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Abstract

Summary: Single cell RNA sequencing is a revolutionary technique to characterize inter-cellular

transcriptomics heterogeneity. However, the data are noise-prone because gene expression is

often driven by both technical artifacts and genuine biological variations. Proper disentanglement

of these two effects is critical to prevent spurious results. While several tools exist to detect and

remove low-quality cells in one single cell RNA-seq dataset, there is lack of approach to examining

consistency between sample sets and detecting systematic biases, batch effects and outliers.

We present scRNABatchQC, an R package to compare multiple sample sets simultaneously

over numerous technical and biological features, which gives valuable hints to distinguish

technical artifact from biological variations. scRNABatchQC helps identify and systematically char-

acterize sources of variability in single cell transcriptome data. The examination of consistency

across datasets allows visual detection of biases and outliers.

Availability and implementation: scRNABatchQC is freely available at https://github.com/liuqi

vandy/scRNABatchQC as an R package.

Contact: yu.shyr@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single cell RNA-sequencing (scRNA-seq) is a powerful technique of

whole-transcriptome profiling at the resolution of individual cells.

It has been successfully used to discover rare and heterogeneous

cell populations, and reconstruct developmental trajectories (Carter

et al., 2018; Karaayvaz et al., 2018).

One major challenge in scRNA-seq analysis is to detect technical

artifacts and remove poor quality cells. Previous studies have

employed different strategies to detect technical artifacts (Ilicic

et al., 2016; Jiang et al., 2016; Lun et al., 2016; McCarthy et al.,

2017; Tian et al., 2018). They generally use features such as overall

gene expression patterns, number of genes detected and housekeep-

ing genes or spike-in RNA. For example, SinQC integrated both

gene expression patterns and sample sequencing library qualities,

such as total number of mapped reads, mapping rate and library

complexity to detect technical artifacts (Jiang et al., 2016). Ilicic

et al. used biological and technical features, including number of

genes detected, number of mapped reads and percentage of mito-

chondrial genes to train a SVM model to distinguish low from high

quality cells (Ilicic et al., 2016). The Scater and scPipe packages pro-

vided methods to compute a variety of QC metrics and visualization

to diagnose potential issues (McCarthy et al., 2017; Tian et al.,

2018). These strategies successfully identify compromised cells with-

in a single dataset. For integrated or comparative analysis of large

collections of scRNA-seq experiments, quality assessment across

datasets is crucial to detect outliers, potential batch effects, or sys-

tematic biases since they will mask underlying biology and result in

misleading conclusions.
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Here, we present scRNABatchQC, an R package designed to

assess the similarity/difference across scRNA-seq datasets over numer-

ous technical factors, biological features, expression profiles and

related pathways. By comparing technical and biological metrics

across datasets, scRNABatchQC enables the detection of systematic

errors, batch effects or outlier samples. It will greatly improve quality

control and reproducibility analysis for single-cell RNA sequencing.

2 Implementation

scRNABatchQC is written in R. It is easy to implement even for

users with limited programming experience. There is only one

required input, gene-by-cell count matrices, which can be supplied

by any delimited files or compressed files (ending gz or .bz2), or

read from 10X, SingleCellExperiment or Seurat v3 object. Besides,

there are optional arguments that users can specify or adjust,

such as the organism, the number of highly variable genes (HVGs),

the number of principle components (PCs), scale factor,

etc.scRNABatchQC summarizes QC report in one html file, which

includes six sections: Overview, QC summary, Technical View,

Biological View, Expression Similarity and Pairwise Difference

(Fig. 1). The Overview gives a brief introduction of the software. QC

summary provides a table listing a variety of QC metrics, such as the

number of total counts/cells/genes, the cutoff for filtering cells, the

number of cells removed due to low quality in each sample. Technical

View presents diagnostic graphics on 11 technical features, such as the

distribution of total counts and the variance explained by total counts

in each sample, mean-variance trend, etc. Biological View compares

the HVGs, the genes related to one specific principal component

(PC-related genes), and their enriched pathways if the organism is

supported by WebGestalt (Zhang et al., 2005). Expression Similarity

provides the global expression correlation across datasets, and two

low-dimensional embedding of all cells, principal component analysis

and t-distributed stochastic nearest-neighbor embedding. Pairwise

Difference identifies differentially expressed genes between all pairs of

samples and pathways associated with these genes (Methods

Description in the Supplementary File S1). In addition to the html file,

scRNABatchQC stores the gene-by-cell count matrices and QC meta-

data in SingleCellExperiment objects, which ensures the output of

scRNABatchQC compatible with other Bio-conductor workflows.

3 Application

For demonstration, we used scRNA-seq data of mouse retinal

bipolar cells, which includes a total of 44 994 cells in 6 replicates

prepared from 2 experimental batches (Shekhar et al., 2016). Batch

1 has 4 replicates (S1–S4), while batch 2 consists of 2 replicates

(S5 and S6). Supplementary File S2 is the output generated by

scRNABatchQC.

The report summarizes that batch 1 has �4500 cells/replicate,

and batch 2 has �13 000 cells/replicate. Compared to batch 1, batch

2 has more cells with high percentage of mitochondrial RNA genes

(the maximum percentage is 70%�80%), which were removed from

downstream analysis due to low quality (Supplementary File S2:

QC Summary). Batches 1 and 2 present different distributions on all

11 technical features (Supplementary File S2: Figs S1–11), suggest-

ing the existence of batch effects. For example, batch 2 shows a

more rapid increase in the expression cumulative plot, suggesting a

library with lower complexity (Supplementary File S2: Fig. S5).

Biological View illustrates that six samples are very similar in their

HVGs, all enriched for processes related to photo-transduction.

These results suggest that HVGs mainly capture the biological

variations across cell types, and six samples share similar biological

heterogeneity and cellular compositions. Although being very

similar, samples are still clustered by their batch, indicating that

batch effects have some minor effect on variations within samples

(Supplementary File S2: Figs S12 and 13). Pairwise Difference identi-

fies differentially expressed genes between two batches, such as Xist,

Hopx, mt-Rnr1 and mt-Rnr2 (Supplementary File S2: Fig. S19).

No enriched pathways are detected for these differential genes,

therefore Supplementary Figure S20 is not generated. Xist, Hopx are

sex-related genes, while mt-Rnr1 and mt-Rnr2 are mitochondrial

RNA genes. These results suggest that differences in the sex popula-

tions and library preparation between the two batches are likely to

contribute to batch effects, which is consistent with the original

paper (Shekhar et al., 2016).

4 Conclusion

Large-scale projects, such as Human Cell Atlas, are now generating

comprehensive collections of scRNA-seq datasets. Understanding

the existence and the sources of experimental noise is very important

to integration and interpretation of the data. scRNABatchQC, a

quality assessment tool over numerous technical and biological

features, not only provides a global overview of all experiments,

but also enables the examination of technical or biological origin of

discrepancies between experiments and detect possible outliers and

batch effects. scRNABatchQC can also be applied to other single

cell experiments, such as single nuclei RNA-seq.
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