if c1 cannot win.

Finally, we show that for any M we can derive voter preferences consistent with it. Since

definition of M is independent for different issues k, it will suffice to do this for an arbitrary

issue k (kth column of M, which we denote by Mk). Consequently, consider a column

Mk, and define M̄k = max j |M j,k| (the value of Mk with the largest magnitude). Define

c1k = 0 and c2k = M̄1/p
k . Additionally, define a function f (z) = |c2− z|p− |c1− z|p for

z ∈ [0,c2]. Clearly, this function is continuous, and f (0) = M̄k while f (c2) = −M̄k. Then

by the intermediate value theorem, for any M jk, we can find a v jk such that f (v jk) = M jk.

Repeating the process for each issue k gives us the construction.

Next, we turn to the MAX SUPPORT version of the issue selection problem with two can-

didates; we term this TWO-CANDIDATE MAX SUPPORT (TCMS). We show that not only

is it NP-hard, it is inapproximable.

Theorem 3.3.4. TCMS with best-case tie breaking is NP-hard for any lp norm. Moreover,

it cannot be approximated to any constant factor unless P = NP.

Proof. We can now show that TCMS is NP-hard by restricting ` to 2 and reducing from

MAXIMUM INDEPENDENT SET (MIS). Given an undirected graph G = (V,E) on |V | ver-

tices, MIS asks to select a maximal subset of vertices S⊆V so that S is an independent set

(i.e., no pair of vertices in S is connected by an edge).

Given any instance of MIS, we can represent that instance as an instance of TCMS by

first creating a |V |× |V | matrix with every value along the diagonal equal to |V |− 1. For

every pair of vertices u,v, set Mu,v = Mv,u := −|V | if u and v are connected in G, and −1

otherwise. Now, if we were to select an issue corresponding to vertex u with neighbor v,

19

then we cannot hope to select any other subset of issues such that row v sums to greater

than or equal to 0. Thus, the action of selecting columns of M to include in S corresponds

to selecting vertices of G to be in our independent set, and maximizing the number of rows

in this manner corresponds to finding a maximum independent set.

To complete the reduction, what remains to prove is that we can derive voter belief and

candidate belief vectors for any M constructed in this manner.

Lemma 3.3.5. For any set of values in matrix F, we can derive candidate vectors C and

V for FIXED-CANDIDATE ISSUE SELECTION such that they correspond with F. (note: fix

up notation in the future. Each v from hereon corresponds with voter belief vectors)

Proof. We show the appropriate assignments for an instance of FIXED-CANDIDATE ISSUE SELECTION

in which p = 1, and then prove that the technique can be generalized for all p.

Let p = 1. Then, construct our set of candidates C and voters V as follows:

x j := max{
∣∣∣∣min

i
Fi, j

∣∣∣∣, ∣∣∣∣max
i

Fi, j

∣∣∣∣} (3.5)

c1, j :=−x j (3.6)

c2, j := x j (3.7)

vi, j :=
Fi, j

2
(3.8)

We do this because we want to arrange that Fi, j :=
∣∣c1, j− vi, j

∣∣− ∣∣c2 j− vi, j
∣∣. If c1, j and c2, j

are sufficiently small and large enough, respectively, for each issue j, then we can represent

any number in between the two values easily.

The above assignments are specifically for an FIXED-CANDIDATE ISSUE SELECTION us-

ing the L1 norm. Observe that for a fixed pair c1, j and c2, j,
∣∣c1, j− vi, j

∣∣p− ∣∣c2 j− vi, j
∣∣p is

continuous for any choice of vi, j ∈ [c1, j,c2, j]. So, ∀ F , we can derive a V and C that gets us

F .

20

Inapproximability follows directly from our reduction of MIS to TCMS: we know that

MIS is NP-hard to approximate within any constant factor c > 0 [29], and our reduction

from MIS is approximation-preserving.

The next results show that the worst-case tie breaking setting is no easier than when ties

are broken in c1’s favor.

Theorem 3.3.6. The worst-case version of TCIS is at least as hard as the best-case version

of TCIS for the two-candidate case.

Proof Sketch. Given an n× ` matrix M associated with a two-candidate instance of best-

case issue selection, define ε as in the proof of Theorem 3.3.2. Further, we let x :=

max
j∈[1:n],k∈[1:`]

∣∣M j,k
∣∣, and create a 3n× (`+1) matrix M′ as follows:

M′j,k := M j,k j ∈ [1 : n] k ∈ [1 : `]

M′j,k := x j ∈ [n+1 : 2n] k ∈ [1 : `] (3.9)

M′j,k :=−x j ∈ [2n+1 : 3n] k ∈ [1 : `] (3.10)

M′j,`+1 :=
ε

2
j ∈ [1 : n]

M′j,`+1 :=−ε

2
j ∈ [n+1 : 3n]

Once again, we choose a value of ε > 0 such that ε will affect the election only if a voter

is undecided. The proper assignment is shown in the supplement.

Recall that in the worst-case version of TCIS, undecided voters (rows of M′ with a net

zero value) will default to a candidate other than c1. With the addition of column `+1, any

undecided voters will now be “nudged” in the direction of c1 instead. Also, since the values

of column n+ 1 are smaller than the difference of any two values of M, the issue affects

the election only if a voter is actually undecided. So, issue `+1 appropriately mimics the

weak inequality used in the best-case version of TCIS, and if a candidate wins an election

21

in the worst-case reduction, they win the election in the best-case version, and vice versa.

Note: we add 2n extra voters to the problem to set things up such that including issue n+1

would not be sufficient for winning the election. We also choose 2n voters specifically so

that we can be guaranteed to split voters evenly between c1 and c2 with our assignments in

Equations 3.9 and 3.10.

Corollary 3.3.7. The worst-case version of TCMS is NP-hard.

3.4 Binary Issues

We have shown that election control through issue selection is hard in general. However,

real world opinions may have a variety of restrictions. For example, legislative issues can

be viewed as binary issues, where a voter opinion can take only two values: support or

oppose.

Formally, in binary versions of the issue selection problems, X = {0,1}`. Voters vote

for the candidate with whom they agree on most issues. Let BINARY ISSUE SELECTION

CONTROL (BISC) be the variant of over a binary domain and, similarly, let BINARY MAX

SUPPORT (BMS) be the corresponding variant of the MAX SUPPORT problem.

3.4.1 Binary Issue Selection with 1, 2 and 3 Voters

We start by considering again the problem of issue selection with a single voter, which we

showed to be NP-Hard in the general case of real-valued issues. We show that this problem

is now in P.

As before, it suffices to consider solely SINGLE-VOTER . We start with the case when ties

are broken in c1’s favor (best-case tie-breaking). Consider the following SINGLE ISSUE

WIN algorithm:

22

Check if there is an issue such that either (a) c1 agrees with the voter v, or (b) no other
candidate c j agrees with v. If it exists, return YES. Otherwise, return NO.

Theorem 3.4.1. The SINGLE ISSUE WIN algorithm solves SINGLE-VOTER with best-case

tie-breaking.

Proof. It suffices to show that whenever SINGLE ISSUE WIN returns NO, c1 cannot win

the election. Consider an arbitrary subset of issues S. Since the answer is NO, it must be

that for each issue k ∈ S, c1 disagrees with v on k. Consequently, ‖v− c1‖= |S|. Choose a

c j which agrees with v on some issue k ∈ S. Then ‖v− c j‖ ≤ |S|−1, that is, c1 cannot win

for issues restricted to S. Since S is arbitrary, the result follows.

In fact, we can easily generalize the algorithm for a single voter to a setting with two voters

by simply applying the algorithm for each voter.

Corollary 3.4.2. 2-VOTER problem with best-case tie-breaking is poly-time solvable.

Next, we show that the problem is in P for one and two voters even with worst-case tie-

breaking, although the algorithmic approach is quite different. For worst-case tie-breaking,

we propose the following AGREE ON ISSUES algorithm:

Let Sagree be the set of all issues on which c1 agrees with v. If c1 wins over each other
candidate c j when issues are restricted to Sagree, return YES. Otherwise, return NO.

Theorem 3.4.3. The AGREE ON ISSUES algorithm solves SINGLE-VOTER with worst-

case tie-breaking.

Proof. It suffices to consider the case when we return NO. Suppose there is some c j that

wins when we restrict to Sagree. Then it must be that c j also agrees with v on all issues in

Sagree (and any subset thereof). Consider an arbitrary subset of issues S, and let x jk = 1 if j

agrees with v on issue k. c j’s difference from v is then ∑k∈S∩Sagree x jk +∑k∈S−S∩Sagree x jk ≥

|S∩Sagree|. Since the difference between ci and v is |S∩Sagree|, the result follows.

23

The same approach is also applicable to 2-VOTER BIS.

Corollary 3.4.4. 2-VOTER with the wost-case tie-breaking is poly-time solvable.

Proof. For the candidate c1 to win, both voters must support her. Without loss of gener-

ality, we can assume that c1 opinion on all isues is 1. Let Sagree be the set of all issues

on which c1 agrees with both voter v1 and v2. Similarly to Theorem 3.4.3, if c1 does not

win against each other candidate c j over the set Sagree, then no other subset of issues will

achieve c1’s win.

Remarkably, while BSIC with 1 and 2 voters are efficiently solvable for both best-case

and worst-case tie-breaking, with 3 voters we see a qualitative difference in complexity,

depending on how ties are broken. First, we observe that the 3-voter case with worst-case

tie-breaking is tractable.

Corollary 3.4.5. 3-VOTER BINARY ISSUE SELECTION with the worst-case tie-breaking

is poly-time solvable.

Proof. By Corollary 3.4.2 we can test in poly-time whether any given pair of voters can be

won over by c1. Applying this to each of the three possible pairs of voters, we can determine

in poly-time whether the support of any two voters can be obtained simultaneously. If so,

then c1 can be made to win. Otherwise no subset of issues will make c1 the winner.

Now, we show that the problem becomes hard with best-case tie-breaking even with only 3

voters.

Theorem 3.4.6. 3-VOTER BINARY ISSUE SELECTION with the best-case tie-breaking is

NP-hard.

Proof. The proof relies on a reduction from the EXACT 3-COVER (X3C) problem. An

instance of X3C is governed by t – number of elements, s – the number of sets. In the

reduced instance we will denote by w the preferred candidate (and assume that his opinion

24

on all issues is 1), c – the candidate whose opinion on every issue is 0 (zero), v3 – the voter

whose opinion on every issue is 0. This implies that to win the election w should gain the

support of both voters v1 and v2. In addition we will denote by r the number of issues in the

reduced instance, setting it to r = s+ t +2. Finally, we will set the number of candidates to

m = t +4 and name them c1, . . . ,ct ,x,y,c,w.

The preferences of v1 and v2 over the r issues are as follows:
v1 : 1 . . .1 0 . . .0 1 0

v2 : 0 . . .0︸ ︷︷ ︸
s

1 . . .1︸ ︷︷ ︸
t

0 1

Preferences of candidates take a more complex form

• For issues from 1 through s. These preferences will encode the X3C instance. In

particular, candidates ci,c j,ce will have opinion 1 on the kth issue if and only if the

kth set in the X3C instance is {i, j,e} = Sk. Otherwise the opinion of these three

candidates on the kth issue will be 0 (zero).

• On issues s+1 through s+ t all candidates c1, . . . ,ct have 0 (zero) opinion.

• On the s+ t +1 issue all candidates c1, . . . ,ct have opinion 0 (zero)

• On s+ t +2 issue all candidates c1, . . . ,ct have opinion 1

• Candidate y has opinion 1 on issues 1, . . . ,s+ t and opinion 0 (zero) on the issues

s+ t +1 and s+ t +2

• Candidates x has opinions in the complete opposion to candidate y

Let us now show that if we have a solution to the resulting problem, we can recover a

solution for the original X3C instance.

Candidate c, with all his opinions set to 0 (zero), serves as a kind of reference for voters.

Thus, given a selection S of issues, the preferred candidate w will gain the support of a

voter only if they agree on at least as many issues in S as they disagree. As a result, solution

should contain equal number, q, of issues from the set {1, . . . ,s,s+ t +1} and from the set

25

{s+1, . . . ,s+ t,s+ t +2}. Consequently, candidate w will agree with any voter on exactly

q issues.

Notice that both the issue s+ t + 1 and s+ t + 2 must be selected in a solution to the . To

see this consider the follwoing two cases

• Neither s+ t + 1, nor s+ t + 2 are in the solution set, S of issues. Still, an equal

number of elements (denoted earlier by q) must be selected from the sets of issues

{1, . . . ,s} and {s+1, . . . ,s+ t} for the solution set S. Wlog., issue 1 ∈ S. Then voter

v1 agreed with the candidate ci1 on q+1 issues (q issues from the set {s+1, . . . ,s+t}

and issue 1). As a result, voter v1 would not vote for candidate w. Thus S, that does

not contain neither s+ t +1 nor s+ t +2, can not be a valid solution to our instance.

• Only one among issues s+ t +1 and s+ t +2 is selected as a part of the solution set

of issues S. If it is the issue s+ t + 1, then voter v1 agreed with the candidate x on

q+ 1 issues and with candidate w on q issues only. Thus, v1 would not vote for w,

and S is not a valid soluion. Similarly, if s+ t +2 was selected, then candidate y will

win the support of v2, once again preventing w from winning.

Now, with both issues s+ t + 1 and s+ t + 2 chosen, let us show how we can obtain a

solution to the original X3C problem from the solution set of issues S to the reduced prob-

lem. The set of issues S makes candidate w the winner of the election. Let {i1, . . . , iq−1}=

S∩{1, . . . ,s}. We will show that the collection Si1, . . . ,Siq−1 is the solution to the original

X3C instance.

1. If there is an element j that belongs to two different sets in the collection Si1, . . . ,Siq−1 ,

then v1 agrees with c j on 2 issues from i1, . . . , iq−1 and on q− 1 issues from {s+

1, . . . ,s+ t}. Totalling q+ 1 agreements between v1 and c j. Which implies that v1

will not vote for w, and contradicts w being the winner.

2. If there exists an element j that does not belong to any set in the collection Si1 , . . . ,Siq−1 ,

26

then c j ∈C \{c ji,cki,cei} for all i ∈ {i1, . . . , iq−1}. As a consequence v2 agrees with

c j on q− 1 issues from the set of issues {1, . . . ,s} and on both issues s+ t + 1 and

s+ t + 2. This totals q+ 1 agreements between v2 and c j, entailing that v2 will not

vote for w, contradicting w being the winner.

As a result, the collection Si1 , . . . ,Siq−1 constructed from the solution S is a proper solution

to the original X3C instance, i.e. every element belong to 1 and only 1 set.

Let us now show that a solution to the X3C instance can be translated into a solution to the

reduction instance.

Let Si1, . . . ,Sik be a legal solution to the X3C instance. Then set the selection of issues

S = {i1, . . . , ik}∪{s+ 1, . . . ,s+ k}∪{s+ t + 1,s+ t + 2}. Notice that k is the number of

elements in the X3C instance, and therefore k = t
3 and s+ k < s+ t.

By the choice of i1, . . . , ik, it must hold that v1 agrees with every candidate c j once on issues

i1, . . . , ik and t
3 times on issues s+1, . . . ,s+k,s+ t+1,s+ t+2. Overall v1 and c j agree on

t
3 + 1 issues. Candidate x agrees with v1 on issues s+ 1, . . . ,s+ k,s+ t + 1 only, totalling

t
3 +1 agreements as well. Similarly, candidates c and y rake in t

3 +1 agreements. Thus, by

the tie-breaking rule, v1 votes for w.

Similarly, v2 is matched with the opinion of c j over t
3 − 1 issues from the set {i1, . . . , ik}

and 2 more matches are produced over issues s+ t +1,s+ t +2. This totals t
3 +1 matches

between c j and v2. Similarly to v1, v2 also agrees with x,y and c on t
3 +1 issues. Again, tie-

breaking will decide in favour of w. Thus w has the support of both v1 and v2 and becomes

the winner.

We conclude that the original X3C instance has a solution if and only if the reduction

instance of has a solution.

27

3.4.2 Binary Issue Selection with Two Candidates

With an arbitrary number of voters and only two candidates, even the problem with best-

case tie-breaking is hard.

Theorem 3.4.7. With two candidates, with best-case tie-breaking is NP-complete.

Proof. It is evident that problem is in NP, so we only need to show that it is NP-hard. We

will do so by a reduction from HITTING SET, where p denotes the number of elements, s –

the number of sets, and k — the number of elements which should be chosen as the hitting

set. We construct a profile for problem with 2 candidates, ` issues and n voters, where ` is

such that `= p+ k and n = 2ks+4.

We assume that the preferred candidate is c1 and set his opinion to 1 on all issues. All

opinions of his rival, c2, are set to 0 (zero). We then arrange voters into 3 blocks, as

follows:

• [Block 1.] Two voters. The first one has opinion 0 (zero) for issues from 1 through

issue `− k, and opinion 1 for issues from `− k+ 1 to `. The second voter has an

opposite opinion wrt all issues.

• [Block 2.] Second block consists of ks voters divided into k sub-blocks. For every

sub-block, opinions of voters on issues from 1 to `−k encode the hitting set problem

instance. That is, voter (f − 1)s+ i has opinion 1 on issue j if and only if element

j ∈ si for all f ∈ [1 : k] . For issues from `− k+ 1 to `, all voters of the sub-block

f ∈ [1 : k] will have the same 0 (zero) opinion on issue `− k+ f and 1 on all other

issues.

• [Block 3.] This block consists of ks+2 voters whose opinion on all issues is 0.

Let us now show the correctness of this reduction. Let {i1, . . . , i j} be a set issues chosen to

make c1 the winner. Consider voters who support c1. Evidently, nobody from Block 3 is

28

Sub-block 1 Sub-block 2 ... Sub-block k
voters/issues 1 2 . . . s s+1 s+2 . . . 2s . . . (k−1)s+1 (k−1)s+2 . . . ks

1 Hitting Hitting . . . Hitting
2 Set Set . . . Set
... Problem Problem . . . Problem

`− k Encoding Encoding . . . Encoding
`− k+1 0 0 . . . 0 1 1 . . . 1 . . . 1 1 . . . 1
`− k+2 1 1 . . . 1 0 0 . . . 0 . . . 1 1 . . . 1

...
...

... . . .
...

...
... . . .

... . . .
...

... . . .
...

` 1 1 . . . 1 1 1 . . . 1 . . . 0 0 . . . 0

Table 3.1: Theorem 3.4.7. Voters’ profile construction. Block 2.

among them — no matter which issues were chosen, voters from Block 3 will support c2.

As a result, c2 has at least ks+2 votes. Hence, all voters from Blocks 1&2 should vote for

c1 to make him the winner.

Consider voters in Block 1. They both vote for c1, therefore, {i1, . . . , i j} consists of equal

number of elements from both issue sets [1 : `− k] and [`− k + 1 : `]. Otherwise, there

are (w.l.o.g.) more issues from [1 : `− k] than from [`− k+ 1 : `]. Which implies that the

second voter from Block-1 has more negative (0) opinions than positive (1), and he will

vote for the candidate c2. Additionally that means at most k issues were picked from both

sets. Denote this number by r ≤ k.

W.l.o.g. issue `− k+ 1 is chosen from the set [`− k+ 1 : `]. Thus, voters from the first

sub-block of Block-2 have r− 1 1’s and one 0 as an opinion on issues in [`− k + 1 : `].

Therefore, all voters from this sub-block should have at least one positive (1) opinion on

issues chosen from the issues set [1 : `−k]. That is, these issues represent a hitting set with

r elements where r ≤ k.

Similarly a solution for the can be constructed from a given HITTING SET solution.

This proof is easy to adapt to worst-case tie-breaking.

Corollary 3.4.8. The BMS problem is NP-hard.

29

Although BINARY MAX SUPPORT is NP-hard, we now show that it is easy to achieve a

1
2 -approximation using the following BEST-SINGLE-ISSUE algorithm: choose one issue

that maximizes the net number of voters c1 captures.

Theorem 3.4.9. The BEST-SINGLE-ISSUE algorithm approximates 2-candidate BINARY

MAX SUPPORT to within a factor of 1
2 , for best-case and worst-case tie-breaking.

Proof. Let’s denote number of voters by n and the number of issues by `. Among two

candidates c1 and c2 the promoted one is c1. Without loss of generality, we can assume

that candidate c1 has opinion 1 on every issue. We will provide proof for the case of best-

case tie-breaking and will describe changes needed to transform this proof into proof for

worst-case tie-breaking.

• [Case 0.] There is an issue s.t. candidate c2 also has opinion 1 about this issue.

Therefore, if we highlight only this issue all voters will vote for c1 because of tie-

breaking. Thus, that is an optimal solution (and as such approximation within factor

2 of optimal solution). It is also the issue that captured the greatest number of voters

for c1 if highlighted. From now on we can assume that opinion of candidate c2 is 0

for all issues.

• [Case 1.] There exists an issue s.t. at at least n
2 voters have same opinion as c1. If

highlighted such issue will capture for c1 at least n
2 voters. That is, for issue that

causes c1 to capture the greatest number of voters it is at least n
2 voters too. Thus, it

is provide 1
2 -approximation, because optimal solution is at most n.

• [Case 2.] Now we can assume that for all issues less then n
2 voters have opinion 1.

Denote the largest such number by h and show that h is 1
2 -approximation of optimum.

Assume the contrary. W.l.o.g. issues s1, . . . ,sk maximizes support for candidate c1.

By choice of h the number of opinions which equals to 1 over all issues s1, . . . ,sk is at

most kh. On the other hand voter supports candidate c1 if and only if he has opinion

1 for at least k
2 issues among s1, . . . ,sk. By assumption there are strictly more than 2h

30

such issues. That is, on issues s1, . . . ,sk opinion 1 shared strictly more than k
22h = kh

times. Obtained contradiction proves the theorem.

This proof can be easily adopted for the case of worst-case tie breaking. It is easy to see that

if candidate c2 has opinion 1 on all issues then for every highlighted set of issues support

of candidate c1 will be 0. Thus, any single issue provides 1
2 -approximation of optimum.

Therefore, we may assume that there exist issue on which candidate c2 has opinion 0.

Evidently, if there is optimum si1, . . . ,sik such that on some of highlighted issues candidate

c2 has opinion 1. W.l.o.g. this issue sik then si1, . . . ,sik−1 is also optimum. Therefore, we

may assume that candidates have different opinions on all issues. Thus, it is enough to

consider cases 1 and 2. The proof for case 1 remains unchanged. For case 2 we should

change the counting of number of points needed to obtain at least 2h votes in favor of

candidate c1. A voter would only vote for c1 if he has opinion 1 for
⌊ k

2

⌋
+1 issues s1, . . . ,sk.

Therefore, the number of opinions 1 is (
⌊ k

2

⌋
+1)2h ≥ kh+h, yielding same contradiction

as in best-case tie-breaking.

3.5 Algorithmic Approaches

We now present several general algorithmic approaches for MAX SUPPORT: 1) exact ap-

proaches based on integer linear programming (ILP), and 2) a heuristic approach which

works well in practice.

Integer Linear Programming: Define A as follows:

Ai jk =
∣∣cik− v jk

∣∣p− ∣∣c1k− v jk
∣∣p,∀i ∈ [2 : m], j ∈V,k ∈ [1 : `]. (3.11)

Define α := ∑i jk
∣∣Ai jk

∣∣. The following ILP computes an optimal solution for (best-case)

31

MAX SUPPORT:

max
x

m

∑
i

yi (3.12a)

∑
k

Ai jkxk +(1− y j)α ≥ 0 ∀i ∈ [2 : m], j ∈V (3.12b)

xk,y j ∈ {0,1} ∀k ∈ [1 : `], j ∈V. (3.12c)

Constraint (3.12b), ensures that y j = 1 iff c1 is the most favored by voter j. A similar

approach can be used to develop a ILP approach for the ISSUE SELECTION CONTROL

problem:

∀i, i′ ∈C, j ∈V :

∑
k

Ai′ jkxk−∑
k

Ai jkxk +(1− zi j)α ≥ 0 (3.13a)

∀i ∈C, j ∈V : ∑
k

Ai jkxk +(1− y j)α ≥ 0 (3.13b)

∀ j ∈V : ∑
i∈C

zi j + y j = 1 (3.13c)

∀i ∈C : ∑
j∈V

y j−∑
j∈V

zi j ≥ 1 (3.13d)

∀k ∈ I : xk ∈ {0,1} (3.13e)

∀ j ∈V : y j ∈ {0,1} (3.13f)

∀i ∈C, j ∈V : zi j ∈ {0,1}. (3.13g)

Greedy Heuristic: Finally, we present a simple greedy algorithm for the MAX SUPPORT

problem, where we iteratively add one issue at a time that maximizes the net gain in voters.

We stop when adding any more issues would decrease the number of voters captured.

Our experimental results show that this simple greedy algorithm performs much better

32

than BEST-SINGLE-ISSUE when it comes to real-valued MAX SUPPORT, and equivalent

to Best-Single-Issue for the task of BINARY MAX SUPPORT. Furthermore, the algorithm

runs pretty quickly, with a worst-case runtime of O(n2).

3.6 Experiments

We now compare the performance of our exact and heuristic solution algorithms for the

binary and continuous versions of the issue selection problem. We consider the greedy

heuristics described above, as well as BEST-SINGLE-ISSUE.

3.6.1 Setup

We run all of our experiments assuming a worst-case tie-breaking rule and generate random

synthetic test cases. For continuous test problems, we sample candidate and voter belief

vectors from the multivariate normal distribution with a mean of 0 and a random covariance

matrix. A similar generative model for Boolean issues, tends to produce problem instances

in which BEST-SINGLE-ISSUE is nearly always optimal.

Binary test problems are generated in a more sophisticated fashion, as uniformly sampling

from the Boolean hypercube {0,1}n tends to produce trivial problem instances in which

a single issue is almost always optimal. Consequently, we generate a more specialized

distribution of these instances as follows. We first construct a vertex-weighted complete

binary tree T on 2`−1 vertices. Each vertex v is assigned an independent random weight

pv drawn from the uniform distribution on [0,1]. To produce a sample from T , we perform a

directed random walk from its root to one of its leaves. The sequence (0 for left movements,

and 1 for right) emitted by this process is then the desired sample from {0,1}`.

We default to 3 candidates, 100 voters, and 10 issues. To generate each plot, we fix 2 of

these parameters and vary the 3rd. We generate 100 instances of MAX SUPPORT for each

33

set of parameter values, and run the heuristics on the instances. The plotted values are

averages of the ratio of the number of voters captured and the optimal solution.

Figure 3.2: Plots of experimentally observed approximation ratios as functions of the num-
bers of candidates, voters, and issues in synthetic test cases for binary (left) and continuous
(right) versions of MAX SUPPORT.

3.6.2 Results

We find that for most instances of MAX SUPPORT with binary issues, our greedy heuris-

tic does not significantly outperform BEST-SINGLE-ISSUE in the two-candidate setting as

number of issues and voters increase. This is because the number of instances in which a

34

combination of issues can get us more voters than a single best issue is increasingly un-

likely. However, the greedy algorithm outperforms BEST-SINGLE-ISSUE on instances of

BINARY MAX SUPPORT with greater than 2 candidates. We can also observe that on the

specific distribution of binary issue instances we generate, the quality of heuristic solutions

degrades rapidly with the number of candidates.

We find that for MAX SUPPORT with real-valued issues, the greedy algorithm significantly

outperforms BEST-SINGLE-ISSUE. For a small number of candidates (< 5), the greedy

algorithm seems to perform within 0.8 of optimal. Interestingly, as the number of voters

increases, the greedy algorithm improves in quality on our randomly generated problem

instances. In all cases, we can also observe that the heuristics tend to be close to optimal.

35

Chapter 4

Point Estimation via Neural Networks

Here, we study the problem of generating point estimates of legislators using congres-

sional roll call data. We choose to study this problem because manipulatign elections by

selecting issues only becomes viable once we have produced a set of belief vectors for an

electorate in the first place. Our aim is to generate vector representations of legislators in

multidimensional space through the use of a technique similar to that used by neural net-

work word embeddings. Although much research has gone into representing legislators as

point estimates in one or two dimensional space, research into higher dimensional point

estimation has been much more sparse. However, we believe that point estimates in higher

dimensions can be much more useful in explaining legislative behavior than point estimates

in just one or two dimensions.

Figure 4.1: Point estimates for the U.S. House of Representatives in 1996

36

In this field of research, the metric used to determine how well a set of point estimates

explains voting behavior is what percentage of votes over time can be recovered simply by

separating the points via some hyperplane. For a better illustration of this, see figure 4.1.

If we know the semantic meanings behind the X and Y axes, we can explain the house vote

on the Personal Responsibility and Work Opportunity bill by saying the house made their

decision based on some linear combination of the X and Y factors, aX +bY + c.

In the following section, we explore a technique of generating point estimates using neural

networks. The primary benefit of using neural networks for this task is that We can directly

investigate and compare the quality and usefulness of point estimates in different numbers

of dimensions.

4.1 The Model

Assume that we are given data with n different people voting on m different issues. We

can let Y be our set of issues, and let Yi j index person i’s vote on issue j, where Yi j = 1 if

person i votes ”Yea” on issue j, and 0 otherwise. Let X be our set of voters, and represent

every voters as a one-hot vector Xi. Essentially, this is a n-length vector of all 0’s with a 1

at index i.

In our study here, we will be focusing primarily on the use of congressional roll-call data to

generate point estimates for house representatives. Roll-call data comes as a list of voting

outcomes for each house representative for a number of different bills over a two-year

period of time. Even though our study is specifically on this format of data, our model

can be applied to any dataset with a static list of people and a voting dataset with binary

outcomes (people only have two choices for things to vote for). We discuss a method of

handling outcomes such as abstentions or missing data in our experimental section later on.

Our technique uses a simple feedforward neural network model with one hidden layer.

37

The network will take an input vector of length n, have an arbitrary number k of nodes in

its hidden layer, and output a vector of length m. The network will be trained to predict,

given a particular legislator, what the legislator has voted on for each bill. To serve this

purpose, we will be using a sigmoid activation function for neurons in the output layer

of our network. Any arbitrary activation function can be used for the hidden layer, but

we choose to use a leaky relu activation function. We choose this activation function to

prevent excessive clumping of points around saturation coordinates (i.e. 0, 1 for the sigmoid

activation function).

When the network is done training, we can derive point estimates of each legislator by

shaving off the final layer of our network. Given an Xi, the output given by our hidden

layer will be the point estimate for legislator i. Since we are using an arbitrary number of

nodes, k. in our hidden layer, we can adjust the number of dimensions we want in our point

estimates just by changing k.

Figure 4.2: Generated point estimates for 104th congress, colored according to yea (red) or
nay (blue) votes on a roll-call

Figure 4.2 gives an example of 2-d point estimates generated from congressional roll call

38

data from the 104th congress, along with associated votes for an arbitrary call. As can be

seen from the figure, we can explain the voting behavior on this roll call can be explained

by simply putting a line through the point where red and blue are naturally separated.

Although this may lead to just a few points being on the wrong side of the line, we have

found that we are able to explain more than 90% of voting behavior for most roll calls in

this way. Because a sigmoid neuron in a neural network essentially just finds an optimal

separating hyperplane for a classification problem, we also end up deriving these separating

lines automatically over the course of training our network.

4.2 Experimental Setup

For our experiments, we use roll call data on the 104th congress, publicly available on

voteview [30]. Unfortunately, complete roll call data is unavailable due to abstentions and

absent voters. Although alternative approaches to point estimation in the past have chosen

to ignore such missing data, we cannot just ignore the missing data because our model

assumes we possess a complete output vector with which to train with.

So, to treat missing data, we instead make two copies of the votes for each roll call. In

the first copy, we set all abstentions and absent data to 0, and in the second copy we set

them to 1. Our hope here is the the missing data field cancel each other out during the

learning process. An alternative approach, which we do not experiment with (due to time

constraints over the course of this thesis’s completion) is to simply turn off backpropagation

for neurons representing those roll calls we do not have voting data for.

We use pytorch 0.4.1 for our experiments. Each example is trained using an ADAM opti-

mizer with a learning rate of 0.025 and default parameters otherwise, over 200 epochs. We

also use a binary cross entropy loss function, and a leaky relu activation function with a

negative slope of 0.05 for our hidden layer neurons.

39

4.3 Results

Our results on point estimation are mostly positive. Given a dataset of roll call data for

a particular House of Congress, we are generally able to explain about 90% of congres-

sional behavior – a slight improvement over the model developed by Poole and Rosenthal

[12]. Specifically, when comparing one-dimensional point estimates on the 106th House of

Congress derived using our method with that developed by Clinton, Jackman, and Rivers

[13], we find that our technique can correctly classify 90.7% of individual voting decision,

compared to Clinton’s 89.9%.

Figure 4.3: A set of point estimates on the 106th House of Congress

Figure 4.2 shows our results with two-dimensional point estimates on the 104th House of

Congress, whereas figure 4.3 shows our results on the 106th House of Congress, along with

the dividing line which best splits a particular roll-call vote. The left of figure 4.3 shows all

of the point estimates, whereas the right image shows only those point estimates which we

misclassify using our dividing line.

In initial experiments with our point estimation technique, we ended up with excessive

”clumping” around the negative range of the point estimations, by nature of how the leaky

40

ReLu activation function works. Because of this clumping, although we can surely use

these point estimates to produce classifications or predictions of voters, it is a less accurate

representation of true ideologies, as this representation will end up assuming one party to

be far less diverse in ideology than the other.

Figure 4.4: Performance of our model as we increase the dimensionality of our point esti-
mates

In addition to performing experiments on how our point estimate model compares to those

of other established techniques, we also experimented with how the dimensionality of our

point estimates affected our model performance.

Figure 4.4 shows how well our model can correctly classify individual voting decisions as

we increase the number of neurons in our hidden layer. Since increasing the number of neu-

rons corresponds with increasing the dimensionality of our point estimates, we essentially

use this technique to see how useful higher dimensional point estimates are in representing

voters in congress.

We find that, although we get good gains in performance as we increase from 2 to 4 dimen-

41

sions, our gains do not increase as drastically from 5 onward. This is in line with our hy-

pothesis that higher dimensional point estimates can provide a better model for explaining

congressional behavior than lower dimensional point estimates. However, the downside of

using high-dimensional point estimates is that such models become more difficult to inter-

pret. For example, in lower dimensions, we are better able to label our axes with educated

guesses on what they might represent. In the case of the NOMINATE model, researchers

often say that one axis represents economic ideology, and that the other represents social

and cultural ideology. In higher dimensions, though we can represent our voters with more

granular ideologies, the task of assigning meaning to the dimensions is more difficult.

42

Chapter 5

Conclusion

When candidates participate in an election, they must choose policies and issues to stress

in their campaigns. Depending on the ideological preferences of the electorate, the policies

and issues they choose can vary from election to election. This thesis has studied the

problem of election control through issue election, as well as the problem of deriving point

estimates of an electorate when given past voting information.

In the issue selection part of this thesis, we find a number of strong negative results for the

problem, and show that, even though we cannot provide formal approximation guarantees

for a continuous instance of MAX SUPPORT, a simple greedy heuristic performs well.

Moreover, restricting issues to be binary admits further positive results, including a 1/2-

approximation.

In the point estimation part of this thesis, we introduce a novel technique of deriving point

estimates for voters using a simple neural network. We tackle this problem because we see

it as a prerequisite to constructing an instance of the Issue Selection problem: in order for

a candidate to decide what issues will influence voters most in an election, they must first

have knowledge of the electorate’s ideological preferences. We find that, although higher

dimensional point estimates can provide a better model for explaining voter behavior in

elections, it remains an open problem of how to construct high dimensional point estimates

in a way that we can easily assign semantic meaning to the dimensions.

43

Bibliography

[1] Jeff. The spatial theory of voting, 2012.

[2] Zach Hrynowski. Several Issues Tie as Most Important in 2020 Election, 2019 (ac-

cessed May 15, 2020).

[3] Maurice C. Bryson and William R. McDill. The political spectrum: A bi-dimensional

approach. Rampart Journal of Individualistic Thought, 4(2):19 – 26, 1968.

[4] Harold Hotelling. Stability in competition. The Economic Journal, 39(153):41–57,

1929.

[5] E. Anshelevich, O. Bhardwaj, and J. Postl. Approximating optimal social choice

under metric preferences. In AAAI Conference on Artificial Intelligence, pages 777–

783, 2015.

[6] E. Anshelevich and J. Postl. Randomized social choice functions under metric pref-

erences. In International Joint Conference on Artificial Intelligence, pages 46–59,

2016.

[7] Piotr Skowron and Edith Elkind. Social choice under metric preferences: Scoring

rules and STV. In AAAI Conference on Artificial Intelligence, pages 706–712, 2017.

[8] A. Smithies. Optimum location in spatial competition. Journal of Political Economy,

49(3):423–439, 1941.

[9] Duncan Black. On the rationale of group decision-making. Journal of Political Econ-

omy, 56(1):23–34, 1948.

[10] Itay Sabato, Svetlana Obraztsova, Zinovi Rabinovich, and Jeffrey S. Rosenschein.

Real candidacy games: a new model for strategic candidacy. In International Confer-

ence on Autonomous Agents and Multiagent Systems, pages 867–875, 2017.

44

[11] Weiran Shen and Zihe Wang. Hotelling-downs model with limited attraction. In

International Conference on Autonomous Agents and Multiagent Systems, pages 660–

668, 2017.

[12] Keith T. Poole and Howard Rosenthal. A spatial model for legislative roll call analy-

sis. American Journal of Political Science, 29(2):357–384, 1985.

[13] JOSHUA CLINTON, SIMON JACKMAN, and DOUGLAS RIVERS. The statistical

analysis of roll call data. American Political Science Review, 98(2):355370, 2004.

[14] Kyungwoo Song, Wonsung Lee, and Il-Chul Moon. Neural ideal point estimation

network, 2018.

[15] John J. Bartholdi, Craig A. Tovey, and Michael A. Trick. How hard is it to control an

election? Mathematical and Computer Modelling, 16(8):27 – 40, 1992.

[16] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Anyone but him: The

complexity of precluding an alternative. Artificial Intelligence, 171(5-6):255–285,

2007.

[17] Curtis Menton. Normalized range voting broadly resists control. Theory of Computing

Systems, 53(4):507–531, Nov 2013.

[18] Gábor Erdélyi, Markus Nowak, and Jörg Rothe. Sincere-strategy preference-based

approval voting fully resists constructive control and broadly resists destructive con-

trol. Mathematical Logic Quarterly, 55(4):425–443, 2009.

[19] Piotr Faliszewski, Edith Hemaspaandra, Lane A Hemaspaandra, and Jörg Rothe. Llull

and copeland voting computationally resist bribery and constructive control. Journal

of Artificial Intelligence Research, 35:275–341, 2009.

45

[20] Gábor Erdélyi and Jörg Rothe. Control complexity in fallback voting. In Proceed-

ings of the Sixteenth Symposium on Computing: the Australasian Theory-Volume 109,

pages 39–48. Australian Computer Society, Inc., 2010.

[21] Edith Hemaspaandra, Lane A Hemaspaandra, and Jörg Rothe. Hybrid elections

broaden complexity-theoretic resistance to control. Mathematical Logic Quarterly,

55(4):397–424, 2009.

[22] Gábor Erdélyi and M Fellows. Parameterized control complexity in bucklin voting

and in fallback voting. In Proceedings of the 3rd International Workshop on Compu-

tational Social Choice, pages 163–174. Universität Düsseldorf, 2010.

[23] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. How hard is

bribery in elections? Journal of Artificial Intelligence Research, 35(1):485–532,

2009.

[24] Yongjie Yang, Yash Shrestha, and Jiong Guo. How hard is bribery with distance

restrictions? In European Conference on Artificial Intelligence, 2016.

[25] Tomasz Put and Piotr Faliszewski. The complexity of voter control and shift bribery

under parliament choosing rules. In Transactions on Computational Collective Intel-

ligence XXIII, pages 29–50, 2016.

[26] Ujjwal Karn. A quick introduction to neural networks, 2016.

[27] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. CoRR, abs/1301.3781, 2013.

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-

tributed representations of words and phrases and their compositionality. In Proceed-

ings of the 26th International Conference on Neural Information Processing Systems

- Volume 2, NIPS’13, pages 3111–3119, USA, 2013. Curran Associates Inc.

46

[29] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.

Cambridge University Press, 2009.

[30] Keith Poole. 104th house page, 2017.

47

