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Abstract

“Financing Education Using Optimal Redistributive Taxation”

by

Craig Brett and John A. Weymark

In this article, the joint use of an income tax and public provision of edu-
cation as instruments to achieve the government’s distributional objectives is
considered. Individuals differ in innate labour productivity and in aptitude
to acquire skills through education. Actual labour productivity depends on
both innate skill and the amount of education received. Using a general-
ized version of the Mirrlees tax problem that incorporates these features,
qualitative properties of an optimal tax schedule are investigated.

Journal of Economic Literature classification numbers: D82, H21, H52.



1. Introduction

Publicly-provided education is primarily financed from general tax revenues.
Typically, elementary and secondary education is provided free of charge,
and the tuition for post-secondary education only covers a small fraction of
the cost. As a consequence, government expenditures on education can be,
and are, used to pursue redistributive goals. In this article, we consider the
joint use of an income tax and public provision of education as instruments
to achieve the government’s distributional objectives. This is an issue that
has already received considerable attention in the optimal nonlinear income
tax literature. What distinguishes our analysis from previous work is the use
of two parameters to characterize individuals. Individuals differ in innate
labour productivity w and in aptitude to acquire skills through education
a. An individual’s actual labour productivity depends on both his innate
skill and the amount of education received. An individual with a higher
aptitude for education needs to spend less time to achieve a given amount of
education. In earlier studies, only the innate labour productivity parameter
has been considered.

In order to focus on the redistributive aspects of education, we only con-
sider the role that education has to play in augmenting human capital, as
reflected in labour productivity. Publicly-provided education has other uses
as well. For example, it can be used to expand educational opportunities to
individuals who are constrained by capital market imperfections from borrow-
ing against future earnings. See, for example, Barham, Boadway, Marchand,
and Pestieau (1995). Public education may be used to help offset underin-
vestment in education as the result of the time inconsistency of individual
choices, as in Boadway, Marceau, and Marchand (1996). If private invest-
ment in education is unobservable, a moral hazard problem arises if future
earnings and, hence, tax liabilities depend on the amount of education at-
tained. Publicly-provided education may be used to help alleviate this moral
hazard problem. See, for example, Wilson (1999). Education may also serve
as a signal of labour productivity without affecting productivity, as in Ar-
row (1973) and Spence (1974). We do not consider the possibility of having
privately-provided education, and therefore do not address issues such as the
relative desirability of public versus private education, a topic considered by
Grout (1983) from an optimal tax perspective.

Our model extends the standard Mirrlees (1971) formulation of the op-
timal nonlinear income tax problem by adding education as an additional
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instrument and by having a second source of information asymmetry. Indi-
vidual preferences depend on consumption, market labour, and time spent
being educated. Because there are no capital market imperfections, we do not
need to temporally separate education and work, and so, following Hare and
Ulph (1979), we use a one-period model. All individuals are required to com-
plete a basic amount of education and may undertake further discretionary
education to improve their skills. The amount of compulsory education is ex-
ogenously determined.1 As noted above, an individual’s labour productivity
depends on his innate skill w and on the amount of education received, and
the labour required to attain a given educational standard depends on his ap-
titude for education a. Both the skill and educational-ability parameters are
private information. There is a continuum of individuals, with the parame-
ters w and a continuously distributed on a unit square. The government can
only set taxes as a function of income. For simplicity, we assume that all edu-
cation is provided free of charge. Given the tax schedule, individuals choose
consumption, market labour, and time spent in education optimally. The
production technology exhibits constant returns to scale. Our social planner
(government) chooses the tax schedule to maximize a utilitarian social wel-
fare function taking into account the optimal responses of the individuals to
the schedule chosen and subject to the economy’s overall resource constraint.

Our assumptions imply that the preferences over consumption and in-
come, i.e., over the goods observeable by the planner, only depend on a
single parameter θ (a function of w and a) that takes on values in an in-
terval [θ, θ̄]. Further, these preferences satisfy the Mirrlees (1971) - Spence
(1974) single-crossing property with respect to θ. The resource constraint
expressed in terms of the publicly-observable variables includes a nonlinear
term for the cost of education. Because of the presence of this term in the
resource constraint, our problem fundamentally differs from the standard
one-dimensional optimal tax problem.

The decisions made by individuals and by the government interact in a
complex way. The incentives to work and to invest in education are affected
by the choice of tax schedule. Individual educational choices, in turn, affect
the distribution of wages, which, in part, determine the choice of an optimal
tax schedule. In spite of these complex interactions, a number of clear-cut

1In a model in which individuals differ only in a single characteristic, Boadway and
Marchand (1995) have investigated when some compulsory publicly-provided education is
justified on redistributive grounds.
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conclusions emerge from our analysis.
Because the amount of education demanded doesn’t depend only on the

aggregate parameter θ, it is not clear a priori if the same income-consumption
pair should be assigned to individuals with the same value of θ. We show
that it is in fact optimal to do so.

Because an increase in income increases the demand for education, the
marginal rate of transformation between income and consumption is not a
constant function of income. The marginal distortion faced by an individual
is the difference between the marginal rate of transformation at his income
level and his marginal rate of substitution. Only if the marginal rate of trans-
formation is equal to 1 does the marginal distortion equal the marginal tax
rate. The marginal rate of transformation and, hence, the marginal distor-
tion is only well-defined for θ types who are not bunched. We demonstrate
that it is optimal for all nonbunched individuals to face a positive marginal
distortion.

At a solution to the planner’s problem, we show that individuals of type
θ̄ always have a nonnegative marginal tax rate and have a strictly positive
marginal tax rate if they are bunched. If individuals of type θ are not bunched
with any other type, then the marginal tax rates are positive for all individ-
uals in (θ, θ̄). If individuals of type θ are bunched, the marginal tax rate
may be negative (a marginal subsidy) in a neighbourhood of θ. Except for
possibly at θ̄, the marginal tax rate is positive for individuals not bunched
with individuals of type θ. Thus, our conclusions only partially mirror the
standard results in the one-dimensional nonlinear income tax problem.

The productivity-enhancing role of education has also been analyzed in
models of optimal nonlinear redistributive taxation with private information
by Boadway and Marchand (1995), Grout (1983), Hare and Ulph (1979),
Sheshinski (1971), Tuomala (1986), and Ulph (1977), among others. In all of
these studies, individuals only differ in a single private characteristic—innate
labour productivity. These models also differ from ours in a number of other
respects. For example, Hare and Ulph (1979) and Sheshinski (1971) assume
that individuals supply a fixed amount of labour and Tuomala (1986) has no
resource cost to education. In some of these models, a uniform amount of
public education is provided to everyone, whereas in other models, individuals
choose their own levels of education. Many of these models permit individuals
to pay for additional education. As is the case here, a major focus of this
line of research has been to determine the signs of the marginal distortions
and/or marginal tax rates.
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Mirrlees (1976) considered optimal nonlinear taxation with multidimen-
sional characteristics but, because of the complexity of his problem, was un-
able to say much about the properties of an optimal tax schedule. Our prob-
lem is more tractable because we are able to reduce it to a one-dimensional
problem using the type aggregator θ. There are now a number of studies in
which type aggregators are used to reduce a multidimensional screening prob-
lem to a one-dimensional problem in terms of the type aggregator. See, for
example, Laffont, Maskin, and Rochet (1987), McAfee and McMillan (1988),
Boadway, Marchand, Pestieau, and Racionero (1999), Shapiro (1999), and
Rochet and Stole (2000). In these problems, a single-crossing property is
satisfied and it is optimal for individuals with the same value for the type
aggregator to receive the same allocation. In our problem, individuals with
the same value of θ receive the same allocation of income and consumption
(the goods that are publicly observable), but they do not receive the same
amount of education.

We set out our model in the next section. In Section 3, we show how to
convert our multidimensional problem to a simpler one-dimensional problem
using the type aggregator θ. In Section 4, this one-dimensional problem is
reformulated as an optimal control problem. In Section 5, we investigate
the signs of the marginal distortions and marginal tax rates at a solution to
the planner’s problem. A final section provides some concluding remarks. A
number of technical results are presented in the Appendix.

2. The model

The economy is populated by individuals who differ in innate labour produc-
tivity w. This innate skill can be augmented by education. All individuals
receive a basic education from the state and may supplement this compulsory
education with more advanced training. The amount of compulsory educa-
tion is held fixed in our analysis, and is therefore suppressed in our notation.
The amount of voluntary education acquired is e, where e is a scalar-valued
measure of educational attainment. An individual with innate skill level w
who acquires education in the amount e has labour productivity h(w, e). As
in Tuomala (1986), we assume that

h(w, e) = we. (2.1)

Thus, h is increasing in both arguments and is proportional to the amount
of noncompulsory education acquired.
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An individual with labour productivity h supplies h units of labour in
efficiency units per unit of time. There is a single consumption good that is
produced using labour in efficiency units as the sole input. The technology
exhibits constant returns to scale. The consumption good is our numeraire
and we choose the units of measurement so that one unit of labour in ef-
ficiency units produces one unit of output. The labour market is perfectly
competitive, so an individual’s wage is equal to the marginal (and average)
product of labour h. Before-tax income y is thus given by

y = h(w, e)l = wel, (2.2)

where l is the amount of labour supplied to the market.
Individuals also differ in their aptitudes for acquiring skills through educa-

tion. An individual with aptitude a who devotes s units of time to education
obtains

e = s
1
2a

1
2 (2.3)

units of education. The source of differences in aptitude could be genetic
or due to differences in social background, such as parental inputs into the
education process. We assume only that the underlying causes do not exert
a concomittant influence on the underlying skill, w.

Preferences are defined over consumption x, labour supply l, and time
spent in formal education s. Because the consumption good is our numeraire,
x is also after-tax income.2 We assume that an individual with aptitude a
has a utility function of the form

Ua(x, l, s) = 2x
1
2 −


l +

s
3
2

a
1
2




2

. (2.4)

This specification of preferences is restrictive, but the restrictions are easy to
interpret. Individuals with the same aptitude for education have the same
preferences for consumption, market labour, and time devoted to education.
Moreover, it is possible to convert time spent in education into a labour-time
equivalent such that everyone has the same preferences for consumption and
the total time spent working and educating oneself. Given the education
technology, an individual who acquires e units of education regards the time
spent educating himself as equivalent (in utility terms) to spending

se

a
=

s
3
2

a
1
2

(2.5)

2Henceforth, we refer to x as consumption and y as income.

5



units of time in the labour market. Thus, the ratio s/a is the labour-time
equivalent of the time required to obtain an additional unit of education for
an individual of aptitude a and (2.4) describes preferences of the form

U(x, t) = 2x
1
2 − t2, (2.6)

where t is the total effective time spent on market labour and education.3

Using (2.2) and (2.3), we can rewrite (2.4) as

Ũwa(x, y, s) = 2x
1
2 −


 y

ws
1
2a

1
2

+
s

3
2

a
1
2




2

. (2.7)

All education is provided free of charge and is financed from general tax rev-
enues. As a consequence, for given (x, y), s is chosen to maximize Ũwa(x, y, s).
Because of the additive separability of the utility function, the solution only
depends on y. It is given by

sw(y) =
(

y

3w

) 1
2

.4 (2.8)

For a given income, individuals with the same innate labour productivities
choose to spend the same time educating themselves, regardless of their apti-
tude for education. This is the main behavioural implication of the assump-
tions made on preferences and technology. It is clear from (2.2) and (2.3)
that the market time required to generate a given income decreases with a if
s is held constant. It is natural that an individual with a high aptitude for
education chooses to the spend some of this “extra” time on leisure, thereby
substituting for time spent being educated. Counterbalancing this effect is
the decrease in the opportunity cost of education as aptitude for education
increases. A special feature of our model is that these two effects completely

3Individuals with higher aptitudes find the time spent being educated less onerous.
The parameter a is thus both a utility parameter and a productivity parameter. This
double role for a is not without precedent in models of asymmetric information. In the
Spence (1974) education model, labour productivity and the costs of acquiring education
are perfectly correlated.

4We assume that the values of the parameters are such that all of the optimization
problems we consider have interior solutions. In particular, we assume that everyone wants
to supplement the compulsory schooling with further education and that our implicit upper
bound on time spent working and in education is not binding.
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offset each other. However, it should be borne in mind that, in general, indi-
viduals with the same innate skill level, but different aptitudes for education,
will not choose to work the same amount, and so will have different incomes.

Using the optimized value of s found in (2.8), an individual of type (w, a)
has a utility function in terms of x and y given by

Ūwa(y, x) = 2x
1
2 − y

3
2

θ
, (2.9)

where

θ =
w

3
2a

b2
(2.10)

and b = 3
1
4 + 3−

3
4 . From (2.10), we see that θ is an increasing, strictly quasi-

concave function of w and a. Simple computations show that θ is distributed
on T = [θ, θ̄] = [b−2, 2

5
2 b−2]. Thus, although individuals are identified by two

characteristics, w and a, their preferences over consumption and income can
be summarized by the single parameter θ. Following Shapiro (1999), we refer
to θ as a type aggregator.

It is more convenient to work with the following monotonic transformation
of Ūwa,

V wa(y, x) = V θ(y, x) = 2θx
1
2 − y

3
2 . (2.11)

The marginal rate of substitution for an individual of type θ is

MRSθ(y, x) =
3

2θ
(xy)

1
2 , (2.12)

which is decreasing in θ. Therefore, in terms of x and y, preferences satisfy
the Mirrlees (1971) - Spence (1974) single-crossing property with respect to
θ. For a given θ, if y is increased, x must also increase if utility is to be held
constant. Hence, the marginal rate of substitution is increasing in y along
an indifference contour of V wa.

Substituting (2.8) into (2.3), using the definition of θ, and letting c =

3
1
4/b, we obtain

ewa(y) =
y

1
4 θ

1
2

wc
, (2.13)

the optimal amount of education for a type (w, a) individual with income y.
There is a continuum of individuals distributed according to the contin-

uous probability density function f with support S = [1, 2] × [1, 2]. The
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function f is known to our social planner, who can also observe each indi-
vidual’s choice of x and y. The planner cannot observe w, a, l, and s. In
addition, we assume that either e is not observable or that the planner does
not have the authority to base taxes on e. The planner is thus limited to
choosing a nonlinear tax schedule that depends only on income. Because
consumption is equal to after-tax income, we can equivalently think of the
planner as choosing consumption as a function of income. Although this
function only implicitly specifies taxes, we refer to it as a tax schedule.

Faced with an anonymous tax schedule, an individual of type (w, a)
chooses the combination of consumption, labour supply, and time spent ac-
quiring education that maximizes Ua(x, l, s). This is equivalent to choosing
consumption and income to maximize V wa(y, x) subject to the tax schedule,
with the level of education determined by (2.13). Let x(w, a) and y(w, a)
denote the optimized values of consumption and income and let

e(w, a) = ewa(y(w, a)) =
y(w, a)

1
4 θ

1
2

wc
. (2.14)

As is standard in nonlinear tax problems, we can equivalently think of the
planner as selecting a menu of observable outcomes {x(w, a), y(w, a)} based
on the reports of the private information (w, a) subject to the incentive (self-
selection) constraints

V wa(y(w, a), x(w, a)) ≥ V wa(y(w′, a′), x(w′, a′)), ∀(w, a), (w′, a′) ∈ S.
(2.15)

In addition to these incentive constraints, the planner must satisfy the re-
source constraint∫ 2

1

∫ 2

1
(x(w, a) + qe(w, a))f(w, a)dwda + C ≤

∫ 2

1

∫ 2

1
y(w, a)f(w, a)dwda,

(2.16)
where C is the resources (valued in terms of the numeraire) required to
finance the compulsory part of education, and q is the price (again in terms
of the numeraire) of a unit of discretionary education.5 Resources spent
on discretionary education are a function of educational outcomes, e, rather
than a direct function of s. How much time is spent on education outside
the classroom varies from one individual to the next. The opportunity cost
of this time is not reflected in the resource cost of education.

5Alternatively, C can be interpreted as a fixed government revenue requirement, per-
haps necessary to finance other areas of public spending.

8



We assume that the planner wants to maximize the utilitarian social
welfare functional∫ 2

1

∫ 2

1
Ūwa(y(w, a), x(w, a))f(w, a)dwda. (2.17)

By adopting this specification, we are assuming that the planner views the
cardinalization of utility given by (2.9) as being the appropriate one for
making interpersonal comparisions. Using (2.11), the planner’s objective
function may be rewritten as

∫ 2

1

∫ 2

1

1

θ
V wa(y(w, a), x(w, a))f(w, a)dwda. (2.18)

3. A reparameterization of the planner’s problem

As formulated in Section 2, the planner must solve an optimal nonlinear
income tax problem with two-dimensional characteristics. In this section,
we show that this multidimensional screening problem can be reduced to a
considerably simpler one-dimensional problem using the type aggregator θ.

From the self-selection constraints, it is clear that the income-consumption
pair assigned to individuals whose characteristics are aggregated into the
same value of θ must lie on the same indifference contour of their shared
preferences for these goods. Because the demand for education depends on
w, θ, and y, one might expect that it is optimal to have y depend on both w
and θ so as to minimize the cost of educating the type θ individuals. The-
orem 1 demonstrates that it is in fact optimal to allocate all individuals of
type θ the same income-consumption pair.

Theorem 1 For all (w, a), (w′, a′) ∈ S for which θ = θ′, it is optimal to
have (y(w, a), x(w, a)) = (y(w′, a′), x(w′, a′)) at a solution to the planner’s
problem.

The proof of this theorem appears in the Appendix. The basic idea of the
proof is as follows. All possible values of θ can be obtained for individuals for
whom a equals 1 or 2. For a given value of a, say a = 1, if the tax schedule is
continuous at w̄ and individuals of types (w̄, 1) and (w̄, ā) have the same value
of θ, then they must receive the same income-consumption pair, otherwise
there must be an individual of type (w, 1) with w close to w̄ who prefers the
income-consumption pair assigned to the type (w̄, ā) individual to his own.
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The values of θ for which the tax schedule is not continuous in w when a is
equal to 1 or 2 is a set of measure zero. The conclusion of the theorem holds
in this case as well because the resource constraint is satisfied no matter what
these individuals receive.6

Making the obvious identification, we can therefore regard the planner
as choosing a menu of outcomes {x(θ), y(θ)}. The incentive compatibility
conditions (2.15) can then be rewritten as

V θ(y(θ), x(θ)) ≥ V θ(y(θ′), x(θ′)), ∀θ, θ′ ∈ T. (3.1)

It is useful to define
V (θ) = V θ(y(θ), x(θ)), (3.2)

which measures the utility of an individual of type θ at θ’s assigned allocation.
Each (w, a) ∈ S can be identified with a (w, θ) ∈ [1, 2] × T , with θ given

by (2.10). The variables w and θ are distributed according to the probability
density

g(w, θ) = f(w, a(w, θ))J(w, θ). (3.3)

where J(w, θ) is the Jacobian of the transformation

(w, θ) 	→ (w, a(w, θ)) = (w, θw− 3
2 b2).7 (3.4)

In order to compute integrals, the domain S must be reparameterized.
For each θ ∈ T , let w(θ) and w̄(θ) denote, respectively, the lowest and highest
values of w along the iso-θ contour in S. The marginal density of θ is given
by

G(θ) =
∫ w̄(θ)

w(θ)
g(w, θ)dw. (3.5)

Note that w(θ) = w̄(θ), w(θ̄) = w̄(θ̄), and w(θ) �= w̄(θ) for all other θ ∈ T .
Hence, G(θ) = G(θ̄) = 0 and G(θ) > 0 for θ �= θ, θ̄.

In terms of the transformed variables, the objective function (2.18) of the
planner is ∫ θ̄

θ
ξ(θ)V (θ)dθ, (3.6)

where

ξ(θ) =
∫ w̄(θ)

w(θ)

g(w, θ)

θ
dw. (3.7)

6Our proof strategy requires that the set of values for either w or a is a continuum.
7The Jacobian is J(w, θ) = b2w− 3

2 .
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ξ(θ) is the aggregate welfare weight assigned to the type θ individuals.
Using (2.13), the resource constraint (2.16) can be rewritten as

∫ θ̄

θ

[
(y(θ) − x(θ))G(θ) − q

c
θ

1
2y(θ)

1
4W (θ)

]
dθ ≥ C, (3.8)

where

W (θ) =
∫ w̄(θ)

w(θ)

1

w
g(w, θ)dw. (3.9)

Note that W (θ) = W (θ̄) = 0 and W (θ) > 0 for all other θ ∈ T .
The planner’s problem has thus been reduced to choosing the menu

{x(θ), y(θ)} to maximize (3.6) subject to (3.1) and (3.8). This is a one-
dimensional problem, with individuals characterized by the type aggrega-
tor θ. Further, preferences satisfy the standard single-crossing property in
terms of this parameter. What is nonstandard is the presence of the cost
of education in the resource constraint. In addition to being nonlinear, this
term is integrated using a different density function than the other terms
in this constraint.8 A further difference with what is typically assumed in
one-dimensional models is that the density is zero at the endpoints of the
distribution. As we shall see, these differences result in an optimal tax sched-
ule that is qualitatively different from the ones found when the type space is
one-dimensional.

4. The planner’s optimal control problem

In this section, we recast the planner’s problem as a optimal control problem,
in much the same way that Brito and Oakland (1977), Ebert (1992), Diamond
(1998), and Boadway, Cuff, and Marchand (2000), among others, treat the
standard nonlinear tax problem.9

In order to use optimal control techniques to analyze the planner’s prob-
lem, we need to reformulate the self-selection constraints (3.1). From the
proof of Theorem 1, we know that (3.1) implies that both x(·) and y(·) are
nondecreasing and, hence, continuous almost everywhere. Necessary and
sufficient conditions for (3.1) to hold are provided in Lemma 1.

8Nonlinear resource constraints appear in, for example, Mirrlees (1971) and Brito and
Oakland (1977), but in their models each term in the constraint is integrated using the
same density function.

9There is also a long tradition, going back to Mirrlees (1971, 1976), of using a calculus
of variations approach to analyze nonlinear taxation problems.
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Lemma 1 The incentive compatibility conditions (3.1) are satisfied if and
only if V (·) is convex and for almost all θ ∈ T ,

Vθ(θ) = 2x(θ)
1
2 . (4.1)

Moreover, V (·) is convex if and only if x(·) is nondecreasing.

Proof. This lemma follows from Propositions 1 and 2 in Rochet (1987). To

apply Rochet’s results, note that 2x
1
2 is the derivative of V θ(y, x) with respect

to θ, V θ(·) is a quasilinear function of x and y
3
2 , and the first term of V θ(·)

is linear in θ.

In view of Lemma 1, the planner’s optimal nonlinear taxation problem
can be restated as that of choosing a menu of actions {x(θ), y(θ)} with x(·)
nondecreasing to maximize (3.6) subject to (3.8) and (4.1).

Because the incentive compatibility conditions impose a constraint on the
derivative of V (θ), which is a function of x(θ) [see (4.1)], it is convenient to
treat both V (θ) and x(θ) as state variables. We assume that xθ(·) is piecewise
continuous and, hence, that x(·) and V (·) are continuous and piecewise differ-
entiable. Because the self-selection constraints imply that x(·) is continuous
almost everywhere, our differentiability assumption is relatively weak.

We define the variable z(θ) = xθ(θ) and treat it as a control variable. This
allows us to write the monotonicity condition as the inequality constraint
z(θ) ≥ 0. The problem has another control variable, y(θ).10

Formally, the planner’s optimal control problem is

max
y(·),z(·),x(·),V (·)

∫ θ̄

θ
ξ(θ)V (θ)dθ (4.2)

subject to (3.8), (4.1), and the additional constraints

xθ(θ) = z(θ); (4.3)

z(θ) ≥ 0; (4.4)

V (θ) = 2θx(θ)
1
2 − y(θ)

3
2 . (4.5)

The last constraint is just the definition of V (θ).

10Because preferences are not quasilinear in y, we cannot employ the techniques of
Lolliver and Rochet (1983) and Boadway, Cuff, and Marchand (2000) to eliminate this
variable from the problem.
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In order to state the Hamiltonian for this program, we associate costate
variables κ(θ) and δ(θ) with the state variables V (θ) and x(θ), respectively.
We associate with (4.4) and (4.5), respectively, the multipliers ρ(θ) and π(θ).
The multiplier for the resource constraint (3.8) is η, the marginal cost of
public funds. Thus, the Hamiltonian can be written as

H(θ) = ξ(θ)V (θ) + κ(θ)2x(θ)
1
2 + π(θ)[V (θ) − 2θx(θ)

1
2 + y(θ)

3
2 ] +

η
[
(y(θ) − x(θ))G(θ) − q

c
θ

1
2y(θ)

1
4W (θ)

]
+ δ(θ)z(θ) + ρ(θ)z(θ).

(4.6)
The necessary conditions for optimality include:

Hy(θ) =
3

2
π(θ)y(θ)

1
2 + η

[
G(θ) − q

4c
θ

1
2y(θ)−

3
4W (θ)

]
= 0; (4.7)

Hz(θ) = δ(θ) + ρ(θ) = 0; (4.8)

Hx(θ) = [κ(θ) − θπ(θ)]x(θ)−
1
2 − ηG(θ) = −δθ(θ); (4.9)

HV (θ) = ξ(θ) + π(θ) = −κθ(θ); (4.10)

where (4.9) and (4.10) hold except at points of discontinuity in the controls.
Because there are no constraints on the state variables, the costate vari-

ables must be continuous.11 A discontinuity in the derivative of a costate
variable can only occur at a point of non-differentiability in the controls.

Furthermore, the following transversality conditions must be satisfied:

κ(θ) = κ(θ̄) = 0; (4.11)

δ(θ) = δ(θ̄) = 0. (4.12)

The inequality constraints require that the following complementary slack-
ness conditions be satisfied:

ρ(θ)z(θ) = 0, ρ(θ) ≥ 0, ∀θ ∈ T ; (4.13)

η

(∫ θ̄

θ

[
(y(θ) − x(θ))G(θ) − q

c
θ

1
2y(θ)

1
4W (θ)

]
dθ − C

)
= 0, η ≥ 0. (4.14)

11Because the monotonicity constraint imposes restrictions on the derivative of the state
variable x(·), we have been able to reformulate it as a constraint on the control variable
z(·). Thus, the planner’s problem has no pure state constraints. In such circumstances,
the necessary conditions for optimality include continuity of the costate variables. See
Seierstad and Sydsæter (1977, Note 5, pp. 375–376) for a discussion of this issue.
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We note in passing that no further restrictions are imposed on the signs of
π(·), δ(·), and κ(·). In the next section, we use (4.7)–(4.14) to deduce some
further properties of these functions.

The individuals with types in the set Θ ⊆ T are θ-bunched if they are
all allocated the same income-consumption pair. Bunching occurs when the
second-order condition (4.4) is binding. Because x(·) is continuous and non-
decreasing, a bunching region Θ must be a closed interval. We assume that
T is not a single bunching interval at the solution to the planner’s problem.
The continuity of x(·) (and, hence, of y(·)) and the curvature and monotonic-
ity properties of the individual preferences imply that in the interior of T ,
discontinuities in xθ(·) only occur at the endpoints of bunching regions. It is
at these points that the costate variables need not be differentiable. Let N
be the set of θ-types in (θ, θ̄) who are not θ-bunched.

5. Signing the marginal distortions and marginal tax
rates

In this section, for each type θ, we consider the sign of the marginal income
tax rate at the solution to the planner’s problem. For θ ∈ N , we also con-
sider the sign of the marginal distortion between this type’s marginal rate
of substitution and the marginal rate at which income can be transformed
into consumption along the economy’s resource constraint.12 In the standard
nonlinear tax model with a constant-returns-to-scale technology, there is no
distinction between the marginal tax rate and the marginal distortion. In
our model, the marginal rate of transformation is not constant; a one-unit
increase in income induces extra investment in education, which needs to
be financed by the government. This link between before-tax income and
publicly-financed education introduces a nonlinearity into the government’s
resource constraint.

The marginal tax rate of a type θ individual is given by

MTR(θ) = 1 −MRS(θ) = 1 − 3(x(θ)y(θ))
1
2

2θ
, (5.1)

where
MRS(θ) = MRSθ(y(θ), x(θ)). (5.2)

12At kinks in the tax schedule, the marginal rate of transformation is not well-defined.
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This definition is equivalent to the one obtained by taking one minus the
slope of the tax schedule whenever this slope is well-defined. A priori, an
individual’s marginal tax rate could be of either sign.

For all θ ∈ N , the marginal rate of transformation is computed by taking
the derivative of x(θ) with respect to y(θ) along the boundary of the resource
constraint (3.8). Thus,

MRT (θ) =
G(θ) − q

4c
θ

1
2y(θ)−

3
4W (θ)

G(θ)
, ∀θ ∈ N. (5.3)

The marginal distortion is the difference between the marginal rate of trans-
formation and the marginal rate of substitution,

MD(θ) =
G(θ) − q

4c
θ

1
2y(θ)−

3
4W (θ)

G(θ)
− 3(x(θ)y(θ))

1
2

2θ
, ∀θ ∈ N. (5.4)

Comparing (5.1) with (5.4), we see that for all θ ∈ N , the size of the marginal
distortion is less than the marginal tax rate.

If individuals of type θ are not bunched, then (4.8) and the complementary
slackness condition (4.13) imply that δ(θ) = 0. As this is true for some
neighbourhood of θ, we also have δθ(θ) = 0. It then follows from (4.7) and
(4.9) that, at an optimum,

3(x(θ)y(θ))
1
2

2θ
=

η[G(θ) − q
4c
θ

1
2y(θ)−

3
4W (θ)]

ηG(θ) − κ(θ)x(θ)−
1
2

, ∀θ ∈ N, (5.5)

provided that the denominator on the right-hand-side of (5.5) is nonzero.13

The left-hand-side of (5.5) is positive. Hence, the numerator on the right-
hand-side of (5.5) is positive if the denominator is positive. Consequently,
agents of type θ ∈ N face a positive marginal distortion if κ(θ) < 0.

In the full-information solution, we would not have the two incentive con-
straints, (4.1) and (4.4), and κ(θ)x(θ)−

1
2 would not appear in the optimality

condition (5.5). This condition would then say that the marginal rate of
substitution should equal the marginal rate of transformation; i.e., there are
no marginal distortions.

In order to sign the distortions, we need to investigate the properties of
κ(·). Substituting (4.10) into (4.9) and multiplying by x(θ)

1
2 yields

κ(θ) + θκθ(θ) = ηG(θ)x(θ)
1
2 − θξ(θ) − δθ(θ)x(θ)

1
2 . (5.6)

13Below we show that this is in fact the case.
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The left-hand-side of (5.6) is the differential of θκ(θ). Thus,

θκ(θ) =
∫ θ

θ
[ηG(ν)x(ν)

1
2 − νξ(ν) − δν(ν)x(ν)

1
2 ]dν. (5.7)

From (3.5) and (3.7), ξ(θ) = G(θ)/θ. Thus, (5.7) implies

θκ(θ) =
∫ θ

θ
[(ηx(ν)

1
2 − 1)G(ν) − δν(ν)x(ν)

1
2 ]dν. (5.8)

By (4.11), κ(θ̄) = 0. Evaluating (5.8) at θ̄ and solving for η yields

η =
1 +

∫ θ̄
θ δν(ν)x(ν)

1
2dν∫ θ̄

θ x(ν)
1
2G(ν)dν

. (5.9)

Lemma A.1 in the Appendix shows that
∫ θ2
θ1

δν(ν)x(ν)
1
2dν = 0 on any bunch-

ing interval [θ1, θ2]. We have already seen that δ(θ) = 0 when θ is not
bunched. Hence, the second term in the numerator of (5.9) is 0, and thus

η =
1∫ θ̄

θ x(ν)
1
2G(ν)dν

. (5.10)

We have assumed that x(θ) is positive for all θ. Therefore, the marginal cost
of public funds is positive. Moreover,

1∫ θ̄
θ x(ν)

1
2G(ν)dν

≤ 1

[
∫ θ̄
θ x(ν)−

1
2G(ν)dν]−1

=
∫ θ̄

θ
x(ν)−

1
2G(ν)dν.14 (5.11)

Thus, the shadow value of government revenue is less than the average
marginal utility of consumption, according to the cardinalization of utility
given by (2.9), at a second-best optimum.15

Because x(·) is nondecreasing, so is ηx(·) 1
2 −1. The continuity of x(·) and

(5.10) imply that there is a maximal interval [θ̃, θ̂] in which ηx(θ)
1
2 = 1 for

all θ ∈ [θ̃, θ̂]. This interval may be a single point, in which case θ̃ = θ̂.

14It follows from Jensen’s inequality that
[∫ θ̄

θ
x(ν)−

1
2 G(ν)dν

]−2 ≤
[∫ θ̄

θ
x(ν)

1
2 G(ν)dν

]2.
See Marshall and Olkin (1979, p. 455). Squaring both sides of this inequality yields (5.11)
after some manipulation.

15Sandmo (1998) reports that a similar relationship holds in a finite-type model in which
a public good is financed using linear taxation.
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In order to gain some insight about the marginal distortions, it is useful to
consider first the case in which the second-order condition (4.4) is everywhere
non-binding. In this circumstance, agents of different θ-types receive different
allocations. Hence, N = (θ, θ̄) and θ̃ = θ̂.

In this special case, (5.8) reduces to

θκ(θ) =
∫ θ

θ
(ηx(ν)

1
2 − 1)G(ν)dν. (5.12)

By assumption, x(·) is increasing. Thus, the term in parentheses in the
integrand of (5.12) is also increasing. By (4.11), the integral in (5.12) is 0
when evaluated at θ = θ̄. Because G(θ) is positive for θ �= θ, θ̄, it follows
that θκ(θ) < 0 for all θ ∈ (θ, θ̃]. To sign the distortion term for higher values
of θ, we consider

d

dθ
[θκ(θ)] = (ηx(θ)

1
2 − 1)G(θ). (5.13)

For any θ > θ̂ = θ̃, the right-hand-side of (5.13) is positive. Thus, θκ(θ) is
increasing over this range, reaching 0 at θ̄. Hence, θκ(θ) < 0 for all θ ∈ (θ̃, θ̄).

We have shown that κ(θ) < 0 for all θ �= θ, θ̄, from which we conclude
that all of these individuals have a positive marginal distortion when there is
no bunching.16 Furthermore, these individuals face a positive marginal tax
rate because MTR(θ) > MD(θ). Continuity of x(·) then allows us to infer
that the marginal distortions and the marginal tax rates at the endpoints of
the θ distribution are nonnegative.

Provided there is no bunching at the bottom of the θ distribution, the
possibility of θ-bunching does not change these conclusions significantly. If
there is bunching at θ, we are not able to rule out the possibility that indi-
viduals with sufficiently low values of θ have a negative marginal tax rate;
i.e., at the margin, they have an income subsidy.

If there is θ-bunching, the optimal tax schedule consists of closed inter-
vals of bunching alternating with open intervals over which x(·) is strictly
increasing. As we have seen, outside the bunching intervals, both ρ(·) and
δ(·) vanish. By (5.5), the marginal distortion is positive for any non-bunched

θ if κ(θ) < 0. Lemma A.1 allows us to conclude that
∫ θ
θ δνx(ν)

1
2dν = 0 for any

such θ. Thus, for θ ∈ N , (5.12) may be used to determine the sign of κ(θ),

16Combined with our earlier finding that η > 0, knowing that κ(θ) < 0 for θ �= θ, θ̄
allows us to confirm that the denominator on the right-hand-side of (5.5) is positive. A
similar argument can be used to sign this denominator if there is bunching.
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the same as when there is no bunching at all. Lemma A.3 in the Appendix
proves that κ(θ) < 0 for all θ ∈ N . Hence, even when there is bunching, all
unbunched individuals in the interior of T face a positive marginal distortion.

Theorem 2 At a solution to the planner’s problem, the marginal distortion
is positive for all θ ∈ N .

Because the size of the marginal distortion is less than the marginal tax
rate for all θ ∈ N , we can conclude from Theorem 2 that all unbunched indi-
viduals in the interior of the θ distribution face a positive marginal tax rate.
Although the marginal distortion is not well-defined on bunching intervals,
we can nevertheless sign everyone’s marginal tax rate if θ is not θ-bunched.
If [θ, θ∗] is a bunching interval, we can sign the marginal tax rate for all types
θ ≥ θ∗.

Consider any bunching interval [θ1, θ2] with θ1 > θ. The limit of MD(θ)
as we approach θ1 from below is the expression in (5.4) evaluated at θ1.

17

Because the marginal distortion is positive for all θ ∈ N , this limit is nonneg-
ative. Comparing the expression for this limit with (5.1), we conclude that
the marginal tax rate at θ1 is positive. On a bunching interval, the allocation
of income and consumption is constant, so the marginal tax rate is increasing
in θ [see (5.1)]. Hence, the marginal tax rate is positive on [θ1, θ2].

If there is a bunching interval [θ, θ∗], by taking the limit of MD(θ) as we
approach θ∗ from above, an analogous argument shows that the marginal tax
rate at θ∗ is positive. However, because the marginal tax rate is increasing
in θ on [θ, θ∗], we are unable, in general, to sign the marginal tax rates on
[θ, θ∗). Continuity ensures that there is a neighbourhood of θ∗ in which the
marginal tax rate is positive, but there could be a critical value of θ < θ∗

below which individuals have a marginal subsidy.
If θ̄ (resp. θ) is not θ-bunched, we cannot use the limiting argument used

above to conclude that the marginal tax rate for this type is positive. The
problem is that W (θ) = W (θ̄) = 0. However, because the marginal tax rate
is positive for all θ ∈ N , the continuity of x(·), y(·), and MRS(·) imply that
the marginal tax rate at θ̄ (resp. θ) is nonnegative.

We note in passing that the self-selection constraints imply that x is an
increasing function of y, ruling out marginal tax rates in excess of 100%.

This discussion is summarized in Theorem 3.

17This limit should not be interpreted as the marginal distortion at θ1 because of the
nondifferentiability of the resource constraint at this point.
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Theorem 3 At a solution to the planner’s problem:
(a) If θ is not θ-bunched, then (i) the marginal tax rate is positive for

all θ ∈ (θ, θ̄), (ii) the marginal tax rate at θ is nonnegative, and (iii) the
marginal tax rate at θ̄ is nonnegative if θ̄ is not θ-bunched and positive if it
is.

(b) If [θ, θ∗] is a bunching interval, then (i) the marginal tax rate is posi-
tive for all θ ∈ [θ∗, θ̄) and (ii) the marginal tax rate at θ̄ is nonnegative if θ̄
is not θ-bunched and positive if it is.

(c) The marginal tax rate is increasing in θ within a bunching interval.

Some of these conclusions differ from what is found in the standard non-
linear income tax problem with a constant-returns-to-scale technology.18 In
the standard model, the highest type is not bunched with anyone and has
a zero marginal tax. Anyone else who is not bunched with the lowest type
has a positive marginal tax. If the lowest type is not bunched, has a positive
labour productivity, and earns a positive income, then this type’s marginal
tax rate is zero. If there is a bunching interval at the bottom of the type
distribution, then the marginal tax rate is positive at the top of this interval
and it is nonnegative on the rest of this interval.19

One of the key assumptions used to derive the properties of the optimal
tax schedule at the endpoints of the type distribution in the standard model
is that the density function is strictly positive for these types. This is not the
case here. While the density function f(·) for the two-dimensional character-
istics space S is positive everywhere, the density G(θ) is 0 when θ is either
θ or θ̄.20 If the type space were changed in such a way that the density is
positive at an endpoint of the θ distribution, then standard arguments would
allow us to conclude that the marginal distortion for this type is 0 in the
absence of bunching. It would then follow that the corresponding marginal
tax rate is positive because the marginal cost of educating these individuals
is positive.

18See, for example, Brito and Oakland (1977), Ebert (1992), and Seade (1977).
19Mirrlees (1997) has recently investigated how the properties of the optimal tax schedule

at the bottom of the distribution depend on the thickness of the tail of the distribution.
A novel feature of Mirrlees’ model is his assumption that the marginal utility of work is
positive for small amounts of labour.

20Although these restrictions on G(·) were derived using our assumption that the set
of possible types is a square, this conclusion is quite robust. For example, in order for
G(θ̄) to be positive, the upper boundary of the type space would have to intersect an iso-θ
contour in a set of positive measure, which is implausible.
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A striking feature of our results is that if there is bunching at the bottom
of the θ-distribution, there may be an interval of low θ types who receive a
marginal income subsidy.21 A marginal income subsidy provides an incentive
for individuals to work more. This increases the demand for education, which
in turn raises these individuals’ wage rates and, hence, their incomes.

Because education is provided free of tuition, we can also say something
about the implicit subsidies to education of individuals who are of the same
θ type but who differ in the underlying characteristics. For such individuals,
from (2.10) and (2.13) we see that the amount of education received is de-
creasing in w (or, equivalently, increasing in a). Because individuals of the
same θ type have the same income and pay the same amount of tax, the
educational subsidy is increasing with aptitude for education and decreasing
with respect to innate labour productivity.

6. Conclusion

Government provision of higher education is commonplace. While education
is often available to all citizens, members of society vary in the extent to
which they take it up. In particular, those who have a special aptitude for
education and those for whom formal education makes a large contribution
to market earnings are the most likely to acquire higher than average lev-
els of higher education. These choices by individuals can have a profound
effect on the distribution of market skills, which, in turn, shapes the desire
and possibilities for redistribution across individuals. On the other hand,
redistributive income taxes affect the returns to skill acquisition and, ulti-
mately, educational choices. In this article, we have made a modest attempt
to capture this rich set of economic interactions in a consistent way.

Despite the complex forces at work, we have been able to determine a
number of qualitative properties of an optimal tax schedule. We have shown
that all unbunched individuals face a positive marginal distortion. Further,
except for possibly at the endpoints of the θ distribution, everyone is subject
to a positive marginal tax if there is no bunching at the bottom of the distri-
bution. If there is bunching at θ, this conclusion requires some qualification;
some of the low-θ individuals in this bunching interval may have a marginal
income subsidy. Individuals at the top of the θ distribution always have a

21In a two-type model, Stiglitz (1982) shows that the highest-type individual should
receive a marginal income subsidy if the two types of labour are not perfect substitutes.
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nonnegative marginal tax rate and have a strictly positive marginal tax rate
if they are θ-bunched. The differences between our conclusions and those
found with the standard Mirrlees model are accounted for by the extra term
in the resource constraint introduced by the need to finance educational ex-
penditures out of general tax revenues and by the fact that the density is 0
at the endpoints of the θ distribution.

We make no claim of absolute generality. Indeed, as is often necessary in
problems with asymmetric information, we have placed quite a bit of struc-
ture on preferences and technology. However, the model is flexible enough to
allow further investigation. For example, it is of interest to determine how the
possibility of obtaining education privately affects our analysis. Our model
could also be used to determine the effects of varying the level of required
education. A more ambitious project would be to assess how the planner
could use information on discretionary educational attainment, if available,
to supplement the tax schedule. This would provide a basis for evaluating
the rationale for a graduate tax in a second-best environment.

Appendix

Proof of Theorem 1. Let {x(w, a), y(w, a)} be the menu of optimal income-
consumption pairs. Set a = 1. With this restriction, θ is distributed on
T1 = [b−2, 2

3
2 b−2]. For fixed a, the single-crossing property is satisfied with

respect to w. Because the marginal rate of substitution is decreasing in w,
the self-selection constraints (2.15) imply that both x(·, 1) and y(·, 1) must
be nondecreasing on [1,2]. Because x(·, 1) and y(·, 1) are monotone functions
on an interval, they are continuous almost everywhere on [1,2].

Suppose that these functions are continuous at ŵ ∈ (1, 2) and let θ̂ be
the corresponding value of θ. Consider any other type (w̄, ā) whose value
for the type aggregator is θ̂. Because types (ŵ, 1) and (w̄, ā) have the same
preferences for income and consumption, the incentive compatibility con-
straints imply that (x(w̄, ā), y(w̄, ā)) lies on the type θ̂ indifference curve
through (x(ŵ, 1), y(ŵ, 1)). If (x(w̄, ā), y(w̄, ā)) �= (x(ŵ, 1), y(ŵ, 1)), then
(x(w̄, ā), y(w̄, ā)) lies above the part of the tax schedule designed for in-
dividuals of type a = 1. If (x(w̄, ā), y(w̄, ā)) � (x(ŵ, 1), y(ŵ, 1)), then for
w > ŵ sufficently close to ŵ, a type (w, 1) individual prefers (x(w̄, ā), y(w̄, ā))
to (x(w, 1), y(w, 1)), violating the self-section constraints. Analogously, if
(x(w̄, ā), y(w̄, ā)) � (x(ŵ, 1), y(ŵ, 1)), then for w < ŵ sufficently close to ŵ,
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a type (w, 1) individual prefers (x(w̄, ā), y(w̄, ā)) to (x(w, 1), y(w, 1)). Hence,
for θ ∈ T1, individuals with the same value of θ must be allocated the same
income-consumption pair at points of continuity in the tax schedule.

Let Ω denote the set of values of w for which either there is a discontinuity
in the tax schedule at the allocation designed for a type (w, 1) individual or
w ∈ {1, 2} and let TΩ be the corresponding set of θs. For any w̃ ∈ Ω, let θ̃ be
the θ value of someone of type (w̃, 1). For all other types whose value for the
type aggregator is θ̃, reallocate their income-consumption pairs if necessary
so that all individuals of type θ̃ receive (x(w̃, 1), y(w̃, 1)). None of these
individuals have had their utility changed as a result of this reallocation.
Because no new allocations have been added to the tax schedule, the self-
selection constraints are still satisfied after the reallocation. Because the set
of individuals with types in TΩ has zero measure, the reallocation satisfies the
resource constraint and does not change the value of the planner’s objective
function. Hence, for θ ∈ T1, it is optimal to allocate the same income-
consumption pair to individuals with the same value of θ.

Now set a = 2. With this restriction, θ is distributed on T2 = [2b−2, 2
5
2 b−2].

Proceding as above, it follows that for θ ∈ T2, it is optimal to allocate the
same income-consumption pair to individuals with the same value of θ. Be-
cause T = T1 ∪ T2, the proof is complete.

Lemma A.1 At a solution to the planner’s problem, if [θ1, θ2] is a bunching

interval, then
∫ θ2
θ1

δν(ν)x(ν)
1
2dν = 0.

Proof. By (4.8), δ(ν) = 0 if and only if ρ(ν) = 0. Hence, by the com-
plementary slackness condition (4.13), δ(ν) �= 0 only on bunching intervals;
that is, only on intervals for which x(·) is constant. Moreover, because δ(·)
is continuous, so is ρ(·). Thus, at the endpoints of any bunching interval,
ρ(ν) = δ(ν) = 0.22 Let x̄ denote the constant value of x(·) on this interval.
By the Fundamental Theorem of Calculus,∫ θ2

θ1

δν(ν)x(ν)
1
2dν = x̄

1
2

∫ θ2

θ1

δν(ν) = x̄
1
2 [δ(θ2) − δ(θ1)] = 0, (A.1)

which completes the proof.

Lemma A.2 At a solution to the planner’s problem, if [θ1, θ2] is a bunching
interval with θ1 > θ̂, then it is not the case that κ(θ1) ≥ 0 and κ(θ2) ≤ 0.

22If either θ or θ̄ is one of the endpoints of the bunching interval, we know the costate
variable δ(ν) is 0 by the transversality condition (4.12).
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Proof. By (5.8),

θ2κ(θ2) − θ1κ(θ1) =
∫ θ2

θ1

[ηx(ν)
1
2 − 1]G(ν)dν −

∫ θ2

θ1

δν(ν)x(ν)
1
2dν. (A.2)

Let x̄ denote the common value of x(·) on [θ1, θ2]. The last term on the
right-hand-side of (A.2) is 0 by Lemma A.1. Hence, (A.2) implies that

θ2κ(θ2) − θ1κ(θ1) = [ηx̄
1
2 − 1][Ḡ(θ2) − Ḡ(θ1)], (A.3)

where

Ḡ(θ) =
∫ θ

θ
G(ν)dν, ∀θ ∈ T. (A.4)

Because ηx̄
1
2 > 1 when θ > θ̂ and because Ḡ(θ2) > Ḡ(θ1) when θ2 > θ1, the

right-hand-side of (A.3) is positive. Thus,

θ2κ(θ2) > θ1κ(θ1). (A.5)

If κ(θ1) ≥ 0 and κ(θ2) ≤ 0, then (A.5) would be violated.

Lemma A.3 At a solution to the planner’s problem, κ(θ) < 0 for all θ ∈ N.

Proof. We have established that (5.12) holds for all θ ∈ N . Even though
x(·) is now only nondecreasing, the argument used below (5.12) to show that
κ(θ) < 0 continues to apply if θ ≤ θ̃.23 We now consider θ > θ̂. Contrary
to the lemma, suppose that κ(θ) ≥ 0. The argument used when there is no
bunching to show that the right-hand-side of (5.13) is positive is valid for this
θ. Hence, we can conclude that κ(·) is increasing outside bunching intervals
above θ̂. Because non-bunching intervals are open, there exists a θ′ ∈ N
with θ′ > θ for which κ(θ′) > 0. In Lemma A.2 we have shown that for any
bunching region [θ1, θ2] in (θ̂, θ̄], if κ(θ1) ≥ 0, then κ(θ2) > 0. Therefore,
κ(θ̄) > 0, contradicting the transversality condition (4.11).
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versité Catholique de Louvain.

Brito, D.L., Oakland, W., 1977. Some properties of the optimal income-tax.
International Economic Review 18, 407–423.

Diamond, P.A., 1998. Optimal income taxation: A example with a U-
shaped pattern of optimal marginal tax rates. American Economic
Review 88, 83–95.

Ebert, U., 1992. A reexamination of the optimal nonlinear income tax.
Journal of Public Economics 49, 47–73.

Grout, P., 1983. Imperfect information, markets and public provision of
education. Journal of Public Economics 8, 113–121.

Hare, P.G., Ulph, D.T., 1979. On education and distribution. Journal of
Political Economy 87, S193–S212.

Laffont, J.-J., Maskin, E., Rochet, J.-C., 1987. Optimal nonlinear pricing
with two-dimensional characteristics. In: Groves, T., Radner, R., Re-
iter, S. (Eds.), Information, Incentives, and Economic Mechanisms.
University of Minnesota Press, Minneapolis, pp. 256–266.

Lollivier, S., Rochet, J.-C., 1983. Bunching and second-order conditions: A
note on optimal tax theory. Journal of Economic Theory 32, 392–400.

Marshall, A.W., Olkin, I., 1979. Inequalities: Theory of Majorization and
Its Applications. Academic Press, New York.

McAfee, R.P., McMillan, J., 1988. Multidimensional incentive compatibility
and mechanism design. Journal of Economic Theory 46, 335–354.

Mirrlees, J.A., 1971. An exploration in the theory of optimum income tax-
ation. Review of Economic Studies 38, 175–208.

Mirrlees, J.A., 1976. Optimum tax theory: A synthesis. Journal of Public

24



Economics 7, 327–358.
Mirrlees, J.A., 1997. Optimal marginal taxes at low incomes. Unpublished

manuscript, Faculty of Economics, University of Cambridge.
Rochet, J.-C. 1987. A necessary and sufficient condition for rationalizability

in a quasi-linear context. Journal of Mathematical Economics 16, 191–
200.

Rochet, J.-C., Stole, L.A., 2000. The economics of multidimensional screen-
ing. Unpublished manuscript, Graduate School of Business, University
of Chicago.

Sandmo, A., 1998. Redistribution and the marginal cost of public funds.
Journal of Public Economics 70, 365–382.

Seade, J.K., 1977. On the shape of optimal tax schedules. Journal of Public
Economics 7, 203–235.

Shapiro, J., 1999. Income maintenance programs and multidimensional screen-
ing. Unpublished manuscript, Department of Economics, Princeton
University.

Seierstad, A., Sydsæter, K., 1977. Sufficient conditions in optimal control
theory. International Economic Review 18, 367–391.

Sheshinski, E., 1971. On the theory of optimal income taxation. Discus-
sion Paper No. 172, Harvard Institute for Economic Research, Harvard
University.

Spence, A.M., 1974. Market Signalling: Informational Transfer in Hiring
and Related Screening Processes. Harvard University Press, Cam-
bridge, MA.

Stiglitz, J.E., 1982. Self-selection and Pareto efficient taxation. Journal of
Public Economics 17, 213–340.

Tuomala, M., 1986. On the optimal income taxation and educational deci-
sions. Journal of Public Economics 30, 183–198.

Ulph, D., 1977. On the optimal distribution of income and educational ex-
penditure. Journal of Public Economics 8, 341–356.

Wilson, A., 1999. Education policy: The case for government intervention
with endogenous abilities. Unpublished manuscript, Department of
Economics, Princeton University.

25


