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ABSTRACT

Benefiting from the recent progress of AI research, computerized supports in making

decisions have been deployed to a large variety of computer systems supporting decision

making, which received research interests in the area of decision support programs, sys-

tems, methods, and techniques. However, recent cases started to reveal the decision sup-

port vulnerabilities, where human intervention becomes infeasible to handle problems such

as failures or deliberate attacks. On the other hand, such situations are not despairing as

tremendous approaches addressing resilience and robustness have been explored by the

theoretical side, which leads to massive success in many areas.

This dissertation aims to bridge this gap to improve the resilience of decision support

systems in several different cases. We first consider the scenario of decentralized traffic

light control problems and develop a cloud computing framework addressing simulation-

based optimizations driven by real-time data. We further study the multiple autonomous

vehicles path planning with motion uncertainty, model the interactions among strategic

agents via a game-theoretical framework, and investigate the gap between centralized and

decentralized control scheme. Then, we focus on the areas with machine learning enhanced

decision support systems (medical imaging and anomaly detection). The vulnerabilities of

such systems are revealed and addressed by our resilient algorithm. Finally, we present

a game-theoretical approach addressing the threaten of adversarial examples in machine

learning enhanced systems by calculating the optimal randomization scheme over multiple

learning models.
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Chapter 1

Introduction

1.1 Background

Since the first general theory of decision process was established by Nicolas of Con-

dorcet (1743-1794), a great enlightenment philosopher, as part of his motivation for the

French constitution of 1793, decision theory has received undivided attentions due to its

abstractness on problem-solving methodology. Modern decision theory, as a truly inter-

disciplinary subject of its own right, has dramatically developed since the 1950s and been

pursued by researchers with different backgrounds, like economists, statisticians, psychol-

ogists, social scientists, and philosophers. Benefiting from the recent progress of computer

science, computerized supports in making decisions have been deployed to a large variety

of computer systems supporting decision making, which leads computer scientists to be a

new member of the team and turns the field to be at another turning point of possibilities.

In the early applications of computerized decision supports, the system usually can be

considered as a framework integrating a collection of data, models, information processing,

and other expertise, which provides a unified way for analysis of problems and evaluation

of the optimal (sub-optimal) solution from the set of alternatives. Such a structure provides

the capability of combining various computer technologies to solve complex and large scale

problems. One typical example is FORPLAN [54], which is a linear programming system

used to support national forest land management planning. FORPLAN was designed to

have flexibility in importing and exporting data (e.g., supporting different kinds of land

organization importing from geographic information systems), optimization or simulation

backends, and user presentation modules (e.g., the compatibility with Forest Service ac-

counting systems), leading a great success in nature resource management at a national

level.
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For solving those problems with well-defined structures, it is not surprising that the

computerized decision supports can help due to the reason that the corresponding optimiza-

tion models and solution methods coming from the outcome of modern decision theory al-

low the extra computing power to be used in a systematic way. However, such optimization-

leaded patterns are unrealistic in many cases where targeted problems are unstructured or

unquantifiable. Moreover, the poor portability of models among problems (model formu-

lations are usually dependent on human expertise with domain-specific knowledge) leads

the development process to be expensive and difficult to be practiced in an incremental

way. Therefore, the idea for seeking a ”general problem solver” emulating human reason-

ing activities, independent of subject matter, introduces the ”intelligence” to the field of

computerized decision supports.

Starting at the 1970s, it became apparent that intelligent decision support systems,

based on the AI technologies falling into the category of symbolic reasoning, widely emerged,

including Expert Systems, Knowledge-based Systems, Semantic reasoner, Frame-Based

Systems and Truth Maintenance System. The idea behind these is to provide an abstract

layer between an inference engine and inference rules. While an inference engine is the

core component of decision making being able to infer logical consequences from a set of

asserted general facts or axioms, inference rules capture knowledge about a specific do-

main in some structured symbolic form in a particular representation (e.g., Semantic web),

created by domain experts. Therefore, such approaches have the capability of representing

heuristic knowledge symbolically and manipulate them in an automated way via reasoning.

Another common type of AI methods that of machine learning has been deployed for

decision support. In the aspect of decision support system, the strength of machine learn-

ing is the capability of ”meta-modeling”, which aims to address unstructured problems,

being complementary to reasoning-based approaches assuming a specific type of relation-

ship between inputs and output. In this way, we can create a machine learning enhanced

decision-making process exhibiting very complex behavior by learning it from data without

2



being explicitly programming.

This thesis investigates scenarios in which decision-makers can be enhanced and re-

ceive the capability to make resilient decisions under uncertain and adversarial environ-

ments. In this chapter, we first attempt to demonstrate the motivations for the work dis-

cussed in this thesis. Then, we state the thesis questions by illustrating an ideal application

scenario. Finally, we present our contributions, followed by a synopsis of the thesis con-

tents chapter-by-chapter.

1.2 Motivation

Computerized support in making decisions has been deployed in various critical cyber-

physical infrastructures, such as the national power grid, transportation network, smart

cities, are large-scale and intricate systems that illustrate highly dynamic and uncertain op-

erations, significant heterogeneity in the end systems, network protocols and technologies,

as well as software systems that support the system operations, which arouses the research

interests in the area of decision support programs, systems, methods and techniques.

While most efforts are focusing on fast, precise and effective decision-makers, deci-

sion support vulnerabilities are being revealed in many different cases, where human inter-

vention becomes infeasible to handle problems such as failures or deliberate attacks. For

example,

• In December 2015, an attack reported on Ukraine power grid lead the disconnections

of seven 110kV and three 35kV substations and resulting in a power outage for 80k

people for three hours.

• In December 2016, Yahoo announced that 500 million user accounts had been hacked

in 2014 and a different attack in 2013 compromised more than 1 billion accounts.

• In May 2017, it was reported that cyber attackers had accessed Target’s gateway

server and stole data from up to 40 million credit and debit cards of shoppers.

3



It is foreseeable that the number of threat posed adversaries will continue to increase as

more and more subtle vulnerabilities are introduced by innovative technologies.

Malicious attacks are not the only challenges. Due to the lack of perfect sensors and de-

terministic observations, in the real world, decision-makers usually have to deal uncertain

knowledge about the surrounding environment and can be further exploited by misinfor-

mation due to attacks. For instance, an autonomous vehicle uses a low-accuracy GPS for

localization, and the motion planner not taking that into account may yield a dangerous

trajectory that collides with obstacles. Such case can be further complicated, if the au-

tonomous vehicle considers the uncertainty caused by other traffic participants (e.g., a non-

autonomous vehicle). As a result, the capability for dealing with uncertainty constraints

and malicious attacks is an urgent demand in computerized decision support systems.

1.3 Key Research Challenges

In this thesis, the term ”resilience” describes how systems operate at an acceptable

level of normalcy despite disturbances or threats, providing a conceptual idea of what a

better decision-support system looks like. Despite retained common traits, resilience takes

various domain-specific meanings in different disciplines. In this section, we demonstrate a

serial of research challenges which this thesis focuses on, deriving from the domain-specific

definitions of resilience specialized in scenarios of various decision support systems.

• In the first challenge, resilience refers to the capability of real-time computing and

1.3.1 Challenge 1: How can real-time decision making be addressed by the simulation-

based optimizations driven by real-time data?

To provide high-quality decision support, one can use simulations in an optimization

loop to derive the best values of system parameters for a given system state, particularly

when the system has too many parameters and traditional means to optimize the outcomes

4



are intractable. To that end, simulation-based optimization methods have emerged to enable

optimization in the context of complex, black-box simulations, thereby obviating the need

for specific and accurate model information, such as gradient computation. A significant

challenge in using simulation-based optimization is optimizing the decision parameters for

real-time systems.

Concretely, suppose a decentralized feedback traffic light control scenario that aims to

improve the overall traffic performance (minimize congestion) of a certain area by manip-

ulating the behaviors of traffic lights. In this scenario, to yield the control parameters with

high quality via simulation-based optimization, there are two key challenges. The first is

the close combination with data-acquisition technology providing the real-time road infor-

mation (e.g., vehicle flows) such that the simulation results have the capabilities to make

fast responses to the emergent events (e.g., road accident). Moreover, to ensure scalability

and real-time decision support, one must be able to rapidly deploy simulation-based opti-

mization in a way that makes the best use of available computing resources given the time

and budget constraints.

1.3.2 Challenge 2: In multi-agent path planning, how does the interaction among agents

with motion uncertainty affect the outcomes?

Path planning is a fundamental decision-making problem in autonomous robotic con-

trol. In much of the research on path planning, including mobile robot navigation, a fun-

damental task is to find a resilient control sequence which yields a collision-free motion

from a starting position to the goal position given a collection of known obstacles. As in-

teractions among autonomous vehicles, be it on our roads or in the skies, becomes more

routine, we can expect a certain amount of conflict to emerge, as the autonomous agents,

designed in service of their individual goals, must occasionally find these goals dependent

on other autonomous agents nearby. However, it is natural to arise the question of what

autonomous vehicle ecosystem would thereby emerge, when many autonomous agents at-
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tempt to achieve their individual goals, but must necessarily interact with one another in

doing so.

1.3.3 Challenge 3: How to improve the robustness of machine learning enhanced decision

support system?

Machine learning is increasingly used to enhance decision support by automating the

processing of large datasets. In particular, the machine learning based imaging recog-

nition algorithms are extensively used to find the solutions to various challenges aris-

ing in the many fields (e.g., medical imaging [34, 43, 9, 30] and cyber-physical sys-

tems [104, 67, 74]). In these cases, the accuracy and reliability of the prediction model

are the vital properties, since any mistake make can be disastrous and cost human lives.

Despite advancements in machine learning algorithms, it has been shown that machine

systems are inherently vulnerable to carefully-crafted attacks. In such cases, attackers can

exploit the model’s weaknesses at the testing phase by crafting malicious adversarial exam-

ples producing intentional errors, and evade detections [12, 22, 45]. The intuition behind

evasion attacks is adding a tiny amount of well-tuned additive perturbation to the original

data input and significantly changing the prediction in the testing time(e.g., leading a clas-

sifier to label the modified image as a completely different class). Such an issue becomes

one of the key challenges of this work.

1.3.4 Challenge 4: How to forge a resilient anomaly detector in sensor networks?

Cyber-physical systems feature a control loop that maps sensor measurements to con-

trol decisions that involve maintaining system state features, such as flow speed, temper-

ature, and pressure, in a safe range. In these cases, perturbations of normal behavior in-

dicate a presence of intended or unintended included attacks, defects, faults, and so on.

Thus, anomaly detection can be a key for solving potential intrusions being those activi-

ties that can change the system behaviors, with anomaly detection employed to ensure that
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anomalous or malicious sensor measurements do not subvert system operation. A recent

tendency to use machine learning for anomaly detection significantly helps in enhancing

the performance of detection (in both speed and quality).

Nevertheless, even armed with anomaly detectors, systems can be vulnerable to stealthy

attacks [37], whereby an attacker submits measurements of compromised sensors in a way

to ensure that they appear normal while influencing the behavior of the control loop. To

further investigate and quantify such vulnerability becomes another challenge.

1.4 Contributions of the Thesis

This section highlights our research contribution, including framework design and the-

oretical models design. All of these will be discussed in more detail in the Conclusions

chapter.

1.4.1 Addressing Challenge 1: Simulation-based optimization as a service

We have developed a cloud-based framework that provides a simulation-based opti-

mization as a service (SBOaaS), in which real-time considerations are explicitly accounted

for making optimal use of limited but parallel computational resources in order to obtain

the best answer within the given time constraints. This part of the work focuses on present-

ing a generic optimization process for deploying simulation-based optimization on a cloud

architecture. Our framework consists of

• The implementation of SBOaaS, which for a given optimization problem, describes

how to decompose the input problem into a group of parallel simulations and effi-

ciently use the existing computing power.

• An anytime parallel simulation-based optimization approach, which admits signif-

icant flexibility in both time and computational resource constraints to obtain the
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best (but possibly sub-optimal) solutions given the available resources and time con-

straints on decisions.

This work has resulted in the following publication.

Li, Y., Shekhar, S., Vorobeychik, Y., Koutsoukos, X., Gokhale, A. (2018). Simulation-

Based Optimization as a Service for Dynamic Data-Driven Applications Systems. In Hand-

book of Dynamic Data Driven Applications Systems (pp. 589-614). Springer, Cham.

1.4.2 Addressing Challenge 2: Path planning games

To investigate the consequences of such strategic interactions among multiple path plan-

ners and how these planners make resilient decisions, we propose a study of path planning

games. An important feature of such games is that a collection of self-interested path plan-

ners each trade-off two objectives: efficiency, or speed with which their goals are achieved,

and safety, or probability that they crash before reaching their goals. The highlight of the

work includes

• Modeling agent’s motion dynamic with motion uncertainty.

• Both decentralized and centralized multi-agent path planer via conjunctive optimiza-

tions.

• Empirical work on investigating the gap between equilibrium and global optimum.

This work has resulted in the following publication.

Li, Y., Vorobeychik, Y. (2018). Path Planning Games. International Workshop on

Optimisation in Multi-Agent Systems (OPTMAS) 2018.

1.4.3 Addressing Challenge 3: Robust medical imaging and feature selection games

We first consider a robust imaging recognition problem in the field of medical imaging.

We show that medical imaging applications are susceptible to state-of-the-art adversar-
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ial attacks, and such vulnerability can be addressed via integrated deep learning models.

Specifically, we use brain age prediction as an application to show the following

• A Single visibly imperceptible noise field can dramatically reduce task accuracy.

• A general visibly imperceptible noise field can be generated which will reduce task

accuracy for a large batch of subjects, and

• Such adversarial perturbations have significantly less impact on deep learning models

that use anatomical context.

Then, we further study the approach addressing the vulnerability of machine learning

enhanced decision supports systems by modeling the interaction between the attacker and

the learner via feature selection games, which includes

• A game theoretical approach finding the optimal feature subset maximizing the ro-

bust accuracy in the cases where the attacker can change a limited number of features.

• The comparison to state of the art defenses approaches.

This work has resulted in the following publication.

Li, Y., Zhang, H., Bermudez, C., Chen, Y., Landman, B. A., Vorobeychik, Y. (2019).

Anatomical Context Protects Deep Learning from Adversarial Perturbations in Medical

Imaging. Neurocomputing.

1.4.4 Addressing Challenge 4: Adversarial Gaussian process regression in sensor net-

works

We consider the problem of vulnerability of CPS with GPR-based anomaly detection

to stealthy attacks, as well as the corresponding problem of making such systems robust,

which includes the following contributions
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• A model of Gaussian process regression based anomaly detection for cyber psychical

systems.

• A novel approach to find the optimal stealthy attack penetrating detections.

• A game theoretical framework, in which the defender considers sensor selection, in

addition to the choice of detection thresholds, as a lever for making anomaly detec-

tion more robust to attacks.

1.4.5 Dissertation Outline

The remainder of the dissertation is organized as follows: Chapter 2 presents prior work

that relates to our research; Chapter 3 describes our approach to integrate simulation-based

optimization as a service to traffic light control problem; Chapter 4 describes the path plan-

ning game; Chapter 5 presents the formulation of resilient medical imaging recognition;

Chapter 6 explores the idea of feature selection games; Chapter 7 discusses adversarial

Gaussian process regression; and Chapter 8 is the conclusion.
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Chapter 2

Related Works

2.1 Cloud-based Services for Simulations and DDDAS Applications

mJADES [91] is a Java-based simulation engine that can automatically acquire re-

sources from various cloud providers and perform simulations on virtual machines. This

approach is similar to ours in spawning simulations, however, the objective is different

and it does not provide aggregation-based optimization logic. DEXSim [28] is another

simulation framework based on distributed systems principles that can provide two-level

parallelism by accounting for CPU threads and availability of multiple systems. On the

other hand, SBOaaS relies on the Linux kernel for scheduling of container processes to

avail multiple CPU cores on the physical server. Another cloud middleware is the REST-

ful interoperability simulation environment (RISE) [1] which applies RESTful services for

remote management of simulation server using Android-based hand held devices.

Resilient DDDAS-As-A Service (rDaaS) [5] is a cloud-based trustworthy and resilient

infrastructure for developing secure crisis management systems using DDDAS principles

of instrumentation, continuous monitoring and adaptation. The rDaaS architecture’s goal

is to align the cloud technology required for providing crisis management system in ac-

cordance with DDDAS paradigm by combining the design and runtime stages. Similar to

rDaaS, SBOaaS (in Chapter 3) leverages the DDDAS paradigm to provide cloud services,

however, the objective of SBOaaS is to solve optimization problems using cloud based sim-

ulations and the methodology requires managing cloud resources at scale as the number of

application instances required by SBOaaS is much larger compared to rDaaS. Nguyen and

Khan [80] describe a framework for supporting DDDAS applications in cloud that proac-

tively performs resource optimization and allocates resources when the sampling rate of the

DDDAS application changes. This work does not consider the virtualization layer present
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on the cloud servers and the effects of co-location of multiple different jobs, in contrast,

SBOaaS considers the virtualizaton overhead imposed by Docker containers and optimizes

the resources for all the scheduled jobs.

2.2 Traffic Light Optimal Control Problem

Fundamentally, a traffic light control problem is a form of scheduling problems for

switching control actions on stochastic hybrid systems. Various models have been well-

studied. A decision tree model with Rolling Horizon Dynamic Programming was pre-

sented by Porche [90]. The approach based on multi-objective Maxed Integer Linear Pro-

gramming formulation was proposed by Dujardin [33]. A Markov Decision Process ap-

proach was proposed in Yu and Recker [120] and Reinforcement Learning was used in

Thorpe [110]. Choi [29] implemented a first-order Sugeno fuzzy model and integrated it

into a fuzzy logic controller, while an Infinitesimal Perturbation Analysis approach, using

a Stochastic Flow Model to represent the queue content dynamic of road at an intersection

was presented by Panayiotou [84].

However, to find the optimal control parameters for a traffic light system via close

loop simulations is still a big challenge due to its high computational complexity and the

requirement on real time reactions. In this work, we illustrate that SBOaaS is a suitable

framework to address such issues.

2.3 Multi-Agent Path Planning

One common paradigm for studying multi-agent path planning problems is by consid-

ering cooperative path planning involving multiple agents. For example, Shen et al. [103]

studied cooperative path planning in UAV control system, while LaValle [65] presented an

algorithm for applying path planning with stochastic optimal control.

Game theoretic problems related to path planning have been considered from several

perspectives. Closest to traditional path planning are zero-sum models of games against
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nature in which agents are designed to be robust against adversarial uncertainty in the

environment [25, 24]. Classic approaches consider rules of interaction and negotiation

among self-interested agents, including planning agents [93, 50, 51]. Loosely related also is

the extensive literature on multi-agent learning, in which multiple agents repeatedly interact

in strategic scenarios in which rewards and dynamics depend on all agents (often modeled

as stochastic games) [105].

The game theoretical framework, as a powerful tool for solving and analyzing the path

problems in multi-agents systems under both reciprocal and adversarial environments, be-

comes more and more popular in recent years. Many non-cooperative multi-agent problem

are formulated as the framework, where a set of heterogeneous agents share a common

limited resource, aim to achieve their tasks, and avoid to conflicts by negotiating with each

other. Here the decisions making for each agent depends on not only its own actions but

also on the actions of the others. [93] discuss the different patterns of rules of interaction

and negotiation among agents and how these designs of rules can achieve some desirable

properties for the whole group of agents, such as stability and efficiency. [105] gives a

survey about the process that self-interested agents can adapt behavior to changing circum-

stances via learning technique.

On the other hand, the multi-agents path planning is a typical multi agent planning

problem, where agents aim to find the path to reach their goal positions and avoid collisions

under limited spatial resource. Many recent researches focus on the cases with cooperation.

[103] studied the cooperative and intelligent path planning in UAV control system, while

[65] presented an algorithm for applying path planning with stochastic optimal control and

multiplayer games. Another popular topic is various imaginary path planning problem in

games on a plane, like reach avoid game [25], [24]. However, as far as we know, the path

planning problem in non-zero-sum non-cooperative cases have not been deeply considered

by any existing work.
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2.4 Routing Games

Another important class of game theoretic models related to path planning are rout-

ing games. The routing games, as a framework for modeling routing traffic in a large

communication network, were first informally discussed by Pigou [88]. This model was

first formally defined by Wardrop [116] based on a flow network under the non-atomicity

assumption. Therefore, equilibrium flows in non-atomic selfish routing games are often

called Wardrop equilibria. Since then, a number of fundamental results for the non-atomic

routing games have been proved by various researchers, such as the existence and unique-

ness of equilibrium flows [7], first-order conditions for convex programming problem [11],

and the theory of general non-cooperative non-atomic games [99]. The seminal work by

Roughgarden and Tardos [95] first characterized the gap between centralized and decentral-

ized control in multi-agent routing problems, formalized as the price of anarchy, or ratio of

socially optimal to worst-case equilibrium outcomes. Their work explained the principles

behind a broad class of counter-intuitive phenomena, such as Braess’s Paradox [14].

Both routing games and path planning games (in Chapter 4) investigate the competition

among agents during their navigation tasks (e.g. passing through bottlenecks). However,

in routing games, the state space is a graph-based structure, and the cost of competition

is modeled by a set of latency functions without considering the agents’ dynamics, while

path planning games consider the problem at higher fidelity, with a continuous state space

where the latency is caused by the interaction among agents. Moreover, our model of path

planning games allows us to explicitly study the tradeoff agents make between performance

and safety, an issue not considered in routing games.

2.5 MDP approaches

Due to the lack of perfect sensors and deterministic actions, in real world, stochastic

systems are faced with various kinds of uncertainty, which typically have a chance of failure
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caused by unexpected events which affect agents’ motion. In this case, planning under

motion uncertainty is a particularly challenging problem. To reduce the chance of collision,

an agent will try to avoid those unsafe states, such as staying at the initial placement, which

usually reduces mission performance since it diatribes the robot to reach to its goal position.

One popular approach aiming to address the gap between risk and performance is to assign

a positive reward for reaching the goal and a negative reward for collisions so that the

path planning problem can be formulated by a Markov Decision Process encoding. This

approach is usually implemented under some (discretized) map space with finite states.

To find the optimal path, dynamic programming derived from Bellman equation is usually

considered, due to its guaranteed soundness and fast rate of convergence. The surveys of the

MDP method for path planning can be found in [46] and [64]. However, due to exponential

growing cost for discretizing in high dimensional space, such approach is usually in the

cases with multi-agent and complicate action space.

Compared to MDP approaches, path planning games are modeled under the continuous

state space without discretization, which makes path planning games have the capability

to handle multi-agent path planning problem in high-dimension space (e.g. configuration

space path planning). Moreover, in many practical cases, it is difficult to define the value

of mission and failure reward for MDP approach due to the lack of realistic meaning, while

path planning games take into account those real world positive and negative factors (time

step consumed by agents to reach its target, safety margin)

2.6 Gaussian Process Regression

Gaussian Process regression (GPR) [117] is a popular choice for anomaly detection

systems due to its power and flexibility [27, 69, 36, 2].

Neural Networks (NN) have been used in many control systems due to the avoidance of

the limitations of approximated models [79]. Recently, Gaussian Process methods raised

[117] in this field, as both GPs and NNs have the universal approximation capabilities and
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GPs outperform NNs under certain conditions [40]. The community of anomaly detection

shows the particular interest on GPs, due to its nonlinear, nonparametric preperties [27,

69, 2]. GPs also provide uncertainty estimates for their prediction, which is important for

construct the bias-free anomaly identification methods.

2.7 Stackelberg Security Game

Stackelberg Security Game (SSG) was first introduced by Kiekintveld et al., repre-

senting specializations of a particular type of Stackelberg game [113], where a defender

(the leader) defends a set of targets using a limited number of resources and an attacker

(the follower) attack with the observation of the defender’s strategy. The solution to a

SSG is a mixed strategy for the defender maximizing the expected utility, is known as a

Stackelberg equilibrium [68], where no player has the incentive to deviate. The strong

Stackelberg equilibrium (SSE) is the most commonly adopted version of Stackelberg equi-

librium, assuming that the attacker always breaks ties by choosing the best action for the

defender [15, 31, 81, 114]. As an SSE exists in all Stackelberg, it is an attractive solution

concept compared to Stackelberg equilibrium with other tie-breaking rules. However, there

are some newly proposed solution concepts that are more robust against various uncertain-

ties and have been used in later applications [119, 3, 89]. As Conitzer and Sandholm first

presented the algorithms for computing optimal commitment strategies in Bayesian Stack-

elberg games [31], an improved algorithm called DOBSS [81] is deployed to ARMOR, a

fielded application in use at the Los Angeles International Airport [48]. Another algorithm

called ASPEN[47] that is designed to compute SSE in domains with a very large number

of pure strategies for the defender have been deployed in IRIS system (Intelligent Ran-

domization In Scheduling) by FAMS (The US Federal Air Marshals Service) since 2009 to

randomize schedules of air marshals on international flights.

Our work in Chapter 7 looked at in cyber-security using the SSG framework to design

robust anomaly detection systems. Other recent cyber-security applications based on the
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SSG framework include inspecting a large number of alerts from any intrusion prevention

system [98] and fighting against spear phishing [122].

2.8 Adversarial Machine Learning

Since Szegedy et al. first concerned with the stability of neural networks with respect

to small perturbations to their input and discovered the existence of adversarial examples

which are crafted by applying undetectable perturbations to the original input and can force

a well-performing deep neural networks to produce incorrect outputs, a lot of attention

has been paid to the context of adversarial learning and the security of deep neural net-

works [23, 121, 60, 38, 85]. On the other hand, a number of recent works have been

proposed to mitigate the effects of adversarial attacks, including adversarial training [111],

distillation [87] and approaches based on Generative Adversarial Network [97].

Our work in Chapter 5 considered defense for a robust imaging recognition problem in

the field of medical imaging via domain-specific context information. The work in Chapter

6 presented a game-theoretical approach to calculate the learner’s optimal strategy (other

game-theoretical approaches for addressing adversarial examples are detailed in [123]).

In Chapter 7, we considered an adversarial setting on machine learning enhanced anomaly

detector with a specific structure that requires a novel solution approach to address.

2.9 Anomaly Detection

The existing works on anomaly detection in CPS include several different models, with

Gaussian Process regression (GPR) [117] a popular choice due to its power and flexibil-

ity [27, 69, 36, 2]. However, other approaches based on machine learning have also been

explored [78, 53]. An important strand in this literature also involves leveraging physical

models in anomaly detection [19, 112]. Cárdenas et al. [19] [19] studied the use of physical

models for anomaly detection. However, most of this work does not consider attacks vul-

nerability of anomaly detection to stealthy attacks. Similarly, there is an extensive literature
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on the problem of sensor selection in non-adversarial settings [52, 59, 101]. The extension

to consider adversarial sensor selection has received some attention [58, 63], but focuses

largely on robustness to denial-of-service attacks on sensors, rather than the integrity at-

tacks that we consider. An important precursor to our work is Ghafouri et al. [37] [37],

who consider robust anomaly detection in the context of stealthy integrity attacks. How-

ever, this work considers conventional regression which yields deterministic predictions of

sensor values, in contrast to GPR, where prediction is a random variable, adding a non-

trivial technical challenge to the problem of stealthy attacks. Moreover, Ghafouri et al. do

not consider the problem of sensor selection, focusing solely on tuning anomaly detection

thresholds. As our experiments demonstrate (in Chapter 7), the ability to select sensors

accounts for most of the robustness in our setting.
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Chapter 3

Simulation-based Optimization as a Service

3.1 Problem Overview

Dynamic data-driven applications systems (DDDAS) must be adaptive in the face of

highly fluctuating and uncertain environments. An important means to such adaptability is

through the use of simulation models which can be leveraged for dynamic decision support.

To provide high quality decision support, one can use simulations in an optimization loop

to derive the best values of system parameters for a given system state particularly when

the system has too many parameters and traditional means to optimize the outcomes are

intractable. To that end, simulation-based optimization methods have emerged to enable

optimization in the context of complex, black-box simulations thereby obviating the need

for specific and accurate model information, such as gradient computation. An important

challenge in using simulation-based optimization is optimizing the decision parameters.

However, to ensure scalability and real-time decision support, one must be able to rapidly

deploy simulation-based optimization in a way that makes the best use of available com-

puting resources given the time and budget constraints. To address these needs, we propose

a cloud-based framework for simulation-based optimization as a service (SBOaaS) to en-

able a flexible and highly parallelizable dynamic decision support for such environments.

We illustrate the framework by using it to design a dynamic traffic light control system

through simulation-based optimizations using the Simulation of Urban Mobility (SUMO)

traffic simulation model that adjusts to the observed vehicle flow.

The rest of the chapter is organized as follows: Section 3.2 provides an overview of our

simulation-based optimization as a service concept; Section 3.3 describes the algorithms

behind realizing SBOaaS particularly in the context of Anytime computations; Section 3.4

describes the system architecture we have developed to deploy SBOaaS; Section 3.5 val-
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idates our claims; and finally Section 3.6 describes concluding remarks alluding to future

challenges.

3.2 Overview of SBOaaS

In this sectionwe use a motivational case study to develop the problem statement we

have formulated and solved in this paper. To that end we first present a traffic light control

system as an example of a real-world system where high-quality configuration of the traffic

light controller requires an iterative black-box optimization process based on data-driven

model simulations. Owing to the high demand for resources and real time performance

constraints, such a capability requires cloud computing resources. We designed and imple-

mented SBOaaS, a framework for simulation-based optimization as a service. This section

presents key features and a case study illustrating those challenges that SBOaaS should

address.

3.2.1 Motivating Case Study: Dynamic Traffic Light Control System

To formulate the problem statement, we use a dynamic traffic light control scenario as

our motivating example. In this scenario, each intersection traffic light controller switches

its traffic light phases according to the observed vehicle flow. In general, a traffic light

phase is related to a collection of lanes dominated by such a phase; if the number of waiting

vehicles in the lanes related to the current phase is small and the number of waiting vehicles

in the lanes related to the next phase is large, the controller will switch the traffic light phase.

Figure 3.1 provides a visual demonstration of the controller logic.

Formally, a feedback controller has a predefined phase sequence (p0, ..., pn). For each

phase pi, mi is the minimum interval, Mi is the maximal interval, qi is the average queue

length of the lanes related to the ith phase, and θi is the threshold on the queue length of

lanes blocked in the ith phase. If t is the current time point, the control logic is as depicted

in Algorithm 1.
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(a)

(b)

(c)

Figure 3.1: The control logic for feedback controllers. (a) Non-feedback controllers have
a fixed interval between two phases. (b,c) Feedback controllers dynamically change the
interval according to the length of their vehicle queues.

The controller must solve an optimization problem as follows: for a given vehicle flow

of an area in a certain time period and a set of controlled intersections I{I0, ..., Im}, find

the optimal thresholds (Θ0, ...,Θm), where Θi = (θ0, ...θni) are the thresholds of the ith
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Algorithm 1 Feedback Controller

1: Current Phase P := p0, t ′ := t, i := 0.
2: loop
3: inext := (i+1) mod n
4: if t− t ′ > mi then
5: if Reach to the maximum interval, t− t ′ = Mi then
6: Switch phase, P = pinext , i = inext
7: else if Find the congestion, qi < θi,qinext ≥ θinext then
8: Switch phase, P = pinext , i = inext
9: end if

10: end if
11: end loop

intersection.

The scenario with a single intersection with similar control logic has been discussed in

many prior research efforts, e.g., [71]. However, the situation becomes much more com-

plicated when generalizing the controller model to cases with multiple intersections and

correspondingly multiple traffic lights. Many factors, such as densities of vehicle flows

and topological structures of road networks, may affect the outcomes of such road sys-

tems, which leads to the issue of defining the model describing the interactions among the

intersections.

3.2.2 DDDAS-specific Problem Statement and the SBOaaS Approach

Examples, such as the traffic light for multiple intersections, say, in a city downtown,

pose significant challenges due to the compute-intensive nature of the solution approach.

Moreover, the dynamic nature of traffic patterns (e.g., morning and evening rush hour ver-

sus afternoon and night hours) will require periodically recomputing the optimal parame-

ters, which further complicates the problem and its demands on resources.

Two fundamental problems exist in this realm. First, it is likely that the DDDAS

feedback loop may have access to only black box models of the dynamic systems, yet

will require that the DDDAS infrastructure obtain optimal parameters to be used in the
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DDDAS feedback loop. Second, the significantly compute intensive nature of the solution

approaches makes it infeasible to deploy such model simulations in-house. Rather, there is

a need for elastic computing capabilities. Thus, the DDDAS problem we solve in this paper

can be posed as: (a) How to obtain the optimal parameters, and (b) How to elastically scale

the compute resources as the computational needs of the solution approach dynamically

changes?

This paper solves this fundamental problem using the following duo of synergistic ap-

proaches: First, we use simulations in an optimization loop to derive the best values of

system parameters for a given system state particularly when the system has too many pa-

rameters and traditional means to optimize the outcomes are intractable. The approach is

called simulation-based optimization. To address the need for elastic resources, we exploit

Cloud computing as the means to address these needs and provide a framework to realize

what we call Simulation-based Optimization-as-a-Service (SBOaaS).

Figure 3.2 visually represents how SBOaaS can be used to deploy the dynamic traffic

light control system with online simulation-based optimization. The control system is a

closed loop, periodically receiving the real time distribution of vehicle flows – which rep-

resents the dynamic and data-driven traits of DDDAS – running multiple simulations in

parallel to find the optimal thresholds, and sending the feedback to the traffic light con-

trollers – which represents the closing of the loop in DDDAS.

3.2.3 Key Features of SBOaaS

The following represent the key features of SBOaaS.

• A cloud based solution for parallel execution of multiple simulations. Apply-

ing computationally expensive online simulation-based optimization is usually time

consuming and often fails to address the real-time constraints of applications. More-

over, for stochastic simulation models, every simulation process can vary and yield

different results. To analyze the temporal properties of a stochastic system, a large
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Figure 3.2: SBOaaS for dynamic traffic light control system

number of simulation tasks needs be executed to obtain the probability distribution

of simulation results. Thus, the simulation service needs to have the ability to exe-

cute multiple simulations in parallel. In our solution, to overcome this problem, we

present a cloud-based approach, which is an orchestration middleware helping people

to deploy DDDAS applications to the platforms of various cloud service providers

without considering platform differences. It integrates the simulation manager hav-

ing the capability to spawn and execute simulations in parallel and the result aggre-

gation component using several aggregation strategies to recycle the results from the

terminated simulations. A web-based interface is also implemented, which allows a

user to customize both the simulation model and the input parameters, as well as to

monitor the optimization process. Section 3.4 delves into the details of our system

24



architecture.

• Generic problem decomposition schemes for large scale discrete variable deci-

sion problems. In simulation-based optimization, the results of simulations are of-

ten quite different depending on the input parameters supplied to the model. To find

the optimal solution, the search space sometimes can be extremely large so that such

large-scale problems are intractable to naı̈ve brute force search. In this situation, even

parallel computations do not help. In our framework, a collection of generic problem

decomposition schemes based on coordinate decent methods is demonstrated, which

not only provides an efficient way to parallelize the optimal decision problems with

discrete variable domains, but also has the ability to execute anytime optimizations

providing a flexible balance between fast response and solution quality.

• The ability to decouple simulation based problem designs from the problem de-

composition schemes. For traditional model-based online learning and simulation

approaches in DDDAS, developers usually need to face and maintain several parts of

the system at different levels simultaneously. For example, there is domain-specific

knowledge to setup and deploy the simulation environments, different parallelism

approaches for various optimization tasks, and system management for regular main-

tainance. Such a method is not a good practice for a developer team that expects rapid

deployment on available resources. SBOaaS leverages Linux container-based infras-

tructure which aims to create an abstraction layer that helps decouple simulation-

based problem designs from the problem decomposition schemes. This approach al-

lows domain experts to encapsulate the simulation environment in a container, while

developers design the parallelism process according to the pre-defined interface and

system administrators can simply combine both parts to run an optimization without

knowing the implementation detail. Moreover, such an approach provides low run-

time overhead, negligible setup and tear down costs when deploying the simulations
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on computing nodes, and fast data exchange among cluster hosts with incremental

updates.

3.3 Anytime Optimization Using Parallel Greedy Algorithm

We now describe the approach. SBOaaS estimates the value of an objective, measured

using simulation runs, for a given setting of input variables. In order to use this in optimiza-

tion, one must run this process for many inputs, aiming to choose the best input vector in

terms of the objective value. Since such optimization routines can be extremely time con-

suming in general, they may be of limited utility in dynamic control environments in which

real-time decision constraints impose severe limits on the time alloted for simulation-based

optimization.

We present several anytime simulation-based optimization algorithms used in our frame-

work which ensure that the optimization process returns the best solution found thus far to

the controller even if it is interrupted before it converges. The key feature of these algo-

rithms is that they are directly parallelizable, thereby allowing us to implement them using

a cloud-based platform we developed, described below.

Consider a single target optimization problem,

min
~x

f (~x),

where~x = (x1,x2, ...,xn) is a vector of decision variables. In our setting, f (~x) is not known

directly, but can be evaluated by simulations for a given ~x. If f is stochastic and we wish

to minimize the expectation, we can estimate the expectation by running multiple simula-

tions for a given~x and taking the sample average. Since such a generalization is direct, we

assume henceforth that simulations produce a deterministic evaluation of f (~x). We further

assume that the domain of variables xi is discrete. This too is a mild assumption since a

continuous, bounded domain can be discretized arbitrarily finely. We developed a frame-

26



work for anytime simulation-based optimization as a service by making use of a coordinate

greedy algorithm.

3.3.1 Coordinate Greedy

Coordinate Greedy is a heuristic optimization method which minimizes the function

value one variable at a time. The Sequential coordinate greedy framework is shown in

Algorithm 2.

Algorithm 2 Sequential Coordinate Greedy( f ,~x(0))

1: input problem f , initial state~x(0) = (x(0)0 , ...,x(0)n ) ∈ Rn

2: output~x(∗) = argmin
~x

f (~x)

3: Set p← 0
4: repeat
5: for i← 1, ...,n do
6: x(p+1)

i ← argmin
xi

f (x(p+1)
1 , ...,x(p+1)

i−1 ,xi,x
(p)
i+1, ...,x

(p)
n )

7: end for
8: until termination test satisfied

In each iteration, it updates one input variable of f by solving the sub-problem:

f (p)
i = min

x
f (x(p+1)

1 , ...,x(p+1)
i−1 ,x,x(p)

i+1, ...,x
(p)
n )

For the discrete variable domain problem, it converges to the local optimum f ∗ when

there is no further improvement found in one iteration (∃P∀i, f (P)(x0) = f (P)(xi)). Sim-

ilarly, stochastic coordinate greedy selects one variable uniformly at random instead of

following the vector order in each iteration. Shalev-Shwartz and Tewari [100] provide the

best known convergence bounds for stochastic coordinate greedy.

To parallelize this method, in each step consisting of evaluation of a single component

xi, the framework tries to activate multiple simulations for all possible values in the vari-

able domain. This process keeps running until it is suspended by users or reaches a local

optimum, in either case returning the best solution found.
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3.3.2 K-Coordinate Greedy

With increasing problem dimensionality even the fast coordinate greedy approach be-

comes expensive. However, limited by the degree of parallelism of basic coordinate greedy,

for larger scale problems coordinate greedy does not fully use the provided computing

power. K-Coordinate Greedy is an algorithm that adds another parallelization level to

coordinate greedy to accelerate the rate of convergence of the optimization process, as de-

scribed in Algorithm 3. It initially chooses K, the number of variables to update, according

Algorithm 3 K Coordinate Greedy( f ,~x(0), k)

1: input problem f , initial state~x(0) = (x(0)0 , ...,x(0)n ) ∈ Rn, parallelism degree k
2: output~x(∗) = argmin

~x
f (~x)

3: Set p← 0
4: repeat
5: Choose index set, I(p) = {i(p)

0 , i(p)
1 , ..., i(p)

k }
6: In parallel on k
7: x(p+1)

i ← argmin
xi

f (x(p)
1 , ...,xi, ...,x

(p)
n ), i ∈ I(p)

8: until termination test satisfied

to the available computing resources. In each iteration, it chooses a subset of K variables

and optimizes these in parallel using the same update as the coordinate greedy algorithm.

Different parallelism modes do affect the performance and behaviors of K-coordinate

greedy. Synchronous K-coordinate greedy synchronizes frequently across all K partitions

at certain points in time, which ensures that all updates are shared across all processors

before further computation occurs, while asynchronous one assumes the variable vector

x can be accessible to each processor, and available for reading and updating at anytime.

Because of eliminating the requirement of consistent information across computing nodes,

asynchronous algorithms are supposed to have better performance in practice, while the

behaviors of synchronous algorithms are more predictable and easier to analyze. Both syn-

chronous and asyncronous K-coordinate greedy are included and evaluated in our frame-

work.
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3.3.3 Adaptive K-Coordinate Greedy

Unlike coordinate greedy, K-coordinate greedy cannot guarantee convergence to the

local optimum. The risk of divergence of the algorithm might be increased when there are

too many correlated features in the variable vector, which also makes it difficult to define

the termination test. In this section, we present adaptive K-coordinate greedy that tries to

address these gaps.

Adaptive K-coordinate greedy is a hybrid approach of combining coordinate greedy

and K-coordinate greedy, as illustrated by Algorithm 4, which is supposed to speed up the

rate of convergence in early stages, and avoid the correlation problems when it gets close to

the local optimum. We improve the greedy process by continuously reducing K as the time

taken by the algorithm to find the next sub-optimal solution. With decreasing the value

of K, the optimization process will be less likely to select correlated features and avoid

divergence. When K equals one, the algorithm is exactly the stochastic coordinate greedy

algorithm, which has a well-defined termination condition and convergence guarantees.

Algorithm 4 Adaptive K Coordinate Greedy( f ,~x(0),k0)

1: input problem f , initial state~x(0) = (x(0)0 , ...,x(0)n ) ∈ Rn, initial parallelism degree k0

2: output~x(∗) = argmin
~x

f (~x)

3: Set p← 0,4t← 0
4: repeat
5: k← k0 ∗ exp(−4t/T )
6: Choose index set, I(p) = {i(p)

0 , i(p)
1 , ..., i(p)

k }
7: In parallel on k processors
8: x(p+1)

i ← argmin
xi

f (x(p)
1 , ...,xi, ...,x

(p)
n ), i ∈ I(p)

9: if find a better solution then
10: 4t← 0
11: else
12: Increase4t
13: end if
14: until termination test satisfied
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Figure 3.3: System Architecture

3.4 System Architecture

The cloud based SBOaaS architecture is based on our existing framework called SIMaaS

(simulation-as-a-service) [102]. We enhanced the SIMaaS architecture to account for var-

ious modes that SBOaaS has to operate in. In addition, we added a new scheduling policy

based on the SBOaaS requirements. The architecture is composed of both design time and

runtime components that we describe in this section.

3.4.1 Runtime Architecture

Figure 3.3 illustrates the key components of SBOaaS. SIMaaS Manager (SM) is at the

core of the framework and is responsible for coordinating other components, handling user

requests and decision-making. SM’s pluggable architecture allows it to switch between

various virtualization technologies and scheduling policies. The earlier framework was

composed of deadline based scheduler where the number of simulation tasks to execute was

known a priori. However, in the current work, the simulation count is not known a priori
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and additional constraints were introduced for synchronous and asynchronous modes that

required relaxation of system level deadline constraint in favor of resource optimization

based on the intermediate results. Thus, we introduced a greedy scheduling policy that

leverages the intermediate results to maximize performance of the optimization algorithm

and saturates the resources to minimize under utilization.

The simulation cloud deploys on a host cluster constructed by using the Docker[75]

container virtualization technology. A Docker host can run multiple Docker containers,

each representing a single computational node in the cloud system. Each simulation-based

optimization task runs in a single container. The entire life cycle is managed by the Con-

tainer Manager (CM) shown in Figure 3.3. CM supports various virtualization technolo-

gies such as KVM, however, due to its low startup and tear-down duration, we opted for

Docker containers. The role of the CM includes management of hosts, execution, tear-

down and deployment of the containers. The CM also maintains a registry for Docker

images submitted at design time (explained in Section 3.4.2).

Another key component of SBOaaS is the Result Aggregator (RA) which is responsi-

ble for the collection of results from the simulation containers after they finish their tasks.

It also performs result aggregation and informs the SM. The aggregator applies a message

queue such that it does not get overloaded with simultaneously finishing simulation tasks.

Based on the different aggregation requirements for SBOaaS compared to SIMaaS, we

developed sync and async modes for the RA.

• ASync Aggregator. The asynchronous aggregator informs the SM as soon as the

client aggregator logic aggregates the intermediate results based on the finised simu-

lation task. The SM in turn replaces the old simulation instance and hence keeps the

allocated resources 100% utilized.

• Sync Aggregator. Sync aggregator waits for all the simulation tasks to finish from

the current cycle and invokes the client aggregation logic to obtain the intermediate
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result such that the next set of tasks can be executed. This helps in initializing the next

cycle with the based result. However, this also results in resource under-utilization.

The final piece in the runtime architecture is the Performance Monitor (PM) which

works with the CM to collect performance metrics from the host cluster and periodically

informs the SM for decision making.

3.4.2 Design Time Architecture

The application designer interacts with the SBOaaS interface at design time to provide

the configuration, executables and aggregation logic. The designer enters a list of configu-

ration properties using a template that includes the execution command for the simulation

task, the expected runtime input parameters, and desired resources among others. The de-

signer also provides the simulation executable in the form of a container image which is

uploaded by the system to the image registry and later deployed on the hosts by the CM

during runtime. Please note that the first iteration of the simulation tasks incurs an addi-

tional deployment cost due to the image download time. This can be avoided by scheduling

the simulation jobs a priori.

Another key role of the designer is to provide the aggregation logic using the SBOaaS

aggregator template which is hooked to the Result Aggregator (RA). In this work, the

aggregation logic is the optimization algorithm. However, this may vary from one use case

to the other.

3.4.3 User Interaction Framework

The SBOaaS interface resides on a light-weight web framework to interact with the

system designers, users or APIs and also to provide the result to the invoker. If the deadline

is not immediate, user can provide the runtime parameters using web forms and collect

the result from the download link returned by the simulation manager (SM) from the web
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Figure 3.4: System Interaction

server.

In a typical system, the manual steps are eliminated with the use of APIs. Figure 3.4 de-

picts how the SBOaaS interacts with the real world and provides solutions to the optimiza-

tion problems. Another server labeled as SBOaaS FrontEnd receives runtime parameters

for the simulation based optimization in the form of aggregated sensor data. This FrontEnd

invokes RESTful APIs from the SBOaaS interface to start a simulation job. Once the job

is completed, the results are collected by the SBOaaS FrontEnd and actuation is performed

based on the optimization results.
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3.5 Evaluation

3.5.1 Online simulation-based optimization for dynamic traffic light control system

3.5.1.1 Environment

The simulation environment is defined according to the dynamic traffic light control

scenario described in Section 3.2. To simulate the controlled traffic flow, we employ a

simulation suite called SUMO [8] (short for “Simulation of Urban MObility”). SUMO is

an open source, highly portable, microscopic road traffic simulation package designed to

handle large road networks. SUMO also provides a Traffic Control Interface (TraCI) to let

external controllers control the traffic. In our work, we use a Python script to control the

simulation through TraCI and implement our control algorithm. The experiment environ-

ment is encapsulated into a Docker image in order to be distributed among the computing

nodes through SBOaaS.

Our framework was deployed on NSF Chameleon cloud services, which is a cloud plat-

form funded by National Science Foundation (NSF), providing such a large-scale platform

to the research community allowing them to explore transformative concepts in deeply pro-

grammable cloud services, design, and core technologies. In the experiments, we created a

distribution system with 8 computing nodes and 384 cores.

The input data are the map of the Vanderbilt University campus including all exoge-

nously specified parameters (phase sequences and min-max intervals) and the correspond-

ing vehicle flows in a morning scenario based on observations of road sensors. 9 inter-

sections were selected to deploy the feedback controllers. In addition, we only consider

two phases for each intersection to have dynamic intervals, which means there are two

thresholds for each intersection that need to be optimized. Thus, for 9 intersections, the

optimization problem dimension is 18. We consider variable domain {1, ...,20} and use

the vehicle average speed to measure performance.
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(a) (b)

(c) (d)

Figure 3.5: Comparison between coordinate greedy, synchronized/asynchronous K-
coordinate greedy, as well as synchronized/asynchronous adaptive K-coordinate greedy
decentralized solutions.

3.5.1.2 Experiment 1

We first evaluate the performance of anytime optimization methods used in SBOaaS.

The experiments ran until either the local optimum is found or the deadline (7000 seconds)

is reached (K-coordinate greedy does not check convergence because there is no well-

defined termination test).

3.5.1.3 Results

The experiment results can be seen in Figure 3.5, which shows simulation outcome

(average vehicle speed) as a function of the running time of the optimization process. Fig-
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ure 3.5a and Figure 3.5b, respectively, compare the coordinate greedy algorithm (Algorithm

2) with both K-coordinate greedy algorithm and adaptive K-coordinate greedy algorithm

(Algorithm 3 and Algorithm 4). The optimization process is significantly accelerated by the

variable-level parallelism. In general, both K-coordinate greedy and adaptive K-coordinate

have the same rate of convergence. However, Figure 3.5c and Figure 3.5d indicate that

K-coordinate greedy failed to converge within the deadline while adaptive K-coordinate

greedy found the local optimum. The asynchronous algorithm has better performance, and

a “smoother” curve than the synchronized one, which means better anytime response for

returning sub-optimal solutions.

3.5.1.4 Experiment 2

Figure 3.6 illustrates the control processes of DDDAS with traditional simulation-based

optimization and any simulation-based optimization. For the current observation, the for-

mer one gets and updates the optimum control parameters at the end of optimization pro-

cess, while the latter one can continuously refresh the control parameters. We now compare

both approaches. In this experiment, one simulation was run to simulate the morning sce-

nario in real world. We also start the optimization service simultaneously with the initial

road vehicle flow observation, and periodically updated the corresponding sub-optimal con-

trol parameters with real time line. We used asynchronous adaptive K-coordinate greedy

algorithm and only consider the first optimization period, which is from 7:00 am to 7:30 am

(asynchronous adaptive K-coordinate greedy converged within 30 minutes according to the

last experiment). We considered several different periods for updating control parameters.
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(a)

(b)

Figure 3.6: (a) DDDAS with traditional simulation-based optimization (b) DDDAS with
anytime simulation-based optimization

3.5.1.5 Results

Period Overall average speed (m/s)

baseline 8.703

1 sec 9.961

5 min 9.918

10 min 9.566

The experiment results can be seen in Figure 3.7, which shows the average instanta-

neous vehicle velocity in simulation area as a function of real time and the overall average

speed is given by the table. The baseline is the situation that the “real world” run without

control parameters updating, which is the behavior of DDDAS with traditional simulation-

based optimization. In Figure 3.7, the instantaneous outcomes of the tested optimization

methods do not show significant differences at the early stage. As the process of opti-

mization gets better and better sub-optimal control parameters, the anytime optimization
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Figure 3.7: Experiment 2

services gradually improve the outcomes. From the overall performance, the optimization

processes with shorter updating intervals gained better outcomes, but got less improve-

ments. Limited by technologies and costs, a real world DDDAS usually will need to choose

a suitable updating frequency by considering its marginal benefit.

3.5.2 System Evaluation

We measured the system metrics to validate its robustness and evaluated the overhead.

The test bed was setup in accordance with the architecture shown in Figure 3.3. The

SIMaaS Manager and the Result Aggregator were deployed on the same machine. Eight

simulation hosts were added to the setup each having 48 cores. Two experiments were

performed to assess the performance when the system is running in both synchronous and
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asynchronous modes. Each experiment was performed for 90 minute duration.

3.5.2.1 Results

The results of the experiments are illustrated in Figure 3.8. We observed that during the

90 minute duration, 2520 simulations were performed in synchronous mode and 11037 in

asynchronous mode. The higher number of simulations for asynchronous mode is expected

as the goal is to fully utilize the available servers. The figure also displays the utilization

metrics of the management server. In both the modes, the CPU and network utilization is

less than 1%. The memory utilization is around 3% for asynchronous mode and around 7%

for synchronous mode. Even though we see an initial upward trend in memory utilization

due to auditing of simulation tasks, it stabilizes towards the end of the experiment because

of the cleanup operations running periodically to clear the old simulation containers. We

also observe that the spikes in CPU and network usage is low when the simulation tasks are

scheduled and when they finish. These results demonstrate that our architecture is robust

with low overhead.

Figure 3.9 is the scatter plot for the simulation task execution times for both the modes.

We see periodicity in the number of simulation tasks completing in the two modes. There

are stragglers in the system which has higher impact on the synchronous mode compared

to asynchronous mode as all the tasks of the next cycle have to wait for few stragglers to

perform execution. In future, straggler management policies will be implemented which

will significantly benefit the synchronous mode.

3.6 Conclusion

We presented a framework for simulation-based optimization as a service, which is a

fundamental facility for DDDAS. We proposed a system architecture of our framework, and

anytime optimization approaches including several coordinate decent method algorithms

for solving simulation-based optimization problems in parallel. Then, we presented the
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dynamic traffic light control system as a case study. Finally, we evaluated both our anytime

optimization algorithms and the online closed loop pattern.
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(a) Sync Mode

(b) Async Mode

Figure 3.8: System Utilization vs Completed Simulation Count
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Figure 3.9: Execution Time
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Chapter 4

Path Planning Game

4.1 Problem Overview

We investigate strategic interactions among path planning agents using a game theoretic

path planning framework. Our focus is on economic tension between two important objec-

tives: efficiency in the agents’ achieving their goals, and safety in navigating towards these.

We begin by developing a novel mathematical formulation for path planning that trades off

these objectives, when behavior of other agents is fixed. We then use this formulation for

approximating Nash equilibria in path planning games, as well as to develop a multi-agent

cooperative path planning formulation. Through several case studies, we show that in a

path planning game, safety is often significantly compromised compared to a cooperative

solution.

4.2 Model

We describe the problem by first introducing the model of agents’ motions, and then

formulating the path planning game.

Consider a state space X = Rn. We represent an agent i by a polyhedron described by

a collection of Mi hyperplanes: Pi = {aT
i jx≤ bi j, j ∈ {0, ...,Mi}}. Each agent polyhedron Pi

contains a point ri ∈X called the reference which rigidly attaches to the polyhedron such

that the state of an agent can be determined by the position of its reference. We assume that

agents move in discrete time, and a control input uit ∈ Uit ⊂ Rm applied to the ith agent

at time t moves the agent from state ri,t ∈X at time t to state ri,t+1 ∈X at time t + 1

according to a linear stochastic dynamic model

ri,t+1 = Airit +Biuit +ωi, (4.1)
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where Ai ∈ Rn×n,Bi ∈ Rn×m, and ωi ∼N (0,Σi) is the process noise for ith agent at time t

following an n-dimension zero-mean Gaussian distribution with a covariance matrix Σi.

For each agent we are given its initial placement r0 ∈X (i.e., where the agent starts)

and a goal rgoal ∈ X which the agent needs to reach. Let ri,0:T =< ri0, ...,riT > be a

state sequence of the (reference point of the) ith agent from time 0 to T and ui,0:T =<

ui0, ...,uiT > be a corresponding control sequence. However, once the agent reaches its

goal, it remains there deterministically, and has no effect on other agents. We aim to find

the optimal control sequence for the ith agent in this stochastic motion model, with the

following criteria in mind:

1. After applying the resulting control sequence, the expected terminal position of the

ith agent is ri,goal ,

2. the upper bound of the probability that the ith agent collides with other agents should

be minimized, and

3. the agent reaches the goal in as few time steps as possible.

For the moment, we allow no feedback from observed state to control; we relax this restric-

tion below.

Path Planning Game: Given these models of individual agents, we define a path planning

game by a collection of N agents, with each agent i’s action space comprised of all possible

control sequences,
T
∏

t=0
Uit . In this game, each agent aims to compute an optimal control

sequence, given the behavior of others, trading off two objectives: efficiency, or the number

of times steps it takes to reach the goal, and safety, or the probability of collision. To

formalize, let Ti be the expected number of times steps to reach the goal (if no collision

occurs), and Gi the safety margin, related to the upper bound on the probability of collision

as discussed below. An agent i’s objective is then

Ji(ui,0:Tmax ,u−i,0:Tmax) = λTi +(1−λ )Gi, (4.2)
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(a) (b)

Figure 4.1: Single agent path planning with a point-like agent.

What makes this a game is that the safety Gi of an agent i depends on the paths taken by all

agents, rather than i alone. For example, if two agents are moving towards one another, and

directly towards their respective goals, the only way for one of them to avoid collision is

to circumnavigate the other, taking a longer path towards the goal. Next, we describe how

to define and compute Ti and Gi, and compute a best response for a given agent i, fixing

behavior of all others.

4.3 Computing an Agent’s Best Response

An important subproblem of computing a Nash equilibrium of a path planning game is

to compute a best response of an arbitrary agent i when we fix the control policies of all

others. We show that calculating agents’ best responses in path planning games amounts to

a single-agent path planning problem with motion uncertainty. Blackmore et al. [13] pre-

viously developed a probabilistic approach for computing a robust optimal path for a robot

in the environment with a static obstacle and motion uncertainty via mathematical pro-

gramming. However, in our context, where an agent trades off efficiency and safety, with

stochastic moving obstacles (representing other agents), this prior approach is inadequate.

In this section we develop a novel method for solving such problems.
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4.3.1 Best Response for a Point-Like Agent

First, consider a simple path planning problem illustrated in Figure 4.1. In this prob-

lem, there is a set of static obstacles and an agent, represented by a point, aiming to find

a collision-free minimum-time path from its initial placement to its goal position under

motion uncertainty. Assume each obstacle has a given collision volume which can be rep-

resented by a polyhedron. To create a mathematical program for solving this problem, two

factors need to be taken into account: goal position constraints and collision avoidance

constraints.

Formally, let rt denote the position of an agent at time t with its initial placement r0 and

the goal position rgoal . Suppose that the motion dynamics of the agent follows (4.1) (from

which, we remove the index i, since there is only one agent). Assume there are K obstacles

represented by polyhedra Pn,n = 1, ...,K, with Pn = {x|aT
npx ≤ bnp, p = 1, . . . ,En}, where

En is the number of hyperplanes representing the polyhedron Pn. As before, let T denote

the planning horizon (so that the goal must be reached by time T ; we assume the horizon

is long enough that the goal can be successfully reached even with the obstacles).

Efficiency and Reachability: Let {d0, ...,dT} denote a collection of binary indicators

which indicate whether the agent has reached its goal, i.e., dt = 1 iff rt = rgoal . Then,

with a large positive number M, the constraints

∀t,||rt− rgoal|| ≤M(1−dt) (4.3)

T

∑
t=0

dt = 1 (4.4)

make sure that the agent will reach to its goal position sooner or later (and we assume

that there exists a feasible solution). Moreover, the number of time steps to reach its goal

position can be represented by

T =
T

∑
t=0

t ·dt (4.5)
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which is one of our objectives (corresponding to Ti, for an agent i above). Since rt is a ran-

dom variable, this constrain is stochastic. We approximate it by a deterministic constraint,

replacing the position of the agent rt with its expected position rt in Constraint (4.3).

Collision Avoidance: Let A denote the event that the agent has a collision, and let A(n, t),n∈

{1, ...,K} denote the event that the agent collides with the nth obstacle at time step t. We

wish to minimize the probability of a collision, Pr(A), or minimize G such that

Pr(A)≤ G. (4.6)

The agent has a collision if the agent collides with any of obstacles at any time steps, which

is the event

A =
T∨

t=0

K∨
n=1

A(n, t) (4.7)

Then, by the union bound

Pr(A) = Pr

(
T∨

t=0

K∨
n=1

A(n, t)

)
≤

T

∑
t=0

K

∑
n=1

Pr(A(n, t))≤ G (4.8)

⇐ [∀n, t,Pr(A(n, t))≤ g(n, t)]∧ [
T

∑
t=0

K

∑
n=1

g(n, t) = G], (4.9)

where g(·) is risk allocation which indicates how the risks are distributed among obstacles

and time steps. Next, we consider the event that the agent collides with an obstacle at time

step t, which means that the position of the agent is inside the corresponding polyhedron.

Thus, collision with the nth obstacle can be described by

A(n, t) :
En∧

p=1

aT
np · rt ≤ bnp (4.10)

Since the condition (4.10) including rt is also stochastic, to convert it into a deterministic

one, we consider its probabilistic measure, Pr{A(n, t)}. Following (4.6), our constraints
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then become

Pr

{
En∧

p=1

aT
np · rt ≤ bnp

}
≤ g(n, t). (4.11)

Since a polyhedron is convex, a sufficient condition is,

En∨
p=1

Pr(aT
np · rt ≤ bnp)≤ g(n, t). (4.12)

Based on the approach by Blackmore et al. [13], expression (4.11) can be further simplified

using the linear approximation of the upper bound on the probability of collision. First,

consider rt , the position of agent at time step t given its initial placement r0 and the control

sequence u0:t , which is a random variable following a Gaussian distribution, rt ∼ N(rt ,Σt),

where

rt =
t−1

∑
k=0

At−k−1Buk +Atr0 (4.13)

and

Σt =
t−1

∑
k=0

At−k−1
Σ(AT )t−k−1. (4.14)

For a single Gaussian random variable X ∼ N(µ,σ2), we can take the inverse Gaussian

distribution function at both sides of Pr(X < 0)≤ δ and get u≥
√

2σer f−1(1−2δ ). Sim-

ilarly, from rt ∼ N(rt ,Σt), we can get (aT
nprt −bnp) ∼ N(aT

nprt −bnp,aT
npΣtanp). Then, we

take the inverse Gaussian distribution function at both sides of (4.12), and

En∨
p=1

aT
nprt−bnp ≥ e(n, t) (4.15)

where e(n, t)=
√

2aT
npΣtanp ·erf−1(1−2g(n, t)) and erf (z)= 2√

π

∫ z
0 e−t2

dt. We call this the

safety margin, because it expands the margin of obstacles and shrinks the feasible planning

domain in order to consider motion uncertainty. Because the motion of the agent after it

reaches its goal has no further effect, we add the term M
t
∑

k=0
dk to these constraints where

M is a large positive number.
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Define s(n, t) = erf−1(1− 2g(n, t)). Since erf−1 is strictly monotonically increasing,

we can minimize
T
∑

t=0

K
∑

n=1
g(n, t) by minimizing

G =−
T

∑
t=0

K

∑
n=1

s(n, t). (4.16)

This is the safety portion of an agent’s objective (Gi for an agent i above).

A Path Planning Mathematical Program: Our goal is to minimize J = λT +(1−α)G,

balancing efficiency and safety using an exogenously specified parameter λ . Combining

this objective with the goal and collision avoidance constraints described above, we obtain

the following mathematical program for single-agent path planning:

MP1:

min
u,s,d

λT (d)+(1−λ )G(s) (4.17)

s.t.

∀t,ut ∈Ut (4.18)

∀t,rt =
t−1

∑
k=0

At−k−1Buk +Atr0 (4.19)

∀t, ||rt− rgoal||1 ≤M · (1−dt) (4.20)

∀t,dt ∈ {0,1} (4.21)

T

∑
t=0

dt = 1 (4.22)

∀t∀n,
En∨

p=1

aT
n,prt > bnp + e(n, t)−M

t

∑
k=0

dk (4.23)

∀t,e(n, t) = s(n, t)
√

aT
npΣtanp (4.24)

∀t,Σt =
t−1

∑
k=0

At−k−1
Σ(AT )t−k−1 (4.25)

∀t∀n,0≤ s(n, t)≤M′ (4.26)
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One residual concern is that if an agent cannot possibly collide with an nth obstacle at

time step t (i.e., if g(n, t) = 0), s(n, t) can become unbounded. To address this, we add

Constraint (4.26) which imposes an upper bound M′ on s(·), where M′ is an appropriate

positive number so that erf (M′)' 1.

Since MP1 is a disjunctive linear program which can be solved by an off-the-shelf linear

programming solver. A solution < u,s(·),d > found by MP1 with dT0 = 1 means that the

agent can reach to its goal position in T0 time steps with the probability of collision at most
T0
∑

t=0

K
∑

n=1

1−er f (s(n,t))
2 by applying the control sequence u0:T0 .

4.3.2 Generalization: Feedback Control

Above we considered open loop path planning where the control sequence is determin-

istic and fixed a priori. We now extend our approach to closed loop (feedback) control,

following the ideas in Geibel and Wysotzki [35] and Oldewurtel et al. [83].

Assume we have a nominal control sequence u0:T . Then, the feedback control sequence

can be obtained by integrating the nominal control sequence and the feedback gain:

ut = ut +K(xt− xt), (4.27)

where xt is the observed and xt the predicted position, and K is an exogenous parameter

which determines the importance of the error feedback term (xt − xt). In this approach,

ut is computed using the MP1 offline, and the actual control sequence is then generated at

runtime by applying (4.27). As a consequence, the Constraints (4.25) above become

Σt =
t−1

∑
k=0

(A+BK)t−k−1
Σ[(A+BK)T ]t−k−1. (4.28)

Notice that when there is no error feedback (K = 0) this becomes equivalent to open loop

control.
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4.3.3 Collision Avoidance for Polyhedral Agents

Having considered the problem for point-like agents, and then generalizing the ap-

proach to consider error feedback, we now generalize the collision avoidance constraints

to polyhedral agents.

Consider states of the agent and the nth obstacle, both represented by polyhedra Pt

and Pn, respectively. The position of the agents’ reference is rt . Since the reference point

rigidly attaches to the agent, let C = {x− rt |x ∈ Pt} denote the relative region of the agent

to its time-dependent reference. When the agent collides with the nth obstacle at time t,

we know that ∃x ∈ Pt ∩Pn (i.e., the intersection of these time-dependent polyhedra is non-

empty). Thus, from the point view of the agent, the set of positions of its reference causing

collision with the nth obstacle can be represented by Kn = {x−c|x ∈ Pn,c ∈C}=−C⊕Pn,

where⊕ is the Minkowski addition. Since both C and Pn are polyhedra, Kn is a polyhedron

and can be represented by a set of hyperplanes: Kn = {x|aT
npx ≤ bnp, p = 0, ...,En}, where

En the number of hyperplanes of Kn. The agent collides with the nth obstacle at time step t

if the position of its reference is in Kn, that is, when

rt ∈ Kn⇔
En∧

p=1

aT
nprt ≤ bnp. (4.29)

Comparing (4.29) with (4.10), we can see that the problem with polyhedral agents can also

be solved via the mathematical program above, if we treat the agent as its reference point,

and assign the collision volume Kn to each obstacle.

4.3.4 Best Response Solver

Our final challenge is to consider the actual best response problem of an arbitrary agent

in the path planning game, where all other agents are moving (rather than static) obstacles

with known stochastic motion policies. We now address this problem, obtaining the final

mathematical program for computing a single-agent best response.
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Let i denote the agent for whom we are computing a best response, with−i = {1, ..., i−

1, i+1, ...,N} the set of all others. Let i be represented by a polyhedron Pit with reference

rit and let j ∈ −i be represented by Pjt with reference r jt . Let Ci denotes the relative

region of i to its reference, while C j denotes the relative region of j ∈ −i to its reference.

Suppose that j reaches its goal position by time step Tj with the corresponding known

control sequences u j,0:Tj . Then, for each j and t, Ki jt = −Ci⊕Pjt is a polyhedron with

Ki jt = {x|aT
i jpx ≤ bi jt p, p ∈ {0, ...,Ei j}} where Ei j is the number of hyperplanes related to

the shapes of Ci and C j.

Now we formalize how the control sequence u j,0:Tj of each agent j affects Pjt so that

we can determine Ki jt . From motion dynamics of i and j,

rit =
t−1

∑
k=0

At−k−1
i Biuik +At

iri0 +ωit (4.30)

∀ j, r jt =
t−1

∑
k=0

At−k−1
j B ju jk +At

jr j0 +ω jt (4.31)

From the perspective of agent i, the motion of agent j can be treated as deterministic if we

“migrate” motion uncertainty from j to i so that

∀ j,r′i jt =
t−1

∑
k=0

At−k−1
i Biuik +At

iri0 +ωit−ω jt

∀ j,r′jt =
t−1

∑
k=0

At−k−1
j B ju jk +At

jr j0. (4.32)

For each j, let ω ′i jt = (ωit−ω jt)∼ N(0,Σit +Σ jt) denote the relative motion uncertainty of

i to j at time t. Let

∀ j,∆r′jt =
t−1

∑
k=0

At−k−1
j B ju jk +At

jr j0− r j0 (4.33)

denote the position shift of agent j at time step t determined by its control sequence u j,0:Tj .

Then, we obtain the position of Ki jt by shifting Ki j0 by ∆r jt . Since Ki jt = {x|aT
i jpx≤ bi jt p},
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we obtain

bi jt p = bi j0p +aT
i jp ·∆r′jt . (4.34)

Consequently, we obtain the following mathematical program for i’s best response:

MP2:

min
u,si(·),d

Ji = λTi +(1−λ )Gi (4.35)

s.t.

∀t,uit ∈Uit (4.36)

∀t,rit =
t−1

∑
k=0

At−k−1
i Biuik +At

iri0 (4.37)

∀t, ||rit− ri,goal||1 ≤M · (1−dit) (4.38)

∀t,dit ∈ {0,1} (4.39)

T

∑
t=0

dit = 1 (4.40)

∀ j∀t = 0, ...,Tj,

Ei j∨
p=1

aT
i, j,prit > bi j0p +ai jp ·∆r′jt + ei jt

−M
t

∑
k=0

dik (4.41)

∀i∀t,Σit =
t−1

∑
k=0

(Ai +KiBi)
t−k−1

Σi[(Ai +KiBi)
T ]t−k−1 (4.42)

∀t∀ j,∆r′jt =
t−1

∑
k=0

At−k−1
j B ju jk +At

jr j0− r j0 (4.43)

∀ j,ei jt =
√

aT
i jp(Σit +Σ jt)ai jp · si( j, t) (4.44)

∀t∀n,0≤ si(n, t)≤M′ (4.45)

Notice that the constraints (4.41) are effective only for t = 0, ...,Ti, and i is not affected by

any j who reached its goal.
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4.4 Finding Equilibria in Path Planning Games

Armed with the best response solvers for each agent i in a path planning game, our goal

is to approximate a Nash equilibrium in the resulting game. We do so by applying best

response dynamics which, if it converges (which it does in our experiments), yields a Nash

equilibrium.

Best response dynamics is an asynchronous iterative algorithm in which a single agent

i is chosen in each iteration, and we maximize i’s utility (i.e., compute its best response)

fixing control strategies for all other agents. Best response of an agent i can be calculated

as discussed above. Then, Nash equilibrium can be yielded by the best response dynamic

(algorithm 5),

Algorithm 5 Best Response Dynamics

1: input initial action, u(0)1,0:T , ...,u
(0)
N,0:T

2: output Nash equilibrium u∗1,0:T , ...,u
∗
N,0:T

3: Set k← 0
4: repeat
5: for i← 1, ...,N do
6: u(k+1)

i,0:T = arg min
ui,0:T

Ji(ui,0:T ,u
(k)
N,0:T )

7: end for
8: Set k← k+1
9: until ∀i,u(k)i,0:T = u(k−1)

i,0:T

10: return u(k)i,0:T

4.5 Optimal Multi-Agent Path Planning

We now extend the single-agent best response problem to compute an optimal multi-

agent path plan. In this case, the control sequences ui,0:Ti of all agents are unknown a priori

(as they are being computed jointly). Compared to calculating an agents’ best response,

we replace the objective of the current agent with the sum of all agents’ objectives, i.e.,

the new objective is J = ∑i Ji, where Ji is the objective of agent i. Moreover, we add con-

straints analogous to MP2 to make sure that the collision avoidance conditions hold from
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the perspective of every agent simultaneously. We thus obtain the following mathematical

program:

MP3:

min
u,s,d

J =
N

∑
i=1

Ji (4.46)

s.t.

∀i, t,uit ∈Uit (4.47)

∀i, t,rit =
t−1

∑
k=0

At−k−1
i Biuik +At

iri0 (4.48)

∀i, t, ||rit− ri,goal||1 ≤M · (1−dit) (4.49)

∀i, t,dit ∈ {0,1} (4.50)

∀i
Tmax

∑
t=0

dit = 1 (4.51)

∀i, t,−i,
Ei,−i∨
p=1

aT
i,−i,prit > bi,−i,0,p +ai,−i,p ·∆r′−i,t

+ ei,−i,t−M
t

∑
k=0

(dik +d−i,k) (4.52)

∀i∀t,Σit =
t−1

∑
k=0

(Ai +KiBi)
t−k−1

Σi[(Ai +KiBi)
T ]t−k−1 (4.53)

∀i, t,∆r′it =
t−1

∑
k=0

At−k−1
i Biui,k +At

iri0− ri0 (4.54)

∀i, t∀− i,ei,−i,t =
√

aT
i,−i,p(Σit +Σ−i,t)ai,−i,p · si(t, j)

∀i∀t∀n,0≤ si(n, t)≤M′ (4.55)

The term−M
t
∑

k=0
(dik +d−i,k) in Constraints (4.52) means that an agent will not be affected

by other agents who have reached their goal position by time step t, and, conversely, it will

not affect the final solution once it reaches its goal position.
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4.6 Experiments

(a) (b) (c) (d)

Figure 4.2: Experiment scenarios.

Armed with the techniques for computing both Nash equilibria in path planning games,

as well as a socially optimal solution of the corresponding “cooperative” multi-agent plan-

ning scenario, we now consider several case studies to understand the impact of self-

interested behavior. Specifically, we consider the following 2D scenarios:

• 2 agents with opposing goal positions (Figure 4.2a): the goal position of each

agent is behind the initial placement of the other. In this scenario, the first agent

moves from starting coordinate position (10,50) to goal at position (95,50), and the

second agent moves from (90,50) to (5,10).

• 2 agents moving in parallel (Figure 4.2b): the initial and goal positions of both

agents are near one another. In this scenario, the first agent moves from (10,70) to

(95,70) and the second agent moves from (10,35) to (95,35).

• Intersection with 2 agents (Figure 4.2c): one agent moves from the bottom to the

top of the 2D grid, and the other moves from left to right. In this scenario the first

agent moves from (10,50) to (90,50) and the second agent moves from (50,10) to

(50,90).

• Intersection with 3 agents (Figure 4.2d): one agent starts at the top of a 2D grid

and moves down, while the other two start at southeast and southwest, and move

northwest and southeast, respectively. In this scenario the first agent moves from

(50,90) to (50,5), the second agent moves from (85,30) to (11,73), and the third

agent moves from (14,29) to (90,73).
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In each experiment, each agent is represented by a square with each side of length 15 and

parallel to either the x or the y axis. The control inputs are 2D velocity vectors and the

maximum velocity of agents in both x and y direction is 10 (thus, A = B = I in agents’ mo-

tion dynamic). Agents’ motion is distorted by a Gaussian distribution with the covariance

matrix 1.9I. For each scenario we consider solutions with and without feedback control,

where the feedback gain for the latter was chosen to be K = 0.5. Throughout, we assume

that all players are equally concerned about safety vs. efficiency; formally, all players share

the same parameter λ .

The results are shown in Figures 4.3-4.10. In each figure, the horizontal axis is the λ

value which represents the importance of safety for both agents, where lower values of λ

imply that safety is more important. The left plots show the objective value, where lower

is better. The middle plots give the time to goal, where lower is, again, better. The right

plots show safety margin, where again lower is better. We present average quantities over

all agents; the qualitative observations are similar if we consider these at individual agent

level.

The first observation is that the difference between socially optimal and equilibrium

objective values appears small ((a) plots in Figures 4.3-4.10). It is therefore tempting to

conclude that equilibrium behavior is similar to socially optimal, but it turns out that this is

not the case: in particular, it turns out that the trade-off between efficiency and safety made

by the agents in equilibrium is very different from optimal.

Considering next the (b) and (c) columns of the figures, we can observe that systemat-

ically performance improves, while safety is often significantly compromised, in equilib-

rium as compared to a social optimum. The difference is particularly dramatic in the first

two scenarios, when the agents are in direct conflict in their quest to reach their respective

goals. The gap between optimal and equilibrium safety in the other scenarios tends to be

larger for relatively high values of λ .

Another general observation we can make is that often the solutions with a feedback
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controller are closer to optimal, particularly from the perspective of safety. The exceptions

involve the intersection scenarios, where the gap is larger for higher values of λ in the

feedback controller solution than with the open-loop controller. However, even in these

scenarios, the feedback controller yields solutions closer to socially optimal for most values

of λ . This is not surprising: since all agents are concerned about safety, they are more able

to dynamically adjust to avoid collisions when some feedback about state is available.

To understand why safety is systematically compromised, consider a single agent’s

incentive. Even though an agent is interested in reaching the goal safely, it does not account

for the fact that being involved in a crash also crashes the other agent. Thus, in equilibrium

safety is compromised relative to social optimum, as agents fail to capture the externalities

associated with crashes.

(a) (b) (c)

Figure 4.3: Opposing goal positions without the feedback gain(K = 0).

(a) (b) (c)

Figure 4.4: Opposing goal positions with the feedback gain(K = 0.5).
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4.7 Conclusion

We study path planning games, which are strategic interactions among path planning

agents who trade off efficiency in reaching their goals and safety (or collision avoidance).

We construct mathematical programs for computing the best response of an arbitrary agent,

fixing the policy of others, and a mathematical program for computing a socially optimal

multi-agent path plan. The agents best response computation is then used as a part of

asynchronous best response dynamics to compute a Nash equilibrium. Our experiments

demonstrate that the outcomes of path planning games systematically compromise safety

compared to socially optimal multi-agent path plans.
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(d) (e) (f)

Figure 4.5: Moving in parallel without the feedback gain(K = 0).

(g) (h) (i)

Figure 4.6: Moving in parallel with the feedback gain(K = 0.5).

(a) (b) (c)

Figure 4.7: Intersection without the feedback gain(K = 0, 2 agents).

(a) (b) (c)

Figure 4.8: Intersection with the feedback gain(K = 0.5, 2 agents).

(a) (b) (c)

Figure 4.9: Intersection without the feedback gain(K = 0, 3 players).

(a) (b) (c)

Figure 4.10: Intersection with the feedback gain(K = 0.5, 3 players).60



Chapter 5

Robust Medical Imaging Recognition

5.1 Problem Overview

We present the first investigation of vulnerabilities of regression-based prediction in

medical image processing to adversarial example attacks. Specifically, our problem setting

involves predicting age of a subject based on their 3D MRI brain image, with malicious

perturbations artificially injected directly into the digital images. Since prior adversarial

example research is focused on classification or segmentation tasks, our first contribution

is to adapt state-of-the-art methods for generating adversarial examples with l0, l2, and l∞

constraints on the magnitude of the perturbation to our setting. Our second contribution

is a method for generating universal adversarial perturbations for our domain—that is,

a single perturbations (for each norm) that is effective on a large batch of images; this is

entirely novel in the context of medical imaging. Our third contribution is to experimentally

demonstrate that adversarial examples—both image-specific, and universal—are indeed

extremely effective, significantly reducing prediction effectiveness of deep learning for age

prediction. The observation of the effectiveness of universal perturbations in this setting is

particularly powerful: it implies that a single malfunction in MRI equipment (inadvertent,

or adversarial) can have a significant impact.

Given vulnerability of deep learning for medical imaging, it is natural to wonder whether

one can effectively mitigate this issue. We explore one approach which has not previously

been considered for this: augmenting deep learning models with volumetric features ob-

tained through traditional multi-atlas segmentation techniques, where each feature corre-

sponds to the volume of a brain region (for a total of 132 features). Such contextual in-

formation has previously been shown effective in improving prediction in non-adversarial

settings [10, 57, 118], and is by construction relatively insensitive to small perturbations.
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Our forth contribution is to demonstrate experimentally that, indeed, adding contextual fea-

tures to deep learning significantly mitigates its vulnerability to adversarial perturbations,

whether they are designed for each image independently, or universally crafted for batches

of images.

To illustrate the effect of adversarial noise, consider Figure 5.1, where age is predicted

using a conventional deep neural network. For this figure, we identify one sample with

predicted age 19 and another sample with predicted age 80 (Figures 5.1a and 5.1b, respec-

tively); we note that predictions on unperturbed data are extremely accurate (root mean

squared error, RMSE < 5.13 years). Comparing the brain images of a 19 and 80 year-old,

we can readily see clear differences between them. Next, we add low-magnitude random

noise (l∞ of noise is 0.002, where pixel values are normalized between 0 and 1) to the first

(19-year-old) sample (Figure 5.1c), showing that the deep neural network is robust to such

random perturbations. Figure 5.1d contrasts this with an adversarial perturbation of the

same magnitude, but which causes the neural network to predict that the subject’s age is

80!

(a) Age prediction: 19 (b) Age prediction: 80

(c) Age prediction: 19 (d) Age prediction: 80

Figure 5.1: The illustration of the effect of adversarial attack. (a) Sample 1 (19 year-old).
(b) Sample 2 (80 year-old). (c) Sample 1 with random noise. (d) Sample 1 with adversarial
perturbation. The difference among (a), (c) and (d) appears imperceptible to human eye.
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5.2 Methods

First, we describe the approaches we used to generate adversarial perturbations for a

single image. Subsequently, we present our approach that targets a batch of images with

a single perturbation. All our code is publicly available at https://github.com/yvorobey/

adversarialMI.

5.2.1 Generating Adversarial Perturbations for a Single Image

Let F(x) be the function computed by the deep neural network to predict age for an

arbitrary input image x. Consider a fixed image x0. Our goal is to generate a small (imper-

ceptible) perturbation, ∆x, to add to the original image x0, so as to maximize or minimize

predicted age. As described earlier, we use l∞, l2, and l0 norms to quantify the magnitude

of the introduced perturbation. In all cases, if we wish to maximize predicted age, the goal

is to solve the following problem:

maximize∆x G(∆x) = F(x0 +∆x)

subject to: ||∆x||p ≤ ε, x0 +∆x ∈ [0,1]n
(5.1)

where || · ||p corresponds to the one of the above norms (p = ∞,2, and 0, respectively),

F(x+∆x) is the predicted age for the perturbed image, and the constraint ||∆x||p ≤ ε en-

sures that perturbation is at most ε , which is a small and exogenously specified bound

(in our experiments, at most 0.002 for any norm). Additionally, since image pixels are

normalized in the [0,1] interval, we also ensure that introduced perturbations result in valid

images by adding the constraint that x0+∆x∈ [0,1]n. If our goal is to minimize, rather than

maximize predicted age, the objective becomes minimization rather than maximization.

Since the optimization problem (5.1) is challenging as stated, we use heuristic ap-

proaches based on those introduced in prior literature for solving this problem [115]. As

the specific approaches are tailored to the norm which measures the magnitude of the in-
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troduced perturbation, we next present such approaches for each norm.

5.2.1.1 The l∞ Attack

Our approach to implementing the l∞ norm attack is based on FGSM [39] and its subse-

quent iterative variation [61]. The idea behind the approach is to approximate the objective

function F(x0+∆x)≈∇F(x0)∆x+F(x0). The optimal solution to this linearized objective

is then ∆x = ε sign(∇F(x0)). Extending this idea to an iterative variant, with N the number

of iterations, we can take steps of size ε/N, where each step computes ∆x using the gradi-

ent sign approach starting from the previous iterate. Finally, if the total modification to x0

ever leaves the interval [0,1], it is clipped to remain feasible. The full algorithm is given in

Algorithm 6.

Algorithm 6 Single Target l∞
1: input: predictor F , l∞ distance ε , iteration steps N, original
2: output: adversarial perturbation ∆x
3: t← 0, i← 0
4: α ← ε/N
5: while i < N do
6: t← t +α · sign(∇F(x0 + t))
7: t← clip[0,1](x0 + t)
8: i← i+1
9: end while

10: return ∆x← t

In the algorithm, the statement t ← clip[0,1](x0 + t) clips the argument to stay in the

[0,1] interval, modifying t accordingly.

These ideas extend in a straightforward way to minimizing F(x0 +∆x).

5.2.1.2 The l2 Attack

Our approach for generating adversarial perturbations with respect to the l2 norm fol-

lows Szegedy et al. [109] and Carlini and Wagner [20].

The main idea is to replace the hard constraint that ||δx||2≤ ε with an associated penalty
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in the objective. Specifically, we rewrite Problem (5.1) as follows:

minimize∆x − c ·F(x0 +∆x)+‖∆x‖2

subject to: x0 +∆x ∈ [0,1]n
(5.2)

The constant c is used to balance maximizing F(x+∆x) and minimizing ||∆x||2. By updat-

ing c, we can then find a ∆x which satisfies ||∆x||2 ≤ ε and maximizes F(x+∆x).

To deal with the box constraint 0 ≤ x0 +∆x ≤ 1, we follow Carlini and Wagner [20]

and apply a change-of-variables, introducing a new variable ω such that:

x0 =
1
2
(tanh(ω0)+1)

∆x =
1
2
(tanh(ω0 +∆ω)− tanh(ω0))

Since −1 ≤ tanh(ω) ≤ 1, the constraint 0 ≤ x0 +∆x ≤ 1 is always satisfied. With this

transformation, we optimize over ω , rather than ∆x. The transformed optimization problem

becomes

minimize∆ω − c ·F
(

1
2
(tanh(ω0 +∆ω)+1)

)
+‖tanh(ω0 +∆ω)− tanh(ω0)‖2 .

The algorithm is shown as in Algorithm 7. In this algorithm, the optimizer uses N steps

to find the optimal solution with the specific constant c. Every time we run the optimizer,

it would try to make the result of−c ·F(x0+∆x)+‖∆x‖2 smaller at a certain learning rate.

After each time we run the optimizer, we would check whether the l2 distance is smaller

than the ε we have set and compare F(x0 +∆x) with the current maximum result.

As before, the approach is straightforward to modify if we wish to minimize predicted

age.
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Algorithm 7 Single Target l2 Attack
1: input image x0, predictor F , L2 distance ε , number of iterations N, number of iterations

of binary search m
2: output adversarial perturbation ∆x
3: initialize x′← x,c← c0, i← 0, ω0← tanh−1(2x−1)
4: while i < m do
5: flag← False
6: optimizer ← optimizer.minimize(−c · F

(1
2(tanh(ω0 +∆ω)+1)

)
+

‖tanh(ω0 +∆ω)− tanh(ω0)‖2)
7: while j < N do
8: ∆ω ← optimizer.run one step
9: ∆x← 1

2(tanh(ω0 +∆ω)− tanh(ω0))
10: if ‖∆x‖2 < ε then
11: flag← True
12: if F(x+∆x)> F(x′) then
13: x′← x+∆x
14: end if
15: end if
16: j← j+1
17: end while
18: if flag then
19: increase c
20: else
21: decrease c
22: end if
23: i← i+1
24: end while
25: return ∆x← x′− x0
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5.2.1.3 The l0 attack

In the l0 attack, the goal is to introduce an adversarial perturbation by modifying fewer

than ε pixels in the image. Our method for doing this uses the intuition that the pixels

with higher absolute gradient value play a more important role in the prediction output.

Consequently, we find the pixels with the maximum absolute value of the gradient, and try

to modify the value of these to maximize or minimize the model prediction. We iteratively

do this until the maximum l0 distance is achieved (i.e., we reach the threshold number

of pixels we can modify). This approach for maximizing the prediction is formalized in

Algorithm 8. To minimize predicted age, the only difference is to modify the value of one

pixel in each iteration to make the prediction smaller, rather than larger.

Algorithm 8 Single Target l0 Attack
1: input: image x0, predictor F , l0 distance upper bound ε , possible values @for@ each

pixel V = [v1,v2, ...vn]
2: output: adversarial perturbation ∆x
3: initialize x′← x0, i← 0, G← ∇xF(x′)
4: while i < ε do
5: pos← argmaxk(|Gk|)
6: Gpos← 0
7: f lag← False
8: for k in V do
9: x′′← x′

10: x′′pos← k
11: if f (x′′)> f (x′) then
12: x′← x′′

13: f lag← True
14: end if
15: end for
16: if flag then
17: i← i+1/size(x)
18: end if
19: end while
20: return ∆x← x′− x0
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5.2.2 Generating Adversarial Perturbations for a Batch of Images

Our final discussion concerns a method for generating a single adversarial perturbation

∆x for a batch of input images {x0,x1, ...,xm}. We formalize it as solving the following

optimization problem:

Maximize G(∆x) =
m

∑
i=0

F(xi +∆x)

subject to: ||∆x||∞ ≤ ε

(5.3)

(Note that we restrict attention to l∞-norm attacks in this case, to simplify discussion.)

We optimize the objective by extending the iterative gradient-sign method discussed in

Section 5.2.1.3. The full algorithm is given in Algorithm 9.

Algorithm 9 l∞ Attack for a batch of images

1: input: a batch of original images {x0,x1, ...,xm}, predictor F , l∞ upper bound ε , num-
ber of iterations N ε , possible values @for@ each pixel V = [v1,v2, ...vn]

2: output: adversarial perturbation ∆x
3: t← 0, j← 0
4: α ← ε/N
5: while j < N do

6: t← t +α · sign
(

m
∑

i=0
∇F(xi + t)

)
7: j← j+1
8: end while
9: ∆x← t

5.3 Results

Here we focus on data that are generally accessible and with an algorithm not likely to

drive patient care to evaluate the effectiveness of such attacks in medical image processing

settings in a way that does not violate clinical research ethics (as could be an issue, for ex-

ample, if the target was a medical diagnosis). We expect that our results are generalizable,

so long as similar image processing techniques are used.
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Our imaging dataset is an aggregate of 7 datasets with a total 3921 T1w 3D images

from normal, healthy subjects. The data include subjects with ages ranging between 4 and

94 years old, with a mean age and standard deviation of 25.5 ± 18.6 years. Of the 3921

subjects, 54.2% were male and 45.8% were female. Data were also acquired from different

sites so there is a difference in field strength, of which 71.5% of scans were acquired at 3

Tesla and 28.5% were acquired at 1.5 Tesla. ROI volumes, gender, and field strength were

all used as input features for age prediction.

We consider two models for predicting age: 1) a conventional deep neural network, and

2) a hybrid (or context-aware) model which combines deep learning with image segmenta-

tion techniques. The conventional deep neural network model (Conventional DNN) takes

a 3D brain MRI image as input and produces a subject’s age as output. The architecture

consists of five 3D convolution layers of increasing size followed by two densely connected

layers and one output layer. The ReLU activation function was used for all hidden layers.

The neural network was trained using a learning rate of 0.001. The structure of this model is

shown in Figure 5.2a. The context-aware model has a similar structure to the conventional

deep neural network model, with the exception that 132 volumetric features are introduced

after the convolutional layers followed by two densely connected layers and, finally, the

output layer. Volumetric estimates for 132 regions of interest in the brain (that is, each

feature corresponds to the volume of a region of interest) were obtained using multi-atlas

segmentation [56, 4]. The structure of the context-aware model is demonstrated in Figure

5.2b.

We consider three types of attacks which inject adversarial noise into an image: l∞

attack, l0 attack, and l2 attack. All attacks limit the amount of noise being injected to ensure

that is cannot be perceived by looking at the image, but differ in how they measure the

amount of noise injected. The l∞ attack considers modification to each pixel independently,

and limits the amount any pixel can be modified. The l0 attack limits the number of pixels

modified. The l2 attack limits the Euclidean norm of the injected adversarial perturbation.
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(a) The structure of the conventional DNN
(b) The structure of the context-aware model

Figure 5.2: The models for brain age prediction

More precisely, define the perturbation as ∆x = (∆x0, ...,∆xN), where N is the number of

pixels in the image. We define distortions in the respective norms as follows (we use

slightly modified definitions here to make our results more intuitive):

l∞ :
N

max
i=0
{∆xi}, l2 :

√
1
N

N

∑
i=0

∆x2
i , l0 :

1
N

N

∑
i=0

1(∆xi 6= 0). (5.4)

The value of pixels in the original samples was normalized into range [0,1].

The goal of adversarial perturbations is to either maximize or minimize the predicted

(as opposed to actual) age. Since original predictions (without adversarial noise) are quite

good (RMSE < 5.13 years), we use those as a baseline. We then measure the effectiveness

of adversarial noise (in skewing the predictions) by deviation, defined as absolute change

in predicted age:

deviation = |y′− y|, (5.5)

where y is the original prediction (without noise), and y′ the prediction after adversarial

perturbation.
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5.3.1 Conventional Deep Neural Networks are Fragile to Adversarial Perturbations of

Medical Images

We first consider the impact of adversarial perturbations on a Conventional DNN, where

we aim to maximize predicted age. Figure 5.3 illustrates this for the 19-year-old subject

we discussed earlier, and presents results over the entire dataset, breaking these down by

(originally predicted) age groups: 0− 14,15− 25,26− 50,51− 65, and > 65. As we can

see from the illustration (images in the left column of the figure), we can cause the conven-

tional DNN to predict age as 80 (rather than 19) using any of the three ways to quantify

perturbation, with all three brain images looking indistinguishable from the original (in

Figure 5.1a). As we would anticipate, l0 perturbations are the most sparse, concentrated in

parts of the image that have the greatest impact. A more systematic analysis in Figure 5.3

(plots in the right column) shows that age can be amplified nearly 70 years on average by

adding perturbation with magnitude < 0.002 (for the normalized image) by any of the three

measures. Interestingly, the most susceptible population is 15-25 year olds, across all three

attack methods.

Similar trends are obtained if we inject adversarial noise in order to minimize predicted

age (Figure 5.4). There appears to be little difference in which metric we use to bound

adversarial perturbations: in all cases, with only a small amount of added noise, we can

often reduce predicted age to nearly 0 for all age cohorts.

5.3.2 A Single Adversarial Perturbation Works for Large Batches of Images

While the most powerful attacks customize adversarial noise to each image, an alter-

native that may be more practical is to generate a single perturbation which can then be

injected into any given image. We design such an attack, based on the l∞-norm framework

(which bounds the most any one pixel can be changed), and investigate its effectiveness as a

function of the number of images that we target with a single attack. The attack maximizes
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Figure 5.3: The adversarial perturbations that aim to maximize age. Images in the left col-
umn display the results of adversarial perturbations to the image of a 19-year-old subject in
Figure 5.1a, using each of our three criteria for limiting the magnitude of the perturbation.
The images in the top row of each of these correspond to the modified 2D slice images of
the brain; immediately below is isolated noise that we add (amplified for visibility). In the
right column we present general results of applying adversarial perturbations to images in
our data (maximizing predicted age). In each plot, the x-axis is the limit of the amount of
noise injected (where the noise bound is measured by each of our three lp measures), while
the y-axis is the corresponding impact, measured by deviation from original prediction.
The first row of plots correspond to l∞-bounded perturbations. The second row of plots
represent results for l2-bounded perturbations. The third row of plots are the results for
l0-bounded perturbations.
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Figure 5.4: Attacks that aim to minimize predicted age. The x-axis limits the amount of
noise injected, while the y-axis shows the corresponding impact, measured by deviation
from original prediction. Left: adversarial perturbations bounded by the l∞ metric. Mid-
dle: adversarial perturbations bounded by the l2 metric. Right: adversarial perturbations
bounded by the l0 metric.

average predicted age for an entire batch of images.

Figure 5.5: Attacking multiple images using the same adversarial perturbation for the con-
ventional DNN model. The attack maximizes predicted age. We set the modification dis-
tance to 0.002. Group size corresponds to the number of images that we target with a single
adversarial perturbation.

Figure 5.5 presents the results. Interestingly, once we consider more than 300 images

in a batch, increasing the batch size has a relatively small impact on the effectiveness of

adversarial perturbations. On average, perturbations result in an error in predicted of over

10 years (averaged over images in the batch, and random draws of batches), even when we

consider batches of 1500 images. In the case of the most vulnerable cohort (<25-50 years
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old, in this case), the impact is over 20 years. Consequently, we can design highly effective

adversarial perturbations that appear to be nearly universal.

5.3.3 Deep Learning with Volumetric Features based on Image Segmentation is Less Vul-

nerable

One of our most significant observations is not just that the conventional DNN model is

vulnerable, but that incorporating features based on traditional multi-atlas image segmen-

tation makes it significantly less vulnerable to adversarial perturbations.
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Figure 5.6: Adversarial perturbations designed for the context-aware model. The x-axis
limits the amount of noise injected, while the y-axis shows the corresponding impact, mea-
sured by deviation from original prediction. Left plots correspond to l∞ bounds (the most
any one pixel can be changed) to measure impact. Middle plots correspond to l2 bounds
(Euclidean norm of the added noise). Right plots correspond to l0 bounds (the fraction of
pixels that can be changed). Top plots correspond to the objective of maximizing predicted
age. Bottom plots are when we aim to minimize predicted age

Consider Figure 5.6 which presents the systematic analysis of the impact of adversarial

perturbations on the context-aware model.1 The difference with the conventional DNN is

1Because volumetric feature generation is extremely time consuming, these figures were generated by
keeping such features invariant. In the Appendix, we present results with a small representative batch of
images where we regenerated volumetric features after the adversarial perturbation, and our findings are
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evident: in every case, the impact of the attack is significantly reduced, often by several

factored. Nevertheless, it is not eliminated. For example, we can still introduce impercep-

tible noise (changing pixels by at most 0.2%) and in many cases increase predicted age by

over 30 years.

Figure 5.7: Attacking multiple images using the same adversarial perturbation for the
context-aware model. The attack maximizes predicted age. We set the modification dis-
tance to 0.002. Group size corresponds to the number of images that we target with a single
adversarial perturbation.

Similarly, we can observe that the impact of adversarial perturbations on image batches

is significantly reduced for the context-aware model (Figure 5.7), where average impact on

age drops from approximately 10 to just over 5 years. This drop is especially noteworthy

since the adversarially induced error is now similar to the RMSE of the model prior to

adversarial perturbations (which is just over 5 years).

5.4 Conclusion

Despite the increasing popularity of deep learning methods in medical imaging appli-

cations, our results suggest that significant concerns remain about robustness of these to

adversarial perturbations to the environment. Such perturbations may arise simply due to

unanticipated use cases or unusual patients, but may also be a product of actual tamper-

ing, for example, aiming to exploit introduced diagnostic bias for economic gain. While

largely consistent, since such features are relatively insensitive to small pixel-level perturbations.
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DICOM supports robust security protocols, common software features are not uniformly

implemented or applied [73], and data may be vulnerable to simple, direct manipulation on

portable data systems (e.g., reliance on physical CD transport). While one may be skeptical

about the practical relevance of adversarial perturbations to individual images, our results

suggest that we can even generate a single perturbation which introduces significant bias

into predictions made on many images. Moreover, the relatively opaque nature of deep

learning models makes the problem particularly challenging, as erroneous predictions may

be difficult to detect.

However, our results also suggest that a way to address fragility of deep learning models

is by incorporating domain knowledge and more traditional multi-atlas image segmentation

techniques. We believe that such methods introduce higher-level semantic information into

the model which is significantly more robust to voxel-level image perturbations. While

our experiments suggest that such a context-aware model may still be somewhat vulner-

able to adversarial noise, it is significantly less so that a pure (conventional) deep neural

network. Alternative approaches, such as adversarial retraining [108, 70], have also shown

promise in significantly reducing vulnerability of machine learning algorithms, including

deep learning, to adversarial perturbations. In the end, it is likely that a combination of

techniques is needed to make deep learning sufficiently reliable for medical image process-

ing applications.
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Chapter 6

Feature Selection Games

6.1 Problem Overview

Despite recent advancements in machine learning algorithms, it has been shown that

machine learning systems are inherently vulnerable to carefully-crafted attacks. In such

cases, attackers can exploit the model’s weaknesses at the test time by crafting malicious

adversarial examples that causes intentional errors [12, 22, 45]. In this process, certain

constraints need to be held to make sure the resulting adversarial examples are ‘close‘

enough to the original inputs that make attacks to be undetectable. For example, one kind

of attacks is called l0 attacks, if the distance between the original inputs and adversarial

examples are measured by the l0 distance being the number of modified features. l0 attacks

first are posted by the image recognition community, leading a large family of variants, like

Jacobian-based saliency map attack (JSMA) [107, 38] and one pixel attacks[106], which

attract more interests from the other fields[96, 26].

On the other hand, defensive techniques attempting to mitigate the effects of adversar-

ial example have been extensively investigated in the research literature, including adver-

sarial examples predictions [42, 49, 77] and detection [76, 41, 44]. However, Carlini &

Wagner [21] showed that most of these defenses could be defeated if the attacker crafts

adversarial examples targeting the specific defense. To address such gap, varied game-

theoretical approaches modeling the interactions between the learner and the adversary

emerge [17, 16, 18], where the solution concept, equilibria, naturally yield the learner’s

best defense when facing the optimal attacks.

In this chapter, we focus on the issue of designing robust prediction algorithms against

l0 attacks. We propose a methodology to generate an optimal randomization scheme, a

probability distribution over a collection of predictors with different feature subsets, in-
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creasing the system’s robustness against l0 attacks via a novel framework, feature selection

games.

6.2 Model

In the traditional feature selection scheme, given a learning task, the learner aims to find

the optimal feature subset minimizing prediction error. We extend this scenario to an ad-

versarial learning setting by adding an additional player, an attacker that tries to achieve its

malicious goals, formulated as a feature selection game. At the high level, the competition

takes place on the feature space, where the learner chooses its learning model via feature

selections at training time, and the attacker manipulates the test data through its selected

feature subset at testing time. Below, we first briefly introduce several notions of feature

selection. Then, we illustrate the full game.

Consider a learning task, where D = {xi,yi}m
i=1 ⊂X ×Y is the training time data set

of m training samples drawn from an unknown distribution, where X ⊂ Rd and Y denote

respectively the input and output space of the learning task. The feature space is formed

by d features, indexed by set [d], {1,2, ...,d}. Any selected feature subsets belong to the

power set of [d], denoted by 2[d] , {V |V ⊂ [d]}.

6.2.1 Preliminary

6.2.1.1 Feature selection

Feature selection can be understood as finding the feature subset of a certain size with

good ’quality’ which can be measured by a set function (e.g., a feature subset that leads

to the largest possible generalization or equivalently to minimal risk) represented by ω :

2[d]→ R+. Therefore, the optimal feature subset S∗ can be determined via
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S∗ = arg sup
S∈2[d]

ω(S;{xi,yi}m
i=1)

s.t. :

|S| ≤ d0

where d0 is the maximum number of selectable features.

Wrapper-based feature selection algorithms apply a search through the space of feature

subsets using the estimated accuracy of a learning model as a measure of goodness of a

particular feature subset. In this case, ω can be formulated in the following way

S∗ = arg sup
S∈2[d]

ωw(S; T̃ , f ∗,{xi,yi}m
i=1) (6.1a)

= arg sup
S∈2[d]

m

∑
i=1
−L( f ∗(xi ∗σ(S),yi)) (6.1b)

s.t. :

f ∗ = T̃ ({xi ∗σ(S),yi}m
i=1) (6.1c)

|S| ≤ d0 (6.1d)

where ∗ denotes the point-wise product, L is the loss function, F ⊂ RRd
indicates the

family of classifying or regression functions and σ : 2[d]→ {0,1}d represents a projection

mapping a feature subset to a binary vector such that σ(S)i = 1 indicates the ith feature

is present in the subset S and σ(S)i = 0 otherwise. Given a family F , a feature subset

S and the data set {xi,yi}m
i=1, the learning algorithm T̃ outputs an optimal classifying or

regression function f ∗ ∈F trained on the data set using the selected subset feature.
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6.2.1.2 Adversarial examples

Given a supervised learning model f trained on the data set {xi,yi}m
i=1, we consider

that the attacker can add a perturbation ∆xi to the input sample xi and the corresponding

prediction is changed from f (xi) to f (xi +∆xi) such that is not accurate compared to the

ground truth yi. Moreover, the attacker ensures that the resulting adversarial example xi +

∆xi is close enough to the original input xi to avoid detections. Formally, the adversarial

example crafting procedure is described by following optimization problem:

argmax
∆xi

loss( f (xi +∆xi),yi) (6.2a)

s.t. :

||∆xi||t ≤ B (6.2b)

xmin ≤ xi +∆xi ≤ xmax (6.2c)

where Constraint 6.2b limits the distance between the original input and the resulting ad-

versarial examples, and Constraint 6.2c makes sure the adversarial input fit the input range

of the original problem. By choosing different t for the norm of ∆xi, the adversarial manip-

ulation can be formed in different ways.

In this work, we first focus on the cases when t = 0 called l0 attacks so that the attacker

is limited in the number of changeable features. To explicitly formulate the competitions

between the learner and the attacker on the feature space, we use an alternative way to

represent the l0 attacks. Intuitively, the process of l0 attacks contain two stages:

• The slave problem: given a feature subset, finding the optimal modification pattern

limited on the selected subset, maximizing the loss.

• The master problem: finding the optimal feature subset such that it maximizes the

resulting value of the slave problem.
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Then, given a feature subset S ∈ 2[d], the slave problem can be formulated as,

max
{∆xi}m

i=1

m

∑
i=1

loss( f (xi +∆xi,yi) (6.3a)

s.t. :

∀i,(xmin− xi)∗σ(S)≤ ∆xi ≤ (xmax− xi)∗σ(S) (6.3b)

and the master problem becomes,

arg max
S∈2[d]

max
{∆xi}m

i=1

m

∑
i=1

loss( f (xi +∆xi ∗σ(S),yi) (6.4a)

s.t. :

|S| ≤ B (6.4b)

In this chapter, we use K(S) (K : 2[d]→Rd) to represent the adversarial perturbation yielded

by equation 6.3a given the feature subset S.

6.2.2 Feature Selection Game

We begin by describing the feature selection games (FSG) as a two-player zero-sum

game with complete information. A FSG (A ,L ,U) is defined as following,

• Players: The attacker with strategy space A and utility function Ua, and the learner

with strategy space L and utility function Ul .

• Strategies: A pure strategy for each player is a feature subset (a subset of 2[d])

so that the attacker injects the adversarial perturbations through the targeted fea-

tures and the learner optimize its model via feature selections. We further assume

that the maximum number of selectable features for the learner is cl , the maxi-

mum number of changeable features for the attacker is ca, and ca < cl ≤ d. There-

fore, the pure strategy spaces for both players are two uniform matroids, where
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A = {S|S ∈ 2[d], |S| ≤ ca} and L = {S|S ∈ 2[d], |S| ≤ cl}.

• Utility functions: The utility function for both players is the robust loss function,

where the attacker is the maximizer and the learner is the minimizer. Let set functions

U1 : A ×L →R+ and U2 : L →R+ be the learner’s losses with and without the in-

jection of adversarial perturbations. We define U(A,L) = µU1(A,L)+(1−µ)U2(L)

as the robust loss function, where µ is a trade-off parameter.

• Solution Concepts: We consider the situations where both players move simulta-

neously and the solution concept, mixed strategy Nash Equilibrium(NE). A mixed

strategies is a distribution indicating an assignments of a probability to each pure

strategy, which allows both players to randomize their actions. Let ∆A and ∆L

be the simplexes spanned by the attacker’s and the learner’s pure strategies so that

a ∈ ∆A and l ∈ ∆L are the attacker’s and the learner’s mixed strategies, where aA, lL

is the probability that the attacker chooses strategy A and the learner chooses strategy

L, and ∑
A∈A

aA = ∑
L∈L

lL = 1. Therefore, given a pair of mixed strategy (a, l), the pay-

off are the expected utilities U(a, l) = E(A,L)∼(a,l)U(A,L)1. A pair of mixed strategy

(a∗, l∗) is called mixed strategy NE if and only if (a∗, l∗) is yielded by the following

minmax problem,

min
l∈∆L

max
a∈∆A

U(a, l) (6.5)

In this cases, both players cannot benefit from unilaterally rotating from its current

strategy, which yields the optimally robust solution for the learner.

6.2.3 Wrapper Approach Based FSGs with Pre-trained Learning Models

Given the general framework of FSGs defined in the last section, we now deal with

more concrete models by considering the specific loss functions U1 and U2 that are yielded

1In this work, for any utility function U : T →R+, U : ∆T →R+ is the expected value of U given a point
in the simplex ∆T .
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from different feature selection and attack approaches.

We first illustrate such a FSG based on wrapper approaches with pre-trained learn-

ing models, where both the learner and the attacker consider specific learning models and

attacks, and the payoffs are evaluated by the exact performance of a given learning task.

Wrapper approach based FSGs are computationally intensive, but intuitive and usually pro-

vide precise solutions for a particular type of learning models. We first consider the cases

that the training data is known by both players, and the learner has a branch of pre-trained

learning models with fixed parameters corresponding to training data set and selected fea-

ture subsets., and such assumptions are relaxed in the later sections.

Suppose a specific family of learning model F , the attacker’s and the learner’s pure

strategy space A and L , training data set {xi,yi}m
i=1, and the learning algorithm T̃ . Assume

both players have complete information on T and {xi,yi}m
i=1 and the training and testing

data have the same distribution. The payoffs of the game U(A,L),∀A ∈ A ,∀L ∈L , are

constructed as the follow. At the training phase, for each pure strategy L ∈L , the learner

applies its selected feature subset L and chooses an optimal learning model f ∗L yielded

by the learning algorithm T̃ which minimizes the loss over the augmented training set

{xi ∗σ(L),yi}m
i=1. After that, the learner’s loss on the clean training set is

U2(L) =
m

∑
i=1

loss( f ∗L (xi ∗σ(L)),yi)

while the loss on the adversarial testing set can be represented by

U1(A,L) =
m

∑
i=1

loss( f ∗L (xi +K(A))∗σ(L),yi)

Once the benefit functions U1 and U2 are specified, we get a payoff matrix ∀A∈A ∀L∈

L ,U(A,L) and the problem of finding the mixed strategy NE defined by equation (6.5)

can be solved via linear programming. However, such LP is difficult to be solved since

there are exponential number of variables and constraints caused by the number of player’s
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strategies.

To address the above problem, we consider the double oracle algorithm which starts

at initial player’s pure strategy spaces, iteratively solves a game within current strategy

spaces, and enlarges it by adding the pure strategies via player’s best-response oracles. The

execution continues until convergence is detected, which means the learner’s (attacker’s)

best-response oracle does not generate a pure strategy that is better than the learner’s (at-

tacker’s) strategies in the support of the current equilibrium. Let L0 and A0 be the learner’s

and the attacker’s initial pure strategy sets, Lt and At be the ones at the tth iteration, and

(a∗t , l
∗
t ) be the mixed strategy NE corresponding to the joint space of pure strategy (At ,Lt).

At the (t+1)-th iteration, given the attacker’s current strategy a∗t , the learner’s oracle yields

its best-response,

L∗t+1 = arg min
L∈L

U(a∗t ,L)

Similarly, the attacker’s best-response can be calculated via

A∗t+1 = argmax
A∈A

U(A, l∗t )

When L∗t+1 ∈ Lt and A∗t+1 ∈ At , the algorithm converges and returns the mixed strategy

NE (a∗, l∗) = (a∗t , l
∗
t ). Otherwise, we form Lt+1 and At+1 by adding L∗t+1 to Lt and A∗t+1

to At , and continues the procedure. Algorithm is formally described by Algorithm (10).

Thus, different learner’s best-response oracles (which can be exact or approximate)

yielding the exact (approximate) learner’s best-response are the critical components shap-

ing the game solving algorithms, which are described in the rest of this section.

Attacker’s Oracle (AO) : The attacker’s oracle AO is a function yielding the attacker’s

best response corresponding to a learner’s mixed strategy. At the kth iteration, given a

learner’s support set L (k) and the mixed strategy l ∈ ∆L (k), for an input x, the expected
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Algorithm 10 Double Oracle Algorithm

1: Initialize A (0) by generating arbitrary candidate attacker’s actions.
2: Initialize L (0) by generating arbitrary candidate learner’s actions.
3: i← 0
4: repeat
5: (a, l)←CoreLP(A (i),L (i))
6: Ã← AO(l)
7: A (i+1)←A (i)∪{Ã}
8: L̃← LO(a)
9: L (i+1)←L (i)∪{L̃}

10: i← i+1
11: until convergence
12: return (a, l)

learner’s prediction can be represented by

f (x) = ∑
L∈L (k)

lL · fL(x∗σ(L)) (6.6)

To find an approximate attacker’s best response, the attacker’s oracle aims to find the ad-

versarial permutation maximizing the adversarial training loss U1 under l0 constraints. In

this work, the attacker’s oracle applies the Jacobian-based Saliency Map Attack [86] on the

ensemble predictor f .

Learner’s Oracle (LO) : Similarly, the learner’s oracle generates the learner’s best

response corresponding to an attacker’s mixed strategy. At the kth iteration, given an at-

tacker’s support set A (k) and the mixed strategy a ∈ ∆A (k) , when the learner plays a partic-

ular pure strategy L, the expected training loss can be represented by

∑
A∈A (k)

aA ·
m

∑
i=0

U(A,L) (6.7)

To find the approximate learner’s best response L∗, we consider the following greedy al-

gorithm being similar to the forward feature selection. Start with an empty set. In each

iteration, we keep adding the feature, which best improves the above-expected training
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loss until an addition of a new feature does not improve the performance or the number of

selected features reaches to learner’s budget.

6.2.4 Continuous FSGs

In previous sections, we illustrate the framework of FSGs modeling the interactions be-

tween the attacker and the learner with discrete action spaces. By sequentially generating

adversarial perturbations and predictors via learner’s and attacker’s approximate oracles,

FSGs can be approximately solved with an iterative procedure. We now demonstrate that

such a framework can be extended to cases where both player’s action spaces are continu-

ous so that more general attack and defense strategies can be applied.

Considering attacker’s actions in continuous space means that attacker’s oracle directly

solves the adversarial perturbation generating problem defined by 6.2, and maximizes the

weighted loss (6.6) of the ensemble predictor corresponding to learner’s mixed strategies.

In this case, FSGM [38] and PGD [72] algorithms are used to generate the approximate

attacker’s best response.

On the other hand, the learner is allowed to select the optimum predictor rather than

choosing feature subsets directly. In this work, given attacker’s mixed strategies, we con-

sider the learners oracles that retrain the predictor at each iteration, which minimized the

expected utility.

6.3 Experiments

In this section, we show our experimental evaluation on the robustness of randomized

predictors generated by FSGs.

Datasets considered: Breast cancer Wisconsin [94] and MNIST [66]. Breast cancer

Wisconsin is a binary classification problem over the dataset computed from a digitized

image of a fine needle aspirate of a breast mass. The features of the dataset describe char-

acteristics of the cell nuclei present in the image and the number of features is 31. MNIST
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Defense None FSGs Adversarial training
Clean .9822 .8947 .9349

Adversarial(JSMA) .1953 .4069 .8402

Table 6.1: The results for wrapper approach based FSGs (the attacker’s budget ||∆x||0 = 2)

Defense None FSGs Adversarial training
Clean .9822 .8888 .8934

Adversarial(JSMA) .0532 .3747 .7869

Table 6.2: The results for wrapper approach based FSGs (the attacker’s budget ||∆x||0 = 4)

is a classification problem over the image dataset containing handwritten digits labelled

from 0 to 9. Each data has 28× 28 gray scale pixels representing the features. We focus

on the subset as a binary classification problem consisting of handwritten 7s and 9s as they

have visually similar components.

Architecture: 3-layers fully connected neural network for breast cancer Wisconsin

and 5-layers convolution neural network for MNIST.

Metric: Original accuracy and adversarial accuracy. The original accuracy is the

percentage of examples which have been correctly classified in the original testing set,

while adversarial accuracy represents the accuracy of the predictor under the presence of

the adversarial perturbation.

Baselines: We compare our work to adversarial training [111], which is a method has

been proven its robustness against several adversarial attacks in practice.

6.3.1 Wrapper Approach Based FSGs

We first present the results of wrapper approach based FSGs (detailed in Section 6.2.3)

on breast cancer Wisconsin dataset. In the experiments, the defender’s budget cl = 25, the

maximum number of iteration in double oracle algorithm is 100 and the trade-off parameter

µ equals to 0.5. Table 6.1 and Table 6.2 shows the results when the attacker’s budget ca = 2

and ca = 4.
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Dataset Breast cancer
Defense None FSGs Adversarial training
Clean .9822 .9467 .9349

Adversarial(JSMA), ε = .1 .2248 .7278 .2485
Adversarial(JSMA), ε = .3 .0710 .3372 .1597

Adversarial(FGSM), ||∆x||∞ = .1 .2662 .8757 .4674
Adversarial(FGSM), ||∆x||∞ = .3 .0236 .8698 .4497
Adversarial(PGD), ||∆x||∞ = .1 .2071 .8343 .4970
Adversarial(PGD),||∆x||∞ = .3 .0177 .7396 .4852

Table 6.3: The results for continuous FSGs with breast cancer dataset

Dataset MNIST
Defense None FSGs Adversarial training
Clean .99 .9544 .9407

Adversarial(JSMA), ε = .1 .3481 .8263 .6407
Adversarial(JSMA), ε = .3 .1124 .4401 .3650

Adversarial(FGSM), ||∆x||∞ = .1 .1206 .8805 .6924
Adversarial(FGSM), ||∆x||∞ = .3 .061 .8681 .6020
Adversarial(PGD), ||∆x||∞ = .1 .0988 .8596 .5940
Adversarial(PGD),||∆x||∞ = .3 .0522 .8117 .5122

Table 6.4: The results for continuous FSGs with MNIST dataset

Although the predictor without any defense strategy gets the highest accuracy on the

clean data set in all cases, the predictors yielded by FSGs and adversarial training get a huge

advantage on adversarial accuracy with tiny sacrificing on the original accuracy. However,

the adversarial training still has better performance than FSGs (because adversarial training

can freely choose predictor’s parameters, while FSGs is limited its action space on choosing

feature subset).

6.3.2 Continuous FSGs

We now demonstrate the results of continuous FSGs (detailed in section 6.2.4) on both

breast cancer Wisconsin and MNIST dataset. In the experiments, the maximum number of

iteration in the double oracle algorithm is 100, and the trade-off parameter µ equals 0.5. In

the training phase, we choose the PGD algorithm with budget ||∆x||∞ = .3 as the adversarial
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example generator for both FSGs (such that the PGD algorithm generates the optimal attack

for the attacker’s oracle) and adversarial training. In the testing phase, we consider the

adversarial accuracy of the resulting predictor when facing various adversarial example

generating algorithms, including JSMA, FGSM, and PGD. Let ε = ||∆x||0
total number of features be

the regularized attacker’s budget in JSMA. The result is presented by Table 6.3 and Table

6.4.

We find that both continuous FSGs and adversarial training are greatly effective against

adversarial examples. However, in this case, continuous FSGs perform better than ad-

versarial training, probably due to the same reason that the predictor yielded by FSGs has

larger parameter space than the one yielded by adversarial training (because the one yielded

by FSGs is assembled by a group of predictors). It may also explain why the performance

gap between FSGs and adversarial training is smaller on MNIST (because the parameter

space of the base model for MNIST is larger).

6.4 Conclusion

The chapter presents a game-theoretical framework to design robust predictors migrat-

ing the effects of adversarial examples with a limited number of changeable features. We

construct Feature Selection Games, where the attacker’s and the learner’s pure strategy

spaces are the possible feature subsets they can choose. In this case, the solution concept,

mixed strategy Nash equilibrium, reveals the optimal way for the learner to deploy random-

ization on a set of predictors with different feature subsets. To address the scalability issue,

we further present an (approximate) game solver combining column generation technique,

heuristic search, and compact representation of player’s pure strategy spaces that accelerate

the procedure of finding mixed strategy Nash equilibria. We empirically show our approach

enhances the robustness of predictors with varied learning models in real-world classifica-

tion and regression tasks, and investigate the trade-off between accuracy and robustness.
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Chapter 7

Adversarial Gaussian Process Regression in Sensor Networks

7.1 Problem Overview

Cyber-physical systems are fundamental to operations of many safety critical systems,

from power plants to autonomous cars. Such systems feature a control loop that maps

sensor measurements to control decisions. In many applications, these decisions involve

maintaining system state features, such as temperature and pressure, in a safe range, with

anomaly detection employed to ensure that anomalous or malicious sensor measurements

do not subvert system operation. Although anomaly detection has been studied in the liter-

ature, many existing approaches focus on non-adversarial setting. Our first contribution is a

novel stealthy attack on systems featuring Gaussian Process regression (GPR) for anomaly

detectiona popular choice for this task. Next, we pose the problem of robust GPR for

anomaly detection as a Stackelberg game, and present a novel algorithmic approach for

solving it. Our experimental evaluation demonstrates both the vulnerability of baseline

systems to attack, as well as the increased robustness offered by our approach.

While Ghafouri et al. serves as a conceptual precursor, the approach cannot be applied

to GPR-based anomaly detection, where the predictions of GPR are random variables, in

contrast to the conventional regression approaches, which make deterministic predictions.

Moreover, since the attack model of GRP-based anomaly detection is not defined previ-

ously, the robustness of anomaly detection as measured by the false anomaly detection

alarm has not been addressed.

We consider the problem of vulnerability of CPS with GPR-based anomaly detection to

stealthy attacks, as well as the problem of making such systems robust. First, we define the

attack model on GPR-based anomaly detection. Due to the non-linearity and non-convexity

in the attack optimization problem, we present a novel approach to find the optimal stealthy
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attack. Then, we further consider the associated robustness problem via a game theoretical

framework, in which the defender considers sensor selection, in addition to the choice

of detection thresholds, as a lever for making anomaly detection more robust to attacks.

Finally, we evaluate our work using the Tennessee-Eastman Process Control System as

a case study. As our experiments demonstrate, allowing the defender to select sensors

significantly enhances our ability to limit the impact of stealthy attacks.

The chapter is organized as follows. Section 7.2 presents an overview of GPR in the

context of anomaly detection for CPS. Section 7.3 then presents a novel stealthy attack on

GPR, followed by a novel approach for robust GPR in Section 7.4. Finally, Section 7.5

presents experimental results, showing both the considerable impact that our attack can

have despite conservative anomaly detection thresholds, and the significantly increased

robustness to attack achieved by our approach for robust GPR-based anomaly detection.1

7.2 Anomaly Detection with Gaussian Process Regression

Since sensors can be faulty, it is critical to ensure that measurement errors do not impact

the control loop. An important class of approaches for accomplishing this is regression-

based anomaly detection, where a detected anomaly is either rapidly corrected, or alterna-

tive inputs (such as predicted, rather than measured sensor values) are used in the control

loop. We start by describing this class of approaches generically, given a collection of L

sensors.

Let y = (y1, ...,yL) represent a vector of sensor measurements. For each sensor s, a

predictor fs(ỹ−s) is learned from past data of joint measurements of all sensors (which is

assumed to be normal), which maps from observed readings of sensors other than s, ỹ−s,

to a predicted reading of sensor s, ŷs. The detection system then compares the difference

between the predicted and observed measurements, |ŷs− ỹs|, and triggers an alarm when

this difference is large.

1Source code: https://www.dropbox.com/sh/guhnr8a7awtghre/AADxGU4z0isogccPeTUE4Mgfa?dl=0
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Next, we describe how the Gaussian Process can be used in anomaly detection. The key

advantage of the Gaussian Process over alternatives is that it directly captures variance of

the prediction and, consequently, enables a principled approach to judge anomalies based

on confidence intervals.

Consider a zero-mean Gaussian Process y(x)∼ G P(0,K (x,x′))∈R, where x,x′ ∈Rd

and K is a covariance function (For example, the squared exponential kernel, exp(−λ ||x−

x′||22)). Suppose a training set D has n observations, and D ={(xi,yi)|i = 1, ...,n}. Let

x= col(x1, ...,xn)∈Rn×d and y= [y1, ...,yn]
T ∈Rn. Suppose the observations y is Gaussian

y∼N (0,K(x))

where K(x) ∈ Rn×n is a covariance matrix, Ki, j(x) = K (xi,x j). Given a new point x∗, we

aim to predict the value y∗|D. According to the fact that y(x) is a Gaussian process,

 y

y∗

∼N

0,

 K(x) k∗(x,x∗)

k∗(x,x∗)T k∗∗(x∗)


 (7.1)

where, k∗(x,x∗) = [K (x1,x∗), ...,K (xn,x∗)], and k∗∗(x∗) = K (x∗,x∗). Then, the predic-

tion can be made by, y∗|D∼ N(µ,σ2) where

µ = kT
∗ (x,x∗)K(x)−1 ·y (7.2)

σ =−kT
∗ (x,x∗)K

−1(x)kT
∗ (x,x∗)+ k∗∗(x∗) (7.3)

Therefore, given a collection of historical observations of the system, the predictor fs

for each sensor s can be model via above process. In the running time, for each sensor s,

given the observed reading, (ỹs, ỹ−s). The predictions ŷs can be calculated from fs(ỹ−s),

which are Gaussian and determined by (7.2) and (7.3). Then, we can use the predictions and

further check whether the reading ỹs is anomalous based on the confidence interval of ŷs.

When ỹs is not inside the τs confidence interval of ŷs, ỹs is flagged as anomalous. Formally,
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ỹs is suspicious, if F(ỹs) > τs, where F(·) is the corresponding conditional Gaussian cdf,

or equivalently,

|ỹs−µ(ŷs)|>
√

2σ(ŷs)erf−1(τs) (7.4)

7.3 Stealthy Attacks on Gaussian Process Anomaly Detection

Clearly, if the anomaly detector is deployed, the attacker can no longer attack with

impunity. We now ask whether one can design attacks more carefully, so as to successfully

and significantly change the sensor readings of target sensors while remaining stealthy—

that is, avoiding detection by the GP-based anomaly detection system.

We formalize the problem of stealthy attacks on GP-based anomaly detection as an op-

timization problem. Our threat model is an attacker who can compromise up to H sensors,

capturing the fact that integrity attacks (such as man-in-the-middle attack) on individual

sensors can be technically quite challenging. However, once a sensor is successfully com-

promised, we allow the attacker to make arbitrary modifications to sensor values, within a

basic normal value range (for example, pressure readings cannot be negative) [ymin
s ,ymax

s ]

for each sensor s that is easy for defenders to check (we can think of this range as impos-

ing an additional simplistic anomaly detector independently for each sensor). Let Sc be

the set of critical sensors; the attacker’s goal is to maximize or minimize observed mea-

surements of these sensors. We focus on minimizing here; maximization can be handled

analogously since the objective is linear. The primary motivation for this goal is that sensor

measurements, particularly when it comes to critical sensors, impact the control loop. This

impact is often of the following form: the controller aims to keep the system state—say,

pressure—in a safe range. If the sensor reading the pressure shows that pressure is too low,

the controller will cause the pressure to rise to reach the safe range. Consequently, if the

attacker can compromise the pressure sensor to read that the pressure is low, it effectively

causes the controller to increase pressure, potentially above the safe range!

The attacker’s decision variables correspond to the change in sensor value for each
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sensor s, which we denote by ∆ỹs. We omit the subscript s when we refer to the vector of

changes to all sensors, and use ∆ỹ−s to denote the vector of changes to measured values

for all sensors other than s. We also denote by ỹs the original measured value of the sensor

s, and, as above, ỹ−s is the vector of measurements of all sensors other than s, while ỹ is

the vector of all sensor measurements. Then the attacker’s optimization problem can be

represented as the following mathematical program:

min
s∗∈Sc

min
∆ỹ

∆ỹs∗ (7.5a)

s.t. : (7.5b)

∀s, |ỹs +∆ỹs−µ(ŷs)| ≤
√

2σ(ŷs)erf−1(τs) (7.5c)

∀s, ŷs = fs(ỹ−s +∆ỹ−s) (7.5d)

∀s, ymin
s ≤ ∆ỹs + ỹs ≤ ymax

s (7.5e)

||∆ỹ||0 ≤ H (7.5f)

Here, Constraint 7.5c ensures that the attack is not flagged as anomalous; Constraint 7.5e

requires that measured sensor values are feasible (e.g., physically realizable), and Con-

straint 7.5f ensures that at most H sensors are actually attacked. Observe that in this

formulation, the first minimum over the critical sensors s∗ ∈ Sc can be eliminated as we

can simply solve the optimization problem for each critical sensor independently, and then

choose the solution with the largest impact (i.e., the smallest optimal ∆ỹs∗). We therefore

henceforth focus on the simpler objective min
∆ỹ

∆ỹs∗ for some critical sensor s∗.

Even with the above simplification, the mathematical program (7.5) is clearly quite

challenging. The major complication which qualitatively distinguishes this problem from

the prior work on attacking regression-based anomaly detection [37] is that the predictor

fs(·) is now a random variable (Gaussian Process). In Constraint 7.5d, this random variable

is explicitly identified by ŷs, and the stealth constraint (Constraint 7.5c) uses its mean,

µ(ŷs), as well as its variance σ(ŷs). The most important consequence is that both the mean
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and the variance functions are potentially non-convex, as they depend on the potentially

non-convex kernel function. This is further complicated by the non-convex l0 constraint

which ensures that at most H sensors are attacked.

In order to solve the non-convex optimization problem (7.5) we apply the feasible di-

rection local search method, which is a variant of feasible direction methods developed by

Zoutendijk [124]. At the high level, in each iteration of this iterative method, we start with

a feasible solution computed in the previous iteration and find a descent direction. We then

move in the feasible space slightly in the descent direction to obtain a new solution. In this

move, we first ignore the l0 constraint 7.5f. Then, we find the closest feasible solution for

which the l0 constraint also holds.

Let D be the feasible domain formed by (7.5c) - (7.5e), and D′ be the one formed by

(7.5c) - (7.5f). We rewrite the feasible domain D as an abstract set of inequalities

D = {g j(∆ỹ)≥ 0, j = 1, ...,J}

where g j(·) are differentiable functions.

Step 1: For each iteration, ∆ỹ(k) is a feasible solution in the kth step. We use following

LP to find a locally feasible descent direction of the optimization problem (7.5) in the kth

step:

max
d(k)

α (7.6a)

s.t. : (7.6b)

es∗ ·d(k) ≤−α (7.6c)

∀ j = 1, ...,J,g j(∆ỹ(k))+∇gi(∆ỹ(k)) ·d(k) ≥ α, (7.6d)

where es = (0, ...,1︸ ︷︷ ︸
s

, ...,0) is the sth unit vector of the standard Euclidean basis and d(k) is

the direction we aim to find. When α ≥ 0, Objective 7.6a and Constraint 7.6c guarantee that
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the optimal solution of this LP yields a descent direction. When ∆ỹ(k) reaches one of the

edges of the feasible domain D, there is a small positive ε such that ∃ j,0 < g j(∆ỹ(k))< ε .

In this case, the term ∇g j(∆ỹ(k)) ·d(k) in Constraint 7.6d forces the computed direction to

follow the angle into the interior of the feasible domain. If α ≤ 0, the iteration terminates,

since such a direction does not exist.

Step 2: Find the solutions along the feasible descent direction in the feasible domain D.

Let ∆ỹ(k)+βmaxd(k) be the point where some constraints are first activated such that βmax

is the maximal length that the current iteration can climb along the direction d(k). More

precisely,

βmax = min{β |g j(∆ỹ(k)+βd(k)) = 0, j = 1, ...,J and β ≥ 0}

Thus, the solution set is the segment from ∆ỹ(k) to ∆ỹ(k)+βmaxd(k), represented by

{∆ỹ(k)+βd(k)|β ∈ [0,βmax]}

We calculate the solution set as follows. Starting from ∆ỹ(k), we find βmax by incre-

mentally climbing along d(k) with the step length ε . Assume βmax is found at pmax step

(βmax = pmaxε), which forms the solution set

Z = {∆ỹ(k)+ pεd(k)|p = 0,1,2, ..., pmax}.

Step 3: For the solutions found in step 2, we project them onto the domain satisfying

the l0 constraint and recheck their feasibility. More precisely, for each solution, we keep

its H elements (at most H sensors are attacked) having the maximum sum of their absolute

values and set the rest to zero. Consequently, the resulting solution is the closet point

to the original one with respect to l1 distance. Then, if the underlying solution is not in

the feasible domain D′, it will be discarded. Let S = {rH(z) = argmin
z′
||z− z′||1 : z ∈ Z}

represent the set of projected solutions obtained in Step 3 corresponding to every solution
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z in the solution set obtained in Step 2. Then, the optimal solution in the current iteration,

∆ỹ(k+1) is the solution from this set S that most minimizes the objective value of the original

problem.

The full algorithm for computing an approximately optimal attack is presented by Al-

gorithm 11.

Algorithm 11 Optimal Stealthy Attack
Require: Step length ε , target sensor s.

1: k← 0
2: ∆ỹ(k)← 0
3: while number of iteration < nmax do
4: # step 1:
5: d(k),α ← SLOVE LP1(∆ỹ(k))
6: if α < 0 then
7: return ∆ỹ(k)
8: end if
9: # step 2:

10: p← 0
11: loop
12: z(p)← ∆ỹ(k)+ pεd(k)

13: if z(p) does not fit (7.5c) - (7.5e) then
14: pmax← p
15: Break.
16: end if
17: p← p+1
18: end loop
19: # step 3:
20: for p = 0,1, ..., pmax do
21: z′(p)← rH(z(p))
22: if z′(p) does not fit (7.5c) - (7.5f) then
23: z′(p)← ∆ỹ(k)
24: end if
25: end for
26: ∆ỹ(k+1)← argmin

z′(p)
z′(p)

s

27: k← k+1
28: end while
29: return ∆ỹ(k)
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7.4 The Resilient Anomaly Detection System

Next, we consider the issue of hardening the anomaly detection system against attacks

of the kind we discussed in the previous section. Suppose a CPS has a collection of criti-

cal sensors, the readings of which are considered as the direct inputs of system controller

(e.g. the temperature reading for thermostats). To protect the system behavior from be-

ing adversely affected by the adversarially compromised readings of critical sensors while

maintaining a low false alarm rate, the defender can leverage two types of decisions. First,

the defender typically has many choices for sensor placement (indeed, the problem of

optimal and resilient sensor placement has received independent attention in the litera-

ture [58, 59, 62]), and these choices can be made explicitly trading off resilience and false

positive rate. Second, the defender can choose the confidence level for anomaly detectors

that also trades off false alarm rate and resilience to attacks. Next we describe each of these

decisions in more detail.

Sensor selection: The defender considers the following sensor selection problem. Let

S be the set of N possible sensor locations, and suppose that the defender can place at

most L sensors. Let θ ∈ {0,1}N be a binary vector representing sensor placement decision

with θi = 1 if a sensor is placed at location i and θi = 0 otherwise. We further assume

that the critical sensors are always selected and θi∈Sc ≡ 1 (otherwise, the controller cannot

work due to the lack of the direct inputs). The budget constraint can then be represented as

∑
N
i=1 θi ≤ L.

Confidence level: the second set of decisions the defender makes is in choosing the

confidence levels τ for the anomaly detectors. This choice directly translates into the trade

off we wish to capture: a narrower confidence interval will lead to more false alarms,

but will also tighten the space within which the attacker can implement a stealthy attack,

thereby limiting attack impact.
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7.4.1 Resilient Anomaly Detection as a Stackelberg Game

We model the interaction between the defender, charged with designing a resilient sen-

sor and anomaly detection system, and the attacker who can execute an integrity attack

against this system, as a Stackelberg game. In this game, the defender moves first, choos-

ing where sensors are placed among the finite set of locations S, as well as the confidence

thresholds τ of the Gaussian Process anomaly detection system. The attacker then com-

putes an attack in response to these decisions. We seek a Strong Stackelberg Equilibrium

(SSE) of this game, where the attacker breaks ties in the defender’s favor, and the defender

chooses an optimal set of decisions to commit to, accounting for the attacker’s optimal

response (given this tie-breaking rule). Next, we describe this game formally.

We first define the false alarm rate FA, and assume that sensor measurements y be-

fore the attack follow the Gaussian Process distribution. The false alarm at sensor s is an

event that a normal measured sensor value is misclassified as an anomaly, indicated by the

following threshold function:

thrs(y,θ ,τs) =


1 |ys−µ(ŷs)|>

√
2σ(ŷs)erf−1(τs)

0 otherwise

where ŷs = fs(y−s,θ). When thrs(y,θ ,τs) = 1, the actual reading y is misclassified as an

anomaly and sensor s fires a false alarm. We further define that the system fires a false alarm

if any of its sensors have a false alarm. To capture this, let thr(y,θ ,τ) =
∨
s

thrs(y,θ ,τs)

where s ∈ {i|θi = 1}. Therefore, we define the false alarm rate of the overall system as

FA(θ ,τ) = Eythr(y,θ ,τ). In practice, we assume that we sample the actual readings of

the system in some time interval between t = 0 and t = T and denote by {y(t)}T
t=0 =

{y(0), ...,y(T )}. Then, the false alarm rate is the average value of threshold function on

the samples, which is

FA(θ ,τ) =
1

1+T

T

∑
t=0

thr(y(t),θ ,τ). (7.7)
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Now we construct the full game. The game G = (A ,V ,I ) consists of:

• Players, I = {a,d}, where a is the attacker and d the defender.

• Joint action space of the two players, A = Ad ×Aa. The defender aims to solve

above decision-making problems and we denote defender’s actions as (θ ,τ). The

defender’s budget is limited by the upper bound of number of placed sensors, L,

and the false alarm rate, FAmax. Thus, Ad = {(θ ,τ)|∑
i

θi ≤ L,FA(θ ,τ) ≤ FAmax}.

On the other hand, we make the worst-case assumption that the attacker knows the

actual sensor readings y at the time of the attack. Then, the attacker needs to decide

the attack patterns ∆y based on the value of y.

• The utility functions Va,Vd . The utility of the attacker is the expected attack impact

on the sampled readings {y(t)}T
t=0, which is Va({∆y(t)}T

t=0,θ ,τ) =
1

T+1

T
∑

t=0
min
s∈Sc

∆y(t)s .

We assume that our game is zero-sum.

Since our game is zero-sum, its Nash equilibrium and SSE are equivalent and can be

found using the following maxmin program:

max
θ ,τ

min
{∆y(t)}T

t=0

Vd({∆y(t)}T
t=0,(θ ,τ)) (7.8a)

s.t. :

N

∑
t=0

θt ≤ L, FA(θ ,τ)≤ FAmax (7.8b)

{y(t)}T
t=0 solve (7.5). (7.8c)

7.4.2 Computing an Approximately Optimal Defense

In this section, we present our approach to approximately solve the game defined above.

Let ∆y =S A (y,θ ,τ) be result of the stealthy attack given sensor selection decision θ

and confidence levels τ , where y is the underlying sensor value vector corresponding to θ .
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The utility of the defender given the attack is then Vd = 1
T+1 ∑

t=0,...T
min
s∈Sc

S A (y(t),θ ,τ)s.

We call this defender’s problem as the master problem, and term the attacker’s problem of

computing a stealthy attack in response to the defender’s decision, S A (y,θ ,τ), the slave

problem.

Clearly, exhaustively exploring the defender’s options is intractable. Our approach for

solving the defender’s problem proceeds in two steps: first, an algorithm for finding con-

fidence level thresholds given sensor placement decisions θ , and second, an algorithm for

sensor placement which computes confidence levels as a subroutine. We begin with the

former.

Our approach for finding confidence level thresholds is to start at an initial configuration

τ(0) with some small values τ
(0)
s ,∀s ∈ {i|θ (0) = 1}, which yields high resilience to attacks,

but at the cost of a high false alarm rate. Then, we iteratively find the sensor with the

highest false alarm rate and increase the associated thresholds τs until the false alarm rate

drops below the upper bound, taking advantage of the fact that both the defender’s utility

and the false alarm rate decrease monotonically. (see Algorithm 12).

Algorithm 12 optimal threshold, OT (θ)

1: input sensor selection pattern θ , initial threshold τ(0)

2: FA(0)← FA(θ ,τ(0))
3: k← 0
4: # When the current FA greater than the upper bound,
5: while FA(k) > FAmax do
6: # Find the sensor with maximum number of false alarms.
7: t = arg max

i∈{ j|θ j=1}
Ey∼p(Y )(thri(y,θ ,τ))

8: # Increase the threshold of confidence level.
9: τ(k+1)← τ(k)

10: τ
(k+1)
t ← τ

(k)
t + τε

11: FA(k+1)← FA(θ ,τ(k+1))
12: k← k+1
13: end while
14: return τ(k)

Given the above algorithm for computing thresholds given sensor placement choices

θ , we now tackle the problem of resilient sensor selection. For this, we use the Best-First
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search algorithm. Specifically, given a particular sensor selection decision θ , there are two

possible actions:

• Forward selection: if the number selected sensors is below the budget, we can add a

new unselected sensor, and

• Backward elimination: we can eliminate a selected sensor, if such sensor does not

belong to the set of critical sensors.

In the algorithm, “best” is defined with respect to the objective value of a subset of selected

sensors (which is never above the budget L), and the search proceeds for a specified number

of iterations. The search algorithm (Algorithm 13)

7.5 Experiments

(a) (b) (c)

(d) (e) (f)

Figure 7.1: (a) and (b) show the effectiveness of our stealthy attacks on reactor pressure. (c)
and (d) show the attack outcomes among critical sensors. (e) illustrates the attack outcomes
with different attack budgets. (f) compares the performance between the resilient detectors
and the baseline one. (Whiskers in the bar graphs indicate the 95% confidence level.)

We evaluate our approach using the Tennessee-Eastman process control system (TE-

PCS).

102



Algorithm 13 optimal sensor selection pattern

1: input initial pattern θ (0), visited states V = /0, expanded states E = /0
2: τ(0)← OT (θ (0))
3: V (0)← Vd({y}T

t=0,θ
(0),τ(0))

4: add (θ (0),V (0)) to E and V .
5: while number of iterations ≤ nmax or E is empty do
6: # Expand the state with the best performance
7: θ ,V ← arg max

(θ ′,V ′)∈E
V ′

8: remove (θ ,V ) from E
9: # Forward selection

10: if ∑
i

θi < L then

11: for i ∈ {i|θi = 0} do
12: θ ′← θ

13: θ ′i = 1
14: if θ ′ ∈V then
15: continue.
16: end if
17: τ ′ = OT (θ ′)
18: add (θ ′,Vd({y}T

t=0,θ
′,τ ′)) to E and V

19: end for
20: end if
21: # Backward elimination
22: if ∑

i
θi−|Sc|> 0 then

23: for i ∈ {i|θi = 1, i 6∈ Sc} do
24: θ ′← θ

25: θ ′i = 0
26: if θ ′ ∈V then
27: continue.
28: end if
29: τ ′ = OT (θ ′)
30: add (θ ′,Vd({y}T

t=0,θ
′,τ ′)) to E and V

31: end for
32: end if
33: end while
34: # Return the optimal solution.
35: return arg max

(θ ,V )∈V
V
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Tennessee-Eastman Process Control System: TE-PCS is a widely studied industrial pro-

cess, which consists of five main process components: a reactor, a separator, a stripper, a

compressor and a mixer [32]. In this evaluation, we consider 5 critical sensors correspond-

ing to safety constraints of TE-PCS (e.g., the upper bound of the pressure of the reaction

container). We further assume that the system designer can select at most 15 sensors from

22 possibilities.

The model we use is the Simulink model of TE-PCS [6] with the implementation of

the decentralized control law as proposed by [92]. For the anomaly detector, we first run

simulation modeling the system operation for 72 hours and record the sensor measurements

and control inputs. We take 225 timesteps periodically between 0-72 hours and record

the all of sensor readings as the training set and train the collections of Gaussian process

regression models under different sensor selection patterns. Then, from 20-60 hours, we

record the sensor readings for every hour and get the testing set with 40 instances.

Stealthy Attacks: In the rest of the section, two baseline detectors are considered. Both

baseline detectors have the same sensor selection pattern (xmeas(1) - xmeas(15) in Table

4, [32]) and fixed thresholds of confidence level (one is with 95% confidence level, called

B1, and the other is with 99% confidence level, called B2). According to the definition of

false alarm rate (7.7), B1 has 45% false alarm rate, while the false alarm rate of B2 is 20%.

In this subsection, we perform our stealthy attacks on the baseline detectors and test the

attack impacts.

First, we evaluate the effectiveness of our stealthy attacks on a single critical sensor

(the reactor pressure). The results are presented in Figure 7.1a and Figure 7.1b. Figure

7.1a shows the attack impact on both B1 and B2 with a fixed attack budget (H = 9, that

is, the attacker can attack at most 9 sensors), varying the confidence thresholds τ (95%

vs. 99%). We can readily observe that the more conservative threshold (99%) in terms of

limiting false positives is also significantly more susceptible to attacks compared to the

more aggressive threshold. This exhibits the tradeoff we explicitly consider in designing
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robust anomaly detectors. Figure 7.1b shows the results on B2 with different attack budgets

(H = 6 and H = 9, i.e., the attacker can attack at most 6 and 9 sensors, respectively). As one

would expect, a stronger attacker (one with a larger budget) tends to effect a significantly

greater impact on the system.

Next, we consider stealthy attacks on the aforementioned critical sensor set. Figure

7.1c and Figure 7.1d present the attack impact on both B1 and B2 among the 5 critical

sensors. Figure 7.1e shows the attack impacts on the system for different attack budgets.

We again observe similar trends: both the attacker budget and conservativeness of the

anomaly detector confidence thresholds have a considerable influence on the impact of the

attack. Nevertheless, impact is considerable throughout.

Resilient Detector: To evaluate our resilient detection approach, we fix the attack budget

to H = 9, the maximum number of iterations of the Best-First search algorithm to 10, and

consider 4 different resilient detectors,

• R1 and R2: R1 and R2 are the resilient detectors with optimized thresholds of con-

fidence level and the original set of selected sensors (i.e., the same set of sensors as

used by the baseline detectors).

• S1 and S2: S1 and S2 are the resilient detectors with optimized sensor selection

patterns and optimized thresholds of confidence level.

To compare the resilient detectors with the baseline detectors B1 and B2, we let the

upper bound of the false alarm rate of R1 and S1 equal to the false alarm rate of B1 (45%).

Similarly, both R2 and S2 have the same upper bound of false alarm rate which equals to

the false alarm rate of B2 (20%).

Figure 7.1f presents the results, which are quite instructive. While we see the gen-

eral improvement in robustness (reduction in attack impact) moving fom Bx to Rx to Sx

(with x ∈ {1,2}), it is clear that much of the final improvement is due to the careful choice

about which sensors are used, with the tuning of thresholds given the original sensor place-
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ment providing only limited robustness. This observation serves as important motivation

for jointly considering the problem of optimizing sensor and threshold selection in design-

ing robust anomaly detectors, in contrast to prior work which considered each problem in

isolation.

7.6 Conclusions

We considered a setting where a cyber-physical system (CPS) is monitored by a Gaus-

sian process regression-based anomaly detection system. First, we presented a stealthy at-

tack on this system that aims to maximize damage while appearing normal to the detector,

presenting a novel approach to approximately solve this non-trivial optimization problem.

Next, we presented a model of robust anomaly detection for CPS as a Stackelberg game,

and developed a novel approach for solving this game, in which the defender can decide

which sensors to use as well as how to set anomaly thresholds. Our experiments demon-

strate that the attack can be quite effective on a baseline system, but our Stackelberg game

solution approach is significantly more robust.
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Chapter 8

Conclusion

8.1 Discussion

The central question of this thesis is ”how to forge resilient decision support systems

in uncertain and adversarial environment?”. While resilience is considered as one of the

general system’s attributes, the question is still difficult to be answered without taking into

account its domain-specific definition.

In this thesis, we first consider the scenario of solving real-time control problems via

simulation-based optimizations, where resilient decision support systems aim to provide

rapid reactions to real-time events. We then introduce SBOaaS (simulation-based opti-

mization as a service), a facility of cloud-based simulation services, which decompose the

input problem into a group of parallel simulations and use the computing power through

an anytime parallel optimization scheme. Our work admits significant flexibility in both

time and computational resource constraints to obtain the best (but possibly sub-optimal)

solutions given the available resources and time constraints on decisions, which can be

seamlessly deployed to feed-back control loops.

Then, we investigate the scenario of multi-agent path planning (path planning games),

where a collection of self-interested agents with motion uncertainty trend to find collision-

free paths reaching their goals. In these cases, a resilient planner seeks the capability of

balancing its performance and risk. Since such agents make their decisions in individ-

ual, potentially diverse ways, consequently, in order to study path planning games, we

must take an economic, rather than a purely algorithmic, perspective on path planning. To

this end, we first developed a novel mathematical programming method for computing a

single-agent path plan, accounting for these two objectives, given fixed dynamic behavior

(i.e., path plans) of all other agents, as well stochastic disturbances in the environment.
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Next, we proposed a simple iterative algorithm for approximately computing Nash equi-

libria of path planning games, given the best response mathematical programs. Finally,

we developed a novel mathematical program for computing a cooperative multi-agent path

plan which optimally trades off efficiency and safety among all agents that is, again, taking

the economic perspective on the multi-agent path planning problem. We numerically in-

vestigate path planning games through several case studies involving two and three agents.

Our central observation is that as safety becomes more important to agents, a large gap

opens up between safety achieved by a socially optimal and Nash equilibrium outcomes;

in other words, Nash equilibria exhibit significantly more collisions than desirable by all

agents. The main reason for this is that while each agent is concerned with safety, they

only account in their objective for the impact of collisions on themselves, and not on other

agents who crash along with them.

In the rest of this thesis, we pay our attention to machine learning enhanced decision

support systems when facing malicious attacks. As a resilient learner aims to keep its per-

formance stable after attacks, in this case, the specified property of resilience is robustness.

We first study the problem of attracting medical image processing using adversarial noise.

We described three approaches generating adversarial perturbations for a single image, and

then presented their method that attacks a batch of images with a single perturbation. Our

experiments show that a small amount of adversarial noise can lead to large predict errors

in medical image processing, but more complicated model with context-information can

reduce the effect of adversarial attacks. As it is shown that domain-specific knowledge is

effective to improve the robustness, the next question is if it is possible for us to find the

learner’s optimal strategy in general cases. Then, we formulated feature selection game,

a framework explicitly considering the learner’s and the attacker’s behaviors (where the

learner applies the feature selection, and the attacker applies l0 attacks), yields the optimal

learner’s strategy by maximizing the learner’s utility in the worst case. By applying the

double oracle algorithm, we addressed the computational issue of the game and extended
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both players’ actions to more general cases by choosing appropriate oracles. Our experi-

ments show that our approach is partially advance to state-of-the-art robust machine algo-

rithms. As our previous concerns were focusing on the model containing a single artificial

intelligence network, in the last part of this work, we considered a setting with the richer

structure where a cyber-physical system is monitored by a Gaussian process regression-

based anomaly detection system. First, we presented a stealthy attack on this system that

aims to maximize damage while appearing normal to the detector, presenting a novel ap-

proach to approximately solve this non-trivial optimization problem. Next, we presented a

model of robust anomaly detection for CPS as a Stackelberg game and developed a novel

approach for solving this game, in which the defender can decide which sensors to use

as well as how to set anomaly thresholds. Our experiments demonstrate that the attack

can be quite effective on a baseline system, but our Stackelberg game solution approach is

significantly more robust.

8.2 Future Work

8.2.1 Mechanism design in path planning game

The results in Chapter 4 show the gap in the performance between the multiple path

planners working in centralized and decentralized manners, especially in the scenarios

where agents are highly competitive. However, in large scale problems, such centralized

planners are not feasible due to the exponential growth on joint action space with the num-

ber of agents. Hence, it is natural to raise the question, how can we manipulate the game to

improve the overall performance with a collection of self-interested path planners.

On the other hand, the theory of algorithmic mechanism design [82] provides solid

theoretical foundations to designing economic mechanisms or incentives, toward desired

objectives, in strategic settings, where players act rationally. Therefore, the integration of

mechanism design to path planning games is one of the interesting future directions.
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8.2.2 Path planning game with multiple reinforcement learners

Another direction is the combination of reinforcement learning and path planning games.

In this case, the game is formed by a collection of self-interested reinforcement learning

agents learning their action preferences from the environment. While the traditional agents

make their decisions after the planning process, the reinforcement learning agents apply

their actions in a myopic way (because they make their preferred actions according to the

previous observation), which leads to a considerable difference in the model’s formulation.
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