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 The paper investigates the role of the Intertemporal Elasticity of Substitution 

( IES ) in determining the equity premium. This is done in an overlapping generations 

economy populated by agents that live for 2 periods and maximize a Kihlstrom-Mirman 

expected utility function. The equity premium depends both on the demand for 

smoothing as measured by the inverse of IES  and on risk aversion but the first seems to 

play a more important role. The paper also attempts to understand the difference between 

the predictions of a 2 periods Kihlstrom-Mirman expected utility and the predictions of a 

2 periods Epstein-Zin-Weil utility.  
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1. INTRODUCTION 

 

 The Intertemporal Elasticity of Substitution ( IES ) should play a role in 

determining the equity premium. To motivate this intuition, I consider an economy in 

which GDP  fluctuates over time in a non-random manner but agents are consumption 

smoothers: They prefer a claim that promises 1 unit of consumption per period to a claim 

on a fraction of GDP  that promises on average 1 unit of consumption per period. In this 

economy, claims on GDP  will be held only if they are cheaper than the fluctuation free 

asset. This premium arises because of the ordinal properties of the utility function and 

suggests a role for the IES  in the determination of the equity premium.  

 The IES  should also play a role when the economy is hit by iid  shocks. The intuition 

can be captured with the following 2 periods example. I assume that the representative 

agent’s preferences under certainty are of the Leontief type and his preferences under 

uncertainty can be described by the expected utility function V min(C0,C1) , where 

V ' 0 and Ci  is consumption in period i  0,1. Agents are endowed with 2 units of a 

storable good in the first period of their life. They can achieve a smooth consumption 

path by storing one unit and getting C0  C1 1. The representative agent can also buy a 

claim on a random future payment with two possible outcomes: 100 or 1  with equal 

probabilities. This claim will not be held if it costs more than 1 unit of consumption for 

the following reason. If the agent buys the claim at the price of 1 unit, his utility will be 

V min(C0 1,C1 100) 1  or V min(C0 1,C1 1) 1 . The expected utility is 

higher with storage: ( 1
2)V (1)  ( 1

2)V (1) V (1). The claim on the random payoff will 

therefore be held only when its price is less than or equal to 1 . At the price of 1 , 

the expected gross rate of return on holding the claim is about 50 and the equity premium 

is about 4900 percent. The equity premium here does not require risk aversion.2 

                                                 
2 Eden (1977) used this first order stochastic dominance type reasoning to show that under expected utility 

insurance type phenomena may arise even in the absence of risk aversion. 
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 Here I attempt to highlight the role of the IES  using the Kihlstrom-Mirman ( KM , 

1974) expected utility approach for separating between IES  and risk aversion. I use an 

overlapping generations economy in which individuals and capital (trees) live for 2 

periods and find that the demand for smoothing as measured by the inverse of the IES  

play a role that seems more important than the role of the risk aversion coefficient.  

 The role of the IES  is not important when using the Selden (1978) utility function 

which is a 2 period version of the Epstein-Zin (1989, 1991) and Weil (1989, 1990) 

(henceforth, EZW ) function.3 Part of the difference maybe explained by interpreting the 

risk aversion measures.  

 In both the KM  and the Selden utility function, risk aversion is defined by a 

parameter that can be eliminated, under certainty, by a monotonic increasing 

transformation. But the two risk aversion coefficients are not comparable because they 

characterize the attitude towards different type of bets. The KM  risk aversion coefficient 

characterizes bets on money (wealth), while the Selden risk aversion coefficient 

characterizes the attitude towards bets on future consumption holding present 

consumption constant. I refer to the KM  risk aversion coefficient as Risk Aversion to 

Money bets ( RAM ) and to the Selden risk aversion coefficient as Risk Aversion to 

Consumption bets ( RAC ).  

 To compare the two models, I construct a RAC  measure for the KM  expected 

utility. This measure depends in roughly equal weights on the demand for smoothing as 

measured by 1
IES  and the risk aversion to money bets measure RAM . Thus, if we 

interpret the risk aversion coefficient used by Selden through the lens of the expected 

utility function it has an important IES  component in it. This is not however the whole 

story. In the KM  expected utility, the IES  has a role even when holding RAC  constant.   

                                                 
3 This is also the case when using the EZW approach with iid  shocks (See Barro [2009]). 



  4 

 Most experimental evidence about the size of the risk aversion coefficient is 

obtained by asking about the attitude towards bets on money (wealth). We should 

therefore judge the performance of the two models by the implied RAM  coefficient. 

When 1
IES  RAM  as typically assumed, the parameters in the KM  utility function will 

lead to a RAC  measure that is lower than the RAM  measure. For example, when IES  2 

and RAC  4 , the aversion to money bets is RAM  7.65 .  

 I attempt to account for a risk free rate in the range of 0-2 percent and an equity 

premium in the range of 5-9 percent using the KM  expected utility function and allowing 

for rare disasters of the type estimated by Barro (2009). The model can hit the target with 

various combinations of IES  and risk aversion to money bets ( RAM ). Among these are: 

(IES  2,RAM  7.65), (IES 1.1,RAM  7), (IES  0.5,RAM  5)  and 

(IES  0.25,RAM  4) . In general, when the IES  coefficient is low we can hit the target 

with a relatively low RAM  coefficient.  

 I also calculate the welfare cost of economic fluctuations. I find that when 

(IES  2,RAM  7.65,RAC  4) the representative agent is willing to pay 0.6% of his 

consumption every year, for eliminating the uncertainty about consumption growth. This 

estimate is an order of magnitude less than the estimate in Barro (2009) who uses the 

EZW utility function with (IES  2,RAC  4).  

 

2. THE MODEL 

 

I use an overlapping generation version of the Lucas (1978) tree economy. A new 

generation is born each period. It consists of identical agents that live for two periods. 

The representative agent’s utility depends on consumption in the first period of his life, 

C0, consumption in the second period of his life, C1 and the parameters ,,  0,  0. 

His preferences are described by the following expected utility function.  
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 U(C0,C1;,,,)  = ( 1
) (C0)  (C1)

 

   when   0  

(1) U(C0,C1;,,,)  (1/)(C0) (C1)
  when   0 and   0 

 U(C0,C1;,,,)  ln(C0)   ln(C1) when   0 and   0 

 

In most of the paper I work with the intertemporal CES  function assuming that   0 and 

the intertemporal elasticity of substitution, IES  1
1  is strictly positive. Note that the 

coefficient   (and  ) can be eliminated by an increasing monotonic transformation 

(multiply by   and then raise the expression to the power of 1
 ). This coefficient 

therefore determines the attitude towards risk. More precisely, it determines the attitude 

towards money bets.  

 To advance this interpretation, I consider the problem of the representative consumer 

who makes choices under certainty subject to the budget constraint: C0  R1C1  w , 

where R is the gross interest rate and w  is his initial wealth. The solution to this problem 

when assuming the CES  function is: Ci  kiw , where ki  are constants. Substituting the 

solution in the utility function we get the indirect utility of wealth function defined by: 

 

(2)  V (w) U C0  k0w,C1  k1w  ( 1
) (k0w)  (k1w) 


  w , 

 

where   ( 1
) (k1)

  (k2) 

  is a constant. We can now define the measure of risk 

aversion to money bets ( RAM ) by:   

 

(3)  RAM  
V ' '(w)w

V '(w)
1 . 

 

I now turn to describe the endowment of the representative agent. He gets n  trees 

in the first period of his life: one tree from each type. Like the representative agent, each 

tree lives for two periods. For the generation born at time t , the endowment of n  trees 
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yield a total of t  units of consumption (fruits) in the first period of their lives, where the 

coefficient t  represents the productivity of the generation born at t .  

The amount of fruits (output) in the second period is a random variable that can 

take S  possible realizations indexed s 1,...,S . The probability that realization s (state s) 

will occur is  s and does not change over time. Type i  tree that was “born” at time t , 

yields tdis units in the second period of its life, in state s.  

There is a market for trees after the distribution of their first period dividends. 

The price of type i  tree at time t  is pit . I use Ait  to denote the quantity of type i  tree 

purchased by the agent born at time t , C0t  to denote his first period consumption and C1st  

to denote his second period consumption in state s. His budget constraint is: 

 

(4)  C0t  piti1

n Ait  t  piti1

n  

 

(5)   C1st  t disi1

n Ait  

 

And he solves the following problem: 

 

(6)  maxAit
ss1

S U(C0t ,C1st ) s.t. (4) and (5).  

 

The first order conditions for this problem are: 

 

(7)  s(U0s pit U1stdiss1

S )  0 

 

 When   0 the utility function is given by U(C0,C1) = ( 1
) (C0)  (C1)

 

 , 

the asset pricing formula (7) is:  
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(8)  pit  t

s[1 (Ds)
 ]


 1

(Ds)
1(dis)s1

S
s[1 (Ds)

 ]

 1

s1

S
, 

 

where Ds  = disi1

n . 

Note that the gross rates of return Rit 
t sdiss1

S
pit

 do not depend on the technology 

parameter t  and do not change over time. In what follows I therefore assume t 1. 

 

3. CALIBRATION  

   

 I start with the case in which the length of the period in the model is one year and 

  0.96. Following Barro (2009) I assume that disasters may occur with probability 

1.7%. Thus, with probability 1 0.017 the aggregate amount of fruits is determined by a 

normal lottery and with probability 0.017 it is determined by a disaster lottery. I assume 

that the gross rate of consumption growth when getting the normal lottery has two 

possible realizations: 1.005 and 1.045 (1.025 0.02) with equal probabilities. The gross 

rate of growth when getting the disaster lottery has two possible realizations: 

0.73 0.2066. The mean of the disaster lottery (0.73) is consistent with Barro’s estimate. 

The standard deviation of roughly 20% is consistent with the certainty equivalent 

calculations in Barro. The compound lottery therefore has 4 possible realizations: 1.005 

with probability 0.4915, 1.045 with probability 0.4915, 0.5234 with probability 0.085 and 

0.9366 with probability 0.085. As in Barro, the average rate of growth in GDP  is 2%, the 

average rate of growth of GDP  conditional on being in normal times (i.e. getting the 

normal lottery) is 2.5% and the standard deviation of the rate of growth when getting the 

normal lottery is 2%. 

 I look for parameters that yield a risk free rate in the range of 0-2 percent and an 

equity premium in the range of 5-9 percent. The estimates in Barro (2009) of a risk free 
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rate of 1.4% and an equity premium of 6.5% are in this range.  There is however a debate 

about the magnitude of the rates of return. See for example, McGrattan and Prescott 

(2003). I therefore use a range rather than a point as my target. 

 The empirical literature did not reach a consensus about the magnitude of the 

IES . Hall (1988), Campbell and Mankiw (1989) and Beaudry and Wincoop (1996) 

provide estimates of the IES  between zero and one. Vissing-Jorgensen and Attanasio 

(2003) estimate IES 1. Barro (2009) follows Gruber (2006) and assumes IES  2.  

 Bansal and Yaron (2004) and Barro (2009) argue that IES 1 leads to the result 

that increase in uncertainty cause an increase in asset prices. They find this result to be 

implausible. I do not see why an increase in uncertainty cannot lead to an increase in 

savings and an increase in asset prices. Here I consider the range 0.2  IES  3.  

 I follow Mehra and Prescott (1985) and assume that 0  RAM 10 . Many 

economists think that the risk aversion coefficient is less than 3. Lucas (2003), for 

example, assumes that it is 1. As a result an implicit “goodness of fit” measure has 

emerged. A model is considered to provide a better account for the observed rates of 

return if it can do it with a relatively low RAM . In our case, a low IES  allows us to 

account for the observed rates with a relatively low RAM .  

 Figure 1a assumes IES  2 and plots the gross rate of return on the market 

portfolio (calculated from [8] by assuming dis  Ds), the gross rate of return on the 

riskless asset (calculated from [8] by assuming dis 1) and the difference between the 

two - the equity premium. When RAM  9, the risk free rate is 1.25% and the equity 

premium is 6.9%. When RAM 10, the risk free rate is 0.07% and the equity premium is 

9.1%. Figure 1b plots the rates of returns when IES 1.1. In this case, when RAM  7 , 

the risk free rate is 1.4% and the equity premium is 5%. Figure 3c assumes IES  0.5. 

When RAM  5.3, the risk free rate is 0.7% and the equity premium is 5.1%.  

 



  9 

Welfare cost: When RAM 10 and IES  2 the agent is willing to swap the random 

income for a certain income that is 1.1% less than the mean of the distribution. When 

RAM  6 and IES  2 the number is about 0.4%. When RAM  6 and IES  0.8 the 

welfare cost is 0.6%. When RAM 1.1 and IES 1.7 the welfare cost is 0.07%. These 

estimates are described in Figure 2a. The welfare cost of eliminating “normal 

fluctuations” in GDP  is tiny. Figure 2b illustrates. When RAM  6 and IES 1.15, the 

welfare cost of replacing the normal lottery by its mean is only 0.03% (three percent of 1 

percent).  In both Figures the welfare cost is decreasing with the IES  holding the RAM  

constant.  
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a. IES  2 

 

 
b. IES 1.1 

 

 
c. IES  0.5  

 
Figure 1: Predicted rates of return (the gross rates of return are on the left axis, the equity premium is on 

the right axis; Rm  is the rate of return on the market portfolio; Rb  is the risk free rate) 
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a. The Welfare Cost of Eliminating All Risk 

 

 
b. The welfare cost of eliminating normal risk  

 
Figure 2: Welfare cost (the percentage of income that the representative agent is willing to give up to 

replace the random outcome by its mean) 

 



  12 

3.  THE SELDEN UTILITY FUNCTION 

 

In the two periods case, the Epstein-Zin-Weil approach is the same as Selden 

(1978). Selden evaluates consumption paths in which there is uncertainty only on second 

period consumption. This is done in two stages. He first substitutes a certainty equivalent 

for the random future consumption and then use an "aggregator function" to evaluate 

current consumption and the certainty equivalence of future consumption. 

 To illustrate, let C  denotes current consumption and x  denotes a random future 

consumption. The Selden consumer first uses the certainty equivalence function  to 

convert x  to a scalar: Z  (x) . He then uses the aggregator function G(C,Z)  to evaluate 

the certainty equivalent consumption path. In this formulation IES  is determined by the 

properties of the aggregator function G while aversion to bets in terms of future 

consumption is determined by the properties of the certainty equivalence function .  

I assume a power certainty equivalence function:  

 

(9) Z = (Ex )1/  where 0   < 1. 

 

And a CES  aggregator function:  

 

(10)  G(C,Z)  (C  Z  )
1
  C  [(Ex ) / ] 

1
  

 

Under certainty the coefficient   drops out and therefore this coefficient has been called 

the risk aversion coefficient. The coefficient of relative risk aversion with respect to bets 

in terms of future consumption is RAC  
' ' x

'
1 . The representative agent's 

problem is:  
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(11)  maxAi
1 pii1

n  pii1

n Ai







  ss1

S ( disi1

n Ai)

















1


 

 

Substituting the market clearing conditions in the first order conditions for this problem, 

leads to the following asset pricing formula.   

 

(12)  pi  {[ ss1

S (Ds)
 ]1/ }1[ ss1

S (Ds)
 ]

1
 1 ss1

S (Ds)
 1dis, 

 

 Figure 3 compares the predictions of the two models when IES  2 and their 

respective measures of risk aversion ( RAM 1  for KM  and RAC 1  for Selden) 

are the same. As we can see there are large differences in the predictions of the two 

models. The equity premium is an order of magnitude higher and the risk free rate is 

much lower under the Selden utility function. For example, when both measures of risk 

aversion are 10 the equity premium under Selden is close to 50% while it is only 10% 

under the KM  utility function.  
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a. Equity Premium 

 

 
b. Risk Free Rate 

Figure 3: The Predictions of the two models when IES  2 and RAM 1  RAC 1  
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4. COMPARABLE RISK AVERSION MEASURES   

 

 The results of the two models are very different because the measures of risk 

aversion are not comparable. The Selden measure of risk aversion describes the attitude 

towards bets on future consumption (holding current consumption constant). The KM  

measure of risk aversion describes the attitude towards bets on money.  

 The distinction between the two types of bets can be illustrated with the help of 

Figure 4 that assumes a zero interest rate. The consumer starts at point E  that maximizes 

his utility when his wealth is 4. He now considers a money bet in which he can win or 

loose one unit. If he wins he will choose point B. Otherwise, he will choose point A . 

This money bet may thus be described as having two outcomes: A  or B. A bet in terms 

of future consumption that holds current consumption at the level C0 = 2 and is of the 

same relative size as the money bet just described has the outcomes: point G or point F . 

 Under expected utility, the indifference map does not provide complete 

information about the attitude towards risk. To illustrate, I denote the level of utility from 

the points (A,E,B) by (a,e,b), respectively. From observing the indifference map we 

know that: a  e  b but we do not know by how much. The consumer will prefer a 

wealth of 4 with certainty to a random wealth {3 or 5 with equal probabilities} if 

e  (a b) /2. Otherwise, he will prefer the bet.  

 Nevertheless, the indifference map provides information about choice under 

uncertainty whenever the first order stochastic dominance criterion can be applied. For 

example, under expected utility the agent with the indifference curves in Figure 4, will 

prefer point E  with certainty to a bet that has two possible outcomes: Point J  and point 

H , because E  is preferred to each possible outcome.4 This prediction cannot be made 

under the Selden utility function that does not respect first order stochastic dominance. 

                                                 
4 Van den Heuvel (2007) shows that under the expected utility a consumer who prefers the actuarially fair 

money bet b1 = { A   or B} to the actuarially fair bet b2  = { H  or J } must have IES 1. 
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This difference in the applicability of first order stochastic dominance criterion, provides 

a clue to why the IES  plays an important role under expected utility but not under the 

Selden utility.     

 

4

5

1.5

2.5

3

A G J

H
F

B

E

V(5)=b

V(4)=e

V(3)=a

C
0

C
1

  
Figure 4 

    

 Under the expected utility the coefficient that describes the attitude towards bets 

in terms of second period consumption is:  

 

(13)  RAC  
U22C1

U2

1   ( )
(1 )

 (1)
1

IES
RAM   
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where  


1 
, U2  U

C1
is the first partial derivative and U22 

U2
C1

 is the second 

partial derivative.5 Note that RAC  is a weighted average of 1
IES  and RAM . In the special 

case of the standard power utility function the two are equal. When 1
IES  RAM , the RAC  

measure is higher than the RAM  measure and the opposite is true when 1
IES  RAM . For 

example, when  1, IES  2 and RAM 10, we get: RAC  5.25 . I argue that the RAC  

measure is comparable to the Selden risk aversion coefficient because the Selden 

uncertainty is about future consumption.  

 Figures 5 and 6 compare the predictions of the two models when both models 

have the same IES  and the same RAC  measure (using [13] to obtain the RAC  measure 

for the expected utility case). Figure 5a and 6a assume IES  2 and may be compared to 

Figure 3. We see that when the measure of risk aversion RAC  is the same for both 

models the differences between the predictions of the two models is much smaller than 

the difference that arises when the cardinal measures of risk aversion (i.e. measures that 

can be eliminated under increasing monotonic transformations) are the same.  

 

                                                 

5 It may help to define the utility from second period consumption, holding first period consumption at the 

level C0  C 0, by: F(C1) U(C 0,C1) . In this case, the relative risk aversion measure in (13) is: 

RAC  
F ' '(C1)C1

F '(C1)
. 
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a. IES  2   

 

 
b. IES 1.1 

 

 

c. IES  0.5 

Figure 5: The Equity Premium when the Measure of Risk Aversion are Comparable 
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a. IES  2  

 

 
b. IES 1.1 

 

 
c. IES  0.5 

Figure 6: The Risk Free Rate when the Measures of Risk Aversion are Comparable 

 

Welfare cost under the Selden utility function: When RAC  4  the consumer is 

indifferent between the assumed random second period income and a certainty equivalent 
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second period income equal to 0.9855E (C1). The certainty equivalent is thus 1.45% 

lower than the mean and this is the welfare cost in terms of second period income. The 

cost in terms of every year income is 1 y  where y  is the solution to: 

(y)   yE(C1)  
1


 1  0.9855E(C1)  
1


.   

 I find that the welfare cost under the Selden utility function is not sensitive to the 

choice of IES . The every period welfare cost is 0.7% when RAC  4 , 1.9% when 

RAC  6  and close to 8% when RAC 10 .  

 Under the expected utility with IES  2, I get a welfare cost of 0.6% when 

RAC  4  ( RAM  7.65), a welfare cost of 1.6% when RAC  6  ( RAM 11.75) and a 

welfare cost of 6.3% when RAC 10  ( RAM 19.9). Reducing the IES  will increase the 

welfare cost for the expected utility but will not change it for the Selden utility.  

 

5. THE COBB DOUGLAS CASE 

 

 Figures 5 and 6 suggest that the two approaches yields the same predictions when 

IES 1, which is the Cobb-Douglas case. I now show that this is indeed the case. I start 

with the expected utility specification: U(C0,C1;,,,)  (1/)(C0) (C1)
 . In this case, 

RAM 1(1 )  and RAC 1 .  

 Using the first order conditions (7), the market clearing conditions C0 1, 

C1s  Ds we arrive at the equilibrium condition: 

 

 (14)  pi  
ss1

S (Ds)
1dis

ss1

S (Ds)


 
ss1

S (Ds)
RAC dis

ss1

S (Ds)
1RAC

  

 

I now turn to the Selden utility function when the aggregator function is Cobb-Douglas:   
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G(C,Z)  (1
)CZ  (1

)C (Ex ) / . The problem of the representative agent when 

using this function is: maxAi
(1

) 1 pii1

n  pii1

n Ai







ss1

S ( disi1

n Ai)





 /

.  

The pricing formula obtained by substituting the market clearing conditions in the first 

order condition is:  

 

(15)  pi 
 ss1

S (Ds)
 1dis

ss1

S (Ds)



y ss1

S (Ds)
RAC dis

ss1

S (Ds)
1RAC

 

Note that (14) is the same as (15), once we express the price in terms of RAC . This says 

that the two models predict the same prices when both have the same RAC .  

 Welfare calculations are also the same when RAC  is held constant. When 

assuming   , the RAC  measure is the same for both utility functions, welfare under 

the expected utility is (1/)(C0) E(x )  (1/)(C0) E(x1RAC )  and welfare under the 

Selden utility function is  ( 1
)C (Ex ) /  (1

)CE(x1RAC ) . Since the functions are 

identical the certainty equivalents are the same. We have thus shown the following 

Claim.  

 

Claim: In the Cobb-Douglas case, the two approaches yield the same predictions about 

asset prices and the same welfare cost calculations, when the assumed parameters imply 

the same RAC  measures.  

 

 Since the welfare cost under Selden is not sensitive to changes in the IES  and the 

welfare cost under expected utility is decreasing in the IES , we can use the claim to 

make the following comparison: The welfare cost under Selden is higher (lower) than the 

welfare cost under expected utility when IES  is higher (lower) than unity and RAC  is 

held constant.6   

                                                 
6 The welfare cost under expected utility may be much less than the welfare cost under the Selden utility 

function when the cardinal measure of risk aversion are held constant. Under the expected utility with 
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 The Cobb Douglas case is also useful for characterizing the difference in the 

predictions about the risk free rate, when holding RAC  constant. Figure 6 suggests that 

when IES 1, the predicted risk free rate is higher under expected utility but the opposite 

is true when IES 1. We cannot make an analogous statement about the equity premium 

(Figure 5).  

 Finally, the Cobb Douglas case is a useful benchmark for describing the 

relationship under expected utility between Rm  and RAM  holding the IES  constant. In 

the Cobb Douglas case with IES 1, pi  y  and does not depend on the distribution of 

future dividends. The expected rate of return on the market portfolio is: Rm  D
  where 

D   ss1

S Ds is the expected rate of consumption growth. In this case changes in RAM  

do not affect the expected rate of return on holding the market portfolio. This is not the 

case when IES 1. As can be seen from Figure 1, when IES  2, Rm  increases with risk 

aversion and the opposite occurs when IES  0.5. The behavior of Rm  when IES 1 may 

appear counter intuitive when thinking about the risk free rate as a constant. What 

actually happens is that when RAM  increases the risk free rate decreases, and decreases 

more sharply when IES 1.  Therefore, the expected rate of return on the market 

portfolio may decrease with RAM  even when the equity premium increases with RAM .   

 

6. THE ROLE OF IES  IN DETERMINING THE EQUITY PREMIUM 

 

 Changes in IES  affect the equity premium in the KM  expected utility case but 

have almost no effect on the equity premium in the Selden case. Figure 7a illustrates by 

plotting the equity premium as a function of IES  for two levels of cardinal risk aversion 

measures: (3.6,4)  for Selden and (5.3,7.65) for the KM  expected utility. The RAC  

measure of 3.6 for Selden is comparable to the RAM  measure of 5.3 for the KM  

                                                                                                                                                 
IES  between 1 and 2, the welfare cost is 0.5% when RAM  6. This is about a quarter of the welfare 
cost when using a Selden utility function with RAC  6 . 
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expected utility when IES  0.5. The RAC  measure of 4 for Selden is comparable to the 

RAM  measure of 7.65 for the KM  expected utility when IES  2. Figure 7b plots the 

equity premium as a function of 1
IES  which seems to be a better measure for fluctuations 

aversion because the relationship is close to linear especially for the lower RAM .  

 To advance the interpretation of 1
IES  as a measure of fluctuation aversion, Figure 

8 calculates the Fluctuations Premium as the amount that the consumer is willing to give 

in terms of average consumption for substituting a non-smooth consumption path (C0,C1) 

for a smooth consumption path (C,C). The smooth equivalent consumption C  yields the 

same utility as the non-smooth path: (C0)  (C1)
 

1
  (C)  (C) 

1
  (1 ) 

1
 C  

and the premium is calculated as (C0  C1) /2 C . We see that the fluctuations premium 

is almost a linear function of our measure of fluctuations aversion 1
IES , and increasing the 

rate of consumption growth g  leads to an increase in the premium.  

 We have seen that under expected utility the equity premium depends both on the 

cardinal measure RAM  and fluctuations aversion as measured by 1
IES . Can we explain 

the role of the fluctuation aversion by its role in determining the RAC  measure? To 

answer this question I plot in Figure 9 the equity premium as a function of IES  and 1
IES  

while holding (a) RAC  constant and (b) RAM  constant.7 In the Figure the equity 

premium is increasing in the fluctuation aversion measure 1
IES  in both cases, but the 

curve that holds RAC  constant is flatter. This suggests that part of the explanation for the 

role of the fluctuation aversion measure is in its role in determining RAC . But this is 

only a partial explanation: The equity premium is increasing in 1
IES  even when we hold 

RAC  constant.  

                                                 
7 Note that (13) implies that when the RAC  is constant, the RAM  coefficient changes and is given by: 

RAM  ( 1
) RAC  (1)(1

IES) . 
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a. Equity Premium as a function of IES  

  

 
b. Equity Premium as a function of 1

IES  

 
Figure 7: Equity Premium when RAC  (3.6,4)  for Selden and RAM  (5.3,7.65)  for KM  expected 

utility 
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Figure 8: The Fluctuations Premium as a function of the Fluctuations Aversion measure ( 1

IES) under 

expected utility when consumption is: (C0 1,C1 1 g) .   
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a. Equity Premium as a function of IES  

 

 
b. Equity Premium as a function of 1

IES  

Figure 9: The Equity Premium under expected utility holding (a) RAC  constant and (b) RAM  constant. 
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7. VARYING   

 

 In the calibration exercise I assumed   0.96. This is the standard choice when 

the representative agent lives forever but it is not clear that this is a good choice for an 

overlapping generations economy. We can imagine for example that the second period 

wealth is spent on many future periods and as a result   is large. To examine this 

hypothesis I now vary   and choose the one that can hit the target with the lowest RAM  

coefficient. This measure of the “goodness of fit” uses the prior that RAM  is low. Table 

1 makes the calculations for various choices of IES . Surprisingly, the “best”   is close 

to 0.96 and whenever the “best” beta is not equal to 0.96, the improvement in the RAM  

coefficient is small.  

 
Table 1: Searching for the “best”    

 RAM(  0.96) "best"  RAM("best") 

IES  2 8.3 (4.3) 0.97 7.9 (4.1) 

IES 1.1 7 (3.9) 0.96 7 (3.9) 

IES  0.5 5.3 (3.6) 0.96 5.3 (3.6) 

IES  0.25 4.1 (4) 0.98 3.8 (4) 

IES  0.2 4.1 (4.6) 0.99 3.5 (4.6) 
Note: RAC  in parentheses. The "best"  is the   that allows us to hit the target with the lowest RAM  
coefficient.  

 

8. CONCLUDING REMARKS 

  

 The predictions of the KM  expected utility seem very different from the 

predictions of the Selden utility function. Part of the difference may be explained by 

interpreting the cardinal risk aversion measures.  
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 Cardinal risk aversion measures can be eliminated under monotone increasing 

transformations. The Selden cardinal risk aversion measure, RAC 1 , characterizes 

the attitude towards bets on future consumption. The expected utility cardinal risk 

aversion measure, RAM 1 , characterizes the attitude towards money bets. The 

comparable RAC  measure for the expected utility function is a weighted average of the 

fluctuations aversion measure 1
IES  and the cardinal risk aversion measure RAM . The 

difference in the predictions of the two approaches are much smaller when using 

parameters that imply the same comparable RAC  measures.   

 There are however, some qualitative differences. Under expected utility, the 

fluctuations aversion measure 1
IES  plays an important role in the determination of the 

equity premium. This role cannot be fully explained by the role of 1
IES  in the 

determination of the RAC  measure: The equity premium is increasing in 1
IES  even when 

holding RAC  constant. Under the Selden utility function the IES  play no role in the 

determination of the equity premium.  

 A related qualitative difference is in the applicability of first order stochastic 

dominance. Under expected utility, we can use first order stochastic dominance to predict 

the attitude towards some bets from the information that is in the indifference map. This 

is not possible under the Selden utility function.  

 Our overlapping generations model with KM  expected utility function predicts 

rates of return that are on target when using IES  2 and RAC  4  ( RAM  7.65). In this 

sense the results in Barro (2009) are robust. But the welfare cost estimates are different. 

When (IES  2,RAM  7.65), I get a welfare cost estimate of 0.6% that is large, but is an 

order of magnitude smaller than the 24% welfare cost estimated by Barro. I do not think 

that this difference arises because of the use of the Epstein-Zin-Weil approach because 

the welfare estimates I get when using the 2 period version of this approach are also 

small in comparison to Barro. The difference in the estimated welfare cost is probably 

due to the difference in the horizon of the representative agent. In our overlapping 
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generations model the economy lasts forever but agents live for two periods and the 

stochastic process that governs the productivity of each generation ( t ) does not affect 

any of the results. In Barro’s model the representative agent lives forever and he is 

therefore sensitive to long run risk that arises as a result of a random walk consumption 

(productivity) process. Both the 2 periods horizon and the infinite horizon seem highly 

unrealistic. This suggests a more general overlapping generations model with finitely 

lived individuals as a project for future research.  

 It may be worthwhile to point out that extending the KM  expected utility function 

to more than 2 periods horizon does not lead to time inconsistency problems. See the 

Appendix in Eden (2008). It leads however to marginal rates of substitution that change 

with past consumption. This is not necessarily a “bad” feature because it implies changes 

in asset prices that are not caused by changes in the distribution of dividends. However, I 

do not think that this will contribute to solving the excess volatility puzzle because the 

effect of past consumption on the marginal rates of substitution seems small.  
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