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Abstract

This paper provides sufficient conditions to ensure nonemptiness of approximate
cores of many-player games and symmetry of approximate core payoffs (the equal
treatment property). The conditions are: (a) essential superadditivity — an option
open to a group of players is to partition into smaller groups and realize the worths
of these groups and (b) small group effectiveness (SGE) — almost all gains to collec-
tive activities can be realized by cooperation only within members of some partition
of players into relatively small groups. Another condition, small group negligibility
(SGN), is introduced and shown to be equivalent to SGE. SGN dictates that small
groups of players cannot have significant effects on average (i.e., per capita) payoffs
of large populations; thus, SGN is a analogue, for games with a finite player set, of
the condition built into models with a continuum of player that sets of measure zero
can be ignored. SGE implies per capita boundedness (PCB), that the supremum
of average or per capita payoffs is uniformly bounded above. Further characteri-
zation of SGE in terms of its relationship to PCB is provided. It is known that if
SGE does not hold, then approximate cores of many-player games may be empty.
Examples are developed to show that if SGE does not hold and if there are players
of “scarce types” (in other works, players with scarce attributes) then even if there
is only a finite number of types of players and approximate cores are non-empty,
symmetry may be lost; moreover, even players of abundant types may be treated
asymmetrically by the core.

Keywords: core, approximate cores, equal treatment, core convergence, small
group effectiveness, symmetry, per capita boundedness, small group negligibility,
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1. Introduction

Since the classic early works of general equilibrium theory of Arrow and Debreu (1954),
Arrow and Hurwicz (1958), and McKenzie (1959), general equilibrium theory has been at
the foundations of economic theory. The theory has primarily focused on economies with
only private goods. Economies with (pure) public goods and other externalities have also
been important; see, for example, Lindahl (1958), Samuleson (1954), Foley (1970), Mas-
Colell (1980) and Hurwicz (1999). Yet, there are many possible divergences of economies
from these two classic models; there may be indivisibilities, non-monotonicities, and non-
convexities. Also, public goods may be local (subject to exclusion and/or congestion) or
individuals may be social and gain enjoyment from consuming and/or producing jointly
with others, or there may be issues of matching individuals with other individuals,
and so on. Some divergences from the classic models have been studied in the context
of specific economic models but there has been less research aimed at more broadly
identifying essential characteristics of models that undergird the notion of price-taking
economic behavior.

It has been recognized for some time that price-taking behavior requires a large
number of economic agents, even in private goods exchange economies. It has also been
recognized that in private goods economies with many agents, problems of nonconvexi-
ties disappear or become insignificant; some seminal contributions are Aumann (1964),
Shapley and Shubik (1966), Aumann and Shapley (1974), and, for economies with pro-
duction, Hurwicz and Uzawa (1977). More specifically, in a number of situations it
has been shown that, in economies with many agents, cores are nonempty, equilibria
exist, and equilibrium outcomes are close to outcomes in the core, where approxima-
tions (if any) become arbitrarily good as the economies become large. For private goods
economies, there are many contributions to this literature; a fairly recent contribution
is Hurwicz (1995). Study of this literature and other papers suggests that there is some
underlying set of properties driving the conclusion that economies with many agents
pass the cooperative-game-theoretic tests for competitiveness — cores are nonempty,
equilibria exist and equivalence of outcomes in the core and outcomes of price-taking
equilibrium holds.

For equivalence of the outcomes of cooperation and competition to hold, since price
taking equilibria have the equal treatment property (symmetry), it must be the case
that approximate cores must treat similar players similarly or nearly equally. The
equal treatment property of cores for private goods economies has been studied in
several papers, for example, Shubki (195), Debreu and Scarf (1964), Green (1972) and
Hildenbrand and Kirman (1973). The equal treatment property of the core has also
attracted much interest in economies with clubs and/or local public goods; see for
example Wooders (1980) and, for recent results, Allouch and Wooders (2009)

This paper explores conditions for many-player games with side payments to have



nonempty approximate cores and for cores to converge to symmetric outcomes. The
convergence is in the sense that for large numbers of players, any distribution of total
payoff that is in the core treats similar players nearly equally, except for possibly a
small exceptional set of players. To obtain our results, we use the framework of a
pregame. A pregame consists of a compact metric space of player attributes (sometimes
called “player types”) and a function assigning a worth to any finite list of attributes
(repetitions allowed). A list of attributes is interpreted as a description of a possible
group of players in terms of the attributes of the group members. The framework is
sufficiently broad to accommodate games derived from economies with indivisibilities,
non-monotonicities, non-convexities, local public goods and clubs.

The main conditions underlying our model and results are essential superadditivity
and small group effectiveness. Essential superadditivity ensures that an option open
to a group of players is to partition into smaller groups and realize the total payoffs
attainable in these groups. Small group effectiveness, (SGE), dictates that almost all
gains to collective activities can be realized by cooperation only within members of some
partition of players into relatively small groups. The relationship of SGE to two other
conditions, discussed below, and its usefulness in obtaining results for large economies
motivate the emphasis that we place on the concept.

The concept of small group negligibility (SGN), is introduced and shown to be
equivalent to SGE. SGN dictates that relatively small groups of players can have only
(vanishingly) small effects on the payoffs of large groups. SGN is an analogue, for arbi-
trarily large (but finite) games of the condition implicit in continuum models following
Aumann (1964) that sets of players of measure zero can be ignored.

SGE implies per capita boundedness (PCB), the condition that the supremum of
average or per capita payoffs is uniformly bounded above. PCB is a very reasonable
condition; if PCB were not satisfied then, as the size of the total player population is
allowed to go to infinity, per capita payoffs could also go to infinity. With some further
restrictions on the model, PCB is also necessary and sufficient for our results; in partic-
ular, if the set of player types is finite and there are “many” players of each type, then
PCB (along with essential superadditivity) implies both nonemptiness of approximate
cores and their convergence to symmetric outcomes. Examples are developed to show
that with only PCB, however, if there are players of “scarce types” in the total player
set (in other works, players with scarce attributes), then the equal treatment property of
approximate cores may be lost, even if there is only a finite number of types of players;
moreover, even players of abundant types may be treated asymmetrically by the core.

It is well known that if a coalition structure (a partition of players into groups)
associated with a payoff vector in the core has the property that there are two identical
players in two disjoint coalitions then the core must treat these two players equally.
However, for the class of games we consider it may be the case that there does not
exist a core payoff with identical players in disjoint coalitions. Moreover it may hold



that the e-core, for € = 0, is empty. In this paper we allow situations where per capita
payoff may strictly continually increase as the number of players becomes large!; in such
situations, while it is impossible for all outcomes in the exact core to have the equal
treatment property, we show that nevertheless most similar players are treated nearly
equally by outcomes in approximate cores.

1.1. Some background for the model and results

The results in this paper grew out of research focusing on a special case — games with a
fixed distribution of a finite number of player types, or in other words, replica games.?
Moreover, the first results required that effective group sizes be uniformly bounded, say
by an integer B (strict small group effectiveness, SSGE, a special case of SGE). Two
examples are marriage models and soccer teams. Here we sketch the main ideas of this
work for two special cases with the hope to provide some insight into what follows.

Let us first consider a very special case. Suppose all possible players are identical and
any two-player group can cooperate and earn $1. Groups of other sizes are worthless,
but a larger group has open the possibility to form multiple two-player groups. Any
specification of the total number of players now determines a game — a total player set
and the worth of any subset of players, where the worth . When as many two-person
groups as possible are formed from the total player set, there will be at most one player
left-over. For any even number of players greater than two, the core will be nonempty
and symmetric (easy to show), assigning each player $.50. If the total player set is
‘large’ then each player can be assigned nearly $.50 and this assignment will be in an
approximate core. There are many payoffs in the approximate core which treat some
players worse than average and other players better than average, but any approximate
core payoff vector (for close approximations) must assign most players nearly $.50 (which
is, hopefully, intuitive, and also not especially difficult to show for this example).

Let us next discuss games with 71" types of players, for some integer 7. Let Z{
denote the T-fold Cartesian product of the non-negative integers. Let s = (s1, ..., s7)
€ Z{ represent a group of players, where s; € Z; denotes the number of players of
type t in the group. Let W(s) € Ry be the total payoff that the group can realize, the
worth of the group. The pair (T, ¥), where ¥ : Z{ — Ry, is called a pregame (with a
finite number of types). For convenience, we will assume that the pregame is essentially
superadditive — that is, the worth of a group s is at least as great as the worth of any

!The total worth of a coalition of n identical players, could be, for example, n — %, so the per capita
worth would be 1 — n—12 No (exact) core payoff vector would admit a partition of the total player set
into two disjoint coalitions.

2The first, Stony Brook WP version of Wooders (1979) already provided statements and proofs of
the results discussed in this subsection. For the convenience of the reader, the results described in this

subsection are also proven in an Appendix.



“partition” of the group into subgroups s',...,s% (s = 3 s¥); thus, U(s) > 3 ¥(s*).3
Note that a pregame is not a game since no total player set is specified.

Let rn = r(n1,...,nr) € Zi be a vector listing an integer number of players of each
type t = 1,..., T, taken as a description of the total player set of a game. The pair, ¥
and rn, determines a game where, for each s € Zi, s < n, the worth of s is given by
U(s). From SSGE it follows that

exists. Let r* satisfy max, M = \P(::"). It holds that any game derived from the

pregame (7', ¥) with total player set ¢r*n has a nonempty core for any positive integer
¢. (For the convenience of the reader, a proof is provided in the Appendix.?)

Any positive integer r can be written as r = €r*+5 where 0 < j < r* for some positive
integer ¢. Thus, any game with the total player population described by r(ni,...,nr),
r > r*, contains a largest subgame with player set described by ¢r*(nj, ...,nr) for some
integer ¢; this subgame has a nonempty core. If r # /r*, then “left-over” players,
described by the vector j(ni,...,nr) cause the core to be empty. But the number of
left-overs is bounded above by 7*> n;. Thus, given ¢ > 0, for large r, starting with
a payoff vector in the core for a player set described by ¢r*(ni,...,n7), members of
this player set can each be “taxed” € per capita and transfers can be made to left-over
players to create an outcome in the e-core.

Now consider an outcome in the core of a game with player set described by ¢r*(nq, ..., nr)
for some £r* > B, the bound on effective group sizes. An outcome in the exact core will
have the property that if one player is assigned a smaller payoff than another player
of the same type, then there is a coalition, excluding the better-off player, that can do
better for all its members, which is a contradiction.? It follows easily that all players of
type t must be assigned the same payoffs by an outcome in the core. It also follows that
g-cores must treat most players of the same type nearly equally. Here the argument is
more complex but the basic ideas are intuitive. Given an outcome in the e-core, let the
“poor” be those players treated significantly worse than average and let the “rich” be
those players treated significantly better than average The e-core outcome can treat
some of the poor very badly but the number of poor players cannot be too large; oth-
erwise, these players could join with some subset of the middle class (neither rich nor

30ne way that the group s may achieve its worth ¥(s) is by partitioning into subgroups, as in a club
or local public good economy, for example.

4The arguments for this special case are already in Wooders (1979) and, for NTU games, in Wooders
(1983). See also Kovalenkov and Wooders (2003) for recent extensions for parameterized collections of
games.

5See Proposition 1 in Section 5. SSGE, with more players of each type than the bound B on group
sizes implies that any outcome in the core will satisfy the conditions of that Proposition.



poor) and improve upon the e-core payoff vector. The number of rich players is bounded
by how much the poor and the middle class can be discriminated against.

The results discussed above all rely on strict small group effectiveness, SSGE. A
beautiful feature of small group effectiveness, SGE, is that it allows us to approximate
games with a compact metric space of player types by replication games with a finite
number of player types satisfying SSGE. For our convergence results especially, the
approximations can become quite complex but nevertheless, the finite type replication
results for games satisfying SSGE underpin the general results. Another compelling
aspect of SGE is its close relationship to small group negligibility, SGN, and PCB. It is
hard to imagine an interesting economic model for which PCB would not be satisfied.

2. Games

We begin with some standard definitions from the theory of cooperative games with
side payments.

Let (N,v) be a pair consisting of a finite set N = {1,...,n}, called the player set,
and a function v, called the worth function, from subsets of N to the non-negative real
numbers with v(¢) = 0. The pair (N,v) is a game (with side payments). Nonempty
subsets of N are called groups.’

Let (N,v) be a game. Let § > 0 be a non-negative real number. Two players i and
j are O-substitutes if for every group S with i ¢ S and j ¢ S, it holds that

[o(SU{i}) —o(SU{7})] <.

A payoff vector for a game (N, v) is a vector € RY. The payoff vector z is feasible
if
n K

2(N) 5 0l < S u(sh) (2.1)

i=1 k=1

for some partition {S',..., S} of N.
Given € > 0, a payoff vector x is in the e-core of the game if it is feasible and if, for
all groups S C N,
z(S) > v(S) —¢€l9].

Remark: Our definition of feasibility ensures essential superadditivity, that is, an
option open to a group of players is to partition itself into subgroups and realize, in

5To state our assumptions on the model we use the term “groups” instead of “coalitions” as we
interpret the model as pertaining to socio-economic structures rather than to the cooperative behavior
suggested by the word “coalition”.



total, the sum of the payoffs to the subgroups. As discussed at length in Wooders
(2008), for the study of e-cores, we can replace condition (2.1) by the condition that

2(N) < v*(N), (2.2)

where v*(N) L haxp Zszl v(S*) and P is the set of all partitions {S*} of N. This is
without loss of generality because, with the definition of feasibility given by (2.1), for
any € > 0 the e-core of a game (N, v) is equal to the e-core of the superadditive cover
game derived from (N, ).

3. Pregames

Let (£2,d) be a compact metric space of player attributes (or types) equipped with a
metric denoted by d. An element w of €2 is interpreted as a description of a player. Let
f be a function from 2 to Zy. The support of f, denoted by support(f), is defined by

support(f) = {w € Q: f(w) # 0}.

A profile (on Q) is a function f from Q to Z with finite support, that is, |support(f)|,
the number of elements in the set support(f), is finite. In interpretation, a profile f is a
description of a finite group of players in terms of the numbers of players of each type
in the group. Let F denote the set of all profiles on €. By the norm of a profile f we
shall mean the L; vector norm:

ILE Y fw).

wesupport(f)

A partition of a profile f is a collection of profiles { f¥}, called subprofiles of f, satisfying
the property that > f* = f.

Definition 3.1 (A pregame). Let ¥ be a function from the set of profiles F on §) to
Ry with ¥(0) = 0, where 0 denotes the profile that is identically zero. The pair (2, V)
is called a pregame with worth function V.

In the definition of a pregame, the worth W(f) shall be interpreted as the total payoff
a group of players, described by the profile f, can achieve by collective activities of the
group membership.

"The superadditive cover of a game (N,v) is the game (N,v*) with, for each nonempty subset
S C N, v*(S) € maxpep D oskep v(S*) where P = {S*,..., S} is a partition of S and P is the set of
all partitions of S. See Wooders (2008) for further discussion.



We require an assumption ensuring that players whose attributes are close in at-
tribute space are approximate substitutes for each other. To this end, we first define
a metric on the set of profiles F as follows: For any two profiles f, g, if ||f|l; # ll9/
define

dist(f,g) aef max d(wi,wq) + 1.

w1,w2€
I flly = llglly; let @ = (a1,....qz),) and b = (b1, ..., by, ) be lists of the elements in

support(f) and support(g) with each element appearing as many times as its multiplicity.
Let 0 be a permutation of the components of (1, ...,||g[|;). Define

dist(f,q) 4 nin max d(ak, by(r))

where the maximum is over the index set (1,...,[|g||;) and the minimum is over all
permutations € of the index set. It is easy to verify that dist is a metric on the set F.

Definition 3.2 (Substitution, STN). Given € > 0 there is a 6(¢) > 0 such that if
dist(f,g) < d(¢), then

ol | << (3:1)

“IJ(f) Y(9g)
£l

Substitution ensures that similar profiles have similar worths.

For ease in notation and without any loss of generality (we could instead require only
essential superadditivity), we will consider only superadditive pregames. A pregame
(Q, V) is superadditive if

U(f) =max >  ¥(g),
geP
where P is the set of all partitions P of the profile f. We will also require, throughout
the following, that pregames satisfy STN (3.1).
Let us provide a simple example of a pregame based on the well known Shapley-
Shubik glove game.

Example 1: A glove pregame. Suppose there are two types of players, players who
each own a RH (right-hand) glove and players who each own a LH (left-hand) glove.
A (RH, LH) pair of gloves is worth $1.00. Formally, in the notation used above, let
Q0 = {wi1,ws} denote a set of attributes, where w; denotes the attribute “is endowed
with a RH glove” and ws denotes the attribute “is endowed with a LH glove”. In
interpretation, a profile describes a group consisting of f(w;) players with attribute
w1 and f(wq) players with attribute we. Define W(f) = min{f(w1), f(w2)}. The pair
(Q,¥) is a pregame. Note that a pregame is not a game since we do not yet have a set
of players.



3.1. Induced games

Let N be a finite set and let a be a map from N into €, called an attribute function.
For any group S C N let prof(S,a) be the function with domain  defined by
def | _1q
prof (S,a)(w) = |a™H(w) N S|;
thus, prof(S,a) is a function stating the number of players with each attribute in the
group S. For each S C N define

v(S) def U(prof(S,a)).

Then the pair (N, v) is a game induced by the pregame (2, W) and the attribute function
« or simply an induced game.

It is sometimes convenient, especially for cases where € is a finite set, to describe a
game induced by a pregame simply by a pair [n, ¥] where n is a profile (i.e., n € F).
Let {wi,...,wr} denote the elements in support(n). Denote a total player set by N =
{(t,q) : t =1,...,T and, for each t, ¢ = 1,...,n(w¢)}. As above, the profile of a subset
S C N can be defined by its components,

pTOf(S)t = |{(t7q) q = 17 "'7n(wt)} N S}|
and the worth function v can also be defined as above.

Example 1 continued. Take as given the glove pregame described above in Example
1. Let N denote a finite set, called the set of players, and let a be an attribute function
from N to 2. In this example, the function « tells us whether player : € N owns a RH
glove or a LH glove; if a(i) = w; then player i owns a RH glove and if a(i) = wy then
player 7 is owns a LH glove. Given «, the worth of a group of players S is determined
by the number of RH-LH glove pairs owned by the members of the group. Given
o and S C N, define prof(S,«) by its components prof(S,a)(w;) = |SNa~(w;)|,
1 = 1,2, simply a listing of the numbers of players with each attribute in the set S.
For each group S C N, define v(S) = U(prof(S,a)). The pair (INV,v) is then a game
induced by the pregame.

3.2. Small group effectiveness, per capita boundedness, and small group neg-
ligibility
We first introduce the notion of per-capita boundedness, which simply bounds the

supremum of average (or, in other words, per-capita) payoffs of games derived from
a pregame.



Definition 3.3 (Per capita boundedness, PCB). A pregame (2, ¥) satisfies per
capita boundedness, PCB, if there is a constant C' such that for all profiles f it holds
that

w(p)
L =< (3:2)

that is, per capita payoffs are bounded over all profiles f.

PCB is itself too weak to ensure nonemptiness of approximate cores of many-player
games and core convergence.® Our next condition ensures these results.’

Definition 3.4 (Small group effectiveness, SGE). A pregame (2, ¥) satisfies small
group effectiveness, SGE, if it is superadditive and if, given any real number € > 0, there
is an integer ny(e) such that for each profile f € F, for some partition {f*}, of f into
subprofiles with

| #¥(l1 < mo(e) for each subprofile f* in the partition

it holds that

() =D w(f*) <ellfll (3.3)
k

Thus, for every profile f, almost all (within € per capita) gains to collective activities can
be realized by aggregating collective activities within groups of participants bounded in
size (by mo(¢)). Small group effectiveness is a natural relaxation of the condition that
all gains to collective activities can be realized by groups of players uniformly bounded
in size, now commonly called strict small group effectiveness. Example 1 satisfies strict
small group effectiveness while Example 2 below does not.

Example 2: A pregame satisfying SGE but not strict SGE. Let Q = {w}, so there
is only one attribute. For each profile f on Q, let ¥(f) = f(w) — W Clearly the

pregame (2, ¥) satisfies PCB and also SGE but not strict small group effectiveness.

8For simple examples, suppose that there are only two types of players and all players of type 2 are
dummies — a player of type 2 adds nothing to the worth of any group of players. Suppose any two
players of type 1 can earn $1.00 but a third player of type 1 adds nothing. To demonstrate possible
emptiness of the core, suppose there are three players of type 1; then the core is empty. To demonstrate
non-equal treatment, suppose that there are only two players of type 1. Then any division of $1.00 is
in the core.

9This condition was introduced in Wooders (1992a,1994). In the condition superadditivity could be
relaxed to essential superadditivity.

10



To further characterize SGE, we introduce another assumption limiting increasing
returns to group formation. Roughly, this condition dictates that relatively small groups
of players have only “negligible” effects on per-capita payoffs of large groups. Although
there may be hints at such a condition in the literature, its formulation. at least for
cooperative games, appears to be new to this paper and earlier working papers due to
this author.

Definition 3.5 (Small group negligibility, SGN). A pregame ({2, V) satisfies small
group negligibility if it satisfies PCB and if, for any sequence of profiles { f*},, where

| f|l1 — oo as v — oo,

support(f¥) = support(f”/) for all v and ' and (3.4)

im e f7 i v(f) .
T ”f”“lf and hmV—>OO K& both GXISt,

then, for any sequence of profiles {¢*} with

1] _

- Y 35
SN (35)
it holds that
lim, W% exists, and
() w(sv) (3.6)

lim oo = lim .
el VR v il

The property of small group negligibility appears quite mild. It simply ensures that a
small group of possibly distinct player types cannot significantly affect per capita payoffs
of large player sets.

Theorem 1: (Equivalence of small group effectiveness, SGE, and small group negligi-
bility, SGN): Let (Q, ¥) be a pregame. Then (2, ¥) satisfies SGE if and only if (2, ¥)
satisfies SGN.

Informally, Theorem 1 states that small groups are effective for the realization of
almost all gains to collective activities if and only if small groups become negligible in
many-player games.'® Small group negligibility is a natural condition for games that

10For some intuition behind this, consider the special case of a marriage model. Two person groups
can achieve all gains to collective activities but, if there are many players, no one or two player group
can have a large effect on per capita worths of large player sets.

11



can be approximated by games with an atomless continuum of players, since in such
games (for example, those in Aumann and Shapley 1974), sets of measure zero are taken
as unable to affect aggregates. Note that Theorem 1 does not require that || be finite.

If we require that there are many substitutes for each player and only a finite num-
ber of player attributes, then, as shown in Wooders (1994, Theorem 4), there is an
equivalence between SGE and PCB. The following Theorem is an extension in that in
states that SGE implies PCB, even with a compact metric space of player attributes.
We first require a further definition.

Definition 3.6 (Thickness). Let (2, V) be a pregame with || = T for some finite
number T. Then, given a real number p € (0,1), the p-thick restriction of (2, V) is
the pregame (§2, ¥ ,,) with admissible profiles f required to satisfy the condition that for
eacht=1,---,T, either Wf&II > por f; =0.

Note that a sequence of profiles derived from the p-thick restriction of (2, ¥) does not
allow vanishingly small but positive percentages of players of any type.

Theorem 2 Relating SGE and PCB. Let (£2, U) be a pregame.
(a) Suppose that (2, ¥) satisfies SGE. Then (92, ¥) satisfies PCB.
(b) Suppose that Q is a finite set and that (€2, ) satisfies PCB. Then given any
€ (0,1), the p-thick restriction (2, ¥,) of (Q, V) satisfies SGE.

If SGE is not satisfied, then small groups of players of scarce types can have major
impacts on per capita payoffs, which prevents the full equivalence of PCB and SGE in
the finite-type case. The partial equivalence of Theorem 2 (b) demonstrates that if there
are many substitutes for each player in a finite set of types, then the two conditions are
equivalent. Theorem 2 (b) could be relaxed to hold for a compact metric space of player
types, but then the statement of the Theorem would be more complex. In particular,
thickness would need to be redefined to require that there be many near-substitutes
(players with similar attributes) for each player in each admissible profile and the argu-
ment would use substitution, STN. SGE strengthens PCB to allow nonemptiness and
convergence results for many-player games in which some types of players appear in
vanishingly small percentages.

4. Nonemptiness and equal treatment properties of cores of games with
many players

4.1. Nonemptiness

12



The following Theorem is an extension of the nonemptiness of approximate cores of
many-player games of Wooders (1992). The framework of that paper required PCB as
part of the definition of a pregame. Since SGE implies PCB, when SGE is assumed the
assumption of PCB is not required.

Theorem 3 (Nonemptiness of approximate cores of many player games.) Let (Q, ¥) be
a pregame satisfying SGE. Then:

Given any positive real number € > 0 there is a positive real number v(¢) such that,
for any induced game (N,v), if |[N| > v(e) then the game has a nonempty e-core.

4.2. Equal treatment properties

Since the equal treatment properties of approximate cores of games with many players
are easiest to state and understand for the case of a finite number of types, we first
state a result for this case and then proceed to the case of a compact metric space of
player types. The first theorem below states that, given a sufficiently small non-negative
real number e, for any game with a finite set of player attributes (or types) any payoff
vector = in the e-core of the game has the property that, for each type of player that
appears in sufficient abundance in the population, most players of that type are treated
approximately equally. Note that in interpretation of the theorem the numbers v and
A are to be thought of as ‘small’.

Theorem 4. (Near equal treatment of most players of the same type.) Let (Q, ¥) be
a pregame where @ = {w1,...,wr} is a finite set and assume that (2, ) satisfies SGE.
Then given any real numbers v > 0, A > 0 and & > 0 there is a positive real number £*
and an integer 7 such that for each ¢ € [0,*] and for every profile n € F with ||n|; > 7,
if x € RY is in the e-core of the game [n, ¥] with player set

N ={(t,q):t=1,...,T and, for each ¢, ¢ = 1,...,n(w;)}

then, for each ¢t € {1,...,T} with nwt) > 5. it holds that

Inlli =

{(t,q) : 12" — 2] > 7} < An(wr),

where, for each t =1,...,T,
n(wt

)
1 t
zp = ',
" n(w) qZI

the average payoff received by players of type t.

13



Note that the above result allows scarce types; it is not required that all players have
many close substitutes. Some players could be quite exceptional — extremely talented,
handsome, and charismatic, or completely unable to dance the salsa, for example. The
following Corollary, which admits scarce types in its conclusion, is a consequence of the
total payoff to scarce types becoming small relative to the number of players in the
game.

Corollary 1. Let (2, %) be a pregame where Q = {w1,...,wr} is a finite set and
assume that (2, U) satisfies SGE. Then given any real numbers v > 0 and A > 0 there
is a positive real number £* and an integer 7; such that for each e € [0,£*] and for every
profile n € F with ||n||1 > p, if = is in the e-core of the game [n, ¥] with player set

N ={(t,q):t=1,...,T and, for each t, ¢ =1,...,n(w)}
then, for each ¢ € {1,...,T} it holds that
{(t,q) = 2" — 2| > v} < Allnll1, (4.1)

where
n(wt

)
1 ¢
= g ',
t n(wt) =1

the average payoff received by players of type t.

Notice that in Corollary 1, the conclusion has an upper bound that depends on the
size ||n||1 of the total player set. If some type, say ¢/, appears in only a small proportion
in the population, then it may be the case that for all players of this type ]wth —zp| > .
The Corollary, however, need not hold under the assumption of only PCB; we refer the
reader to Example 4 of the following section.

Our next result allows a compact metric space of player types. For ease of statement,
Theorem 5 extends Corollary 1. We leave the extension of Theorem 4 to the interested
reader.

Theorem 5. (Near equal-treatment of similar players.) Let Q be a pregame satisfying
SGE. Then given any real numbers v > 0 and A > 0 there are real numbers €* > 0
and § > 0, integers T and p, and a partition of {2 into no more than 7' subsets, say
04, ..., Qp, each contained in a ball of diameter less than ¢, such that for each ¢ € [0,e*]
and for every game (N,v,) induced by the pregame, if z € RY is in the e-core of the
game (N,v,) and if | N| > p, then it holds that

[{i € N :a(i) € Q |2° — z| >~} < AN,
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where

1 i
4 TeNa@eay 2

1EN :a(i)eQy

the average payoff received by players with attributes in the set .

5. Inequality and the importance of alternative opportunities

The next example demonstrates that under the assumption of SGE players of scarce
types need not be treated approximately equally. The following example demonstrates
that, under the condition of PCB, in the absence of thickness of the player set (ensur-
ing many substitutes for each player), even players of abundant types may be treated
unequally.

Example 3. (Unequal treatment of scarce types.) Let (Q,¥) be a pregame where
|2] = 2 and the payoff ¥(n) to any profile n = (n,n2) is given by:

n(wi) +n(ws) if n(wy) > 2
U(n) =< n(ws2) if n(w1) =0
0 otherwise.

Observe that the pregame satisfies SGE. Now consider a sequence of games (N”,v")
where the profile of N” is given by n(w;) = 2, n(w2) = v. Then for any v, the payoff
vector assigning 0 to one player of type 1, 2 to the other player of type 1, and 1 to each
of the v players of type 2 is in the core of the game (N",v").

Given the equivalence, with thickness, of PCB and SGE, one might wonder whether
PCB would suffice to obtain the results of Theorem 4 or Theorem 5. The following
example illustrates that it will not. In the presence of small percentages of players of
some types, that is, without thickness of the total player set (when PCB is equivalent
to SGE) the result that players of abundant types are treated nearly equally may not
hold.

Example 4. (Without thickness, PCB does not imply equal treatment, even of players
of abundant types.) Let (2, V) be a pregame where Q = {w;,ws} and the worth ¥U(n)
to any profile n is given by:

n(wr) + n(wz) if n(wy) >0, n(wz) >0

U(n) =
0 otherwise.

15



Now consider a sequence of games (N”,v") where the profile of N” is denoted by n”
and satisfies n”(w;) = 1, n¥(w2) = v. Then given v, consider a payoff vector z¥ € RN"
assigning x5, = 1 to the q'" player of type 2, ¢ = 1, ..., v, and assigning 1 +v — Zq T5, tO
the one player of type 1. Then, for any v, ¥ is in the core of the game (N”,v"). With
some additional work, the same conclusion can be obtained for approximate cores.

The following Proposition illustrates the importance of alternative opportunities for
equal treatment. Related results for games/economies with exact substitutes have a long
history and in the game-theoretic literature, one such result appears in Owen (1975).

Proposition 1: Let (N,v) be a game and let x € RY be in the core of the game.
Suppose that there are two players ¢ and j who are d-substitutes for each other, for
some ¢ > 0, and also suppose that there are two disjoint groups S, S’ C N satisfying
i€S,jeS and x(S) =v(S), z(S") = v(S’). Then it follows that |z* — 27| < 4.

Notice that in the above Proposition there is no need for any topological structure
on the set of player types. The key feature enabling the result is that there exist
two disjoint coalitions containing players ¢ and j which can both achieve the core payoff
vector x for their members. The following Proposition also illustrates the effectiveness of
disjoint coalitions containing similar players — that is, there are alternative opportunities
— without any topological structure on the set of player types.!!

Proposition 2: Let (N,v) be a game and let z € RV satisfy 2(N) < v(N) (so = is
a feasible payoff vector). Suppose that two players ¢ and j are O-substitutes for each
other, and also suppose that there are two disjoint groups S, S’ C N satisfying i € S,
j €8 and z(S) = v(S), (S") = v(S’). Suppose z; > x; and define v = x; — ;. Set
Ey = 2—&%' Then for all € € [0,e,] the payoff vector & cannot be in the e-core of the
game.

As one can see from Propositions 1 and 2, if there are alternative opportunities for
a player that do not require the participation of some substitute for that player, then
the player and his substitute must be treated equally or nearly equally. It is not always
the case, however, that such opportunities exist. In fact, while such opportunities arise
in models of local public good/club economies with many players, conjestion and one
private good (cf., Wooders, 1980) they are not required for convergence of the core
to equal treatment (cf., Allouch and Wooders, 2008). Indeed, assumptions commonly
made on private goods exchange economies do not ensure the existence of such such
opportunities. Thus, requiring the existence of alternative opportunities is restrictive.

Kovalenkov and Wooders (2001) provides related results for situations in which, instead of having an
underlying space of player types, the concept of §-substitutes is used to treat similar players. For their
model, with “limited side payments,” approximate cores treat any two similar players nearly equally.
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6. Relationships to prior literature on cooperative games with many
players

Approximate cores of economies with quasi-linear utility functions were introduced in
Shapley and Shubik (1966), which showed that when the player set is replicated, then,
for all sufficiently large replications, approximate cores are nonempty.'> A contribution
by Owen (1975) is also relevant. In this paper, Owen demonstrates that economies with
linear production also generate totally balanced games. Hurwicz and Uzawa (1977)
demonstrate that aggregation over large numbers of production sets yields approxi-
mate convexity. While cores and approximate cores were further studied in the context
of economies (for example, Kannai, 1970), there were few results treating approximate
cores in the game-theoretic literature. Exceptions are Weber (1979,1981) for games with
a continuum of players. To obtain his results, Weber introduced concepts of balanced-
ness for games with a continuum of players and demonstrated that, for every € > 0, the
g-core was nonempty — the continuum of players did not suffice to obtain nonemptiness
of the core.

Nonemptiness of approximate cores of TU games with many players, without bal-
ancedness assumptions, was initiated in Wooders (1979) under a condition of strict
small group effectiveness and first results on convergence of cores to equal treatment
cores were demonstrated for games with a fixed distribution of player types. Variations
of the condition have appeared in a number of papers of this author and her co-authors.
The nonemptiness results were extended to hold for NTU (and TU) games in Wood-
ers (1983). Shubik and Wooders (1982) applied Wooders’ 1979 results for TU games
satisfying PCB to demonstrate nonemptiness of approximate cores of games derived
from economies with production and with possibly multiple-membership clubs. For the
TU case, Wooders and Zame (1984) extended Wooders’ earlier results to hold with a
compact metric space of player types but, as it turns out, under the unnecessarily re-
strictive assumption of boundedness of individual marginal contributions to coalitions.
Numerous other papers have since considered nonemptiness of approximate cores; see
Kovalenkov and Wooders (2003) and Wooders (2008) for most recent results for NTU
games satisfying a condition of small group effectiveness. .

The condition of small group effectiveness in this paper appears in Wooders (1992a,b).
Both small group effectiveness and small group negligibility were introduced in earlier
working papers due to this author.

As noted in the introduction, the study of equal treatment outcomes in cores of
private goods economies has a long history with some papers demonstrating that under
their conditions, cores have the equal treatment property (Debreu and Scarf, 1964, for

12There has been vast literature on convergence of cores in models of economies, or ones where the
worth of a coalition is achieved by joining together commodities or attributes owned by its members.
Except for a few classic references here and in the introduction, we do not address this literature.
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example) and other papers demonstrating that under other conditions, cores do not have
the equal treatment property (Green, 1972, for example). Another paper, Khan and
Polemarchakis (1978) shows, roughly, that in some sense an arbitrary outcome in the
core of an economy is not likely to treat all individuals who are the same equally. They,
as much of this literature, however, address the issue of whether individuals who have
the same preferences and endowments will be assigned the same commodity bundles
by an outcome in the core. Our concern has been with the issue of whether similar
individuals will realize similar utilities or payoffs by payoff vectors in the core. Our
results relate most, in spirit, to those of Hildenbrand and Kirman (1973) who show, as
we do (but for a different model and different formulations), “size removes inequality.”

7. Conclusion

This paper contributes to a line of research investigating the competitive-economy-like
properties of games with many players. The foundational papers of the early literature
noted in the introduction take as given specific economic models and study their proper-
ties in depth. This paper contributes to a literature seeking to understand competitive
properties of games. These properties may be satisfied by a diversity of economic mod-
els (subject to the constraint that utilities are linear in one commodity), including
economies with public good, clubs, coalition production, and so on. Our results apply
then to games derived from such economies, independently of further specification of
economic structures. In a companion paper, the results of this paper are related to
market games as in Shapley and Shubik (1969) and Wooders (1994).

Besides our approximate core convergence results, an important part of the paper is
demonstrating the equivalence of small group effectiveness and small group negligibility.
SGN is an appealing condition since it relates well to models with a continuum of players.
In such a model, it is implicit that sets of measure zero can be ignored. SGN dictates
that relatively small groups of players can have only small effects on aggregate outcomes.
Thus, SGN (or alternatively, SGE) arguably is a necessary condition underlying the use
of the continuum as an approximation to models with a large but finite set of players.

Another important part of the paper is to reveal the importance of scarce player
types. With only the assumption of PCB, finiteness of the supremum of average payoff,
as in Wooders (1979,1983) and Shubik and Wooders (1982), if some players have “few”
substitutes then even players who have many close substitutes may be almost all treated
far from the average for their types. Example 4, making this point within the context
of cooperative games with many players, is, to the best of our knowledge, unique to this

paper.
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8. Appendix: Proofs

First, it is convenient to introduce some notational conventions. Given a profile n with
support {wi,...,wr}, as previously, to discuss payoff vectors in the core we must have
given a set of players rather than a list of numbers of players of each type. Thus, we
let N ={(t,q):t=1,..,T and ¢ = 1,...,n(wr)} denote an associated total player set.
Sinilarly, for any positive integer r we denote the total player set of the game [rn, U] by
N, ={(t,q):t=1,..,T and g = 1,...,rn(wr)}. When we consider a sequence of games,
{[n¥, ¥]}, we denote the corresponding player sets by NV.

8.1. A sketch of the claims in subsection 1.1

We will now sketch the proof of core nonemptiness from Section 1.1. First, we introduce
a result derived from the Bondareva-Shapley Theorem.
The balanced cover game generated by a game [n, ¥] is a game [n, ¥*] where

1. Wb(s) = U(s) for all s # n and

2. Ub(n) > U(n) and Ub(n) is as small as possible consistent with the nonemptiness
of the core of [n, ¥Y].

where the maximum is taken over all balanced collections 8 of subprofiles of f.
Let (2, V) be a pregame where Q@ = {wi,...,wr}. For each profile f on €, define
a balanced collection of subprofiles of f as a collection of subprofiles {g*}; with corre-
sponding weights {7 : 7 > 0} satisfying > ~rg" = f. The balanced cover pregame,
k

denoted by (€, U) is the pregame with

() % max > (o), (8.1)
g€eB

where the maximum is taken over all balanced collections 3 of subprofiles of f. Since a
partition of a profile is a balanced collection of subprofiles it is immediately clear that
Wo(f) > W(f) for every profile f.

With the above definitions in hand, we consider a pregame satisfying strict small
group effectiveness, SSGE, with bound B on effective group sizes. Formally, this means
that for any profile f there is a partition of f into subprofiles { f*} (repetitions allowed)
such that W(f) = > ¥(f*) and kaH < B for each f* in the partition.

k

Let a profile n be interpreted as the profile of an initially given player set and let r be
an integer sufficiently large so that rn(w;) > B for each t = 1,...,T. From SSGE, there
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is a balanced collection of subprofiles of n, say {g*}; such that for some corresponding
weights {7} }« it holds that Hng < B for each k and

Tb(n) = Zyz\ll(gk) (balanced)
k

Without loss of generality, we can suppose that all the weights ~; are rational numbers

(Shapley 1967). Therefore there is an integer mg such that mg7y; is an integer for each

- Thus, there is a partition of n into subprofiles with mgv;, elements ¢* in the partition

for each k; that is, > (mov;)g® = n. From superadditivity and (?7) it follows that the
k

games [rmon, ¥] have nonempty cores for all positive integers r (Wooders 1979,1983).

For the simple case considered in this subsection, it is also easy to see that the
core, when nonempty, has the equal treatment property, since, as in Proposition 1, with
sufficiently many players, there will be outside options for each player of each type.

This concludes our discussion of a simpler framework for which the results of this
paper hold. The convergence results of the paper now follow from identification of the
appropriate relaxation of SSGE, which is SGE, and from the assumption that players
with similar attributes are approximate substitutes for each other, STN.

For the convenience of the reader we state the results before presenting their proofs.
We first review the concept of balanced games, which will be used in the proofs.

8.2. Proof of Theorems 1 and 2

Given a pregame (2, ¥) let W’ denote the balanced cover of ¥ where, for each profile
n, UP(n) is defined as the smallest real number such that (N, v%) is the balanced cover
of (N,v) and (N,v) is the game induced by the pregame (£2, ¥) and the profile n.

Theorem 1: (Equivalence of small group effectiveness, SGE, and small group negligi-
bility, SGN): Let (Q2, ¥) be a pregame. Then (2, ¥) satisfies SGE if and only if (2, ¥)
satisfies SGN.

Proof. Part 1: SGE implies SGN. We proceed by supposing the assertion is false.
Then there are sequences of profiles {f*} and {¢”} and, for some integer T, a subset
{wi,...,wr} C Q and a function f : {w1,...,wr} — R4 such that

support(f*) = {wy,...,wr} for each v,

7, converges to f(wy) for each wy in {wy,...,wr},

. 22
limy, N f”||||11 — 0 as v becomes large, and

v(fv)

liml,_,oo W exists,
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but either
U +e)
im ————~
v—oo || f¥ + £[1
or for some &g > 0 it holds that
. U(fr+) . U(fY)
lim ———= — lim
vooo ||fr 4+ 0]ln voo || fY]1

does not exist,

> 3¢ep. (8.2)

For ease in notation for each v define
gl/ — fl/ + el/'

Since (€, ¥) satisfies SGE there is an integer n(gp) such that for each profile g there
is a partition {g"* : k =1, ..., K} of ¢g¥ satisfying

1g"%|l1 < n(eo) for each k and

K
T(g") =) W(g™*) <eollg”llr.
k=1
From the definition of g” there are at most ||¢”|| members of the partition {g**} with the
property that support(g” k)ﬂsupport(ﬂ” ) # (). Thus, by renumbering profiles if necessary
we can suppose that for some integer K’,

K' > K — [[¢"[|1,
support(g¥*) N support(¢¥) = () for all ¢** with k < K’ and

Kl
Zguk < fy'
k=1

From PCB (implied by SGE, from Theorem 2 below) and since, for each ¢**, n(go) >

vk
k|1, it follows that there is a per capita bound C' satisfying Y™l ¢ for all

Hg n(0)

subprofiles {g"*}; and we have

K/
U(g") =D w(g"™) = Clle” |an(eo) < eollg” 1.
k=1

Since ‘|||]€Z||||11 — 0 as v — oo it follows that, for all sufficiently large v, C ||||J€VV|“|1177(50) <

eollg”[l1 and
K,

0<T(g") =) W(g™*) < 2e0llg” |-
k=1
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Since ZkK:ll g% < f¥ and from superadditivity it holds that ZkK:ll T(g"*F) < W(f7) and
U(g”) > W(f"). Therefore,
0 < W(g") —W(f) < 2e0llg”[1-

Since limy 00 H — 0, it follows that for all v sufficiently large that

“I’(g”) _ ()
lg“lle 1171

< 3eq,

:Pw+m_wm
1+ e T

a contradiction to (8.2).

Part 2: SGN implies SGE. Given a positive integer v, a partition {gk}k of a profile g
will be v-bounded if Hngl < v for each k. Suppose (€, ¥) satisfies SGN but does not
satisfy SGE. Then there is a positive real number ¢y > 0 and a sequence of profiles
{f"}, such that for each integer v, for every v-bounded partition {f**} of f” it holds
that

() = U(f*) > el £l (8.3)

Let 0 be a positive real number satisfying the property that whenever two profiles f
and g have dist(f, g) < 0, then || f||1 = |lg|l1 and |¥(f) — ¥(g)| < ol f||1; this is possible
from STN (3.1). Let Q, ..., Qp be a partition of £ into nonempty subsets, each contained
in a ball of diameter less that 0, and for each ¢ € {1,...,T} let w; be a point in ;. For
each profile f¥ define the profile g* by

g"(wt) = Z f¥(w) and

wesupport(f¥)NQ

9" (w) =0 for w ¢ {wy,...,wr}.
Note that dist(f”,g") < 0 so, from STN (3.1),
(U (fY) = W(g") <eollf"l;-

We can suppose without loss of generality that the sequence { ﬁ g”'}, converges, say
to g.

Observe that for some attributes w; it may be the case that g(w;) = 0. We now
define another sequence {g"} as follows:

/g\u(wt) _ { gy(wt) if g(wt) 7£ 0

0 otherwise.
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Observe that from SGN, for all v sufficiently large,
W (g") — ¥(g")| <eollg”lly

Since the pregame (€2, ) satisfies PCB and since the sequence {g”} satisfies the
property that the percentages of players of each type that appears in positive proportions
in the game is bounded away from zero, we can now apply Wooders (1994, Theorem
4) to the sequence {g”} and conclude that there is an integer 1 such that each profile
g” has a partition into subprofiles, say {g”k}k 1, with Hg”kHl <nforeachk=1,... K

and
K
- Z U(g")
k=1

For each v define a profile ¢ on {w1,...,wr} by

< é&o ||§V||1 .

0 (wy) = Zg”k wt).-

LY (wy

' Tg? ||) — 0 as v — oo. Thus, from SGN, for all v sufficiently

Observe that for each ¢
large,
w(r) <eollg”lly -

Let {f"*} be a partition of f into subprofiles where for k = 1,...., K, f*F = g%
and for k > K, f"* satisfies Hf”kH < n and for each t,

D PR = (w).

E>K+1

We now have

() =D w(fh)| <
k

K K
(W) = W)+ [W(g") = (@) + [P(@) = D @™+ D w@*) - Y v ()
k=1 k=1 k
<eollf Il +eo lf1h +eo 71l + D W)
k>K

< eo| 7], + T ()
< deoll”l,

which is a contradiction to (8.3). W

23



Theorem 2 Relating SGE and PCB. Let (£2, U) be a pregame.

(a) Suppose that (€2, ¥) satisfies SGE. Then (€, ¥) satisfies PCB.

(b) Suppose that Q is a finite set and that (2, V) satisfies PCB. Then given any
p € (0,1), the p-thick restriction (2, ¥,) of (2, ¥) satisfies SGE.

Proof: In view of Wooders (1994, Theorem 4) we need only prove part (a) of the
theorem. To prove (a), given a pregame ({2, V) satisfying SGE and g9 > 0, let n(eo)
satisfy the condition given in the definition of SGE. Define
1\
C' = max (g)
{geF:lgl <n=0)} gl

It from some simple algebra that

w(f)
P

which implies that g + C’ is a per capita bound. l

<go+C.

8.3. Proofs of equal treatment Theorems

The following Theorem, which appeared in Wooders (1979) and in Shubik and Wooders
(1982), will be used in the proof of our main results. For the purposes of the next proof,
we remark that for each type ¢ the bound Ar could be replaced by Arn(w;), the number
of players of type t in the r** game, since this would increase the size of an upper bound
and thus constitute a relaxation of the bound. Notice that this theorem differs from
Theorem 4 in that the theorem requires a fixed distribution of player types.

Theorem 6. (Wooders 1979, Shubik and Wooders 1982). Let Q be a finite set with
|| = T and let (2, V) be a pregame satisfying PCB. Let n be a given profile on €. For
any positive integer r, let

N, def {(t,q):t=1,..,T and g=1,...,m7n(w)}.

Given any real numbers v > 0 and A > 0 there is a positive real number £* and an
integer 7* such that for each ¢ € [0,6*] and for any r > r*, if x € R™" is in the e-core of
[rn, W], then for each ¢ in support(n),

{(tq) « |2 — 2| > 7} < A,

rn(we)

def 1 ST ', the average payoff received by players of type t.
qg=1

where Zt = m
Proof: Let n be a profile over (2. Given real numbers A and v greater than zero, select

e*, r* and ro < r* so that:
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(i) e* >0and e* < mint{mﬁ, ;ﬁgﬁ? } where the minimum is over all ¢ with n(w;) # 0;

" Y(rn) _ ¥(ron)
(ii) for all r > ro, rnli — rollnllx

< g%

ooy 2 A
(iii) =2 < STallr

T(rn)  UP(ron)

Since A > 0 and v > 0, and el ~ rollnll
selection is possible. This follows from the nonemptiness results of Wooders 1979, or
1983 restricted to TU games, and also from the market-game equivalence of Wooders
1994.

Select 7 > r*, let € € [0,e*], and let « be in the e-core of [rn, ¥]. For each t, define
z as in the statement of the Theorem. Since, for any € > 0, the e-core is convex, we
have that the vector z = (z1,-- -, 27) € RT', defined as in the statement of the Theorem,
represents a payoff vector in the equal-treatment e-core of the game [rn, (2, V)]. (Note
that to obtain the vector z as a convex combination, for each type form new payoff
vectors by permuting the payoffs of players of that type and then take the average of
all the payoff vectors thus constructed.) It follows that for all profiles s < rn,

— 0 as rg — oo and r — o0, such a

z-s>W(s)—¢|s|1

and
z-rn < U(rn).

Thus, z represents a payoff vector in the equal-treatment e-core of the game [rn, U].

Let N, = {(t,q) : t =1,..,T, ¢ = 1,...,rn(w)}. It is convenient to establish the
convention that for each coalition S C N,., S; denotes the subset of players in S of type
t,ie., Sy ={(t,q): (t,q) € S and t =t} for each t = 1,...,T. We define the profile of
a coalition S by s € ZL with t'" component given by |S;| for each t¢.

Select a subset P of N, so that the profile of P is ron and P contains the “worst-off”
players of each type (the “poor”); thus, if (¢,q) ¢ P then x4 > 24 for all ¢ with
(t,q') € P. Define P, = {(t',q) € P :t' =t}. Suppose that, for some type t*,

|IPN{(t*,q) € N, : 2V < 2po — 7}| = ron(we);

i.e. all players of type t* in P receive less than the average payoff for players of that
type minus . We then have

U(rn)

\I!b(ron) —erg||nlls < x(P) < ro(z-n) —yron(we) < ro — yron(wp).

The first inequality follows from the fact that x in the e-core of N,. The second follows
from the facts that z > 2t"7 4« for each ¢ with (¢*,¢) in P, and z(P;) < rozn(w;) for
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each t. The final inequality is from the feasibility of z, that is, z - rn < ¥(rn). From
the above inequality, the following inequality is immediate:

U(rn)

\Ilb(ron) —erol|lnli < ro — yron(we).

Subtracting W*(rgn) from both sides of the expression, adding yron(w+) to both sides,
and dividing by ro||n||1 we obtain

yn(wp) U(rn) WO (rgn)

I72]l1 lrnlly llronlly

From (i) above and the fact that ¢ < &*, it holds that alwrs) g% 5 g% which, along

[EIE!
b
with the preceding expression, implies that e* < w — w, a contradiction to (ii).
Therefore, for each t* = 1,...,T it holds that

|PN{(t*,q) € N, : 2t < e — YH < ron(we);

of the worst off players of type t*, fewer than ron(wi) can be treated worse than the
average payoff for that type minus . This means that {(¢,q) : 2% — 2* < —y} C P.
From the facts that:

U(rn)

70 — 2e%rg||In]|1 < \Ilb(ron) —&*ro|lnlj1 (from (ii)),

< z(P) (since z is in the £*-core),

<rpz-n (from the definition of P),

v
<o (:n) (from feasibility of x),
it follows that
0<rpz-n—z(P) <2 r|n|; . (8.4)

Informally, the above expression says that, for each ¢, on average players of type ¢ in P
are receiving payoffs within 2¢* of z.

We now turn to those players who are receiving payoffs significantly more (that is,
more than 7) than the average for their types and put an upper bound on the number
of such players. Define the set of “best off” players (the “rich”) R by

R={(t,q) € N, : 2! > z +~} .
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Define the set of “middle class” players M by
M =N \(RUP) .

Observe that, since > (2! — 2;) = 0, it follows that
(t.q)EN-

VIR < Z (2 — z) = Z (2 — 2'9).

(t,q)ER (t,q)ePUM

From (8.4) and the above expression,

YR <2e*rolnlli+ > (2 —2').
(t.g)eM

Obviously, the larger the value of Y (2 — '), the larger it is possible for |R| to
t,q)eM

(
be. We claim that Y (2 —2') < 2¢*|M|. This follows from the fact that the players
(ta)eM
in P are the worst off, and they are, on average, each within 2¢* of the average payoff for
their types. Since those players in M are at least as well off, they must receive on average

no less than the average for their types minus 2e*. Therefore, > (z;—1z') < 2e*|M]|.
(t.q)eM
It now follows that

v|R| < 2e*ro||n||1 + 2e¥| M| .

From [M|+ |R| = r|n|l1 — rollnll1, [M| < 7|n|l1 — rolln]l1, and

VIR| < 2e%ro]Inl[ + 27 (rllnlly — rollnfle) < 2e%r|nlly,

it follows that —L. < 2% and from (i), that Rl ~ _A

r{|nf|1 rlnfli = 2[n

[y
Counting the number of players who may be treatec{ significantly differently than
the average we see that:
| P| |R| e*ry A

< + < +— from (i) and (iii) above.
lrnll el = 2fnll  In]

The conclusion of the Theorem is immediate from the observation that if x is in the
g-core of rn for r > r* and 0 < ¢ < &*, then z is in the €*-core of rn. W

Theorem 4. (Near equal treatment of players of the same type.) Let (2, V) be a
pregame where 2 = {wi,...,wr} is a finite set and assume that (Q, V) satisfies SGE.
Then given any real numbers v > 0, § > 0 and A > 0 there is a positive real number *
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and an integer 7 such that for each ¢ € [0,6*] and for every profile n € F with ||n||1 > n,
if 2 € RV is in the e-core of the game [n, ¥] with player set

N ={(t,q):t=1,...,T and, for each ¢, ¢ =1,...,n(wy)}

then for each ¢ € {1,..., T} with 22 > § it holds that

[nlli =
H(t?q) : |xtq - Zt| > 'YH < )xn(wt) s

where

the average payoff received by players of type t.

Proof of Theorem 4. Suppose the statement of the Theorem is false. Then there is
a pregame (Q, V), where Q = {wy, ...,wr} for some T satisfying the condition of SGE,
and real numbers v > 0 and A > 0 such that: for every integer v and every positive

real number ¢, there is a real number € € [0,¢,], a game [n”, V] and a payoff vector
n”(wt)
>0,

IR

z, € RV" in the e-core of the game with the property that, for some ¢ with

’{(t,q) :q=1,..,n" (w;) and {J:tyq - z,f’ > 'y}} > Ang,

n(wt)
L def m q;l 259, the average payoff received by players of type ¢.

[As a guide to the reader, the basic strategy of the following is to first describe all
sufficiently large games in the sequence {[n”, ¥]}, as replica games plus some ‘leftovers.’
The leftovers will constitute a small fraction of the total player set. Moreover, by The-
orem 1, their effects on per capita payoffs of large groups they might join become small
as the games grow in size. Thus, any approximate core payoff vector for a sufficiently
large game must also be an approximate core payoff vector — for a slightly less close
approximation — for the subgame consisting of a large replica of some player set.]

By passing, if necessary, to a subsequence of the sequence of games {[n”, ¥]}, we
can without loss of generality assume that for each w; € () the sequence {mn”(wt)}
converges. Define .

— y

T = Vlggo Wn (wy).
By relabelling points in £ we can assume that for some 7" < T' it holds that 7y > 0
fort =1,..., 7 and my =0 for t =T’ + 1,...,T. We can similarly suppose (since SGE
implies PCB) that the sequence {%} converges.

Let {h”} be a sequence of profiles on Q with the properties that:
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LRl — oo.

2. For each t € {1,...,T"}, lim, o Wh”(wt) =m; and for each t € {T" + 1,...,T}
and each v, hy = 0.

3. For each t € {1,...., 7"}, h”(wi) < n”(wi) and limy, 00 Zzgzg =0.

Now for each v consider the sequence of induced games {[rh”, U]}° ;. Note that this
sequence satisfies the conditions of Theorem 0. Let &, > 0 be a positive real number
and let 7, be an integer such that for each € € [0,&,] and for any r > 7, if y € RN is
in the e-core of [rh”, ¥], with total player set denoted by ]/\}T” ={(t,q):t=1,....,T, q=
L,...,rh”(wy)}, then for each ¢t € {1,...,7"}

~

{(t,q) € NY g =1,..rh¥(wr) and [y — 3| > 3} < 3rh,

where
1 rh” (wt)
ot def tq
Z, Th”(ojt) ; y-,

the average payoff assigned by y to players of type ¢ in the player set Nv .

Next, let m, be the largest integer such that m,h"(w;) < n”(w;).foreach t = 1,...,T".
Since for each t, h:gwt) — 0 as v — oo (from 3.) for all v sufficiently large, say v > v*, it
holds that m, > ?y.y Thus, for all sufficiently large games in the sequence {[m,h", U]},

the conclusion of Theorem 0 holds. That is, there is an integer v* and a positive real

number &, such that for each ¢ € [0,£,] and for any v > v*, if y € RN is in the e-core
of [m,h”, ¥], with total player set N* = {(t,q) : t =1,....,T, ¢ =1,...,myh¥(w)}, then
for each ¢t € {1, ..., 7"}

- v A
{(tg) € N2 [y = 2| > 2} < Smuhy,

where

the average payoff assigned by y to players of type ¢ in the player set NV,
For each v, let €} = min{¢,, {}.
Let ¢ be a profile satisfying the property that for each ¢t € {1, ..., T},

myh” (we) + 07 (we) = n” (we);
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in terms of our informal discussion of the proof, the profile £¥ represents the ‘leftovers.’

Observe that lim,, %VV(Z;&,—W = 7y and that lim, % = 0. It follows from
Theorem 1 that
lim V() . W(m,h ) lim U (myh")

v=oo [lnv]ly — v=oo myht 4 ]ly  v=oo [yl

By passing to a subsequence and re-numbering if necessary, we can suppose that for
each v sufficiently large, say v > v*,

‘ U(n”)  Y(myh")
[muh”[ly [lmw by

2

7. (8.5)

<

Let vg be sufficiently large so that for all v > 14 it holds that

T
2207 (we)
: <

n¥ (wt)

2ol

Select v > max{v*,1p}, an € € [O, %}, and a payoff vector 2, € RY” be in the e-core
of the induced game [n”, ¥] with player set N¥ = {(t,q) : t = 1,...,T and, for each ¢,
g=1,...,n"(w)} so that

{(t,q) e NV :q=1,....,n{ and |z}? — 2{'| > 7}| > An},

nt(wt)
where z; = n(it) > 2. From our initial supposition, such a selection is possible.
q=1
Let N§ be a subset of N” with profile equal to m,h”. We claim that, for each

t € {1,...,T'} it holds that

0% A
{(t,0) € N+ |ol9 — 2] > 23] < Sn¥ () (56)
n” (we) . *
where again 2! = m S>> !, Since x is in the e-core for € € [O, %"}, the payoff

tg g}

vector z* defined by ¥’ = 2l — + (> o — 3) for each (t,q) € N§ and ¥ = ol

otherwise, is in the &’-core for & = ¢ + % < g. This holds since z* cannot be &’
improved upon by any coalition by at least ¢’ and because, from (8.5) and the fact that

x is in the e-core of the game [n”, U], and thus feasible for the total player set N”,

*

* 14 14 Elt v v El/ v v
T (NE) = 2(N§) = 22 [, < W) = 2 [, < Wl ),
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which implies that (z3'? : (t,q) € N¥) is feasible for N¥. Thus, for the subgame with
player set NY, (8.6) holds.
We now have, given t' € {1,...,7"},

a) [{(t,q) e NVt =1, ¢ = 1,0 (wp), o’ — z}| > ’7}|

(

(b) <H{(t,q) e Ny :t=1t,q=1,...n"(w), ]a:,t,q — 2t >3 2”}\ h (wt)
() =[{(t.q) Ny it =1, qg=1,...n"(w), |(z}! — F) —( 2y, — E”)! > 1+ %+
(d) §|{(t7q)ENOV t:tlqulv 7ny(wt)7 |$litq th/+%|>% 2}’"’_2

( {(t,q) € Ny : &' — 2L > 3} + %

(

where (a) follows from our supposition, (b) follows from the choice of €}, > 3 and the
fact that the constraining value 1 + 53 is less than or equal to +, (c) is simple algebra,
(d) follows from the definition of x*tq - %, (e) follows from the properties of the
absolute value, and (f) follows from (8.6) and the fact that |N¥| > |N}| . This gives us

the desired contradiction and completes the proof.
|

For details of the proof of Corollary 1, we refer the reader to the Vanderbilt Working
Paper version of this paper.
Theorem 5. (Near equal-treatment of similar players.) Let Q be a pregame satisfying
SGE. Then given any real numbers v > 0 and A > 0 there are real numbers €* > 0
and § > 0, integers T" and p, and a partition of {2 into no more than T subsets, say
Q4, ..., Qp, each contained in a ball of diameter less than ¢, such that for each ¢ € [0,6*]
and for every game (N,v,) induced by the pregame, if z € RY is in the e-core of the
game (N,v,) and if | N| > p, then it holds that

{ie N:a(i) €, ’33 — zt| > v} < AN,

where )
7
T T HieN:ali) €l >

1EN :a(i)€Q:

the average payoff received by players with attributes in the set ).

Proof of Theorem 5. From (3.1), given any € > 0 there is a positive real number J(¢)

such that whenever f and g are profiles satisfying dist(f, g) < d(g) then % — %

e. It follows that given d(e) we can partition 2 into a finite number of subsets, say

{Qt}gi), each contained in a ball of diameter less than d(¢), and in any game induced
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by the pregame, players with attributes in Qf are §(g)-substitutes for each other. In
addition, we can select a finite number of points in 2, say

Qe) = {wr kL7,

with w; € Qy for each t = 1,...,T(¢), such that for every profile f there is a profile g

with the support of g contained in (g) and with ’W — W’ < e. Given € > 0 let

(Q(e), ¥) denote the pregame determined by Q(¢) and ¥ with the domain of ¥ restricted
to profiles with support in Q(e).

Given X\ and~y let £* be a positive real number, let 0(¢*) and Q(c*) satisfy the
properties required in the preceding paragraph, and let p be an integer with the property
that: For any game (NN, v) induced from the pregame (Q(e*), ¥), for any ¢ € [0, 2¢*] and
for any t with |N| > p, if = is in the e-core of the game then it holds that

[{i € N : a(i) € Q and |z° — Z| >~} < A|N],

> 1 ’
where z; = [{i€N:a(i)EQ: }] Z v
1EN:a(1)EQ

Now let (IV,v) be a game induced by the pregame (2, ¥) and an attribute function
a. Let n denote the profile of N (given the attribute function «). Define a new attribute
function o as follows: For each ; define

o/ (i) = wy for all i € N with (i) € Q.

Let n’ denote the profile of N under the attribute function ', and let (N,v) be the
game induced by the pregame and the attribute function o/. Given £ € [0,£%), let
x € RN be in the e-core of (N,v). Define the payoff vector y by y* = z* — £*. Observe
that y must be feasible for (N,v"), since z(N) < v(N), dist(n,n’) < 6(¢*) and

*

U(n) ¥(n)
lnfly lin'lly
implies y(N) = x(N)—e* |N| < ¥(n)—c*|N| < ¥(n') = v'(N). Also, z(S) > v(S)—¢|S]
implies that y(S) > v'(S) — (¢ +¢*)|S|. This implies that y is in the (¢ + £*)-core of
(N,v"). Since € 4+ £* < 2¢*R it holds that

<e€

{i € N : |y’ — 21| > v} < AN,

where z; = m('GN 2%‘)69 "), the average payoff received by players with
iEN: afi "

attributes in the set 4, t = 1,...,T(¢*). From the above inequality it follows that
{i € N, ai) € Q : |x’ —z)| > v} < AINV|
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where

_ 1
At = |ieN:a—1(N)mQt\(, N 2%4) N ')
1€EN: a(2)efd:

_ 1 '
= TieNa L(N)nsy] (‘ Z, y' +e)
1EN: a(i)eQ

=7z +e.

We leave the proofs of the two Propositions for the reader. Details of the proofs are

contained in the 2009 Vanderbilt Working Paper version of this paper.
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