MAXIMIZATION BY PARTS IN LIKELTHOOD INFERENCE
by
Peter X.-K. Song, Yanquin Fan, and John D. Kalbfleish

Working Paper No. 03-W19

September 2003

DEPARTMENT OF ECONOMICS
VANDERBILT UNIVERSITY
NASHVILLE, TN 37235

www.vanderbilt.edu/econ



Maximization by Parts in Likelihood Inference
PETER X.-K. SONG, YANQIN FAN and JOHN D. KALBFLEISCH

ABSTRACT:

This paper presents and examines a new algorithm for solving a score equation for the
maximum likelihood estimate in certain problems of practical interest. The method circum-
vents the need to compute second order derivatives of the full likelihood function. It exploits
the structure of certain models that yield a natural decomposition of a very complicated
likelihood function. In this decomposition, the first part is a log likelihood from a simply
analyzed model and the second part is used to update estimates from the first. Convergence
properties of this fixed point algorithm are examined and asymptotics are derived for esti-
mators obtained by using only a finite number of steps. Illustrative examples considered in
the paper include bivariate and multivariate Gaussian copula models, nonnormal random
effects and state space models. Properties of the algorithm and of estimators are evaluated
in simulation studies on a bivariate copula model and a nonnormal linear random effects

model.

KEY WORDS: Copula models; Fixed point algorithm; Information dominance; Iterative

algorithm; Nonnormal random effects; Score equation; State space models. *

IP. Song is Associate Professor, Department of Mathematics and Statistics, York University, Toronto,
ON M3J 1P3, Canada (Email: song@mathstat.yorku.ca). Y. Fan is Professor, Department of Economics,
Vanderbilt University, Nashville, TN 37235-1819 (Email: yangin.fan@uanderbilt.edu). J. Kalbfleisch is Pro-
fessor and Chair, Department of Biostatistics, UM School of Public Health, Ann Arbor, MI 48109-2029
(Email:jdkalbfl@umich.edu). The first author’s research was supported by the NSERC Operating Grant.
The research was done while P. Song was visiting Department of Biostatistics, University of Michigan, and

he acknowledges the computing support from the university.



Maximization by Parts in Likelihood Inference
May, 2003.

ABSTRACT:

This paper presents and examines a new algorithm for solving a score equation for the
maximum likelihood estimate in certain problems of practical interest. The method circum-
vents the need to compute second order derivatives of the full likelihood function. It exploits
the structure of certain models that yield a natural decomposition of a very complicated
likelihood function. In this decomposition, the first part is a log likelihood from a simply
analyzed model and the second part is used to update estimates from the first. Convergence
properties of this fixed point algorithm are examined and asymptotics are derived for esti-
mators obtained by using only a finite number of steps. Illustrative examples considered in
the paper include bivariate and multivariate Gaussian copula models, nonnormal random
effects and state space models. Properties of the algorithm and of estimators are evaluated
in simulation studies on a bivariate copula model and a nonnormal linear random effects

model.

KEY WORDS: Copula models; Fixed point algorithm; Information dominance; Iterative

algorithm; Nonnormal random effects; Score equation; State space models.



1 INTRODUCTION

Let yy,...,y, be independent vectors of random variables, and suppose y; has density in
the parametric family, {p;(y|f),0 € © C RP}. The corresponding log-likelihood function is
n n

0(0) = Zz_:llogpi(yz-|9) = ;log&w). (1)
In the regular case, the maximum likelihood estimate, é, of 6 is a solution to the score equa-
tion £(#) = 0, where £(f) denotes the vector of first order derivatives of £(f). This solution is
unique when the log-likelihood function ¢(6) is concave. In some cases, a closed-form solu-
tion can be found; more often, a numerical solution is required using iterative methods such
as Newton-Raphson, Fisher scoring, the simplex method, quasi-Newton methods, simulated
annealing, or the EM algorithm.

The Newton-Raphson algorithm iteratively updates the parameter estimate using,

Hk — kal - {lg (gkl)}l
n

where £(6) is the Hessian matrix of second order derivatives of £(f) and 6° is the initial value.

%é (9’“)} k=1,..., (2)

A variation on this is the Fisher scoring algorithm in which %E is replaced by its expectation
or Fisher information. From good starting values, both methods typically converge rapidly
to the MLE é, and give rise to estimates of the asymptotic covariance matrix of 0.

In many instances, the likelihood function is very complicated and analytic expres-
sions, especially for second order derivatives are not easily obtained or used. One ap-

proach to bypass this problem is to replace the Fisher information by an estimate such

as n~ " G;(051);(0%1)T. This will work reasonably well if n is relatively large and 6°

is a consistent estimate. When n is not large, however, this approach can be very unsta-
ble due to variation in the estimated information matrix. Another approach is to use the
so-called pseudo or empirical derivatives obtained by differencing to approximate first and
second derivatives in (2). When the likelihood is changing only slowly, however, the em-

pirical approximation is very sensitive to the choice of grid points for differencing, and an



algorithm built upon this approximation may be very fragile, especially when the dimen-
sion of the parameter is high. For a complex likelihood function, algorithms incorporating
these approximations often encounter difficulties in invertibility and/or positive definiteness
at updated values.

In this paper we propose a new algorithm to solve score equations from some complicated
likelihood functions. The proposed algorithm strategically selects a part of the full likelihood
function with easily computed second order derivatives. The remaining more difficult part
of the likelihood function participates in the algorithm in such a way that its second order
derivative is not needed. In this algorithm, as for the quasi-Newton algorithms discussed
above, the second order derivatives of the full log-likelihood are not required.

When the full likelihood is so complicated as to be numerically unmanageable, some
simplifications may be introduced by using a related estimating equation that is easy to
solve. Examples of this strategy are the method of inference functions for margins (IFM)
proposed by McLeish and Small (1988), Liang and Zeger’s (1986) GEE approach in marginal
models, and Breslow and Clayton’s (1993) approximate inference in generalized linear mixed
models. The major drawback of this strategy is that there is some loss of efficiency in
estimation due to the use of the estimating function of an approximate model rather than the
exact score. A ‘simple analysis’ based on the approximate model is useful in some problems,
but acquiring efficient estimators is always of often interest. One attractive feature of the
algorithm proposed here is that it enables us to link the simple and exact analyses. In doing
so, the algorithm uses the residual part of the score equation to correct and improve the
efficiency of estimation.

This paper is organized as follows. We present the formulation of the algorithm in Section
2 and briefly discuss examples in Section 3. Asymptotic results are discussed in Section 4
and Section 5 in which a variant of the algorithm is presented. In Section 6, we explore the

application of the proposed algorithm in several different problems. Section 7 includes some



discussion and comments and technical details are given in the appendices.

2 FRAMEWORK FOR THE ALGORITHM

Consider a selected additive decomposition of a log-likelihood function
00) = £,(0) + £.(0).

The corresponding score function is given by
0(0) = ,,(0) + £.(6).

The objective is to find the solution to the score equation £(f) = 0, i.e. the maximum
likelihood estimate. We assume that the calculation of the ¢ is difficult, and aim to avoid
it. In contrast, the first part £,(0) is selected so that solving the corresponding estimation
equation £,,(#) = 0 is simple. Throughout this paper we assume £, (-) (and hence £,()) is
an unbiased inference function. Note that /,, need not be a conditional, marginal or partial
likelihood; only the unbiasedness of £, is needed.

Now let A denote the solution to £, (f) = 0. Under some mild regularity conditions, the

classical theory of estimating functions establishes consistency

and asymptotic normality,

V() — 6,) = N(0, Ji(6))

where Ji(60) = {E(75(60))} " E{Cw(00) 05 (00) H{E (0 (60))} .

The estimator §. can have low efficiency since only part of the full log-likelihood function
is used in estimation. To increase the efficiency, it seems necessary to utilize the information
in the second piece l,. Suppose we are able to evaluate ¢, and consider an iterative algorithm

in which the second step is to solve the equation,

gw(e) = _ée (erlz) ) (3)



for 02, say. To assure this proposal is worthwhile, we need to answer the following questions:
(a) Is 62 consistent and asymptotically normal?
(b) Is 62 more efficient than 67

Continuing this approach, consider the following algorithm:

STEP 1 Solve (,,() = 0 for 6.
STEP k Solve /,(f) = —£.(* ') to produce estimate 6%, k=2.3,....

Note that, if the inverse of Zw() exists, the proposed algorithm is a fixed point algo-
rithm since we may write 5+ = /.1 {—Ee(ﬁﬁ)} Classical numerical analysis theory (e.g.
Burden and Faires, 1997, Theorems 10.5 and 10.6) gives the condition for the existence and
uniqueness of a fixed point. That is, the derivatives of the functional, which in our case is
0 {—ée(-)}, is bounded by Cy/p where Cj is a constant less than 1 and p is the dimension of
the parameter f. An equivalent condition, referred to as information dominance in Section
4, is required for the convergence of our algorithm. Obviously, if the proposed algorithm

converges, it should converge to the MLE. This is because the limiting point 6 of 6% as

k — oo satisfies £,(62°) + £,(6%°) = 0.

3 EXAMPLES

In this section, we present three examples from very different areas to demonstrate the
flexibility of the proposed algorithm and its variant to be introduced in Section 5 in solving

complex score equations.

Example 1 (The Gaussian copula) Consider multivariate data yi,...,y,, where the ith
observed d-dimensional vector y; = (yi1, . - ., yiq) follows a d-variate Gaussian copula distri-

bution with distribution function (CDF) C(Fi(y1; 1), ..., Fa(ys; aq)|T). See, for example,
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Joe (1997) and Song (2000). Here, «; is the (vector) parameter of the marginal distribution

of yi;, j =1,...,d respectively and C(:) is the d-variate Gaussian copula given by
O(ula s 7ud|F) = q)d(q)il(ul)a R q)il(ud)% (ula R ud) S (07 1)d7

where @, and ® are respectively the distribution functions of the d-variate normal Ny(0,T")
with a correlation matrix I" and of the standard normal N(0,1).
Assume the j-th marginal density is f;(y;;;),7 =1,...,d. Let § denote all the distinct
elements in parameters (aq, ..., aq, ") in the model. Then the likelihood function is
n d
L(#) = H {C(Fl(yil;al),. , Fy(yia; @a)|T) H fi(yij; o } (4)

=1

where ¢(-) is the density corresponding to C'(+),
~1/2 L r —1
C(ula"'aud|r) = |F| exp iz (Id_r )Z )

and z”' = (21,...,24) = (@7 (uy),..., P (ug)) and I; denotes the d x d identity matrix.

The log-likelihood function can be written as
6(9) = gw(g) + 66(9)
where
n d
Co(0) = 3> I f(yijs )
i=1j=1

.(0) = ——ln|F|+ Z (1, — T Yz(0).

Note that £,(0) is the likelihood function under the independence correlation structure (I' =
I,;) and only involves the marginal parameters «;, and /.(f) contains all parameters. It is
often straightforward to handle ¢,, by computing its first and second order derivatives, but
hard to derive analytically the second order derivatives of /.. Therefore, neither the Newton-

Raphson nor the Fisher Scoring algorithm is easily available. Although a quasi-Newton



algorithm may be applied here, it often encounters singularity problem for the matrix of the
pseudo-derivatives. Our proposed algorithm provides an alternative approach. As shown
in Section 6.1 where a bivariate Gaussian copula model is studied, the proposed algorithm
yields closed form expressions for the iteration estimates of both marginal and correlation

parameters. This makes the calculation simple and fast.

Example 2 (Non-normal random effects models) The normality assumption in linear ran-
dom effects models is often made for mathematical convenience and may be violated in
practical settings. For example, Zhang and Davidian (2001) report a histogram of subject-
specific intercept estimates from individual least squares fits to the Framingham cholesterol
data, which clearly indicates that the normality assumption for the random effects is not
appropriate. See also Pinheiro et al. (2001) in which they assume a ¢ distribution for random
effects to gain robustness in parameter estimation.

Consider a linear random effects model for clustered or longitudinal data,
yij:x£6+z£ai+sij,jzl,...,m, izl,...,n, (5)

where z;; and [ are vectors of dimension p, and z;; and «; are vectors of dimension ¢g. The
random effects a; are iid with density p(a|n) and the g;;’s are iid N(0,0). The p(a|n) may,
for example, be a ¢ variate ¢ distribution where each marginal distribution is ¢t on v degrees
of freedom (known) and 7 is the covariance matrix. More generally, the degrees of freedom
could also be an unknown parameter included in 7.

The model (5) can be rewritten as

Yi:XiB+Ziai+6iai:17"'7”7 (6)
where y; = (yﬂ, .- -,yim)T, X = ($i1, ce ,xim)T, and Z; = (Zih .- -,Zim)T

Let 8 = (5,n,0). The likelihood function is

L(0) = Tp(5:l6) = T2, [ oy culd)des = T2, [ plyilas, Opleuln)des, — (7)
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where p(y;|a;,0) is the density of the N(X;5 + Z;«r,0I) distribution. The maximum likeli-
hood estimates of the parameters are obtained by maximizing L, which is typically difficult
due to the presence of the g-dimensional integral. There are several simulation-based meth-
ods to find the maximum likelihood estimate of ;. For example, the simulated maximum
likelihood method (Geyer and Thompson, 1992) approximates the integration in (7) by sim-
ulating the random effects according to the ‘prior’ distribution p(«;|n) either directly or by
using importance sampling with a proposal prior distribution such as a multivariate normal
distribution. The approximation accuracy, however, is dependent on the choice of the pro-
posal prior (McCulloch and Searle, 2002, p. 180) and can deteriorate for choices far from
the truth.

In this paper, we apply the idea of importance sampling in a slightly different way. If
p(a|n) were normal, the maximization would be simple, because in this case L would be
a multivariate normal density. Therefore, consider a working normal distribution, N, (0, D)
with density ¢(«|f), for the random effects. In the linear mixed model being considered here,
the working normal model leads to consistent estimation of 3, D, and o. This is because
the consistency in the linear mixed model requires only the first two moments of the data.

Now, under this normal random effects assumption, the working log-likelihood is

Cy(0) = Ing(y;|0) = Zln/p(yi|ai,9)¢(a,~|9)dai. (8)
i=1 i=1
We use ¢ to indicate densities under the working model and p to indicate densities under

the true model and note that p(y;|«, 8) = ¢(y:|a, ). Since

Pyl 0)$(es0)
d)(alb’lvg) ,

the 7th term in the full likelihood can be written as

¢(Yi|9) =

plailt) = ovl0) [ B ol O

Substitution into (7) gives the log-likelihood,



of the required form where
0.(0) = zn:ln/ p(ailn)
i=1 ¢(Oéz|77)

Note that /., may be thought of essentially as a discrepancy measure between the original

o(ailyi, 0)day. (10)

and working distributions of the random effects, weighted by the working ‘posterior’ of the
random effects.

We make two comments:

(i) £, is given by equation (8) where a working normal ¢(«;|n) replaces p(c;|n), while
{, represents the error made by this normal working model. Equation (9) provides
a natural connection between the log likelihoods of a normal and nonnormal ran-
dom effects models. With the normal working model, ¢(«;|y;,6) is a multivariate
normal, and therefore the Monte Carlo evaluation of the integral in (10) is easy to
carry out, even when the dimension q of q; is large. In addition, since ¢, is of the form

[ h(a) exp(—aTa/2)da, Gaussian quadrature can also be used to compute the integral.

(ii) In some settings, the normal random effects model may not be the best working model
to choose. Whatever working model is chosen to yield the ¢, this approach allows
us to balance conflicting requirements of analytical tractability and the flexibility to

model real data.

Example 3 (State space models) High frequency time series of stock transaction records
provide valuable information about the stock market. We consider models for the duration
process where duration is the time interval between two consecutive trades. It is well-known
(e.g. Engle and Russell, 1998 and Bauwens and Veredas, 2003) that the distribution of
trading durations is heavy tailed. Let {d;,i = 1,...,n} be a sequence of trading durations.
A stochastic conditional duration model proposed by Bauwens and Veredas (2003) takes the

form of a state space model

In(d;) = p++n

10



vy = B+ &

where 7; and & are independent errors, 7; follows a heavy tailed distribution p(:|«), such
as log-gamma, and &; is Gaussian ¢(-|o). The latent variable ; is of financial interest as
it represents the Markovian structure of the log-duration. Note that if 7; were Gaussian,
the classical Kalman filter and smoothing technique would be applied to estimate the latent
process ¢;. Let y; = In(d;)—p, y = (y1, .-, yn), and b = (¢, ..., 1,). Denote all parameters
by 6 = (3, ,0). Therefore the likelihood function is

L(0) = [ (vl 0)p(10)dv.

Let L,(#) be the corresponding likelihood function under the working assumption that 7; is

Gaussian. Following Example 2 above, or Durbin and Koopman (1997), we obtain

p(y[,0)

LOY=LoO) [ 100

Puw(¥]y, 0)dy = Ly (0) Le (),

where L, can be thought of as an averaged discrepancy between the approximate and the
true distributions of the log-duration over all states. The log-likelihood function is again

additive, where £, is straightforward to analyze and /. is much more difficult.

4 ASYMPTOTICS

In this section, we study asymptotic properties of the estimators 6% given by the proposed
algorithm, including the consistency (Theorem 1) and asymptotic normality (Theorem 3).
In fact, Theorem 3 establishes the asymptotic normality for every iteration, which enables us
to calculate asymptotic standard errors at any iteration where the algorithm is stopped, such
as the case of one-step update. In particular, we give sufficient conditions that assure the
convergence and asymptotic normality as the iteration index £ — oo. In order to establish

these asymptotic properties, we need the following conditions concerning the log likelihood

11



function. Let Qo = {6 : || — 6p|| < 6} be a neighborhood of the true parameter 6y, where

|| - || is the Euclidean norm.

(A) £(0), €,(0) and £.(0) are twice continuously differentiable for 6 € Qy;

(B) The matrix (ZujIZe)]c — 0as k — oo, where Z,, = —n’lng(Ho) and Z, = —n’lEge(Ho).

This condition is referred to as information dominance.

We make two comments on condition (B).

(i) That the power series decays to zero implies that Z,, is ‘larger’ than Z,, meaning that
/,, contains more information on #, than /.. Consequently, the Hessian matrix of Z,

directs the movement of the updated values.

(ii) To examine the connection between condition (B) and that required by the fixed point
algorithm, let us assume that 6 is 1-dimensional. When é;l exists, the information
dominance is stochastically equivalent, within a y/n neighborbood, to the condition
that the derivative of the functional £,'{/.(-)} is bounded by a constant ¢y < 1. This
is because given a consistent estimator § such that /n(f — 6y) = 0,(1), this derivative
can be expressed as Z,'Z,+0,(1). For the case of higher dimensions, a similar argument

can be made based on each component of 6.
The proofs of Theorems 1 to 4 are given in Appendix A.
Theorem 1 Under condition (A), if 0} is consistent, then 0> is consistent.

Thus, if ! is consistent, then 6F is consistent for each k = 2,3,.... Let

ru(00) = {~n"0u(00)} {0 L(60))},

so that T, — 7(60) = {n="0,(60)} " {n=10(60)}.

12



Theorem 2 Under condition (A), for any integers k > 2 and m > 1,

Vi (85— 08 = {1, — (00} 7 (80) {0} {%awomwo) " %ézww}w(l)

where I, is the identity matriz of dimension p X p.

Note that plim,,_, . 7,(6y) = —Z;'Z. = 7, say. Theorem 2 implies that under condition (B),
the difference between two updates 0¥t and 6% with m-steps apart will vanish when k& — oo
for large n.
To establish the asymptotic distribution of 6%, we first note that under some mild regu-
larity conditions,
Cuy
n 2T | = N(0,9),
le
in distribution, where
EL 0T Fl,0"
Q = lim,_,oon ! o o ,
El L EC0T
and 0, = 0,,(0y) and £, = (,(6y).

Theorem 3 Under some regqularity conditions as required in the MLE, 0F is asymptotically

normally distributed with mean 0y and variance n='%, with

Y = ATQA,, (11)
where
4 1, — ] 7
1, — Yz

Moreover, under the condition of information dominance as k — 0o, ¥ — Z7!, the inverse

of the Fisher information.
It is easy to see that under condition (B), 7% — 0 as k — oco. Hence
lim Sy =77 lim N E{ly + (3 {0y + )T =T 7L
—00

13



According to Theorem 3, as k — oo, the asymptotic variance matrix of 0¥ converges at an
exponential rate to the asymptotic variance matrix of the MLE 0.
At each iteration, let
n
IF=n"" X;l%(yi; 0%)0i(yi; 05)"
P
where ¢;(y;;-) denotes the i-th piece of the likelihood with respect to observation y;. At
convergence, the algorithm yields the MLE @, and the ‘average’ Fisher information can be
estimated by 7 = I with the 0% replaced by 0.
An estimate of Z, is Z, = —n ! " éw,(y,,é) An estimate of Z, is then given by
7. = I —I,. Similar quantities can be obtained at any iteration, and they allow direct

estimation of the asymptotic covariance matrix of 0F.

5 A VARIANT OF THE ALGORITHM

In some cases, such as Example 1 in Section 3, the parameter vector 87 = (81, 67), where 6,
and 6y are of dimensions p; and p, with p; + ps = p, and the log-likelihood function can be

written as

0(0) = Ly (01) + Le(64,65).

The resulting score equations are

éw(l) (61) + ée(l) (6,02)
ée(?) (917 92)

where éi(j) = 00;(0y)/00;, i =w,e; j=1,2.
We suppose that éw(l), ée(l) and ée(g) are all unbiased for parameter #; and 65, respectively.

A modified version of the algorithm is as follows:

STEP 1 Solve £,,1)(61) = 0 for 0] ,; and

1,n»

Solve L) (]

1,n°

62) = 0 for 6},,.

14



STEP k Solve £y,(1)(61) = —leqr) (05, 0531 for 6% 5 and
Solve Loz (05,1,02) = 0 for 0%, k =2,3,....

Let 0% = (6%

1,n>

05,). By a similar argument to that in Theorem 1, 6} is consistent for each

k. Further, under regularity conditions, % will converge to the MLE 5, and hence become

fully efficient as k — oo. In Theorem 4, we establish asymptotic variances of 0F.

Let Iz(jk) = —nilEé.i(jk) (90),2 = w,e,; j, k = ]_, 2, where gz(yk) (9) = 82&(90)/89389{ At

90, let

D . —nilgw(u) 0
i 0 —n_lge(gz)

T, = n_lé:e(ll) n_lge(u) _
i n_lge(m) 0

. 0
i n[é.e(m)]*l[&(21)][%(11)]

and T’ = plim,_,., D;'T,, = D7'T.

Let ©y be the asymptotic variance matrix of the estimating functions n_l/Q[éw(l), ée(Q), éw(l); 0]7,

-1

| Zway O

+0p(1) = D +0,(1),

0 Z-e(22)

Loy Zeqiz
Ie(21) 0

+0,(1) =T + 0,(1),

0 0

0
: ) +0,(1) = L + 0,(1),
0 I(3_(22)16(21)7:11_;(11)

where 0 is included only for the sake of dimension.

Theorem 4 Under the regularity

normal with mean 0, and variance

B

By

conditions of mazimum likelihood, 0F is asymptotically

n~'Sy. where 3y = B Qv By, By = [Bp1, Bra], and

{I,-TF}T 7 41F L

{,-TF T

Moreover, if T — 0 as k — oo, then ¥, — Z7'.
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6 APPLICATIONS

6.1 The Bivariate Gaussian Copula

Consider a bivariate distribution with Gaussian copula, a special case of Example 1 in section
3, with d = 2. Thus, y; = (yi1, yi2)” has CDF C(Fy(y1; 1), Fo(y2; a2);p),i = 1,...,n, where
F;(+; @) is the marginal CDF of y;;, j = 1,2 and

C(u,v;p) = (0 (u), @' (v)). (12)

In this, ®,(:,-) is the CDF of a bivariate normal distribution with zero means, variances 1,
and correlation coefficient |p| < 1.

Let 0 = (o], a3, p). The log-likelihood function is
0(0) = Ly(01) + Le(61,05), (13)

where 0, = (ol , a)T, 6, = p,

n n

ly(h) = Zlnﬁ(yn;al)+Zlnf2(yi2;az),
i=1 i=1

£(61,6) = —ZIn(1—p%) - {pA(0)) — 2B(01)}. (14)

_r
2(1-p?)
In thiS, A(Gl) = E?:l[Zil(al)Q + Zig(a2)2], B(91) = Z?:l Zil(Oél)Zig(OéQ) and Zij(Oéj) =
q)il(Fj(yij; O[j)). It follows that

=R - oo (o)
%@292) -1 ﬁpr T _lpg)g{PA(91) — (1+p*)B(6:)}. (16)

The algorithm proceeds as follows:
STEP 1 Find 6}, to maximize (,(6;). Note that 6} , is the MLE of 6,y when 6,4 = 0;

Solve 94, (0}

1,n?

92)/892 = 0 fOI' H%m

16



STEP k Solve 0¢,,(6,)/90; = —A(6%1) for 6

1,n»

with A(f) given by (15); and
Solve 0/, (0% 7', 05) /00, = 0 for 05 k=2,3,....

This algorithm is applicable to the bivariate Gaussian copula model with any marginal distri-
butions and is easy to implement. For example, computation of dA/d6; involves calculation

of the derivatives of Z;;(«;) and solving 0/.(67,6,)/062 = 0 leads to the cubic equation
05 — 03 B(07) + 0,A(07) — B(6;) = 0,

which has a unique solution lying between B(67) and [1 A B(67)/{A(6}) — 1}].

Note that the estimate 6 = (0] ,,6) ) from STEP 1 is frequently used in practice due

1,n
to the complexity of computing the MLE. In general, #! may not be asymptotically efficient,
since STEP 1 ignores the dependence between y;; and y;> in calculating H%m. Subsequent
steps take account of estimates of the dependence parameter 0, leading to more efficient
estimates of ¢ 5. In the special case where the marginals are normal distributions, or equiva-
lently where the bivariate distribution is a bivariate Gaussian distribution, STEP 1 generates

asymptotically efficient estimates (the MLEs).

Example 6.1: Suppose y;; ~ N(0, 03 ) for j = 1,2. Then one can easily verify that
- T
1 —1 2 1 — 1
91,n = (n Zyih Zyﬂ = 01 n 02, n)
i=1

n
H%m = n_lzyﬂym/(ainﬂin),
i=1

the MLEs in the bivariate normal with means zero, variances 0%, o2 and correlation p. The

algorithm converges in one step.

Example 6.2: Consider exponential marginal distributions with densities f;(y;; ;) =
ajexp(—a;y;), a; > 0, j = 1,2. The likelihood function for the independence model is
ly(01) = [nlnay —012%1 + [nlnay _QQZle
i=1 i=1

17



Let y; =n 30 y; for j = 1,2 and AF = (A%

¢ .o A% ), where the bar denotes the sample

average of A (15) evaluated at the updated values. We find that 67, = {y7',7,'} and
0, = {(m + A7 (52 +A5,") 7'} for k > 2. As in general, implementation only requires
solving a few third order polynomial equations in #,. In contrast, the direct computation of
the MLE by a Newton-Raphson algorithm is much more difficult to implement. As shown in
Appendix B, the observed and expected Fisher information matrices are very complicated,
and there are no closed form expressions for the latter.

To examine speed of convergence, we performed a simulation study to compare nE,;l,
the inverse of the estimated asymptotic variance of 6%, to the observed Fisher information
over a number of iterations. The distance between two matrices is defined as the maximum
of the absolute entrywise differences.

The simulation study considers 9 parameter combinations with p = 0.3,0.5,0.7 and
aj/as = 10,5,1. Note that the absolute magnitude of o = (a1, ) does not matter due to
scale invariance. Two sample sizes, n = 20 and n = 100 are considered in Figures 1 and 2
respectively. For each parameter setting, 100 replications were run.

Figure 1 displays the average distances of the updated nX, ' matrix relative to the ob-
served information matrix over 100 replications at iteration k. When p = 0.3, the algorithm
takes about five iterations to reach the observed Fisher information; when p = 0.5, ten it-
erations is typically enough; when p = 0.7, it can take as many as 200 iterations. This is
a result of ¢, being based only on the marginals and not taking correlation into account.
When the correlation is high, /,, contributes a smaller portion of the information, and more
iterations are needed to recover the full information. If p is too large (e.g. p = 0.95), the
marginals-based partition of £(6) no longer works since the information dominance condition
is not satisfied. A new ¢, is needed that takes some degree of correlation into account.

Figure 2 is very similar to Figure 1, and the convergence rate of the information does not

seem to depend much on sample size. Both figures also suggest that the convergence of the
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Figure 1: Distances between the updated information and the observed information matrices

with sample size n = 20 over 100 replications. Note the iteration numbers shown in the

bottom row of panels are the last 50 iterations before convergence.
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Figure 2: Distances between the updated information and the observed information matrices
with sample size n = 100 over 100 replications. Note the iteration numbers shown in the

bottom row of panels are the last 50 iterations before convergence.

ratio=10 ratio=5 ratio=1

15

10

rho=0.3

0.0 0.050.100.150.20 0.250.30

00 05 1.0 15 20 25

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

=0.5
60

rho:
100 200 300 400

20 40

0
0
0

0.3

rho=0.7

0.1

0.2
00 01 02 03 04 05
0.0 0.1 0.2 0.3 04

0.0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iterations Iterations Iterations

information does not depend much on values of « either.

Table 1 gives the asymptotic relative efficiency (ARE) (first line) and the ratios of sample
variances (second line) for the initial #% and one-step updated estimators 61, and 62 to the
sample variance of the MLEs. The ARE is the ratio of the diagonals of n¥; ' to the diagonals
of the inverse of the Fisher information matrix (Appendix B). The Monte Carlo method with
sample size 5,000 was used to evaluate the expectations involved in the information matrix
in each replication. We chose (ay,as) = (1.0,1.0) in this simulation. Other values of the

rate parameters with unequal a; and ay gave similar results.
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Table 1: The average ARE’s and ratios of the sample variances for the initial and one-step

estimators to the sample variance of the MLEs based on 200 simulations.

n = 20 n =100
Initial One-Step Initial One-Step
poal a3 of o pt ) oy o o p

0.3 1.093 1.112 1.033 1.029 1.033 1.026 1.012 1.012 1.003 1.033
1.181 1.045 1.052 1.039 1.183 1.038 1.112 0.998 1.011 1.012
0.6 1.426 1.034 1.001 1.175 1.063 1.517 1.425 1.242 1.062 1.242
1.156 1.010 1.007 1.076 1.162 1.516 1.505 1.175 1.075 1.298

From this simulation, we find that the MLEs and the one-step estimators for the rate
parameters «;,7 = 1,2 are comparable for both small or moderate correlation. On the
other hand, the MLE for the correlation parameter p is clearly more efficient than the one-
step estimation. The current widely used strategy based on the one-step estimation seems
reasonable for the estimation of the mean parameters but not for the estimation of the

correlation.

6.2 Non-normal random effects models
In this section, we consider a simple non-normal random effects model
I S S
Yij = v B+ ait+ey, j=1,...,mi=1,...,n, (17)

where the scalar random effects «o; ~ \/Jt(d) has a scaled t distribution with d > 2 degrees
of freedom and scale parameter /w. This distribution has mean zero and variance n =
wd/(d — 2) with heavier tails than the normal. Parametrization in terms of n gives the

density

plailn) = (d—2)nB(4, 1) (1 * (d —Z2)77> .



Linear mixed models with ¢-distributed random effects have been studied in Bayesian analysis
using Markov Chain Monte Carlo methods. See Wakefield et al. (1994) and Wakefield
(1995). Pinheiro et al. (2001) developed EM-type algorithms, including ECM, ECME and
PX-EM, for maximum likelihood estimation in such a setting. Compared to their methods,
the proposed algorithm is much simpler and faster.

As in Example 2, we choose o; ~ N(0,n) and g;; ~ N(0,0),i =1,...,n,j =1,...,m

independent. Let 6 = (8,7,0) and v = 1. The second piece £.(f) in equation (9) is

given by (10), where ¢(a;|y;, 0) is the density of the univariate normal with mean, pf =
v 7 (i — x;8)/m, and variance, 0* = ov/m.

Let

19 =2 o;ly;, 0).
P (a0 ¢(az|9)¢)( ilyi, 0)

Then, £.(0) = >, In [ p(a;|0)da; and

o ® = T = 3 { [ elaiyia) [ ot

where 0, = 3, 0 = n, and 03 = 0. We evaluate the integrals in (18) by the method of

8lng0 az|9)

dOzi, (18)

Gaussian-Hermite quadrature based on the posterior normal distribution ¢(o;|y;, #). Related
details are presented in Appendix C.
Let e; = a; — p; denote the prediction error for the random effect. The derivatives of

©(;]0) are, respectively,

op(aylf) e~
891 N o jz::IxU,
Op(eil®) 1 [ (d+Def o  p?).
0, 2\ (d-2n+ai o+mnp q [
op(aylf) 1 L me} N 2e; 1t
003 T 2 o n |

For the working normal random effects model, we refer to McCulloch and Searle (Chapter

6, 2001). Some relevant formulas needed in our algorithm are listed as follows. The working
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likelihood function in equation (9) is

n 1 & _
L(0) x —Dlog[S] — Yy~ KBTSy - Xif) (19
i=1

where

1
S = oLy 4 9, L=~ [[m 25 s = 0™ Yo+ m).

o m

Jm = 117 is a matrix with all elements equal to 1, and 1 — v = —2

o+mn”

It follows that the working score functions are given by

where

00, ()
00,
00, ()
00,
00, ()
00

n

=1

1

2
1

2

{
|

mn(l —v)
nm-v) 1

S1=> (yi— XiB) (yi — XiB), So=> _(yi— XiB) Jn(y: — XiB3).

=1

=

1

Clearly, E(S;) = mn(o 4+ 1) and E(S) = mn(c + mn). It is easy to prove that Ef, = 0,

so all working score functions are unbiased. Also, the information matrix Z; = —n"'Ef, for

the working model is a block diagonal matrix given by

Ilz

-1\ Ty -1

0
0

To find the MLE, we proceed as follows:

STEP 1 The consistent initial estimate ! =

0 0
m2(1—v)> m(1—v)?
202 202
m(1-v)?2  (m=1)+(1-v)>
202 202
(B, nk ol) is given by fitting model (17)

under a normal distribution ¢(-|n), namely by solving /,,(6) = 0.

STEP k 6F solves

éw (9) =
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Note that parameter f can be entirely updated under ¢, so the asymptotics developed in

Section 4 are applicable here.

k

%) to equation (20) can be found using Newton’s method or

The solution 0% = (8% nk o
Fisher scoring, or by iteratively solving the following three equations:
o= (s ) {Soxrs o),
i=1 i=1

2 .
{—&(2)(913_1)} TP T - 2 _ 0,
mn mn

with 7 = o + mn, and

ago? + a10 + as = 0,

where
2 . 2
= e (O G
a0 (m—1)n 0 )+m(m—1)n @),
a; = —1,
mSl — 52
ag = —0.
? m(m — 1)n

Finally, n is obtained by n = =—2.

We conducted a simulation study to investigate how misspecified random effects distri-
butions affect the accuracy and efficiency of parameter estimation. Some studies (e.g. Butler
and Louis, 1992; Verbeke and Lesaffre,1997) have revealed that inference on fixed effects is
robust against non-normality of random effects. Our simulation results confirm this, but
also find that the efficiency of estimates of fixed effects is affected by using a misspecified
distribution of random effects.

The simulation is based on the following parameter configurations. First, we chose degrees
of freedom d = 3 and d = 20, where d = 3 presents a strong departure from normality whereas
d = 20 presents little difference from normality. Second, we took p = 2 with gy, = 0.5
and ; = 1.0. Third, we considered two scenarios for within-cluster correlation: one with

n = 1.0,0 = 0.25 (within-cluster correlation of 0.8) and with n = 0.25, 0 = 1.0 (within-cluster

24



Table 2: Simulation results based on #(3) distribution and parameters 5, = 0.5, 51 = 1.0,7 =

1.0, and o = 0.25. The within cluster correlation is 0.8. 100 replications are run.

Empirical Observed

Parameter Estimate Iteration Mean std. dev. std. err.

Bo naive 0 5230 1268 1554
MLE 16 D187 1101 1104
B naive 0 9870 1732 2170
MLE 16 9714 1412 1455
n naive 0 .8591 3979 3845
MLE 16 .8649 2113 .2308
o naive 0 2491 .0194 .0182
MLE 16 2487 .0191 .0181

correlation of 0.2). Only one covariate was considered with 50 clusters receiving treatment
x = 1 and the other 50 clusters receiving placebo x = 0. We used n = 100 clusters, each
with m = 5 individuals, and 100 replications.

To evaluate the rate of convergence, we monitored the number of iterations required
to achieve the MLE, and the averaged number of iterations is reported in Tables 2—-5. The
algorithm stops when the maximum difference between two consecutive estimates is less than
10=*. In these tables, empirical standard deviation refers to the sample standard deviation
and observed standard error refers to the standard error computed from the observed Fisher
information given by Theorem 3.

Both naive estimation under the normality assumption for the random effects and maxi-
mum likelihood estimation under a ¢-distribution are reasonable, so far as bias is concerned.
However, the standard errors for the fixed effects estimates are affected by the departure

from normality. For d = 3 and the within cluster correlation of 0.8, based on the observed
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Table 3: Simulation results based on ¢(20) distribution and parameters Sy = 0.5,3; =

1.0,7 = 1.0, and o = 0.25. The within cluster correlation is 0.8. 100 replications are run.

Empirical Observed

Parameter Estimate Iteration Mean std. dev. std. err.

Bo naive 0 4807 .1466 1474
MLE 3 4799 1445 1442
B naive 0 9913 1847 .2086
MLE 3 9938 1814 2043
n naive 0 9732 1554 .1598
MLE 3 9715 1514 .1456
o naive 0 2528 .0166 0185
MLE 3 2528 .0166 0185

Fisher information in Table 2, the MLEs of 3, and 3; are 40% to 50% more efficient than
the corresponding naive estimates. When the within cluster correlation is 0.2 as in Table
4, the MLEs are 4% to 18% more efficient. From Tables 3 and 5, when d = 20, the naive
estimation is almost as efficient as the MLE as expected, since #(20) is nearly identical to the
normal with the same variance. Similar conclusions hold for the efficiency of the variance

components estimates.

7 DISCUSSION

In this paper, we proposed a simple fixed point algorithm that updates an estimator obtained
from a simple analysis to obtain the MLE. The choice of the simple analysis is flexible and
determined by the specific problem under investigation. We gave three examples where such

a likelihood decomposition can arise naturally from the structure of a model itself. We

26



Table 4: Simulation results based on ¢(3) distribution and parameters 5, = 0.5, 51 = 1.0,7 =

0.25, and o = 1.0. The within cluster correlation is 0.2. 100 replications are run.

Empirical Observed

Parameter Estimate Iteration Mean std. dev. std. err.

Bo naive 0 4991 .0904 1007
MLE 7 .5002 0758 .0965
B naive 0 9983 1286 .1449
MLE 7 1.0022 1074 1227
Ui naive 0 .2465 1453 1521
MLE 7 .2461 1231 1394
o naive 0 1.0010 0791 0728
MLE 7 1.0023 0718 0724

anticipate there are other settings in which this idea is applicable.

In the study of estimation for bivariate copula distributions, we found that neither the
naive estimation based on the marginals nor the one-step updated estimation widely used in
the literature, gives satisfactory efficiency for correlation parameters. Our method provides
an easy way to obtain the MLE in such a setting. In the study of nonnormal random effects
models with ¢-distributed random effects we found that the misspecified distribution for the
random effects can significantly reduce estimation efficiency, especially when the departure
from normality or the within class correlation is large.

Finally, as with every numerical algorithm, our algorithm requires a condition for con-
vergence. The key condition, referred to as the information dominance, is conceptually
intuitive, and it guides the choice of a model for the simple analysis. Approaches that relax

this condition are currently under our investigation.
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Table 5: Simulation results based on ¢(20) distribution and parameters Sy = 0.5,3; =

1.0,7 = 0.25, and o0 = 1.0. The within cluster correlation is 0.2. 100 replications are run.

Empirical Observed

Parameter Estimate Iteration Mean std. dev. std. err.

Bo naive 0 5075 .0976 .0953
MLE 2 5075 .0968 .0949
B naive 0 1.0046 1575 1359
MLE 2 1.0042 .1566 1352
n naive 0 2378 0765 .0685
MLE 2 2378 0765 0657
o naive 0 1.0091 0791 0738
MLE 2 1.0091 0791 0738
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APPENDIX A: PROOFS OF THEOREMS

We use the notation of Sections 4 and 5.

Proof of Theorem 1: Suppose 6} is consistent, so that 8} = 6, + 0,(1). Since 6?2 satisfies

the equation, £,,(62) + £.(A}) = 0, the Mean Value Theorem implies that
0=y (67) + Le(8) = £ (B0) + €u(8;,) (07 — 60) + Ce(6,), (21)
where 6 lies between 62 and 6. It follows that
0 = 0o = [=n " ()] [P (00) + 1™ e(6,)] = 0
since, under the regularity conditions, [—n ¢, (8})] is bounded and

plim n_léw(ﬁg) + n_lée(ﬁyll) = lim n_lEgoé(HO) = 0.

Proof of Theorems 2 and 3: A Taylor expansion of éw and ée about 6, gives
0 = n 2[0,(08) + L.(057Y)]
= 07 Pl + 072+ (n7M) [VR(0F = 00)] + (n7M e ) [VR(0E7 = 65)] + 0,(1)
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where we have suppressed the dependence on 6 in £, = éw(ﬁo), l,, 0y, and /,. Hence, for

k=2,..., we have

ViOk—00) = (—n'0, ) (0770, ) (—n7 8) T (0 ) [VR(0E — 0)] +op(1). (22)

[terating (22) yields

k—2

Vn(dF —6,) = ;]r,{ (—n_lgw )71 (n_l/Qéw ) +> 71 (—n_léw )71 (n_l/Qée) + 0,(1)

where
"= (=7 | o =)

Since A* converges in probablitily to Ay, and
{ =112,

‘ — N (0,Q)
n—1/2£e

in distribution, it follows that

V(b —6y) = N(0,%).
where ¥, = ATQA, as stated in Theorem 3.

Proof of Theorem 4: We suppose that consistency of 6% holds and sketch the remainder

of the proof. From Step k, we have
Cuy (0F,,) + Lo (075", 057,1) = 0,

and

Cey(0F,,05,,) = 0.
A Taylor expansion about 6y = (6;,,62,) gives
éw(l) (61,0) +gw(11) (91,0)(91f,n —b61) +ée(1) (6o) +é.e(11) (6o) (glf,ﬁl —b61) +ge(12) (90)(9129,21 —b50) =0
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and
ée(2)(90) + ge(21)(90)(9]f;11 —bip) + ge(22)(90)(9]§,n — b)) =0

Rewriting these in a matrix form gives the recurrence relationship
V(0 — 00) = D' Ton/n (05" — 60) + D, {n""20(60) } (24)

[terating equation (24) yields

k—2 1.

Vi(0k — 00) = (D, 'T,)" " /(6L — 00) + > (D,'T.)’ D, 7=(0).

! a Taylor expansion at Step 1 leads to

. 1 .
Since 6 ,, is used to define 0, ,,

-1

—n 10, 0 n-1/2¢,
Vi(Oh —0) = e "
—n" o1y =N g (22) n=2ly 5

_ por | T | T
! n*I/Zée(z) n’l/%e@)
Thus,
o1 _ n2, k—2 . n-12¢,
vtk —oy = 5 (orny o | "0 [ gy o | e
Jj=0 n_l/QZe(Q) Jj=0 0
+(0,'1)" 'L n
" n—l/zée@)

o O T

n—1/2l2w(1) ]

n71/2ée(2)
k-1 n 2l
+ {Ip - (Drlen) } {1, - Dngn}_lDrjl 0

+(D,'1)" L,

n71/2éw(1) ]

n-1/2 ée(Z)
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Note that {I, — D, 'T,,} *D;' = (D, — T,) ' = {—n’lf(%)}_l-

It follows that, as n — oo,

N H[p _ (D;ITn)’“} [-n7i00)) "+ (D7) Ln]

=2l }

n71/2ée(2)

2l

+ {Ip - (D;lTn)"“_l} {=n1i(00)} "

— N(O, Ek),

0

where Y, is defined in the statement of the theorem.
Under the condition that I'* — 0, as & — oo, the algorithm leads to the following

asymptotic variance-covariance matrix,
n_lE(éw(1) + 53(1))(%(1) + ée(l))T ”_IE(éw(l) + ée(l))lg@)

n Blo) () + Leqy)” ' Bloz) ()
= 7! {limn 7"071]3@(90)%(90)}Ii1

= 77!

where Z is the Fisher information.

Appendix B: Fisher Information for the Bivariate Gaussian

Copula

The Fisher information is symmetric with elements ;; = —=E(0S5;/96;) where 67 =

(an, g, p). Tt is easy to verify that

Ill = 04;2 + p(l — pZ)ilE |:p212 + lezl - ZZZI]

]12 = —p(]_ - pz)_lE [ZIZQ]
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Ly = p(1—p")'BE|Z12]

Iy = ay?+p(1—p")'E {p(Zg + pZQZZ — ZIZZ]
Ly = p(1- PQ)AE [222.2}

Iy = (1+p)(1-p")"

Also,

Zi = & NF(yj;05) = @' (1 —exp(—ayy;)), j=1,2
Zj = yjexp(—oy;)[6(Zi(0g)] "

Z; = —yjexp(—ayy)[o(Z;(o))™ = 12,17,

Appendix C: Gaussian-Hermite Quadrature

The Gaussian-Hermite quadrature method is used to evaluate the integrals in equation

(18). For convenience, we suppress the index i. Let

_ P and w(alf) = w(« M

Then, the Gaussian-Hermite quadrature gives the following results.

[ #lalf)da Z (1" + V257 0,(6)z

and

Oln a9
[ elaip T Z (" + V3o a,l6)2,

where a; and z; are respectively the abscissae and weight factors given in Abramowitz and

Stegun (1965, page 924) and in this application p* = H’Zm] >Y(y: — X;f8) and o* = #Zm
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