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Abstract

We propose a sieve maximum likelihood (ML) estimation procedure for a broad class of semi-
parametric multivariate distribution models. A joint distribution in this class is characterized
by a parametric copula function evaluated at nonparametric marginal distributions. This class
of models has gained popularity in diverse fields due to a) its flexibility in separately modeling
the dependence structure and the marginal behaviors of a multivariate random variable, and b)
its circumvention of the “curse of dimensionality” associated with purely nonparametric multi-
variate distributions. We show that the plug-in sieve ML estimates of all smooth functionals,
including the finite dimensional copula parameters and the unknown marginal distributions,
are semiparametrically efficient; and that their asymptotic variances can be estimated consis-
tently. Moreover, prior restrictions on the marginal distributions can be easily incorporated
into the sieve ML procedure to achieve further efficiency gains. Two such cases are studied in
the paper: (i) the marginal distributions are equal but otherwise unspecified, and (ii) some but
not all marginal distributions are parametric. Monte Carlo studies indicate that the sieve ML
estimates perform well in finite samples, especially so when prior information on the marginal
distributions is incorporated.
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1 Introduction

Suppose we observe an i.i.d. sample {Zi ≡ (X1i, ...,Xmi)
0}ni=1 from the distribution Ho(x1, . . . , xm)

of Z ≡ (X1, ...,Xm)
0 in X1× ...×Xm ⊆ Rm, m ≥ 2. Assume that Ho is absolutely continuous with

respect to the Lebesgue measure on Rm and let ho(x1, ..., xm) be the probability density function
of Z. Clearly estimation of Ho or ho is one of the most important statistical problems. Due to the
well-known “curse of dimensionality,” it is undesirable to estimate Ho or ho fully nonparametrically
in high dimensions.

A class of semiparametric multivariate distribution models has gained popularity in diverse
fields in recent years due to: a) its flexibility in separately modeling the dependence structure and
the marginal behaviors of a multivariate random variable, and b) its circumvention of the “curse
of dimensionality” associated with purely nonparametric multivariate distributions. To introduce
this class, let Foj denote the true unknown marginal cdf of Xj , j = 1, ...,m. Assume that Foj ,
j = 1, ...,m, are continuous. By the Sklar’s (1959) theorem, there exists a unique copula function
Co such that Ho(X1, ...,Xm) ≡ Co(Fo1(X1), ..., Fom(Xm)). Let foj , j = 1, ...,m, and co(u1, ..., um)

denote the probability densities associated with Foj , j = 1, ...,m, and Co respectively. Suppose
that the functional form of the copula Co(u1, ..., um) is known apart from a finite dimensional
parameter θo, i.e., for any (u1, . . . , um) ∈ [0, 1]m, we have Co(u1, ..., um) = C(u1, ..., um; θo), where
C(u1, ..., um; θ) is a class of parametric copula functions. Then for any (x1, ..., xm) ∈ X1× ...×Xm,
the pdf ho has the following representation:

ho(x1, ..., xm) ≡ c(Fo1(x1), ..., Fom(xm); θo)
mY
j=1

foj(xj), (1)

where c(u1, . . . , um; θo) is the density of the copula C(u1, . . . , um; θo) and the functional forms of
foj , j = 1, ...,m, are unknown. We refer to the class of multivariate distributions with density
functions of the form (1) as the class of copula-based semiparametric multivariate distributions. It
achieves the aim of dimension reduction, as for any m, the joint density ho(x1, . . . , xm) depends
on nonparametric functions of only one dimension. In addition, the parameters in models of this
class are easy to interpret: the marginal distributions Foj , j = 1, . . . ,m, capture the marginal
behavior of the univariate random variables Xj , j = 1, . . . ,m; and the finite dimensional parameter
θo, or equivalently the parametric copula C(u1, . . . , um, θo), characterizes the dependence structure
between X1, . . . ,Xm. It is obvious that the copula measure of dependence is invariant to any
increasing transformation of the univariate random variables Xj , j = 1, . . . ,m.

The class of semiparametric multivariate copula models has been used extensively in applied
work, where modeling and estimating the dependence structure between several random variables
are of interest. Specific applications include those in finance and insurance (e.g., Frees and Valdez
(1998) and Embrechts, et al. (2002)), in survival analysis (e.g. Joe (1997), Nelsen (1999), and
Oakes (1989)), in econometrics (e.g. Lee (1982, 1983), Heckman and Honore (1989), Granger, et
al. (2003) and Patton (2004)), to name only a few.

Because of its special role in a semiparametric multivariate copula model, estimation of the cop-
ula parameter θo has attracted much attention from researchers including Clayton (1978), Clayton
and Cuzick (1985), Oakes (1982, 1986, 1994), Genest (1987) and Genest, et al. (1995). One of the
most commonly used estimators of θo in recent applied work is the two-step estimator proposed by
Oakes (1994) and Genest, et al. (1995):

eθn = argmax
θ

"
nX
i=1

log c(F̃n1(X1i), ..., F̃nm(Xmi); θ)

#
, (2)
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where eFnj(xj) = 1
n+1

Pn
i=1 1{Xji ≤ xj} is the rescaled empirical cdf estimator of Foj , j = 1, ...,m.

Genest, et al. (1995) establish the root-n consistency and asymptotic normality of the two-step
estimator eθn. Shih and Louis (1995) independently propose the two-step estimator and establish
its asymptotic properties for i.i.d. data with random censoring. The large sample results of Genest,
et al. (1995) have also been extended to time series setting in Chen and Fan (2002, 2003).

Despite its popularity, the two-step estimator of the copula dependence parameter θo is generally
asymptotically inefficient except for a few special cases; see Genest and Werker (2002). Klaassen
and Wellner (1997) show that it is efficient for the Gaussian copula models and Genest, et al. (1995)
show that it is efficient for the independence copula model. Bickel, et al. (1993, chapter 4.7) provide
some efficiency score characterization for θo in general bivariate semiparametric copula models, but
provide no efficient estimator for it. For semiparametric bivariate survival Clayton copula models,
Maguluri (1993) also provides some efficiency score calculations for θo and conjectures that the esti-
mator proposed in his paper might be efficient. To the best of our knowledge (see Genest andWerker
(2002)), there does not exist any published results on efficient estimation procedure of θo for general
bivariate (multivariate) semiparametric copula models. Moreover, in many applications, efficient
estimation of the entire multivariate distribution Ho(x1, . . . , xm) ≡ C(Fo1(x1), . . . , Fom(xm), θo) is
desirable, which requires efficient estimation of both the copula parameter θo and the marginal
distributions Foj , j = 1, . . . ,m. Except in models with the independence copula, it is clear that the
univariate (rescaled) empirical distributions are generally inefficient estimates of the marginal dis-
tributions. Intuitively one could obtain more efficient estimates of Foj , j = 1, . . . ,m by utilizing the
dependence information contained in the parametric copula. Unfortunately even for semiparamet-
ric models with the Gaussian copula, there is currently no efficient estimates of univariate marginal
distributions, see Klaassen and Wellner (1997). For the special case of a bivariate copula model
with one known marginal distribution and one unknown marginal distribution, Bickel, et al. (1993,
chapter 6.7) provide some efficiency score calculations for the unknown margin, but they again do
not present any efficient estimators.

In this paper, we propose a general sieve maximum likelihood (ML) estimation procedure for
all the unknown parameters in a semiparametric multivariate copula model (1). Intuitively, we
approximate the infinite-dimensional unknown marginal densities foj , j = 1, ...,m by combinations
of finite-dimensional known basis functions with increasing complexity (sieves), and then maximize
the joint likelihood with respect to the copula dependence parameter and the sieve parameters of
the approximation of the marginal densities. By applying the general theory of Shen (1997) on
asymptotic efficiency of the sieve ML estimates, we show that our plug-in sieve ML estimates of
all smooth functionals, including the copula parameter and the unknown marginal distributions,
are semiparametrically efficient. Although the asymptotic variances of these smooth functionals
cannot be derived in closed-form, they can be estimated easily and consistently. As our sieve ML
procedure involves approximating and estimating one-dimensional unknown functions (marginal
densities) only, it does not suffer from the “curse of dimensionality” and is simple to compute. In
addition, it can be easily adapted to estimating semiparametric multivariate copula models with
prior restrictions on the marginal distributions to produce more efficient estimates. Examples of
such restrictions include equal but unknown marginal distributions, known parametric forms of
some marginal distributions, to name only a few. Simulation studies show clearly the efficiency
gains of our sieve ML estimates over the two-step estimator of θo and the empirical distribution
estimates of the marginal distributions, especially so when prior restrictions are incorporated. We
find that the sieve ML estimate of θo in models with some nonparametric and some parametric
margins perform almost as well as the infeasible ML estimates of θo obtained as if all the marginal
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distributions are known.
The rest of this paper is organized as follows. In Section 2, we introduce our sieve ML estima-

tors of the copula parameter and the unknown marginal distributions in models with or without
restrictions on the marginal distributions. In Section 3, we show that for semiparametric mul-
tivariate copula models with unknown marginal distributions, the plug-in sieve ML estimates of
all smooth functionals are root-n normal and semiparametrically efficient. These results are then
applied to deliver the root-n asymptotic normality and efficiency of the sieve ML estimates of the
copula parameter and the marginal distributions. We also provide simple consistent estimators
of the asymptotic variances of these estimators. In Section 4, we extend the efficiency results in
Section 3 to models with equal but unknown margins and models with some parametric margins.
Section 5 provides results from a simulation study. All the proofs are gathered into Appendix A.

2 The Sieve ML Estimators

In this section, we will introduce sieve ML estimation of parameters in a semiparametric multivariate
copula model in various cases including i) the marginal distributions are completely unspecified;
ii) the marginal distributions are the same, but unspecified otherwise; iii) some of the marginal
distributions are parameterized, but the others are unspecified.

We first introduce suitable sieve spaces for approximating an unknown univariate density func-
tion of certain smoothness, based on which we will then present our sieve MLEs.

2.1 Sieve Spaces for Approximating a Univariate Density

Let the true density function foj belong to Fj for j = 1, . . . ,m. Recall that a space Fnj is called a
sieve space for Fj if for any gj ∈ Fj , there exists an element Πngj ∈ Fnj such that d(gj ,Πngj)→ 0

as n→∞ where d is a metric on Fj ; see e.g. Grenander (1981) and Geman and Hwang (1982).
There exist many sieves for approximating a univariate probability density function. In this

paper, we will focus on using linear sieves to directly approximate a square root density:

Fnj =
fKnj (x) =

KnjX
k=1

akAk(x)

2 , Z
fKnj (x)dx = 1

 , Knj →∞,
Knj

n
→ 0, (3)

where {Ak(·) : k ≥ 1} consists of known basis functions, and {ak : k ≥ 1} is the collection of
unknown sieve coefficients.

Before presenting some concrete examples of known sieve basis functions {Ak(·) : k ≥ 1}, we
first recall a popular smoothness function class used in the nonparametric estimation literature;
see, e.g. Stone (1982), Robinson (1988), Newey (1997) and Horowitz (1998). Suppose the support
Xj (of the true foj) is either a compact interval (say [0, 1]) or the whole real line R. A real-valued
function h on Xj is said to be r-smooth if it is J times continuously differentiable on Xj and its J-th
derivative satisfies a Hölder condition with exponent γ ≡ r − J ∈ (0, 1] [i.e., if there is a positive
number K such that |DJh(x) −DJh(y)| ≤ K|x − y|γ for all x, y ∈ Xj ]. We denote Λr(Xj) as the
class of all real-valued functions on Xj which are r-smooth; it is called a Hölder space. Define a
Hölder ball with smoothness r = J + γ as

ΛrK(Xj) = {h ∈ CJ(Xj) : sup
x,y∈Xj ,x6=y

|DJh(x)−DJh(y)|
|x− y|γ ≤ K}.
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2.1.1 Bounded support

It is known that functions in Λr(Xj) with r > 1/2 and Xj = [0, 1] can be well approximated by
many sieve bases such as the polynomial sieve Pol(Kn), the trigonometric sieve TriPol(Kn) and the
cosine series CosPol(Kn):

Pol(Kn) =

(
KnX
k=0

akx
k, x ∈ [0, 1] : ak ∈ R

)
;

TriPol(Kn) =

(
a0 +

KnX
k=1

[ak cos(kπx) + bk sin(kπx)], x ∈ [0, 1] : ak, bk ∈ R
)
;

CosPol(Kn) =

(
a0 +

KnX
k=1

ak cos(kπx), x ∈ [0, 1] : ak ∈ R
)
.

They can also be well approximated by the spline sieve Spl(γ,Kn), which is a linear space of
dimension (Kn + γ + 1) consisting of spline functions of degree γ with almost equally spaced
knots t1, . . . , tKn on [0, 1]. Let t0, t1, . . . , tKn , tKn+1 be real numbers with 0 = t0 < t1 < · · · <
tKn < tKn+1 = 1. Partition [0, 1] into Kn + 1 subintervals Ik = [tk, tk+1), k = 0, . . . ,Kn − 1, and
IKn = [tKn , tKn+1]. We assume that the knots t1, . . . , tKn have bounded mesh ratio:

max0≤k≤Kn(tk+1 − tk)

min0≤k≤Kn(tk+1 − tk)
≤ const.

A function on [0, 1] is a spline of degree γ with knots t1, . . . , tKn if it is: (i) a polynomial of degree
γ or less on each interval Ik, k = 0, . . . ,Kn; and (ii) (γ − 1)-times continuously differentiable on
[0, 1]. See Schumaker (1981) for details on univariate splines.

If the true unknown marginal densities are such that
p
foj ∈ Λrj (Xj), Xj bounded interval,

then we can let Fnj in (3) be

Fnj =

½
f(x) = [g(x)]2 :

R
[g(x)]2 dx = 1,

g ∈ Pol(Kn) or TriPol(Kn) or CosPol(Kn) or Spl([rj ] + 1,Kn)

¾
. (4)

2.1.2 Unbounded support

There are also many sieves that can approximate densities with support Xj = R. Here we present
two examples: (i) if density foj has close to exponential thin tails over Xj = R, we can use the
Hermite polynomial sieve to approximate foj :

Fnj =

 fKnj (x) =
�0+{

PKnj
k=1 ak

³
x−ς0
σ

´k}2
σ exp{− (x−ς0)2

2σ2
} :

�0 > 0, σ > 0, ak ∈ R,
R
fKnj (x)dx = 1

 (5)

where Knj → ∞, Knj/n → 0 as in Gallant and Nychka (1987); (ii) if density foj has polynomial
fat tails over Xj = R, we can use the spline wavelet sieve to approximate it:

Fnj =
fKnj (x) =

KnjX
k=0

X
l∈Kn

akl2
k/2Bγ(2

kx− l)

2 , Z
fKnj (x)dx = 1

 (6)
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where Bγ(·) denotes the cardinal B-spline of order γ:

Bγ(y) =
1

(γ − 1)!
γX
i=0

(−1)i
µ

γ
i

¶
[max (0, y − i)]γ−1 . (7)

See Chui (1992, Chapter 4) for the approximation property of this sieve.

2.2 Sieve MLEs

To avoid introducing too many notations, we use the same notation α̂n to denote the sieve ML
estimates for all cases considered with or without prior restriction on the marginal distributions.
That is, it changes from case to case.

2.2.1 Unknown margins

First we consider the completely unrestricted case. Let α = (θ0, f1, ..., fm)0 and denote αo =

(θ0o, fo1, ..., fom)0 ∈ Θ ×
Qm

j=1Fj = A as the true but unknown parameter value. Let bαn =

(bθ0n, bfn1, ..., bfnm)0 ∈ Θ×Qm
j=1Fnj = An denote the sieve ML estimator:

bαn = argmaxθ∈Θ,fj∈Fnj

nX
i=1

log

c(U1i, ..., Umi; θ)
mY
j=1

fj(Xji)

 (8)

with Uji ≡ Fj(Xji) =

Z
Xj
1(x ≤ Xji)fj(x)dx, j = 1, ...,m,

where fj ∈ Fnj for j = 1, ...,m, and the sieve space Fnj is (4) if Xj is a bounded interval, and Fnj
could be (5) or (6) if Xj = R. The plug-in sieve MLE of the marginal distribution Foj(·) is given
by F̂nj(xj) =

R
1(y ≤ xj)f̂nj(y)dy, j = 1, ...,m.

Remark 1: We note that the sieve MLE optimization problem can be rewritten as an unconstrained
optimization problem

max
θ,a1n,...,amn

nX
i=1

{log c(F1(X1i; a1n), ..., Fm(Xmi; amn); θ)] +
mX
j=1

[log fj(Xji; ajn) + λjnPen(ajn)]},

where for j = 1, ...,m, fj(Xji; ajn) is a known (up to unknown sieve coefficients ajn) sieve ap-
proximation to the unknown true foj , and Fj(Xji; ajn) is the corresponding sieve approximation to
the unknown true Foj . The smoothness penalization term Pen(ajn) typically corresponds to the
L2-norm of the second order derivative of fj(·; ajn), and λjn’s are penalization factors.

Noting that once the unknown marginal density functions are approximated by the appropriate
sieves, the sieve MLEs are obtained by maximization over a finite dimensional parameter space.
The properties of the resulting sieve MLEs depend on the approximation properties of the sieves.
Prior restrictions on the marginal distributions can be easily taken into account in the choice of
the sieves, leading to further efficiency gain in the resulting sieve MLEs. We shall illustrate this in
the next two subsections.
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2.2.2 Equal but unknown margins

Now suppose the marginal distributions are all equal but unknown, i.e., Foj = Fo (foj = fo) and
Xj = X for all j = 1, ...,m. Let α = (θ0, f)0 and let αo = (θ0o, fo)0 ∈ Θ × F1 = A be the true but

unknown parameter value. The sieve MLE bαn = (bθ0n, bfn)0 ∈ Θ×Fn1 = An is now given by:

bαn = argmaxθ∈Θ,f∈Fn1
nX
i=1

log

c(U1i, ..., Umi; θ)
mY
j=1

f(Xji)

 (9)

with Uji ≡ F (Xji) =

Z
X
1(x ≤ Xji)f(x)dx, j = 1, ...,m.

This procedure can be easily extended to the case where some but not all marginal distributions
are equal.

2.2.3 Some parametric margins

Bickel, et al. (1993) consider a semiparametric bivariate copula model in which one marginal cdf is
completely known and the other marginal is left unspecified. The sieve ML estimation procedure
can be easily modified to exploit this information. To be more specific, let the marginal distribution
Fo1 be of parametric form, i.e., Fo1(x1) = Fo1(x1, βo) for some βo ∈ B. The marginal distributions
Fo2, . . . , Fom are unspecified. Let α = (θ0, β0, f2, ..., fm)0 and denote αo = (θ0o, β

0
o, fo2, ..., fom)

0 ∈
Θ×B ×Qm

j=2Fj = A as the true but unknown parameter value. Let bαn = (bθ0n, β̂0n, bfn2, ..., bfnm)0 ∈
Θ× B ×Qm

j=2Fnj = An denote the sieve ML estimator:

bαn = argmax θ∈Θ,β∈B,
fj∈Fnj ,j=2,...,m

nX
i=1

log

c(U1i, ..., Umi; θ)fo1(X1i, β)
mY
j=2

fj(Xji)

 (10)

with U1i ≡ Fo1(Xji, β), Uji ≡ Fj(Xji) =

Z
Xj
1(x ≤ Xji)fj(x)dx, j = 2, ...,m.

When Fo1(·) is completely known, we simply take B = {βo} and β̂n = β = βo in the above
optimization problem (10).

3 Asymptotic Normality and Efficiency of Smooth Functionals

Let ρ : A → R be a functional of interest and ρ(bαn) be the plug-in sieve ML estimate of ρ(αo),
where α̂n and αo are defined in Section 2. In this section, we consider models with unrestricted
marginals and apply the general theory of Shen (1997) to establish the asymptotic normality and
semiparametric efficiency of our sieve MLE estimator ρ(bαn) for smooth functionals ρ of αo =
(θ0o, fo1, ..., fom)0.

3.1 Asymptotic Normality and Efficiency of ρ(α̂n)

Let c(α,Zi) = log{c(F1(X1i), ..., Fm(Xmi); θ)
Qm

j=1 fj(Xji)} and Eo(·) be the expectation under
true parameter αo. Let Uo ≡ (Uo1, ..., Uom)

0 ≡ (Fo1(X1), ..., Fom(Xm))
0 and u = (u1, ..., um)

0 be an
arbitrary value in [0, 1]m. In addition, let c(Fo1(X1), ..., Fom(Xm); θo) = c(Uo, θo) = c(αo).
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Assumption 1. (1) θo ∈ int(Θ), Θ a compact subset of Rdθ ; (2) for j = 1, ...,m,
p
foj ∈ Λrj (Xj),

rj > 1/2; (3) αo = (θ0o, fo1, ..., fom)0 is the unique maximizer of Eo[c(α,Zi)] over A = Θ×
Qm

j=1Fj

with Fj = {fj = g2 : g ∈ Λrj (Xj),
R
[g(x)]2dx = 1}.

Assumption 2. the following second order partial derivatives are all well-defined in the neighbor-
hood of αo:

∂2 log c(u,θ)

∂θ2
, ∂2 log c(u,θ)

∂uj∂θ
, ∂2 log c(u,θ)

∂uj∂ui
for j, i = 1, ...,m.

Denote V as the linear span of A−{αo}. Under Assumption 2, for any v = (v0θ, v1, ..., vm)0 ∈ V,
we have that c(αo + tv, Z) is continuously differentiable in small t ∈ [0, 1]. Define the directional
derivative of c(α,Z) at the direction v ∈ V (evaluated at αo) as:

dc(αo + tv, Z)

dt
|t=0 ≡ ∂c(αo, Z)

∂α0
[v] =

∂c(αo, Z)

∂θ0
[vθ] +

mX
j=1

∂c(αo, Z)

∂fj
[vj ]

=
∂ log c(αo)

∂θ0
vθ +

mX
j=1

½
∂ log c(αo)

∂uj

Z
1(x ≤ Xj)vj(x)dx+

vj(Xj)

foj(Xj)

¾
.

Define the Fisher inner product on the space V as

hv, evi ≡ Eo

·µ
∂c(αo, Z)

∂α0
[v]

¶µ
∂c(αo, Z)

∂α0
[ev]¶¸ , (11)

and the Fisher norm for v ∈ V as ||v||2 = hv, vi. Let V be the closed linear span of V under the
Fisher norm. Then (V, || · ||) is a Hilbert space. It is easy to see that V = {v = (v0θ, v1, ..., vm)0 ∈
Rdθ ×Qm

j=1Vj : ||v|| <∞} with

Vj =

(
vj : Xj → R : Eo

µ
vj(Xj)

foj(Xj)

¶
= 0, Eo

µ
vj(Xj)

foj(Xj)

¶2
<∞

)
. (12)

It is known that the asymptotic properties of ρ(α̂n) depend on the smoothness of the functional
ρ and the rate of convergence of α̂n. For any v ∈ V, we denote

∂ρ(αo)

∂α0
[v] ≡ lim

t→0[(ρ(αo + tv)− ρ(αo))/t]

whenever the right hand-side limit is well defined and assume:

Assumption 3. (1) for any v ∈ V, ρ(αo+ tv) is continuously differentiable in t ∈ [0, 1] near t = 0,
and

k∂ρ(αo)
∂α0

k ≡ sup
v∈V:||v||>0

¯̄̄
∂ρ(αo)
∂α0 [v]

¯̄̄
||v|| <∞;

(2) there exist constants c > 0, ω > 0, and a small ε > 0 such that for any v ∈ V with ||v|| ≤ ε, we
have ¯̄̄̄

ρ(αo + v)− ρ(αo)− ∂ρ(αo)

∂α0
[v]

¯̄̄̄
≤ c||v||ω.

Under Assumption 3, by the Riesz representation theorem, there exists υ∗ ∈ V such that

hυ∗, vi = ∂ρ(αo)

∂α0
[v] for all v ∈ V (13)
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and

||υ∗||2 = k∂ρ(αo)
∂α0

k2 = sup
v∈V:||v||>0

¯̄̄
∂ρ(αo)
∂α0 [v]

¯̄̄2
||v||2 <∞ (14)

We make the following assumption on the rate of convergence of α̂n:
Assumption 4. (1) ||bαn−αo|| = OP (δn) for a decreasing sequence δn satisfying (δn)ω = o(n−1/2);
(2) there exists Πnυ∗ ∈ An − {αo} such that δn × ||Πnυ∗ − υ∗|| = o(n−1/2).

Theorem 1. Suppose that Assumptions 1-4 and 5-6 stated in the Appendix hold. Then
√
n(ρ(bαn)−

ρ(αo))⇒ N
³
0, k∂ρ(αo)∂α0 k2

´
and ρ(bαn) is semiparametrically efficient.

Discussion of assumptions. Assumptions 1-2 are standard ones. Assumption 3 is essentially
the definition of a smooth functional. Assumption 4(1) is a requirement on the convergence rate
of the sieve ML estimates of unknown marginal densities bfnj , j = 1, ...,m. There exist many
results on convergence rates of general sieve estimates of an univariate density; see e.g., Shen and
Wong (1994), Wong and Shen (1995), and Van der Geer (2000). There are also many results on
particular sieve density estimates; see e.g. Stone (1990) for spline sieve, Barron and Sheu (1991)
for polynomial, trigonometric and spline sieves, Chen and White (1999) for neural network sieve,
Coppejans and Gallant (2002) for Hermite polynomial sieve. Assumption 4(2) requires that the
Riesz representer has a little bit of smoothness. Although Assumptions 3 and 4(2) are stated in
terms of data Zi = (X1i, ...,Xmi)

0, and the Fisher norm ||v|| on the perturbation space V, it is
often easier to verify these assumptions in terms of transformed variables. Let

L02([0, 1]) ≡
½
e : [0, 1]→ R :

Z 1

0
e(v)dv = 0,

Z 1

0
[e(v)]2dv <∞

¾
.

By change of variable, for any vj ∈ Vj there is a unique function bj ∈ L02([0, 1]) with bj(uj) =
vj(F

−1
oj (uj))

foj(F
−1
oj (uj))

, and vice versa. Therefore we can always rewrite ∂c(αo,Z)
∂α0 [v] as follows:

∂c(αo, Z)

∂α0
[v] =

∂c(αo, Uo)

∂α0
[(v0θ, b1, ..., bm)

0]

=
∂ log c(αo)

∂θ0
vθ +

mX
j=1

½
∂ log c(αo)

∂uj

Z Uoj

0
bj(y)dy + bj(Uoj)

¾
and

||v||2 = Eo

"µ
∂c(αo, Uo)

∂α0
[(v0θ, b1, ..., bm)

0]
¶2#

= Eo

∂ log c(αo)

∂θ0
vθ +

mX
j=1

½
∂ log c(αo)

∂uj

Z Uoj

0
bj(y)dy + bj(Uoj)

¾2
Define

B =

b = (v0θ, b1, ..., bm)
0 ∈ Rdθ ×

mY
j=1

L02([0, 1]) : ||b||2 ≡ Eo

"µ
∂c(αo, Uo)

∂α0
[b]

¶2#
<∞

 .
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Then there is an one-to-one onto mapping between the two Hilbert spaces (B, || · ||) and (V, || · ||).
Now it is easy to see that the Riesz representer υ∗ = (υ∗0θ , υ

∗
1, ..., υ

∗
m)

0 ∈ V is uniquely determined
by b∗ = (υ∗0θ , b

∗
1, ..., b

∗
m)

0 ∈ B (and vise versa) via the relation:

υ∗j (xj) = b∗j (Foj(xj))foj(xj) for all xj ∈ Xj , for j = 1, ...,m.

Then Assumption 4(2) can be replaced by
Assumption 4’(2): there exists Πnb∗ = (υ∗0θ ,Πn1b

∗
1, ...,Πnmb

∗
m)

0 ∈ Rdθ ×Qm
j=1Bnj such that

||Πnb∗ − b∗||2 = Eo

 mX
j=1

½
∂ log c(αo)

∂uj

Z Uoj

0
{Πnb∗j − b∗j}(y)dy + {Πnb∗j − b∗j}(Uoj)

¾2 = o

µ
1

nδ2n

¶
where

Bnj = {e(u) =
KnjX
k=1

ak
√
2 cos(kπu), u ∈ [0, 1],

KnjX
k=1

a2k <∞}.

3.2
√
n−Normality and Efficiency of bθn

We take ρ(α) = λ0θ for any arbitrarily fixed λ ∈ Rdθ with 0 < |λ| < ∞. It satisfies Assumption
3(2) with ∂ρ(αo)

∂α0 [v] = λ0vθ and ω =∞. Assumption 3(1) is equivalent to finding a Riesz representer
υ∗ ∈ V satisfying (15) and (16):

λ0(θ − θo) = hα− αo, υ
∗i for any α− αo ∈ V (15)

and

k∂ρ(αo)
∂α0

k2 = ||υ∗||2 = hυ∗, υ∗i = sup
v 6=0,v∈V

|λ0vθ|2
||v||2 <∞. (16)

Notice that

sup
v 6=0,v∈V

|λ0vθ|2
||v||2 = sup

b6=0,b∈B


|λ0vθ|2

Eo

·³
∂ log c(αo)

∂θ0 vθ +
Pm

j=1

n
∂ log c(αo)

∂uj

R Uoj
0 bj(y)dy + bj(Uoj)

o´2¸


= λ0I∗(θo)−1λ = λ0
¡
Eo[SθoS 0θo ]

¢−1
λ

where

S 0θo =
∂ log c(Uo, θo)

∂θ0
−

mX
j=1

[
∂ log c(Uo, θo)

∂uj

Z Uoj

0
g∗j (u)du+ g∗j (Uoj)], (17)

and g∗j = (g∗j,1, ..., g
∗
j,dθ
) ∈ Qdθ

k=1 L02([0, 1]), j = 1, ...,m solves the following infinite-dimensional
optimization problems for k = 1, ..., dθ,

inf
g1,k,...,gm,k∈L02([0,1])

Eo


∂ log c(Uo, θo)

∂θk
−

mX
j=1

[
∂ log c(Uo, θo)

∂uj

Z Uoj

0
gj,k(v)dv + gj,k(Uoj)]

2 .

Therefore b∗ = (υ∗0θ , b
∗
1, ..., b

∗
m)

0 with υ∗θ = I∗(θo)−1λ and b∗j (uj) = −g∗j (uj)× υ∗θ, and

υ∗ = (Idθ ,−g∗1(Fo1(x1))fo1(x1), ...,−g∗m(Fom(xm))fom(xm))× I∗(θo)−1λ.

9



Hence (16) is satisfied if and only if I∗(θo) = Eo[SθoS 0θo ] is non-singular, which in turn is satisfied
under the following assumption:

Assumption 3’: (1) ∂ log c(Uo,θo)
∂θ , ∂ log c(Uo,θo)

∂uj
, j = 1, ...,m have finite second moments;

(2) I(θo) ≡ Eo[
∂ log c(Uo,θo)

∂θ
∂ log c(Uo,θo)

∂θ0 ] is finite and positive definite;

(3)
R ∂c(u,θo)

∂uj
du−j = ∂

∂uj

R
c(u, θo)du−j = 0 for (j,−j) = (1, ...,m) with j 6= −j;

(4)
R ∂2c(u,θo)

∂uj∂θ
du−j = ∂2

∂uj∂θ

R
c(u, θo)du−j = 0 for (j,−j) = (1, ...,m) with j 6= −j;

(5) there exists a constant K such that

max
j=1,...,m

sup
0<uj<1

E

"µ
uj(1− uj)

∂ log c(Uo, θo)

∂uj

¶2
| Uoj = uj

#
≤ K.

We can now apply Theorem 1 to obtain the following result:

Proposition 1. Suppose that Assumptions 1 - 2, 3’, 4 - 6 hold. Then
√
n(bθn−θo)⇒ N ¡

0,I∗(θo)−1
¢

and bθn is semiparametrically efficient.
Although the asymptotic variance I∗(θo)−1 of θ̂n has no closed form expression, it can be consis-

tently estimated by the following simple procedure. Let bUi = (bU1i, ..., bUmi)
0 = ( bFn1(X1i), ..., bFnm(Xmi))

0

for i = 1, ..., n. Let An be some sieve space such as:

An = {(e1, ..., edθ) : ej(·) ∈ Bn, j = 1, ..., dθ}, (18)

Bn = {e(u) =
KnθX
k=1

ak
√
2 cos(kπu), u ∈ [0, 1],

KnθX
k=1

a2k <∞}, (19)

where Knθ →∞, (Knθ)
dθ/n→ 0. We can now compute

bσ2θ = min
gj∈An,
j=1,...,m

1

n

nX
i=1


³
∂ log c(bUi,bθn)

∂θ0 −Pm
j=1[

∂ log c(bUi,bθn)
∂uj

R bUji
0 gj(v)dv + gj(bUji)]

´0
×³

∂ log c(bUi,bθn)
∂θ0 −Pm

j=1[
∂ log c(bUi,bθn)

∂uj

R bUji
0 gj(v)dv + gj(bUji)]

´
 .

Proposition 2. Under the assumptions for Proposition 1, we have: bσ2θ = I∗(θo) + op(1).

3.3 Sieve ML Estimates of Foj

For j = 1, ...,m, we consider the estimation of ρ(αo) = Foj(xj) for some fixed xj ∈ Xj by the
plug-in sieve ML estimate: ρ(bα) = bFnj(xj) = R 1(y ≤ xj) bfnj(y)dy, where bfnj is the sieve MLE from
(8). Clearly ∂ρ(αo)

∂α0 [v] =
R
Xj 1(y ≤ xj)vj(y)dy for any v = (v0θ, v1, ..., vm)

0 ∈ V. It is easy to see that
ω =∞ in Assumptions 3 and 4, and

k∂ρ(αo)
∂α0

k2 = sup
v∈V:||v||>0

¯̄̄R
Xj 1(y ≤ xj)vj(y)dy

¯̄̄2
||v||2 <∞.

Hence the representer υ∗ ∈ V should satisfy (20) and (21):

hυ∗, vi = ∂ρ(αo)

∂α0
[v] = Eo

µ
1(Xj ≤ xj)

vj(Xj)

foj(Xj)

¶
for all v ∈ V (20)

10



k∂ρ(αo)
∂α0

k2 = ||υ∗||2 = ||b∗||2 = sup
b∈B:||b||>0

|Eo (1(Uoj ≤ Foj(xj))bj(Uoj))|2
||b||2 . (21)

Proposition 3. Let υ∗ ∈ V solve (20) and (21). Suppose that Assumptions 1 - 2 and 4 - 6 hold.
Then for any fixed xj ∈ Xj and for j = 1, ...,m,

√
n( bFnj(xj)−Foj(xj))⇒ N ¡

0, ||υ∗||2¢. Moreover,bFnj is semiparametrically efficient.
For general copulas including the Gaussian copula, there does not seem to be a closed-form so-

lution to (20) and (21) for the representer υ∗ ∈ V and the asymptotic variance ||υ∗||2. Nevertheless,
the asymptotic variance ||υ∗||2 can again be consistently estimated. Let

bσ2Fj (xj) = max
vθ 6=0,bk∈Bn,
k=1,...,m

¯̄̄
1
n

Pn
i=1 1{bUji ≤ bFnj(xj)}bj(bUji)

¯̄̄2
1
n

Pn
i=1

h
∂ log c(bUi,bθ)

∂θ0 vθ +
Pm

k=1[
∂ log c(bUi,bθ)

∂uk

R bUki
0 bk(u)du+ bk(bUki)]

i2 ,
where bUi = ( bFn1(X1i), ..., bFnm(Xmi))

0, and Bn is given in (19).

Proposition 4. Under assumptions for Proposition 3, we have for any fixed xj ∈ Xj and j =

1, ...,m, bσ2Fj (xj) = ||υ∗||2 + op(1).

Remark 2: In the special case of the independence copula (c(u1, ..., um, θ) = 1), we could solve
(20) and (21) explicitly. We note that for the independence copula,

hev, vi = mX
k=1

Eo

µ evk(Xk)

fok(Xk)

vk(Xk)

fok(Xk)

¶
for all ev, v ∈ V.

Thus (20) and (21) are satisfied with υ∗j (Xj) = {1(Xj ≤ xj)−Eo[1(Xj ≤ xj)]}foj(Xj) and υ∗k = 0
for all k 6= j. Hence

||υ∗||2 = Eo (1(Xj ≤ xj) {1(Xj ≤ xj)−Eo[1(Xj ≤ xj)]}) = Foj(xj){1− Foj(xj)}.
Thus for models with the independence copula, the plug-in sieve ML estimate of Foj satisfies

√
n
³ bFnj(xj)− Foj(xj)

´
⇒ N (0, Foj(xj){1− Foj(xj)}) ,

where its asymptotic variance coincides with that of the standard empirical cdf estimate eFnj(xj) =
1
n

Pn
i=1 1{Xji ≤ xj} of Foj . For models with parametric copula functions that are not independent,

we have ||υ∗||2 ≤ Foj(xj){1− Foj(xj)}.

4 Sieve MLE with Restrictions on Marginals

In this section, we present the asymptotic normality and efficiency results for sieve MLEs of θo and
Foj under restrictions on marginal distributions considered in subsections 2.2.2 and 2.2.3.

4.1 Equal but Unknown Margins

Now the Fisher norm becomes ||v||2 = Eo{∂c(αo,Z)∂α0 [v]}2 with

∂c(αo, Z)

∂α0
[v] =

∂ log c(Uo, θo)

∂θ0
vθ +

mX
j=1

½
∂ log c(Uo, θo)

∂uj

Z Xj

v1(x)dx+
v1(Xj)

fo(Xj)

¾
,

11



Uo = (Fo(X1), ..., Fo(Xm))
0 and v ∈ V = {v = (v0θ, v1)0 ∈ Rdθ ×V1 : ||v|| < ∞} with V1 given in

(12).

Proposition 5. Suppose Assumptions 1-2, 3’, 4-6 hold and foj = fo for j = 1, ...,m. Then
(i) bθn is semiparametrically efficient and √n(bθn − θo)⇒ N ¡

0, I∗(θo)−1
¢
where I∗(θo) =

inf
g∈Qdθ

k=1 L02([0,1])
Eo


³
∂ log c(Uo,θo)

∂θ0 −Pm
j=1[

∂ log c(Uo,θo)
∂uj

R Uoj
0 g(u)du+ g(Uoj)]

´0×³
∂ log c(Uo,θo)

∂θ0 −Pm
j=1[

∂ log c(Uo,θo)
∂uj

R Uoj
0 g(u)du+ g(Uoj)]

´
 ;

(ii) for any fixed x ∈ X , bFn(x) = R
1(y ≤ x) bfn(y)dy is semiparametrically efficient and√

n( bFn(x)− Fo(x))⇒ N ¡
0, ||υ∗||2¢ where ||υ∗||2 = ||b∗||2 =

sup
vθ 6=0,

b∈L02([0,1])

|Eo{1(Uo1 ≤ Fo(x))b(Uo1)}|2

Eo

·³
∂ log c(Uo,θo)

∂θ0 vθ +
Pm

k=1

n
∂ log c(Uo,θo)

∂uk

R Uok
0 b(u)du+ b(Uok)

o´2¸ .
Comparing the asymptotic variances of the estimators of θo and Foj in Proposition 5 with

those in Propositions 1 and 3, one immediately concludes that exploiting the restriction of equal
marginals in general leads to more efficient estimators of the copula parameter θo and the marginal
distributions.

Proposition 6. Under conditions for Proposition 5, we have:
(i) bσ2θ = I∗(θo) + op(1), where

bσ2θ = min
g∈An

1

n

nX
i=1


³
∂ log c(bUi,bθn)

∂θ0 −Pm
j=1[

∂ log c(bUi,bθn)
∂uj

R bUji
0 g(u)du+ g(bUji)]

´0
×³

∂ log c(bUi,bθn)
∂θ0 −Pm

j=1[
∂ log c(bUi,bθn)

∂uj

R bUji
0 g(u)du+ g(bUji)]

´
 ;

(ii) bσ2F (x) = ||υ∗||2 + op(1), where

bσ2F (x) = max
vθ 6=0,b∈Bn

¯̄̄
1
n

Pn
i=1 1{bU1i ≤ bFn(x)}b(bU1i)¯̄̄2

1
n

Pn
i=1

h
∂ log c(bUi,bθn)

∂θ0 vθ +
Pm

k=1[
∂ log c(bUi,bθn)

∂uk

R bUki
0 b(u)du+ b(bUki)]

i2 ,
in which bUi = ( bFn(X1i), ..., bFn(Xmi))

0, An is the sieve space (18), and Bn is the sieve space (19).

4.2 Models with a Parametric Margin

In this case, the Fisher norm becomes ||v||2 = Eo{∂c(αo,Z)∂α0 [v]}2 with

∂c(αo, Z)

∂α0
[v] =

∂ log c(Uo, θo)

∂θ0
vθ +

∂c(αo, Z)

∂β0
vβ +

mX
j=2

½
∂ log c(Uo, θo)

∂uj

Z Xj

vj(x)dx+
vj(Xj)

foj(Xj)

¾
,

∂c(αo, Z)

∂β0
vβ =

·
∂ log c(Uo, θo)

∂u1

Z X1 ∂fo1(x, βo)

∂β0
dx+

1

fo1(X1, βo)

∂fo1(X1, βo)

∂β0

¸
vβ,

where Uo = (Fo1(X1, βo), Fo2(X2), ..., Fom(Xm))
0 and v ∈ V = {v = (v0θ, v

0
β, v2, . . . , vm)

0 ∈ Rdθ ×
Rdβ ×Πmj=2Vj : ||v|| <∞} with Vj given in (12).
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Proposition 7. Suppose that Assumptions 1-2, 3’, 4-6 hold, Fo1(·) = Fo1(·, βo) for unknown
βo ∈ int(B) and E

h
∂ log fo1(X1,βo)

∂β
∂ log fo1(X1,βo)

∂β0

i
is positive definite. Then

(i) bθn is semiparametrically efficient and √n(bθn−θo)⇒ N ¡
0, I∗(θo)−1

¢
where I∗(θo) = Eo[SθoS 0θo ]

with S 0θo =
³
Sθo1 , ...,Sθodθ

´
and for k = 1, ..., dθ,

Sθok =
∂ log c(Uo, θo)

∂θk
− ∂c(αo, Z)

∂β0
a∗k −

mX
j=2

[
∂ log c(Uo, θo)

∂uj

Z Uoj

0
g∗j,k(u)du+ g∗j,k(Uoj)]

solves the following optimization problem:

inf
ak∈Rdβ ,ak 6=0,
gj,k∈L02([0,1])

Eo


∂ log c(Uo, θo)

∂θk
− ∂c(αo, Z)

∂β0
ak −

mX
j=2

[
∂ log c(Uo, θo)

∂uj

Z Uoj

0
gj,k(u)du+ gj,k(Uoj)]

2 ;
(ii) for any fixed x ∈ X and for j = 2, . . . ,m, bFnj(x) = R 1(y ≤ x) bfnj(y)dy is semiparametrically
efficient and

√
n( bFnj(x)− Foj(x))⇒ N ¡

0, ||υ∗||2¢ where ||υ∗||2 = ||b∗||2 =
sup

vθ 6=0,vβ 6=0,
bk∈L02([0,1])

|Eo{1(Uoj ≤ Foj(x))bj(Uoj)}|2

Eo

·³
∂ log c(Uo,θo)

∂θ0 vθ +
∂c(αo,Z)

∂β0 vβ +
Pm

k=2

n
∂ log c(Uo,θo)

∂uk

R Uok
0 bk(u)du+ bk(Uok)

o´2¸ .
Proposition 8. Under conditions for Proposition 7, we have:

(i) bσ2θ = I∗(θo) + op(1), where bσ2θ =
min
a6=0,
gj∈An

1

n

nX
i=1


³
∂ log c(bUi,bθn)

∂θ0 − ∂c(bα,Zi)
∂β0 a−Pm

j=2[
∂ log c(bUi,bθn)

∂uj

R bUji
0 gj(v)dv + gj(bUji)]

´0³
∂ log c(bUi,bθn)

∂θ0 − ∂c(bα,Zi)
∂β0 a−Pm

j=2[
∂ log c(bUi,bθn)

∂uj

R bUji
0 gj(v)dv + gj(bUji)]

´
 ;

(ii) bσ2Fj (xj) = ||υ∗||2 + op(1), where bσ2Fj (xj) =
max

vθ 6=0,vβ 6=0,
bk∈Bn

1
n

¯̄̄Pn
i=1 1{bUji ≤ bFnj(xj)}bj(bUji)

¯̄̄2
Pn

i=1

h
∂ log c(bUi,bθ)

∂θ0 vθ +
∂c(bα,Zi)

∂β0 vβ +
Pm

k=2[
∂ log c(bUi,bθ)

∂uk

R bUki
0 bk(u)du+ bk(bUki)]

i2 ,
where bUi = (Fo1(X1i; bβ), ..., bFnm(Xmi))

0.

Remark 3: Suppose further that the margin Fo1(·) = Fo1(·, βo) is completely known. Let α̂n =
(θ̂n, f̂n2, . . . , f̂nm) be defined as in (10) except that β = βo is treated as known. Then the conclusions
of Proposition 7 still hold after we drop the term “∂c(αo,Z)

∂β0 vβ” from the definition of the Fisher norm

and from the calculation of asymptotic variances. Moreover, the asymptotic variance of
√
n(bθn−θo)

can be consistently estimated by {bσ2θ}−1, with
bσ2θ = min

gj∈An,
j=2,...,m

1

n

nX
i=1


³
∂ log c(bUi,bθn)

∂θ0 −Pm
j=2[

∂ log c(bUi,bθn)
∂uj

R bUji
0 gj(v)dv + gj(bUji)]

´0
×³

∂ log c(bUi,bθn)
∂θ0 −Pm

j=2[
∂ log c(bUi,bθn)

∂uj

R bUji
0 gj(v)dv + gj(bUji)]

´
 ,
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and the asymptotic variance of
√
n( bFnj(x)−Foj(x)) can be consistently estimated by {bσ2Fj (xj)}−1,

with

bσ2Fj (xj) = max
vθ 6=0,bk∈Bn,
k=2,...,m

¯̄̄
1
n

Pn
i=1 1{bUji ≤ bFnj(xj)}bj(bUji)

¯̄̄2
1
n

Pn
i=1

h
∂ log c(bUi,bθ)

∂θ0 vθ +
Pm

k=2[
∂ log c(bUi,bθ)

∂uk

R bUki
0 bk(u)du+ bk(bUki)]

i2 ,
where bUi = (Fo1(X1i), bFn2(X2i), ..., bFnm(Xmi))

0, An is the sieve space (18), and Bn is the sieve
space (19).

5 A Simulation Study

This section presents results from a small Monte Carlo study to assess the finite sample performance
of the sieve ML estimates. We first introduce the simulation design and the estimators studied in
this section and then present the Monte Carlo results.

5.1 Simulation Design and the Methods of Estimation

The data {(X1i,X2i)}ni=1 are generated from a semiparametric bivariate copula-based model with
the Clayton copula: C(Fo1(x1), Fo2(x2); θo), where the Clayton copula density c(u1, u2; θ) is given
by

c(u1, u2; θ) = (1 + θ)u
−(θ+1)
1 u

−(θ+1)
2 [u−θ1 + u−θ2 − 1]−(θ

−1+2), where θ > 0.

We have used the algorithm of Genest and MacKay (1986) to simulate data from the Clayton
copula and then transformed them to have marginals Fo1 and Fo2 respectively. Two classes of
DGPs denoted by (θo, Fo1, Fo2) are considered:

DGP I. The two marginals are different: (θo, Fo1, Fo2) = (θo, t[5], t[25]) with θo = 5, 10, 15.

DGP II. The two marginals are the same: (θo, Fo1, Fo2) = (θo, t[5], t[5]) with θo = 5, 10, 15.

In terms of estimation, we considered estimators that take into account prior information in the
following cases:

Case I. the two marginals are different and are completely unknown;

Case II. the two marginals are the same, but otherwise completely unknown;

Case III. the first marginal is of a parametric form and the second one is completely unknown;

Case IV. the first marginal is completely known and the second one is completely unknown.

For each case, we consider the methods of sieve ML estimation, two-step estimation, and an
infeasible ML estimation where both margins are assumed to be known. From Case I to Case
IV, there is more and more information about the marginal distributions, our theoretical results
suggest that the sieve MLE by taking into account the prior information should become more
efficient. They also suggest that for a given case, the sieve MLE should be more efficient than the
two-step estimator.

14



The sieve MLE of θo for each of the four cases was presented in Section 2. For clarity, we denote
the sieve MLE in the four cases as θ̂I , θ̂II , θ̂III , θ̂IV respectively. The infeasible MLE θ̄n is the same
for all four cases and is defined as

θ̄n = argmax
θ

nX
i=1

log{c(Fo1(X1i), Fo2(X2i); θ)}. (22)

The two-step estimator for Case I was defined in (2), We denote it as θ̃I . For Case II, the
two-step estimator under prior restrictions on marginal distributions θ̃II is defined as

eθII = argmax
θ

nX
i=1

log{c( eF (X1i), eF (X2i), θ)},
with eF (x) =

1

2

2X
j=1

eFnj(x), eFnj(x) = 1

n+ 1

nX
i=1

1{Xji ≤ x}.

For Case III, the two-step estimator of θo under a parametric marginal Fo1(x) = Fo1(x, βo) is
defined as

eθIII = argmax
θ

nX
i=1

log{c(Fo1(X1i, eβ), eFn2(X2i), θ)}, (23)

with eβ = argmax
β

nX
i=1

log fo1(X1i, β),

and for Case IV, the two-step estimator θ̃IV is obtained from (23) by using Fo1(X1i, βo) instead of
Fo1(X1i, β̃).

For marginal distributions, we used the plug-in sieve MLE bFnj obtained in each case and the
(rescaled) empirical distribution function eFnj and the modified estimator F̃ (x) for DGP II in Case
II.

The sieve MLEs were implemented by using the B-spline basis as follows. Let {Bγ(x−j)}Kj=1 be
the γ−th order B-spline basis. Then the marginal density functions fo1 and fo2 can be approximated
by

fk(x; ak) =

³PK
j=1 ajkBγ(x− j)

´2
R ³PK

j=1 ajkBγ(x− j)
´2

dx
,

where k = 1, 2. In the Monte Carlo experiment, we used the 3rd order B-splines, i.e., γ = 3. We
approximated the density foj on the support [min(Xji) − sXj ,max(Xji) + sXj ], where sXj is the
sample standard deviation of {Xji}ni=1. The number of sieve coefficients is dictated by the support
of the density. Let b1 = max(z ≤min(Xji)−sXj : z is integer), and b2 = min(z ≥ max(Xji)+sXj : z

is integer). Then for B-splines of order γ, we need Kn = b2 − b1 +1− γ sieve coefficients to ‘cover’
the interval [b1, b2]. To evaluate the integral that appears in the denominator we used a grid of
equidistant points on [b1, b2]. The results reported in this paper correspond to grid size 0.005, but
we also tried value 0.01, which gives very similar results. In each case, the sieve MLE is computed
via penalization. We tried penalization factors of values 0.01, 0.001, and 0.0001 and found that the
results are similar. The results reported use 0.001 as the penalization factor.
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5.2 Monte Carlo Results

Results reported in this section are based on 100 simulations. For each estimator of θo, we computed
its sample mean and sample mean squared error (MSE), as well as the sample mean of a consis-
tent estimator of its asymptotic variance (Est.avar). The consistent estimators of the asymptotic
variances for the sieve MLE are computed according to those described in Sections 3 and 4, with 8
number of cosine series terms. The consistent estimator of the asymptotic variance for the two-step
estimator when all margins are unknown can be found in Genest, et al. (1995). In Appendix B, we
provide some consistent estimators of the asymptotic variances of the modified two-step estimators
under prior restrictions on marginal distributions; we also present a simple consistent estimator of
the asymptotic variance of the infeasible MLE.

For each estimator of the marginal distributions, we computed its sample mean and sample
mean squared error (MSE), as well as the sample mean of a consistent estimator of its asymptotic
variance (Est.avar) at the 33th percentile and 66th percentile of the true distribution. In addition,
we also computed the sample mean of the integrated MSE (IMSE) of each estimator of the marginal
distributions.

Throughout the experiment, we considered two sample sizes n = 400 and n = 800. To save
space, we will not report results for all cases corresponding to both sample sizes. Table 1 reports
results for the estimation of the copula parameter θo for DGP I.

Table 1. Estimation of θo for DGP I (Case I)
θo = 5, n = 400 θo = 10, n = 400

Estimator θ̂I θ̄n θ̃I θ̂I θ̄n θ̃I
Mean 4.949 5.013 4.855 9.960 10.006 9.622
MSE 0.158 0.063 0.162 0.579 0.230 0.620
Est.avar 0.139 0.069 0.169 0.487 0.223 0.661
θo = 15 n = 400 n = 800

Mean 14.637 15.034 14.187 14.909 14.963 14.57
MSE 1.584 0.469 1.893 0.536 0.206 0.630
Est.avar 0.967 0.463 1.618 0.505 0.232 0.811

Results in Table 1 confirm the better performance of the sieve MLE over the two-step approach,
although the MSE and the estimated asymptotic variance of the sieve MLE are closer to those of
the two-step than the infeasible MLE, consistent with the theoretical finding that the sieve MLE
is asymptotically efficient but not adaptive. As expected, both estimators perform better as the
sample size n increases.

Table 2 reports results for the estimation of the marginal distributions for θo = 15 and n =

400, 800. The sieve ML estimator of Fo1 = t[5] at the 33th percentile of t[5] is 44% more efficient
than the rescaled empirical cdf counterpart, and the sieve ML estimator of Fo2 = t[25] is 38%
more efficient; corresponding to 66th percentile efficiency gains are 65% and 86% for Fo1 and Fo2
respectively. In terms of the IMSE, the relative efficiency gain (computed as the ratio of the IMSE
of the two-step estimator to that of the sieve MLE less 1) is 9 percent for Fo2 = t[25] and 17 percent
for Fo1 = t[5].
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Table 2. Point Estimates of Marginal Distributions for DGP I (Case I, θo = 15)
x t[5],.33 t[25],.33 t[5],.66 t[25],.66

n = 400

Empirical Distribution (F̃n1, F̃n2)
Mean 0.3274 0.3347 0.6653 0.6573
MSE×103 0.6874 0.6499 0.7345 0.8055
Est. avar×103 0.5838 0.5798 0.6894 0.6750

Sieve ML estimates (F̂n1, F̂n2)
Mean 0.3292 0.3286 0.6608 0.6618
MSE×103 0.4773 0.4705 0.4440 0.4337
Est. avar×103 0.4064 0.4063 0.3974 0.3805

n = 800

Empirical distribution (F̃n1, F̃n2)
Mean 0.3333 0.3406 0.6676 0.6606
MSE×103 0.2874 0.3489 0.2195 0.2726
Est. avar×103 0.2778 0.2807 0.2775 0.2803

Sieve ML estimates (F̂n1, F̂n2)
Mean 0.3361 0.3350 0.6656 0.6671
MSE×103 0.2287 0.2247 0.1766 0.1772
Est. avar×103 0.2057 0.2059 0.1875 0.1860

IMSE×103
n = 400 n = 800

Fo1 Fo2 Fo1 Fo2
Empirical distribution 1.9375 1.6424 0.7784 0.6695
Sieve ML distribution 1.7734 1.4078 0.6368 0.5481

To examine the further efficiency gain of sieve MLE from using prior information on the marginal
distributions, we report in Tables 3 and 4 results for DGP II with θo = 15, Fo1 = Fo2 = t[5], and
n = 400, 800. For comparison purposes, we estimated (θo, Fo1, Fo2) with and without using the prior
information.

Table 3. Estimation of θo = 15 for DGP II (Case I, Case II)
n = 400 n = 800

Estimator θ̂I θ̄n θ̃I θ̂I θ̄n θ̃I
Mean 15.271 15.058 14.391 15.189 15.018 14.575
MSE 1.087 0.392 1.300 0.570 0.147 0.707
Est.avar 1.116 0.475 1.637 0.532 0.232 0.776
Estimator θ̂II θ̄n θ̃II θ̂II θ̄n θ̃II
Mean 14.964 15.058 13.605 14.976 15.018 14.139
MSE 0.926 0.392 2.628 0.538 0.147 1.183
Est.avar 1.068 0.475 1.520 0.518 0.232 0.746

Comparing the results for θ̂I and θ̂II , Table 3 reveals better performance of θ̂II than θ̂I in
terms of all three measures. Surprisingly, the performance of the modified two-step θ̃II is worse
than that of the unmodified two-step θ̃I . The improved performance of sieve MLE of the marginal
distribution over the empirical distribution is also evident from Table 4 below.

17



Table 4. Pointwise Estimates of the Marginal Distribution for DGP II
(Case II, θo = 15, n = 400)

Estimator Empirical distribution (F̃ ) Sieve ML estimates (F̂ )
x t[5],.33 t[5],.67 t[5],.33 t[5],.67
Mean 0.3295 0.6648 0.3320 0.6646
MSE×103 0.6323 0.5950 0.4371 0.3166
Est. avar×103 0.5526 0.5566 0.3901 0.3589
IMSE×103 1.4830 1.1605

The last two tables report estimation results for DGP II, but under Case III and Case IV
respectively.

Table 5. Estimation of θo for DGP II (Case III, Case IV)
Estimator θ̂III θ̄n θ̃III θ̃I θ̂IV θ̃IV

θo = 5, n = 400

Mean 5.019 4.999 4.665 4.917 5.046 4.630
MSE 0.088 0.065 0.232 0.175 0.071 0.248
Est.avar 0.074 0.070 0.106 0.173 0.074 0.105

θo = 10, n = 400

Mean 9.956 9.989 8.481 9.689 10.058 8.373
MSE 0.310 0.206 2.982 0.626 0.238 3.418
Est.avar 0.232 0.224 0.402 0.672 0.235 0.396

θo = 15, n = 400

Mean 14.986 15.034 11.237 14.315 15.121 11.139
MSE 0.675 0.469 16.938 1.683 0.496 18.131
Est.avar 0.477 0.464 0.905 1.611 0.481 1.034

θo = 15, n = 800

Mean 14.961 15.017 12.536 14.672 15.073 12.297
MSE 0.275 0.234 7.280 0.709 0.239 9.037
Est.avar 0.239 0.235 0.551 0.780 0.242 0.465

Several interesting observations emerge from Table 5: i) the sieve MLE θ̂III under the parametric
assumption on Fo1 performs very similarly to the sieve MLE θ̂IV under the assumption that Fo1
is completely known; ii) the performance of the sieve MLE θ̂IV (θ̂III) is very close to that of
the infeasible MLE θ̄n; iii) both modified two-step estimators θ̃III and θ̃IV are much worse than
the unmodified two-step estimator θ̃I which we found puzzling. We also computed the values
of the semiparametric efficiency bound for θo derived in Bickel, et al. (1993) for the case with
one completely known marginal (Case IV). They are 0.069, 0.222, 0.463, 0.231 corresponding to
(θo, n) =(5, 400), (10, 400), (15, 400), (15, 800) respectively. They are clearly very close to the
estimated asymptotic variances of θ̂IV and θ̂III , reconfirming the efficiency of the proposed sieve
MLE procedure and its relevance in finite samples.

Table 6 below reveals a similar performance of the sieve MLE of the unknown marginal distri-
bution Fo2 to that of θo.
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Table 6. IMSE (×103) of Estimators of Fo2 for DGP II (Case III, Case IV)
n = 400

Case III Case IV
θo 5 10 15 5 10 15

Empirical distribution 1.7673 1.7512 1.8490 1.7673 1.7512 1.8490
Sieve ML distribution 0.6469 0.5076 0.3983 0.6176 0.4701 0.3441

To summarize, we find: i) regardless of the prior information on marginal cdfs, the sieve MLE
of θo has very small bias in finite samples; ii) when all the marginal cdfs are different and unknown,
the relative improvement of sieve MLE bθI over that of the two-step estimator θ̃I is not very big;
iii) incorporating prior information on the marginal distributions improves the performance of
sieve MLE bθj (j=II, III, IV) in terms of both finite sample MSE and the asymptotic variance
estimate. Moreover, when one marginal cdf is known or of a parametric form, the sieve MLE bθIII
or θ̂IV performs very well, almost as well as the infeasible MLE θ̄n and is much better than the
corresponding two-step estimators; iv) incorporating prior information on marginal distributions
seems to worsen the finite sample performance of the corresponding two-step estimator; v) as the
amount of dependence increases, all three estimators of θo get slightly worse in terms of the finite
sample MSEs and asymptotic variance estimates.

For the estimation of the marginal distributions, we find: i) incorporating prior information
improves the finite sample performance of the sieve MLE; ii) as the amount of dependence increases,
the efficiency gain of the sieve MLE over the rescaled empirical cdf estimate increases.

Appendix A. Mathematical Proofs

Assumption 5. there exist constants �1 > 0, �2 > 0 with 2�1 + �2 < 1 such that (δn)3−(2�1+�2) =
o(n−1), and the followings (1)-(4) hold for all eα ∈ An with ||eα−αo|| ≤ δn and all v = (vθ, v1, ..., vm)0 ∈
V with ||v|| ≤ δn:

(1)
¯̄̄
Eo

³
∂2 log c(eα)
∂θ∂θ0 − ∂2 log c(αo)

∂θ∂θ0

´¯̄̄
≤ c||eα− αo||1−�2 ;

(2)
¯̄̄
Eo

³n
∂2 log c(eα)
∂θ∂uj

− ∂2 log c(αo)
∂θ∂uj

oR Xj vj(x)dx
´¯̄̄
≤ c||v||1−�1 ||eα− αo||1−�2 for all j = 1, ...,m;

(3)
¯̄̄
Eo

³n
∂2 log c(eα)
∂ui∂uj

− ∂2 log c(αo)
∂ui∂uj

oRXj vj(x)dx
RXi vi(x)dx

´¯̄̄
≤ c||v||2(1−�1)||eα−αo||1−�2 for all j, i =

1, ...,m;

(4)
¯̄̄̄
Eo

µh
vj(Xj)efj(Xj)

i2 − h vj(Xj)
foj(Xj)

i2¶¯̄̄̄ ≤ c||v||2(1−�1)||eα− αo||1−�2 for all j = 1, ...,m.
In the following we denote µn(g) =

1
n

Pn
i=1[g(Zi)−Eo(g(Zi))] as the empirical process indexed

by g.
Assumption 6. (1)

sup
α∈An:||α−αo||=O(δn)

µn

µ
∂ log c(α)

∂θ0
− ∂ log c(αo)

∂θ0

¶
= oP (n

−1/2);

(2) for all j = 1, ...,m,

sup
α∈An:||α−αo||=O(δn)

µn

µ½
∂ log c(α)

∂uj
− ∂ log c(αo)

∂uj

¾Z
1(x ≤ Xj)Πnυ

∗
j (x)dx

¶
= oP (n

−1/2);

and (3)

sup
α∈An:||α−αo||=O(δn)

µn

µ½
1

fj(Xj)
− 1

foj(Xj)

¾
Πnυ

∗
j (Xj)

¶
= oP (n

−1/2).
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Proof. (Theorem 1): Let εn be any positive sequence satisfying εn = o( 1√
n
) and (δn)3−� =

εn × o(n−1/2), [for instance we can take εn = 1√
n logn

]. Also define

r[α, αo, Zi] ≡ c(α,Zi)− c(αo, Zi)− ∂c(αo, Zi)

∂α0
[α− αo].

Then by definition of bα, we have
0 ≤ 1

n

nX
i=1

[c(bα,Zi)− c(bα± εnΠnυ
∗, Zi)]

= µn (c(bα,Zi)− c(bα± εnΠnυ
∗, Zi)) +Eo (c(bα,Zi)− c(bα± εnΠnυ

∗, Zi))

= ∓εn × 1

n

nX
i=1

∂c(αo, Zi)

∂α0
[Πnυ

∗] + µn (r[bα, αo, Zi]− r[bα± εnΠnυ
∗, αo, Zi]) +

+Eo (r[bα, αo, Zi]− r[bα± εnΠnυ
∗, αo, Zi]) .

In the following we will show that:

(A1.1)
1

n

nX
i=1

∂c(αo, Zi)

∂α0
[Πnυ

∗ − υ∗] = oP (n
−1/2);

(A1.2) Eo (r[bα, αo, Zi]− r[bα± εnΠnυ
∗, αo, Zi]) = ±εn × hbα− αo, υ

∗i+ εn × oP (n
−1/2);

(A1.3) µn (r[bα, αo, Zi]− r[bα± εnΠnυ
∗, αo, Zi]) = εn × oP (n

−1/2).

Under (A1.1) - (A1.3), together with Eo

³
∂c(αo,Zi)

∂α0 [υ∗]
´
= 0, we have:

0 ≤ 1

n

nX
i=1

[c(bα,Zi)− c(bα± εnΠnυ
∗, Zi)]

= ∓εn × µn

µ
∂c(αo, Zi)

∂α0
[υ∗]

¶
± εn × hbα− αo, υ

∗i+ εn × oP (n
−1/2).

Hence √
n hbα− αo, υ

∗i = √nµn
µ
∂c(αo, Zi)

∂α0
[υ∗]

¶
+ oP (1)⇒ N ¡

0, ||υ∗||2¢ .
This, Assumption 3 and Assumption 4(1) together imply

√
n(ρ(bα)− ρ(αo)) =

√
n hbα− αo, υ

∗i+ oP (1)⇒ N ¡
0, ||υ∗||2¢ .

To complete the proof, it remains to establish (A1.1) - (A1.3). Notice that (A1.1) is implied
by Chebychev inequality, i.i.d. data, and ||Πnυ∗ − υ∗|| = o(1) which is satisfied given Assumption
4(2). For (A1.2) we notice

Eo (r[α, αo, Zi]) = Eo

µ
c(α,Zi)− c(αo, Zi)− ∂c(αo, Zi)

∂α0
[α− αo]

¶
= Eo

µ
1

2

∂2c(αo, Zi)

∂α∂α0
[α− αo, α− αo]

¶
+
1

2
Eo

µ
∂2c(eα,Zi)

∂α∂α0
[α− αo, α− αo]− ∂2c(αo, Zi)

∂α∂α0
[α− αo, α− αo]

¶
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for some eα ∈ An in between α, αo. It is easy to check that for any v = (vθ, v1, ..., vm)
0 ∈ V, andeα ∈ An with ||eα− αo|| = O(δn) we have

Eo

µ
∂2c(eα,Z)
∂α∂α0

[v, v]− ∂2c(αo, Z)

∂α∂α0
[v, v]

¶
= v0θEo

µ
∂2 log c(eα)
∂θ∂θ0

− ∂2 log c(αo)

∂θ∂θ0

¶
vθ

+2v0θ
mX
j=1

Eo

µ½
∂2 log c(eα)
∂θ∂uj

− ∂2 log c(αo)

∂θ∂uj

¾Z Xj

vj(x)dx

¶

+
mX
i=1

mX
j=1

Eo

µ½
∂2 log c(eα)
∂ui∂uj

− ∂2 log c(αo)

∂ui∂uj

¾Z Xj

vj(x)dx

Z Xi

vi(x)dx

¶

−
mX
j=1

Eo

"vj(Xj)efj(Xj)

#2
−
·
vj(Xj)

foj(Xj)

¸2 .

Under Assumption 5, we have

Eo (r[bα, αo, Zi]− r[bα± εnΠnυ
∗, αo, Zi])

= − ||bα− αo||2 − ||bα± εnΠnυ
∗ − αo||2

2
+ oP (εnn

−1/2)

= ±εn × hbα− αo,Πnυ
∗i+ ||εnΠnυ

∗||2
2

+ oP (εnn
−1/2)

= ±εn × hbα− αo, υ
∗i+ oP (εnn

−1/2)

where the last equality holds since Assumption 4(1)(2) implies

hbα− αo,Πnυ
∗ − υ∗i = oP (n

−1/2) and ||Πnυ∗||2 → ||υ∗||2 <∞.

Hence (A1.2) is satisfied. For (A1.3), we notice

µn (r[bα, αo, Zi]− r[bα± εnΠnυ
∗, αo, Zi])

= µn

µ
c(bα,Zi)− c(bα± εnΠnυ

∗, Zi)− ∂c(αo, Zi)

∂α0
[∓εnΠnυ∗]

¶
= ∓εn × µn

µ
∂c(eα,Zi)

∂α0
[Πnυ

∗]− ∂c(αo, Zi)

∂α0
[Πnυ

∗]
¶

where eα ∈ An is in between bα, bα± εnΠnυ
∗. Since

∂c(eα,Z)
∂α0

[Πnυ
∗] =

∂ log c(eα)
∂θ0

υ∗θ +
mX
j=1

(
∂ log c(eα)

∂uj

Z
1(x ≤ Xj)Πnυ

∗
j (x)dx+

Πnυ
∗
j (Xj)efj(Xj)

)
,

(A1.3) is implied by Assumption 6.
The semiparametric efficiency is a direct application of Theorem 4 in Shen (1997).

Proof. (Proposition 1): Recall that the semiparametric efficiency bound for θo is I∗(θo) =
Eo

©SθoS 0θoª, where Sθo is the efficient score function for θo, which is defined as the ordinary score
function for θo minus its population least squares orthogonal projection onto the closed linear span
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(clsp) of the score functions for the nuisance parameters foj , j = 1, ...,m. And θo is
√
n-efficiently

estimable if and only if Eo

©SθoS 0θoª is non-singular ; see e.g. Bickel, et al. (1993). Hence (16) is
clearly a necessary condition for

√
n-normality and efficiency of bθ for θo.

Under Assumptions 2 and 3’, Propositions 4.7.4 and 4.7.6 of Bickel, et al. (1993, pages 165 - 168)
for bivariate copula models can be directly extended to the multivariate case; see also Klaassen and
Wellner (1997, Section 4). Therefore with Sθo defined in (17), we have that I∗(θo) = Eo

©SθoS 0θoª
is finite, positive-definite. This implies that Assumption 3 is satisfied with ρ(α) = λ0θ and ω =∞
and ||υ∗||2 = kρ0αok2 = λ0I∗(θo)−1λ < ∞. Hence Theorem 1 implies, for any λ ∈ Rdθ , λ 6= 0, we
have

√
n(λ0bθ − λ0θo)⇒ N ¡

0, λ0I∗(θo)−1λ
¢
. This implies Proposition 1.

Proof. (Propositions 2, 4, 6, 8): The consistency of these asymptotic variances can be estab-
lished by applying Ai and Chen (2003).

Appendix B. Asymptotic Variances for the Infeasible MLE and the Restricted
two-step Estimators

The infeasible MLE θ̄n given in (22) satisfies
√
n(θ̄n − θo)→ N ¡

0, [I(θo)]−1
¢
where I(θo) =

E[− ∂2

∂θ2
log{c(Fo1(X1i), ..., Fom(Xmi), θo)}]. Hence the asymptotic variance of θ̄n can be consistently

estimated by

\avar(θ̄n) =
1

nbI(θ̄n) =
"
−

nX
i=1

∂2

∂θ2
log{c(Fo1(X1i), ..., Fom(Xmi), θ̄n)}

#−1
.

Two-step estimator with equal but unknown margins: Whenm = 2 and Fo1 = Fo2 = Fo,
the modified two-step estimator eθII of θo satisfies

√
n(eθII − θo)→d N

µ
0,

1

I(θo) +
var{W1(X1) +W2(X2)}

[I(θo)]2
¶

where

I(θo) = E

µ
− ∂2

∂θ2
log(c(Fo(X1i), Fo(X2i), θo))

¶
,

and for k = 1, 2,

Wk(Xk) = −
Z

I(Fo(Xk) 6 uk)
d log(c(u1, u2, θo))

dθ

d log(c(u1, u2, θo))

duk
c(u1, u2, θo)du1du2.

Using sample data we can estimate I(θo) by

eσ2 = − 1
n

nX
i=1

∂2

∂θ2
log(c( eF (X1i), eF (X2i),eθII)),

and Wk(Xki) by

fWk(Xki) =
−1
n

X
j: eF (Xkj)> eF (Xki)

d log(c( eF (X1j), eF (X2j),eθII))
dθ

d log(c( eF (X1j), eF (X2j),eθII))
duk

.

Hence a consistent estimator of the asymptotic variance of eθII is given by
\

avar(eθII) = 1

neσ2
"
1 + eσ−2 1

n

nX
i=1

³fW1(X1i) +fW2(X2i)
´2#

.
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Two-step estimator with a parametric margin: When m = 2 and Fo1(·) = Fo1(·, βo) is
known up to unknown parameter βo ∈ int(), the modified two-step estimator eθIII of θo satisfies

√
n(eθIII − θo)→d N

µ
0,

1

I(θo) +
var(W1(X1i, βo) +W2(X2i))

[I(θo)]2
¶

where

I(θo) = E

µ
− ∂2

∂θ2
log(c(Fo1(X1i, βo), Fo2(X2i), θo))

¶
,

W2(X2i) = −
Z

I(Fo2(X2i) 6 u2)
d log(c(u1, u2, θo))

dθ

d log(c(u1, u2, θo))

du2
c(u1, u2, θo)du1du2,

W1(X1i, βo) = −E
·
d log(c(Uo1, Uo2, θo))

dθ

d log(c(Uo1, Uo2, θo))

du1

dFo1(X1, βo)

dβ

¸
×
µ
E{−∂

2 log fo1(X1, βo)

∂β2
}
¶−1

d log fo1(X1i, βo)

dβ
.

Using sample data and let eFo1(·) = Fo1(·, eβ), we can estimate I(θo), W2(X2i) and W1(X1i, βo)

respectively by

eσ2 = − 1
n

nX
i=1

∂2

∂θ2
log(c( eFo1(X1i), eFn2(X2i),eθIII)), (24)

and fW2(X2i) =

−1
n

X
j: eFn2(X2j)> eFn2(X2i)

d log c( eFo1(X1j), eFn2(X2j),eθIII)
dθ

d log c( eFo1(X1j), eFn2(X2j),eθIII)
du2

, (25)

and fWo1(X1i) =−1
n

nX
j=1

d log c( eFo1(X1j), eFn2(X2j),eθIII)
dθ

d log c( eFo1(X1j), eFn2(X2j),eθIII)
du1

dFo1(X1j , eβ)
dβ


×
−1

n

nX
j=1

∂2 log fo1(X1j , eβ)
∂β2

−1 d log fo1(X1i, eβ)
dβ

.

Hence a consistent estimator of the asymptotic variance of eθIII is given by
\

avar(eθIII) = 1

neσ2
"
1 + eσ−2 1

n

nX
i=1

³fWo1(X1i) +fW2(X2i)
´2#

.

Two-step estimator with a known margin: When m = 2 and Fo1(·) = Fo1(·, βo) is known
with known βo, the modified two-step estimator eθIV of θo satisfies

√
n(eθIV − θo)→d N

µ
0,

1

I(θo) +
var(W2(X2))

[I(θo)]2
¶
,

and a consistent estimator of the asymptotic variance of eθIV is given by
\

avar(eθIV ) = 1

neσ2
"
1 + eσ−2 1

n

nX
i=1

³fW2(X2i)
´2#

,

where eσ2 and fW2(X2i) are given in (24) and (25) except we replace Fo1(·, eβ) by Fo1(·, βo).
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