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Abstract

We introduce a computationally efficient bootstrap procedure for obtaining multiplicity-

adjusted p-values in situations where multiple hypotheses are tested simultaneously.

This new testing procedure accounts for the mutual dependence of the individual

statistics, and is shown under weak conditions to maintain asymptotic control of the

generalized familywise error rate. Moreover, the estimated critical values (p-values)

obtained via our procedure are less sensitive to the inclusion of true hypotheses and, as

a result, our test has greater power to identify false hypotheses even as the collection

of hypotheses under test increases in size. Another attractive feature of our test is that

it leads naturally to balance among the individual hypotheses under test. This feature

is especially attractive in settings where balance is desired but alternative approaches,

such as those based on studentization, are difficult or infeasible.
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1. INTRODUCTION

In this paper we introduce a computationally efficient bootstrap procedure for obtaining

multiplicity-adjusted p-values in situations where multiple hypotheses are tested simulta-

neously. This new testing procedure accounts for the mutual dependence of the individual

statistics, delivers a balanced testing procedure where all of the individual tests have approx-

imately equal power, and is shown under weak conditions to maintain asymptotic control of

the generalized familywise error rate.

In the classical approach to the multiplicity problem, testing procedures are designed to

control the probability of one or more false rejections, otherwise referred to in the literature

as the familywise error rate and commonly abbreviated as FWERP , where the subscript

P reflects the dependence of the FWER on the underlying true probability distribution.

Formally,

FWERP = P{reject at least one hypothesis Hi : i ∈ I0(P )}

where I0(P ) denotes the set of true null hypotheses under P . If I0(P ) is empty then FWERP

is defined to be zero. We say that a multiple testing procedure satisfying

lim sup
T

FWERP ≤ α, (1)

where T denotes sample size, maintains asymptotic control of the familywise error rate at

level α. This is to be distinguished from control of the FWER when (i) all null hypotheses

are true (weak control) or (ii) any configuration of the null hypotheses are true (strong

control). Evidently, error control in the sense of (1) is an intermediate case. As argued

in Pollard and van der Laan (2003), strong control is “too much and not necessary” since

error control under the true data generating distribution is “all that one cares about.” This

viewpoint, which is shared by the author, also appears to be the prevailing viewpoint in

the econometrics literature—see e.g. Romano and Wolf (2005b) and Romano, Shaikh and

Wolf (2008b), and references therein. For the remainder of the paper we therefore focus on
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asymptotic error control in the sense of (1). We note however that there has also been recent

interest in relaxing FWER control to k-FWER control, where k-FWER is defined as the

probability of at most k false rejections.1 Our proposed testing procedure generalizes in a

natural way to k-FWER control and this point is discussed briefly in Section 5, though no

additional insight is gained by considering this more general case in the main body of the

paper.

The single-step Bonferroni adjustment and the stepdown procedure of Holm (1979)

are examples of simple multiplicity adjustments that offer control of the FWER; see e.g.

Hochberg and Tamhane (1987). However, these and many other procedures are generally

conservative in part because they fail to account for the dependence structure of the individ-

ual test statistics (or p-values). White (2000) demonstrated, among other things, how boot-

strap methods can be applied to (asymptotically) account for the true dependence structure

of the individual test statistics thereby improving upon the power—i.e. the average proba-

bilities of rejecting each false hypothesis—of such tests. White’s (2000) influential paper also

served as a catalyst for a number of subsequent contributions which have collectively resulted

in significant improvements in the power of FWER procedures to detect false hypotheses.

Examples of contributions in this area include Hansen (2005), Romano and Wolf (2005a),

Romano and Wolf (2005b), and Hsu and Kuan (2008).

In addition to controlling the FWER, it is often desirable to design balanced testing

procedures where all of the individual tests have approximately equal power. While stu-

dentization of the individual test statistics can sometimes achieve balance and lead to more

powerful tests, in many applications the computation of the the standard errors of the in-

dividual statistics may be difficult or infeasible. Moreover, studentization will be ineffective

in achieving balance if the (limiting) distributions of the studentized statistics are different.

This would occur, for instance, whenever the collection of hypotheses being tested includes

both one-sided and two-sided tests. Alternatively, even in these situations the marginal dis-

1A discussion of various Type I error rates may be found in Dudoit, van der Laan and Pollard (2004).
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tributions of the p-values of the individual statistics are, under mild conditions, generally

uniform on the boundaries of the null hypotheses and are therefore the natural quantities to

use whenever balance is desired.

In this paper we introduce a computationally efficient bootstrap procedure for use in

multiple testing problems which is based on the comparison of estimated p-values. Aside from

delivering a balanced testing procedure, our multiple comparison test yields appropriately

adjusted p-values and is therefore attractive since (i) users are not required to specify a target

error rate α in advance; and (ii) reporting p-values is more informative since each p-value

provides a measure of strength of evidence against an individual hypothesis.

Our procedure is based on the following simple observation: If J(x) is the joint distribu-

tion of the test statistics under the complete null hypothesis, then the exact distribution of

the minimum p-value is given by

H(p) = E1{min
i

[1− J(i)(X(i))] ≤ p} (2)

where X(i) denotes the ith element of a random vector with distribution J(x) and J(i)(·)
denotes the marginal (univariate) distribution associated with X(i). If J(x) were known,

then (2) may be computed analytically or to an arbitrary degree of accuracy via Monte

Carlo simulation. When J(x) is unknown—as is generally the case—we may replace J(x)

with a resampling-based estimator to obtain an approximation to (2); and such a strategy

will be valid in the sense of (1) under mild conditions whenever resampling methods deliver

a consistent estimator of J(x). In this paper we focus on the use bootstrap resampling to

estimate (2), though our proposed methodology may easily be generalized to accommodate

situations where, say, subsampling or the m out of n bootstrap is required for consistency.

Notably only two bootstrap samples are required of our procedure, and of these the

second bootstrap sample is constructed by random sampling from the first bootstrap sample

and hence without re-computing test statistics. It is also remarkable that the same bootstrap
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samples generated for a single-step test can be used to obtain asymptotically valid critical

values (adjusted p-values) for the related stepdown procedures. This is of considerable

practical importance since it implies that the computational burden of our testing procedure

does not increase dramatically when we move from single-step to stepdown procedures. In

contrast, even in the case of single-step tests existing procedures generally require an iterated

or double bootstrap to approximate the joint distribution of the p-values, whereby, denoting

by B1 and B2 the number of replications in the first and second bootstrap procedures,

1+B1+B×B2 statistics must be calculated; see for example Godfrey (2005) or the discussion

in MacKinnon (2007). As opposed to a p-value approach Romano and Wolf (2008) have

recently introduced a procedure based on inverting balanced simultaneous confidence regions

as originally proposed in Beran (1988). However, their procedure delivers critical values for

a pre-specified target error rate α as opposed to p-values. Additionally, their proposed

methodology, unlike ours, becomes computationally burdensome when FWER control is

relaxed in favor of k-FWER control.

In the discussion of our testing procedure we consider the case of testing multiple one-

sided hypotheses. One-sided tests are composite and thus introduce subtleties which are not

present when only two-sided hypotheses are considered. In particular, in the case of one-

sided tests the lower quantiles of the null distribution of the MinP statistic are predominantly

determined by those test statistics associated with true hypotheses for which the parameters

are at or near the boundary of equality. In their recently proposed tests of parameters defined

by many moment inequalities, for example, Andrews and Soares (2007) and Andrews and

Jia (2008) exploit sample information to help identify binding or “near” binding parameters

and use only these in computing critical values.2 Since the quantiles of the null distribution

of the MinP statistic are non-decreasing in the number of hypotheses under test, excluding

those hypotheses associated with parameters that appear to be “deep” within the null will

2In fact the basic intuition underlying these tests can be traced back to Andrews (2000) and has been
exploited by several authors in various contexts including Hansen (2005), and Hsu and Kuan (2008), among
others.
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generally lead to more powerful tests while maintaining asymptotic validity. We show how

to incorporate these recent developments in our resampling procedure. The result is a

more powerful test which is also less sensitive to the inclusion of “irrelevant” hypotheses

when compared to a MinP test based on the canonical fully recentered bootstrap. The

generalization to two-sided hypotheses and mixtures of one- and two-sided hypotheses is

shown to be straightforward.

The plan for the rest of the paper is as follows. In the next section we discuss the ba-

sic formulation of the multiple testing problem. We then introduce a single-step multiple

testing procedure based on a comparison of nonstudentized test statistics, and use these

results to develop our single-step p-value comparison test. We subsequently consider exten-

sions to stepdown procedures as well as to k-FWER control, and then briefly illustrate the

performance of our tests via Monte Carlo simulation. Proofs are collected in the appendix.

2. MULTIPLE TESTING: FORMULATION AND EXAMPLES

The class of testing problems under consideration is the same as that considered in Ro-

mano and Wolf (2005b). In order to conveniently draw from their examples and facilitate

comparison to their results we have adopted their notation where applicable.

Let X1, . . . , XT be a data set generated from some probability distribution P . Our

interest centers on simultaneous testing of

Hs : θs(P ) ≤ 0 vs. H ′
s : θs(P ) > 0, s ∈ {1, . . . , S}. (3)

We denote by wT,(s) = wT,(s)(X1, . . . , XT ) a statistic for testing Hs and assume, without

loss of generality, that a large value of wT,(s) constitutes evidence against the individual null

hypothesis Hs. The following is but one example from the general class of testing problems

under consideration.

Example 1 (Model Selection). For model s let θs denote a performance measure relative
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to a given benchmark model, where θs > 0 is indicative of model s being “superior” to the

benchmark. Let wt,s denote a statistic for testing the hypothesis Hs : θs ≤ 0 (for specific

performance measures and their corresponding test statistics see White (2000) and Romano

and Wolf (2005b)). Interest in this context centers on simultaneously testing

Hs : θs ≤ 0 vs. H ′
s : θs > 0, s ∈ {1, . . . , S}

Failure to account for multiplicity in this context will generally result in “too many” models

being found superior to the benchmark.

As mentioned at the outset our focus in this paper is on resampling-based multiple testing

procedures, or more specifically bootstrap-based tests. Accordingly, let JT (P ) denote the

sampling distribution under the true probability mechanism P of the scaled and centered

S× 1 statistic
√

T (WT − θ) and denote by JT (P̂T ) the sampling distribution under P̂T of the

bootstrap counterpart
√

T (W ∗
T − θ∗). The appropriate bootstrap procedure for constructing

√
T (W ∗

T − θ∗) will naturally depend on whether the underlying data are i.i.d. or temporally

dependent. In the first case, Efron’s (1979) bootstrap procedure may be appropriate whereas

in the latter case a bootstrap procedure for dependent data would be required; see Lahiri

(2003) for further details. In any event, the testing procedures discussed in this paper depend

critically on the validity of the bootstrap approximation to the asymptotic distribution.

Assumption 1 below is a high level assumption concerning the validity of the bootstrap

approximation and is sufficient for establishing all of our main results.

Assumption 1. Let P denote the true probability mechanism and let P̂T denote an esti-

mate of P based on the data XT . Assume that JT (P ) converges in distribution to a limit

distribution J(P ), which is continuous and strictly increasing. Further, assume that JT (P̂T )

consistently estimates this limit distribution: ρ(JT (P̂T ), J(P )) → 0 in probability for any

metric ρ metrizing weak convergence.

Remark 1. Assumption 1, which is a slightly modified version of assumption 3.1 of Romano
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and Wolf (2005b), is rather common in the bootstrap literature. For discussion and examples

pertaining to cases for which Assumption 1 is satisfied see Politis, Romano and Wolf (1999)

p. 9 and Shao and Tu (1995) p. 80. See also Romano and Wolf (2005b) pp. 1249-1251 for

specific examples.

3. TESTING PROCEDURES

We begin our discussion with a single-step bootstrap test involving basic (nonstudentized)

statistics, which we then use as a basis for developing our p-value comparison test. The

generalization to stepwise procedures along the lines of Hsu and Kuan (2008) is natural and

therefore discussed only briefly in Section 4.

3.1 A Partially Recentered Bootstrap Approach

The decision rules of single-step procedures for testing Hs at the nominal level α can invari-

ably be written as

Reject Hs if 0 6∈ [
√

TwT,s − c(α),∞), (4)

where c(α) denotes an appropriately chosen critical value. In this section we describe a

bootstrap procedure for estimating c(α) that ensures asymptotic control of the FWER at

level α. For the purpose of describing this testing procedure, let bT denote a positive sequence

satisfying bT → 0 and
√

TbT → ∞ as T approaches infinity . Additionally, let Jmax
T (P̂T )

denote the sampling distribution under P̂T of

MT = max
s∈{1,...,S}

{√
T (w∗

T,s − θ∗T,s) +
√

TwT,s1{wT,s < −bT}
}

. (5)

Our proposal for estimating c(α) in (4) is to select the value ĉPC(α) defined as

ĉPC(α) = inf{x : Jmax
T (P̂T )(x) ≥ 1− α}. (6)

Notice that the recentering in (5) differs from the canonical fully-recentered bootstrap;
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namely the bootstrap distribution corresponding to the indices s ∈ {1, . . . , S} with wT,s ≤
−bT are shifted downwards by the amount T 1/2wT,s. Asymptotically, this adjustment reduces

the set of indices over which the maximum of the random vector M (MT →d M) is computed

to only those indices for which θs ≥ 0, and hence results in smaller critical values and greater

power than tests based on the canonical bootstrap recentering scheme. Upon inspection the

procedure can be viewed as a simple hybrid of the procedures proposed in White (2000) and

Hansen (2005). Specifically, the testing procedure above may be obtained by dropping the

outer maximum on the statistic employed by Hansen (2005)—which leads to White’s (2000)

test statistic—while retaining Hansen’s (2005) proposed resampling scheme. An appropriate

sequence {bT} may be obtained by appealing to the Law of the Iterated Logarithm. This

choice is discussed in some detail in Hansen (2003) and Hansen (2005).

The asymptotic properties of the proposed test are summarized below in Theorem 1. In

the statement of the theorem we denote by I0(P ) the set of indices corresponding to the true

hypotheses.

Theorem 1. Suppose Assumption 1 holds and bT = o(1) with
√

TbT → ∞. Then the

following statements are true.

i. If θs > 0, then

ProbP{Reject Hs} → 1 as T →∞

ii. The procedure provides asymptotic control the familywise error rate, i.e. at the nominal

level α

lim
T→∞

FWERP ≤ α

iii. The limiting probability in (ii) is equal to α if and only if I0(P ) = {1, . . . , S} and

θs = 0 for as least one s ∈ I0(P ).

Theorem 1 is the analogue of Theorem 3.1 of Romano and Wolf (2005b) . Parts (i) and (ii)

of the theorem show that the test is consistent and provides asymptotic control of the FWER.

8



In part (iii) it is shown that the partially recentered bootstrap test is correctly sized for any

configuration of the parameters where all of the null hypotheses are satisfied and at least

one parameter is on the boundary. Intimately connected to property (iii) is the improved

ability of the partially recentered bootstrap test to detect false hypotheses. Formally, letting

ĉFC(α) denote the α-level critical value obtained via the canonical bootstrap we have:

Theorem 2. Suppose Assumption 1 holds and bT = o(1) with
√

TbT →∞. Then,

lim
T→∞

ProbP{T 1/2wT,s > ĉPC(α)} ≥ lim
T→∞

ProbP{T 1/2wT,s > ĉFC(α)}

with strict inequality holding whenever I0(P ) is nonempty and θi < 0 for some i ∈ I0(P ).

3.2 An approach based on the comparison of p-values

In this section we present a single-step testing procedure based on the comparison of p-values.

There are several attractive features of this new test including: (i) in contrast to other

resampling-based p-value tests, our procedure provides asymptotic control of the FWER

without imposing any assumptions beyond Assumption 1; (ii) the procedure is computa-

tionally efficient requiring only two separate bootstrap samples as opposed to a full double

bootstrap; and (iii) the test is invariant to monotonic transformations of the component

statistics making studentization of the component statistics unnecessary.

In order to describe the testing procedure we introduce the following notation. First,

denote by JPC
T (P̂T ) the joint sampling distribution under P̂T of

wPC
T,s =

√
T (w∗

T,s − θ∗T,s) +
√

TwT,s1{wT,s < −bT}. (7)

Additionally, let JT,(i)(P̂ ) denote the ith marginal distribution of JT (P̂ ). It is relatively

straightforward that the p-values of the component statistics wT,s may be consistently esti-
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mated from the marginal bootstrap distributions as

pT,s = 1− JT,(s)(P̂ )(T 1/2wT,s).

Since a small p-value corresponds to evidence against a null hypothesis, the appropriate

decision rule in this case is

Reject Hs if pT,s < pT (α),

where pT (α) is a data-dependent critical that is to be estimated in a manner that ensures,

at least asymptotically, control of the FWER. Our proposed strategy in this paper is to use

as an estimator

pT (α) = inf{x : Jmin
T (P̂T )(x) ≥ 1− α}, (8)

where Jmin
T (P̂T ) is the sampling distribution under P̂ of

min
s∈{1,...,S}

[
1− JT,(s)(P̂ )(W(s))

]
, (9)

and W(s) is the sth element of the random vector W ∼ JPC
T (P̂T ). Note that the corresponding

adjusted p-values are easily obtained from Jmin
T (P̂T )(pT,s) for s ∈ {1, . . . , S}.

It is noteworthy that the bootstrap procedure used to estimate the sampling distribution

of the minimum p-value involves only resampling with replacement from the tabulated dis-

tribution JPC
T (P̂T ). In other words, the second stage bootstrap procedure is nothing other

than Efron’s (1979) i.i.d. bootstrap applied to JPC
T (P̂T ).

To gain some intuition for the mechanics of this procedure first consider the case where

all of the hypotheses are on the boundary, i.e. θs = 0 for every s. In this case JPC
T (P̂T ) and

JT (P̂ ) both converge to J(P ), and consequently
[
1− JT,(s)(P̂ )(Ws)

]
converges to a uniform

random variable for every s ∈ {1, . . . , S}. Thus, asymptotically, the minimum is over an

S × 1 vector random variable with uniform (univariate) marginals, as should be expected

when all of the θs = 0. It is also worth noting here that the dependence structure among the
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uniform random variables is captured implicitly by the nature of the bootstrap resampling.

When θs < 0 the sth marginal distribution JPC
T,(s)(P̂T ) converges in probability to a degenerate

distribution at −∞. It follows that

[
1− JT,(s)(P̂ )(Ws)

]
→ 1

in probability as T →∞, and the index set over which the minimum is computed is effectively

reduced. Since pT (α) is increasing in the number of indices for which θs < 0, the ability

to detect false hypotheses is therefore not as adversely affected by the inclusion of true

hypotheses that are strictly in the null as would otherwise be the case if the canonical fully

recentered bootstrap scheme is employed.

Not surprisingly, given the intimate connection between the two tests, the MinP testing

procedure has the same basic asymptotic properties as the underlying partially recentered

bootstrap test. This is the essence of Theorem 3 below.

Theorem 3. Suppose Assumption 1 holds and bT = o(1) with
√

TbT →∞. Then statements

(i), (ii), and (iii) of Theorem 1 apply to the p-value testing procedure.

By letting pFC
T (α) denote the p-value obtained by replacing W(s) in (9) with W̃(s), where

W̃(s) is the sth element of W̃ ∼ JT (P̂ ), we also obtain the p-value analogue of theorem 2:

Theorem 4. Suppose Assumption 1 holds and bT = o(1) with
√

TbT →∞. Then,

lim
T→∞

ProbP{pT,s < pPC
T (α)} ≥ lim

T→∞
ProbP{pT,s < pFC

T (α)}

with strict inequality holding whenever I0(P ) is nonempty and θi < 0 for some i ∈ I0(P ).

As mentioned previously, one of the principle advantages of the p-value approach is that

balance of power among the individual tests is obtained without having to studentize the

individual statistics—that is, if studentization is feasible—and balance continues to hold
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even when one- and two-sided tests are included in the family of hypotheses. This basic

property of the p-value test is the content of Theorem 5. For the statement of the theorem

we denote by I0(P ) and I1(P ) the set of indices i ∈ {1, . . . , S} for which θi(P ) ≤ 0 and

θi(P ) ≥ 0.

Theorem 5. Suppose Assumption 1 holds and bT = o(1) with
√

TbT → ∞. Then, for all

i, j ∈ I0(P )
⋂

I1(P ), the p-value test at nominal level α satisfies

lim
T→∞

ProbP (Reject Hi) = lim
T→∞

ProbP (Reject Hj)

whenever I1(P )\I0(P ) = ∅.

Remark 2. Under the same conditions as stated in the theorem, it may also be shown that

in a stepdown test any two hypotheses on the boundary of their respective nulls have identical

rejection probabilities equal to 1− α..

4. EXTENSIONS TO STEPDOWN TESTING PROCEDURES

Denote by w
(1)
T , . . . , w

(S)
T the order statistics defined by sorting w1,T , . . . , wS,T in increasing

order. Additionally, denote by H(1), . . . , H(S) the corresponding null hypotheses associated

with each of the order statistics. A stepdown testing procedure is defined as a sequential

testing procedure that rejects H(S) if

0 6∈ [
√

Tw
(1)
T − c1(α),∞)

and rejects H(j) for 1 ≤ j < S only if both H(j+1) is rejected and

0 6∈ [
√

Tw
(j)
T − cj(α),∞),

where cj(α) is a suitably chosen critical value with the property that ci ≤ cj for i < j. Notice

that single-step procedures are subsumed by this definition by simply taking ci = cj for all

12



i 6= j.

Given w
(1)
T , . . . , w

(S)
T , define the sequence H1 ⊂ H2 ⊂ . . .HS with HS = {H(1), . . . , H(S)}

andHj = HS\{H(S), . . . , H(S−j+1)} for 1 ≤ j < S. Additionally, let RH denote a resampling-

based procedure for estimating the α-level critical value in a test of the family of hypotheses

in H. We now state a general result on the asymptotic control of FWER via stepdown

procedures.

Theorem 6. Suppose the α-level critical value cj(α) obtained from RHj
is such that a single-

step test based on cj(α) satisfies

i. lim supT FWER
Hj

P ≤ α, and

ii. lim supT FWER
Hj

P = α whenever all of the hypotheses in Hj are binding under P .

Then, the sequence{cj(α), 1 ≤ j ≤ S} is weakly monotonically increasing, and a stepdown

procedure based on {cj(α), 1 ≤ j ≤ S} satisfies

lim sup
T

FWERP ≤ α

Remark 3. Theorem 6, which is essentially a reformulation of results obtained by Romano

and Wolf (2005a), formalizes the notion that a stepdown test is simply a sequence of single-

stage tests, and that FWER control of a single-stage bootstrap test implies that control is

maintained when the same bootstrap procedure is applied to estimate the critical values in a

stepdown procedure.

Theorem 6, which forms the basis for the generalization of a single-step procedure to a

stepdown approach, also applies to the minimum p-value testing procedure. To see this, let

r
(1)
T , . . . , r

(S)
T denote the order statistics of 1− pT,1, . . . , 1− pT,S and define

cT,j(α) = 1− inf{x : Jmin
T,j (P̂T )(x) ≥ 1− α} (10)
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where Jmin
T,j (P̂T ) is the sampling distribution under P̂ of

min
{j:1−pT,j≥r

(j)
T }

[
1− JT,(j)(P̂ )(Ws)

]

and Ws denotes the sth element of the random vector W ∼ JPC
T (P̂T ). A stepdown procedure

based on the minimum p-value approach rejects H(S) if

0 6∈ [r
(S)
T − c1(α),∞),

and rejects H(j) for 1 ≤ j < S only if both H(j+1) is rejected and

0 6∈ [r
(j)
T − cj(α),∞).

From the results in Theorem 3 it is straightforward to check that conditions (i) and (ii)

of Theorem 6 are satisfied. The asymptotic control of the familywise error rate is then

obtained as a corollary. We simply state this result and other basic asymptotic properties

of the step-down procedure more formally as Theorem 7 below.

Theorem 7. Suppose Assumption 1 holds and bT = o(1) with
√

TbT → ∞. Then the

step-down procedure based on the minimum p-value approach as defined above satisfies

i. If θs > 0, then

ProbP{Reject Hs} → 1 as T →∞

ii. The procedure provides asymptotic control of the familywise error rate, i.e. at the

nominal level α

lim sup
T→∞

FWERP ≤ α

iii. The limiting probability in (ii) is equal to α if and only if I0(P ) is non-empty and

θs = 0 for as least one s ∈ I0(P ).
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Remark 4. The ability of the stepdown procedures to reject more false hypotheses than

their single-step counterparts follows immediately from the monotonicity of the sequence

{cj(α), 1 ≤ j ≤ S} together with the fact that a single-step procedure simply takes cS(α) as

the critical value for testing all of the individual hypotheses. Moreover, the weak dominance

of the partial recentering schemes over their full centering counterparts, i.e. Theorems 2 and

4, have natural extensions to the stepdown testing framework.

5. ASYMPTOTIC CONTROL OF THE GENERALIZED FAMILYWISE ERROR

RATE

In this section we briefly describe the single modification of the MinP testing procedure that

is necessary if one wishes to maintain asymptotic control of the k-FWER defined as

k-FWERP = ProbP{at most k true Hi are rejected}. (11)

Recalling that JPC
T (P̂T ) denotes the sampling distribution under P̂T of

W PC
T =

√
T (W ∗

T − θ∗T ) +
√

TwT,s1{wT,s < −bT},

and that JT,(i)(P̂ ) denotes the ith marginal distribution of JT (P̂ ), we define Jk
T (P̂T ) to be

the sampling distribution under P̂ of the kth order statistic in the collection

{P(1), P(2), . . . , P(S)},

where P(s) = 1 − JT,(s)(P̂ )(W(s)) and W(s) is the sth element of the random vector W ∼
JPC

T (P̂T ).

In a single-step procedure, the estimated critical value

pk
T (α) = inf{x : Jk

T (P̂T )(x) ≥ 1− α},
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together with the decision rule

Reject Hs if pT,s < pk
T (α),

can be shown—with little modification to the proofs which are provided in the Appendix for

the case k = 1— to maintain asymptotic control of the k-FWER. Additionally, the adjusted

p-values corresponding to a test of H(s) may be reported by evaluating Jk
T (P̂T )(x) at pT,s.

As for the associated stepdown procedure, asymptotic k-FWERP control is maintained

if the individual single-step tests that are employed in the Section 4 are replaced by the

analogous single-step k-FWER tests proposed above. Again, this result is a straightforward

extension of the case when k = 1 and is thus stated without proof.

6. SIMULATION EXPERIMENT

In this section we conduct a simple simulation experiment to illustrate the size and power

properties of the multiplicity-adjusted p-value test. In our simulations we employ a slight

variation of the experimental design of Hansen (2003). For various choices of θ ∈ RS, pseudo

random numbers satisfying X̄T ∼ NS(θ, T−1Σ) are generated and used to test the hypotheses

Hs : θs ≤ 0 against H ′
s : θs > 0 for s ∈ {1, . . . , S}. (12)

Prior to each draw of X̄T , a random covariance matrix Σ is generated using the “cluster-

Generation” package in R which is based on the algorithm of Joe (2006). This allows us

to examine the performance of the tests across a wide array of covariance structures (this

algorithm is also employed in a simulation study of Romano, Shaikh and Wolf (2008a)).

Additionally, in the partial recentering of the bootstrap we set bT =
√

2 log log T , a choice

which is motivated by the Law of the Iterated Logarithm.

To complete our description of our experimental design, let ρb and ρa denote the fraction

of binding inequalities and the fraction of inequalities in the alternative, respectively. For
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designs in the null, ρa = 0 and (1 − ρb) of the inequalities θs are set equal to −1/10.

Alternatively, for designs in the alternative, ρa of the inequalities θi are set equal to +1/100

and the remaining fraction (1−ρa) are set equal to −1/10. Similar to the parameter choices

in Hansen (2003) we consider all combinations S = 10, 100; ρa = ρb = 0.1, 0.2, 0.5, 0.8, 0.9

or 1.0; and T = 100, 200, 500, or 1000. In every case the nominal size is set equal to 5%,

and the number of first- and second-stage bootstrap replications are set equal to 2,999 and

3,999.

Tables 1 and 2 contain empirical FWER’s based on 2,000 Monte Carlo simulations for

various single-step tests based on the fully recentered and partially recentered bootstrap

schemes, which we label as “White” and “Hansen”, respectively. The studentized and p-

value versions are labeled with the modifier’s “St.” and “p”.

In all situations in which the fully recentered bootstrap is employed, the corresponding

tests are generally correctly sized only in the case where ρb = 1. Otherwise, the empirical

FWER’s tend to drop off quite rapidly as ρb falls to 0.1. On the other hand, those tests

based on Hansen’s partial recentering scheme generally maintain an empirical FWER close

to the nominal size of 5% over the entire range of ρb, albeit the p-value test appears to be

slightly undersized when S = 100 and ρb takes on a value close to one. Overall, however,

the results are as expected from the theory.

[Table 1 about here.]

[Table 2 about here.]

Tables 3 and 4 contain the average proportion of correctly rejected hypotheses, again

based on 2,000 Monte Carlo simulations. Aside from the cases when S = 10 and ρa = 1, and

when S = 100 and ρa = 1 or ρ = 0.9, where the p-value test based on Hansen’s recentering is

marginally outperformed, the p-value test generally performs as well as any other competing

procedure. The most striking feature that emerges from these simulations is the performance

of the studentized test based on White’s full recentering bootstrap. In either the case of
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S = 10 or S = 100, the power of the test to reject false hypotheses drops off dramatically

as pa falls to 0.1. Interestingly, this loss of power does not occur to the same extent for the

nonstudentized or p-value tests based on White’s procedure. This observation suggests that

caution should be exercised whenever S is large and one is considering implementing White’s

procedure combined with studentization.

[Table 3 about here.]

[Table 4 about here.]

7. SUMMARY AND CONCLUDING REMARKS

In this paper we have proposed a computationally efficient procedure for obtaining multiplicity-

adjusted p-values. Our approach is shown to maintain asymptotic control of the FWER under

weak conditions, and to weakly dominate multiplicity adjustments based on the canonical

bootstrap.

Throughout the paper we have concentrated exclusively on multiplicity adjustments via

bootstrap procedures. Yet subsampling is known to yield consistent estimates of the sam-

pling distribution in certain situations where the bootstrap fails. In such situations it may

be of interest to consider the subsampling analogues of the bootstrap procedures proposed

herein. Very few modifications are generally necessary to transform a bootstrap tests to its’

subsampling counterpart and, under suitable regularity conditions, it is typically straightfor-

ward to show that the basic asymptotic properties of the tests will continue to hold. However

interesting, for the sake of expositional clarity we have chosen not to pursue the details here.

In a related literature there is growing interest on relaxing control of the FWER and

instead focusing on the control of generalized error rates such as the false discovery proportion

(Romano et al. 2008b). Although not explored here, we are interested in how the p-value

approach can be adapted and applied to control these generalized error rates. Further,

the innovations in this paper have immediate extensions to joint tests of equality and or
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inequality restrictions. For example, the p-value comparison approach advocated herein can

be used to develop goodness-of-fit tests that distribute power uniformly over the support of

the distributions being compared. In light of the findings of this paper we feel that extensions

along these lines clearly merit further investigation.
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APPENDIX A. PROOFS

Let I0(P ) and I1(P ) denote the set of indices s ∈ {1, . . . , S} for which θs(P ) ≤ 0 and

θs(P ) ≥ 0, respectively . The following lemma establishes weak convergence of the maximum

of the partially centered bootstrap statistic.

Lemma 1. Suppose Assumption 1 holds and bT = o(1) with
√

TbT →∞. Then,

Jmax
T (P̂T ) ⇒ max

s∈I1(P )
J(P ) (A.1)

in probability.

Proof of Lemma 1. Recall that Jmax
T (P̂T ) denotes the sampling distribution under P̂T of

MT = max
s∈{1,...,S}

{√
T (w∗

T,s − θ∗T,s) +
√

TwT,s1{wT,s < −bT}
}

. (A.2)

By assumption 1,
√

T (w∗
T,s − θ∗T,s) ⇒ J(P ) (A.3)

in probability. Since T 1/2wT,s = Op(1) only if θs(P ) = 0 and bT = o(1) with
√

TbT → ∞ it

is also the case that

√
TwT,s1{wT,s < −bT} →p





0 θs(P ) ≥ 0

−∞ θs(P ) < 0
(A.4)

Combining the results in (A.3) and (A.4), the proof is completed upon applying both

Slutzky’s theorem and the continuous mapping theorem.

Proof of Theorem 1.

(i) From lemma 1 we have MT = Op(1) whereas T 1/2wT,s diverges for any θs(P ) > 0.
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(ii) Suppose I0(P ) and I1(P ) are non-empty. We then have

lim
T→∞

FWERP = lim
T→∞

ProbP

[
max

s∈I0(P )
{T 1/2wT,s} > ĉPC(α)

]

= lim
T→∞

ProbP

[
max

s∈I0(P )
⋂

I1(P )
{T 1/2wT,s} > ĉPC(α)

]

≤ lim
T→∞

ProbP

[
max

s∈I1(P )
{T 1/2(wT,s − θs(P ))} > ĉPC(α)

]

= α

(A.5)

where the last line follows from standard arguments (Beran 1984, p. 17).

(iii) If all of the inequalities are binding then I0(P ) = I1(P ) and it follows from Lemma 1

that the asymptotic familywise error rate is equal to the nominal size of the test. If, on the

other hand, I1(P )\I0(P ) 6= ∅ the inequality in the third line of (A.5) is strict. Similarly, if

I1(P ) = ∅ then limT→∞ FWERP = 0.

Proof of Theorem 2. The proof follows Lemma 1 together with the fact that cFC(α) ≥
cPC(α).

Lemma 2. Define the functions HT , H : RS → RS as

HT (x, P̂ ) =
(
JT,(1)(x(1), P̂ ), . . . , JT,(S)(x(S), P̂ )

)
(A.6)

and

H(x, P ) =
(
J(1)(x(1), P ), . . . , J(S)(x(S), P )

)
. (A.7)

Then, if assumption 1 holds,

HT (T 1/2WT ) ⇒ H(W + lim
T→∞

T 1/2θ),

where W ∼ J(·, P ).
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Proof of Lemma 2. Write

HT (T 1/2WT ) = H(T 1/2(WT − θ) + T 1/2θ) + HT (WT )−H(WT ) (A.8)

Since

sup
x∈RS

‖HT (x)−H(x)‖ ≤ C

S∑
i=1

sup
x∈R

|JT,(i)(x, P̂T )− J(i)(x, P )| (A.9)

for some constant C, and ρ∞
(
JT,(s)

(
·, P̂T

)
, J(s) (·, P )

)
→p 0 (follows from pointwise conver-

gence together with the continuity of J(s)(·, P ) and Pólya’s theorem (Serfling 1981, p. 18))

it follows that

sup
x∈RS

‖HT (x)−H(x)‖ →p 0. (A.10)

The desired result then follows from (A.8) via Slutzky’s theorem together with the continuous

mapping theorem.

Proof of Theorem 3.

(i) From lemma 2, the consistency of the bootstrap distribution, and the continuity of the

min function, we have

min
s∈{1,...,S}

[
1− JT,(s)(T

1/2wT,(s))
] ⇒ min

s∈{1,...,S}

[
1− J(s)

(
W(s) + lim

T→∞
T 1/2θ(s)

)]
(A.11)

and

min
s∈{1,...,S}

[
1− JT,(s)(W̃(s))

]
⇒ min

s∈{1,...,S}

[
1− J(s)

(
W(s) + lim

T→∞
T 1/21{θ(s) < 0}θ(s)

)]
(A.12)

in probability, where W̃ ∼ JPC
T (P̂T ) and W ∼ J(P ). From (A.11) it is clear that

min
s∈{1,...,S}

[
1− J(s)

(
W(s) + lim

T→∞
T 1/2θ(s)

)]
→p 0 (A.13)
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if, for any s ∈ {1, . . . , S}, θ(s) > 0. On the other hand, plimT→∞ pT (α) defined in (10) is

never less than the α quantile of

min
s∈{1,...,S}

[
1− J(s)(W(s))

]
=d min

s∈{1,...,S}
U(s) (A.14)

where U is a S× 1 random vector with uniform marginals. The results in (A.13) and (A.14)

together are sufficient for consistency.

(ii) Suppose I0(P ) and I1(P ) are non-empty. We then have

lim
T→∞

FWERP = lim
T→∞

ProbP

[
min

s∈I0(P )
{pT,s} < pT (α)

]

= lim
T→∞

ProbP

[
min

s∈I0(P )
⋂

I1(P )
{pT,s} < pT (α)

]

≤ lim
T→∞

ProbP

[
min

s∈I1(P )
{1− JT,(s)

(
T 1/2(wT,s − θs(P ))

)} < pT (α)

]

= α

(A.15)

where, again, the last line follows from standard arguments (Beran 1984, p. 17).

(iii) If all of the inequalities are binding then I0(P ) = I1(P ) and it follows from Lemma 2

and the continuity of the min function that the asymptotic familywise error rate is equal to

the nominal size of the test. If, on the other hand, I1(P )\I0(P ) 6= ∅ the inequality in the

third line of (A.15) is strict. Similarly, if I1(P ) = ∅ then limT→∞ FWERP = 0.

Proof of Theorem 4 . The proof follows from the proof of Theorem 3 together with the

fact that pPC
T (α) ≥ pFC

T (α).

Proof of Theorem 5. From (A.12) and the conditions of the theorem, we have for all
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i, j ∈ I0(P ) ∩ I1(P )

lim
T→∞

ProbP (Reject Hi) = P
(

U(i) < min
s∈I0(P )∩I1(P )

U(s)

)

= P
(

U(j) < min
s∈I0(P )∩I1(P )

U(s)

)

= lim
T→∞

ProbP (Reject Hj)

(A.16)

Proof of Theorem 6. That the sequence{cj(α), 1 ≤ j ≤ S} is weakly monotonically in-

creasing is immediate from condition (ii) of the theorem. Asymptotic control of the FWER

can be shown by replicating the arguments in the proof of Theorem 3.1 on page 1273 of

Romano and Wolf (2005b).
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Table 1: Familywise Error Rates (S = 10)

ρb T White Hansen St.White St.Hansen pWhite pHansen

100 0.048 0.050 0.034 0.037 0.049 0.054
1.0 200 0.055 0.056 0.054 0.056 0.059 0.062

500 0.043 0.044 0.049 0.051 0.052 0.054
1000 0.048 0.049 0.049 0.049 0.046 0.049

100 0.043 0.048 0.031 0.037 0.044 0.058
0.9 200 0.050 0.058 0.048 0.054 0.052 0.062

500 0.040 0.045 0.036 0.050 0.046 0.051
1000 0.044 0.046 0.025 0.049 0.042 0.050

100 0.038 0.047 0.030 0.038 0.039 0.058
0.8 200 0.046 0.057 0.042 0.054 0.047 0.063

500 0.035 0.046 0.027 0.048 0.040 0.050
1000 0.040 0.046 0.014 0.051 0.039 0.052

100 0.027 0.047 0.020 0.040 0.027 0.059
0.5 200 0.030 0.052 0.022 0.049 0.027 0.057

500 0.0025 0.051 0.012 0.056 0.030 0.055
1000 0.025 0.044 0.001 0.052 0.024 0.054

100 0.009 0.030 0.007 0.031 0.009 0.049
0.2 200 0.010 0.048 0.006 0.048 0.009 0.051

500 0.011 0.058 0.004 0.055 0.014 0.056
1000 0.014 0.050 0.001 0.049 0.012 0.049

100 0.005 0.026 0.004 0.029 0.005 0.045
0.1 200 0.005 0.051 0.005 0.048 0.006 0.051

500 0.005 0.049 0.002 0.047 0.007 0.049
1000 0.007 0.045 0.000 0.044 0.005 0.043

Of the S = 10 hypotheses under test, ρbS are binding, and the remaining
(1 − ρb)S are strictly in the null. Table reports the familywise error rate at
the nominal %5 level as estimated from 2,000 Monte Carlo simulations
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Table 2: Familywise Error Rates (S = 100)

ρb T White Hansen St.White St.Hansen pWhite pHansen

100 0.053 0.054 0.059 0.060 0.065 0.067
1.0 200 0.047 0.048 0.043 0.044 0.041 0.044

500 0.053 0.055 0.055 0.056 0.038 0.041
1000 0.051 0.051 0.053 0.055 0.035 0.039

100 0.049 0.053 0.054 0.058 0.058 0.066
0.9 200 0.043 0.051 0.037 0.048 0.039 0.044

500 0.040 0.051 0.014 0.054 0.032 0.047
1000 0.047 0.050 0.004 0.057 0.032 0.037

100 0.045 0.055 0.049 0.059 0.054 0.069
0.8 200 0.034 0.046 0.031 0.043 0.032 0.043

500 0.044 0.050 0.028 0.055 0.036 0.046
1000 0.043 0.050 0.001 0.054 0.028 0.045

100 0.029 0.050 0.037 0.055 0.035 0.063
0.5 200 0.021 0.046 0.014 0.050 0.020 0.050

500 0.023 0.049 0.001 0.038 0.017 0.038
1000 0.026 0.047 0.000 0.052 0.018 0.046

100 0.013 0.044 0.019 0.048 0.015 0.065
0.2 200 0.007 0.056 0.003 0.047 0.006 0.053

500 0.009 0.050 0.000 0.051 0.007 0.052
1000 0.010 0.048 0.000 0.051 0.007 0.047

100 0.004 0.027 0.008 0.035 0.006 0.050
0.1 200 0.005 0.043 0.004 0.048 0.003 0.052

500 0.005 0.054 0.000 0.056 0.003 0.059
1000 0.005 0.049 0.000 0.044 0.003 0.046

Of the S = 100 hypotheses under test, ρbS are binding, and the remaining
(1 − ρb)S are strictly in the null. Table reports the familywise error rate at
the nominal %5 level as estimated from 2,000 Monte Carlo simulations
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Table 3: Average Proportion of False Hypotheses Rejected (S = 10)

ρa T White Hansen St.White St.Hansen pWhite pHansen

100 0.013 0.013 0.017 0.017 0.022 0.022
1.0 200 0.032 0.032 0.062 0.063 0.070 0.070

500 0.256 0.254 0.420 0.420 0.426 0.426
1000 0.931 0.931 0.915 0.915 0.916 0.917

100 0.013 0.014 0.016 0.018 0.021 0.023
0.9 200 0.032 0.034 0.062 0.067 0.071 0.075

500 0.254 0.271 0.396 0.432 0.425 0.437
1000 0.930 0.936 0.879 0.919 0.916 0.921

100 0.013 0.015 0.016 0.019 0.021 0.025
0.8 200 0.032 0.038 0.060 0.073 0.071 0.080

500 0.254 0.293 0.375 0.444 0.426 0.450
1000 0.930 0.941 0.841 0.923 0.915 0.926

100 0.013 0.0212 0.017 0.029 0.022 0.036
0.5 200 0.032 0.056 0.053 0.092 0.066 0.101

500 0.252 0.383 0.317 0.494 0.419 0.501
1000 0.932 0.959 0.754 0.942 0.914 0.945

100 0.013 0.044 0.017 0.057 0.022 0.070
0.2 200 0.035 0.137 0.053 0.170 0.069 0.182

500 0.254 0.591 0.283 0.618 0.428 0.623
1000 0.929 0.975 0.689 0.970 0.912 0.971

100 0.014 0.070 0.019 0.096 0.025 0.108
0.1 200 0.041 0.264 0.054 0.253 0.073 0.266

500 0.253 0.709 0.259 0.705 0.418 0.702
1000 0.926 0.983 0.666 0.983 0.913 0.982

Of the S = 10 hypotheses under test ρaS are strictly in the null, and the
remaining (1 − ρa)S are in the alternative. The table reports the average
proportion of false hypotheses that are rejected at the nominal %5 level as
estimated from 2,000 Monte Carlo simulations

31



Table 4: Average Proportion of False Hypotheses Rejected (S = 100)

ρa T White Hansen St.White St.Hansen pWhite pHansen

100 0.002 0.002 0.002 0.002 0.003 0.003
1.0 200 0.004 0.004 0.013 0.013 0.012 0.012

500 0.054 0.054 0.221 0.221 0.191 0.192
1000 0.720 0.720 0.783 0.783 0.735 0.737

100 0.002 0.002 0.003 0.003 0.003 0.004
0.9 200 0.004 0.005 0.012 0.012 0.012 0.013

500 0.054 0.058 0.188 0.228 0.191 0.202
1000 0.719 0.734 0.627 0.790 0.735 0.747

100 0.001 0.002 0.002 0.001 0.003 0.004
0.8 200 0.004 0.0049 0.012 0.015 0.012 0.016

500 0.054 0.063 0.162 0.236 0.191 0.214
1000 0.719 0.746 0.534 0.797 0.735 0.765

100 0.002 0.003 0.003 0.004 0.003 0.006
0.5 200 0.004 0.008 0.010 0.020 0.011 0.021

500 0.054 0.087 0.116 0.268 0.190 0.261
1000 0.720 0.806 0.400 0.826 0.736 0.815

100 0.002 0.005 0.003 0.009 0.003 0.012
0.2 200 0.004 0.017 0.009 0.038 0.011 0.042

500 0.053 0.157 0.094 0.346 0.190 0.349
1000 0.717 0.887 0.342 0.878 0.735 0.877

100 0.002 0.007 0.003 0.014 0.003 0.018
0.1 200 0.003 0.031 0.008 0.060 0.011 0.067

500 0.051 0.249 0.092 0.416 0.192 0.423
1000 0.711 0.928 0.326 0.912 0.735 0.913

Of the S = 100 hypotheses under test ρaS are strictly in the null, and the
remaining (1 − ρa)S are in the alternative. The table reports the average
proportion of false hypotheses that are rejected at the nominal %5 level as
estimated from 2,000 Monte Carlo simulations
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