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1 Introduction

The Lyapunov exponent, which measures the average rate of divergence or convergence of two nearby

trajectories, is a useful measure of the stability of a dynamic system. To obtain the Lyapunov exponent

from observed data, Eckmann and Ruelle (1985) and Eckmann, Kamphorst, Ruelle, and Ciliberto (1986)

proposed a method based on nonparametric regression which is known as the Jacobian method. While

any nonparametric regression estimator can be employed in the Jacobian method, one of the most widely

used approaches in applications is the Lyapunov exponent estimator based on neural networks proposed

by Nychka, Ellner, Gallant, and McCaffrey (1992).1 For example, applications using this approach in

economics include: Dechert and Gençay�s (1992) analysis of foreign exchange rates; studies on monetary

aggregates by Serletis (1995) and Barnett, Gallant, Hinich, Jungeilges, Kaplan and Jensen (1995); and the

analysis of stock return series by Abhyankar, Copeland and Wong (1997). However, despite the popularity

of this Jacobian method using neural networks, empirical researchers have been conÞned to reporting only

the point estimates of the Lyapunov exponents, as the distributional theory is not known.

This paper Þrst derives the asymptotic distribution of the neural network estimator of the Lyapunov

exponent. A formal statistical framework regarding the sign of the Lyapunov exponent is then introduced,

based on a consistent estimator of the asymptotic variance. In a recent paper by Whang and Linton (1999),

the asymptotic normality of the Jacobian-based estimator using a kernel-type nonparametric regression was

derived. The basic idea of our approach is to combine the theoretical result of Whang and Linton (1999)

and the recent results on neural network asymptotics obtained by Chen and White (1999) and others. The

conditions for asymptotic normality of the estimator, in terms of the number of hidden units in neural

network models as well as the block length, are derived for both one-dimensional and multidimensional

1A similar procedure was independently proposed by Gençay and Dechert (1992) with more emphasis on embedded
dynamics.
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cases. The required growth rate of block length and the convergence rate of neural network estimator of

Lyapunov exponent are compared to those based on kernel estimators.

The positivity of the Lyapunov exponent in a bounded dissipative nonlinear system is a widely used

formal deÞnition of chaos (Eckmann and Ruelle, 1985). Furthermore, chaos can be deÞned not only in a

deterministic system but also in a stochastic system using the same deÞnition (such a generalization of the

notion of chaos is sometimes referred to as noisy chaos as opposed to deterministic chaos). Since we allow

the presence of stochastic noise in the system, the consistent estimation of the asymptotic variance of the

Lyapunov exponent estimator offers a formal statistical framework for testing the hypothesis of positive

Lyapunov exponent in a stochastic environment. In other words, we can construct a direct test for chaos

using the consistent standard error proposed in this paper.2

Following former theoretical studies on the statistical properties of the neural network estimator of

the Lyapunov exponent, including McCaffrey (1991), McCaffrey, Ellner, Gallant and Nychka (1992), and

Nychka et al. (1992), we focus on a class of single hidden layer feedforward artiÞcial neural networks. The

most notable theoretical advantage of using neural networks seems to be their universal approximation

property. Theoretically, neural networks are expected to perform better than other approximation methods

at least within the conÞnes of the particular class of functions considered. Especially with high-dimensional

models, �[the neural net form,] compared to the preceding functional approximations, ... is not sensitive

to increasing d [dimension] (McCaffrey et al., 1992, p. 689).� This universal approximation property

also applies to the derivatives (Gallant and White, 1992). Since the nonparametric estimation of the Þrst

derivative is required in the Jacobian method, this fact is useful in the context of Lyapunov exponent

estimation. In contrast, as Ellner, Gallant, McCaffrey and Nychka (1991, p.362) pointed out, kernel

2The well-known BDS test proposed by Brock, Dechert, Scheinkman, LeBaron (1996) should be viewed as a test for i.i.d.
against general dependence which include chaos rather than a direct test for chaos.
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methods often provide poor derivative estimates.

On the whole, simulation results available in the literature are favorable to the neural network method.

With respect to the ßexibility of neural networks, the simulation results reported in Kuan and White

(1994) show the near-exact approximation property of neural networks, even if the nonlinear function is

complex enough to generate chaos. The robustness of neural networks to the choice of the number of

hidden units is reported in a simulation in Gallant and White (1992), while the advantage of using BIC

in selecting the number of hidden units and dimension is reported in Nychka et al. (1992). The reliability

of the Jacobian method based on neural networks was recently reaffirmed by a single-blind controlled

competition conducted by Barnett, Gallant, Hinich, Jungeilges, Kaplan, and Jensen (1997). In our paper,

after presenting the theoretical results, the small sample properties of our procedure are examined using

the data set used in the competition of Barnett et al. (1997) as well as using the artiÞcially generated

chaotic data in a noisy system. Finally, as an empirical application, we apply our procedure to the analysis

of daily stock return series. This application is well-motivated since a certain type of economic model

predicts chaos as a source of ßuctuation in stock prices.

The remainder of the paper is organized as follows: DeÞnitions of the Lyapunov exponent and the neural

network estimator are presented in Section 2. Section 3 derives asymptotic properties of the Lyapunov

exponent estimators based on neural networks and proposes test statistics. Some additional discussion is

given in Section 4. Monte Carlo evidence is presented in Section 5. An empirical application is reported

in Section 6. Some concluding remarks are made in Section 7. All proofs are given in the Appendix.

We will use the following notation throughout the paper. When | · | is applied to a d × 1 vector

x = (x1, . . . , xd)
0, it denotes a vector norm deÞned by |x| ≡Pd

i=1 |xi|. Let µ = (µ1, . . . , µd)0 denote a d× 1

vector of non-negative integer constants; we denote xµ =
Qd
i=1 x

µi
i and
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Dµg(x) =
∂|µ|g(x)

∂x
µ1
1 , . . . ,∂x

µd
d

,

for any real function g(x) on Rd. When µ is a scalar constant, as is the case when d = 1, we deÞne

Dµg(x) to be the µ-th order derivative of g(·) evaluated at x with the convention that D0g(x) = g(x)

and D1g(x) = Dg(x). We use Bmd to denote a weighted Sobolev space of all functions on Rd that have

continuous and uniformly bounded (partial) derivative up to order m. For g ∈ Bmd , the norm is deÞned by

kgkBmd ≡ max
0≤|µ|≤m

sup
x∈Rd

|Dµg(x)| <∞

and the associated metric is deÞned with this norm. The symbols �⇒� and � p→� are used to signify

convergence in distribution and convergence in probability, respectively. All the limits in the paper are

taken as the sample size T →∞ unless noted otherwise.

2 Model and Assumptions

Let {xt}Tt=1 be a random scalar sequence generated by the following nonlinear autoregressive model

xt = θ0(xt−1, . . . , xt−d) + ut, (1)

where θ0: Rd →R is a nonlinear dynamic map and {ut} is a sequence of random variables. The model

(1) can be expressed in terms of a map with an error vector Ut = (ut, 0, . . . , 0)0 and the map function
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F : Rd →Rd such that

Zt = F (Zt−1) + Ut (2)

where Zt = (xt, . . . , xt−d+1)0 ∈Rd. Let Jt be the Jacobian of the map F in (2) evaluated at Zt. SpeciÞcally,

we deÞne

Jt =



∆θ01t ∆θ02t · · · ∆θ0,d−1,t ∆θ0dt

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


(3)

for t = 0, 1, . . . , T − 1, where ∆θ0jt = Dejθ0(Zt) for j = 1, . . . , d in which ej = (0, . . . , 1, . . . , 0)0 ∈Rd

denotes the j-th elementary vector.

Let bθ be the nonparametric neural network estimator of the target function θ0 in (1). In this paper,
we consider the feed-forward single hidden layer networks with a single output. Following Chen and Shen

(1998) and Chen and White (1999), we view this neural network estimator as a special case of the sieve

extremum estimator. To be more speciÞc, we view it as a problem of maximizing an empirical criterion,

LT (θ), over the neural network sieve, ΘT , which is a sequence of approximating parameter spaces that is

dense in the inÞnite dimensional parameter space, Θ, as T →∞.

The basic idea of the Jacobian method is to obtain bJt by substituting bθ in the Jacobian formula
(3) and construct a sample analogue estimator of the Lyapunov exponent. Following the convention of

neural network estimation of the Lyapunov exponent, we distinguish between the �sample size� T used

for estimating Jacobian bJt and the �block length� M which is the number of evaluation points used for

estimating the Lyapunov exponent. Since the number of evaluation points is less than or equal to T , M
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can be also understood as the sample size of a subsample. The neural network estimator of i-th largest

Lyapunov exponent is given by

bλiM =
1

2M
ln νi

³bT0M bTM´ , bTM =
MY
t=1

bJM−t = bJM−1 · bJM−2 · · · · · bJ0, (4)

for 1 ≤ i ≤ d, where νi (A) is i-th largest eigenvalue of a matrix A,

bJt =



∆bθ1t ∆bθ2t · · · ∆bθd−1,t ∆bθdt
1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


, (5)

and ∆bθjt = Dejbθ(Zt) for t = 0, 1, . . . ,M − 1. For notational convenience we have just taken the Þrst M

observations. However, in practice, there are several alternative choices of subsample, a matter that will

be discussed in subsection 4.2.

Below, we introduce two groups of assumptions. One is on the dynamics and the other is on the neural

networks.

Assumptions on Dynamics

A1. (a) {Zt}Tt=1 is a strictly stationary β-mixing sequence with a mixing coefficient satisfying β(j) ≤

β0j
−ζ for some β0 > 0, ζ > 2, where the β-mixing coefficient is given by

β(j) = E sup
©¯̄
P (B|F0−∞)− P (B)

¯̄
: B ∈ F∞j

ª
,
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where F ts is the σ-Þeld generated by (Zs, . . . , Zt).

(b) The distribution of Zt is absolutely continuous with respect to Lebesgue measure with marginal density

function f with a compact support Z in Rd. The initial condition Z0 is a random variable generated

from the same distribution.

A2. {ut}Tt=1 is a random sequence of either: (a) i.i.d. with E(ut) = 0 and E(u2t ) = σ
2 <∞, or

(b) martingale difference with E(ut|F t−1−∞) = 0 and E(u2t |F t−1−∞) = σ2t ∈ [ε, ε−1] for some ε > 0.

A3.

θ0 ∈ Θ =
½
θ : θ(z) =

Z
exp(ia0z)dµθ(a), kµθk3 ≡

Z
l(a)3d|µθ|(a) ≤ C <∞

¾
,

where µθ is a complex-valued measure on Rd, |µθ| denotes total variation of µθ , l(a) = max
h
(a0a)1/2 , 1

i
and a0 = (a1, . . . , ad) ∈Rd.

A4. The system (1) has distinct Lyapunov exponents deÞned by

λi ≡ lim
M→∞

1

2M
ln νi

¡
T0MTM

¢
<∞, TM =

MY
t=1

JM−t = JM−1 · JM−2 · · · · · J0,

for 1 ≤ i ≤ d.

A5. For 1 ≤ i ≤ d and some φ ≥ 0,

max
1≤t≤M

|Fi,t−1(JM−1, . . . , J0)| = Op(Mφ),

where

Fi,t−1(JM−1, . . . , J0) =
∂ ln νi (T

0
MTM )

∂∆θ(Zt−1)
and ∆θ(Zt) = (∆θ1,t,∆θ2,t, . . . ,∆θd,t)0.
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A6. For 1 ≤ i ≤ d,

Φi ≡ lim
M→∞

var

"
1√
M

MX
t=1

ηit

#

is positive and Þnite, where

ηit = ξit − λi with ξit =
1

2
ln

Ã
νi (T

0
tTt)

νi
¡
T0t−1Tt−1

¢! for t ≥ 2 and ξi1 =
1

2
ln νi

¡
T01T1

¢
.

Assumptions on Neural Networks

B1. The neural network estimator bθT is an extremum sieve estimator that satisÞes

LT (bθT ) ≥ sup
θ∈ΘT

LT (θ)−O(ε2T )

with εT → 0 as T →∞, where LT (θ) is a least square criterion

LT (θ) =
1

T

TX
t=1

l(θ, xt, Zt−1) = − 1
T

TX
t=1

1

2
(xt − θ(Zt−1))2.

B2. The neural network sieve θT : Rd →R is an approximation function in the parameter space ΘT

satisfying

θT (z) = β0 +

2kr(T )X
j=1

βjl(aj)
−2ψ(a0jz + bj)

with

max
1≤j≤2kr(T )

|aj | ≤ CT ,
2kr(T )X
j=0

|βj| ≤ BT ,

where ψ is an activation function, aj ∈Rd, bj,βj ∈R are parameters, and k is the number related to

the class of activation function deÞned in B3 below.
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B3. The activation function ψ is a possibly nonsigmoid function satisfying ψ ∈ B21 and is k-finite for

some k ≥ 2, namely,

0 <

Z
R
|Dkψ(u)|du <∞.

B4. For any (a0, b), (a01, b1) ∈ Rd× R, there exists an α ∈ (0, 1] associated with ψ ∈ B21 such that for all

z in the compact support S,

°°ψa,b − ψa1,b1°°B21 ≤ const.× h¡(a− a1)0(a− a1)¢1/2 + |b− b1|iα ,
where ψa,b(z) is the rescaled activation function deÞned by ψa,b(z) = l(a)

−2ψ(a0z + b).

Remarks on Assumptions on Dynamics

A1, A2, and A3 are conditions on the data, the error term and the class of nonlinear function, respec-

tively, required to obtain the convergence rate of the neural network estimator. While many nonlinear

Markov processes are known to be stationary β-mixing, A1 is slightly stronger than the condition used

in Whang and Linton�s (1999) study on the kernel estimator that allows α-mixing (strong mixing). A1

can be also replaced by imposing some additional conditions on ut and θ0 as discussed in Chen, Racine

and Swanson (2001, Lemma 2.1). A3 implies that we consider the class of functions that have Þnite third

absolute moments of the Fourier magnitude distributions. This type of smoothness condition was used

by Barron (1993) when he showed that the rate of neural network approximation does not depend on the

input dimension d. Since the Jacobian method requires estimation of partial derivatives, a convergence

result in a stronger norm is required. For this purpose, we follow Hornik, Stinchcombe, White and Auer

(1994) and use the scaling factor l(a)3 to derive the approximation rate in Sobolev norm of higher order. In

contrast to Barron�s original condition that requires only the Þrst derivatives to be bounded, A3 requires
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the boundedness of the third derivatives (θ0 ∈ B3d). However, requirement of third derivatives for any di-

mension d is much weaker than Whang and Linton�s (1999) case since kernel regression essentially requires

higher order differentiability for higher dimensional model to maintain the same rate of convergence.

A4 deÞnes the Lyapunov exponents of the system (1). Since the largest (or dominant) Lyapunov

exponent λ1 has often been of main interest in the literature, we mainly focus our analysis on the largest

Lyapunov exponent and simply use notation λ to denote λ1. However, it should be noted that other

exponents λi for 2 ≤ i ≤ d also contain some important information related to the stability of the system,

including the directions of divergence and contraction of trajectories (see Nychka et al., 1992) and the types

of non-chaotic attractors (see Dechert and Gençay, 1992). Necessary conditions for the existence of λ have

been discussed in the literature (e.g., see Nychka et al., 1992, p. 406). It is known that, if Jt is ergodic

and stationary and if max{ln ν1(J 0tJt), 0} has a Þnite expectation, then the limit in A4 almost surely exists

and will be a constant, irrespective of the initial condition. When σ2 = 0, the system (1) reduces to a

deterministic system and the interpretation of λ > 0 is identical to the deÞnition of deterministic chaos.

For moderate σ2, the stochastic system generated by (1) can also have sensitive dependence to initial

conditions, and noisy chaos with λ > 0 can be also deÞned. For example, a stationary linear autoregressive

process has λ < 0, while the unit root and the explosive autoregressive process imply λ ≥ 0. One interesting

question here is whether the Lyapunov exponent is continuous in the amount of noise for small amounts of

noise. SpeciÞcally, let λσ denote the Lyapunov exponent for a noisy system with error variance σ2 and let

λ0 be the Lyapunov exponent for the deterministic skeleton with σ2 = 0.We suspect that limσ→0 λσ = λ0.

This is certainly the case for a large class of processes including the linear autoregressive processes, but

we do not have a proof that works under general conditions. Under further continuity properties, our

distributional theory in the next section can also be extended to �small sigma� asymptotics, i.e., to work

under the condition that σ → 0.
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A5 and A6 are assumptions identical to the ones used by Whang and Linton (1999) in their B(6)* and

B(7)*. The role of these assumptions can be better understood by considering the one-dimensional case.

When d = 1, A5 and A6 simplify to

A5∗. For some φ ≥ 0,

max
1≤t≤M

³
|Dθ0(xt−1)|−1

´
=

µ
min
1≤t≤M

|Dθ0(xt−1)|
¶−1

= Op(M
φ).

A6∗.

Φ ≡ lim
M→∞

var

"
1√
M

MX
t=1

ηt

#

is positive and Þnite, where ηt = ln |Dθ0(xt−1)|− λ.

A5∗ is a condition on the properties of the data around Þrst derivative being zero and is closely related

to extreme value theory for stochastic processes (see Whang and Linton, 1999, p. 9). With this assumption,

we have a valid Taylor series expansion of the estimator of Lyapunov exponent. The condition is weak

and is expected to hold for many chaotic processes including the well-known logistic map (with φ = 1).

A6∗ provides the asymptotic variance of the local Lyapunov exponent that will be introduced in the next

section. In general, Φ is the long-run variance of ηt and differs from the variance of ηt. However, since

ηt is a weakly dependent process, if we take an equally spaced subsample of size M (instead of block), ηt

becomes an asymptotically independent sequence with Φ being its variance.

Remarks on Assumptions on Neural Networks

In this paper, the nonparametric neural network estimator bθ for the unknown functional form θ0 in

the nonlinear autoregressive model (1) is obtained by the least squares method. B1 allows an approximate
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maximization problem where exact maximization is included as a special case when εT = 0. Similar to

the case shown in Chen and Shen (1998), our asymptotics in the next section are valid as long as εT

converges to zero faster than the theoretical rate of convergence of the estimator. B2 implies that the

neural network sieve consists of 2kr(T ) number of hidden units with common activation function ψ. Since

the asymptotic theory will only depend on the increasing rate rather than the exact number of hidden

units, we simply refer r(T ) as the number of hidden unit. Typically, ψ is a sigmoid function deÞned by

a bounded measurable function on R with ψ(u) → 1 as u → ∞, and ψ(u) → 0 as u → −∞. However,

it is known that the universal approximation property of the neural networks is not conÞned to the ones

with sigmoid activation functions. Indeed, the neural networks with nonsigmoid activation functions such

as radial basis activation functions are becoming more popular in applications. B3 is from Hornik et al.

(1994) and allows nonsigmoid as well as sigmoid activation functions. B4 is a Hölder condition on the

activation function used in Chen and White (1999) and is stronger than B3. While B3 is sufficient to

derive our main theoretical result, B4 will be later used to investigate full sample asymptotics (M = T ) in

subsection 4.2 since it requires the improved rate for the derivative estimator (Lemma 2).

3 Theoretical results

3.1 Uniform convergence rate of the derivative estimator

The Jacobian-based estimator of the Lyapunov exponent requires the estimation of the Þrst derivative

at Zt, namely, ∆θ0(Zt) = (∆θ01,t,∆θ02,t, . . . ,∆θ0d,t)
0. Since the neural network estimator bθ is obtained

by selecting values for the parameters aj�s, bj�s, and βj �s in B2 by minimizing the least square criterion

in B1, the derivative estimator ∆bθ(Zt) = (∆bθ1,t,∆bθ2,t, . . . ,∆bθd,t)0 can be obtained by using an analytical
derivative of the neural network sieve in B2 evaluated at selected values of the parameters and Zt. We Þrst
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provide the uniform convergence rate for this derivative estimator.

Lemma 1. Suppose that assumptions A1 to A4 and B1 to B3 hold, BT ≥ const. × kµθk3, CT = const.

and r(T ) satisÞes r2 ln r = O(T ). Then

sup
z∈Z

¯̄̄
∆bθ(z)−∆θ0(z)¯̄̄ = Op([T/ lnT ]−1/4).

The improved rate for the derivative estimator can be further obtained by employing a Hölder condition

B4 on the activation function. See Makovoz (1996) and Chen and White (1999) for the relation between

this condition and the source of improvement in the rate of approximation.

Lemma 2. Suppose that assumptions in Lemma 1 and B4 hold, BT ≥ const. × kµθk3, CT = const. and

r(T ) satisÞes r2(1+α/d
∗) ln r = O(T ), where d∗ = d if ψ is homogeneous (ψ(cz) = cψ(z)), and d∗ = d +1

otherwise. Then

sup
z∈Z

¯̄̄
∆bθ(z)−∆θ0(z)¯̄̄ = op(T−1/4).

3.2 Asymptotic distribution of Lyapunov exponent estimator

We begin with investigating the asymptotic behavior of bλ for the scalar case (d = 1), mainly for the
purpose of illustration, followed by the general results for the multidimensional case (d ≥ 2). When d = 1,

since Zt = xt, Z = χ, and Jt = Dθ0(xt), the Lyapunov exponent estimator in (4) simpliÞes to

bλM =
1

2M

MX
t=1

ln
h
Dbθ(xt−1)2i .

To investigate the asymptotic properties of the estimator, it is convenient to introduce the notion of
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the local Lyapunov exponent deÞned by

λM =
1

2M

MX
t=1

ln
£
Dθ(xt−1)2

¤
.

Unlike the �global� Lyapunov exponent λ, the local Lyapunov exponent with ÞniteM measures the short-

term rate of divergence. It should also be noted that λM is a random variable in general. From the

deÞnition in A4, λ can be seen as a limit of λM with M → ∞. Using λM , the total estimation error,

bλM − λ, with the normalizer √M can be decomposed as

√
M(bλM − λ) =

√
M(bλM − λM ) +

√
M(λM − λ). (6)

The second term represents the asymptotic behavior of the local Lyapunov exponent which is common

to all Jacobian methods irrespective of the choice of the nonparametric estimator. The
√
M rate of

convergence and asymptotic normality for this term were derived by McCaffrey et al. (1992) and Bailey

(1996), respectively.3 The Þrst term can be understood as the estimation error for the local Lyapunov

exponent. In contrast to the second term, the asymptotic behavior of the Þrst term depends on the

estimation method. Whang and Linton (1999) employed kernel regression methods and showed that the

asymptotic behavior of (6) is dominated by the second term under some conditions. For the neural network

estimator, we can introduce new conditions on the rate of block length along with assumptions introduced

in the previous section so that the Þrst term has a negligible effect on the asymptotic behavior of (6).

Theorem 1. Suppose that the assumptions in Lemma 1, A5 ∗ and A6 ∗ hold, M → ∞ and M =

3To be more speciÞc, McCaffrey et al. (1992) decomposed the second term into block bias E(λM )− λ and the block error
λM − E(λM ) with the order of the block error being 1/

√
M . See also Ellner et al. (1991).
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o([T/ lnT ]1/(2+4φ)). Then,

√
M(bλM − λ)⇒ N(0,Φ).

The multidimensional case (d ≥ 2) can be also considered by applying similar arguments to all the i-th

largest Lyapunov exponents for 1 ≤ i ≤ d. Below, we have the main theoretical result of this paper.

Theorem 2. Suppose that the assumptions in Lemma 1, A5 and A6 hold,M →∞ and M = o([T/ lnT ]1/(2+4φ)).

Then, for 1 ≤ i ≤ d,
√
M(bλiM − λi)⇒ N(0,Φi).

Remarks. The results show the asymptotic normality of Lyapunov exponent estimators that can be used

in the inference. The convergence rate of Lyapunov exponent estimator depends on the growth rate of

block length M and thus depends on φ with smaller φ implying faster convergence. When φ = 1, which

is satisÞed by the logistic map (Whang and Linton, 1999), the Lyapunov exponent estimator converges at

the rate (T/ lnT )1/12−ε where ε > 0 is an arbitrary small number.

It should be noted that both one-dimensional and multidimensional results are obtained using the same

smoothness condition in A3 and same growth rate of block length. This contrasts to the results based on

kernel smoothing methods. For example, by modifying the result of Whang and Linton (1999), Shintani

and Linton (2003) showed that, with an optimal choice of the rate of bandwidth, the Lyapunov exponent

estimator based on local quadratic smoother was
√
M consistent with M = o([T/ lnT ]4/{(d+6)(1+2φ)}).

Thus, the convergence rate of the kernel-based Lyapunov exponent estimator becomes slower in the higher

dimensional case.4 Simple comparison with neural network case reveals that the two estimators have

4Lu and Smith (1997) also used the local quadratic regression method to estimate the local Lyapunov exponent λM for
Þnite M .
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the same rate when d = 2 but the rate for the kernel-based estimator is always slower than that of the

neural network estimator for d > 2 for any value of φ. This advantage of the neural network approach

comes from the powerful approximation properties of neural networks given in Lemma 1. In general, other

nonparametric approaches yield slower rate of convergence or require stronger smoothness conditions when

the dimension increases.

3.3 Test statistics

In this subsection, feasible test statistics are introduced and a one-sided test is proposed for the purpose

of testing chaotic behavior of time series. First, we construct the test statistics based on the asymptotic

results on Lyapunov exponent estimators obtained in the previous subsection. Suppose bΦ is a consistent
estimator of Φ in Theorem 1. Our primary interest is to test the null hypothesis H0 : λ ≥ 0 (λ ≤ 0) against

the alternative of H1 : λ < 0 (λ > 0). Our test statistic is

bt = bλMqbΦ/M . (7)

We reject the null hypothesis if bt ≤ −zα (bt ≥ zα) where zα is the critical value that satisÞes Pr [Z ≥ zα] =
α with Z being a standard normal random variable.

Next, we consider consistent estimation of Φ. In general, a heteroskedasticity and autocorrelation

consistent (HAC) covariance matrix estimator (see e.g., Andrews, 1991) for Φ is required, since ηt�s are

serially dependent and not identically distributed.5 For the one-dimensional case, the covariance estimator

5The resampling method may be an alternative way to compute the standard error of the estimated Lyapunov exponent.
This line of research is pursued by Gençay (1996) and Giannerini and Rosa (2001). However, the computing burden of
resampling neural network estimator seems to be the main problem in practice.
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bΦ is deÞned as:
bΦ = M−1X

j=−M+1
w(j/SM )bγ(j) and bγ(j) = 1

M

MX
t=|j|+1

bηtbηt−|j|,
where bηt = ln |Dbθ(xt−1)| − bλM and where w(x) and SM denote a kernel function and a lag truncation

parameter, respectively. For the multidimensional case, the test statistic bti = bλiM/qbΦi/M with the

covariance estimators bΦi can be similarly constructed by replacing bηt by
bηit = bξit − bλiM with bξit = 1

2
ln

 νi
³bT0t bTt´

νi
³bT0t−1 bTt−1´

 for t ≥ 2 and bξi1 = 1

2
ln νi

³bT01 bT1´ .
For the covariance matrix estimation, we employ the following class of kernel functions w : R→ [−1, 1]

similar to that used in Andrews (1991).

C1.

w ∈W =

½
w : w(0) = 1, w(−x) = w(x) ∀x ∈ R,

Z ∞

−∞
|w(x)|dx <∞,

w(x) is continuous at 0 and at all but a Þnite number of other points} .

Corollary 1. Suppose that assumptions in Theorem 2 and C1 hold, SM →∞ and SM = o(M1/2). Then,

for 1 ≤ i ≤ d, bΦi p→ Φi.

Remarks. This result shows that the HAC estimation with given growth rate of bandwidth can be

used to construct the standard error for Lyapunov exponents. Since the infeasible statistic eti = (bλiM −

λi)/
qbΦi/M ⇒ N(0, 1), bti = eti + λi/qbΦi/M diverges to −∞ (∞) for any λi under H1 : λi < 0 (λi > 0).

Therefore, the test is consistent under reasonable conditions.
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4 Discussions

4.1 Optimal block length and optimal subsampling scheme

It should be noted that the asymptotic results in the previous section required that the number of

products of the Jacobian in the Lyapunov exponent estimate (M) be less than the sample size of data

used in Jacobian estimation (T ). Therefore, the choice of block lengthM is an important issue in practice.

McCaffrey et al. (1992) discussed the optimal choice of block length by decomposing the local Lyapunov

exponent asymptotics [the second term in (6)] into a bias term and a variance term. Furthermore, they

suggested that averaging the Lyapunov exponent estimators from the nonoverlapping T/M blocks might

reduce the overall bias (see also Ellner et al., 1991, and Nychka et al., 1992). However, it should be

noted that such an estimate in the one-dimensional case is identical to the estimate based on a full sample

(M = T ).

Whang and Linton (1999) pointed out that the valid asymptotic results for the Lyapunov exponent

estimators can be derived not only from the blocking method but also from any other subsampling method.

This fact also raised a question of the optimal choice of subsampling scheme for a given number of M .

Suppose the optimal choice is made on the grounds that it minimizes the variance Φi in A6 (or A6∗).

The comparison between the blocking scheme and the equally spaced subsampling scheme can then be

understood from the following simple example.

Suppose we have three observations of the time series data (y1, y2, y3) generated from the autoregressive

(AR) process of order one. If we want to estimate the mean of the process using two observations out of

three, we have only two alternatives; using the adjacent sample [(y1, y2) or (y2, y3)] or using the skipped

sample [(y1, y3)]. The variance of such an estimate depends on the AR parameter. A simple calculation

implies that the Þrst scheme is more efficient when the parameter is negative and the second scheme is more
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efficient when the parameter is positive. Similarly, when the data are generated by the moving average

(MA) process of order one, the Þrst scheme is better when the MA parameter is positive and the second

scheme is better when the parameter is negative.

This simple example shows that the optimal subsample for the Lyapunov exponent estimation depends

on the data generating process. Therefore, we may use either the blocking scheme or equally spaced

subsample scheme as a choice of subsample. For this reason, in this paper, we report the results based on

equally spaced subsamples in addition to the results based on the commonly used blocking method in the

simulation and empirical analysis.

4.2 Full sample estimation

As discussed by Ellner et al. (1991), it has been questioned whether the requirement of block length

(M) less than full sample (T ) is necessary in the theoretical analysis of asymptotic behavior of the neural

network approach. When the Jacobians from the whole sample points are used for Lyapunov exponent

calculation (M = T ), the Þrst term in (6) now enters the asymptotic behavior of the overall estimation

error. Therefore, we can expect the full sample estimator to have a different asymptotic distribution from

the one based on subsamples. Whang and Linton (1999) showed that the asymptotic distribution for a

full sample estimator, based on kernel regression, can be derived if one employs stronger assumptions on

the functional form. The purpose of this subsection is to illustrate that it is also possible in the neural

network approach to derive the asymptotic results if the similar assumptions are employed. To simplify

the argument, we only consider the one-dimensional case.

Corollary 2. Suppose that assumptions in Lemma 2, A5 ∗ with φ = 0 hold, ηt in A6
∗ is replaced by
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ηt = v(xt−1)ut + ln |Dθ0(xt−1)|− λ, where

v(x) =
D2θ0(x)

{Dθ0(x)}2
− Df(x)

{Dθ0(x)} f(x) .

Further assume that f(x)/Dθ0(x) = 0 at the boundary points x and x. Then we have the asymptotic

normality result in Theorem 1 with M = T .

Remarks. To derive this result, stronger conditions for both activation function and target function need

to be employed. Among all additional conditions, φ = 0 is the most difficult requirement since it �is not

satisÞed by any univariate chaotic process that we are aware of (Whang and Linton, 1999, p.8).� The

consistent estimator of Φ can be constructed by using the sample analogue of ηt, which requires a second

derivative estimation of target function as well as density and density derivative estimation.

4.3 Upper bound estimation

The deÞnition of ξit in Theorem 2 does not have a simple form as ξt in Theorem 1 since ln νi (T
0
MTM ) 6=PM

t=1 ln νi
¡
J 0M−tJM−t

¢
for the multivariate case. However, for the largest Lyapunov exponent (i = 1), we

have the following relation between the two quantities:

MX
t=1

ln ν1
¡
J 0M−tJM−t

¢
= ln

MY
t=1

ν1
¡
J 0M−tJM−t

¢ ≥ ln ν1 ¡(ΠMi=1JM−t)0(ΠMi=1JM−t)¢ = ln νi ¡T0MTM¢ .
Here, we used the matrix norm inequality |ν1 (A0A)| |ν1 (B0B)| ≥ |ν1 ((AB)0(AB))|. Using this relationship,

we can bound the largest Lyapunov exponent from above by λ ≡ limM→∞ 1
2M

PM
t=1 ln ν1

¡
J 0M−tJM−t

¢
.
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We can consistently estimate this quantity, using its sample analogue,

bλM ≡ 1

2M

MX
t=1

ln ν1
³ bJ 0M−t bJM−t´ .

Corollary 3. Suppose that assumptions in Lemma 1 hold, Fi,t−1 in A5 is replaced by Ft = ∂ ln ν1 (J 0tJt) /∂∆θ(Zt),

ηit in A6 is replaced by ηt =
1
2 ln ν1

¡
J 0t−1Jt−1

¢− λ. If M = O([T/ lnT ]1/(2+4φ)), then

√
M(bλM − λ)⇒ N(0,Φ).

Remarks. For the multidimensional case, λ is always positive. This implies that the asymptotic distrib-

ution of the upper bound estimator seems to be useful only if the data is generated from a chaotic process

(with positive λ). For example, when some speciÞc positive value of the Lyapunov exponent is predicted

by a theory, upper bound estimates below this value provide strong evidence against the hypothesis.

5 Simulation results

5.1 Logistic map

Since the testing procedure proposed in the previous section is based on asymptotic theory, it is of

interest to examine its performance with sample sizes that are typical for economic time series. This

section reports the result of the Monte Carlo experiments designed to assess the small sample performance

of neural network estimates of Lyapunov exponent with various data generating processes.
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We Þrst examine the logistic map with system noise:

xt = axt−1(1− xt−1) + σεt,

where εt/vt ∼ U(−1, 1) independent of xt, and

vt = min {axt−1(1− xt−1), 1− axt−1(1− xt−1)} .

This particular form of heteroskedasticity ensures that the process xt is restricted to the unit interval. It is

interesting to note that this simple one-dimensional model contains both a globally stable case (0 < a < 3)

and a chaotic case (3.57 < a ≤ 4) depending on the parameter a. We use a = 1.5 as an example of a

system with a negative Lyapunov exponent (λ = − ln 2 when σ = 0) and a = 4 as that with a positive

Lyapunov exponent (λ = ln2 when σ = 0).

For the neural network estimation, we use FUNFITS program developed by Nychka, Bailey, Ellner,

Haaland and O�Connell (1996). As an activation function ψ, this program uses a type of sigmoid function

ψ(u) =
u(1 + |u/2|)
2 + |u|+ u2/2 ,

which was also employed by Nychka et al. (1992). For the estimation of Φ, Bartlett�s kernel w(u) = 1− |u|

with one lag is employed. We use the block subsample and equally spaced subsample in addition to the

entire sample. To see how the results differ with the choice of the lags of the autoregression, we consider

the cases with lag length d varying from 1 to 4. The results are based on the parameters r = 4, σ = 0.25,

T = 200 with 1000 replications. For subsample estimation, we use M = 66 giving three blocks and
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estimates for each replication.6 The results are reported in Table 1. When correct lag length is chosen

(d = 1), the mean and the median of Lyapunov exponent estimates appeared close to the true value for

both stable (a = 1.5) and chaotic (a = 4) cases. This outcome suggests that our method works well even

in the small sample environment. When d increases, the number of estimates with incorrect sign increases

for the stable case, while the estimates is robust to the additional lag lengths for the chaotic case.7 One

important implication of this observation is that we should be careful about the selection of lag length in

the system since such information is usually not provided in practice. If the speciÞcation of the system

is completely known, as in this subsection, a parametric approach such as the one employed by Bask and

de Luna (2002) should yield a more efficient estimator as well as a powerful test. While our theory of

nonparametric approach is designed for an unknown system with a given lag length, we expect information

criteria such as BIC to provide a consistent lag selection procedure. For this reason, we utilize BIC to

select lag length (as well as the number of hidden units) in the next subsection and the empirical section.

For the standard errors in Table 1, there is a systematic downward bias for the stable case, but

those for the chaotic case are in close agreement with actual standard deviations. Figures 1 and 2 show

the Þnite sample densities of the Lyapunov exponent estimates standardized by the mean and variance

superimposed on the standard normal densities. The distribution shows some skewness, but with this small

sample situation, it is close enough to normality predicted by the theory.8

6For the block length in the simulation and empirical analysis of this paper, we use M =int[c× (T/ lnT )1/6] with c = 36.2
where int[A] signiÞes the integer part of A.

7Gençay and Dechert (1996) have pointed out the possibility of obtaining spurious Lyapunov exponents which can be larger
than the true largest Lyapunov exponent when embedded dynamics are used.

8We also conducted a simulation with a Henon map as an example of higher-dimensional chaotic process. Our approach
worked as well as a logistic case provided sufficient lag length was used.
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5.2 Barnett competition data

Powerful properties of the neural network approach were conÞrmed by the successful results in the

single-blind controlled competition conducted by William Barnett. Detail of the competition design and

the results can be found in Barnett et al. (1997). However, since they used only point estimates of the

neural network approach, it is of interest to examine how statistical procedure in this paper works for the

same data used in the competition.9

The competition used two different sample sizes, 380 and 2000. Both small sample data and large

sample data are taken from a single observation generated from the following Þve different models with ut

being an i.i.d. standard normal random variable.

� Model I (Logistic map): xt = 3.57xt−1(1− xt−1) with x0 = 0.7.

� Model II (GARCH): xt = h1/2t ut where ht = 1+ 0.1x2t−1 + 0.8ht−1 with h0 = 1 and x0 = 0.

� Model III (NLMA): xt = ut + 0.8ut−1ut−2.

� Model IV (ARCH): xt = (1 + 0.5x2t−1)1/2ut with x0 = 0.

� Model V (ARMA): xt = 0.8xt−1 + 0.15xt−2 + ut + 0.3ut−1 with x0 = 1 and x1 = 0.7.

Of the Þve models described above, only Model I has a positive Lyapunov exponent. For this subsection

and the empirical part of this paper, the number of lag length (d) and the number of hidden units (r) will

be jointly determined by minimizing the BIC criterion deÞned by

BIC(d, r) = ln bσ2 + lnT
T
[1 + r(d+ 2)]

9The data is downloaded from the archive given in Barnett et al. (1997, footnote 2).
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where bσ2 = T−1PT
t=1

³
xt − bθ(xt−1, . . . , xt−d)´2. For the HAC estimation required for the standard error,

we employ the QS kernel with optimal bandwidth selection method developed in Andrews (1991). The

employed block length (M) for the small sample data (T = 380) is 72 giving a total of 5 blocks, while that

for the large sample data (T = 2000) is 91 giving a total of 21 blocks.

The results for Barnett competition data are presented in Table 2. For the subsample estimates,

the median values are reported. The results can be summarized as follows. First, the signs of all point

estimates correspond to the true signs of the processes. Second, for models II to V, the positivity hypothesis

is rejected at a 1% level of signiÞcance based on both full sample and subsample estimation. These results

conÞrm the validity of the neural network approach and our testing procedure. Third, positivity of the

Lyapunov exponent in model I is not rejected for both full sample and subsample cases. At the same time,

it did not provide strong evidence against the negativity.

6 Application to Þnancial data

Over the past decades, numerous models that can generate chaos in economic variables have been

developed. For example, Brock and Hommes (1998) showed that chaos in stock price was possible if

heterogeneous beliefs of agents were introduced in a traditional asset pricing model.10 In this section, we

apply our proposed procedure to investigate the possibility of chaos in the U.S. Þnancial market using

stock price series.11

We use daily observations on the Dow Jones Industrial Average (DJIA), Pt. The sample period extends

from January 3, 1928, to October 18, 2000, providing a total of 18,490 observations. It should be noted

10See Abhyankar, Copeland and Wong (1997) for a survey of previous results of analyses of chaos using Þnancial data.
11Other economic theories predict chaos in real aggregate series. The method proposed in this paper is also applied to

international real output series by Shintani and Linton (2003).
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that the period of the stock market crash of 1987 is included in the sample period. The stock return is

simply deÞned as the difference of log of the stock price index (Rt = ∆ lnPt). Following Taylor�s (1986)

Þnding, it is now well-known that the volatility measures such as the absolute return (|Rt|) have higher

autocorrelation compared to the return series (Rt). Ding, Granger and Engle (1993) also examined the

correlation of power transformation of the absolute return (|Rt|k) and found quite high autocorrelations.

Extending this line of approach, we estimate the Lyapunov exponent of various power transformed absolute

return series. Table 3 shows the sample autocorrelations of the transformed absolute DJIA stock returns

|Rt|k for k = 0.5, 1, 1.5, 2, 2.5 in addition to those of the untransformed return series. The return series

has small positive Þrst order autocorrelation and small negative second order autocorrelation, while the

transformed absolute return has much higher autocorrelations with k = 1 being the highest. These results

are very similar to those of Ding, Granger and Engle (1993) based on S&P 500 series with a number of

observations close to that of our data.

The estimated Lyapunov exponents for each series is presented in Table 4 along with the t statistics

and p-values for the null hypothesis of positive Lyapunov exponent (H0 : λ ≥ 0). The block length (M)

and the number of blocks used for subsampling estimates are 127 and 145, respectively. The number of

hidden units (r) are selected using BIC. For all cases, the Lyapunov exponents from full sample estimation

are negative, and the positivity hypothesis is signiÞcantly rejected at the 1% level with the exception of

transformed series with k = 2.5. Similar strong evidence is obtained from subsample estimation except

for the same series. Another interesting observation is that the Lyapunov exponents are larger for the

transformed absolute returns than for the level of returns, suggesting less stability in volatility (or absolute

values) than in returns themselves. These results from various transformed data offer strong statistical

evidence against the chaotic explanation in stock returns. This strengthens the results in Abhyankar,

Copeland and Wong (1997) who obtained negative Lyapunov exponent point estimates for both S&P500
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cash and futures series with 5-minute and 1-minute frequencies.

7 Conclusion

This paper has derived the asymptotic distribution of the neural network Lyapunov exponent estimator

proposed by Nychka et al. (1992) and introduced a formal statistical framework of testing hypotheses

concerning the sign of the Lyapunov exponent. Such a procedure offers a useful empirical tool for detecting

chaos in a noisy system. The small sample properties of the new procedure were examined in simulations,

which indicate that the performance of the procedure is satisfactory in moderate-sized samples. The

procedure was applied to investigate chaotic behavior of Þnancial market. In most cases, we strongly

rejected the hypothesis of chaos in the stock return series, with one mild exception in some higher power

transformed absolute returns.
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Appendix

Proof of Lemma 1

In this proof, we deÞne the (weighted) Lp space (with distribution function F (x)) by the set of Lp-integrable

functions with norm kgkp =
nR

χ |g(x)|p dF (x)
o1/p

and associated metric from this norm. For p = ∞, we
use kgk∞ =sup

x∈χ
|g(x)|. We will denote L2 norm kgk2 simply by kgk. Similarly, we deÞne the (weighted)

Sobolev Wm
p space with a set of functions with Lp-integrable (partial) derivatives up to order m with

norm kgkm,p =
nPm

|µ|=0
R
χ |Dµg(x)|p dF (x)

o1/p
and associated metric from this norm. For p =∞, we use

kgkm,∞ = max
0≤|µ|≤m

sup
x∈χ

|Dµg(x)|.
(a) To simplify the argument, we Þrst derived the result for one-dimensional case, and then extend the

result to the multidimensional case. For d = 1, we denote Z = χ and our goal is to obtain the convergence
rate for

sup
x∈χ

¯̄̄
Dbθ(x)−Dθ0(x)¯̄̄ .

Note that interpolation inequality (See Gabushin, 1967, and Shen and Wong, 1994) implies

kg(x)− g0(x)k∞ ≤ K kg(x)− g0(x)k(2m−1)/2m kDmg(x)−Dmg0(x)k1/2m .

where K is a Þxed constant. Substituting g(x) = Dbθ(x), g0(x) = Dθ0(x), m = 1 yields°°°Dbθ(x)−Dθ0(x)°°°∞ ≤ K
°°°Dbθ(x)−Dθ0(x)°°°1/2 °°°D2bθ(x)−D2θ0(x)°°°1/2 .

If we use that °°°Dbθ(x)−Dθ0(x)°°° ≤ °°°bθ(x)− θ0(x)°°°
1,2
≤
°°°bθ(x)− θ0(x)°°°

2,2

and °°°D2bθ(x)−D2θ0(x)°°° ≤ °°°bθ(x)− θ0(x)°°°
2,2
,

the
°°°Dbθ(x)−Dθ0(x)°°°∞ term is bounded by K

°°°bθ(x)− θ0(x)°°°
2,2
. Therefore, it suffices to show the con-

vergence rate of
°°°bθ(x)− θ0(x)°°°

2,2
.

Approximation rate in Sobolev norm is derived in Hornik et al. (1994). Convergence rate of the
estimator in L2 norm is derived in Chen and Shen (1998) and Chen and White (1999). We will combine
their results to derive the convergence rate of the estimator in Sobolev norm. From the deÞnition of
criterion in B1, we have

E [l(Zt, θ)− l(Zt, θ0)] = 1

2
kθ − θ0k2 .

Since A3 implies the boundedness of the third derivatives, the equivalence of L2 norm and Sobolev
norm with second derivatives holds and there exist two constants c1 and c2 satisfying

c1 kθ − θ0k22,2 ≤ E [l(Zt, θ)− l(Zt, θ0)] ≤ c2 kθ − θ0k22,2
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which is required for Theorem 1 in Chen and Shen (1998). Further, Condition A1 in Chen and Shen can be
replaced by our class of mixing condition in A1(a) which is shown by Chen and White (1999). Conditions
A2 and A4 in Chen and Shen (Assumptions 3.4 (a) and (b) in Chen and White) follows from the proof of
Proposition 1 in Chen and Shen. Therefore, from Theorem 1 of Chen and Shen (1998), we have°°°bθT − θ0°°°

2,2
= Op

³
max

³
δT , kθ0 − πT θ0k2,2

´´
where πT θ0 ∈ ΘT and

δT = inf

½
δ > 0 : δ−2

Z δ

δ2
[H(ε,FT )]1/2 dε ≤ const.× n1/2

¾
where H(ε,FT ) is the L2 metric entropy with bracketing which controls the size of the space of cri-
terion differences induced by θ ∈ ΘT (See Chen and Shen, 1998, for the deÞnition. Formally, the
bracketing L2 metric entropy of the space of the L2 measurable functions indexed by ΘT given by
FT = {h(θ, z) = l(θ, z)− l(θ0, z) : θ ∈ ΘT} is deÞned as follows. For any given ε, if there exists S(ε, N) =
{hl1, hu1 , , . . . hlN , huN} ⊂ L2 with max1≤j≤N

°°°huj − hlj°°° ≤ ε such that for any h ∈ FT there exists a j with
hlj ≤ h ≤ −huj a.e., then S(ε,N) is called a bracketing ε-covering of FT with respect to k·k. We deÞne
H(ε,FT ) by ln(min {N : S(ε,N)}).)

Using the result in the proof of Theorem 3.1 in Chen and White (1999), we have

H(ε,FT ) ≤ 2krBT (d+ 1) ln(2krBT (d+ 1)/ε)

and
δT = const.× [r ln(r)]1/2 T−1/2.

From Hornik et al. (1994), the approximation rate in Sobolev W 2
2 norm is given by

kθ0 − πT θ0k2,2 ≤ const.× r−1/2.

By choosing δT = kθ0 − πT θ0k2,2, we have

r2 ln r = O(T )

and °°°bθT − θ0°°°
2,2
= Op([T/ lnT ]

−1/4)

as required.
(b) For the multidimensional case, from Gabushin�s interpolation inequality, we have°°°∆bθi(z)−∆θ0i(z)°°°∞ ≤ K

°°°∆bθi(z)−∆θ0i(z)°°°1/2 °°°∆2bθi(z)−∆2θ0i(z)°°°1/2
for each i = 1, . . . , d with | · | here being absolute value. If we use that

dX
i=1

°°°∆bθi(z)−∆θ0i(z)°°° ≤ °°°bθ(z)− θ0(z)°°°
1,2
≤
°°°bθ(z)− θ0(z)°°°

2,2
,
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and
dX
i=1

°°°∆2bθi(z)−∆2θ0i(z)°°° ≤ °°°bθ(z)− θ0(z)°°°
2,2
,

then,

sup
z∈Z

¯̄̄
∆bθ(z)−∆θ0(z)¯̄̄ = sup

dX
i=1

¯̄̄
∆bθi(z)−∆θ0i(z)¯̄̄

≤
dX
i=1

sup
¯̄̄
∆bθi(z)−∆θ0i(z)¯̄̄

=
dX
i=1

°°°∆bθi(z)−∆θ0i(z)°°°∞
≤ K

dX
i=1

µ°°°∆bθi(z)−∆θ0i(z)°°°1/2 °°°∆2bθi(z)−∆2θ0i(z)°°°1/2¶

≤ K

Ã
dX
i=1

°°°∆bθi(z)−∆θ0i(z)°°°!1/2Ã dX
i=1

°°°∆2bθi(z)−∆2θ0i(z)°°°!1/2
≤ K

°°°bθ(z)− θ0(z)°°°
2,2

where the second inequality follows from Cauchy-Schwarz�s inequality. Therefore, it again suffices to show
the convergence rate of

°°°bθ(z)− θ0(z)°°°
2,2
. Since the convergence rate of neural network estimator does

not depend on d, the same argument for the one-dimensional case can be directly applied and the result
follows. 2

Proof of Lemma 2

As in the proof of Lemma 1 it suffices to show the convergence rate of
°°°bθ(x)− θ0(x)°°°

2,2
for the one-

dimensional case. Since additional assumption B4 is identical to assumption H in Chen and White, the
result for the improved rate in Sobolev norm in Theorem 2.1 of Chen and White can be used. The improved
approximation rate in Sobolev W 2

2 norm is now given by

kθ0 − πT θ0k2,2 ≤ const.× r−1/2−α/d
∗
.

From
δT = const.× [r ln(r)]1/2 T−1/2

with choice of δT = kθ0 − πT θ0k2,2, we have

r2(1+α/d
∗) ln r = O(T )

and °°°bθT − θ0°°°
2,2
= Op([T/ lnT ]

− 1+(2α/d∗)
4(1+(α/d∗)) ) = op(T

−1/4)
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as required. The same argument can be used for multidimensional case as in the proof of Lemma 1. ¤

Proof of Theorem 1

By rearranging terms, √
M(bλM − λ) =

√
M(bλM − λM ) +

√
M(λM − λ).

For the second term, we have

√
M(λM − λ) = 1

2
√
M

MX
t=1

£
ln(Dθ0(xt−1))2 − 2λ

¤⇒ N(0,Φ)

by the central limit theorem (CLT) of Herrndorf (1984, Corollary 1) and A6∗.
For the Þrst term,

¯̄̄√
M(bλM − λM )

¯̄̄
=

¯̄̄̄
¯ 1

2
√
M

MX
t=1

h
ln(Dbθ(xt−1))2 − ln(Dθ0(xt−1))2i

¯̄̄̄
¯

=

¯̄̄̄
¯ 1√
M

MX
t=1

1

Dθ∗(xt−1)

h
Dbθ(xt−1)−Dθ0(xt−1)i

¯̄̄̄
¯

≤ [T/ lnT ]−
1
4M

1
2
+φ

·
[T/ lnT ]

1
4 sup
x∈χ

¯̄̄
Dbθ(x)−Dθ0(x)¯̄̄¸

×
µ

1

Mφmin1≤t≤M |Dθ∗(xt−1)|
¶
= op(1)

where the second equality holds by a one-term Taylor expansion about Dθ0(xt−1) with Dθ∗(xt−1) lying
between Dθ0(xt−1) and Dbθ(xt−1). The convergence to zero holds because of [T/ lnT ]− 1

4M
1
2
+φ = o(1) from

the growth rate of block length, uniform convergence from Lemma 1 and
¡
Mφmin1≤t≤M |Dθ∗(xt−1)|

¢−1
=

Op(1) from A5∗, respectively. The latter can be veriÞed by using the argument given in the proof of
Theorem 1 in Whang and Linton (1999). ¤

Proof of Theorem 2

By rearranging terms,
√
M(bλiM − λi) =

√
M(bλiM − λiM ) +

√
M(λiM − λi)

where
λiM =

1

2M
ln νi

¡
(ΠMt=1JM−t)

0(ΠMt=1JM−t)
¢
.

For the second term, we have

√
M(λiM − λi) =

√
M

·
1

2M
ln νi

¡
(ΠMt=1JM−t)

0(ΠMt=1JM−t)
¢− λi¸

=
√
M

·
1

2M
ln νi

¡
T0MTM

¢− λi¸
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=
√
M

"
1

2M
ln

Ã
νi (T

0
MTM )

νi
¡
T0M−1TM−1

¢!+ 1

2M
ln νi

¡
T0M−1TM−1

¢− λi#

=
√
M

"
M−1X
k=1

1

2M
ln

Ã
νi
¡
T0M−k+1TM−k+1

¢
νi
¡
T0M−kTM−k

¢ !
+

1

2M
ln νi

¡
T01T1

¢− λi#

=
√
M

"
1

M

MX
k=1

ξi,M−k+1 − λi
#

=
1√
M

MX
t=1

[ξit − λi]⇒ N(0,Φi)

by the CLT of Herrndorf (1984, Corollary 1) and results of Furstenberg and Kesten (1960, Theorem 3) and
A6.

For the Þrst term,¯̄̄√
M(bλi − λiM )¯̄̄ =

1

2
√
M

¯̄̄
ln νi

³
(ΠMt=1 bJM−t)0(ΠMt=1 bJM−t)´− ln νi ¡(ΠMt=1JM−t)0(ΠMt=1JM−t)¢¯̄̄

=

¯̄̄̄
¯ 1√
M

MX
t=1

Fi,t−1(J∗M−1, . . . , J
∗
0 )
0
h
∆bθ(Zt−1)−∆θ0(Zt−1)i

¯̄̄̄
¯

≤ [T/ lnT ]−
1
4M

1
2
+φ

·
[T/ lnT ]

1
4 sup
z∈Z

¯̄̄
∆bθ(z)−∆θ0(z)¯̄̄¸

×M−φ max
1≤t≤M

¯̄
Fi,t−1(J∗M−1, . . . , J

∗
0 )
¯̄
= op(1)

where the second equality follows from a one-term Taylor expansion

ln νi
³
(ΠMt=1 bJM−t)0(ΠMt=1 bJM−t)´

= ln νi
¡
(ΠMt=1JM−t)

0(ΠMt=1JM−t)
¢
+
∂ ln νi

¡
(ΠMt=1J

∗
M−t)

0(ΠMt=1J∗M−t)
¢

∂∆θ0(Zt−1)0
h
∆bθ(Zt−1)−∆θ0(Zt−1)i

= ln νi
¡
(ΠMt=1JM−t)

0(ΠMt=1JM−t)
¢
+ Fi,t−1(J∗M−1, . . . , J

∗
0 )
0
h
∆bθ(Zt−1)−∆θ0(Zt−1)i

where the elements of J∗t lie between those of bJt and Jt for t = 0, . . . ,M − 1. Analogous to the proof of
Theorem 1, the convergence to zero holds because of [T/ lnT ]−

1
4M

1
2
+φ = o(1) from the growth rate of block

length, uniform convergence from Lemma 1 and M−φmax1≤t≤M
¯̄
Fi,t−1(J∗M−1, . . . , J

∗
0 )
¯̄
= Op(1) from A5,

respectively. ¤

Proof of Corollary 1

We only prove the one-dimensional case since the multidimensional case can be obtained using the similar
argument. First deÞne

eΦ = M−1X
j=−M+1

w(j/SM )eγ(j) and eγ(j) = 1

M

MX
t=|j|+1

ηtηt−|j|
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where ηt = ln |Dθ0(xt−1)| − λ. From Proposition 1 of Andrews (1991), eΦ p→ Φ. Therefore, it suffices to
show that bΦ p→ eΦ. Since √M/SM →∞, the result follows by showing

√
M

SM

¯̄̄bΦ− eΦ¯̄̄ = √
M

SM
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¶¯̄̄̄ = Op(1).

The second element is bounded since (1/SM )
PM−1
j=−M+1 |w(j/SM )| →

R∞
−∞ |w(x)| dx < ∞. For the Þrst

element, we have
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using [T/ lnT ]−
1
4M

1
2
+φ = o(1) from condition in Theorem 2, uniform convergence from Lemma 1 and¡

Mφmin1≤t≤M |Dθ∗(xt−1)|
¢−1

= Op(1) from A5∗, respectively. Boundedness for the other two terms can
be obtained using the same argument. ¤

Proof of Corollary 2

Since the proof is similar to the one for Theorem 1(a) in Whang and Linton (1999), we only provide a
sketch of the proof. By rearranging terms,

√
T (bλT − λ) = √T (bλT − λT ) +√T (λT − λ).

For the second term, we have asymptotics identical to those in Theorem 1. For the Þrst term,
√
T (bλT − λT )

=
1√
T

TX
t=1

1

Dθ0(xt−1)

h
Dbθ(xt−1)−Dθ0(xt−1)i

− 1

2
√
T

TX
t=1

1

[Dθ∗(xt−1)]2
h
Dbθ(xt−1)−Dθ0(xt−1)i2

=
1√
T

TX
t=1

1

Dθ0(xt−1)

h
Dbθ(xt−1)−Dθ0(xt−1)i+ op(1)

=
√
T

Z
χ

1

Dθ0(x)

h
Dbθ(x)−Dθ0(x)i f(x)dx+ op(1)

= −
√
T

Z
χ

·
D

µ
f(x)

Dθ0(x)

¶
1

f(x)

¸nbθ(x)− θ0(x)o f(x)dx+ op(1)
=

√
T

Z
χ
v(x)

nbθ(x)− θ0(x)o f(x)dx+ op(1)
=

√
T
D
v(x),bθ − θ0E+ op(1)

=
1√
T

TX
t=1
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1√
T

TX
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v(xt−1)ut + op(1).

The Þrst equality follows from a two-term Taylor expansion about Dθ0(xt−1) with Dθ∗(xt−1) lying
between Dθ0(xt−1) and Dbθ(xt−1). The second equality follows from the fact that the second term is
bounded by

1

2

·
T

1
4 sup
x∈χ

|Dbθ(x)−Dθ0(x)|¸2 1
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t=1

1

[Dθ∗(xt−1)]2
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where the inequality follows by the uniform consistency results in Lemma 2, the last convergence to zero
holds because (min1≤t≤T |Dθ∗(xt−1)|)−2 = Op(1) by A5∗. The third equality follows from the stochastic
equicontinuity argument employed in Whang and Linton (1999). The fourth equality follows from integra-
tion by parts with the zero boundary condition. The last three equalities follows from the deÞnition of the
linear functional l0θ0[

bθ − θ0, xt−1] and inner product h., .i used in Shen (1997), Chen and Shen (1998) and
Chen and White (1999), and

l0θ0[bθ − θ0, xt−1] = [bθ − θ0]ut
from our criterion function given in A3(a). ¤

Proof of Corollary 3

We use a one-term Taylor expansion

ln ν1
³ bJ 0t−1 bJt−1´

= ln ν1
¡
J 0t−1Jt−1

¢
+
∂ν1

¡
J∗0t−1J∗t−1

¢
∂∆θ0(Zt−1)0

h
∆bθ(Zt−1)−∆θ0(Zt−1)i

= ln ν1
¡
J 0t−1Jt−1

¢
+ F 0t−1

h
∆bθ(Zt−1)−∆θ0(Zt−1)i

where the elements of J∗t−1 lie between those of bJt−1 and Jt−1. The result follows from the argument similar
(but simpler) to the one used in the proof of Theorem 2. ¤
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Table 1
Logistic Map

(1) Stable System with a = 1.5 (λ = −0.693)
d = 1 d = 2

Full Block ES Full Block ES
mean (bλ) -0.729 -0.729 -0.729 -0.291 -0.283 -0.280
median (bλ) -0.710 -0.705 -0.707 -0.276 -0.271 -0.271
std (bλ) 0.312 0.333 0.326 0.182 0.205 0.194
mean (se) 0.069 0.118 0.114 0.064 0.108 0.107
median (se) 0.068 0.114 0.112 0.062 0.105 0.104
lower 5% 0.060 0.060 0.060 0.050 0.060 0.060
upper 5% 0.040 0.040 0.040 0.040 0.030 0.040

d = 3 d = 4
Full Block ES Full Block ES

mean (bλ) -0.101 -0.089 -0.082 0.009 0.022 0.027
median (bλ) -0.091 -0.079 -0.076 0.014 0.027 0.031
std (bλ) 0.124 0.147 0.140 0.094 0.116 0.111
mean (se) 0.054 0.093 0.091 0.048 0.082 0.081
median (se) 0.053 0.090 0.089 0.047 0.080 0.079
lower 5% 0.060 0.060 0.060 0.060 0.060 0.050
upper 5% 0.030 0.030 0.040 0.040 0.040 0.050

(2) Chaotic System with a = 4 (λ = 0.693)
d = 1 d = 2

Full Block ES Full Block ES
mean (bλ) 0.689 0.689 0.689 0.664 0.667 0.669
median (bλ) 0.689 0.691 0.691 0.679 0.681 0.674
std (bλ) 0.019 0.031 0.100 0.059 0.066 0.112
mean (se) 0.054 0.092 0.102 0.051 0.087 0.098
median (se) 0.053 0.090 0.101 0.050 0.085 0.097
lower 5% 0.050 0.050 0.050 0.070 0.070 0.060
upper 5% 0.050 0.040 0.050 0.000 0.010 0.040

d = 3 d = 4
Full Block ES Full Block ES

mean (bλ) 0.662 0.666 0.668 0.662 0.667 0.669
median (bλ) 0.673 0.676 0.675 0.670 0.675 0.671
std (bλ) 0.054 0.061 0.112 0.046 0.054 0.107
mean (se) 0.050 0.086 0.098 0.050 0.086 0.097
median (se) 0.050 0.085 0.097 0.050 0.085 0.097
lower 5% 0.050 0.060 0.060 0.050 0.050 0.050
upper 5% 0.000 0.010 0.040 0.000 0.010 0.040

Note: Sample size (T ) = 200. Number of hidden units (r) = 4. Number of replications
= 1000. Jacobians are evaluated using full sample (Full) as well as blocks (Block) and
equally spaced subsamples (ES) with block length (M) = 66. Lower 5% and upper 5%
are tail frequencies of normalized Lyapunov exponent estimates using standard normal
critical values.
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Table 2
Barnett Competition Data

T = 380 T = 2000
Sample Sample

(d, r) Full Block ES (d, r) Full Block ES
(I) Logistic map

(2, 4) 0.015 0.019 0.028 (1, 4) 0.012 0.008 0.014
(0.396) (0.207) (0.442) (1.190) (0.119) (0.210)
[0.654] [0.582] [0.671] [0.883] [0.547] [0.583]

(II) GARCH
(1, 1) -4.260 -4.219 -4.323 (1, 1) -5.017 -5.034 -5.043

(-56.00) (-26.20) (-24.58) (-215.1) (-49.09) (-45.87)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

(III) NLMA
(2, 3) -0.435 -0.400 -0.430 (3, 4) -0.360 -0.354 -0.323

(-15.66) (-6.345) (-7.371) (-43.93) (-8.792) (-8.145)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

(IV) ARCH
(1, 1) -3.925 -3.875 -3.939 (1, 1) -3.606 -3.607 -3.606

(-69.56) (-28.76) (-31.18) (-1324) (-302.5) (-278.1)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

(V) ARMA
(1, 1) -0.049 -0.048 -0.051 (3, 1) -0.041 -0.028 -0.034

(-4.843) (-3.832) (-4.659) (-8.116) (-2.496) (-3.559)
[<0.001] [<0.001] [<0.001] [<0.001] [0.006] [<0.001]

Note: For the full sample estimation (Full), the largest Lyapunov exponent estimates
are presented with t statistics in parentheses and p-value for H0 : λ ≥ 0 in brackets.
For the estimation based on blocks (Block) and equally spaced subsamples (ES), median
values are presented. The block length (M) for subsample is 72 for T = 380 and 91 for
T = 2000, respectively. The lag length (d) and the number of hidden units (r) are jointly
selected based on BIC. QS kernel with optimal bandwidth (Andrews, 1991) is used for
the heterosckedasticity and autocorrelation consistent covariance estimation.
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Table 3
Autocorrelations of Stock Return Series

xt bρ(1) bρ(2) bρ(3) bρ(4) bρ(5) bρ(10)
(1) Rt 0.029 -0.022 0.005 0.018 0.019 0.007

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

(2) |Rt|0.5 0.233 0.242 0.245 0.251 0.260 0.236
(0.007) (0.007) (0.008) (0.008) (0.008) (0.010)

(3) |Rt|1.0 0.295 0.314 0.308 0.300 0.311 0.266
(0.007) (0.007) (0.008) (0.009) (0.009) (0.011)

(4) |Rt|1.5 0.280 0.294 0.269 0.243 0.271 0.198
(0.007) (0.007) (0.008) (0.008) (0.009) (0.010)

(5) |Rt|2.0 0.202 0.211 0.160 0.131 0.177 0.095
(0.007) (0.007) (0.007) (0.008) (0.008) (0.008)

(6) |Rt|2.5 0.117 0.129 0.072 0.054 0.098 0.034
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Note: Numbers in parentheses are standard errors.
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Table 4
Lyapunov Exponents of Stock Return Series

NLAR lag (d)
1 2 3 4 5 6

(1) xt = Rt

Full -2.685 -1.539 -1.355 -0.820 -0.562 -0.503
(-262.1) (-347.7) (-721.6) (-228.5) (-322.7) (-455.81)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -2.689 -1.538 -1.339 -0.800 -0.546 -0.487
(-24.31) (-30.49) (-44.93) (-18.21) (-13.36) (-14.70)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

ES -2.684 -1.540 -1.330 -0.799 -0.541 -0.490
(-23.62) (-30.35) (-45.40) (-17.64) (-13.40) (-14.71)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

BIC -8.944(2) -8.953(2) -8.951(3) -8.953(2) -8.949(3) -8.958(3)
(2) xt =|Rt|0.5

Full -1.876 -0.985 -0.568 -0.364 -0.260 -0.194
(-306.9) (-189.7) (-191.3) (-130.3) (-113.8) (-129.7)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -1.921 -1.017 -0.582 -0.372 -0.264 -0.195
(-49.65) (-24.24) (-20.99) (-18.01) (-16.27) (-16.29)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

ES -1.874 -0.960 -0.549 -0.352 -0.250 -0.188
(-38.53) (-19.61) (-19.05) (-16.51) (-14.27) (-14.77)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

BIC(r) -6.459(1) -6.508(2) -6.536(3) -6.554(3) -6.572(3) -6.576(3)
(3) xt =|Rt|1.0

Full -1.424 -0.677 -0.476 -0.304 -0.211 -0.173
(-939.3) (-233.6) (-153.1) (-220.5) (-177.8) (-180.2)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -1.437 -0.693 -0.488 -0.308 -0.213 -0.173
(-209.2) (-41.18) (-25.88) (-27.07) (-22.45) (-19.80)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

ES -1.424 -0.669 -0.460 -0.298 -0.204 -0.166
(-128.2) (-36.19) (-23.27) (-24.52) (-21.08) (-20.04)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

BIC(r) -9.554(1) -9.619(2) -9.660(3) -9.688(3) -9.711(3) -9.716(3)
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Table 4 (Continued)

NLAR lag (d)
1 2 3 4 5 6

(4) xt =|Rt|1.5

Full -1.196 -0.452 -0.216 -0.136 -0.071 -0.111
(-2056) (-525.0) (-804.9) (-329.5) (-75.29) (-110.4)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -1.196 -0.454 -0.216 -0.131 -0.060 -0.114
(-311.0) (-66.31) (-88.06) (-51.85) (-14.79) (-17.93)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

ES -1.195 -0.449 -0.215 -0.135 -0.066 -0.108
(-203.9) (-62.53) (-48.19) (-31.11) (-8.660) (-16.64)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

BIC(r) -12.33(3) -12.38(2) -12.42(3) -12.45(3) -12.46(3) -12.47(3)
(5) xt =|Rt|2.0

Full -1.218 -0.111 -0.018 -0.014 -0.123 -0.088
(-909.6) (-38.94) (-13.24) (-22.28) (-104.3) (-106.5)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

Block -1.232 -0.088 -0.005 -0.009 -0.129 -0.090
(-148.7) (-13.10) (-1.943) (-3.994) (-32.84) (-21.73)
[<0.001] [<0.001] [0.026] [<0.001] [<0.001] [<0.001]

ES -1.220 -0.108 -0.015 -0.013 -0.124 -0.086
(-102.2) (-6.911) (-2.159) (-2.974) (-23.80) (-15.65)
[<0.001] [<0.001] [0.015] [0.001] [<0.001] [<0.001]

BIC(r) -14.53(2) -14.56(2) -14.59(3) -14.63(3) -14.68(3) -14.65(3)
(6) xt =|Rt|2.5

Full -0.040 0.078 -0.172 0.087 -0.380 -0.292
(-13.14) (23.99) (-160.6) (67.01) (-126.6) (-68.38)
[<0.001] [1.000] [<0.001] [1.000] [<0.001] [<0.001]

Block -0.008 0.103 -0.180 0.093 -0.407 -0.328
(-1.085) (20.53) (-93.92) (25.69) (-36.20) (-20.15)
[0.139] [1.000] [<0.001] [1.000] [<0.001] [<0.001]

ES -0.039 0.082 -0.170 0.089 -0.375 -0.269
(-1.918) (4.918) (-14.63) (8.333) (-15.49) (-7.245)
[0.028] [1.000] [<0.001] [1.000] [<0.001] [<0.001]

BIC(r) -16.30(3) -16.31(3) -16.34(3) -16.38(3) -17.45(3) -16.46(2)

Note: For the full sample estimation (Full), the largest Lyapunov exponent estimates
are presented with t statistics in parentheses and p-value for H0 : λ ≥ 0 in brackets.
For the estimation based on blocks (Block) and equally spaced subsamples (ES), median
values are presented. The block length (M) for subsample is 127. For each lag (d), the
number of hidden units (r) are selected based on BIC. QS kernel with optimal band-
width (Andrews, 1991) is used for the heterosckedasticity and autocorrelation consistent
covariance estimation.
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