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Abstract

We propose a sieve maximum likelihood (ML) estimation procedure for a broad class of semi-
parametric multivariate distribution models. A joint distribution in this class is characterized
by a parametric copula function evaluated at nonparametric marginal distributions. This class
of models has gained popularity in diverse fields due to a) its flexibility in separately modeling
the dependence structure and the marginal behaviors of a multivariate random variable, and b)
its circumvention of the “curse of dimensionality” associated with purely nonparametric multi-
variate distributions. We show that the plug-in sieve ML estimates of all smooth functionals,
including the finite dimensional copula parameters and the unknown marginal distributions,
are semiparametrically efficient; and that their asymptotic variances can be estimated consis-
tently. Moreover, prior restrictions on the marginal distributions can be easily incorporated
into the sieve ML procedure to achieve further efficiency gains. Two such cases are studied in
the paper: (i) the marginal distributions are equal but otherwise unspecified, and (ii) some but
not all marginal distributions are parametric. Monte Carlo studies indicate that the sieve ML
estimates perform well in finite samples, especially so when prior information on the marginal
distributions is incorporated.
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1 Introduction

Suppose we observe an i.i.d. sample {Z; = (X1;, ..., X;ni)'} from the distribution Hy(z1,...,Zm,)
of Z=(X1,...., Xpm) in Xy X ... x Xy ©R™, m > 2. Assume that H, is absolutely continuous with
respect to the Lebesgue measure on R™ and let hy(z1, ..., 2y, ) be the probability density function
of Z. Clearly estimation of H, or h, is one of the most important statistical problems. Due to the
well-known “curse of dimensionality,” it is undesirable to estimate H, or h, fully nonparametrically
in high dimensions.

A class of semiparametric multivariate distribution models has gained popularity in diverse
fields in recent years due to: a) its flexibility in separately modeling the dependence structure and
the marginal behaviors of a multivariate random variable, and b) its circumvention of the “curse
of dimensionality” associated with purely nonparametric multivariate distributions. To introduce
this class, let F,,; denote the true unknown marginal cdf of X;, 7 = 1,...,m. Assume that F;,
j =1,...,m, are continuous. By the Sklar’s (1959) theorem, there exists a unique copula function
C, such that Hy(X1, ..., X)) = Co(Fo1(X1), .o, Fom(Xm)). Let fo5, 5 =1,...;m, and co(u1, ..., Um)
denote the probability densities associated with F,;, 7 = 1,...,m, and C, respectively. Suppose
that the functional form of the copula C,(uq,...,uy) is known apart from a finite dimensional
parameter 6,, i.e., for any (uq,...,uy) € [0,1]™, we have Cy(u1, ..., up) = C(uq, ..., um; 0,), where
C(u1, ..., um; 0) is a class of parametric copula functions. Then for any (x1, ..., m) € X1 X ... X X,
the pdf h, has the following representation:

m
ho(21, s ) = c(For (1), ooy Fom(@m); 00) [ | fos (), (1)
j=1
where c(ug, ..., um;0,) is the density of the copula C(ui,...,un;0,) and the functional forms of

foj» 7 = 1,...,m, are unknown. We refer to the class of multivariate distributions with density
functions of the form (1) as the class of copula-based semiparametric multivariate distributions. It
achieves the aim of dimension reduction, as for any m, the joint density h,(z1,...,2) depends
on nonparametric functions of only one dimension. In addition, the parameters in models of this
class are easy to interpret: the marginal distributions Fy;, j = 1,...,m, capture the marginal
behavior of the univariate random variables X;, j = 1,...,m; and the finite dimensional parameter
0,, or equivalently the parametric copula C(uq, ..., un, 8,), characterizes the dependence structure
between Xi,...,X,,. It is obvious that the copula measure of dependence is invariant to any
increasing transformation of the univariate random variables X;, j =1,...,m.

The class of semiparametric multivariate copula models has been used extensively in applied
work, where modeling and estimating the dependence structure between several random variables
are of interest. Specific applications include those in finance and insurance (e.g., Frees and Valdez
(1998) and Embrechts, et al. (2002)), in survival analysis (e.g. Joe (1997), Nelsen (1999), and
Oakes (1989)), in econometrics (e.g. Lee (1982, 1983), Heckman and Honore (1989), Granger, et
al. (2003) and Patton (2004)), to name only a few.

Because of its special role in a semiparametric multivariate copula model, estimation of the cop-
ula parameter 6, has attracted much attention from researchers including Clayton (1978), Clayton
and Cuzick (1985), Oakes (1982, 1986, 1994), Genest (1987) and Genest, et al. (1995). One of the
most commonly used estimators of 8, in recent applied work is the two-step estimator proposed by
Oakes (1994) and Genest, et al. (1995):

On = arg max > log e(Fpa(X1), - Frm (Xoma); 0) | (2)
=1



where ﬁnj (xj) = %H o 1{Xj; <z} is the rescaled empirical cdf estimator of Fyj, j = 1,...,m.
Genest, et al. (1995) establish the root-n consistency and asymptotic normality of the two-step
estimator 571 Shih and Louis (1995) independently propose the two-step estimator and establish
its asymptotic properties for i.i.d. data with random censoring. The large sample results of Genest,
et al. (1995) have also been extended to time series setting in Chen and Fan (2002, 2003).

Despite its popularity, the two-step estimator of the copula dependence parameter 0, is generally
asymptotically inefficient except for a few special cases; see Genest and Werker (2002). Klaassen
and Wellner (1997) show that it is efficient for the Gaussian copula models and Genest, et al. (1995)
show that it is efficient for the independence copula model. Bickel, et al. (1993, chapter 4.7) provide
some efficiency score characterization for 6, in general bivariate semiparametric copula models, but
provide no efficient estimator for it. For semiparametric bivariate survival Clayton copula models,
Maguluri (1993) also provides some efficiency score calculations for , and conjectures that the esti-
mator proposed in his paper might be efficient. To the best of our knowledge (see Genest and Werker
(2002)), there does not exist any published results on efficient estimation procedure of 6, for general
bivariate (multivariate) semiparametric copula models. Moreover, in many applications, efficient
estimation of the entire multivariate distribution H,(z1,...,Zn) = C(Fo1(21),- .., Fom(Tm), 0,) is
desirable, which requires efficient estimation of both the copula parameter 6, and the marginal
distributions Fyj;, j = 1,...,m. Except in models with the independence copula, it is clear that the
univariate (rescaled) empirical distributions are generally inefficient estimates of the marginal dis-
tributions. Intuitively one could obtain more efficient estimates of F,,;, j = 1, ..., m by utilizing the
dependence information contained in the parametric copula. Unfortunately even for semiparamet-
ric models with the Gaussian copula, there is currently no efficient estimates of univariate marginal
distributions, see Klaassen and Wellner (1997). For the special case of a bivariate copula model
with one known marginal distribution and one unknown marginal distribution, Bickel, et al. (1993,
chapter 6.7) provide some efficiency score calculations for the unknown margin, but they again do
not present any efficient estimators.

In this paper, we propose a general sieve maximum likelihood (ML) estimation procedure for
all the unknown parameters in a semiparametric multivariate copula model (1). Intuitively, we
approximate the infinite-dimensional unknown marginal densities f,;, 7 = 1,..., m by combinations
of finite-dimensional known basis functions with increasing complexity (sieves), and then maximize
the joint likelihood with respect to the copula dependence parameter and the sieve parameters of
the approximation of the marginal densities. By applying the general theory of Shen (1997) on
asymptotic efficiency of the sieve ML estimates, we show that our plug-in sieve ML estimates of
all smooth functionals, including the copula parameter and the unknown marginal distributions,
are semiparametrically efficient. Although the asymptotic variances of these smooth functionals
cannot be derived in closed-form, they can be estimated easily and consistently. As our sieve ML
procedure involves approximating and estimating one-dimensional unknown functions (marginal
densities) only, it does not suffer from the “curse of dimensionality” and is simple to compute. In
addition, it can be easily adapted to estimating semiparametric multivariate copula models with
prior restrictions on the marginal distributions to produce more efficient estimates. Examples of
such restrictions include equal but unknown marginal distributions, known parametric forms of
some marginal distributions, to name only a few. Simulation studies show clearly the efficiency
gains of our sieve ML estimates over the two-step estimator of 6, and the empirical distribution
estimates of the marginal distributions, especially so when prior restrictions are incorporated. We
find that the sieve ML estimate of 6, in models with some nonparametric and some parametric
margins perform almost as well as the infeasible ML estimates of 8, obtained as if all the marginal



distributions are known.

The rest of this paper is organized as follows. In Section 2, we introduce our sieve ML estima-
tors of the copula parameter and the unknown marginal distributions in models with or without
restrictions on the marginal distributions. In Section 3, we show that for semiparametric mul-
tivariate copula models with unknown marginal distributions, the plug-in sieve ML estimates of
all smooth functionals are root-n normal and semiparametrically efficient. These results are then
applied to deliver the root-n asymptotic normality and efficiency of the sieve ML estimates of the
copula parameter and the marginal distributions. We also provide simple consistent estimators
of the asymptotic variances of these estimators. In Section 4, we extend the efficiency results in
Section 3 to models with equal but unknown margins and models with some parametric margins.
Section 5 provides results from a simulation study. All the proofs are gathered into Appendix A.

2 The Sieve ML Estimators

In this section, we will introduce sieve ML estimation of parameters in a semiparametric multivariate
copula model in various cases including i) the marginal distributions are completely unspecified;
ii) the marginal distributions are the same, but unspecified otherwise; iii) some of the marginal
distributions are parameterized, but the others are unspecified.

We first introduce suitable sieve spaces for approximating an unknown univariate density func-
tion of certain smoothness, based on which we will then present our sieve MLEs.

2.1 Sieve Spaces for Approximating a Univariate Density

Let the true density function f,; belong to F; for j = 1,...,m. Recall that a space F,; is called a
sieve space for Fj if for any g; € F;, there exists an element II, g; € F,,; such that d(g;,II,g;) — 0
as n — oo where d is a metric on Fj; see e.g. Grenander (1981) and Geman and Hwang (1982).

There exist many sieves for approximating a univariate probability density function. In this
paper, we will focus on using linear sieves to directly approximate a square root density:

2
Kn;
K,
Fnj = [r,; (%) = Z%Ak(ﬂﬁ) ) /fKnj (@)de =15, Kpj — o0, TJ — 0, 3)
k=1

where {Ag(-) : kK > 1} consists of known basis functions, and {a; : k& > 1} is the collection of
unknown sieve coefficients.

Before presenting some concrete examples of known sieve basis functions {Ag(-) : k& > 1}, we
first recall a popular smoothness function class used in the nonparametric estimation literature;
see, e.g. Stone (1982), Robinson (1988), Newey (1997) and Horowitz (1998). Suppose the support
X; (of the true fo;) is either a compact interval (say [0, 1]) or the whole real line R. A real-valued
function h on & is said to be r-smooth if it is J times continuously differentiable on X; and its J-th
derivative satisfies a Holder condition with exponent v = r — J € (0,1] [i.e., if there is a positive
number K such that |D7h(z) — D'h(y)| < K|z — y|" for all z,y € &;j]. We denote A"(X;) as the
class of all real-valued functions on X; which are r-smooth; it is called a Holder space. Define a
Holder ball with smoothness r = J + v as

J ) — J
N (X)) = (he (X)) sup D@ = DA

< K},
z,Y€X; xAY ’.’L‘ - yh



2.1.1 Bounded support

It is known that functions in A"(X;) with r > 1/2 and &; = [0,1] can be well approximated by
many sieve bases such as the polynomial sieve Pol(K,), the trigonometric sieve TriPol(K,,) and the
cosine series CosPol(Kp,):

Pol (K. {Zakw x € [0,1] : akeR};

Kn
TriPol(K,,) = {ao + Z[ak cos(kmz) + b sin(krx)], © € [0,1] : ag, by € R} ;
k=1

Kn
CosPol(K,,) = {ao + Zak cos(kmx), x € [0,1] : a € R} .
k=1

They can also be well approximated by the spline sieve Spl(v, K,), which is a linear space of
dimension (K, + v + 1) consisting of spline functions of degree v with almost equally spaced

knots ¢i,...,tx, on [0,1]. Let tg, t1,...,tk,, tk,+1 be real numbers with 0 = tg < t; < -+ <
tx, < tg,+1 = 1. Partition [0,1] into K,, + 1 subintervals I = [tx,tx+1), K =0,..., K, — 1, and
Ik, = [tk,,tK,+1]. We assume that the knots t¢1,...,¢x, have bounded mesh ratio:

maxo<k<x, (thi1 — tr)

: < const.
ming<k<x, (th+1 — tk)
A function on [0,1] is a spline of degree  with knots t1,...,tx, if it is: (i) a polynomial of degree
v or less on each interval Iy, k = 0,..., K,; and (ii) (7 — 1)-times continuously differentiable on

[0,1]. See Schumaker (1981) for details on univariate splines.
If the true unknown marginal densities are such that \/f,; € A" (&X;), X; bounded interval,
then we can let F,; in (3) be

_ f(x) =lg@): [lg(@)*de =1,
Fuj = { g € Pol(K,) or TrlPol(gKn) or Cos!liol(Kn) or Spl([r;] + 1, Kp) } ’ )
2.1.2 Unbounded support

There are also many sieves that can approximate densities with support X; = R. Here we present
two examples: (i) if density f,; has close to exponential thin tails over X; = R, we can use the
Hermite polynomial sieve to approximate fo;:

o t{X, a P2 o
[, (@) = ion(750) eXP{ lesgl'y (5)
60>00>0ak€R [ fr, ( )d:n—l

nj

where K,; — 00, K,j/n — 0 as in Gallant and Nychka (1987); (ii) if density f,; has polynomial
fat tails over X; = R, we can use the spline wavelet sieve to approximate it:

2
Fnj = [k, (x Z Z ap2"?B, (2% —1)| | /fKnj (z)dr =1 (6)

k=01ek,



where B, (-) denotes the cardinal B-spline of order ~:

B.(y) = ﬁ Z;(_l)i < 7 ) [max (0, — &)L %

See Chui (1992, Chapter 4) for the approximation property of this sieve.

2.2 Sieve MLEs

To avoid introducing too many notations, we use the same notation &, to denote the sieve ML
estimates for all cases considered with or without prior restriction on the marginal distributions.
That is, it changes from case to case.

2.2.1 Unknown margins

First we consider the completely unrestricted case. Let a = (¢, f1,..., fm) and denote o, =
(0, fors ey fom) € © x [[j2, F7; = A as the true but unknown parameter value. Let a, =

~ o~ ~
(0,5 fr1s s fum) € O X H;"Zl Fnj = Ap denote the sieve ML estimator:

m
Qn, = argmaxgycg fjefleog c(Utiy ooy Umi; 0 H (8)
=1 j=1

with Uj; = FJ(X]Z) —/ 1(.’L‘ < in)fj<$)d$, j=1..m

X

where f; € F,; for j =1,...,m, and the sieve space F,; is (4) if &} is a bounded interval, and F,;
could be (5) (6) if X; = R. The plug-in sieve MLE of the marginal distribution Fy;(-) is given
by F, nj x] fl (7S *x])fn]( )dy, J=1..m

Remark 1: We note that the sieve MLE optimization problem can be rewritten as an unconstrained
optimization problem

n

m
max Z{log c(F1(X1i5a1n)s ooy Fon(Xomi; amn); 0)] + Z log f;(Xji; ajn) + AjnPen(a;n)]},

0,a1p,.-amn i1 =
where for j = 1,...,m, fj(Xji;a;n) is a known (up to unknown sieve coefficients a;,) sieve ap-
proximation to the unknown true f,;, and F;(Xji; a;,) is the corresponding sieve approximation to
the unknown true F,;. The smoothness penalization term Pen(aj,) typically corresponds to the
Lo-norm of the second order derivative of f;(-;a;,), and \j,’s are penalization factors.

Noting that once the unknown marginal density functions are approximated by the appropriate
sieves, the sieve MLEs are obtained by maximization over a finite dimensional parameter space.
The properties of the resulting sieve MLEs depend on the approximation properties of the sieves.
Prior restrictions on the marginal distributions can be easily taken into account in the choice of
the sieves, leading to further efficiency gain in the resulting sieve MLEs. We shall illustrate this in
the next two subsections.



2.2.2 Equal but unknown margins
Now suppose the marginal distributions are all equal but unknown, i.e., Fp; = F, (fo; = f,) and
Xj=Xforall j=1,..,m. Let a = (¢, f) and let o, = (0,,, /) € © x F1 = A be the true but

~ o~
unknown parameter value. The sieve MLE a,, = (0,,, fn)' € © x F,1 = A, is now given by:

Qn = argmaXgpece fer,, Zlog c(Utiy s Umi; 0) H f(X54) (9)
i=1 J=1

with Uj; = F(X]z) = /X 1($ < X],)f(x)dx, 7=1...m

This procedure can be easily extended to the case where some but not all marginal distributions
are equal.

2.2.3 Some parametric margins

Bickel, et al. (1993) consider a semiparametric bivariate copula model in which one marginal cdf is
completely known and the other marginal is left unspecified. The sieve ML estimation procedure
can be easily modified to exploit this information. To be more specific, let the marginal distribution
F,1 be of parametric form, i.e., Fy1(z1) = Fp1(z1,3,) for some 3, € B. The marginal distributions
Fyo,..., Fyy are unspecified. Let o = (6,3, fa, ..., fm)" and denote o, = ( fog,. o fom)' €
O x B x H;n:2 F; = A as the true but unknown parameter value. Let o, = ( n,ﬁn, fng, ey ﬁLm)’ €
© x B x H;ZQ Fnj = A, denote the sieve ML estimator:

m

an = argmax 0e®,BeB, Zlog Ulzg--- mis fol Xlza H (10)
fi€Fnjj=2,...,m ;— j=2
with Uy = (X0 ), Uy = Fy(X;0) = / (o < X;0)fj(@)de, j = 2,m

J

When F(-) is completely known, we simply take B = {8,} and 3, = 8 = j, in the above
optimization problem (10).

3 Asymptotic Normality and Efficiency of Smooth Functionals

Let p: A — R be a functional of interest and p(a,,) be the plug-in sieve ML estimate of p(a,),
where &, and «, are defined in Section 2. In this section, we consider models with unrestricted
marginals and apply the general theory of Shen (1997) to establish the asymptotic normality and
semiparametric efficiency of our sieve MLE estimator p(a,) for smooth functionals p of o, =

(9137 fola ceey fom),'

3.1 Asymptotic Normality and Efficiency of p(&,,)
Let (e, Z;) = log{c(F1(X15), -, Fin(Xmi); 0) [ 172, fj(Xji)} and Eo(-) be the expectation under

true parameter «,. Let U, = (Upt, ..., Upm) = (Fol(Xl) o Forn (X)) and u = (uq, ..., um)" be an
arbitrary value in [0, 1]". In addition, let ¢(Fp1(X1), .. Om(Xm); 0,) = c(Us, 0,) = c(ao).



Assumption 1. (1) 6, € int(©), © a compact subset of R%; (2) for j = 1,...,m, \/fo; € A1 (X;),
r; >1/2; (3) ap = (0., fo1, -, fom)' is the unique maximizer of E,[{(a, Z;)] over A = © X |J
with Fj = {fj = ¢* : g € A9 (X)), [[g(x)]*dz = 1}.

Assumption 2. the following second order partial derivatives are all well-defined in the neighbor-

. 0%loge(u,0) 9%loge(u,d) 92 logc(u,f) Lo
hood of «,: 0 00,00 0 Dudu; for j,i =1,...,m.

Denote V as the linear span of A—{a,}. Under Assumption 2, for any v = (vp, v1,...,v,)" €V,
we have that ¢(a, + tv, Z) is continuously differentiable in small ¢ € [0,1]. Define the directional
derivative of ¢(a, Z) at the direction v € V (evaluated at «,) as:

(o, +tv, Z oMoy, Z oMa,, Z "0, Z
_ 0Ologc(ay) " [dlog ca) N v;i(X;)
= Tve—i—Z{a—uj/l(wSXj)vj(w)dx—kfjj()gj)}.

J=1

Define the Fisher inner product on the space V as

.0 = £ | (H55 D) (H52m)| (1)

and the Fisher norm for v € V as ||v||? = (v,v). Let V be the closed linear span of V under the
Fisher norm. Then (V, || -||) is a Hilbert space. It is easy to see that V = {v = (v),v1,...,vm) €
R0 x [T7L, Vi« ||v]| < oo} with

Vo{pnonn (B) o (B) <) w

It is known that the asymptotic properties of p(é&;,) depend on the smoothness of the functional
p and the rate of convergence of &,. For any v € V, we denote

900 )l (p + 14)  ple)A

whenever the right hand-side limit is well defined and assume:

Assumption 3. (1) for any v € V, p(a, +tv) is continuously differentiable in ¢ € [0, 1] near ¢t = 0,
and

Op() = sup Lo < o0;

‘ 9p(co) [v] ’
H o/ || vEV:||v||>0 ||U||

(2) there exist constants ¢ > 0,w > 0, and a small € > 0 such that for any v € V with ||v|| < e, we

have
plaao +v) — pla) — 2302

< ¢|lvf[*.

Under Assumption 3, by the Riesz representation theorem, there exists v* € V such that

(v, v) = 8/)8(30) [v] forallveV (13)




and

o) 1, 1|2
o |25 v
o2 = 1220 ey O T (14)
Ja veV:||v]|>0 ||UH

We make the following assumption on the rate of convergence of &,:
Assumption 4. (1) ||a, —ao|| = Op(8,) for a decreasing sequence 4, satisfying (8,)* = o(n~1/2);
(2) there exists ITL,v* € A, — {a,} such that &, x ||IL,v* —v*|| = o(n~"1/?).

Theorem 1. Suppose that Assumptions 1-4 and 5-6 stated in the Appendix hold. Then /n(p(ay,)—
plag)) = N (0, ||%||2) and p(ay,) is semiparametrically efficient.

Discussion of assumptions. Assumptions 1-2 are standard ones. Assumption 3 is essentially
the definition of a smooth functional. Assumption 4(1) is a requirement on the convergence rate
of the sieve ML estimates of unknown marginal densities ﬁlj, j = 1,...,m. There exist many
results on convergence rates of general sieve estimates of an univariate density; see e.g., Shen and
Wong (1994), Wong and Shen (1995), and Van der Geer (2000). There are also many results on
particular sieve density estimates; see e.g. Stone (1990) for spline sieve, Barron and Sheu (1991)
for polynomial, trigonometric and spline sieves, Chen and White (1999) for neural network sieve,
Coppejans and Gallant (2002) for Hermite polynomial sieve. Assumption 4(2) requires that the
Riesz representer has a little bit of smoothness. Although Assumptions 3 and 4(2) are stated in
terms of data Z; = (Xi;, ..., X;mi)', and the Fisher norm ||v|| on the perturbation space V, it is
often easier to verify these assumptions in terms of transformed variables. Let

£2(0,1]) = {e 0,1] = R : /01 e(v)dv = 0, /Ol[e(v)]%zv < oo} .

By change of variable, for any v; € V; there is a unique function b; € £3([0,1]) with b;(u;) =

v (F 1 (u . 3
3(Fy; (15)) , and vice versa. Therefore we can always rewrite %[v] as follows:

Foi (Fy' (u;))
oMHay, Z o (ay, U,
(80/ _)[U] = %[(Uéablvuwbm),]
~ Ologc(ay) L [ dlog c(aw) /Uoj ' o
= —2 ve+;{ o )y b+ b(U)
and

oo’

r 2

0log c(ay) . (0log () [Yei
= E, —U9+Z{8—uj/o bj(y)dy + b;(Uoy)

j=1

i 2
o> = E, (M[(vg,bl,...,bm)’]>]

m
B = { b= (th,b1, b)) € R x [ £3(00. 1)) : [ ]2 = E,
j=1

(M) <



Then there is an one-to-one onto mapping between the two Hilbert spaces (B, || - ||) and (V,||-|]).
Now it is easy to see that the Riesz representer v* = (vy/,v7,...,v},)" € V is uniquely determined
by b* = (v}, b7, ...,b},)" € B (and vise versa) via the relation:

vi(w)) = 05 (Foj(x)) foj(xj) forall z; € X, forj=1,...,m

Then Assumption 4(2) can be replaced by
Assumption 4’(2): there exists I1,b* = (v}, IL1b%, ..., Hpmbl, )" € R% x [1;2, Bnj such that

2
0log c(ay) 1
IL,b* — b*||* = E, — IL,b% — b3 }H(y)dy + {I1.b5 — b5 H(U, =o|—

b~ | Z{ ool ™ 4ttt5 — 53y + 1005 - 530 | =)
where

Kn] Kn]

B,; = Zak\/_cos kru), u € [0,1],) a? < oo}
k=1 k=1

3.2 /n—Normality and Efficiency of gn

We take p(a) = N for any arbitrarily fixed A € R% with 0 < |A| < oco. It satisfies Assumption
3(2) with % [v] = Nvp and w = oo. Assumption 3(1) is equivalent to finding a Riesz representer
v* € V satisfying (15) and (16):

N —0,) = {a—a,v*) foranya—a, €V (15)
e Ip(ao) |\ vg|2
P O " . % Vo
|| 806/ ||2 = ||U ||2 — <U , U > = Sup_ H’UH2 < 0. (16)
v#£0,0EV

Notice that

[ Nvgl? [ X vg|?
oy WP~ s ?
v#00EY 208 | i, | (Leslesduy 2, {2msend [ )y + 150} )|
= NZ(0,) A= N (Eo[SeoSé,,])*1 A
where .
dlogc(Us,,0,) <=, 0logc(Uy, 0, o .
5, = STl SO To) [T g )+ 450 a7)
00 8'&] 0

j=1
and g7 = (g1, 95q,) € HZ"Zl £9([0,1]),5 = 1,...,m solves the following infinite-dimensional
optimization problems for k =1, ..., dy,

2

m Usj
Olog c(Uo, 0o) Z[W /0 9i0(0)dv + g; 1 (Ua))]
J

inf o
91k €L3([0,1]) 00},

Therefore b* = (vy/, b3, ...,b%,)" with v}, = Z,.(6,) "'\ and b (uj) = —g;(u;j) x vj, and

v* = (Lay, =91 (Fo1(21)) fo1 (1) s =G (Fom (Tm)) fom (Tm)) X I*<90)71)‘-



Hence (16) is satisfied if and only if Z..(0,) = E,[Sp,Sp,] is non-singular, which in turn is satisfied

under the following assumption:

8log(2§9Ua,90)’ 810%55?,0’90), j =1,...,m have finite second moments;
J

Assumption 3’: (1)

(2) Z(6,) = Eo[alogca(g"’oo) mogg(@U“’e")] is finite and positive definite;
3 acue())d _]788 f (u 0 )du_J:Ofor (]7_J) (1 '7m) Wlthji_jv

(3)
9%c(u,0,) . . .
(4) 82%96’ du_; = 8u 89 [ e(u,05)du_; =0 for (j,—j) = (1,...,m) with j # —j;
(5) there exists a constant K such that

‘max sup F

0log c(U,, 8, 2
<uj(1 - ug')%) | Uoj = Uj] < K.
J

We can now apply Theorem 1 to obtain the following result:

Proposition 1. Suppose that Assumptions 1-2, 3", 4- 6 hold. Then /ni(6,—0,) = N (0,Z.(60)71)
and 5n is semiparametrically efficient.

Although the asymptotic variance Z,(6,) " of 6,, has no closed form expression, it can be consis-

tently estimated by the following simple procedure. Let (71 = (ﬁli, ey ﬁmz)' = (ﬁnl(Xh-), e ﬁnm(Xm%))’

fori=1,...,n. Let A,, be some sieve space such as:

A, = {(e1,..,eq,) 1 €;(-) €By, j=1,...,dp}, (18)
Ko Ko

B, = Zak\/_cos (kmu), u € [0,1] Zak<oo} (19)

where K,y — 00, (K,9)% /n — 0. We can now compute

~ PP /
dlog (U0, dlog c(Ui.0,) Uss
F= i 13 (LroseZuted _ 3o (Doel0udud o g (0w + g,( )]
o7 4 n dlog c(Ui,On dlogc(U; 0,) Uji
= <—0gg(e' Ly (gt fo 7 gj(v)dv + 93‘(sz')]>

Proposition 2. Under the assumptions for Proposition 1, we have: 53 = Z,(6,) 4 0p(1).

3.3 Sieve ML Estimates of [,

For j = 1,..,m, we consider the estimation of p(a,) = Fyj(z;) for some fixed z; € A; by the
plug-in sieve ML estimate: p(a) = Fn] z;) = [1(y < mj)fm( )dy, where fnj is the sieve MLE from
(8). Clearly ap(o“’) = [y Wy < zj)v;(y)dy for any v = (vj, v1,...,vp) € V. It is easy to see that
w = 00 in Assumptlons 3 and 4, and

oplay ’fx Ly < xj)v; (y)dy‘
RGO : <.
ojet vEV:||v||>0 ||U||
Hence the representer v* € V should satisfy (20) and (21):
Ip(awo) ( v; (X;) >
v ) = v]=F, | (X, <z, forallv eV 20
w0 = ) = B, (10 < 2) 2L (20)

10



|22y,
oo’

Eo (1(Uo; < Foj(x; \Yoj 2
U*||2:||b*||2: sup | ((UJ— J(iry))bg(Ua))l

(21)
bEB:|[b]|>0 [[][2

Proposition 3. Let v* € V solve (20) and (21) Suppose that Assumptions 1 - 2 and 4 - 6 hold.
Then for any fixed x; € &; and for j = 1,...,m, v/n( m(:z,‘]) F,j(z;)) = N (0,][v*]|?). Moreover,

F\nj is semiparametrically efficient.

For general copulas including the Gaussian copula, there does not seem to be a closed-form so-
lution to (20) and (21) for the representer v* € V and the asymptotic variance |[v*||?. Nevertheless,

the asymptotic variance ||v*||? can again be consistently estimated. Let

N . 2
o 7 iz HUji < Frg() 10 (Uj)
oF, (xj) = max 5

Ob Bn,
UW& ke 1 Zz 1 [—aloggefj“e vy + Z?:l[—mogai,?“e ngkl br(u)du + bk(Ukz)]

where (72 = (ﬁnl(Xli), ...,ﬁnm(Xmi))', and B,, is given in (19).

Proposition 4. Under assumptions for Proposition 3, we have for any fixed z; € X; and j =
1,...,m, G%j(xj) = |[v*]2 + 0p(1).

Remark 2: In the special case of the independence copula (c(ug, ..., um,0) = 1), we could solve
(20) and (21) explicitly. We note that for the independence copula,

"5, (2O 800 g
; (fok (X1) for(Xg) for all v,v € V.

Thus (20) and (21) are satisfied with v7(X;) = {1(X; < z;) — E,[1(X; < )]} fo;(X;) and v} =0
for all k # j. Hence

[0*|1? = B, (1(X; < 25) {1(X; < a)) — Bo[L(X; < a))]}) = Foj(x){1 — Foj(z;)}-
Thus for models with the independence copula, the plug-in sieve ML estimate of Fy,; satisfies

Vit (Bug(ag) = Fojlw))) = N (0, Fojlay) {1 = Fogla)}).

where its asymptotic variance coincides with that of the standard empirical cdf estimate ﬁnj (z) =
% S 1{Xji <xj} of Fy;. For models with parametric copula functions that are not independent,
we have [[v*[|? < Foj(2;){1 — Foj(2;)}-

4 Sieve MLE with Restrictions on Marginals

In this section, we present the asymptotic normality and efficiency results for sieve MLEs of 8, and
F,; under restrictions on marginal distributions considered in subsections 2.2.2 and 2.2.3.

4.1 Equal but Unknown Margins

Now the Fisher norm becomes |[v||> = E, {ae aaoi" [v]}? with
(o, Z) o Dloge(Uo,by) <~ [ Ologe(Us, 0) [ v (X;)
oo’ [U] - 80, vg + ]z_; 8’&3 / U1 (l‘)diﬁ' + fo(Xj) )

11



Up = (Fo(X1),y o, Fo(Xim)) and v € V = {v = (vj,v1) € R% x V7 : |Jv]| < oo} with V given in
(12).
Pr0p051t10n 5. Suppose Assumptions 1-2, 3’, 4-6 hold and f,; = f, for j = 1,...,m. Then

(i) 6, is semiparametrically efficient and /ni(6, — 0,) = N (0,Z.(05) 1) where Z,(6,) =

Olog c(Uo,00 m  0logc(Us,00) (Usj /
inf E, g3(9’ )_ijl[ gdSLJ )fo 7 g(u )du+g(Uo‘)]) X

8 o000 m 8 0 o o,
JeTILL, £3(0.1) (%—Zj ([2E5Ue) 1500 gu)du -+ g(Uyy)] )

(11) for any fixed x € X, F = [1(y < z) fn( )dy is semiparametrically efficient and
Vi(Fa(@) = Fo()) = N (0, [[v*| ) Whefe ¥ = |[6*]|* =

. |Eo{1(Unn < Fo())b(Uon)}?
vg 70, Olog c(Uo,00 Olog c(U,,0, » 21"
becto)) Fo [( Dlogeleolyy + Yo, { Z8p0ele) [Tk blu)du + b(Up) })

Comparing the asymptotic variances of the estimators of 6, and F,; in Proposition 5 with
those in Propositions 1 and 3, one immediately concludes that exploiting the restriction of equal
marginals in general leads to more efficient estimators of the copula parameter 6, and the marginal
distributions.

Pr0p051t10n 6. Under conditions for Proposition 5, we have:
(i) 3 = Z(0o) + 0p(1), where

~ - R /
1 & (alogg(g[/]iﬂn _Zj 1 Qlog (V) f g du+9(Uji)]) X

0g = min — Z Ou; ;
- dlog c(Us,0n dlogc(U; 0n) (Ujs T ’
gAn T 0ﬁ%fJ—2£wﬂ%;4&f¢wm+mwm)

(ii) 8%(3:) = [|v*|]* + op(1), where

~ 2
, LS 1Ty < Fula)b(0n)
UF(x) B ve;{)l%an 1 dlog c(U;,0,) m  0logc(U, 5 Ui - 2
7 Die [TUG + Zk:l[a—uk Jo ¥ b(w)du + b(Uy)]

in which U; = (Fp(X11), ..., Fn(Xmi))', Ay, is the sieve space (18), and B,, is the sieve space (19).

4.2 Models with a Parametric Margin

In this case, the Fisher norm becomes ||v||> = E {aé o“”Z)[ 112 with

0o, Z) o _ Ologc(Uo,0o) — 9l(ao, Z) s [Dloge(Us,00) (% v;(X;)
T[U] - ag/ vy + aﬁ/ vs + Jz:; { 811,]‘ / Y (x)dx * fojj(‘XZj) }
(0, Z)  [9logc(Uy,0,) X1 9t (x, B,) 1 0fo1(X1,8,)

8—5,1)5 B |: 8”1 / 3/6, do+ fOI(leﬁo) aﬁl :| e

where U, = (F,1(X1,8,), Foa(X2), oo, Fon( X)) and v € V = {v = (Vgs Vs V2, V)" € R x
R x H;”ZQVJ :|Jv]] < oo} with V; given in (12).

12



Proposition 7. Suppose that Assumptions 1-2, 3’, 4-6 hold, Fy,i(-) = Fui(+,5,) for unknown

B, € int(B) and E [810g foééXI’BO) Olog f“alﬁ(,Xl’ﬁ")} is positive definite. Then

(i) 0, is semiparametrically efficient and /7(6,, — 6,) = N (0,Z4(60)~") where Z.(0,) = E,[Ss,S},]
with §) = (3901, ...,59049) and for k =1, ... dy,

Seok

810 C Uo, 90 8€ A, A % n 810 C UO, 00 Uoj . .
N ga(ek - (aﬂf )ak -2 —%2 ) /0 g5 p(w)du+ g5 (Usy)]
=2 J

solves the following optimization problem:

2
) dlogc(Uy,0,)  Ol(ao, Z) . dlog c(U,, 0,) /UOJ'
inf E, - ap — _— ik(uw)du 4 g5 1(Uss
ake’Rdﬁ’ak;é[L agk 8,8/ k Jz_;[ auj 0 g]JC( ) g]Ji‘( .7)]
95,k €L£3([0,1])
(ii) for any fixed x € X and for j = 2,...,m, Fn] =[1(y < a:)fn]( )dy is semiparametrically

efficient and \/ﬁ(ﬁm(:ﬂ) — Fyj(x)) :>N(O, [[v*]]?) Where [[v*]2 = ||p*]|? =

. B 1(Uns < Fog))by (Ugy)}?

#0,05740, 9log c(Uo,00) (0, 7) dlog c(Uo,80) (Us 21"
Z:EEQIZIEOJD Eo |:< Oggg[ vy + gﬁl Up +Zk‘— { Ogg—uk fO kbk(u)dU“—bk(Uok)}) :|

Proposition 8. Under conditions for Proposition 7, we have:
(i) 5 = Z.(6,) + 0,(1), where 53 =

o ~ N /
L (Zﬂogc(Uiﬁn) _ouaz) s NELE Ui,0n) fo i gi(v)dv +gj(Uji)])

min — Z o0 op’ Ouj )
a#0, M “ Olog c(U;,0r) ol(a,Z;) m 0loge( UZ,G i N2 ’
oin, = ( A Al D W 0 e fo 7 gi(v)dv + g;(Uji)]

(if) 5 (x5) = |[v*[]* + 0p(1), where 55, (z;) =

~ ~ —~ 2
= >0y HUji < Foj(2)}0;(Uji)

max
#0,0570, dlog (0,0 00(a,2;) log c(T1.0) Uni 2
ety Yoy | By, 4 SURE 4 S o[ [ by () + by ()]

where sz = (Fol(Xli;B)v ,ﬁnm(XmZ))/

Remark 3: Suppose further that the margin Fyi(-) = Fui(+, 3,) is completely known. Let &, =

(9n, Frs e, fnm) be defined as in (10) except that 5 = 3, is treated as known. Then the conclusions

«© 8€(aO,Z)
ap’

of Proposition 7 still hold after we drop the term vg” from the definition of the Fisher norm

and from the calculation of asymptotic variances. Moreover, the asymptotic variance of \/ﬁ(gn —0,)
can be consistently estimated by {53}, with

o5 ~ 5 =~ /
It Ui,en oAt Uz‘,en U'i 77
A= i 13 (Lzgfubal 5oy [ 2osgluli) [0 g, (w)dv + g,(Ty)])
. dlog c(Uy,0n dlog c(Uy,0n i 7
pghn | (Peapeel oy (2Rag i) [T g, (0)du + g,(05)])
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and the asymptotic variance of \/ﬁ(ﬁm () — F,;(z)) can be consistently estimated by {E%j (z)}7 4,

with
~ —~ —~ 2
Ly YUy < Fnj(fcj)}b‘(U'z‘)

Ly [l sy (o8O sy )+ by ()

8u k

5%}_ (xj) = max

Ue?fo bkEBm 2

where a = (Fp1(X14), ng(Xg,) Anm(Xmi))’, A, is the sieve space (18), and B, is the sieve
space (19).

5 A Simulation Study

This section presents results from a small Monte Carlo study to assess the finite sample performance
of the sieve ML estimates. We first introduce the simulation design and the estimators studied in
this section and then present the Monte Carlo results.

5.1 Simulation Design and the Methods of Estimation

The data {(X1;, X2;)}; are generated from a semiparametric bivariate copula-based model with
the Clayton copula: C(Fy1(z1), Fp2(z2);0,), where the Clayton copula density c(uq,uz; ) is given
by

c(ui,ug;0) = (14 0)u (eﬂ)u;(eﬂ)[ufe +uy? — 1]_(971‘*'2), where 6 > 0.

We have used the algorithm of Genest and MacKay (1986) to simulate data from the Clayton
copula and then transformed them to have marginals F,; and Fy respectively. Two classes of
DGPs denoted by (6,, Fo1, Fi2) are considered:

DGP I. The two marginals are different: (6,, Fo1, Fy2) = (Qo,t[5},t[25]) with 6, = 5, 10, 15.

DGP II. The two marginals are the same: (0o, Fo1, Fo2) = (00, 1[5, t5)) with 6, = 5,10, 15.

In terms of estimation, we considered estimators that take into account prior information in the
following cases:

Case I. the two marginals are different and are completely unknown;
Case II. the two marginals are the same, but otherwise completely unknown;
Case II1. the first marginal is of a parametric form and the second one is completely unknown;

Case IV. the first marginal is completely known and the second one is completely unknown.

For each case, we consider the methods of sieve ML estimation, two-step estimation, and an
infeasible ML estimation where both margins are assumed to be known. From Case I to Case
IV, there is more and more information about the marginal distributions, our theoretical results
suggest that the sieve MLE by taking into account the prior information should become more
efficient. They also suggest that for a given case, the sieve MLE should be more efficient than the
two-step estimator.

14



The sieve MLE of 8, for each of the four cases was presented in Section 2. For clarity, we denote
the sieve MLE in the four cases as 07,07, 0117, 01y respectively. The infeasible MLE 6,, is the same
for all four cases and is defined as

0, = arg max > “log{c(For(X1i), Foa(X2:);6)}. (22)
=1

The two-step estimator for Case I was defined in (2), We denote it as ;. For Case II, the
two-step estimator under prior restrictions on marginal distributions 07 is defined as

Orr = al‘gmealeog{c(F(Xli)’F(X2i),9)}7

1=1
_ 1 2 » » 1 n
with F(x) = 5 Zanj(:U), Fohj(x) = I ;Hin <z}
Jj= =
For Case III, the two-step estimator of 6, under a parametric marginal Fp(z) = Foi(z,f5,) is
defined as
~ n -~ ~
Orrr = argmgXZIOg{c(Fol(thﬁ)vFn2(X2i)>9)}7 (23)
i=1
with B = argmgX;logfol(Xliaﬁ)a

and for Case IV, the two-step estimator 07y is obtained from (23) by using F,1(X1;,3,) instead of
Fo1 (X1, B). R

For marginal distributions, we used the plug-in sieve MLE F),; obtained in each case and the
(rescaled) empirical distribution function ﬁnj and the modified estimator F'(z) for DGP II in Case
1L

The sieve MLEs were implemented by using the B-spline basis as follows. Let { B, (x —j )}sz1 be
the y—th order B-spline basis. Then the marginal density functions f,; and f,2 can be approximated

by 2
(ng'(:l ajr By (z — j))
[ (S aBy(a— ) de

where k = 1,2. In the Monte Carlo experiment, we used the 3rd order B-splines, i.e., v = 3. We
approximated the density fo; on the support [min(Xj;) — sx,, max(Xj;) + sx;], where sx; is the
sample standard deviation of {Xj;}7 ;. The number of sieve coefficients is dictated by the support
of the density. Let by = max(z < min(Xj;)—sx, : z is integer), and by = min(z > max(Xj;)+sx; : 2
is integer). Then for B-splines of order v, we need K,, = by — b; + 1 — +y sieve coefficients to ‘cover’
the interval [b1,be]. To evaluate the integral that appears in the denominator we used a grid of

fe(wsar) =

equidistant points on [b1, bs]. The results reported in this paper correspond to grid size 0.005, but
we also tried value 0.01, which gives very similar results. In each case, the sieve MLE is computed
via penalization. We tried penalization factors of values 0.01, 0.001, and 0.0001 and found that the
results are similar. The results reported use 0.001 as the penalization factor.
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5.2 Monte Carlo Results

Results reported in this section are based on 100 simulations. For each estimator of 6,, we computed
its sample mean and sample mean squared error (MSE), as well as the sample mean of a consis-
tent estimator of its asymptotic variance (Est.avar). The consistent estimators of the asymptotic
variances for the sieve MLE are computed according to those described in Sections 3 and 4, with 8
number of cosine series terms. The consistent estimator of the asymptotic variance for the two-step
estimator when all margins are unknown can be found in Genest, et al. (1995). In Appendix B, we
provide some consistent estimators of the asymptotic variances of the modified two-step estimators
under prior restrictions on marginal distributions; we also present a simple consistent estimator of
the asymptotic variance of the infeasible MLE.

For each estimator of the marginal distributions, we computed its sample mean and sample
mean squared error (MSE), as well as the sample mean of a consistent estimator of its asymptotic
variance (Est.avar) at the 33th percentile and 66th percentile of the true distribution. In addition,
we also computed the sample mean of the integrated MSE (IMSE) of each estimator of the marginal
distributions.

Throughout the experiment, we considered two sample sizes n = 400 and n = 800. To save
space, we will not report results for all cases corresponding to both sample sizes. Table 1 reports
results for the estimation of the copula parameter 6, for DGP 1.

Table 1. Estimation of 6, for DGP I (Case I)

05 = 5,1 — 400 0, — 10,7 — 400

Estimator 0r 0, 0; 0r 0., 0;
Mean 4.949 5.013 4.855 | 9.960 | 10.006 | 9.622
MSE 0.158 0.063 0.162 | 0.579 0.230 | 0.620

Est.avar | 0.139 0.069 0.169 | 0.487 0.223 | 0.661

0, =15 n = 400 n = 800
Mean 14.637 | 15.034 | 14.187 | 14.909 | 14.963 | 14.57
MSE 1.584 0.469 1.893 | 0.536 0.206 | 0.630

Est.avar | 0.967 0.463 1.618 | 0.505 0.232 | 0.811

Results in Table 1 confirm the better performance of the sieve MLE over the two-step approach,
although the MSE and the estimated asymptotic variance of the sieve MLE are closer to those of
the two-step than the infeasible MLE, consistent with the theoretical finding that the sieve MLE
is asymptotically efficient but not adaptive. As expected, both estimators perform better as the
sample size n increases.

Table 2 reports results for the estimation of the marginal distributions for 8, = 15 and n =
400,800. The sieve ML estimator of F,1 = t[5 at the 33th percentile of 5 is 44% more efficient
than the rescaled empirical cdf counterpart, and the sieve ML estimator of Fpy = f[o5 is 38%
more efficient; corresponding to 66th percentile efficiency gains are 65% and 86% for F,; and Fpo
respectively. In terms of the IMSE, the relative efficiency gain (computed as the ratio of the IMSE
of the two-step estimator to that of the sieve MLE less 1) is 9 percent for Fpo = t[25) and 17 percent
for Fol = t[5].
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Table 2. Point Estimates of Marginal Distributions for DGP I (Case I, 6, = 15)

| = | 51,33 | ti251.33 | 566 | tpos)e6 |
n = 400
Empirical Distribution (Fy1, Fy2)
Mean 0.3274 | 0.3347 | 0.6653 | 0.6573
MSEx103 0.6874 | 0.6499 | 0.7345 | 0.8055
Est. avarx10® 0.5838 | 0.5798 | 0.6894 | 0.6750
Sieve ML estimates (Ey1, Fj2)
Mean 0.3292 | 0.3286 | 0.6608 | 0.6618
MSEx103 0.4773 | 0.4705 | 0.4440 | 0.4337
Est. avarx10® 0.4064 | 0.4063 | 0.3974 | 0.3805
n = 800
Empirical distribution (Fy1, Fj2)
Mean 0.3333 | 0.3406 | 0.6676 | 0.6606
MSEx103 0.2874 | 0.3489 | 0.2195 | 0.2726
Est. avarx10? 0.2778 | 0.2807 | 0.2775 | 0.2803
Sieve ML estimates (Fj1, Fr2)
Mean 0.3361 | 0.3350 | 0.6656 | 0.6671
MSEx103 0.2287 | 0.2247 | 0.1766 | 0.1772
Est. avarx10? 0.2057 | 0.2059 | 0.1875 | 0.1860
IMSE x10?
n = 400 n = 800
Fol F02 Fol F02
Empirical distribution | 1.9375 | 1.6424 | 0.7784 | 0.6695
Sieve ML distribution | 1.7734 | 1.4078 | 0.6368 | 0.5481

To examine the further efficiency gain of sieve MLE from using prior information on the marginal
distributions, we report in Tables 3 and 4 results for DGP II with 6, = 15, F;; = Fie = t[5), and
n = 400, 800. For comparison purposes, we estimated (0,, Fy1, F,2) with and without using the prior
information.

Table 3. Estimation of 6, = 15 for DGP II (Case I, Case II)
n = 400 n = 800
Estimator 0r én é[ 0r én é[
Mean 15.271 | 15.058 | 14.391 | 15.189 | 15.018 | 14.575
MSE 1.087 | 0.392 | 1.300 | 0.570 | 0.147 | 0.707
Est.avar | 1.116 | 0.475 | 1.637 | 0.532 | 0.232 | 0.776
Estimator 011 911 é[[ Orr én é[[
Mean 14.964 | 15.058 | 13.605 | 14.976 | 15.018 | 14.139
MSE 0.926 | 0.392 | 2.628 | 0.538 | 0.147 | 1.183
Est.avar | 1.068 | 0.475 | 1.520 | 0.518 | 0.232 | 0.746

Comparing the results for 0 7 and 911, Table 3 reveals better performance of 0 77 than 0 7 in
terms of all three measures. Surprisingly, the performance of the modified two-step 0;; is worse
than that of the unmodified two-step 6;. The improved performance of sieve MLE of the marginal
distribution over the empirical distribution is also evident from Table 4 below.
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Table 4. Pointwise Estimates of the Marginal Distribution for DGP 11
(Case 11, 6, = 15,n = 400)

Estimator Empirical distribution (F') | Sieve ML estimates (F')
r t[5],.33 t[5),.67 t[5],.33 t[s],.67
Mean 0.3295 0.6648 0.3320 0.6646
MSEx 103 0.6323 0.5950 0.4371 0.3166
Est. avarx10® | 0.5526 0.5566 0.3901 0.3589
IMSE x 103 1.4830 1.1605

The last two tables report estimation results for DGP II, but under Case III and Case IV
respectively.

Table 5. Estimation of 6, for DGP II (Case III, Case IV)

Estimator | Orrr | én | é[[[ | 0r | Oy | Oy
8, = 5.1 — 400

Mean 5.019 | 4.999 | 4.665 | 4.917 | 5.046 | 4.630

MSE 0.088 | 0.065 | 0.232 | 0.175 | 0.071 | 0.248

Est.avar 0.074 | 0.070 | 0.106 | 0.173 | 0.074 | 0.105
0, = 10,n = 400
Mean 9.956 | 9.989 | 8.481 | 9.689 | 10.058 | 8.373
MSE 0.310 | 0.206 | 2.982 | 0.626 | 0.238 | 3.418
Est.avar 0.232 | 0.224 | 0.402 | 0.672 | 0.235 | 0.396
0, = 15,n = 400
Mean 14.986 | 15.034 | 11.237 | 14.315 | 15.121 | 11.139
MSE 0.675 | 0.469 | 16.938 | 1.683 | 0.496 | 18.131
Est.avar 0.477 | 0.464 | 0.905 | 1.611 | 0.481 1.034
0, = 15,n =800
Mean 14.961 | 15.017 | 12.536 | 14.672 | 15.073 | 12.297
MSE 0.275 | 0.234 | 7.280 | 0.709 | 0.239 | 9.037
Est.avar 0.239 | 0.235 | 0.551 | 0.780 | 0.242 | 0.465

Several interesting observations emerge from Table 5: i) the sieve MLE 6177 under the parametric
assumption on Fy,; performs very similarly to the sieve MLE 91‘/ under the assumption that Fy;
is completely known; ii) the performance of the sieve MLE 01y (9111) is very close to that of
the infeasible MLE 6,,; iii) both modified two-step estimators 0 177 and é]V are much worse than
the unmodified two-step estimator #; which we found puzzling. We also computed the values
of the semiparametric efficiency bound for 6, derived in Bickel, et al. (1993) for the case with
one completely known marginal (Case IV). They are 0.069, 0.222, 0.463, 0.231 corresponding to
(0,m) =(5, 400), (10, 400), (15, 400), (15, 800) respectively. They are clearly very close to the
estimated asymptotic variances of 0 v and 0 111, reconfirming the efficiency of the proposed sieve
MLE procedure and its relevance in finite samples.

Table 6 below reveals a similar performance of the sieve MLE of the unknown marginal distri-
bution F,y to that of 6,.
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Table 6. IMSE (x10%) of Estimators of F,; for DGP II (Case III, Case IV)
n = 400
Case III Case IV
0, 5 10 15 5 10 15
FEmpirical distribution | 1.7673 | 1.7512 | 1.8490 | 1.7673 | 1.7512 | 1.8490
Sieve ML distribution | 0.6469 | 0.5076 | 0.3983 | 0.6176 | 0.4701 | 0.3441

To summarize, we find: i) regardless of the prior information on marginal cdfs, the sieve MLE
of 6, has very small bias in finite samples; ii) when all the marginal cdfs are different and unknown,
the relative improvement of sieve MLE [ 1 over that of the two-step estimator 6; is not very big;
iii) 1ncorp0ratlng prior information on the marginal distributions improves the performance of
sieve MLE 9 (j=IL, II, IV) in terms of both finite sample MSE and the asymptotic variance
estimate. Moreover when one marginal cdf is known or of a parametric form, the sieve MLE [ I
or HIV performs very well, almost as well as the infeasible MLE 6,, and is much better than the
corresponding two-step estimators; iv) incorporating prior information on marginal distributions
seems to worsen the finite sample performance of the corresponding two-step estimator; v) as the
amount of dependence increases, all three estimators of 6, get slightly worse in terms of the finite
sample MSEs and asymptotic variance estimates.

For the estimation of the marginal distributions, we find: i) incorporating prior information
improves the finite sample performance of the sieve MLE; ii) as the amount of dependence increases,
the efficiency gain of the sieve MLE over the rescaled empirical cdf estimate increases.

Appendix A. Mathematical Proofs

Assumption 5. there exist constants €; > 0,e2 > 0 with 2¢; + €3 < 1 such that (d,,) 3-Q2eter) —
o(n~1), and the followings (1)-(4) hold for all & € A, with ||a@—a,|| < §, and all v = (vg, vy, ..., )’ €
V with [[v|| < dp:

92 log c(a 921 5 ~ _

() | o (Foper® - et <cua—a e

2 2 .
(2) |B, ({ S5 — gelaal {15 )] < bl 5=l fo ) — 1,

2 2 ~ _ ..
(3) | Bo ({%%S : 52?55" } ”i@f)d@“)! < o [v] PO @ — o, ||~ for all j,i =
1,...,m;

vz(Xz)] 2(1—e 1—e .
(4) |E, ([E_(Xj) MX < | [o] 2D ||@ — a, ||~ for all j = 1,..., m.
In the following we denote ,un( ) =157 19(Zi) — Eo(9(Z;))] as the empirical process indexed

by g.
Assumption 6. (1)

sup "
a€An:||a—ao||=0(dn)
(2) forall j=1,....m
dlog c(a) 8logc(ao)}/ ~1/2
sup [in - (z < X))l (z)de | = op(n™"/7);
A€Ay:||a—ao||=0(8y) <{ duj duj

and (3)

Ologc(a 0log c(a, _
< ge'( - ief )>:0P(n 1/2);

ol l|=0( <{fy<l X,) foj(lXj)}an}k‘(Xj)> = op(n~1/?).
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Proof. (Theorem 1): Let ¢, be any positive sequence satisfying e, = 0(%) and (6,)37¢ =

e, x o(n~1/2), [for instance we can take &, = m] Also define

o, Z;)

rla, ao, Z;) = U, Zi) — U, Z;) — B,

[ — a,).

Then by definition of @, we have

1 n
< = a, Z;) — 0@ + e, Ilv*, Z;
0 < n.E_ [U(a, Zs) — £(a £ epllnv®, Zy)]
— (e(A -) — U@ % enIL0*, Z3)) + Eo (U@, Z;) — £(@ £ epIT,0*, Z;))

ol 0y 44 * ~ ~ *
= Fenx Z %[an | + o, (7@, o, Zi] — 1] £ ,11,0%, a0, Zi)) +
1=1

+E, (rla, ap, Z;] — rla + e,I1,0%, ap, Zi]) .

In the following we will show that:

(Al.1) % Zn: M[an* —v*] = op(n1/?);

oo’
i=1

(A1.2) E, (r[a, o, Zi] — r[a £ epILv*, a0, Zi]) = ten X (@ — a0, 0*) + £, X 0p(n~?);
(A1'3) 2% (T[aa Ao, Zi] - T‘[a + 5anU*7 Qop, Zz]) =é&n X OP(n_1/2).
Under (Al.1) - (A1.3), together with E, (%g;—’,zil[y*]) =0, we have:

0 < —Z i) — (e, 110", Z;)]

ag 0y Ly _
= Fen o, <%[ ]) £ en X (@ — g, V") + 0 X 0p(n~L/2).

Hence
Vi@ — ao,v*) = i, <8€g—°’,1)[ *]) +op(1) = N (0, [[v*]]?) .

This, Assumption 3 and Assumption 4(1) together imply

Vi(p(@) = plao)) = Vi (@ — o, v™) +op(1) = N (0, [[o*]?) .

To complete the proof, it remains to establish (A1.1) - (A1.3). Notice that (A1.1) is implied
by Chebychev inequality, i.i.d. data, and ||II,v* — v*|| = o(1) which is satisfied given Assumption
4(2). For (A1.2) we notice

oo/
1 826 Ao, Zz’
= (5 el
20(7 7. 2 .
+1E <8 U, Zy) 0%, Z;)

BT I Rt v mrand C R —%Q

20

E, (rla, a0, Z]) = E, <£(o¢, 7) — Uy, 7;) — 200 Zi) a0]>
(020,
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for some & € A, in between «, . It is easy to check that for any v = (vg,v1,...,v:,)" € V, and
a € A, with ||a — a,|| = O(d,,) we have

02U(, Z) 0%(cry, Z)
Eo (WW - WW])

O?loge(a)  9%logc(a)
= 'UQEO < 8980/ - 8080/ ) Vg
S 92 log ¢(a 82 log c(a X
4 o
+2U9 Z Eo <{ 898uj aeauj } / )
7j=1
Sy 9*log c(@ 32 log (v, X i
+;;EO <{ ou 3% Ou;0u,j }/ / Ui(x)dﬂf)

2
_iE _[Uj(Xj)r
2%\ 7 o)) ~ B
Under Assumption 5, we have

EO (T[a7 Qo, ZZ] - T[a + 5anU*a Qop, Zz])

_ & = al?* = ’|a2i€nﬂnv* — a|? + 0P<5nn71/2)

||5anU*||2
2
= 4ep, X (A — ap, U) + op(enn?)

= +e, X (@ — a,, [I,0*) + + 0p(5nn*1/2)
where the last equality holds since Assumption 4(1)(2) implies

(@ — o, Iv* — 0*) = op(n ™2 and |[IL,v*||? — [|v*|? < oco.
Hence (A1.2) is satisfied. For (A1.3), we notice

K, (T[a, Qo, Zl] - T[a + €anU*, Qop, Zz])

=, (ﬁ(a, Zi) — 0(@ + enIL*, Z;) — %Fenﬂnv*])
86(&, ZZ') * 8€(Ozo, ZZ') *
= Fen X Uy ( da’ [H”U ] - oo [an ]

where a € A, is in between @, a =+ ¢,I1,v*. Since

M@, Z), - . Ologe(@) , <~ |0dloge(@) [N I v} (X;)
T[an | = oy 0 +; {a—uj/l(:n < X)L (z)dz + W ,

(A1.3) is implied by Assumption 6.
The semiparametric efficiency is a direct application of Theorem 4 in Shen (1997). W

Proof. (Proposition 1): Recall that the semiparametric efficiency bound for 0, is Z.(6,) =
E, {890‘%0 }, where Sy, is the efficient score function for 6,, which is defined as the ordinary score
function for 8, minus its population least squares orthogonal projection onto the closed linear span
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(clsp) of the score functions for the nuisance parameters fo;, j = 1,...,m. And 0, is /n-efficiently
estimable if and only if E, {Sy, Sy, } is non-singular; see e.g. Bickel, et al. (1993). Hence (16) is
clearly a necessary condition for y/n-normality and efficiency of 9 for 0.

Under Assumptions 2 and 3’, Propositions 4.7.4 and 4.7.6 of Bickel, et al. (1993, pages 165 - 168)
for bivariate copula models can be directly extended to the multivariate case; see also Klaassen and
Wellner (1997, Section 4). Therefore with Sp, defined in (17), we have that Z.(0,) = E, {Ss,Sp, }
is finite, positive-definite. This implies that Assumption 3 is satisfied with p(a) = M6 and w = oo
and [[v*||? = ||p:)[OH2 = NZ,(0,) 7'\ < co. Hence Theorem 1 implies, for any A € R%,\ # 0, we
have /(X0 — X6,) = N (0, NZ.(6,)"')). This implies Proposition 1. M

Proof. (Propositions 2, 4, 6, 8): The consistency of these asymptotic variances can be estab-
lished by applying Ai and Chen (2003). H

Appendix B. Asymptotic Variances for the Infeasible MLE and the Restricted
two-step Estimators

The infeasible MLE 6, given in (22) satisfies \/n(0, — 6,) — N (0,[Z(6,)] ") where Z(6,) =
E[—% log{c(Fu1(X1i), s Fom(Xmi), 05)}]. Hence the asymptotic variance of f,, can be consistently
estimated by

n 2

-1
— = 1 0 -
avar(0,) = ——— = | — — log{c(Fo1(X1:)y vy Forn(Ximi), On .
0= = [ > g 08le(En (X1, Fo () >}]
Two-step estimator with e~qual but unknown margins: Whenm = 2 and F,; = F,» = F,,

the modified two-step estimator 0;; of 0, satisfies

\/ﬁ@n —0,) =g N <0, ! + var{Wi(Xy) + W2(X2)}>

Z(6o) [Z(60)]

where
2

I(QO) =F <—% log(c(FO(Xli), FO(X%), 90))> s

and for k=1, 2,

dlog(c(UI, uz, 90)) leg(C(’Uq, uz, 60))
do duy,

Wk(Xk) e —/I(Fo(Xk) < uk) c(ul,uQ,Go)duldug.

Using sample data we can estimate Z(6,) by

N 1 n 82 . — ~
52— - 3 o7 108(c(F(X10), F(X21),011);
=1

and Wy (Xk;) by

W) = —71 5 dlog(C(ﬁ(Xlggéﬁ(ij)a511)) dlog(C(ﬁ(Xlélyf(ij)a511))

3 F(X1;) = F(Xpi)

Hence a consistent estimator of the asymptotic variance of 511 is given by

—

avar(gn) = —

1+ 5*2% 2”: (W1(X1i) + W2(X2i)>2] -

=1
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Two-step estimator with a parametric margin: When m = 2 and F,i(-) = Fo(:,3,) is
known up to unknown parameter 5, € int(), the modified two-step estimator 6777 of 6, satisfies

\/5(5111 —0,) —=a N (0, I(190) + Uar(Wl(XE(ﬁeg]_; W2(X2i))>

where )

1(6,) = E (—% log(c(For (X1s, B, Foa(Xa), eo>>) ,

dlog(c(u,ug,0,)) dlog(c(ui,us,0,))

Wo(Xai) = _/I(F02<X2i) < ug) c(ur,ug, 0,)durdus,

db dusg
dl Up1,Us2,0,)) dl Uo1,Up2,0,)) dFp1 (X1, B,
WaXu ) = —E[ og(c( d19 2,00)) dlog(c( d;1 2:00)) 1(dﬁ1 B )]
~1
% <E{_a2logfglﬁ(2leﬁo) }) dlogfo;(BXliaﬂo)'

Using sample data and let Fypi(-) = F,(-,3), we can estimate Z(6,), Wa(Xs;) and W1(X1s, 8,)
respectively by

L, 1 _ _ _
52 = - > g7 L08(e(For(X1i), Fna(X2i), O111)), (24)
i=1
and WQ(XQZ‘) ==
-1 3 dlog c(For(X15), Fra(X2)), 0111) dlog c(For(X1;), Fra(X25), 0111) (25)
n do dus ’

G:Fna(Xaz)> Fra(Xa;)

and va01 (Xlz) =

{1 i dlog c(Fy (X1j), ﬁnZ(X2j)751H) dlog C(ﬁol(le)y ﬁn2(X2j)75[II) dFol(le,B)]

n do duy dg

n <
J=1

-1
1 = log for(X1j,8) | dlog for(X1i, B)
. (72 93 ; ) dp '

=1

Hence a consistent estimator of the asymptotic variance of 5[1 I is given by

—

~ 1
avar(@nl) ==
no

NP Ny ~ 2

EEADY <W01(X1i) + WQ(X%)) ] .
i=1

Two-step estimator with a known margin: When m = 2 and Fy1(-) = Fo(,3,) is known

with known (,, the modified two-step estimator 6 of 8, satisfies

~ 1 var(Wa(X2))
VA@ry —6,) ed/v<o,wo) o )

and a consistent estimator of the asymptotic variance of 5[\/‘ is given by

n

1+ 572% Z <W2(X2i))2] )

=1

—

= 1
avar(fry) = —

where 5% and WQ(X%) are given in (24) and (25) except we replace Fyy(-, 3) by Fai(-, 8,)-
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