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1 Introduction

One of the reasons why Rubinstein's (1982) work has spurred extensive studies on bargaining

lies in the fact that the alternating o®er bargaining model with discounting has a unique, e±-

cient perfect equilibrium featuring an immediate agreement. Despite its strong predictability,

the Rubinstein model is unable to explain the phenomenon that many bargaining situations

have ine±cient outcomes with delayed agreements, or even with perpetual disagreements.

Studies have shown that incompleteness of information can cause ine±cient outcomes in

bargaining. Indeed, many bargaining models of incomplete information often have ine±cient

equilibria.1 Many bargaining models of complete information also have ine±cient equilib-

rium outcomes. For example, Chatterjee and Samuelson (1990) show that the possibility of

simultaneous-o®er can lead to ine±cient equilibrium outcomes. Perry and Reny (1993) and

S¶akovics (1993) obtain ine±cient outcomes in bargaining models with strategically timed

o®ers. Haller and Holden (1990), Fernandez and Glazer (1991), and Busch and Wen (1995)

identify endogenous interim disagreement payo®s as one possible source of ine±cient equi-

librium outcomes.2 Busch, Shi and Wen (1998), and Manzini (1999) ¯nd that delay occurs

in a bargaining model if one player can destroy the future value of the relationship between

the two players.

Most of these models of complete information have one common feature: The multiplicity

generates the ine±ciency. Ine±cient equilibria are supported by trigger strategies, as in the

folk theorem for repeated games. The idea is that the player who deviates from a prescribed

ine±cient outcome would be punished by his worst perfect equilibrium available in the

continuation game, which is made possible by the multiplicity of perfect equilibria. Under

certain conditions, most of these models obtain \folk theorems": Any feasible payo® vector

in which every player receives more than his lowest equilibrium payo® can be supported

1For an excellent review on this issue, see Osborne and Rubinstein (1990).
2The interim disagreement payo®s are the payo®s that players receive after a rejection and before the

next proposal. It is equivalent to the disagreement payo® if the interim disagreement payo®s are constant
overtime.
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by a perfect equilibrium. Inevitably, these types of results lack of predictability due to the

multiplicity of perfect equilibria.

In this paper, we present a strategic bargaining model with two new important features,

comparing with Rubinstein's bargaining model. First, interim disagreement payo®s are

stochastic. Second, the proposing player can delay making an o®er. With these two features,

we show that each player has a unique perfect equilibrium payo® in most of the cases. In some

cases, the equilibrium is ine±cient with a stochastically delayed agreement. We also prove

that both of these features are necessary for the existence of such an ine±cient equilibrium

outcome in our model.

Our model ¯ts to bargaining situations in which the bargaining environment changes

over time. When a ¯rm is contemplating to purchase another ¯rm, or when two ¯rms are

contemplating to merge, they negotiate over the acquisition price, or exchange ratio of their

stocks, respectively. During the negotiation, each ¯rm continues to earn the pro¯ts that

vary stochastically with the overall performance of the economy. Following the alternating

proposing sequence, it is possible that a ¯rm delays making an o®er. When both ¯rms have

relatively high pro¯ts in the current period, the proposing ¯rm is more likely to delay making

an o®er as the loss from temporary disagreement is relatively small. The perfect equilibrium

in our model has the feature that two players will reach an agreement only when the realized

interim disagreements are low.

Now we demonstrate the role of our second assumption in the model. In the Rubin-

stein bargaining model with variable interim disagreement points, the equilibrium outcome

depends only on the sequence of the responding player's interim disagreement payo®s in

the subsequent periods. The reason is, in each period the proposing player will o®er the

responding player the continuation payo® for the responding player which would result from

his own rejection. For example, in a period where player 1 makes an o®er and the interim

disagreement point is (x1; x2), the continuation payo® for player 2 (the responding player)

after his rejection can be written as (1¡ ±)x2+ ±v2, where ± is the discount factor and v2 is
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player 2's continuation average payo® from the next period on. This implies that player 1

needs to make a generous o®er to player 2 when x2 is high. If x1 is also high, then player

1 will be more reluctant to make an acceptable o®er since player 1's opportunity cost is

relatively high. Player 1's opportunity cost for making an acceptable o®er is (1¡ ±)x1+±v1,

where v1 is player 1's continuation payo® from the next period. If the value to be divided is

normalized to 1, player 1 will not make an acceptable o®er if

(1¡ ±)x1 + ±v1 > 1 ¡ [(1¡ ±)x2 + ±v2]

, x1 + x2 >
1¡ ±(v1 + v2)

1¡ ± ; (1)

which requires that both players' interim disagreement payo®s are high. In the Rubinstein

bargaining model, inequality (1) does not hold when the interim disagreement point is below

the bargaining frontier, since v1+ v2 · 1. In our model, however, since the proposing player

can delay making an o®er, both v1 and v2 correspond to the proposing player's continuation

payo®. As a result, it is possible that v1 + v2 > 1. If so, inequality (1) holds even though

x1+ x2 < 1 so that the proposing player will not make an o®er when the value of x1 + x2 is

relatively high.

We construct a two-player bargaining model that captures the two features mentioned

above. Inequality (1) suggests that only the sum of the two players' interim disagreement

payo®s matters to the proposing player's decisions in the model with transferable utility.

Therefore, without loss of generality, we assume that both players have a common interim

disagreement payo® in any period. This interim disagreement payo® takes one of two possible

values, a high value and a low value, according to a simple stochastic process that is common

knowledge. The low realization is normalized to 0. At the beginning of any period even before

a player proposes, the interim disagreement payo® for that period is realized and observed

by both players. Therefore, our model is of complete information. The two players o®er and

respond in the same way as in the Rubinstein model except that the proposing player may

also delay making an o®er for one period in our model.3

3Note that this assumption allows the proposing player to delay making an o®er for more than one period.
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Our model admits a unique perfect equilibrium for almost all the parameter values. The

equilibrium outcome, however, varies with the variability of the interim disagreement payo®.

When the high interim disagreement payo® is relatively small so the variation of disagreement

payo®s is low, the two players will reach an agreement in the ¯rst period, which is an e±cient

outcome. On the other extreme, when the high interim disagreement payo® is so high that

the players' expected interim disagreement point is strictly above the bargaining frontier, two

players will never reach an agreement, which is also an e±cient outcome. Most interesting

is the case where the high interim disagreement payo® is in an intermediate range so that

the variation of interim disagreement payo®s is high but the expected interim disagreement

point is still below the bargaining frontier. In this case, the proposing player will not make

an o®er when the realization of the interim disagreement payo® is high, and will make an

acceptable o®er otherwise. Consequently, the equilibrium outcome involves a stochastically

delayed agreement. Stochastic delay occurs even though the high interim disagreement point

lies strictly below the bargaining frontier, in which case the outcome is ine±cient.

Bargaining situations with stochastic disagreement points or with stochastic bargaining

values have attracted much attention. Riddell (1981), Chun and Thomson (1990a,b), and

Bossert, Nosal, and Sadanand (1996) analyze these issues within cooperative frameworks.

Within a non-cooperative framework, Avery and Zemsky (1994) study a version of the Ru-

binstein bargaining model with a stochastic value of an asset to be traded. As our model

predicts, they also derive an equilibrium with delay to an agreement. However, our model is

crucially di®erent from theirs in the following two aspects: (i) the proposing player may delay

in making an o®er for one period, and (ii) both players observe the realization of the current

interim disagreement payo®. Avery and Zemsky (1994) specify that only the responding

player, not the proposing player, observes a shock to the option value. In this aspect, Avery

and Zemsky's (1994) model is of incomplete information. Jehiel and Moldovanu (1995) in-

corporate negative externalities into the bargaining model of complete information, and ¯nd

that there is a unique perfect equilibrium outcome with delayed agreement.
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The stochastic aspect of our model is similar to that of Merlo and Wilson (1995, 1998).

They studied a bargaining model of complete information, in which both the value to be

divided and the identity of the proposer in each period are determined stochastically.4 Es-

pecially, Merlo and Wilson (1998) analyze a bargaining model with transferable utility like

ours, and show that there is a unique, e±cient perfect equilibrium that in some cases involves

delayed agreement. There are two notable di®erences between our model and theirs. First,

it is the interim disagreement payo® that varies stochastically in our model, whereas it is

the value to be divided in theirs. As Busch, Shi, and Wen (1998) argue, this di®erence can

be considered to be minor since it is the surplus that players bargain how to divide among

them. However, delay to an agreement is more surprising in our model than theirs, since in

our model the total value to be divided would not possibly increase by waiting. The second

di®erence is more important. In our model, a proposer can retain the right to propose when

he chooses not to propose in the current period, whereas in Merlo and Wilson (1998) who

proposes in the next period does not depend on current actions. Delay to an agreement is

caused by this feature and is ine±cient in our model. On the other hand, delay is caused by

the expectation that the total bargaining value may rise in the future, and hence is e±cient

in Merlo and Wilson (1998).

The rest of the paper is organized as follows. The next section presents our model. Sec-

tions 3 and 4 establish the existence and uniqueness of the perfect equilibrium, respectively.

Section 5 investigates equilibrium properties. Section 6 concludes the paper.

2 The Model

Two players, 1 and 2, bargain over the allocation of a periodic value of 1. In any period

prior to an agreement, after both players observe their interim disagreement payo®s (x; x) for

the period, one of the players (called the proposing player) can either make an o®er of how

to share the value of 1 or keep quiet (make no o®er at all). If the proposing player makes

4Eraslan and Merlo (1999) investigate the impact of majority voting rule in the bargaining model of Merlo
and Wilson with more than two players.
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an o®er, then his opponent (called the responding player) can either accept or reject the

standing o®er, denoted by Y and N , respectively. If the o®er is accepted, the game ends and

each player enjoys a constant stream of the agreed-upon value forever. If the o®er is rejected,

the players receive their interim disagreement payo®s (x; x), and this process will repeat in

the next period in which the two players switch their roles in bargaining, i.e., the proposing

player becomes the responding player and vice versa. If the proposing player chooses to

be quiet, on the other hand, the two players will simply collect their interim disagreement

payo®s (x; x) for the current period, and the same process will repeat in the next period

without switching the players' roles in bargaining. By convention, player 1 is the proposing

player in the ¯rst period. We assume that the two players are risk-neutral, expected-utility

maximizers who discount the future with a common discount factor ± 2 (0; 1) per period.

The interim disagreement payo® x in any period is an i.i.d. random variable which takes

two possible values, 0 and d (¸ 0), with probabilities p and 1 ¡ p, respectively. At the

beginning of any period before the proposing player makes an o®er, both players observe the

realization of x for the current period. Thus, this game has complete information. Figure 1

illustrates this bargaining model.
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Figure 1. The schema of the bargaining game.

A history consists of all past proposing player's actions and realized interim disagreement

payo®s. A player's strategy assigns an action to every possible history. Any strategy pro¯le

induces a unique outcome path, which consists of all realized interim disagreement payo®s

before an agreement and the agreement itself (if there is any). An outcome path with an
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agreement in period T is denoted by

¼(T) = (x(1); x(2); : : : ; x(T ¡ 1); (a1; a2); fY g) ;

where x(t) 2 f(d; d); (0; 0)g is the realized interim disagreement point of period t for 1 · t <

T , and ai is player i's share in the partition agreed upon in period T such that a1 + a2 = 1.

By convention, T is set to be in¯nity if there is no agreement. The players receive their

interim disagreement payo®s in every period until an agreement is reached, and continue to

receive the agreed-upon share thereafter. The players' (non-expected) average discounted

payo® vector associated with the outcome path ¼(T) is

(
(a1; a2) if T = 1
(1¡ ±T¡1)PT¡1

t=1 ±
t¡1x(t) + ±T¡1(a1; a2) if T ¸ 2:

3 The Existence of Perfect Equilibrium

In this section, we establish the existence of perfect equilibrium. The proof for the existence

is constructive. That is, we ¯rst provide a strategy pro¯le and then verify the subgame

perfection of the strategy pro l̄e. In what follows, we consider three distinct strategy pro¯les

depending on the value of d. The strategy pro l̄es we consider in Cases I and III are rather

stationary in the sense that whether the proposing player makes an o®er does not depend

on the realization of the interim disagreement payo® in that period, but his o®er does if he

makes an o®er. In Case II, whether the proposing player makes an o®er depends on the

realization of the interim disagreement payo®s. To classify these three cases, we de¯ne the

following two critical values of d:

d =
1

2(1 + ±p)
; d =

1

2±(1¡ p): (2)

It is straightforward that 0 < d < 1=2 < d for all ± 2 (0; 1) and p 2 (0; 1).

Case I 0 · d · d: Consider the following strategy pro¯le: In any period with the current

interim disagreement payo® x (which equals either 0 or d), the proposing player demands a

7



share of

b¤(x) = 1¡ (1¡ ±)x¡ ±1 ¡ (1¡ ±)(1¡ p)d
1 + ±

: (3)

The responding player rejects any o®er if and only if the proposing player demands more

than b¤(x). According to this strategy pro l̄e, the proposing player's expected continuation

payo® at the beginning of any period (before the interim disagreement payo® for the period

is realized) is

EC = pb¤(0) + (1 ¡ p)b¤(d) = 1¡ (1¡ ±)(1¡ p)d
1 + ±

: (4)

Note that the last term in (3) is just ±EC.

Now, we show that the strategy pro¯le described above is a subgame perfect equilibrium.

In any period, if the proposing player makes an o®er, the current responding player will be

the proposing player in the next period if he rejects the standing o®er. Therefore, rejecting

the o®er would give the responding player a payo® of (1 ¡ ±)x+ ±EC = 1 ¡ b¤(x). Hence,

the responding player will reject the standing o®er if and only if his share is less than

1 ¡ b¤(x), or equivalently, if and only if the proposing player demands more than b¤(x).

Given the responding player's strategy, if the proposing player demands more than b¤(x), his

o®er would be rejected, and he would be the responding player in the next period with the

expected continuation payo® of 1¡EC. Therefore, the proposing player's payo® from making

an unacceptable o®er is (1¡ ±)x+ ±(1¡EC), which is less than b¤(x) = 1¡ (1¡ ±)x¡ ±EC

since x · d · d < 1=2. This means that the proposing player should make an acceptable

o®er if he makes an o®er at all. If the proposing player keeps quiet, on the other hand, he

would still be the proposing player in the next period with the expected continuation payo®

of EC . Consequently, the proposing player's payo® would be (1¡ ±)x+ ±EC, which is less

than or equal to b¤(x) for each x = 0 or d since

(1 ¡ ±)x + ±EC · 1¡ (1¡ ±)x¡ ±EC

, 2(1¡ ±)x · 1¡ 2±EC
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, 2(1¡ ±)d · 1¡ 2±EC

, d · 1 ¡ 2±EC
2(1¡ ±) = d:

Therefore, the proposing player should demand exactly b¤(x) in his proposal.

Case II d · d · d: Consider the following strategy pro¯le: In any period, the proposing

player keeps quiet if x = d, and makes an o®er such that his share is

b¤(0) = 1¡ ±p + (1 ¡ ±)(1 ¡ p)d
1 ¡ ± +2±p ; (5)

if x = 0. The responding player rejects the o®er if and only if his share is less than

1¡ b¤(x) = (1 ¡ ±)x+ ±p + (1 ¡ ±)(1 ¡ p)d
1 ¡ ± +2±p ; (6)

for x = 0 and d. Notice that b¤(x) (and also EC later) represents di®erent values in the

three di®erent cases to minimize the number of the notations.

According to this strategy pro¯le, the proposing player's expected continuation payo® in

any period before x is realized is calculated as

EC = p(1 ¡ ±EC) + (1 ¡ p)[(1¡ ±)d+ ±EC]

) EC =
p+ (1¡ ±)(1¡ p)d

1¡ ± + 2±p :

Notice that the last terms of (5) and (6) are ±EC.

Regardless of the realization of the current interim disagreement payo®, the responding

player would obtain, by rejecting the standing o®er (if an o®er is made at all), (1 ¡ ±)x +

±EC = 1 ¡ b¤(x) as shown in (6). Thus, the responding player's strategies are the best

responses to the proposing player's strategies in all subgames.

Now, when x = d, the proposing player obtains (1¡ ±)d + ±EC by keeping quiet. If he

makes an unacceptable o®er, he would obtain (1¡ ±)d+±R, where value R is the responding

player's expected continuation payo® before x is realized,5

R = p±EC + (1¡ p)[(1¡ ±)d + ±R];
5We would like to thank Takako Fujiwara-Greve for pointing out the R value. EC + R is the sum of the

two players' expected payo®s, denoted by V , as calculated in Section 5.
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) R =
p±EC + (1¡ p)(1 ¡ ±)d

1¡ (1¡ p)± :

Simple computation shows that R < EC when d · d. This implies that the proposing

player would rather keep quiet than making an unacceptable o®er. If the proposing player

makes an acceptable o®er, his payo® will be at most b¤(d), which is less than or equal to

(1¡±)d+±EC as d ¸ d. (Notice that b¤(d) = (1¡±)d+±EC if and only if d = d.) Therefore,

the proposing player would rather keep quiet than making an acceptable o®er. In short, the

proposing player should not make any o®er in a period in which x = d.

If x = 0, on the other hand, the proposing player's payo®s from keeping quiet, from

making an unacceptable o®er, and from making an acceptable o®er are ±EC, ±R, and b¤(0),

respectively. Since EC > R and d · d yield ±R · ±EC · b¤(0), the proposing player will

demand exactly b¤(0) in his proposal when x = 0 is realized.

Case III d ¸ d: Consider the following strategy pro¯le: In any period, the proposing

player keeps quiet. The responding player rejects the o®er if and only if his share is less

than (1¡ ±)x+ ±(1¡ p)d, which is the responding player's continuation payo® following his
rejection.

This strategy constitutes a subgame perfect equilibrium. The responding player's strat-

egy is his best response for the same reason as in cases I and II. On the other hand, the

proposing player's payo® from making an acceptable o®er is at most 1¡ (1¡±)x¡ ±(1¡ p)d,

while those from making an unacceptable o®er and from keeping quiet are both equal to

(1¡ ±)x+ ±(1¡ p)d. Since d ¸ d implies

1 ¡ (1¡ ±)x ¡ ±(1 ¡ p)d · (1¡ ±)x+ ±(1¡ p)d;

for both x = 0 and x = d ¸ d, the proposing player should keep quiet in all periods.6

The following proposition summarizes the perfect equilibrium outcomes for the three

cases.
6Since making an unacceptable o®er and keeping quiet give the proposing player the same payo®, the

strategy pro¯les in which the proposing player keeps quiet in some periods and makes unacceptable o®ers in
the other periods are also subgame perfect. These equilibria involve no agreement and yield the same payo®
vector.
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Proposition 1 For any ± 2 (0; 1), p 2 (0; 1) and d ¸ 0, the bargaining model has a perfect

equilibrium. If d · d, player 1 will make an acceptable o®er in the ¯rst period. If d · d · d,

player 1 will not make an o®er until the interim disagreement payo® becomes 0 in which case

player 1 will make an acceptable o®er. If d ¸ d, player 1 will never make any o®er or any

acceptable o®er.

4 The Uniqueness of the Perfect Equilibrium

Following Shaked and Sutton's (1984) technique, we now derive the range of perfect equilib-

rium payo®s. It follows from Proposition 1 and our assumptions of the model that the set of

perfect equilibrium payo®s is non-empty and bounded. Due to the symmetry, the range of

perfect equilibrium payo®s depends on only whether a player is proposing or responding, and

on the realization of the interim disagreement payo®. Let M (x) and m(x) be the maximum

and minimum, respectively, of the proposing player's perfect equilibrium payo®s when the

current interim disagreement payo® is x. Let M and m denote the expected values ofM (x)

and m(x), respectively, i.e.,

M = pM(0) + (1¡ p)M (d); m = pm(0) + (1¡ p)m(d): (7)

By de¯nition, M (x) ¸ m(x) for x = 0; d, and hence M ¸ m.

Now consider the proposing player's strategy in a period. If the proposing player chooses

to be quiet, he will collect his interim disagreement payo® x and will still be the propos-

ing player in the next period with an expected continuation payo® in between m and M .

Therefore, the proposing player would receive neither less than (1¡ ±)x+±m, nor more than

(1 ¡ ±)x + ±M if the proposing player does not make an o®er at all in the current period.

Alternatively, if the proposing player chooses to make an o®er, the responding player in the

current period will be the proposing player in the next period if he rejects the o®er. The

responding player will certainly reject any o®er which gives him less than his lowest possible

payo® after his rejection, (1¡ ±)x+ ±m. Consequently, the proposing player cannot receive
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more than 1¡ (1¡ ±)x¡ ±m. On the other hand, the responding player will certainly accept

any o®er which gives him more than his highest possible payo® after rejection, (1¡±)x+±M .

Thus, the proposing player would not receive less than 1¡(1¡±)x¡±M in perfect equilibria.

In summary, since the proposing player chooses whether or not he makes an o®er in the

current period, M (x) and m(x) must satisfy the following inequalities for x = 0; d:

M (x) · max f(1¡ ±)x+ ±M; 1 ¡ (1¡ ±)x¡ ±mg ;
m(x) ¸ max f(1¡ ±)x+ ±m; 1¡ (1 ¡ ±)x ¡ ±Mg : (8)

Since

(1¡ ±)x+ ±M · (¸) 1¡ (1¡ ±)x¡ ±m

if and only if (1¡ ±)x+ ±m · (¸) 1¡ (1¡ ±)x¡ ±M;

for either x = 0 or x = d, we need only check which of (1¡ ±)x+ ±M and 1¡ (1¡ ±)x¡ ±m

is greater to ¯nd all possible cases. Given that x takes either 0 or d, it appears that there

are four di®erent cases to consider. However, we only have the following three cases since

(1 ¡ ±)d + ±M · 1 ¡ (1 ¡ ±)d ¡ ±m implies ±M · 1 ¡ ±m. These three cases are shown to

correspond to the three cases in the previous section, respectively.

Case A (1¡ ±)d + ±M · 1¡ (1 ¡ ±)d ¡ ±m: In this case, inequality system (8) can be

written as
M(0) · 1 ¡ ±m;
m(0) ¸ 1 ¡ ±M;
M (d) · 1 ¡ (1¡ ±)d ¡ ±m;
m(d) ¸ 1 ¡ (1¡ ±)d ¡ ±M:

(9)

Then it follows from (7) that the expected values of M(x) and m(x) satisfy

M · 1 ¡ (1¡ ±)(1¡ p)d¡ ±m;

m ¸ 1 ¡ (1¡ ±)(1¡ p)d¡ ±M:

Consequently, we have

1 ¡ (1¡ ±)(1¡ p)d
1 + ±

· m · M · 1 ¡ (1¡ ±)(1¡ p)d
1 + ±

;
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which yields that M =m. Now, substituting M = m into (9) gives

1¡ ±m · m(0) · M (0) · 1¡ ±m;

1 ¡ (1¡ ±)d ¡ ±m · m(d) · M (d) · 1 ¡ (1¡ ±)d¡ ±m;

which imply that each player's equilibrium payo® is unique for each possible state. Substi-

tuting M = m = [1 ¡ (1 ¡ ±)(1 ¡ p)d]=(1 + ±) into the inequality that de¯nes Case A, we

have

2(1 ¡ ±)d · 1¡ 2±[1¡ (1 ¡ ±)(1 ¡ p)d]
1 + ±

;

which reduces to d · d. In fact, EC in Case I equals the derived value of M and m. Since

the perfect equilibrium described in the last section is the only strategy pro l̄e which gives

the unique perfect equilibrium payo®, it is the unique perfect equilibrium except when d = d,

in which case the proposing player is indi®erent between making an o®er and keeping quiet

when x = d.

Case B ±M · 1¡ ±m and (1 ¡ ±)d+ ±M ¸ 1¡ (1¡ ±)d ¡ ±m: In this case, inequality

system (8) becomes
M (0) · 1¡ ±m;
m(0) ¸ 1¡ ±M;
M (d) · (1¡ ±)d + ±M;
m(d) ¸ (1¡ ±)d + ±m:

(10)

It follows from (7) that the expected values of M (x) and m(x) satisfy

M · p[1 ¡ ±m] + (1 ¡ p)[(1¡ ±)d+ ±M];

m ¸ p[1 ¡ ±M ] + (1 ¡ p)[(1¡ ±)d + ±m];

which yield

p+ (1¡ ±)(1¡ p)d
1¡ ± + 2±p · m · M · p + (1 ¡ ±)(1 ¡ p)d

1 ¡ ± +2±p :

Therefore, we have M = m = [p + (1¡ ±)(1 ¡ p)d]=(1¡ ± + 2±p). Substituting the derived

value of m andM into (10) gives us the uniqueness of the perfect equilibrium payo® for each

state.
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Next, we show that Case B corresponds to Case II in the last section. Substituting

M = m = [p + (1 ¡ ±)(1 ¡ p)d]=(1 ¡ ± + 2±p) into the two inequalities that de¯ne Case B

yields

2±[p + (1 ¡ ±)(1 ¡ p)d]
1¡ ± + 2±p · 1;

2±[p + (1 ¡ ±)(1 ¡ p)d]
1¡ ± + 2±p ¸ 1¡ 2(1¡ ±)d;

which reduce to d · d and d ¸ d, respectively. Therefore, together with the fact that EC in

Case II equals the derived value ofM and m, this ¯nding implies that the perfect equilibrium

described in the last section is the unique perfect equilibrium in Case II except at d = d and

d = d. When d = d, the proposing player is indi®erent between making an o®er and keeping

quiet when x = 0; whereas when d = d, the proposing player is always indi®erent between

making an (unacceptable) o®er and keeping quiet regardless of the realization of x.

Case C ±M ¸ 1 ¡ ±m: In this case, inequality system (8) becomes

M (0) · ±M;
m(0) ¸ ±m;
M (d) · (1¡ ±)d + ±M;
m(d) ¸ (1¡ ±)d + ±m:

(11)

Then, the expected values of M (x) and m(x) satisfy

(1 ¡ p)d · m · M · (1¡ p)d;

which implies that M = m = (1¡ p)d. Substituting (1¡ p)d for M and m in (11) yields the

uniqueness of the perfect equilibrium payo® for each state.

Now, inequality ±M ¸ 1 ¡ ±m reduces to d ¸ d for the derived value of M and m,

implying that Case C corresponds to Case III of the last section. Together with the fact

that EC in Case III equals the derived value of M and m, we conclude that the perfect

equilibrium described in the last section gives the unique equilibrium payo® for each player

in Case III.7

The following proposition summarizes these ¯ndings.

7Equilibrium strategies are not unique in this case. For example, the strategy pro¯le in which the
proposing player makes unacceptable o®ers in some periods is also a perfect equilibrium.
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Proposition 2 When d 6= d, each player has a unique perfect equilibrium payo®; when

d = d, the proposing player has a unique perfect equilibrium payo®. The equilibrium strategies

are as described in Proposition 1.

5 Properties of the Perfect Equilibrium

In contrast to most existing bargaining models with complete information, in which inef-

¯ciency results from the multiplicity of the equilibrium, we provide a model of complete

information which has a unique ine±cient equilibrium outcome as described in Case II.

The equilibrium outcome is quite intuitive. If the high interim disagreement payo® d is

so small that 0 · d · d, the incentive to obtain the surplus from an agreement dominates

any incentive to delay. The cost of delay is too high for both players. In the equilibrium,

the proposing player makes acceptable o®ers in all subgames, including the original game

itself. The two players reach an agreement immediately, as in the Rubinstein (1982) model.

Indeed, the agreement itself closely resembles the Rubinstein solution, as EC in (4) is the

Rubinstein solution when the disagreement point is ((1¡p)d; (1¡p)d), the expected interim

disagreement point in our model.

On the other extreme, the players never reach an agreement if the interim disagreement

payo® is large enough on average. More speci¯cally, if the high interim disagreement payo®

satis¯es d ¸ d, or equivalently, the discounted average interim disagreement payo® satis¯es

±(1¡ p)d ¸ 1=2, the players will simply collect their interim disagreement payo®s in every

period. The perpetual disagreement does not mean ine±ciency since the expected interim

disagreement point is strictly above the bargaining frontier. Notice that in order to obtain

the perpetual disagreement, the expected interim disagreement point has to be strictly above

the bargaining frontier, so that the continuation payo® point is still above the bargaining

frontier even when x = 0 is realized. In the equilibrium with no agreement, the continuation

payo® when x = 0 is ±EC = ±(1¡ p)d for both players. So, the continuation payo® point is

above the bargaining frontier if and only if ±(1¡ p)d ¸ 1=2, or equivalently d ¸ d.
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Stochastic delay occurs when the high interim disagreement payo® is in the intermediate

range. If d · d · d, the proposing player will make an acceptable o®er if and only if

x = 0 is realized. Otherwise, the proposing player will delay an agreement to the next

period. If d < 1=2, such a delay is obviously ine±cient. The reason why such an ine±cient

outcome arises is that each player's payo® from an agreement should be at least as large as

his continuation payo®, while the continuation payo® vector is above the bargaining frontier

when x = d. The proposing player's continuation payo® is (1 ¡ ±)d + ±EC = 1 ¡ b¤(d),

as seen from (6), which is obtained by delaying making an o®er. As (6) shows, however,

the responding player's continuation payo® (after his rejection) is also 1 ¡ b¤(d). Since

b¤(d) · 1=2 when d ¸ d, the continuation payo® vector is above the bargaining frontier.

Another interesting result is, even if the expected interim disagreement point is above

the bargaining frontier, (1 ¡ p)d > 1=2, players will still reach an agreement when x = 0 is

realized. It occurs when 1=2 < (1 ¡ p)d < 1=(2±). When x = 0 is realized, the two players

must wait for one period in order to claim the expected interim disagreement payo®s. So

unless the discounted expected interim disagreement point is above the bargaining frontier,

i.e., ±(1 ¡ p)d > 1=2, both players collectively prefer an immediate agreement when x = 0.

This result is di®erent from the situation in which the interim disagreement point is ¯xed.

In that case, there will be no agreement if a ¯xed interim disagreement point is above the

bargaining frontier.

Figure 2 depicts the players' total expected payo® in the equilibrium. When 0 · d · d,

the two players reach an agreement in the ¯rst period, and their total payo®, denoted by

V , equals 1. The equilibrium outcome is e±cient. When d ¸ d, the two players simply

collect their interim disagreement payo®s and so their total expected equilibrium payo®

equals V = 2(1¡ p)d, which is linearly increasing in d. When d · d · d, the total expected

payo® in the equilibrium satis¯es V = p+ (1¡ p)[2(1 ¡ ±)d + ±V ]. Therefore, we have

V =

8
><
>:

1 if 0 · d · d
[p+ 2(1¡ ±)(1¡ p)d]=[1 ¡ ±(1 ¡ p)] if d · d · d
2(1 ¡ p)d if d ¸ d.
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Figure 2. The players' total expected payo®.

Note that V takes two possible values at d = d. The di®erence between these two values

represents the responding player's loss if the proposing player changes his strategies from

that described in Case I to that in Case II. At d = d, V is single-valued since

p + 2(1 ¡ ±)(1 ¡ p)d
1¡ ±(1¡ p) = 2(1¡ p)d = 1

±
:

When d < d · d, V is increasing in d at a constant rate of [2(1¡ ±)(1¡ p)]=[1¡ ±(1¡ p)]

and V = 1 at d = 1=2, which implies that the equilibrium is ine±cient when d < d <

1=2. As p increases, d decreases and hence the range of d corresponding to the ine±cient

equilibrium expands. However, ine±ciency itself decreases since the expected length of delay

in equilibrium,
P1
t=1 t(1¡p)tp = (1¡p)=p, is shortened as p increases. Similarly, an increase

in ± widens the range of d corresponding to the ine±cient equilibrium by lowering d. Also

in this case, ine±ciency in an equilibrium decreases as ± increases, since delay costs less to

the players.

Now, we show that both of the variation of the interim disagreement point and the

possibility for the proposing player to delay making an o®er are necessary to yield the

unique ine±cient outcome in our bargaining model. First, if the proposing player can delay
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making an o®er but the interim disagreement points are ¯xed, say at 0 for simplicity, then

there will be no ine±cient outcome. This can be considered as a special case of our model

when d = 0 where only Case I applies. Intuitively, delaying an o®er would not change the

bargaining environment except for discounting for one period. Thus the proposing player

would not delay in making an acceptable o®er. The Rubinstein solution would be the unique

perfect equilibrium in the model without stochastic interim disagreement points.

Second, stochastic disagreement points alone would not cause any ine±cient outcome.

Consider a modi¯ed version of ourmodel such that the proposing player cannot delay making

an o®er. Whether or not the proposing playermakes an o®er, he will be the responding player

in the next period. Let L and L(x) (l and l(x)) denote the proposing player's (responding

player's) expected equilibrium payo®s before and after the disagreement payo® x is revealed,

respectively. Subgame perfection implies that, for x = 0 or d,

L(x) = maxf(1¡ ±)x+ ±l; 1 ¡ l(x)g;

l(x) = (1¡ ±)x+ ±L:

Parallel to Section 4, we can identify the following three cases:

(A0) (1¡ ±)d+ ±l · 1¡ (1 ¡ ±)d ¡ ±L;

(B0) ±l · 1¡ ±L and (1 ¡ ±)d + ±l ¸ 1 ¡ (1¡ ±)d¡ ±L;

(C0) ±l ¸ 1¡ ±L:

Solving the equation system in these three cases, we ¯nd that

(A0) L =
1 ¡ (1¡ ±)(1¡ p)d

1 + ±
; when d · 1

2
;

(B0) L =
p + (1 ¡ ±)(1 ¡ p)[1 + ±(1 ¡ p)]d

(1 + ±)[1 ¡ ±(1 ¡ p)] ; when
1

2
· d · d;

(C0) L = (1¡ p)d; when d ¸ d:

Therefore, the two players will immediately reach an agreement if d · 1=2; the proposing

player will make an acceptable o®er when x = 0 and make an unacceptable o®er when x = d
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if 1=2 · d · d; and there will be no agreement if d ¸ d. Despite the similarity of this

outcome to Proposition 1, the fundamental di®erence is that there is no ine±cient delay.

Therefore, stochastic interim disagreement points alone would not cause any ine±cient delay.

6 Concluding Remarks

We considered a two-player strategic bargaining model with discounting in which (i) the

interim disagreement point is stochastically determined either at (0; 0) or at (d; d) in any

period, and (ii) the proposing player can delay making an o®er for one period. We showed

that if d is in an intermediate range, the proposing player makes an (acceptable) o®er if

and only if the current interim disagreement payo® is 0. This outcome emerges even in the

case where d < 1=2. Therefore, we concluded that the model has a unique, (stochastically)

ine±cient perfect equilibrium if the interim disagreement point varies below the bargaining

frontier and the variation is large enough. As for the uniqueness, we should emphasize that

the equilibrium strategy is unique when 0 · d < d and d 6= d. When d ¸ d, only the

equilibrium payo® vector is unique. At d = d, the model has two perfect equilibria where

the proposing player has the same payo®, but the responding player does not.

We assumed that the interim disagreement payo® is stochastic, but not the bargaining

value. In this aspect, our model is e®ectively equivalent to a bargaining model in which

the interim disagreement payo® is ¯xed but the bargaining value is stochastic, as assumed

in Avery and Zemsky's (1994) model. More generally, we may consider a model in which

both interim disagreement payo® and bargaining value are stochastic. We can extend our

model to this general case and obtain qualitatively the same results, paying attention to the

di®erence between the bargaining values and interim disagreement payo®s. After all, what

matters is this di®erence, the surplus from an agreement over disagreement.

Finally, the assumption that two players' interim disagreement payo®s are the same in any

state is innocuous. As inferred from (1), it is the sum of the two players' interim disagreement

payo®s that determines the equilibrium outcome. To see this claim in more detail, let us
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consider the case in which the interim disagreement point is (0; 0) with the probability p and

(d1; d2) with the probability 1 ¡ p. Here, either d1 or d2 can even take a negative value as

long as d1+d2 > 0. Our analysis will go through by replaying d with (d1+d2)=2. As a result,

if d · (d1 + d2)=2 · d, the proposing player makes an acceptable o®er when the interim

disagreement point is (0; 0), while he makes no o®er at all when the interim disagreement

point is (d1; d2) in the subgame perfect equilibrium. Therefore, ine±cient delay will still

occur if the sum of the two players' high interim disagreement payo®s is in the intermediate

range.
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