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CHAPTER I. INTRODUCTION 

1.1. Overall Goal of this Work 

Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disabilities characterized by 

pervasive impairments in social interaction, communication, and atypical patterns of behaviors 

(Association 2000).  The estimated prevalence of ASD is 1 in 68 in the United States (Developmental and 

Investigators 2014), and the individual incremental lifetime cost associated with ASD is over $3.2 million 

(Peacock et al. 2012). Although there is no single accepted intervention, treatment, or known cure for 

ASD, cumulative literature suggests behavioral and educational intervention programs have the potential 

to positively impact the lives of children with ASD and their families (Rogers 1998; Cohen et al. 2006). 

However, the lack of access to expert clinicians and the huge associated cost of traditional intervention 

are considered limitations of existing intervention programs. Therefore, the development of inexpensive 

and effective assistive therapeutic tools for ASD intervention is urgently needed.  

Given recent technological advances, it has been argued that specific computer applications could be 

harnessed to provide low-cost and novel clinical treatments for children with ASD (Moore et al. 2005). 

Human Computer Interaction (HCI) is a field that studies interactions and communication between a 

human and a computer. HCI applications have been shown to be engaging to children with ASD 

(Pennington 2010). As such, researchers have developed a wide range of HCI applications in order to 

investigate social and communication behaviors of the children (Ramdoss et al. 2012). The strengths of 

these HCI applications include controllability, repeatability, and safety (Parsons and Cobb 2011; Burke et 

al. 2010). Specifically, they can provide controlled and safe environments where specific social and 

communication behaviors can be tested and taught repeatedly. However, most of the existing HCI 

systems for ASD intervention are in a single-user mode and focus on interactions and communication 

between a user and a computer. Such systems are often limited by the programming burden of realizing 

flexible social communication paradigms (M Schmidt et al. 2011).  
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A Collaborative Virtual Environment (CVE), which is a computer-based, distributed, virtual space for 

multi-user to interact with one another (Benford et al. 2001), is a sub-field of HCI that allows interactions 

between multiple humans via computers (Baecker 2014). It offers an effective way to facilitate flexible 

communication between real users within a controllable system (Leman 2015; Reynolds et al. 2011). 

Such systems offer promising platforms for individuals with ASD to practice their social skills in 

controlled environments with realistic settings. Previous literature has reported positive impacts of CVE 

systems on social skills of individuals with ASD (Ben-Sasson et al. 2013; Hourcade et al. 2012). 

However, existing CVE systems for ASD intervention had limitations to encourage collaboration between 

real-users, which is important aspects of social communication of the population. Therefore, one of the 

important goals of this research is to design CVE systems to promote collaboration between children with 

ASD and their peers. Another limitation of existing HCI systems for ASD intervention is related to the 

challenge of evaluating behaviors of individuals with ASD in HCI systems, particularly given the fact that 

conventional methods, manual video/audio coding, of doing so are time-intensive and laborious. In order 

to overcome this issue, we explored a novel way to perform automatic evaluation of interaction in this 

work.  

One type of technology with the potential for automatic evaluation is an intelligent HCI system, which 

can perceive users’ behaviors using artificial intelligent methodologies (Xu and Wang 2006). One of  the 

distinctive features of an intelligent HCI system is user modeling (Brusilovsky and Millán 2007). The 

goal of user modeling is to understand specific behaviors of a user. A few intelligent HCI systems have 

been developed to understand behaviors in the ASD population, such as their affective and cognitive 

states (Bian et al. 2016), eye gaze pattern (Wade et al. 2016), and communication skills (Bernard-Opitz et 

al. 1999). These systems not only provide low-cost, accurate, and meaningful measurements of social 

behaviors; they also feed measurements back into the systems in order to facilitate continued engagement 

and enhance learning. Despite these potential benefits, intelligent HCI systems applied to automatic 

evaluation of interaction are not yet matured and require further development. Therefore, the primary goal 
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of my research is to design and apply intelligent HCI systems for ASD intervention in order to fill the gap 

in the existing literature. 

My research focuses on the design and application of HCI systems, especially CVE systems and 

intelligent systems, for ASD intervention. The goals of this work are to: i) design CVE systems in order 

to encourage collaborations between real-users, ii) design intelligent HCI systems in order to 

automatically measure interactions in the CVE systems, and iii) explore intelligent HCI systems to 

measure cognitive load of the population. The main contributions of this work include a novel platform 

for children with ASD to practice collaborative interactions and communication with their TD peers, as 

well as an intelligent system to automatically measure both communication and collaboration skills of the 

children during the interactions. In addition, this work contributes to this research area by providing a 

framework to automatically measure cognitive load of the targeted population. In the following sections 

of this chapter, I first present a detailed survey of existing literature on HCI systems, including both 

single-user and multi-user systems, for ASD intervention in Section 1.2. Section 1.3 reviews studies on 

intelligent systems to measure outputs of HCI intervention systems. Section 1.4 summarizes my research.  

1.2. Literature review on HCI systems for ASD intervention 

There are several reasons why HCI systems may be particularly effective for ASD intervention. The 

primary reason is due to their controllability, repeatability, and safety (Parsons and Cobb 2011; Burke et 

al. 2010). Individuals with ASD often have differences in sensory perception, which may lead to 

difficulties in screening out unnecessary information in complex environments (Williams et al. 2002). 

HCI systems can filter out secondary information and present only primary information to the individuals 

for a targeted intervention. As a result, these controllable systems could be particularly suitable for ASD 

intervention. In addition, many individuals with ASD have a natural affinity for controlled environments 

provided by computers (Moore et al. 2005), and exhibit a high level of engagement in these environments 

(Lahiri et al. 2015). HCI systems that can engage them may thereby enhance learning. Because of these 
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reasons, HCI technology appears well-suited for creating interactive skill training paradigms in core areas 

of impairment for children with ASD.  

Because the individuals show deficits in social interactions and communication, the HCI systems used 

for ASD intervention try to mitigate these deficits (Moore and Taylor 2000). With this particular purpose, 

these systems usually are required to i) offer targeted stimuli in order to elicit users’ specific behaviors, or 

ii) provide proper feedback in order to enhance learning. Although HCI systems have been widely used in 

our daily life (e.g., games, virtual environments, and online services), these cannot be directly used for 

ASD intervention because they are not adaptable for targeted controllable interactions and are unable to 

provide appropriate feedback (Caltagirone et al. 2002; Livingstone et al. 2008).  

Based on their targeted interactions, existing HCI systems for ASD intervention can be classified into 

three categories. The first category includes HCI systems that support multimedia-based interactions. 

Previous intervention systems have used multimedia, i.e., image, audio, and video, in order for 

individuals with ASD to practice social interactions and communication (Colby 1973). Compared to the 

traditional therapist-based intervention, these HCI systems can allow social interactions and 

communication to be practiced individually and repeatedly (Wainer and Ingersoll 2011). However, these 

HCI systems usually can only support one-way interaction, i.e., users understanding multimedia contents 

displayed by computers. In addition, these HCI systems often utilized two-dimensional images for the 

interaction, which are less realistic compared to three-dimensional objects in real life (Council 1994). The 

second category includes Virtual Reality (VR)-based systems that support interactions between users and 

virtual environments/avatars using three-dimensional virtual objects. VR refers to the computer-generated 

simulation of a world and/or engaging users in the simulated world. Compared to multimedia-based HCI 

systems, VR-based systems can support two-way interactions, i.e., both a user acting in a virtual 

environment and the environment responding to the user actions. The simulated environments and the 

two-way interactions of VR-based systems may lead to a higher level of engagement. However, realizing 

completely realistic interactions with virtual environment is all but impossible with current computer-

assisted technologies (Council 1994), and simulating flexible and unrestricted social communication 
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using programmed virtual avatars is challenging from a technical point of view (Suchman 1987). 

Therefore, the less than realistic interactions and insufficiently flexible communication are limitations of 

this kind of VR-based system. The third category includes multi-user HCI systems that support 

interactions among multiple real persons within virtual environments. A multi-user HCI system has the 

ability to facilitate realistic interactions and flexible communication among real users.  

1.2.1. Multimedia-based intervention systems 

Several studies have shown that multimedia-based HCI systems can be useful for ASD intervention. 

Colby (1973) designed a computer program that provided auditory and visual feedback in response to 

pressing a letter on a keyboard (Colby 1973). The computer program was designed in order to encourage 

nonverbal children with ASD to speak. Thirteen out of 17 participants showed linguistic improvements 

after using the computer program. This pioneering work indicated the potential usability of multimedia-

based HCI systems for ASD intervention. Other researchers have also developed multimedia-based HCI 

systems to engage individuals with ASD in their reading and writing (Williams et al. 2002), sentence 

construction (Yamamoto and Miya 1999), and functional conversation (Hetzroni and Tannous 2004). The 

multimedia-based HCI systems usually were designed to offer multimedia contents, such as image, audio, 

and video, for remediation of ASD’s deficits (Bellini and Akullian 2007). The capability of these systems 

to present attractive and engaging audio/video content as feedback serve as their advantages compared to 

traditional teaching and training methods.  

Multimedia-based HCI systems have also been developed to study the effects of different kinds of 

multimedia contents on core deficits of ASD. For example, Golan and colleagues designed software to 

promote emotion recognition of children with ASD (Golan and Baron-Cohen 2006). The software 

displayed faces with different emotions using different kinds of films, i.e., films showing eye area only, 

films with and without voice, and films with contextual information. A total of 54 children with ASD and 

24 TD children participated in this study for several months. Statistical analyses showed that children 

who utilized the software improved significantly more in emotion recognition than children who did not 
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use the software. The study also demonstrated the importance of key characteristics, such as voices, eyes, 

and social situation, in emotion recognition within the system.  

Other studies in this area have also investigated effects of different multimedia contents under different 

conditions. Ploog and colleagues designed a multimedia-based HCI system to investigate the effects of 

different linguistic components and prosody on attracting attention of children with ASD (Ploog et al. 

2009).  Bernard-Opitz and colleagues investigated effects of systems with and without image feedback on 

individuals with ASD when solving social problems (Bernard-Opitz et al. 2001). Heimann and colleagues 

designed a system that could display different types of content, including animation, video, and voice, to 

improve reading and communication skills of children with ASD (Heimann et al. 1995). These studies 

indicated the importance of specific multimedia-contents in learning certain skills. Although these early 

multimedia-based HCI systems have shown promising results in ASD intervention, the majority of them 

can only support simple interactions, i.e., facial expression recognition and vocabulary learning. As a 

result, this kind of HCI system have limitations in the effects of the intervention systems.   

1.2.2. Virtual reality-based intervention systems 

Virtual Reality (VR) based systems for ASD intervention began in 1990s (Parsons and Cobb 2011). 

VR refers to using computer-technology to generate a virtual world into which users can be immersed 

(Rheingold 1991). The virtual world is usually responsive to user’s actions. Various displays, including 

immersive head mounted displays (HMD), were employed in the early phases of VR-based systems for 

ASD intervention. However, HMD often were rated as heavy and caused discomfort in these studies 

(Parsons et al. 2004). As a result, desktop-based VR were preferred to HMD-based VR when used for 

ASD intervention (Wang and Reid 2010).  Virtual avatars are programmed virtual characters in the virtual 

world and have been used to understand and enhance social and communication skills of individuals with 

ASD. Moore and colleagues designed a virtual avatar that can have four different facial expressions, i.e., 

happy, sad, angry and frightened. The virtual avatar was developed in order to evaluate the ability of 

children with ASD in identifying emotions and making inference on emotions (Moore et al. 2005). 
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Thirty-four individuals with ASD participated in their study and over 90% of the participants accurately 

recognized the emotions portrayed by the avatar. This study, as one of the early studies in this area, 

indicated the usability of virtual avatars in the emotion recognition of the targeted population. Virtual 

avatars have also been used to investigate emotion recognition skills (Esubalew Bekele et al. 2014), 

mental state recognition skills (Konstantinidis et al. 2009), and eye gaze behaviors (Mineo et al. 2009) of 

the targeted population. These virtual avatars, which had specific social communication functionalities, 

such as the capabilities to speak and make facial expressions (Esubalew Bekele et al. 2013), were 

designed for social communication skills training. VR-based systems that focused on simulating daily-life 

scenarios have also been applied for individuals with ASD to practice their daily-life skills (Parsons et al. 

2004; Esubalew Bekele et al. 2014).   

Virtual environments can, to some extent, replicate real social worlds for individuals with ASD to 

practice specific behaviors within the environments (Moore et al. 2005). For example, Parsons and 

colleagues designed a virtual café to understand social appropriateness of children with ASD (Parsons et 

al. 2004). The virtual objects in the environment could prompt interactions by providing image- and 

verbal-responses when a child approaches to them. Twelve children with ASD as the experimental group 

and 12 TD children as the control group were involved in their study. These participants explored the 

virtual café by navigating the environment and interacting with the virtual objects. It was found that some 

of the children with ASD exhibited inappropriate behaviors in the virtual environment, e.g., they were 

more likely to bump into or walk between other people, as compared to their TD peers. Despite these 

differences, these children with ASD could easily use the virtual environment.  

Virtual environments have two advantages relative to real world settings in that they are safe and 

controllable. Because of the safety, virtual environments have been used for individuals with ASD to 

learn some risky daily life skills, such as street-crossing (Josman et al. 2008) and driving (Wade et al. 

2016). The controllability aspect of virtual environments, on the other hand, enables individuals with 

ASD to practice specific social skills, such as shopping (Lányi and Tilinger 2004), with varying 

complexity. Despite these advantages, this kind of system, which involves a single user within a virtual 
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environment, usually can only support preprogrammed interactions and communication between a user 

and the environment (M Schmidt et al. 2011). This kind of interaction is often unrealistic and inflexible. 

This is considered as one of limitations in VR-based HCI systems for ASD invention.  

1.2.3. Multi-user intervention systems 

Multi-user HCI systems can support collaborative interactions and natural communication between real 

users within a controlled environment. The ability to support realistic interactions and flexible 

communication between real users is an advantage of multi-user HCI system for ASD intervention. Multi-

user HCI systems can be categorized into co-located systems and geographically distributed systems. The 

majority of multi-user HCI systems for ASD intervention were co-located systems, which utilized multi-

touch devices in the same location to investigate collaborative behaviors in the ASD population. Gal and 

colleagues developed a multi-touch device, named StoryTable, to evaluate collaborative interactions 

between children with ASD (Gal et al. 2009). The device held a variety of backgrounds and settings, and 

children with ASD could collaboratively select these backgrounds and settings to form a story. Eight 

children with ASD were involved in the study, and their collaboration levels were evaluated using a 

friendship observation scale (Bauminger et al. 2005). It was found that these participants had an increased 

frequency of complex play after using the device. Using co-located multi-touch devices, previous 

literature also investigated other collaborative behaviors of children with ASD, such as sharing (Curtis 

and Lawson 2001), turn taking (Zancanaro et al. 2007), and collaborative play (Ben-Sasson et al. 2013). 

These studies demonstrated the usability of these co-located multi-touch devices in understanding 

collaborative interactions of individuals with ASD. 

The other category of multi-user HCI systems for ASD intervention includes geographically 

distributed systems, named Collaborative Virtual Environments (CVEs). These systems can support 

collaborative interactions between users in different locations.  One obvious advantage of the distributed 

design is that it can offer more chances for individuals with ASD to interact with people in different 

locations (Millen et al. 2012). Additionally, co-located multi-user HCI systems required all users to be in 
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the same location for face-to-face interactions. Face-to-face interactions may be initially difficult for 

children with ASD due to differences in social understanding and skills. Thus, a distributed CVE, which 

allows users to interact in different locations, provides a platform for children with ASD to comfortably 

interact with their peers (Millen et al. 2012). Previous research has investigated using CVEs to promote 

social communication skills of individuals with ASD. Schmidt and colleagues developed a 3D CVE 

system, named iSocial, to investigate the individuals’ skills of reading facial expressions and predicting 

other’s thoughts (Stichter et al. 2014). Results of the study, which involved 11 children with ASD, 

demonstrated that a social competence curriculum could be delivered in the virtual environment. CVE 

systems have also been applied to investigate other social behaviors, such as social competence (M 

Schmidt et al. 2011), face-to-face communication (Millen et al. 2012), and empathy (Cheng et al. 2010). 

However, collaborations between real-users, which are important aspects of social communication in the 

population, have seldom been investigated in the literature.  Therefore, one of the main goals of this work 

is to design CVE systems that can encourage collaborative interactions between individuals with ASD 

and their TD peers.  

1.2.4. Limitations of existing HCI systems for ASD intervention 

As described above, existing HCI systems can provide safe and controllable environments for users to 

practice their social interactions and communication skills. Furthermore, CVE systems provide a 

promising platform to investigate collaborative interaction and flexible communication between multiple 

users across the internet. However, the use of these HCI systems for pragmatic intervention has been 

limited by one fundamental challenge. In particular, most of them evaluated users’ behaviors using a 

human-coding methodology, which is laborious and time-intensive. Autonomous systems that can 

provide automatic, consistent, and unbiased measurements of meaningful aspects of social interactions 

and communication within HCI systems will reduce the substantial time- and cost-effect associated with 

the human coding methodology. One way to develop such an autonomous system is to apply sensor 

technology to collect data of individuals with ASD and then apply artificial intelligence methodology to 
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understand their behaviors from the collected data. This type of intelligent system could address the 

limitations of conventional HCI systems in evaluating social behaviors of individuals with ASD. The next 

section discusses existing intelligent HCI systems for ASD intervention. 

1.3. Next Generation of HCI Systems for ASD Intervention-Intelligent HCI Systems  

An intelligent system is a computing system that can automatically perceive users/environments and 

dynamically interact with the users/environments (Xu and Wang 2006). Intelligent HCI systems with the 

capability to automatically detect behaviors of the users are meaningful for ASD intervention for several 

reasons. First, intelligent systems can automatically evaluate the behaviors and, therefore, reduce labor, 

time, and cost associated with a traditional human-coding methodology. It also reduces the risk of 

personal biases associated with the human-coding methodology. Second, some individuals with ASD 

have difficulties in understanding their own emotional and mental states (Rajendran and Mitchell 2007). 

An intelligent system that can automatically measure affective and cognitive states of individuals with 

ASD based on their physiological or gaze measurements, rather than self-report, has the potential to 

improve the measurement accuracy (Ozonoff and Strayer 2001). Finally, it is hard for human coders to 

accurately evaluate some implicit interaction cues, such as eye gaze. Intelligent systems may have the 

potential to measure these implicit interaction cues using accurate sensors.  

Existing intelligent HCI systems usually understand  individuals’ behaviors by analyzing 

corresponding sensor signals (Brusilovsky and Millán 2007). A few studies have been conducted by 

researchers in this area to measure specific behaviors of individuals with ASD from their physiological 

(Bian et al. 2016), eye gaze (Wade et al. 2016), and speech (Bernard-Opitz et al. 1999) signals. These 

studies differed in terms of used sensors, targeted user behaviors, number of participants, and research 

goals. However, they represent a primary push for future research trends in HCI systems for ASD 

intervention. These systems can be classified into three categories based on the used sensor signals: 

physiological data-based, eye gaze data-based, and audio data-based. In what follows, we review works in 
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each of these categories by i) listing several important works in the category, and ii) describing in detail a 

study with a large sample size from each category. 

1.3.1. Physiological data-based intelligent HCI systems 

There is a considerable amount of work that recognizes affective and cognitive state of individuals 

with ASD from their physiological signals, such as heart rate, body temperature, and electromyogram 

activity (Bian et al. 2015; Lahiri et al. 2015; Nuske et al. 2014). Affective and cognitive state recognition 

is a core component of effective educational programs, which have the potential to engage users and 

reduce their frustration (Novak et al. 2012). However, some individuals with ASD have difficulties in 

correctly recognizing and reporting their own affective and cognitive states. Therefore, researchers have 

applied artificial intelligence methodologies to automatically recognize their affective and cognitive states 

from physiological signals. Liu and colleagues designed computer-based cognitive tasks (i.e., an anagram 

solving task and a pong playing task) to trigger users’ different affective states, including enjoyment, 

anxiety, and engagement (Liu et al. 2008). They measured the users’ affective states from multiple 

physiological signals, such as cardiovascular activity, electro-dermal activity, electromyogram activity, 

and peripheral temperature. These signals were recorded from the users when they participated in the 

cognitive tasks. Six young children with ASD were involved in their study. Results of the study indicated 

that these physiological signals could be used to measure the participants’ affective states. Other works in 

this category have also utilized physiology signals for affective and cognitive state recognition under 

different conditions. For example, Bian and colleagues utilized physiological signals to measure affective 

states when individuals with ASD drove with a driving simulator (Bian et al. 2015). Kuriakose and 

colleagues measured anxiety levels of children with ASD in a VR-based social communication system 

(Kuriakose and Lahiri 2015).  

1.3.2. Eye gaze data-based intelligent HCI systems 

Eye gaze information of the individuals has been analyzed in order to understand their eye contact, 

visual attention, engagement, and eye gaze patterns. Eye contact, which may be absent or overly intense 
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in the individuals, is a form of non-verbal communication and has a large influence on their social 

behaviors (Stone et al. 1997); while visual attention guarantees safety in daily activities of the individuals 

(Lee et al. 2007). Therefore, researchers have analyzed eye gaze signals of the individuals to understand 

their eye contact patterns (Escobedo et al. 2012; Al-Omar et al. 2013) and visual attention (E Bekele et al. 

2016). Atypical eye gaze patterns of the individuals have been demonstrated by multiple studies. 

Neumann and colleagues have designed a computer program to investigate eye gaze patterns of the 

targeted population when they recognized facial expressions (Neumann et al. 2006). The computer 

program could display blurred images of human faces with different kinds of facial expressions, i.e., fear 

and happiness. An eye tracker was applied to track users’ eye gaze information when they used the 

program. Ten individuals with ASD and ten TD individuals were involved in their study. They found 

atypical gaze patterns in the individuals with ASD compared to the TD participants. In particular, these 

individuals with ASD fixated on the location of the mouth more than those TD individuals. In addition, 

Rutherford and colleagues have also found atypical eye-gaze patterns when children with ASD looked at 

images showing different emotions (Rutherford and Towns 2008). Reimer and colleagues reported 

atypical gaze pattern of children with ASD when using a driving simulator (Reimer et al. 2013). Eye gaze 

information, such as blink rate and pupil diameter, can reflect changes in engagement and emotion 

(Woolf et al. 2009). In this context, a study by Lahiri and colleagues have analyzed eye gaze signals of 

children with ASD to evaluate their affective states in a VR-based social communication system (Lahiri et 

al. 2015; Reimer et al. 2013). In our work, eye gaze data were combined together with other physiological 

data to recognize affective state of the ASD population.  

1.3.3. Audio data-based intelligent systems  

The category of “audio data-based intelligent systems” includes systems that can automatically analyze 

collected audio data of users (i.e., spoken language) in order to understand their communication skills. 

Individuals with ASD often have verbal communication difficulties. Intelligent systems that can 

understand their communication skills by analyzing their audio data, and/or enhance their specific aspects 
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of communication skills based on the understanding, have potential therapeutic benefits. However, 

automatically cataloguing, understanding, and responding to verbal communication skills is challenging, 

given the fact that designing a computer program that can understand and simulate unrestricted 

naturalistic conversation of humans (i.e., the Turing test) is problematic from a technical point of view. 

As such, existing intelligent HCI systems in this area have investigated only simple language 

components, such as vocabulary and sentence construction, in the ASD population. Bernard and 

colleagues developed multiple computer-assisted interactive tasks in order to encourage non-verbal 

children with ASD to speak (Bernard-Opitz et al. 1999). Ten non-verbal children with ASD were 

involved in the study. They were required to pronounce specific words within the tasks. The system could 

recognize their pronunciation using a speech engine (IBM speech viewer) and then provide graphical 

feedbacks based on their pronunciation. Results indicated that participants in the computer-assisted 

session had significantly greater vocal imitation as compared to participants in personal instruction 

session. Islam and colleagues developed an intelligent HCI system to improve vocabulary of children 

with ASD. Their system could recognize simple words, which were used by a user to name a object, and 

then offer feedback based on the recognized words (Islam et al. 2013). Ketterl and colleagues designed a 

similar system aimed at improving speech intelligibility of children with ASD. The speech intelligibility 

refered to the proportion of a speaker’s speech that a listener can readily understand (Ketterl et al. 2011). 

Anwar and colleagues have designed a system that could display multiple images simultaneously in order 

for a user to construct a sentence to describe these images (Anwar et al. 2011). In their system, a speech 

enginee was used to convert a user’s speech to text, and a human instructor was involved to provide 

feedback based on the text. These intelligent HCI systems focused on understanding simple language 

components of individuals with ASD from collected audio data and have shown positive impacts on their 

communication skills. However, intelligent HCI systems that can understand communication patterns of 

user-user interactions have not yet been developed to the best of our knowledge.  
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1.3.4. Limitations of existing intelligent HCI systems for ASD intervention 

Existing intelligent HCI systems for ASD intervention applied artificial intelligence methodologies in 

computer-based interactive systems in order to interact with individuals with ASD, evaluate their 

behaviors and affective states, and adapt the systems’ key components to enhance the individuals’ 

learning efficiency. Studies in this area have analyzed multiple sensor signals, such as physiological, eye 

gaze, and audio signals, to measure their behaviors and affective states. In particular, physiological 

signals were used for affective state recognition. Eye gaze signals were analyzed to understand their 

atypical gaze patterns and visual processing. Audio signals have been investigated to understand specific 

aspects of communication skills of the individuals. Even though these systems have proved the usability 

of intelligent HCI systems in measuring specific social behaviors, two major limitations exist in the 

current intelligent HCI systems for ASD intervention:  

1) The open-ended CVE systems pose no restriction in verbal communication between real users. As 

such, subsequent manual coding of interactions is necessary to understand patterns of communication 

for meaningful measurement and intervention. This creates a resource burden and limits realistic 

scale-up of the paradigm. An intelligent system that can automatically yield quantitative metrics of 

social communication and collaborative interactions within the systems may provide a way to address 

this challenge. Unfortunately, such systems that can automatically evaluate collaboration and 

communication skills of individuals with ASD in CVE systems have not been studied yet, to the best 

of our knowledge.  

2) Although intelligent HCI systems have been investigated to recognize affective and cognitive states, 

most of these systems utilized single-modality signals, i.e., signals from single independent channel 

of sensor, to recognize the affective and cognitive states. Combining multimodal information may 

lead to higher accuracy in understanding the states. However, multimodal information fusion 

technologies have seldom been investigated for affective and cognitive state recognition in the 

literature. 
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This research provides a novel contribution by addressing these gaps in existing work related to the use 

of intelligent HCI systems for ASD intervention.  

1.4. Overview of the Dissertation Research 

My research focuses on the design and application of HCI systems, especially CVEs and intelligent 

systems, for ASD intervention. Most of existing HCI systems in this area were designed for individuals 

with ASD to practice their skills by interacting with computer programs. However, the interactions 

between users and computer programs were usually limited, with weak transfer of the skills learned 

within systems to real world settings. Additionally, these systems often utilized a human-coding method 

to measure the users’ within-system behaviors. This human-coding method requires significant time, 

costs and efforts, limits the precision of the measurements, and restricts system capability for real-time 

feedback. In order to address these limitations, we designed and applied HCI systems for both 

intervention and measurements. In particular, our HCI systems had the potential to provide intervene on 

individuals’ behavior and communication skills, as well as proposed efficient within-system measures to 

index the behaviors. In what follows, we briefly introduce each of our research studies.  

1.4.1. Collaborative virtual environment systems 

Traditional HCI systems that support interactions between a user and a computer have limitations in 

encouraging collaborative interactions and generalizing within-system interactions to real-world settings. 

Collaborative Virtual Environments (CVEs), which can support interactions between multiple real-users 

across the internet, offer a platform for collaborative interactions and natural communications between 

these users (M Schmidt et al. 2011). Therefore, we designed CVEs to understand and enhance 

collaborative interactions and communication of children with ASD in peer-mediated interactions.  

A Collaborative Virtual Environment (CoMove)  

In Chapter II, we present the design and application of a CVE system, named CoMove, to understand 

and encourage collaborative interactions and communication skills of children with ASD. In CoMove, we 

designed multiple collaborative puzzle games that were equipped with collaborative strategies in order to 
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encourage collaborations between participants. The collaborative strategies were implemented with a 

hybrid automata model to promote three kinds of collaborative interactions, i.e., turn-taking, information 

sharing, and simultaneous work (taking actions at the same time). These three kinds of collaborative 

interactions were selected since they related to a variety of real-world social communication skills (White 

et al. 2007). In addition, we provided an objective measurement method to measure the participants’ 

communication and collaboration skills within CoMove. 

A total of 28 children, 7 age-matched ASD/TD pairs and 7 age-matched TD/TD pairs (age range: 7 – 

17 years) were recruited to participate in a feasibility study. Each pair of the participants stayed in two 

different rooms of the same building, and completed 17 collaborative puzzle games within CoMove. The 

feasibility study included pre- and post-tests to evaluate impacts of CoMove on the participants’ 

collaborative interactions. A Wilcoxon Signed-rank test showed statistically significant improvements of 

the interactions in the post-test compared to the pre-test. These results indicated the feasibility of the CVE 

for the targeted population, and the potential of the objective measurement method in indexing important 

aspects of interactions in the CVE.   

Collaborative Virtual Environment on the Android platform  

Mobile applications have the potential to engage children with ASD (Tanaka et al. 2010) by creating 

ubiquitous learning environments (Gravenhorst et al. 2015). Therefore, we developed a CVE on the 

Android platform to understand their collaborative interactions and communication skills when they used 

the mobile application. One challenge of designing CVEs is to support face-to-face communication, 

including both verbal and non-verbal communications (Montoya et al. 2011; Laffey et al. 2009). We 

implemented both audio and video chat functionalities in the CVE on the Android platform to address this 

challenge. By following the same interaction protocol as that in the previous CVE study, five age- and 

gender-matched pairs of participants (age range: 7 – 17 years) were recruited in a preliminary study using 

the CVE on the Android platform. It was found that children with ASD had different performance 

regarding their verbal-communication patterns compared to their TD peers. In particular, each of the 
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children with ASD spoke fewer words, asked fewer questions, and gave more responses, than his/her TD 

partner in the pre-test. However, these differences were not statistically significant.  

This work resulted in two published research manuscripts and one conditionally accepted manuscript: 

Lian Zhang, Qiang Fu, Amy Swanson, Amy Weitlauf, Zachary Warren, and Nilanjan Sarkar, “Design 

and Evaluation of a Collaborative Virtual Environment (CoMove) for Autism Intervention”, ACM 

Transactions on Accessible Computing (Accepted).  

Lian Zhang, Zachary Warren, Amy Swanson, Amy Weitlauf, and Nilanjan Sarkar. "Understanding 

Performance and Verbal-Communication of Children with ASD in a Collaborative Virtual Environment." 

Journal of autism and developmental disorders (2018): 1-11.  

Lian Zhang, Megan Gabriel-King, Zachary Armento, Miles Baer, Qiang Fu, Huan Zhao, Amy 

Swanson, Medha Sarkar, Zachary Warren, Nilanjan Sarkar. "Design of a Mobile Collaborative Virtual 

Environment for Autism Intervention." International Conference on Universal Access in Human-

Computer Interaction. 2016. 

1.4.2. An intelligent agent for measurements in a CVE  

Although CVEs have the advantages to support realistic interactions and flexible communication 

between real-users, measuring the interactions is limited by two fundamental challenges. First, the 

dynamic social interactions within CVE systems are partner dependent. That is, interactions within the 

CVE change based on specific partner input. This fundamentally limits the ability to create consistent, 

controlled, and replicable interactions within the CVE. Second, open-ended CVE systems pose no 

restriction in verbal communication between users. As such, subsequent manual coding of interactions is 

necessary to understand patterns of communication for meaningful measurements and intervention. In 

order to address these challenges, we designed an intelligent agent that could play games and 

communicate with humans to automatically measure both communication and collaboration skills of the 

ASD population. Please note that designing a system that can understand unrestricted naturalistic 

conversation of humans (i.e., the Turing test) is still problematic from a technical point of view. However, 
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it is possible to understand controlled conversations in a narrowly defined domain using an intelligent 

agent. Our intelligent agent was designed to communicate and play collaborative games in a CVE.  

In Chapter III, we present the design of the intelligent agent that could communicate and play 

collaborative games with children with ASD and their TD peers in order to automatically measure their 

behaviors in a CVE. This intelligent agent was developed using a novel hybrid method, which combined 

a dialogue act classification and a finite state machine. This method had the advantage to not only enable 

the agent’s capability to communicate and play games, but also generate data for meaningful 

measurements of the interactions. A preliminary study involving five children with ASD (age range: 7 – 

17 years) was conducted to test the feasibility of the intelligent agent. Results of this preliminary study 

indicated that the agent could i) properly initiate conversations with an accuracy of 82.93%, and ii) 

correctly respond to a human with an accuracy of 89.20%. These results were comparable with existing 

intelligent agents with conversation capabilities for TD population. The game performance of the 

participants, which was measured using a collaborative movement ratio, when they interacted with the 

agent in the preliminary study was comparable to the performance of participants in peer-mediated 

interactions in Chapter II. These results indicated the potential of the intelligent agent to communicate and 

play games in the CVE.  

There is one research paper to be submitted on this study:  

Lian Zhang, Amy Swanson, Amy Weitlauf, Zachary Warren, and Nilanjan Sarkar, “Design and 

Development of an Intelligent Agent to Measure Communication and Collaboration Skills in 

Collaborative Virtual Environment for Autism Intervention”, IEEE transactions on learning technologies 

(to be submitted).  

1.4.3. A framework to measure communication skills and collaboration skills 

In order to address limitations in measuring peer-mediated interactions in CVEs, we applied the 

intelligent agent to control and index important aspects of the interactions in the CVE. The majority of 

existing CVEs for ASD intervention measure users’ collaborative interactions and communication skills 
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based on a human-coding methodology (Matthew Schmidt et al. 2012). We developed a measurement 

system that applied the intelligent agent to automatically measure the users’ both communication and 

collaboration skills. This system measured the skills in three steps. First, the system generated task-

performance and verbal-communication features to represent the users’ behaviors. Then, we evaluated 

whether the system could accurately generate these features, as well as whether these features could 

reflect important aspects of the user behaviors in the CVE using statistical tests. Finally, all of the features 

were combined together to measure users’ both communication and collaboration skills with machine 

learning methods. 

  A total of 40 children, 20 age-, and sex-matched ASD/TD pairs (age range: 7 – 17 years), were 

recruited to participate in a feasibility study. Each pair of the participants played nine collaborative 

games. Two children of a pair, first, played a game with each other in a human-human interaction (HHI) 

mode, and then played the same game with their own intelligent agents in a human-agent interaction 

(HAI) mode. The HAIs were designed for the intelligent agent to control and measure the children’s 

skills; while the HHIs were designed to provide ground truth to evaluate the measurements in the HAIs. 

We found strong correlations between some system-generated features and the communication skills of 

the participants in the HAIs, as well as strong correlations between some system-generated features and 

the collaboration skills in the HAIs. We also achieved high accuracies when measured both 

communication and the collaboration skills based on these system-generated features. These results 

indicated that the intelligent agent had the potential to automatically measure the participants’ both 

communication and collaboration skills within the CVE. Additionally, we found strong correlations 

between some features in HAIs and the features in HHIs. These results indicated that intelligent agent-

based interactions could reflect important aspects of the human-human interactions.  

1.4.4. Multimodal fusion for cognitive load measurement 

In this work, we designed an intelligent HCI system to measure cognitive load of individuals with 

ASD. Cognitive load is believed to be a crucial factor in how children with ASD acquire knowledge and 
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skills (Paas et al. 2003). However, individuals with ASD have difficulties in correctly recognizing their 

cognitive load (Rajendran and Mitchell 2007). Therefore, a way to automatically measure the cognitive 

load is needed. In this context, researchers have investigated methods to measure the cognitive load using 

eye gaze signals, peripheral physiology signals, and EEG signals, respectively. Combining these 

multimodal sensor signals may lead to a higher accuracy in the measurements.  

We designed a framework to measure the cognitive load of individuals with ASD from the multi-

model signals with data fusion technologies. We explored three data fusion strategies: feature-level 

fusion, decision-level fusion, and hybrid-level fusion. In addition, we developed a weight selection 

mechanism to compute parameters of the decision-level fusion. The weight selection mechanism reduced 

computational load but still generated the optimal weights comparing to the widely used exhaustive 

search method (Koelstra et al. 2012). Based on these data fusion strategies, we found that multimodal 

fusion outperformed single modality classification in measuring cognitive load of the individuals with 

ASD.  

There are eight research papers published on this study:  

Lian Zhang, Joshua Wade, Dayi Bian, Jing Fan, Amy Swanson, Amy Weitlauf, Zachary Warren, 

Nilanjan Sarkar, “Cognitive load measurement in a Virtual Reality-based Driving System for Autism 

Intervention”, IEEE Transactions on Affective Computing, 2016.  

Joshua Wade, Lian Zhang, Dayi Bian, Jing Fan, Amy Swanson, Amy Weitlauf, Medha Sarkar, 

Zachary Warren, Nilanjan Sarkar, “A Gaze-Contingent Adaptive Virtual Reality Driving Environment for 

Intervention in Individuals with Autism Spectrum Disorders”, ACM Transactions on Interactive 

Intelligent Systems (2016). 

Lian Zhang, Joshua Wade, Amy Swanson, Amy Weitlauf, Zachary Warren, and Nilanjan Sarkar. 

“Cognitive State Measurement from Eye Gaze Analysis in an Intelligent Virtual Reality Driving System 

for Autism Intervention”, the sixth International Conference on Affective Computing and Intelligent 

Interaction (ACII2015)  
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Lian Zhang, Joshua Wade, Dayi Bian, Jing Fan, Amy Swanson, Amy Weitlauf, Zachary Warren, and 

Nilanjan Sarkar. “Multimodal Fusion for Cognitive Load Measurement in an Adaptive Virtual Reality 

Driving Task for Autism Intervention” The 17th International Conference on Human-Computer 

Interaction, 2015 

Wade, Joshua, Dayi Bian, Jing Fan, Lian Zhang, Amy Swanson, Medha Sarkar, Amy Weitlauf, 

Zachary Warren, and Nilanjan Sarkar. "A virtual reality driving environment for training safe gaze 

patterns: application in individuals with ASD." In International Conference on Universal Access in 

Human-Computer Interaction, pp. 689-697. Springer International Publishing, 2015. 

Lian Zhang, Joshua W. Wade, Dayi Bian, Amy Swanson, Zachary Warren, Nilanjan Sarkar, “Data 

Fusion for Difficulty Adjustment in an Adaptive Virtual Reality Game System for Autism Intervention“, 

in 16th International Conference on Human-Computer Interaction, 2014 

Wade, Joshua, Dayi Bian, Lian Zhang, Amy Swanson, Medha Sarkar, Zachary Warren, and Nilanjan 

Sarkar. "Design of a virtual reality driving environment to assess performance of teenagers with ASD." In 

International Conference on Universal Access in Human-Computer Interaction, pp. 466-474. Springer 

International Publishing, 2014. 

Bian, Dayi, Joshua W. Wade, Lian Zhang, Esubalew Bekele, Amy Swanson, Julie Ana Crittendon, 

Medha Sarkar, Zachary Warren, and Nilanjan Sarkar. "A novel virtual reality driving environment for 

autism intervention." In International Conference on Universal Access in Human-Computer Interaction, 

pp. 474-483. Springer Berlin Heidelberg, 2013. 

The rest of this dissertation is organized as follows. In Chapter II, we present the design and 

application of a CVE, name CoMove, to encourage collaboration and communication between children 

with ASD and their TD peers. In Chapter III, we present the design of another CVE, i.e., a CVE on the 

Android platform, for the children to interact with each other using mobile devices. In Chapter IV, we 

present the design and development of an intelligent agent that could communicate and play games with 

the children in order to measure their behaviors within CoMove. Chapter V shows the application of the 

intelligent agent to measure both communication and collaboration skills of the children within the CVE. 
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Chapter VI discusses the development of another intelligent HCI system to measure cognitive load of the 

children using data fusion technologies. The final chapter summarizes the contributions of the current 

work and the possible future work. 
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CHAPTER II. A COLLABORATIVE VIRTUAL ENVIRONMENT (COMOVE)  

2.1. Abstract 

A CVE, which is a computer-based, distributed, virtual space for multiple users to interact with one 

another and/or with virtual items, has the potential to support flexible, safe and peer-based social 

interactions. In this chapter, we presented the design of a CVE system, called CoMove, with the ultimate 

goals of measuring and potentially enhancing collaborative interactions and verbal-communication of 

children with ASD when they play collaborative puzzle games with their typically developing (TD) peers 

in remote locations. CoMove has two distinguishing characteristics: i) the ability to promote important 

collaborative behaviors (including information-sharing, sequential interactions, and simultaneous 

interactions) and to provide real-time feedback based on users’ game performance; as well as ii) an 

objective way to measure and index important aspects of collaboration and verbal-communication skills 

during system interaction. A feasibility study with 14 pairs, 7 ASD/TD pairs and 7 TD/TD pairs, was 

conducted to initially test the feasibility of CoMove. Results of the study validated the system feasibility 

and suggested its potential to index important aspects of collaboration and verbal-communication. 

2.2. Introduction 

A collaborative virtual environment (CVE) is a computer-based, distributed, virtual space for multiple 

individuals to interact with one another and/or with virtual items (Benford et al. 2001). Compared to 

existing studies of interaction between children with ASD and computer-controlled virtual avatars (Moore 

et al. 2005; Cheng et al. 2010), multi-user CVEs present the opportunity for dynamic user-to-user 

interactions, instead of user-machine interactions, in shared virtual environments. Such systems, which 

are suited for collaboration and group work among real users, may offer an effective and beneficial way 

to foster social relationships among children with ASD and their typically developing (TD) peers (Leman 

2015; Reynolds et al. 2011).  
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Some researchers have evaluated the user-to-user interactions using co-located devices, such as 

tabletop (Battocchi et al. 2009), tablet (Ben-Sasson et al. 2013; Hourcade et al. 2012), iPad (Boyd et al. 

2015), and wearable devices (Boyd et al. 2016). These systems allow multiple users to share the same 

device for face-to-face interactions. However, face-to-face interactions may be initially difficult for 

children with ASD given the potential multisensory integration deficits associated with ASD (Ringland et 

al. 2016). Impairments in multisensory integration, which generally involves how information from the 

different sensory modalities, such as sight, sound, touch, smell, self-motion and taste, may be integrated 

by the nervous system (Stein et al. 2009), is one of the diagnostic criteria for ASD (McPartland et al. 

2012). In addition, it is difficult to identify users using the co-located devices from a technical point of 

view(Boyd et al. 2015). As a result, one user may do all the tasks without collaboration with other users. 

A distributed system, which allows interactions among users from different locations and  reduces 

information of some sensory modalities, may address these limitations (M Schmidt et al. 2011; Millen et 

al. 2012). In what follows, we reviewed previous literature in distributed systems to support user-to-user 

interactions for ASD intervention.  

2.2.1. Related work 

Massively multiplayer online games and social networks have been investigated for ASD intervention 

(Caltagirone et al. 2002; Livingstone et al. 2008). For example, Burke and colleagues analyzed the needs 

and effects of social communication (such as text-messaging, email, and Facebook) for adults with ASD 

(Burke et al. 2010). They reported many benefits, such as reduced stress and increased greetings. 

Ringland and colleagues applied the Minecraft game in order to see how individuals with ASD engaged 

in social play (Ringland et al. 2016). They found that individuals with ASD were as social as TD 

individuals in the game. Other multiplayer online games, such as Second-life(Newbutt)and Zody’s world 

(Boyd et al. 2015), have also been successfully used to study behaviors of children with ASD in group 

work. However, researchers usually had limited access to the source code of these commercial games. As 

a result, it could be difficult to alter the games in a way that would allow researchers to structure and 
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investigate specific collaborative activities. In addition, most of these studies analyzed users’ behaviors in 

games using observation-based methods. It will be important to explore other methods that can be used to 

quantitatively measure interactions between users in these games.      

In this context, CVEs with specific social activities have designed and developed for ASD 

interventions. Cheng and colleagues designed a virtual restaurant in order to understand empathy in 

children with ASD (Cheng et al. 2010). They also developed a CVE with two other social scenes, a 

classroom scene and an outdoor scene, in order to promote social competence in the ASD population 

(Cheng and Ye 2010). 3D virtual avatars, which had gestures and facial expressions, were used as 

representations of real users in the environment, and were applied to investigate the ability of children 

with ASD to understand these social cues (i.e. gestures and facial expressions) in the environment. ISocial 

is another important CVE that was designed to investigate social competency in children with ASD 

(Laffey et al. 2012). In iSocial, individuals with ASD could interact with each other through the internet 

using their own 3D virtual avatars. Naturalistic practice learning activities (Wang et al. 2016) and a social 

competence curriculum (e.g., facial expression recognition) (Stichter et al. 2014) have been designed as 

activities in iSocial for understanding social competence. Finally, Wallace and colleagues designed a 

CVE to teach children with ASD greeting behaviors in a virtual gallery (Wallace et al. 2015). They found 

that children with ASD were less sensitive to a negative greeting from the human avatar in the virtual 

gallery than their TD peers. Although virtual avatars have been successfully used to represent users in 

these virtual environments (E. S. Liu and Theodoropoulos 2014), the efficacy of the use of avatars for 

presentation is under debate (Benford et al. 2001; Natkin and Yan 2006).  Please also note that all the 

activities in these CVEs rely upon specific social skills and are designed to promote external goals of their 

respective curricula, rather than provide users with game tasks that require and reinforce efficient social 

interaction as part of the game environment itself.  

In addition to these specified social curriculum activities, researchers have also designed collaborative 

games as interactive activities in CVEs for ASD intervention. Millen and colleagues have developed a 

CVE with a block party game, which requires users to select the same blocks in order to build a tower, 
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and a talk about CVE game, which was designed for children with ASD to practice conversation skills 

(Millen et al. 2011). However, these games did not require users to take actions at the same time (i.e., 

simultaneous interactions). This study reported preliminary results of a self-report questionnaire, which 

showed that children with ASD had improved engagement in these CVE-based collaborative games (P. L. 

Weiss et al. 2011). Schmidt and colleagues have proposed a game-based learning environment for 

individuals with ASD to learn computational thinking and social skills in groups across the internet 

(Matthew Schmidt and Beck 2016). In this environment, users would be able to collaborate with each 

other and play Minecraft1 videogame according to specific collaboration rules. At the time of writing this 

article, however, results had not been reported. 

Although existing massively multiplayer online games and CVEs, which could support flexible 

interactions between real users from different locations, have been successfully applied for individuals 

with ASD to practice specific social skills, most of them were not designed to facilitate collaboration, 

such as taking actions at the same time (Benford et al. 2001). Designing systems to facilitate collaboration 

has two primary challenges. The first challenge is related to the design of collaborative activities 

themselves in order to foster collaboration. In other words, structuring interactions within a game to 

require users take collaborative actions, such as taking actions at the same time, sharing information with 

each other, and playing in order. Collaboration is not something that simply happens whenever users 

come together (Dillenbourg 2002). Therefore, carefully-designed collaboration strategies are needed in 

order to enable and encourage collaboration in the environment. The second challenge is related to 

evaluating interactions to understand users’ collaborative behaviors in specific CVEs and/or validate 

effects of the CVEs on the users’ collaboration and communication skills. Evaluating interactions is 

challenging, given the unrestricted conversations and complex interactions between real users.     

A potential way to address the first challenge in this area is to design collaborative games with 

embedded collaboration strategies to promote collaboration. A few studies have sought to promote 

                                                      

1 https://education.minecraft.net/ 
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collaboration in the ASD population by designing collaborative games and equipping these games with 

collaborative strategies using co-located multi-touch devices (Nakano et al. 2011; Noor et al. 2012). Gel 

and colleagues have designed and developed shared storytelling games on co-located multi-touch devices 

to promote collaboration (Bauminger et al. 2007). These games could not only support individual actions 

but also require simultaneous actions through a collaboration strategy, which require two users to touch 

and drag items simultaneously in order to move them (Cappelletti et al. 2004). Gel and colleagues found 

that participants initiated more positive social interactions, had more shared play, and performed fewer 

autistic behaviors while playing these games (Gal et al. 2009). Their study also indicated that children 

with ASD had more positive social interactions and collaborative play in the games with the collaboration 

strategy than in free-play conditions (Ben-Sasson et al. 2013). Battocchi and colleagues designed 

collaborative puzzle games with a similar collaboration strategy (Battocchi et al. 2009). They also 

demonstrated that this kind of puzzle game had positive effects on collaboration in children with ASD. 

These studies have shown that collaborative games equipped with deliberate collaboration strategies have 

the potential to promote collaboration in children with ASD. However, these games were developed using 

co-located multi-touch devices instead of distributed CVEs. Co-located multi-user systems can support 

face-to-face communication with both verbal and non-verbal cues, while communications in distributed 

CVEs often lack nonverbal cues (Montoya et al. 2011). Therefore, these existing collaboration strategies 

cannot be directly used in distributed CVE systems.  

In order to address the first challenge, we have developed novel collaborative games with collaborative 

strategies to promote three important collaborative behaviors, i.e., information-sharing, sequential work, 

and simultaneous work (Rummel and Spada 2005; Johnson and Johnson 1996; Gal et al. 2005b). These 

collaborative behaviors (i.e., sequential work, information sharing, and simultaneous work) were targeted 

in this study  because they relate to a variety of social settings, including employment, education, and 

game play(White et al. 2007). Specifically, in group work, people need to be able to take turns (sequential 

work), decide on certain aspect of the work and then effectively deliver relevant information (sharing 

information), and conduct tasks collaboratively (simultaneous work)(Leman 2015). Sequential work 
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implies that users take actions one by one (turn taking).  Turn taking is a life skill necessary for social 

success in all environments (Rao et al. 2008; Bernard-Opitz et al. 2001). Information-sharing enables 

individuals to share resources and knowledge in order to achieve the same goal (Johnson and Johnson 

1996).  Weiss and colleagues observed  that information sharing is one of the best ways to train social 

skills in children with ASD (M. J. Weiss and Harris 2001). Information sharing is also important for 

children with ASD to build friendships with others (Rao et al. 2008). Another aspect of group work, i.e., 

simultaneous work, requires that members of a group work together at the same time (Leman 2015; Gal et 

al. 2005a). It has been found that the simultaneous interactions could improve social skills by fostering 

the recognition of the presence of the other, and enhancing interest in partners (Gal et al. 2009; Zancanaro 

et al. 2007).  

The second challenge in this area is to efficiently measure interactions to understand users’ within 

system behaviors as well as evaluate generalized improvements beyond skill systems and training 

programs (Anagnostou et al. 2015). In order to understand interactions between multiple users, several 

methods, such as self-report, interviews, observations, performance, and dialogue analysis, have been 

explored by researchers in multi-user systems (Gress et al. 2010). Cheng and colleagues used a self-report 

method and an observation method to evaluate social competence of children with ASD in their CVE 

(Cheng and Ye 2010). In iSocial (Matthew Schmidt et al. 2012; Stichter et al. 2014), the authors analyzed 

users’ behavior by coding their reciprocal social interactions (e.g., conversation initiations, responses and 

continuations), identifying their use of available avatar-based gestures and movement, and rating their 

behaviors. However, some aspects of these measurements are task-dependent. Therefore, the methods 

used to measure social activities in these CVEs cannot be directly applied to evaluate collaborative 

interactions in our CVE systems. In this Chapter, we have adapted these existing methods to develop a set 

of metrics for objective measurement of interactions in our CVE-based collaborative games. 
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2.2.2. Current work 

The primary contributions of this chapter are: i) designing a novel computer-based CVE, named 

CoMove, that can promote important collaborative behaviors, such as sequential work, information 

sharing, and simultaneous work, between two users in a flexible manner, as well as provide appropriate 

real-time feedback based on their performance; ii) providing a potential way to objectively measure both 

collaborative and communicative behaviors of the users when they play these collaborative games; and 

iii) presenting the results of a feasibility study involving 7 pairs of ASD/TD and 7 pairs of TD/TD 

children to test system feasibility, and to assess the capacity of CoMove to index important aspects of 

interactions in the system.  

CoMove was designed with the ultimate goals of measuring and potentially enhancing collaborative 

interactions and verbal-communication of children with ASD. In this study, we tested the feasibility of 

CoMove for children to collaboratively interact and communicate with each other, as well as its potential 

to index important aspects of the interactions. Testing the system feasibility and its measurement 

capability lays the groundwork for future investigations into how changes within the system may 

generalize to real world interactions. We will evaluate effects of CoMove on collaborative and verbal-

communication skills of children with ASD in their real world interactions in the future. 

The rest of the chapter is organized as follows. Section 2.3 presents the development of CoMove with 

an emphasis on designing collaborative puzzle games to promote collaboration, and generating 

collaboration- and communication-related data to objectively measure their behaviors. Section 2.4 

provides information about the tasks, participants and experimental protocol. The results and discussion 

are presented in Section 2.5. Finally, Section 2.6 summarizes the contributions of this chapter, discusses 

limitations of the current work, and indicates potential future improvements. 

2.3. System Design  

CoMove is a distributed virtual environment system for two users to communicate and play 

collaborative puzzle games. The collaborative games in CoMove were designed to promote collaboration 
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through collaborative strategies and to provide feedback based on users’ performance. In addition, an 

objective measurement method was developed for understanding users’ collaboration and communication 

skills within the system. In what follows, we describe i) the architecture of CoMove, ii) the characteristics 

of these collaborative games, and iii) the details of the objective measurement approach. 

2.3.1. Architecture of CoMove 

CoMove was designed for two geographically distributed users using their own computers, where each 

computer is a node of the CVE system, to communicate and collaborate in a shared environment. Given 

this goal, we designed the architecture shown in Fig.  1, which is divided into a system architecture and an 

application architecture. The system architecture shows how two nodes (users’ computers) are connected 

and how application data are distributed, while the application architecture is composed of the 

components used to implement functionalities of the application.    

 

Generally, the design of a CVE system involves i) how nodes (users’ computers) are connected, and ii) 

how application data are distributed (Fleury et al. 2010). The design of the system architecture of 

CoMove aimed to provide an efficient way to address these two issues given specific system 

requirements. We selected a server-client model for node connection because it is simpler to maintain 

state consistency compared to the peer-to-peer model (Macedonia and Zyda 1997). The application data 

 
Fig.  1 The architecture of CoMove 
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were distributed with a replicated architecture, which replicated the entire application data on each node 

of CoMove. This replicated architecture can improve the use of network resources since the display data 

do not need to be transmitted over the network using this architecture (Suthers 2001). Usually, a scalable 

CVE system uses a separate central server to store all the application data, distribute specific data to each 

node, and update games states of all the nodes (Gautier and Diot 1998). Since CoMove targets 

interactions between two players, no separate central server is necessary at this point. In CoMove, one 

node is the server, another node is the client, and both nodes have the entire application data. This kind of 

architecture is convenient and has low network load for a two-player CVE system. 

Generally, an application architecture is designed to enable specific functionalities. The application 

architecture of CoMove was designed to i) enable communication and game playing between two 

geographically distributed users, and ii) understand their behaviors in the system. The application 

architecture of CoMove has four components: an interface component, a controller component, a network 

connection component, and a data logging component. An interface component is generally used to get 

users’ inputs and execute an application’s outputs, while a controller component is often used to make 

decisions and generate responses in computer-based systems (Dix 2009). In order to support both verbal-

communication and game-playing, the interface component of CoMove could support both audio 

input/output (through a microphone and a speaker) and game-related input/output (using a mouse and a 

graphic display monitor). The controller component of CoMove was implemented using a Finite State 

Machine (FSM) with the objective to i) manage multiple collaborative games to facilitate sequential 

interactions, information sharing, and simultaneous interactions, and ii) provide appropriate performance-

based feedback to enhance learning. A network connection component is usually used by a CVE system 

to connect its multiple nodes (Bowers et al. 1996). We selected a server-client model to connect 

distributed nodes for simplicity, as discussed earlier. A data logging component (called “data collection” 

in iSocial (Matthew Schmidt et al. 2012)) is commonly used in CVEs for ASD intervention in order to 

understand behaviors from the logged data since understanding behaviors is one of the primarily goals in 

this kind of system. The data logging component of CoMove could log game information, human actions, 
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and audio data to understand children with ASD’s collaborative performance and communication skills in 

collaborative games. In what follows, we present in detail the development of the controller, network 

connection, and data logging components of CoMove.   

2.3.1. Controller 

The controller component of CoMove was developed in order to manage multiple collaborative puzzle 

games. We selected collaborative puzzle games as the collaborative activities in CoMove because these 

games have been widely accepted as engaging children with ASD in collaborative interactions (Battocchi 

et al. 2010), and they are suitable for implementing multiple collaborative strategies to promote 

collaboration (Cappelletti et al. 2004). The logic to manage these collaborative puzzle games is modeled 

using a FSM with hierarchy and concurrency, as shown in Fig.  2. 

 

The Start state of the FSM is the start point of the system. Two players will start their applications in 

this state and log into the shared environment from their own nodes. Subsequently, an introduction on 

how to use the environment and how to play the collaborative puzzle games is provided to these players 

in the Introduction state of the FSM. The Introduction state is a concurrent state, which can not only 

enable two players to read game information with different reading speeds but also synchronize their 

   
Fig.  2 Finite state machine in the controller component 
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states to start a game at the same time. We used a hierarchical state, the Game_i state, to present a 

collaborative puzzle game. The Game_i state has multiple sub-states, such as the Initialization state, the 

Step_j state and the Feedback_k state. The system starts a new game when an old one ends. This logic 

enables players to play multiple collaborative puzzle games that require multiple kinds of collaborative 

behaviors, i.e., sequential work, information sharing, and simultaneous work. The system can also offer 

performance-based feedback in the Feedback_k state to help players complete the games. 

2.3.1.2. Network connection 

The network connect component is mainly used to transfer data between different nodes. In CoMove, 

we designed an efficient data transmission mechanism that used different strategies to transfer different 

types of data.  The trivial game information, such as puzzle piece position, is transferred between the two 

nodes without synchronization. The game state information is transferred using a hand-shaking 

mechanism for a stable synchronization. The server node of CoMove executes all the computations of the 

system, such as computing the game states. These computed game states are transferred in 7 steps: 1) the 

client node sends its new data to the server node (this step can be skipped if the new data occurs at the 

server node); 2) the server node then computes the new game state; 3) and sends the new game state as a 

synchronization request to the client node; 4) the client node updates its game state; 5) and sends a 

synchronization acknowledgement to the server node; 6) after receiving the synchronization 

acknowledgement from the client node, the server node updates its state; and 7) sends back an 

acknowledgement to the client node. This hand-shaking mechanism guarantees synchronization between 

two nodes. The audio data transmission is implemented using the Skype 2 software for simplicity and 

stability. 

2.3.1.3. Data Logging 

The data logging component of CoMove is used to store the performance- and communication-related 

data in order to understand the corresponding within-environment behaviors. The recorded data include 

                                                      

2 skype.com 
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game information data as well as player behaviors and audio data during game play. These data are 

recorded in real-time with time stamps, which can be used for offline synchronization.  

With these components, CoMove has the capacity to enable collaboration and communication between 

two geographically distributed players and record data to understand their behaviors in the system. The 

collaborative puzzle games in CoMove were designed with embedded strategies to promote collaboration. 

A framework for objective measurement of interactions in CoMove was designed in order to understand 

important aspects of the within-system behaviors. In what follows, we describe the collaborative puzzle 

games and the objective measurement framework. 

2.3.2. Collaborative puzzle games 

The puzzle games were designed to promote collaboration in the CVE for users with ASD. Three 

important collaborative behaviors, i.e., sequential work, information-sharing, and simultaneous work, 

were evaluated. In order to evaluate these three collaborative behaviors, three types of games, turn-taking 

games, information-sharing games, and collaboration games, were designed.  

In each game, players were required to assemble a specific shape by dragging several puzzle pieces 

following specific rules. In the turn-taking games, each player had full control over the puzzle pieces 

during his/her turns. In the information-sharing games, colors of some puzzle pieces were hidden for one 

player while they were visible to the other player. Therefore, the players needed to ask and share the color 

information in order to move the correct pieces in this type of game. Finally, the collaboration games 

were implemented with a joint play strategy, which requires two players to drag a puzzle piece in the 

same direction simultaneously in order to move it. These three types of games together require sequential 

interactions, simultaneous interactions, and sharing of information. In addition, the system can provide 

performance-based feedback in these games to help users complete the games. The collaborative puzzle 

games developed in CoMove were composed of multiple tangram games (Fig.  3 (P1_1) and (P2_1) 

shows an instance of tangram games) and a castle-building game (shown in Fig.  3 (P1_3) and (P2_3)). 
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Fig.  3  P1_1 and P2_1 are Screenshots of a tangram game captured from two CVE nodes; P1_2 and P2_2 

are Screenshots of the same tangram game from the nodes after two pieces being moved; and P1_3 and P2_3 

are screenshots of a castle game of the nodes 
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In each tangram game, players were required to assemble a specific shape from seven flat pieces. Each 

game had seven steps. In each step, a single puzzle piece needed to be moved to its target position. A total 

of seven tangram games were designed with five configuration features: 1) who can see the colors of all 

the puzzle piece; 2) who can move puzzle pieces; 3) who can rotate puzzle pieces; 4) the maximum time 

duration of a step; and 5) the feedback information. The values of the first four features of each game are 

listed in Table 1. For example, in game T1, both P1 and P2 can see the color of puzzle pieces. In this 

game, P1 and P2 could move puzzle pieces one by one, and the puzzle pieces could rotate automatically. 

The maximum time duration for a player to successfully move a puzzle piece in game T1 is 30 seconds. If 

the player failed to move any puzzle piece within the time duration, the system automatically moved a 

puzzle piece to its target position. The fifth feature, i.e., feedback information, is about how to move or 

rotate pieces in the game. For example, an example of feedback information in the collaboration game, 

T3, is “Maybe two people are needed to move this puzzle piece”. In a tangram game, feedback 

information is offered when players fail the first two steps and the first four steps of the game. 

The main focus of these games is to facilitate information sharing as well as promote both sequential 

and simultaneous interactions. The information-sharing was facilitated by hiding information for one of 

the two users. For example, in game T4, the first player can see colors of all puzzle pieces, while the 

Table 1 The value of the configuration features for each game 

Game name 

Who can see 

the colors of 

all the 

puzzle 

pieces 

Who can move the puzzle 

pieces 

Who can 

rotate all 

the puzzle 

pieces 

Time 

duration 

(seconds) 

T1 P1* and P2* 
P1 in step 1, 3, 5, 7; P2 in 

step 2, 4,6 
Auto** 30 

T2 P1 and P2 
P1 in step 3, 4, 7; P2 in step 

1, 2, 5, 6 
Auto 30 

T3 P1 and P2 P1 and P2 in all steps Auto 45 

T4 P1 P2 in all steps P2 40 

T5 P2 P1 in all steps P1 40 

T6 P1 P1 and P2 in all steps P2 50 

T7 P2 P1 and P2 in all steps P1 50 

*P1 means the first player, and P2 means the second player 

** Auto means the puzzle pieces will be rotated automatically by the system 
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second player can move all the pieces. Therefore, the first player needs to share color-information with 

the second player in order for the second player to move the correct puzzle pieces. 

 

In order to promote both sequential and simultaneous interaction, we developed a collaboration 

strategy, which requires two players to move puzzle pieces individually or simultaneously in order to 

complete a specific game. Previous studies using multi-touch devices for co-located multi-user 

interactions implemented the collaboration strategy by defining rules, such as holding on the same puzzle 

piece (Gal et al. 2009; Fan et al. 2014). Those co-located systems enable players to communicate with 

each other in a face-to-face mode, which makes it easy to follow these rules. It is challenging to 

implement natural face-to-face communication in distributed CVE systems from a technical point of view 

(Montoya et al. 2011). Interactions in distributed systems lack natural non-verbal cues (such as gestures 

and eye contacts). This fact makes it harder for users to follow these rules in distributed CVE systems. 

Therefore, we developed a different way to implement this collaboration strategy in our distributed CVE 

system in order to fulfill the requirements to promote both sequential and simultaneous interactions. 

 
Fig.  4 The hybrid automaton 
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The hybrid automaton is used to represent how a puzzle piece responds when two players take actions 

in different games. In a collaboration game, the condition Both is true in the hybrid automaton. Under this 

condition, for example, if two players drag the puzzle piece towards the same direction (𝑥1̇ × 𝑥2̇ > 0), the 

velocity of the puzzle piece in the horizontal direction is (𝑥1̇ + 𝑥2̇)/2. If one player drags the piece to 

right and the other player drag it to left (𝑥1̇ × 𝑥2̇ < 0) or one player stops dragging in the horizontal 

direction(𝑥1̇ × 𝑥2̇ = 0), the velocity of the puzzle piece in the horizontal direction is 0. When the puzzle 

piece is successfully moved to its target area (presented with the event S) or the time reaches the 

maximum time duration (presented with the event T), the position of the puzzle piece is automatically set 

to (𝑥𝑡 ,  𝑦𝑡). Using this hybrid automaton model, players are forced to interact differently, i.e., dragging 

individually or dragging simultaneously, in different games. 

Table 2 Symbols used in the hybrid automaton and their descriptions 

Symbol Type Description 

𝐴𝑐𝑡𝑖, i=1,2 Event The first (i=1) or the second (i=2) player takes 

actions on the puzzle piece 

𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑖 , i=1,2 Event The first (i=1) or the second (i=2) player release 

the puzzle piece 

𝑃𝑖 , i=1,2 Condition The first (i=1) or the second (i=2) player’s turn 

to move puzzle pieces (turn-taking games) 

Both Condition Two players move puzzle pieces together 

(collaboration games) 

T Event Time out 

S Event Succeed 

x Variable Shift of a puzzle piece in the horizontal 

direction 

y Variable Shift of a puzzle piece in the vertical direction 

𝑥0   Variable Initial position of a puzzle piece in the 

horizontal direction 

𝑦0   Variable Initial position of a puzzle piece in the vertical 

direction 

𝑥𝑡   Variable Target position of a puzzle piece in the 

horizontal direction 

𝑦𝑡    Variable Target position of a puzzle piece in the vertical 

direction 

𝑥̇  Variable Moving speed of a puzzle piece in the 

horizontal direction 

𝑦̇  Variable Moving speed of a puzzle piece in the vertical 

direction 

𝑥̇𝑖, i=1, 2 Variable Dragging speed of a puzzle piece by the ith 

player in the horizontal direction 

𝑦̇𝑖, i=1, 2 Variable Dragging speed of a puzzle piece by the ith 

player in the vertical direction 
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The castle-building game, as shown in Fig. 3 P1_3 and P2_3, is another CoMove game, which can 

enable turn-taking and information sharing as well provide performance-based feedback. The game is also 

designed based on the five configuration features mentioned in the tangram game. Each player could only 

see the colors of five pieces and could only move the other five pieces, which are summarized in Table 3 

using the i) who can move the puzzle pieces and ii) who can see the colors of the puzzle pieces. P1 in 

Table 3 means the first player and P2 means the second player. The index of each puzzle piece is shown 

in Fig.  5. These puzzle pieces can be automatically rotated when they are correctly located. The 

maximum time duration without successfully moving a puzzle piece is 30 seconds. The castle game was 

different from the tangram games since its pieces had gravity and therefore needed to be built in order. In 

summary, players can move the pieces in turns with order constraints in the castle game. A player may 

have no piece to move during his/her turn because of the order constraints. Thus, a feedback is displayed 

for the player to skip his/her turn when no piece is movable for the player. 

 

 

2.3.3. Objective measurement method 

Existing literature lacks standardized methods for objective measurements in CVE-based collaborative 

games. Measurements of collaboration and communication in CVE systems may be task-dependent. 

 
Fig.  5 The index of each piece in the castle game 

 

Table 3 The game information of the castle game 

Index of a 

puzzle piece 

1 2 3 4 5 6 7 8 9 10 

Who can move 

the puzzle 

pieces 

P1 P1 P1 P2 P2 P1 P1 P2 P2 P2 

Who can see 

the color of the 

puzzle pieces 

P2 P2 P2 P1 P1 P2 P2 P1 P1 P1 
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Therefore, measurement methods used for existing CVE systems with social activities cannot be directly 

used in our CVE system with the collaborative puzzle games. One of the important goals of this chapter is 

to understand the collaboration and verbal-communication skills of children with ASD when they play 

collaborative games with their TD peers in CoMove. In order to understand the collaborative interactions 

and verbal-communication in the system, three kinds of data (game information data, human behaviors 

data and audio data) were recorded. The real-time recorded game information data included the start time, 

the end time and the success frequency of a game. The human behaviors data included information about 

dragging a piece, rotating a piece, and releasing a piece. The verbal-communication of each user in the 

environment was recorded as the audio data. These recorded data were analyzed offline based on several 

selected performance measures and communication measures. 

 

The performance measures, as shown in Table 4, were chosen such that they could directly reflect the 

effects of the collaborative puzzle games and the collaboration strategies on users’ collaborative 

behaviors within the system. For example, the measure-collaborative movement ratio-was defined as the 

ratio of collaborative movement time (i.e., how long two users move puzzle pieces together) to total time 

Table 4 All the performance- and communication-related measures 

 Measure name Measure description 

1 
Success frequency How many times an individual succeeded in 

moving pieces in game(s) 

2 

Collaborative movement ratio The ratio of the time duration of a piece being 

moved by two individuals simultaneously to the 

time duration of an individual dragged the piece  

3 Frequency of words How many words per minute an individual spoke 

4 
Frequency of asking question How often (the number of the utterance per 

minute) an individual asked task related questions  

5 
Frequency of information 

sharing-response 

How often an individual responded to task related 

information  

6 
Frequency of information 

sharing-spontaneous 

How often an individual initiated a task related 

information  

7 
Frequency of social 

reinforcement-positive 

How often an individual used positive social 

reinforcement, such as “good job”.  

8 
Frequency of social 

reinforcement-negative 

How often an individual used negative social 

feedback, such as “stupid”. 

9 Frequency of directives 
How often an individual directed other individual 

to tack action.  

10 
Frequency of social-oriented 

utterance 

How often an individual used social-oriented 

utterance, such as “what is your name?” 
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(i.e., how long an individual moves puzzle piece). The values of these performance measures were 

automatically computed offline from the recorded game information and human behavior data. 

The communication measures, also shown in Table 4, were selected based on both previous studies in 

peer-based interactions (Teasley 1995) and the specific tasks in our environment. Previous studies have 

utilized several communication measures, including the number of spoken words (Teasley 1995), asking 

questions and answering questions (Van Boxtel et al. 2000), information sharing (Curtis and Lawson 

2001), positive-reinforcement and negative-reinforcement (Mitchell et al. 2013), and directive utterances 

(Caballé et al. 2011), to understand both ASD and TD children in peer-based interactions. Based on these 

studies, we defined a corresponding seven communication measures to understand users’ conversations 

about the game play in CoMove. Although the majority of conversations in multi-user interactions are 

task-oriented, non-task-oriented conversations (or social-oriented conversations) are also used by the 

users during interactions (Charlop‐Christy et al. 2002). The non-task-oriented conversations were 

recorded using a frequency of social-oriented utterance measure. In order to index important aspects of 

communication in CoMove, we analyzed recorded audio data based on these measures by the following 

steps: i) transcribe the recorded audio data using the DragonNaturallySpeaking software 

(www.nuance.com), ii) correct the transcription by two native speakers of English, and iii) classify the 

corrected transcription into these communication measures by a human coder, who was blind with respect 

to the tasks and the participants. 

In order to mitigate coding variability, our team of clinical psychologists and engineers collaborated to 

develop a rule-based coding protocol with structured instructions on how to classify these communication 

measures in a consistent manner. We provide two examples of predefined rules here. One, if the utterance 

starts with ‘what’, ‘which’, ‘do’, ‘is’, and ‘are’, it is classified as a question-asking utterance. Two, if an 

utterance provides color, position, rotation, direction, and puzzle piece information, it is an information 

sharing utterance. In addition, if the information sharing utterance has the same information as its 

preceding utterance, it is an information sharing-response utterance. Otherwise, it is an information 

sharing-spontaneous utterance. Please note that the human coder was trained and directly supervised by 

http://www.nuance.com/
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two licensed clinical psychologists, who specialize in autism spectrum disorder intervention. The coder 

had been trained for behavior coding across a series of other related works(C. Liu et al. 2009; Zhang et al. 

2017). By recording and analyzing these data from both performance and communication measures, this 

chapter provides a way to objectively measure collaboration and communication children with ASD 

within CoMove. 

 2.4. Feasibility Study 

2.4.1. Subjects 

A total of 28 children, 7 age- and gender-matched ASD/TD pairs and 7 age- and gender-matched 

TD/TD pairs (age range: 7 – 17 years) were recruited to participate. The rationale for the above grouping 

are as follows: i) the ultimate goal of the study is to understand and enhance the collaborative interaction 

and communication skills of children with ASD with their TD peers; and ii) we also wanted to explore 

how two TD children interact under the same conditions so that we can identify meaningful differences 

between TD and ASD interactions. All the children with ASD had a clinical diagnosis of ASD from a 

licensed clinical psychologist, an IQ higher than 70, and the ability to use phrased speech as determined 

by a trained therapist. 

To assess current levels of ASD symptoms across groups, the Social Responsiveness Scale, second 

edition (SRS-2) (Constantino and Gruber 2002) and Social Communication Questionnaire (SCQ) (Rutter 

et al. 2003) were completed by parents of participants in both groups. These scales are efficient 

quantitative measures of interpersonal behavior, communication, and repetitive/stereotypic behavior 

characteristic of ASD. SRS-2 is an objective measure of symptoms associated with ASD. A total T-score 

of 76 or higher is considered strongly associated with clinical diagnosis of ASD. T-scores of 66 through 

75 are interpreted as moderate deficiencies in reciprocal social behavior, whereas a T-score of 60 to 65 is 

interpreted as a mild range. Total scores in the range of 59T and below are generally not associated with 

clinically significant ASD. SCQ is a parent-reported screening measure that taps the symptomatology 

associated with ASD (Rutter et al. 2003). The SCQ has two versions, Lifetime and Current. A Lifetime 
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Total Score above 15 suggests that the individual is likely to have ASD.  The Current Total Score is used 

to measure the individual’s behaviors during the most recent 3-month period.   

The characteristics of the 28 participants are shown in Table 5. TD1 represents the TD children in the 

ASD/TD pairs; while TD2 represents the TD children in the TD/TD pairs. These participants did not 

know each other before their experiments. They could not see each other but could talk with each other 

during the experiments through audio chat. The experiments were approved by the Vanderbilt University 

Institutional Review Board (IRB). 

 

2.4.2. Tasks and protocol 

Each pair of participants took part in a 50-minute long session where the participants sat in two 

different rooms in the same building. Two Dell desktop computers T3610 (E5-220 V3 CPU and 8GB 

RAM) were used as two nodes of CoMove. The connection of two nodes in these rooms was created via a 

Local Area Network (LAN). The experimental session included a pre-test, followed by a game playing 

session, and then a post-test. At the very beginning of an experiment, participants were instructed that 

they would be playing three different kinds of games in CoMove. However, they did not receive detailed 

instructions on the objective of each game. The participants were encouraged to communicate with each 

other in order to find out how to play each game. Feedback was also provided when necessary, as 

discussed in Section 2.3.2, in order to help participants play these games. After the introduction, the 

participants completed a pre-test that consisted of three baseline games (one castle game and two tangram 

games). The castle game is a turn-taking game requiring information sharing; while the two tangram 

games are enforced-collaboration games, T6 and T7, which are defined in Table 1. The target shapes of 

T6 and T7 in the pre-test were different from those in the game playing session. Eleven tangram games 

were included in the game playing session, which lasted approximately 30 minutes. After the game 

Table 5 Characteristics of The Participants 

 

 

Age 

Mean(SD) 

Gender 

Female/male 

SRS-2 total raw score 

Mean(SD) 

SCQ current total 

score Mean(SD) 

ASD 13.71(2.70) 1/6 107(22.35) 19(9.40) 

TD1 13.89(3.14) 1/6 13.71 (16.06) 1.29(1.38) 

TD2 10.59(2.00) 2/12 18.14 (16.60) 2.14 (3.53) 
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playing session, the three baseline games were presented again to serve as the post-test. The games and 

the order of games during the experiment are shown in Table 6. During the experiment, we recorded both 

video and audio of the participants and their computer screens. The participants were informed that both 

audio and video recordings of the experiment would be made. 

 

2.5. Results and Discussions 

2.5.1. System performance 

Overall, CoMove worked as designed. All participants completed their experiments with a zero-

dropout rate. The system mostly ran at 60 frames per second and had an average network delay of 1 

millisecond or less when used through a Local Area Network (LAN). The system could successfully log 

the performance and audio data of the participants as well as game information data via the data logging 

component. The audio data were recorded for each game and each individual. A total of 467 audio files 

were recorded from 28 participants (17 audio files for each participant). One audio file was recorded 

incorrectly for unknown reasons. For the incorrectly recorded audio file, we manually extracted the 

corresponding audio data from the recorded video of that experiment. These results support the system 

feasibility. Specifically, the system is able to support communication and collaboration between children 

with ASD and their TD peers, as well as to record related data for meaningful measurements. 

In order to index important aspects of interactions in CoMove, we analyzed changes of the predefined 

performance and communication measures (these measures are discussed in Section 2.3.3) from the pre-

test to the post-test for each group. Specifically, we statistically compared the results of pre- and post- 

tests regarding these predefined performance and communication measures for all participants. The 

Wilcoxon Signed-rank test (Gibbons and Chakraborti 2011) was used for the statistical analysis with 0.05 

as the alpha level. Given the limited power corresponding to this small sample size and conservative non-

Table 6 The games and their order during one experiment 

Pre-test Castle game, T6, T7 

Game playing T1, T2, T3, T4, T5, T6, T7, T7, T6, T5, T4 

Post-test Castle game, T6, T7 
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parametric approach, we also examined effect sizes using Spearman’s rank correlation (0.1 is small effect, 

0.3 is medium effect, and 0.5 is large effect) (Cohen 1988). Although analyzing the differences between 

children with ASD and their TD peers in CVEs may be important, this chapter focuses on understanding 

changes of collaboration and verbal-communication skills within the system. Therefore, we compared the 

changes of each predefined measure from the pre-test to the post-test for each group. 

2.5.2. Feasibility study results 

The statistical analysis results for each subject group from the pre-test to the post-test across all 

performance measures are shown in Table 7 with the 𝜌 columns showing all effect sizes. Overall, 

participants in all groups (i.e., children with ASD, TD1 children, and TD2 children) demonstrated 

statistically significant improvements on some performance measures from pre- to post-test. Wilcoxon 

Signed-rank test indicated a significantly higher collaborative movement ratio in the post-test relative to 

the pre-test in tangram games for children with ASD (p<.05, 𝜌=.30) and TD1 (p<.05, 𝜌=.86). ASD and 

TD1 also had a significantly higher success frequency in tangram games (two participants of a pair shared 

the same value regarding this frequency) in the post-test compared to the pre-test (p<.05, 𝜌=.18). In 

addition, Wilcoxon Signed-rank test indicated a significantly increased success frequency in the castle 

game regarding TD1 (p<.05, 𝜌=.87) and TD2 (p<.001, 𝜌=.76). 

Table 8 summarizes the statistical differences from the pre-test to the post-test across all 

communication measures for all participants, while the 𝜌 columns show all effect size results. Overall, all 

participants had changes in some communication measures from the pre-test to the post-test, although not 

all of these changes were statistically significant. The word frequency of children with ASD in castle 

game in the post-test is higher that the frequency in the pre-test, but not at a statistically significant level 

(p=.25, 𝜌=.60). TD1 had a significantly higher word frequency (p<.05, 𝜌=.78) in the castle game in the 

post-test compared to the pre-test. For children with ASD, the frequencies of asking questions and 

information sharing-spontaneous are higher in the post-test compared to the pre-test; however these 
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differences did not achieve statistical significance. TD1 children had a significantly higher frequency of 

information sharing-response in the castle game (p<.05, 𝜌 =.29). 

In summary, children with ASD, TD1 children, and TD2 children demonstrated improvements 

regarding some important collaboration and verbal-communication measures from the pre-test to the post-

test, although not all improvements were statistically significant. In the next sub-section 2.5.3, we further 

discuss the results of children with ASD. 

 

The statistical analysis results for each subject group from the pre-test to the post-test across all 

performance measures are shown in Table 7 with the 𝜌 columns showing all effect sizes. Overall, 

participants in all groups (i.e., children with ASD, TD1 children, and TD2 children) demonstrated 

statistically significant improvements on some performance measures from pre- to post-test. Wilcoxon 

Signed-rank test indicated a significantly higher collaborative movement ratio in the post-test relative to 

the pre-test in tangram games for children with ASD (p<.05, 𝜌=.30) and TD1 (p<.05, 𝜌=.86). ASD and 

TD1 also had a significantly higher success frequency in tangram games (two participants of a pair shared 

the same value regarding this frequency) in the post-test compared to the pre-test (p<.05, 𝜌=.18). In 

addition, Wilcoxon Signed-rank test indicated a significantly increased success frequency in the castle 

game regarding TD1 (p<.05, 𝜌=.87) and TD2 (p<.001, 𝜌=.76). 

Table 8 summarizes the statistical differences from the pre-test to the post-test across all 

communication measures for all participants, while the 𝜌 columns show all effect size results. Overall, all 

participants had changes in some communication measures from the pre-test to the post-test, although not 

Table 7 Performance results from pre-tests to post-tests 

  Castle game Tangram games 

 Measure 
Pre-

test 

Post-

test 
𝜌 Pre-test 

Post-

test 
𝜌 

ASD  

N=7 

1 2 5 0.81 7 14 0.18* 

2  - - - 0.11 0.22 0.30* 

TD1  

N=7 

1  3 4 0.87* 7 14 0.18* 

2  - - - 0.11 0.12 0.86* 

TD2  

N=14 

1  1 3.5 0.76** 8 12 0.30 

2  - - - 0.13 0.09 0.22 

*indicates p<.05 and ** indicates p<.001 
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all of these changes were statistically significant. The word frequency of children with ASD in castle 

game in the post-test is higher that the frequency in the pre-test, but not at a statistically significant level 

(p=.25, 𝜌=.60). TD1 had a significantly higher word frequency (p<.05, 𝜌=.78) in the castle game in the 

post-test compared to the pre-test. For children with ASD, the frequencies of asking questions and 

information sharing-spontaneous are higher in the post-test compared to the pre-test; however these 

differences did not achieve statistical significance. TD1 children had a significantly higher frequency of 

information sharing-response in the castle game (p<.05, 𝜌 =.29). 

In summary, children with ASD, TD1 children, and TD2 children demonstrated improvements 

regarding some important collaboration and verbal-communication measures from the pre-test to the post-

test, although not all improvements were statistically significant. In the next sub-section 2.5.3, we further 

discuss the results of children with ASD. 

 

Table 8 The Communication Measures Results 

  Castle game Tangram games 

 Measure Pre-test Post-test Rho 
Pre-

test 
Post-test Rho 

ASD 

N=7 

3 0.79 0.910 0.60 0.90 0.88 0.68 

4 0.02 0.014 0.84 8e-3 0.02 0.67 

5 0.05 0.069 0.46 0.05 0.04 0.89 

6 0.02 0.025 0.78 0.02 0.04 0.54 

7 0 0 0.45 0 0 0.15 

8 0 0 -- 0 0 1 

9 0.01 0.014 0.52 0.01 0.02 0.59 

10 0 0 -0.17 0 0 -- 

TD1 

N=7 

3 0.73 1.038 0.78* 0.90 0.92 0.86 

4 0.03 0.035 0.68 0.01 0.01 0.86 

5 0.05 0.097 0.29* 0.05 0.03 0.29 

6 0.01 0.023 0.78 0.02 0.03 0.68 

7 0 0 -- 2e-3 0 0.45 

8 0 0 -- 0 0 -- 

9 6e-3 0 0.61 8e-3 0.03 0.68 

10 0 0 -- 0 0 -- 

TD2 

N=1

4 

3 0.74 0.863 0.81 0.75 0.58 0.58* 

4 0.01 0.020 0.40 0.02 0.01 0.72 

5 0.05 0.069 0.81 0.05 0.04 0.69 

6 0.01 0.018 0.65 0.01 0.03 0.67 

7 0 0 -0.16 6e-3 0 0.46* 

8 0 0 -- 0 0 0.18 

9 6e-3 8e-3 0.14 0.02 0.02 0.63 

10 0 0 0.83* 0 0 0.07* 

*indicates P<.05  
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2.5.3. Discussions 

In spite of its small sample size and lack of an active comparison condition, results from this pilot 

study indicated that children with ASD showed improvements on some collaborative performance 

measures when using our system. In CoMove, children with ASD had a significantly increased success 

frequency in tangram games in the post-test compared to the pre-test. These results are consistent with 

previous work by Bauminger-Zviely et al. (Bauminger-Zviely et al. 2013), who had reported that 

collaborative games could improve collaborative performance of children with ASD. Battocchi et al. 

(Wilson and Russell 2007) mentioned that enforced collaboration games, which required simultaneous 

activities, could be used in collaboration training of children with ASD. We observed a statistically 

significant increase in the collaborative movement ratio for children with ASD. These results support the 

potential usability of the collaboration games to promote collaboration in the ASD population in the 

future. 

In both castle and tangram games, children with ASD asked more questions in the post-test compared 

to the pre-test, even though the difference was not statistically significant. We noticed that in the pre-test 

of tangram games, the question asking frequency of children with ASD, 𝑀𝑑𝑛3 = 8𝑒 − 3, was lower than 

the frequency of TD1 children, 𝑀𝑑𝑛 = .01, and TD2 children, 𝑀𝑑𝑛 = .02. This is consistent with 

Schmidt et al.’s findings (M Schmidt et al. 2011), which showed that children with ASD had a lower 

frequency of initiations, including question asking. However, in the post-test of our CVE puzzle games, 

the question asking frequency of children with ASD,𝑀𝑑𝑛 = .012, was comparable to the frequency of 

TD1 children, 𝑀𝑑𝑛 = .012, and TD2 children, 𝑀𝑑𝑛 = .011. This result may be in line with Owen-

Schryver’s findings, which suggested that children with ASD could make more initiations after 

interacting with their TD peers in peer-mediated interactions (Owen-DeSchryver et al. 2008). However, 

                                                      

3 Mdn is the median value. We show the median value because of the small sample size and non-

normal distribution of the data.  
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these differences did not achieve statistical significance. The effects of CoMove on verbal-

communication skills of children with ASD need to be further investigated in the future.  

We also found that in both castle and tangram games, the success frequency of children with ASD was 

comparable to the frequency of TD children. The potential reason is that all participants with ASD had 

average IQ and phrase speech. Please note that this is not true for all children with ASD, some of whom 

have intellectual disability or severe language impairment. Therefore, these results should not be 

considered representative of how all children with ASD would perform.   

Based on the above results and discussion, we cautiously conjecture that CoMove has the potential to 

index important aspects of interactions in the system. The effects of CoMove on collaborative and verbal-

communication skills of children with ASD need to be further investigated in the future using a long-

term, multi-session skill transfer study with more subjects. We believe that the results of this preliminary 

study warrant further exploration on the potential impacts of CoMove on participants’ skills in real life in 

a clinical study of generalization.  

2.6. Conclusions, Limitation, and Future Work 

This chapter presents the design and development of a novel CVE system, CoMove, and the results of 

a preliminary feasibility study with 28 participants (7 ASD/TD pairs and 7 TD/TD pairs) using CoMove. 

A CVE system allows peer-based interaction in a shared and controlled virtual environment. The CVE 

system in this chapter has two distinguishing characteristics. First, it applies collaborative puzzle games 

and collaboration strategies to promote important collaborative behaviors, i.e., information sharing, 

sequential interactions, and simultaneous interactions. Second, it provides a potential way to objectively 

measure important aspects of collaboration and communication of these children when they play 

collaborative puzzle games in the CVE.   

A total of 7 ASD/TD pairs and 7 TD/TD pairs were involved in a preliminary feasibility study to 

initially test system functionality, and determine its capacity for indexing important aspects of within-

system interactions. Regarding functionality, all participants completed their experiments with a zero-
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dropout rate. Additionally, all system software and hardware worked as designed, capturing necessary 

data with minimal loss. We also observed and measured changes in participant collaborative behaviors. 

Specifically, we observed statistically significant changes on some important performance measures in 

children with ASD: a significantly increased success frequency and a significantly increased collaborative 

movement ratio in tangram games. We also observed changes (although not statistically significant) in 

communication measures in the children with ASD, such as an increased frequency of question-asking in 

tangram games. These results support that our system has the potential to index important aspects of 

interactions in the system. 

While the present work is promising, several limitations exist in the current work. We designed 

CoMove with the ultimate goals of measuring and potentially enhancing collaborative interactions and 

verbal-communication of children with ASD. In this chapter, we tested the system feasibility and its 

potential to measure important aspects of within-system interactions using a preliminary study. In the next 

step, we will evaluate how the within-system interactions correlate with and potentially impact 

participants’ skills in real life in a clinical study of generalization. This future work will include long-

term, multi-session experiments and many more participants. These participants will play real-world 

collaborative tasks as baseline tasks before and after interacting within CoMove. Their behavior changes 

in the baseline tasks will be measured using multiple measurement methods, such as questionnaires, 

observation, and evaluation tools (Gress et al. 2010), and used to indicate the impact of CoMove.  

Second, only one coder coded the participants’ communication behaviors in this study. In the current 

protocol, we were forced to rely on a single coder due to resource limitations in the laboratory of our 

behavioral collaborators in this preliminary work. In order for the coder to code communication behaviors 

in a consistent manner, our team of clinical psychologists and engineers collaborated to create predefined 

rules, as discussed in Section 2.3.4. However, the reliability of the coding results still needs to be 

evaluated using multiple coders and establishing high inter-rater reliability. We plan to use multiple 

coders in future work replicating and extending these finding.   
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Third, finding ways to provide and encourage face-to-face communication is a challenge for all CVEs. 

CoMove, at present, can only support audio chat, which simplified the data analysis with emphasis on the 

verbal communication in this preliminary study. Other non-verbal communication mode such as eye 

contact and gestures will be introduced in the future via a video chat, an eye tracker, and a gesture 

recognition method. 

Fourth, CoMove was tested in a Local Area Network (LAN). In order to broaden its applicability, the 

system will need to be tested in a global area network in the future. Asymmetric latencies are issues 

associated with the server-client architecture. While the asymmetric latencies between the server node and 

the client node were small in the LAN, the asymmetric latencies need to be addressed in order for 

CoMove to be used in a global area network. 

Finally, the current system included performance-based feedback. In the future, other kinds of 

feedback, such as communication-based feedback, will be included to foster more social-oriented 

communication. Despite the above-mentioned limitations, we believe that the present work, which offers 

a potential way to address current challenges of CVEs for ASD intervention and provides important 

preliminary insights in CVE and collaborative games-based intervention, makes a compelling case in this 

research area. 
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CHAPTER III. A COLLABORATIVE VIRTUAL ENVIRONMENT ON THE ANDROID 

PLATFOMR 

3.1. Abstract 

The previous chapter explored a Collaborative Virtual Environment (CVE) for children with Autism 

Spectrum Disorder (ASD) to interact with their Typically Developing (TD) peers from different locations 

using their own computers. Recently, there has been growing interest in mobile applications, which have 

the potential to increasingly engage children with ASD (Tanaka et al. 2010) by creating ubiquitous 

learning environments (Gravenhorst et al. 2015). In this chapter, we designed a Collaborative Virtual 

Environment (CVE) on the Android platform in order to investigate the collaborative behaviors and 

communication skills of children with ASD. The CVE on the Android platform 1) has widespread 

availability, and 2) allows flexible communication between people. This presented CVE on the Android 

platform allows two users in different locations to interact and communicate with each other while 

playing puzzle games on mobile devices. Multiple puzzle games with different interaction patterns were 

designed in the environment, including turn-taking, information sharing, and enforced collaboration. 

Audio and video chat were implemented in the environment in order for the geographically distributed 

players to talk with and see each other. The usability of the environment has been validated through a user 

study involving five pairs of subjects. Each pair included one child with ASD and one typically 

developing (TD) child. The results showed that the presented CVE environment may have the potential to 

improve players’ collaborative behaviors and communication skills.  

3.2. Introduction 

In this chapter, we designed a CVE on the Android platform for ASD intervention with the goal to 

understand and ultimately promote the collaborative interactions and communications of children with 

ASD. Because the use of mobile devices is growing exponentially, mobile applications have the potential 

to increasingly engage children with ASD (Tanaka et al. 2010) by creating ubiquitous learning 
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environments (Gravenhorst et al. 2015). The studies using mobile applications for ASD intervention 

include emotion recognition (Leijdekkers et al. 2013), social interactions (Escobedo et al. 2012), and 

vocabulary learning (Husni 2013). However, these mobile applications are limited in interactions and 

communications between a user and a mobile device. Our CVE on the Android platform (Fig.  6) —

supporting multiple players’ interactions and communications in the shared collaborative environment—

investigated the collaborative interactions and communications of children with ASD.  

 

The goals of the current research were to: 1) evaluate the usability of the CVE on the Android 

platform; and 2) investigate the collaborative interactions and the communications of children with ASD 

when playing puzzle games with their TD peers. This novel environment supports following 

functionalities:  

i) Interaction between two geographically distributed players via internet 

ii) Audio and video communication  

iii) Automatic performance and audio recording 

3.3. Method 

The CVE on the Android platform was designed with Unity3D (www.unity3d.com).  The application, 

which can be accessed by players using Android mobile devices, allows two players to interact and 

communicate with each other remotely. A variety of puzzle games were developed that compelled 

interactions between two players, such as turn-taking, information sharing, and enforced collaboration. 

The environment supported video and audio communication between the two players. The performance 

status and dialogue of the players were recorded by the CVE system for offline analysis. In order to 

           
Fig.  6 Two players are using the CVE on the Android platform. 
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support these functionalities, a software framework (Fig.  7) was developed with four modules: a game 

controller module, a network connection module, a communication module, and a data recording module. 

The game controller module implemented the application logic of the puzzle games. The audio/video chat 

between two geographically distributed players was supported through the communication module. The 

network connection module was responsible for transferring the data from game controller and 

communication modules via the internet. The data recording module recorded locally information related 

to how players played the game and how they communicated with each other. The functionality and the 

usability of this CVE on the Android platform has been evaluated by a small user study involving five 

pairs of players, each consisting of one child with ASD and one TD child.  

 

3.3.1. System design 

3.3.1.1. Game controller.  

The logic of the CVE was implemented based on a hierarchical and concurrent Finite State Machine 

(FSM) model, shown in Fig.  8. The element of concurrency in the design made it possible for players to 

reside in different sub-states while still maintaining application synchronization. Take the ‘Introduction’ 

state for instance: player1 could stay in the ‘Wait_P1’ state after he/she finished reading the introduction, 

while player2 could still read the introduction in the ‘Introduction_P2’ state. After both players finished 

reading the introduction, their game states would be rejoined upon exiting the ‘Introduction’ state. In Fig.  

8, M is the total number of puzzle games to be played in a session, which is customizable for different 

requirements. N is the total steps of one game, which can vary from game to game.  

 
Fig.  7 The framework of our CVE on the Android platform. 
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The hierarchical state, ‘Game_i’, defined the logic of each puzzle game in the CVE. In order to study 

the different collaborative interactions of children with ASD, three types of puzzle games were designed 

in the CVE: turn-taking games, information sharing games, and enforced collaboration games. In the turn-

taking games, players had alternating control of blocks movement. Information sharing games asked 

players to share color information in order to move the correct blocks. The enforced collaboration games 

aimed to impose simultaneous interactions of two players. Both players had to move the same block in 

the same direction at the same time in the enforced collaboration games. A considerable amount of 

communication between the players was required in the enforced collaboration games.  

 

Each game was composed of multiple steps. The steps were generalized and modeled using the 

‘Step_j’ state in Fig.  8. The implementation of the steps was different depending on the configuration of 

the following parameters: 1) color visibility (i.e., which players can see the color); 2) block controllability 

(i.e., which players can move the block); and 3) block rotatability (i.e., which players can rotate the 

Table 9 Game Configuration Parameters  

Game 

index 

Color 

visibility 
Block controllability 

Rotatabil

ity 
Interaction type 

1 P1 and P2 P1 in step 1, 3, 5, 7; P2 in step 2, 4, 6 Auto Turn-taking 

2 P1 and P2 P1 in step 3, 4, 7; P2 in step 1, 2, 5, 6 Auto Turn-taking 

3 P1 and P2 P1 and P2 in all steps Auto Enforced collaboration 

4 P1 P2 in all steps P2 Information-sharing 

5 P2 P1 in all steps P1 Information-sharing 

6 P1 P1 and P2 in all steps P2 Enforced collaboration 

7 P2 P1 and P2 in all steps P1 Enforced collaboration 

8 

Half for P1 

and Half for 

P2 

P1 in step 1, 3, 5, 7, 9; P2 in step 2, 4, 6, 

8, 10 
Auto Turn-taking 

 

 
Fig.  8 The Finite State Machine model of the CVE on the Android platform. 
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block). The values of these parameters determined the types of game interaction, shown in Table 9. Game 

1 was a turn-taking game, in which two players, P1 and P2, were both able to see the color of blocks. At 

the first step, player P1 had control of all the blocks. At the next step, P2 had control of all the blocks. 

They would take turns dragging the block in game 1. The number of steps in each game was seven in all 

but the last game, which had ten steps.  

3.3.1.2. Network connection.  

A client-server network architecture was used for the CVE on the Android platform involving two 

players. The device of one player acted as a server, while the other player’s device acted as a client. All 

the computationally-intensive tasks were implemented on the server side. This network architecture has 

been widely used for two-player mobile games and it is simple and sufficient (Gautier and Diot 1998). 

The network connection was created via Unity Master Server (UMS) 

(http://docs.unity3d.com/Manual/net-MasterServer.html), which allowed players to find each other at any 

time and at any location. The function of the UMS for network connection is shown in Fig.  9. Any player 

can initiate a game as a server, for example the ‘Server A’ or the ‘Server B’ in Fig.  9, by clicking the 

‘start game’ button in the game. The device information (IP address and port number) were registered 

with the UMS. Other players can connect to one of the active servers, thus becoming a client. The client 

can send connection requests by clicking the ‘connect’ button in the game. After receiving this request, 

the UMS then returns a list of active servers to the client. The returned list contains all pertinent 

information required for the client to connect to the server. The client then selects one server from the list 

to create a connection with the selected server.  

 

 
Fig.  9 Unity Master Server (UMS) role. 
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3.3.1.3. Communication module. 

The communication module was designed to support the audio and video communication between the 

players. The video chat functionality allowed two players to see each other in real time, which was 

implemented following the procedure in Fig.  10. The image was captured by the mobile camera in 

ARGB32 format. The captured image was then encoded into a JPG file, which was amenable to network 

transfer because it had a small data size and was in serialized format. The Unity remote procedure call 

(http://docs.unity3d.com/Manual/net-RPCDetails.html) was used for the image data transferring. When 

the receiving mobile device obtained the transferred data, it was decoded into the RGB24 format and 

displayed using the Texture2D component (http://docs.unity3d.com/ScriptReference/Texture2D.html). 

The video was updated with a fixed frequency 12Hz.  

 

The audio chat feature was used for players to talk with each other in real time. This feature was 

implemented with a procedure similar to the video chat. With both a speaker and microphone on the 

device, there was an audio feedback problem during the audio chat. Head phones were worn by all 

players to solve this audio feedback problem.  

3.3.1.4. Data recording.  

The data recording module records the performance and dialogue data of players in the CVE for the 

offline analysis. The recorded performance metrics included the success frequency (how many times they 

succeed per game), game duration, and collaborative movement duration, which were written to a file in 

real time. The audio data of each player were recorded locally with a frequency of 44.1 KHz. The 

recorded audio data were written to a file at the very end of all games, and were later transcribed and 

labeled with some predefined utterance types manually. The utterance types were defined referring to 

previous literature to evaluate the communication (Charlop‐Christy et al. 2002; Nunes and Hanline 2007), 

 
Fig.  10 The video chat procedure 

 

http://docs.unity3d.com/Manual/net-RPCDetails.html
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including the words spoken per minute, the frequency of question-asking, the frequency of response, the 

frequency of spontaneous information sharing, and the frequency social oriented utterance.  

3.3.2. Experiment Setup 

Five age- and gender-matched pairs of subjects were recruited for a preliminary evaluation of the CVE 

on the Android platform. Each pair was composed of one child with ASD and one TD child. All the 

children with ASD had a clinical diagnosis of ASD from a licensed clinical psychologist. The Social 

Responsiveness Scale, second edition (SRS-2) (Constantino and Gruber 2002) and Social Communication 

Questionnaire Lifetime Total Score (SCQ) (Rutter et al. 2003) were completed by for a parent of each 

child with ASD. The experiments were approved by the Vanderbilt University Institutional Review Board 

(IRB). The information of all the subjects are summarized in the Table 10. 

 

During the experiment, subjects in a pair sat separately in two different rooms. The layout of the 

experiment rooms is shown in Fig.  11(left). One tablet, Nexus 9, and one set of headphones were 

provided for each subject for the experiment. A video camera recorded the subject and the device during 

the experiment. Each experiment lasted about 40 minutes. The experiment procedure is shown in Fig.  

11(right). At the beginning, the devices were given to each subject. Then, subjects completed the pre-test, 

with one turn-taking game (game 8), and two enforced collaboration games (game 6 and game 7). During 

the core task, seven puzzle games, from game 1 to game 7, were presented in order. The post-test 

included the same games as the pre-test. After the post-test, subjects completed a survey regarding their 

experience with the system and with their partners.  

Table 10 Subject Characteristics 

 Age:  

Mean (Std) 

Gender 

Female/male 

SRS-2 total raw score: 

Mean (Std) 

SCQ current total 

score: Mean (Std) 

ASD 10.99 (3.69) 4/1 83.50 (24.96) 20.25 (10.50) 

TD 10.81 (2.32) 4/1 9.80 (7.53) 0.80 (1.30) 
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3.4. Results 

3.4.1. System performance  

Five pairs completed the preliminary study. One pair had difficulty to finish the experiment and their 

data were excluded from analysis. The other four pairs completed the experiment. The network 

connection was lost during one pre-test. The automatically recorded performance and audio data of game 

7 in this pre-test were also lost. However, we recovered the audio data by extracting the audio from the 

recorded video. The turn-taking game (game 8) and the enforced collaboration games (game 6 and game 

7) were analyzed separately since different games required different interactions. Four pairs’ data were 

used for the turn-taking game, the survey analysis, and the communication analysis of the enforced 

collaboration games. Only three pairs’ data were used for the performance analysis in the enforced 

collaboration games. Even though the video chat was implemented in our CVE on the Android platform, 

it was disabled during the experiment because it caused data loss and lag. Instead, audio communication 

was used during the experiment. 

3.5.2. Feasibility study results 

All pairs showed an improved performance during the post-test compared to the pre-test. This meant 

all pairs succeeded more in both the turn-taking game (game 8), and the enforced collaboration games 

                   
Fig.  11 The experiment room layout (left) and the experiment procedure (right). 
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(game 6 and game 7). In addition, all pairs required less time to finish both turn-taking game, and 

enforced collaboration games in the post-test. All pairs also demonstrated an increased collaborative 

movement duration, which was defined as the duration of time players moved blocks together. The 

increased collaborative duration may indicate improved collaboration between the players. The mean and 

standard deviation (Std) of all these changes are listed in Table 11. The first row shows that the success 

frequency increased by 3.25 seconds on average in game 8, which allowed a maximum of 10 successes, 

with a standard deviation 1.7.  

 

For the communication data, we found some differences between the children with ASD and their TD 

peers during the pre-test in the enforced collaboration games. In the pre-test, all the children with ASD 

spoke fewer words than their TD partners in the enforced collaboration games. They also asked fewer 

questions, but gave more responses, compared to their TD partners in the pre-test of the enforced 

collaboration games. The mean and standard deviation of the absolute value of these differences are listed 

in Table 12. However, these differences were not observed during the post-test. The changes from the 

pre-test to the post-test in terms of the communication variables were not found.  

 

The survey from the subjects reflected positive opinions for the environment. From the survey, all 

subjects enjoyed playing the games. All subjects perceived an improved individual performance in 

playing the games and increased ease in talking with their partners at the end of the experiments. Each 

question in the survey was scored on a 5-Likert scale. In terms of enjoying the game, number 1 indicated 

Table 12 Difference between Children with ASD and Their TD Partners during the Pre-test 

 Words  Questions Responses 

Mean (Std) 39.75 (27.62) 8.00 (8.66) 3.00 (2.65) 

 

Table 11 Performance Changes from Pre-test to Post-test 

Game Index Variable  
Increased/ 

Decreased 
Mean (Std) 

8 
Success frequency Increased 3.25 (1.70) 

Time duration (in seconds) Decreased 28.00 (18.78) 

6 & 7 

Success frequency Increased 8.67 (3.06) 

Time duration (in seconds) Decreased 304.67 (83.94) 

collaborative ratio (in seconds) Increased 20.62 (8.55) 
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no enjoyment at all, while number 5 meant very much enjoyment. In terms of their performance in the 

game and the communication with their partners, number 1 indicated performance/communication 

became much worse at the end of the experiment, while number 5 meant performance/communication 

became much better at the end of the experiment. The mean and standard deviation of the survey 

questions are shown in Table 13. 

 

3.5. Conclusions and Future Works 

This work discusses the design of a CVE on the Android platform for ASD intervention with the goal 

to improve the collaborative interaction and communications of children with ASD using a mobile 

application. The environment facilitates the interaction and communication of two players from different 

locations by playing multiple block games.  

Five ASD/TD pairs participated in the preliminary study. The usability of the environment and its 

functionalities, including the two players’ interactions, audio communications, and data recording, have 

been validated by the preliminary study. The result of the experiments may support the potential of the 

environment in improving the collaborative interactions and communications of children with ASD.  

There were some limitations in the system design and user study in this work. Only a small sample size 

were included in our current study. More subjects will be involved for the experiments in the future. The 

current CVE was evaluated in a small local network, which will be extended to the global network in 

order for players from any location in the world to gain access. Future work will consist of a closed-loop 

system using targeted feedback based on the player’s communication and collaborative performance.  
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CHAPTER IV. DESIGN OF AN INTELLIGENT AGENT FOR MEASUREMENTS IN A 

CVE 

4.1. Abstract 

In Chapter II and Chapter III, we designed and developed Collaborative Virtual Environments (CVEs) 

in order to encourage collaboration and communication between real-users. Although CVEs have the 

advantages to support flexible, safe and peer-based interactions, measuring the interactions in CVEs is 

challenging given the complex interactions and unrestricted conversations between the real-users. In this 

chapter, we have designed an intelligent agent that could communicate and play games with users in order 

to measure their communication and collaboration skills in a CVE. The intelligent agent was developed 

with a hybrid method, which combined a dialogue act classifier and a finite state machine. This hybrid 

method enabled the intelligent agent not only to communicate and play collaborative puzzle games with 

the users in the CVE but also to generate task-performance and verbal-communication features to 

measure their both communication and collaboration skills. A preliminary study with five children with 

ASD was conducted to test the intelligent agent. Results demonstrated the capacity of the intelligent agent 

to communicate and play games with children, as well as the potential to generate meaningful features to 

measure the skills.  

4.2. Introduction 

As discussed in Chapter II and Chapter III, a Collaborative Virtual Environment (CVE), which is a 

computer-based, distributed, virtual space for multiple-users to interact with one another and/or with the 

virtual items (Benford et al. 2001), preserves the advantages of traditional computer-based intervention 

systems but also facilitate real-time interactions between real users across distance. CVE technology 

offers a flexible alternative to conventional modalities of both in-vivo (e.g., social skill groups, peer-

mediated programs) and technological intervention (e.g., confederate controlled virtual reality (VR), 

computerized skill programs) where multiple individuals can share and interact in a virtual space. In 
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particular, the characteristics of this environment are highly controllable and can be adapted and 

structured in ways that mimic aspects of real-world interactions. These characteristics can tangibly impact 

the very nature of the collaborative interaction itself. 

Although CVEs provide a promising platform for realistic interactions between real users, CVE-based 

interventions lack reliable and easy-to-use methods to measure social communication within these 

systems. The majority of CVEs in this area measured users’ behaviors within the systems based on self-

report questionnaires or their task-performance. For example, Wallace et al. designed and developed a 

CVE-system to teach greeting behaviors to children with ASD  in a virtual gallery (Wallace et al. 2015). 

They evaluated the system impacts using a self-report questionnaire, and found that children with ASD, 

compared to their Typically Developing (TD) peers, were less sensitive to negative greetings. Millen et al. 

applied CVEs to promote collaboration among children with ASD, and the results of a self-report 

questionnaire showed improved engagement of children with ASD in the CVEs (Millen et al. 2011). 

Cheng et al. designed a CVE-based virtual restaurant to understand empathy of children with ASD 

(Cheng et al. 2010). They found that these children could appropriately answer more empathic questions 

after the intervention. Although these methods could gather essential information for system evaluation, 

they could not be used to understand and analyze users’ conversation, which is important aspects of user-

to-user interactions in most CVE-based interventions.   

In some instances, domain experts have been involved to observe and code not only task-performance 

but also verbal communication of users in CVEs using a human coding methodology. iSocial is a 3D-

CVE aimed at understanding and improving social competency development of children with ASD (M 

Schmidt et al. 2011). In iSocial, children’s social behaviors, such as gesture, initiating conversation, 

responding to others’ conversation, and turn-taking in conversation, were manually coded by domain 

experts for system evaluation using a video coding method (Matthew Schmidt et al. 2012). However, 

manually coding users’ behaviors, especially verbal communication, needs significant time and efforts. In 

addition, the CVE-based intervention systems with this time-consuming measurement method could not 

provide real-time feedback to the users. These limitations in measuring users’ behaviors in CVEs may be 
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addressed using an intelligent agent with the capability to automatically gauge the users’ performance 

(e.g., communication, collaboration, etc.) within the system itself.  

Intelligent agent technology has been explored to measure task performance and conversation 

behaviors of TD individuals in collaborative learning environments (Kumar et al. 2007; Nabeth et al. 

2005; Walker et al. 2014; Scheuer et al. 2010). Researchers in the collaborative learning area have 

developed intelligent agents to, first, measure important aspects, such as topic change (Van Rosmalen et 

al. 2005), learner understanding (Linton et al. 2003), quality of arguments (Scheuer et al. 2010), and 

learner motivation (Desmarais and Baker 2012), of the collaborative learning interactions, and then, 

provide feedbacks to the users based on the measurements. Although these systems were not designed for 

ASD intervention, they provided useful information about applying intelligent agent technology to 

measure user behaviors in CVEs. In this chapter, we present the design of an intelligent agent that could 

communicate and play games with children with ASD in a CVE in order to measure their communication 

and collaboration skills. 

The main challenge of designing such an intelligent agent is to understand human language using a 

computer program. It is to be noted that designing a computer program that can understand human 

language and conduct conversations as a human (i.e., Turing test) is yet to be solved from a technical 

point of view(Kopp et al. 2005; Cauell et al. 2000). Existing intelligent agents with conversation 

capabilities could only work in narrowly defined domains (Kopp et al. 2005; Pellom et al. 2001) (Aust et 

al. 1995). In this work, we also set our goal to design an intelligent agent to communicate and play games 

with a child with ASD in a narrowly defined domain.  

4.2.1. Related work 

4.2.1.1. Intelligent agents with conversation capabilities 

Intelligent agents with conversation capabilities have been studied for a period of time. One of the 

early systems in this area, ELIZA, was designed by Weizenbaum in 1966 (Weizenbaum 1966). ELIZA 

could make natural language conversation with human, by identifying keywords of a user-typed input 
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sentence, and then generating responses based on the keywords and predefined rules. During the last 

decades, similar methods have been widely applied to create chatbots to simulate intelligent conversation. 

One of the most powerful chatbots is A.L.I.C.E that can engage conversations using 40000 predefined 

rules (Shawar and Atwell 2005). This system, however, cannot provide information unless the required 

information has already been stored in the system. Chatbots and question-answering applications, such as 

Apple’s Siri (Aron 2011), are typically designed to answer general questions based on predefined 

question-answer pairs or on-line searching. They could not be directly used for a specific domain, such as 

game playing, because of lack of domain-specific knowledge.  

The majority of existing intelligent agents with conversation capabilities were developed to conduct 

flexible conversations in narrowly defined domains, such as flight and travel booking (Pellom et al. 

2001), train information tracking (Aust et al. 1995), and for museum guide (Kopp et al. 2005). However, 

there is no common way to design these systems in narrowly defined domains (Allen et al. 2001). These 

systems varied in their developmental methods considering different purposes, methods to understand 

linguistic meaning, complexity, robustness, and coverage of domains (Glass 1999; McTear 2002; 

Eskenazi 2009). Given that the goal of this work is to design an intelligent agent that can not only 

communicate but also play collaborative games, we review relevant works on the intelligent agents with 

conversation capabilities for game playing.  

4.2.1.2. Intelligent agents with conversation capabilities for game playing   

Intelligent agents with conversation capabilities for game playing usually were designed to assist 

humans in interactive-games. One of the important applications in this area is Non-Player Character 

(NPC) with conversational capability. The adventure game, Zork-series (Brusk and Lager 2007), included 

NPCs that could parse and understand the words and phrases typed by players and then show specific 

text-based information to assist the players in the game. Magerko and colleagues designed a game with 

NPCs that could take actions based on players’ commands (Magerko et al. 2004). Although NPCs in 

these systems can support communication with players, the communication usually is less-flexible with 



 82 

fixed-format. Generally such fixed-format methods are not suitable for measuring flexible communication 

between users in collaborative games. 

Only a few intelligent agents with conversation capabilities have been designed to support and measure 

flexible conversations within the collaborative game domain. Cuayahuitl and colleagues designed an 

artificial intelligent agent that can play a strategic board game, called Settlers of Catan (Cuayáhuitl et al. 

2015). In the board game, players can offer resources for other players and they can also reply to offers 

made by other players. Their study focused on applying a Deep Reinforcement Learning (DRL) method 

to train conversational skills of the agent. Results of the study indicated that the DRL method 

significantly outperformed several other methods, including random, rule-based, and supervised methods, 

in training the agent’s conversational skills. Kulms and colleagues designed an intelligent agent that could 

conduct text-based conversation as well as play a collaborative puzzle game (Kulms et al. 2015). In the 

collaborative puzzle game, the agent can work together with a human to place blocks of various shapes in 

three steps: i) one player, either the agent or the human, recommends one of two blocks to the other 

player, ii) the other player either accepts the recommendation and places the recommended block, or 

rejects the recommendation and chooses a different block, and iii) the first player places the remaining 

block. The two game actions, recommendation and acceptance/rejection, were used as measures of 

cooperation since they were indicative of competence, trust, and pursued goals. Unfortunately, very little 

results have been reported to date about the agent. These technologies provide important guidance about 

how to design intelligent agent to conduct conversations with a human and measure their communication 

behaviors. However, they were designed for TD population, and could not be directly used for ASD 

intervention.  

In what follows, we describe the development of our intelligent agent that could communicate with 

children with ASD and play collaborative puzzle games with them, as well as generate meaningful 

features to measure their communication and collaboration skills in a CVE. In Section 4.3, we briefly 

describe the CVE, where the intelligent agent interacted with the children. In Section 4.4, the intelligent 

agent is described in detail with emphasis on its dialogue manager component. Section 4.5 provides 
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information about a preliminary study to evaluate the intelligent agent. Results and discussions are 

presented in Section 4.6. Section 4.7 discusses the limitations of the current work and its possible future 

extensions.  

4.3. Collaborative Virtual Environment 

A Collaborative Virtual Environment (CVE), named CoMove, was developed in Chapter II in order to 

understand and enhance communication and collaboration of children with ASD. The CVE enabled two 

users to communicate and play collaborative puzzle games in a shared environment. Collaborative puzzle 

games were selected as the interactive activities in the CVE since these games have been widely accepted 

for encouraging communication and fostering collaboration in children with ASD (Battocchi et al. 2010). 

In CoMove, we developed seven collaborative puzzle games in order to stimulate abundant 

communication and collaborative interactions between users within the system. Fig.  12 shows one 

example of the games. 

 

 

The variation of the collaborative puzzle games in the CVE was implemented using two game features, 

i.e. color visibility and piece translation control. The color visibility feature could encourage users to 

Table 14 Key Features and Their Values in Each Collaborative Puzzle Game 

Game name Color visibility Piece translation control 

T1 Both users One by one 

T2 Both users One by one 

T3 Bother users Together 

T4 User1 User2  

T5 User2 User1 

T6 Bother users Together 

T7 Bother users Together 

 

 
Fig.  12 A collaborative puzzle game in the CVE 
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share color information; while the piece translation control feature could enable both turn-taking and 

simultaneous interactions. These collaborative interactions, i.e., information-sharing, turn-taking, and 

simultaneous interactions, are important for the targeted population and may be related to real time social 

skills of children with ASD (White et al. 2007). In order to complete these collaborative puzzle games, 

users were required to communicate with each other to exchange game information and synchronize their 

game actions. Table 14 shows all the values of these features in each collaborative puzzle game. Take T1 

game for example. Two users can see all the colors of puzzle pieces, and they need to move these puzzle 

pieces one by one in T1 game. The detailed information about the CVE and these collaborative puzzle 

games can be found in Chapter II.   

4.4. Intelligent Agent 

4.4.1. Overall description and architecture  

We designed an Intelligent agent with the capability of COmmunicatioN and COllaboratioN (ICON2) 

in order to measure communication and collaboration skills of children with ASD in the CVE while they 

played collaborative games. The overall functional view of ICON2 is shown in Fig.  13. ICON2 could 

perceive a human’s speech and game-related actions, i.e. what the human-partner said and what he/she 

did in the CVE. Then, it generated speech and game-related actions based on the perceived information in 

a controller. Finally, it executed these generated speech and game-related actions as responses to the 

human.  

 

 
Fig.  13 Overall view of ICON2 
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The architecture of ICON2 is shown in Fig.  14. The architecture was composed of an Automatic 

Speech Recognition (ASR) module, a Game Observation (GO) module, a Dialogue Manager (DM) 

module, a Text-To-Speech (TTS) module, an Action Actuator (AA) module, and two databases. The ASR 

module perceived human’s speech inputs; while the TTS module executed speech responses. The GO 

module perceived game-related information from the CVE; while the AA module executed game-related 

actions. The DM module was the main component of ICON2, which generated speech and game-related 

responses based on perceived speech and game-related inputs. The interpretation model and speech 

lexicon databases were used to help the DM module generate appropriate responses.  

 

Each module of ICON2 was designed in order to support domain-related conversation and 

collaborative interactions in the CVE. The purpose of the ASR module was to transcribe human speech 

into text. Google Cloud Speech API4 was utilized in the ASR module because its low word error rate, i.e., 

8%. The GO module could extract game related information, including human’s game actions and current 

game states, from the CVE. The DM module was implemented using a hybrid method, which combined a 

dialogue act classifier and a finite state machine. The dialogue act classifier classified a human language 

                                                      

4 cloud.google.com/speech/ 

 
 

Fig.  14 Architecture of ICON2 
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into one of several pre-defined categories using an interpretation model shown in Fig.  14. The finite state 

machine combined speech inputs, game-related inputs, and dialogue history to generate speech and game-

related responses. All the dialogue history was stored in the memory of the DM module. In order to 

diversify the speech responses, the speech lexicon was used to map a speech semantic to different speech 

presentations. The TTS module used the vuforia5 text recognition to transfer the text-based speech 

presentations to voice responses. The generated game actions could be executed via the AA module. The 

DM module was the core component of ICON2.  

4.4.2. Dialogue manager 

Communication and game-playing behaviors of real-users in the CVE in our previous study were 

analyzed and used for designing the communication and game-playing behaviors of ICON2. In Chapter 

II, a total of 14 pairs of children, 7 ASD/TD pairs and 7 TD/TD pairs, were involved in playing 

collaborative puzzle games in a human-human interaction mode in the CVE (Zhang et al. 2016). All the 

domain-related behaviors of theses real users in the CVE could be presented as pairs of intentions and 

objects. An intention means an action that a user plans to take when playing a collaborative game. 

Possible intentions in the CVE include, i) to know the color of a puzzle piece, ii) to provide information, 

iii) to direct another user to drag a puzzle piece, iv) to acknowledge other’s actions, and v) to find a 

puzzle piece to move. An object means a specific puzzle piece targeted by the intention. Possible values 

of the object can be any of the seven puzzle pieces or empty. In order to communicate and play games 

with a real user, ICON2 must be able to i) detect a human’s intention and targeted object, and ii) generate 

appropriate speech and game-related responses based on the detected intention and object.  

Besides the communication and game-playing capabilities, ICON2 should also be able to measure users’ 

communication and collaboration skills in the CVE. Therefore, the development of its core component, 

i.e., the DM module, was required to conform to the following requirements. 1) Since ICON2 was 

                                                      

5 vuforia.com 
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required to measure a user’s communication and collaboration skills, the DM module must be able to 

gather or generate features for the measurements. 2)   SinceICON2 was required not only to communicate 

but also to play games in the CVE, the DM module must have the capability to combine both speech and 

game-related inputs, and generate both speech and game-related responses. 3) As a partner to play 

collaborative games, ICON2 must be able to act proactively in conversation, i.e., to take initiative, rather 

than being purely responsive. This means that the DM module must not only respond to user speech but 

also initiate a conversation.  

 In order to fulfill these requirements, we developed the communication and game-playing behaviors of 

ICON2 with three steps: i) understanding a human’s spoken natural language and collecting game-related 

inputs, ii) detecting the human’s intention and targeted object from the speech and game-related inputs, 

and iii) generating speech and game-related responses. The speech and game-related inputs gathered in 

the first step were not only important for ICON2 to communicate and play games but also useful for 

ICON2 to measure the users’ skills. The second step aimed at combining speech and game-related inputs 

to enable both communication and game-playing. The third step was important for ICON2 to both 

respond to the human and initiate a conversation. In summary, the implementation of the DM module 

took account of all these requirements.  

4.4.2.1. Language understanding 

We selected combinations of dialogue acts and slots to represent a human’s language because such 

representations were found to be meaningful in measuring communication and collaboration skills of 

children with ASD. In order to be understandable for a computer, human language is typically represented 

using a set of messages: each set has a finite number of messages and each message is associated with a 

particular action (Juang and Furui 2000). One way to represent human utterances is using a set of 

combinations of dialogue acts and slots. A dialogue act is the specialized performative function that an 

utterance plays in a language (Stolcke et al. 2000). A slot is a variable that presents specific domain-

related information of human utterances (Williams and Young 2007a). Using a combination of dialogue 

act and slot to represent an utterance has been proven to be useful in previous works (Wen et al. 2015; 
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Tsiakoulis et al. 2014; Zhu et al. 2014). For example, AT&T spoken dialogue system may represent a 

caller’s request, I would like to make a payment, as Report(payment), where report is the dialogue act and 

payment is the slot (Gupta et al. 2006).  

We defined dialogue acts and slots in our system based on the recorded conversations of our previous 

study in Chapter II. First, we defined five classes of dialogue acts that were pertinent for the puzzle game, 

i.e., request_color, provide, direct_movement, acknowledge, and request_object. The descriptions of these 

dialogue act classes are shown in Table 15. In addition, we defined seven slots, which were color, id, 

object, action, policy, subject, and out-of-domain, along with several slot words for each slot. The slot 

words of the first six slots could describe specific features of the collaborative puzzle games. For 

example, the color slot words, were red, green, yellow, blue, pink, orange, and gray that described the 

color of all the puzzle pieces in the games. The out-of-domain slot were used to describe out-of-domain 

information. Its slot words, such as name, food, school, weekend, and facebook, were extracted from the 

out-of-domain utterances in our previous study in Chapter II. The slot words of an utterance were 

extracted by comparing each word of the utterance with all the predefined slot words; while the dialogue 

act class of each utterance was computed using an interpretation model.  

 

We built an interpretation model using conversational data gathered from our previous study in 

Chapter II, and utilized the model for dialogue act classification during real-time conversation. The 

interpretation model for this research was a Support Vector Machine with Radial Basis Function (SVM-

RBF) kernel. The model was built using 136 data samples collected from our previous human-human 

interactions study with the following steps, as shown in Fig.  15. First, we replaced each recognized slot 

word with its slot type since all the words belonging to a slot perform similar functionality in forming 

Table 15 Dialogue Act Classes and Their Descriptions 

Index Name Description  Example 

1 request_color Ask the color of a puzzle piece What is the color of this puzzle piece? 

2 provide Provide some information It is red. 

3 direct_movement Direct ICON2 to move a puzzle 

piece  

Move the green one.  

4 acknowledge Acknowledge Okay! 

5 request_object Ask about a puzzle piece Which piece would you like to move? 

Which one is yellow? 
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utterances. This preprocessing procedure was designed to reduce reduce feature dimension. Second, we 

extracted multiple syntactic and word sequence features, including unigrams, bigrams, part of speech, and 

dependency types. It has been found that unigrams and bigrams are the most useful word sequence 

features in dialogue act classification (Fürnkranz 1998; Samuel et al. 1998). Parts of speech and 

dependency types are also useful structure features in dialogue act classification (Boyer et al. 2010). The 

Natural Language Toolkit (Bird 2006) was used for feature extraction. After the feature extraction, we 

reduced the dimension of the features using Principal Component Analysis (PCA). Finally, the low-

dimensional features together with labels were input to train the SVM-RBF model. A 5-fold cross 

validation was used to select hyperparameters of the SVM-RBF model. The feature extraction method, 

the PCA model, and the SVM-RBF model were used to classify dialogue act in real time with the same 

process as shown in Fig.  15. 

 

4.4.2.2. Game-related inputs 

The game-related inputs, including game actions and current game states, were gathered from the CVE 

in order for ICON2 to detect the human’s intention and object. The partner’s game actions were used to 

represent human behaviors, such as no action for a certain time-duration, dragging a puzzle piece, 

clicking on a puzzle piece, and releasing a puzzle piece. The current game states were used to represent 

the interactive environment. The current game states were composed of multiple parameters, and the most 

important parameters were i) color visibility and ii) piece translation control, which were used to 

determine the features of each game, as discussed in Section 4.3. Other parameters included color of a 

puzzle piece, position of each puzzle piece, the target position, and so forth. These game-related inputs 

were meaningful for ICON2 to detect intention and object.  

 

Fig.  15 The process of the online classification 
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4.4.2.3. Intention and object detection 

We selected a rule-based method to combine the speech and game-related inputs, and to generate 

speech and game-related responses. In general, spoken dialogue systems that are capable of both speech 

and non-speech interactions can be implemented using two methods: rule-based and data-driven methods. 

The rule-based methods updates information and generates responses using predefined rules (Larsson and 

Traum 2000). Expertise is required to define these rules (DeVault et al. 2011). The data-driven methods, 

such as reinforcement learning (Williams and Young 2007b), can generate models automatically from 

training data. However, gathering enough training data is challenging in most cases (Paek and Pieraccini 

2008). We have developed a Finite State Machine (FSM) with a set of predefined rules to combine inputs 

and generate outputs because of the availability of limited training data.  

In the FSM, ICON2 combined a partner’s speech and game inputs to detect the partner’s intention and 

targeted object, and then, generated speech and game-related responses based on the detected intention 

and object. When the human-partner spoke to ICON2 or took game actions, the system transferred to the 

“Intention_Detection” and “Object_Detection” states to detect his/her intention and targeted object. If 

some information was incomplete, the FSM transferred to the “Intention_Confirm” or “Object_Confirm” 

states. In these states, ICON2 could seek to clarify unclear information, and gather lost information. After 

the intention and targeted objects were detected, the system transferred to the “Provide_Information” state 

to generate responses based on the detected intention and object. In what follows, we present the details 

of intention detection and object detection in the “Intention_Detection” and “Object_Detection” states.  
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The first step of the intention detection was to detect out-of-domain utterances. ICON2 detected out-of-

domain utterances based on a rule: if an utterance had out-of-domain slot words, the utterance was an out-

of-domain utterance. As mentioned in the introduction section, existing spoken dialogue systems were 

usually designed to operate over a limited and definite domain (Lane et al. 2007). To ensure satisfactory 

user experience, spoken dialogue system must be able to detect a user’s out-of-domain (OOD) utterances, 

and provide feedback to the user when OOD utterances were detected. Previous literature had applied 

classification methods to explicitly model OOD utterances for OOD detection (Durston et al. 2001). 

However, collecting enough training data to model OOD utterances was time-consuming and laborious. 

Given the limited availability of training data, it was hard to create an OOD model with acceptable 

accuracy. Therefore, we used a rule-based method to detect OOD utterances in the current study. If the 

rule-based method fails in detecting an OOD utterance, ICON2 treats the utterance as an in-domain one 

and asks for additional information to continue playing games. For example, when a user says “My family 

went to New York last week”, ICON2 may incorrectly think that the user wants to move a puzzle piece. 

So, it responds to the user by asking “which puzzle piece do you want to move?” This method turned out 

to be effective, as discussed in the results session. Other advanced OOD detection methods will be 

explored in our system in the future.  

 
Fig.  16 Finite state machine in the dialogue manager module 
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The intention detection of ICON2 had the advantages of handling ambiguity in natural language. 

Ambiguity in natural language means that an utterance may have multiple meanings. ICON2 could reduce 

language ambiguity using game-related inputs and dialogue history based on rules. For example, if a user 

says “red”, she/he may intend to provide color information or to direct ICON2 to move the red puzzle 

piece. If the current game state indicates color being visible for ICON2 or the dialogue history includes 

asked for a puzzle piece to move, the user has a high chance to direct ICON2 to move the red puzzle piece. 

The procedure of intention detection was captured using a tree-structure, as shown in Fig.  17.  

 

A weighted average method was developed to combine both speech and game-related information in 

order to detect the targeted object. Equation (1) computes the similarity between a puzzle piece and the 

targeted object. A targeted object was usually described using multiple characteristics, such as color of 

the object, index of the object, and actions on the object. In (1), different characteristics were presented 

using different terms, such as colorT , indexT , and activeT . The value of each term could be 1 or 0. Each 

characteristic had a weight, such as colorW , indexW , and activeW , to reflect how important this characteristic 

was in the object detection. The values of these weights were predefined based on domain knowledge. 

ICON2 computed a similarity value totalW  for each puzzle piece based on Equation (1). The object with 

the highest value was the targeted object. This method has the advantage to handle complex information 

in conversation using multiple characteristics. 

 
Fig.  17 The logic for intention detection 
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 ...total color olor index index operation operationW W T W T W T        (1) 

4.4.2.4. Response generation 

Based on the detected intention, detected object, and dialogue history, the DM module generated 

speech and game-related responses using a set of carefully designed IF-THEN rules. One example of the 

IF-THEN rules is: IF the intention is out-of-domain, THEN the agent provides feedback, such as Hey! I 

only know something about the game we are playing. Let’s play the game!  

ICON2 could not only respond to human conversation but also initiate conversations. The capability to 

initiate a conversation enabled ICON2 to act proactively in a dialogue, i.e., to take over the initiative, 

rather than being purely responsive. This led to a more natural conversation. The capability to initiate 

conversations was implemented using feedback events, such as “Feedback0”, “Feedback1”, “Feedback2”, 

and “Feedback3”, in the FSM (Fig.  16). These events were triggered by game actions and were used to 

initiate an appropriate conversation. For example, if the human-partner has no action for 10 seconds, the 

“Feedback0” event is triggered and ICON2 may ask “I can see all the colors. Just ask when you need 

any.” 

ICON2 may say different sentences to express the same idea. A speech lexicon was used in order to 

generate different expressions. The speech lexicon stored multiple expressions for each idea. In real time 

conversation, ICON2 could randomly select one of the expressions as the speech response. For example, 

if ICON2 wants to ask color of a puzzle piece, it may say: i) what is the color, ii) could you tell me the 

color, or iii) is it red or green? A sample dialogue is shown in Fig.  18. 
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4.5. User Study 

A total of five children with ASD, age range: 7 – 17 years, were recruited to participate in a 

preliminary study to evaluate the communication and collaboration capability of ICON2 in the CVE. All 

participants had a clinical diagnosis of ASD from a licensed clinical psychologist. All the participants had 

IQ higher than 70 and were capable of using phrased speech as determined by a trained therapist. The 

Social Responsiveness Scale, Second Edition (SRS-2) (Constantino and Gruber 2002) and Social 

Communication Questionnaire Lifetime Total Score (SCQ) (Rutter et al. 2003) were completed by the 

participants’ parents. The characteristics of the participants are shown in Table 16. The experiments were 

approved by the Vanderbilt University Institutional Review Board (IRB).  

 

During an experiment, a participant played seven collaborative puzzle games with ICON2. After the 

game playing session, each participant filled out a survey on their opinions about ICON2. We recorded 

videos of all the experiments. By watching these videos, a human rater rated the participants’ improved 

communication skills and their improved collaboration skills, respectively, using a continuous interval 

from -4 to 4. The ratings of the improved skills meant how much a participant’s communication skills or 

Table 16 The Characteristics of the Five Participants 

Age 

Mean(SD) 

Gender 

Female/male 

SRS-2 total raw score  

Mean(SD) 

SCQ current total score 

Mean(SD) 

10.42(3.31) 2/3 99.20(21.65) 16.80(5.36) 

 

Agent: we need to move pieces together during this game, I have all the colors. 

 

Human: what is the color of this one (Human clicks on a puzzle piece)? 

 

Agent: That one is red. 

 

Agent: Let’s move the red one together (Agent starts moving the puzzle piece).  

 

Silence for a while 

 

Agent: Which puzzle piece do you want to move? 

 

Human: Number six.  

 

Agent: It is a yellow one. Move piece number six (Agent starts moving the puzzle piece). 

  

Fig.  18 A sample dialogue (All game actions are showed in parentheses) 
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collaboration skills improved in the current game compared to the previous game. The ratings were used 

as the ground truth of the improved skills to evaluate performance of ICON2 in measuring these skills.  

4.6. Results and Discussion 

Overall, ICON2 worked as designed. All the five participants completed their experiments. 

Unfortunately, experimental data of a participant in a collaborative puzzle game was lost because the 

system crashed for unknown reason. We collected data from 34 games (

5 7 1 34participants games lost games   ). Within the 34 games, a total of 249 utterances were generated 

by the participants and a total of 374 utterances generated by ICON2.  

No out-of-domain utterance has been spoken by the participants. These utterances from the participants 

were labeled by a human coder as either in-domain or out-of-domain. However, all these utterances were 

labeled as in-domain utterances, and no one was labeled as out-of-domain utterances. This result was in 

line with our previous human-human interactions study. In the previous study, a very small percentage, 

i.e., <0.01, of out-of-domain utterances were spoken by children with ASD when they playing these 

games with their TD peers.  

Results of the dialogue act classification are shown in Table 17. The interpretation model used for the 

dialogue act classification classified the participants’ utterances into five classes: request_color, provide, 

direct_movement, acknowledge, request_object. A human coder labeled each utterance with one of the 

five classes, and these labels were used as the ground truth of the classification. The accuracy of the 

dialogue act classification of ICON2 was 67.47%. This accuracy was higher than the random accuracy of 

a five-class classifier, i.e., 20%.  
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Human coding results indicated that ICON2 had the potential to appropriately initiate conversations as 

well as to reply to the participants’ speech. ICON2 generated two kinds of utterances: i) initiation, which 

was an utterance used to initiate a conversation, and ii) reply, which was an utterance used to reply to an 

initiated conversation. We defined that all the utterances generated by the feedback events of the FSM 

were initiations, and all the other utterances were replies. In this study, ICON2 generated 161 initiations 

and 213 replies. A human coder labeled each generated utterance as either appropriate or imappropriate. 

82.93% of the 161 initiations were labeled as appropriate initiations; while 89.20% of the 213 replies 

were labeled as appropriate replies. Note that the accuracy of appropriate replies, i.e., 89.20%, was much 

higher than the accuracy of dialogue act classification, i.e., 67.47%, which suggests that ICON2 could 

appropriately reply to a human even when it misunderstood the human’s language by analyzing the 

human’s game-related inputs, as discussed in sub-section 4.4.2.3. 

The results of ICON2 were comparable to other spoken dialogue systems targeted at TD populations. 

Given the differences in data sample numbers and task domains, it is hard to directly compare numerical 

results of different spoken dialogue systems. However, we could conclude that the communication 

capability of ICON2 were comparable to existing spoken dialogue systems by comparing these numerical 

results. Kopp and colleagues designed a conversational agent as a museum guide to communicate with 

Table 17 Dialogue Act Classification Results 

  
Target class 

  
reqcolor provide directmove acknowledge reqobject sum 

Output 

class 

reqcolor 
15 1 2 0 0 18 

6.02% 0.40% 0.80% 0.00% 0.00% 7.23% 

provide 
0 93 2 2 0 97 

0.00% 37.35% 0.80% 0.80% 0.00% 38.96% 

directmove 
0 14 46 7 0 67 

0.00% 5.62% 18.47% 2.81% 0.00% 26.91% 

acknowledge 
0 50 1 14 0 65 

0.00% 20.08% 0.40% 5.62% 0.00% 26.10% 

reqobject 
0 0 2 0 0 2 

0.00% 0.00% 0.80% 0.00% 0.00% 0.80% 

sum 
15 158 53 23 0 249 

6.02% 63.45% 21.29% 9.24% 0.00% 100.00% 
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museum visitors. The agent could understand a visitor’s utterances by mapping keywords using 138 rules. 

The agent correctly responded to visitors’ 50423 utterances with an accuracy of 63% (Kopp et al. 2005). 

Tewari and colleagues designed a question-answer system (Tewari et al. 2013). The system correctly 

answered questions with an accuracy of 86%, which were computed with 346 utterances. However, this 

system could not initiate conversations and did not support non-speech interactions. Ramin and 

colleagues designed a spoken system to assist elderly users about their weekly planning. The system 

could respond to elderly users with a 84.8% accuracy, which was computed from 46 utterances 

(Yaghoubzadeh et al. 2015). 

The interactions between ICON2 and the participants were comparable to the interactions between two 

real-users regarding a collaborative movement ratio feature. The collaborative movement ratio is a feature 

that has been used to measure collaborative efficiency in the CVE (Zhang et al. 2016). It is the time 

duration ratio of two users simultaneously moving a puzzle piece to an individual user dragging the piece. 

The average collaborative movement ratio of children with ASD when interacting with ICON2 in this 

study was 0.10, which was comparable to the ratio, i.e., 0.11, of children with ASD when they interacted 

with their TD peers in our previous study in Chapter II.  

Results of a distributed survey indicated that children with ASD enjoyed communicating and 

interacting with ICON2, as shown in Table 18. These participants reported feeling comfortable to talk 

with ICON2 with an average score of 4 on a 1-5 Likert scale, where 1 means very uncomfortable and 5 

means very comfortable.  They reported that they could be understood by ICON2 with an average score 

of 3.8/5 and that they could understand ICON2 with an average score of 4.2/5. It was easy for the 

participants to play the games with ICON2, as indicated by an average score 4.4/5 on question 5, where 1 

means very difficult and 5 means very easy. In addition, they enjoyed playing the games with ICON2 

with an average score 4.4/5, where 1 means very dislike and 5 means very like.  
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Results also indicated that ICON2 had the potential to generate meaningful features to measure 

communication and collaboration skills of the participants. ICON2 could automatically generate multiple 

features, shown in Table 19, to represent the participants’ behaviors in the CVE. We computed change of 

a feature, which were the difference of a feature in the current game as compared to the feature in the 

previous game. Then, we computed the correlation between the change of each feature and the ratings of 

improved communication skills, as well as the correlation between the change of each feature and the 

ratings of improved collaboration skills, as discussed in Section 4.5. A spearman’s rank correlation 

indicated a strong correlation (𝑟𝑠 = 0.72, 𝑝 < 0.001) between feature 7 in Table 19 and the ratings of 

improved communication skills, as well as a strong correlation (𝑟𝑠 = 0.72, 𝑝 < 0.001) between the 

feature and the rating of improved collaboration skills, as shown in Fig.  19 and Fig.  20.  

Table 18 Survey Results 

Index Questions Mean Standard 

deviation 

1 Do you feel comfortable talking with ICON2 

1 very uncomfortable, 2 uncomfortable, 3 neutral, 4 comfortable; 5 very 

comfortable 

4 1 

2 Do you think ICON2 can understand you very well 

1 strongly disagree; 2 disagree; 3 neutral; 4 agree; 5 strongly agree 

3.8 0.84 

3 Do you think you can understand ICON2 very well 

1 strongly disagree; 2 disagree; 3 neutral; 4 agree; 5 strongly agree 

4.2 0.45 

4 Did ICON2 respond to you quickly enough 

1 very slowly; 2 slowly; 3 neutral; 4 quickly; 5 very quickly 

4.4 0.55 

5 Overall, how easy do you think it is to play the game with ICON2 

1 very difficult; 2 difficult; 3 neutral; 4 easy; 5 very easy 

4.4 0.89 

6 Overall, how much do you like to play the games with ICON2 

1 very dislike; 2 dislike; 3 neutral; 4 like; 5 very like 

4.4 0.55 
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Fig.  20 Correlation between changes of communication/collaboration-related feature 7 and changes of 

collaboration skills of children with ASD 

 

 
Fig.  19 Correlation between changes of communication/collaboration-related feature 7 and changes of 

communication skills of children with ASD 
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Table 19 ICON2 Recorded Communication-related Features and Their Descriptions 

Index Feature Description 

1 User word count  How many words the human-partner speaks during a game 

2 User utterance frequency How many times the human-partner speaks during a game 

3 Agent word count  How many words the agent speaks during a game 

4 Agent utterance frequency How many times the agent speaks during a game 

5 Agent initial frequency How many times the agent initializes a conversation 

6 Agent reply frequency How many times the agent replies to a conversation 

7 
Utterance ratio of user 

and agent 

The ratio of number of human’s utterance and the number of agent’s 

utterance during a game 

8 request_color count The number of utterance classified as request_color 

9 provide count The number of utterance classified as provide 

10 direct_movement count The number of utterance classified as direct_movement 

11 acknowledge count The number of utterance classified as acknowledge 

12 request_object count The number of utterance classified as request_object 
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4.7. Conclusions, Limitations, and Future Work 

We designed an intelligent agent, named ICON2, in order to measure communication and collaboration 

skills of children with ASD by communicating and playing collaborative puzzle games with the children 

in a CVE. Results of a preliminary study with five children with ASD show that, i) the participants 

enjoyed communicating and interacting with ICON2 within the CVE; and ii) ICON2 has the potential to 

communicate and collaborate with children with the participants in the CVE.   

ICON2 has the potential to i) appropriately initiate conversation and reply to a participant’s 

conversation; and ii) play collaborative games with the participant. ICON2 generated 82.93% appropriate 

initiations and 89.20% appropriate replies. These results were comparable to results of other spoken 

dialogue systems targeted at TD individuals. In addition, the collaborative movement ratio, which was an 

important feature in collaborative puzzle game as discussed in Chapter II, of the participants when they 

played the games with ICON2 was comparable to the collaborative movement ratio of participants when 

they played the games with each other in Chapter II.  

Although ICON2 was used in a CVE to play collaborative puzzle games, its communication behaviors 

could be extended to other domains. In this work, ICON2 extracted meaning of an utterance in the CVE 

with collaborative puzzle games by mapping the utterance into a dialogue act class (such as request_color, 

and provide) and a list of slots (such as color, and policy). ICON2 will understand utterances in another 

domain if the utterances of the domain are used to build a dialogue act classification and define slots. In 

this study, ICON2 generated speech and operate responses within the CVE based on the detected 

intention and object. If the intention detection and object detection rules are modified, ICON2 will be able 

to generate speech and operate responses in another domain.  

Although the present work is promising, readers are advised to exercise caution in interpreting the 

results more generally due to several limitations of the current work. First, the training data used to build 

the SVM-RBF model for the dialogue act classification was small. The accuracy, 67.47%, of the classifier 

in this work was much higher than the random accuracy, 20%, of a five-class classifier, and the accuracy, 

89.33%, of appropriate responses in this work was comparable to results of other spoken dialogue 
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systems. These results indicated that the current SVM-RBF model had good performance in dialogue act 

classification. However, more training data may yield a more accurate classification model.   

Second, the keyword-based out-of-domain detection method in this chapter had limitations in detecting 

out-of-domain utterances. In the current study, the participants did not speak any out-of-domain 

utterances. Therefore, the limited out-of-domain detection method might be sufficient for the current 

study. However, future studies should aim to develop more efficient methods for out-of-domain detection. 

Third, because of the preliminary nature of this work, the sample size of this study was small. Only 

five children with ASD were involved to test the intelligent agent, and only 34 data samples were 

generated for the skills measurements. In future work, we intend to recruit a larger sample of children 

with ASD and TD children so that we can apply this intelligent agent to measure their skills when they 

interact with their TD peers.  

Despite these limitations, we believe this work contributes to the literature by proposing a novel way to 

automatically measure both communication and collaboration skills of children with ASD within a CVE 

using an intelligent agent. Results of the two studies indicated that the presented intelligent agent was 

tolerated and apparently engaging/enjoyable to the participants, as well as demonstrated its potential to 

automatically measure important aspects of interactions in a CVE. This chapter presents the design of the 

intelligent agent with the capability to communicate and play games with children with ASD. This 

intelligent agent will be applied to measure both communication and collaboration skills of the children 

within the CVE in the next chapter. 
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CHAPTER V. APPLICATION OF THE INTELLIGENT AGENT TO MEAUSREMENTS 

IN A CVE 

 5.1. Abstract 

In Chapter IV, we have designed an intelligent agent in order to measure both communication and 

collaboration skills of children with ASD in a CVE by communicating and playing collaborative puzzle 

games with the children within the environment. In this chapter, we present a measurement system that 

applied the intelligent agent to measure these skills. A preliminary study with 20 pairs of children with 

ASD and TD children was conducted to evaluate its capability of measuring these skills. Results of the 

study demonstrated that the system has the potential to generate meaningful features to measure both 

communication and collaboration skills of the participants when they interacted with the intelligent agent 

within the CVE. In addition, results of the study indicated that the interactions between the participants 

and the intelligent agent could reflect important aspects of the interactions between two participants. 

5.2. Introduction 

In Chapter II, we designed a Collaborative Virtual Environment (CVE), which is a computer-based, 

distributed, virtual space for multiplayers to interact with one another and/or with virtual items. CVE 

technology offers a flexible alternative to conventional modalities of both in-vivo (e.g., social skill 

groups, peer-mediated programs) and technological intervention (e.g., confederate controlled virtual 

reality (VR), computerized skill programs) where multiple individuals can share and interact in a virtual 

space using network-based communication. CVEs preserve the advantages of traditional computer-based 

intervention systems but also facilitate real-time interactions between real users across distance. In 

particular, the characteristics of this environment are highly controllable and can be adapted and 

structured in ways that mimic aspects of real-world interactions. These characteristics can tangibly impact 

the very nature of the collaborative interaction itself. 
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Although CVEs provide a promising platform for interactions between real users, CVE-based 

interventions lack reliable and easy-to-use methods for measuring 1) social communication within these 

systems and 2) impacts of these systems on children with ASD. The majority of CVEs in this area 

evaluated system impacts based on self-report questionnaires or users’ task-performance. For example, 

Wallace et al. designed a CVE-system to teach greeting behaviors to children with ASD  in a virtual 

gallery (Wallace et al. 2015). They evaluated the system impacts using a self-report questionnaire, and 

found that children with ASD, compared to their Typically Developing (TD) peers, were less sensitive to 

a negative greeting. Millen et al. applied CVEs to promote collaboration among children with ASD, and 

the results of a self-report questionnaire showed improved engagement of children with ASD in the CVEs 

(Millen et al. 2011). Cheng et al. designed a CVE-based virtual restaurant to understand empathy of 

children with ASD (Cheng et al. 2010). They found that these children could appropriately answer more 

empathic questions after the intervention. Although these methods could gather essential information for 

system evaluation, they could not be used to understand and analyze users’ conversation, which is an 

essential component during user-to-user interactions in most CVE-based interventions.   

In some instances, domain experts have been involved to observe and code not only task-performance 

but also verbal communication of users within CVEs using a human coding methodology. iSocial is a 3D-

CVE aimed at understanding and improving social competency development of children with ASD (M 

Schmidt et al. 2011). In iSocial, children’s social behaviors, such as gesture, initiation of  conversation, 

response to others’ conversation, and turn-taking in conversation, were manually coded by domain 

experts for system evaluation using a video coding method (Matthew Schmidt et al. 2012). However, 

manually coding users’ behaviors, especially verbal communication, needs significant time and efforts. In 

addition, the CVE-based intervention systems, which utilized this time-consuming method for system 

evaluation, could not provide real-time feedback to the users.   

The limitations in measuring social communication in CVEs for pragmatic intervention are due to two 

fundamental challenges. First, the dynamic social interactions within CVE systems are partner dependent. 

Quite simply, interactions within the CVE change based on specific partner input and as such 
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fundamentally limit consistent, controlled, and replicable interactions within the CVE. Second, while 

open-ended CVE systems pose no restriction in verbal communication between users, subsequent manual 

coding of interactions is necessary to understand patterns of communication for meaningful measurement 

and intervention. We believe that these challenges in measuring social communication within CVEs may 

be addressed using an intelligent agent that can automatically gauge user performance (e.g., 

communication, collaboration, etc.) within the system itself.  

Intelligent agent technology has been explored to measure task performance and conversation 

behaviors of TD individuals in collaborative learning environments (Kumar et al. 2007; Nabeth et al. 

2005; Walker et al. 2014; Scheuer et al. 2010). Note that although designing an intelligent agent that 

cannot be distinguished from a human for unrestricted naturalistic conversation is a challenge yet to be 

solved (i.e., the Turing test), designing paradigms for controlling, indexing, and altering aspects of 

interactions within a specific domain may represent an extremely valuable and much more viable 

methodology (Kopp et al. 2005; Cauell et al. 2000). Researchers in the collaborative learning area have 

developed intelligent agents to, first, measure important aspects of the collaborative learning interactions, 

such as topic change (Van Rosmalen et al. 2005), learner understanding (Linton et al. 2003), quality of 

arguments (Scheuer et al. 2010), and learner motivation (Desmarais and Baker 2012) and then provide 

feedbacks to  help these users based on the measurements. Although these systems were not designed for 

ASD intervention, they provided useful information about applying intelligent agent technology to 

measure the behaviors of the children with ASD in CVEs.  

Motivated by this body of work, we designed an intelligent agent that could play collaborative games 

with children with ASD and provide verbal prompts/responses as it played, within a CVE. At the same 

time, it generated meaningful features to measure both communication and collaboration skills of the 

children. Utilizing the intelligent agent as a measurement tool may address existing challenges within this 

literature. 

Collaborative games were selected as interactive tasks in the CVE because they  have the potential to 

facilitate collaboration and communication between users (Leman 2015; Benford et al. 2001). In 
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particular, collaborative games could create a controllable environment that allow for realistic 

embodiment of game strategies. As a result, collaborative games with carefully designed strategies could 

control, and facilitate collaborative interaction between users (Curtis and Lawson 2001; Zancanaro et al. 

2007). Battocchi and colleagues designed collaborative puzzle games with an enforced collaboration rule, 

which required two users to take actions simultaneously to encourage them to work together (Battocchi et 

al. 2009). They evaluated the effect of these games on users’ collaborations by measuring their task-

performance, such as task completion time and number of moved puzzle pieces. They found that games 

equipped with the enforced collaboration rule have more positive effects on children with ASD, compared 

to these games without these types of rules.  

The two primary aims of this work were: i) measuring both communication and collaboration skills of 

users within a CVE using an intelligent agent; and ii) evaluating whether the measurements could reflect 

important aspects of peer-mediated interactions in the CVE. In this study, we provided a measurement 

system that has the potential to measure both communication and collaboration skills of children with 

ASD in a CVE using an intelligent agent; and conducted a feasibility study with 20 pairs of children with 

ASD and TD children to evaluate the system. We hypothesized that i) the system has the potential to 

measure both communication and collaboration skills of children with ASD and their TD peers in human-

agent interactions; and ii) the measurements in human-agent interactions could reflect important aspects 

of the peer-mediated interactions.  

In what follows, we present the measurement system to measure both communication and 

collaboration skills of children with ASD and their TD peers in a CVE using an intelligent agent. Section 

5.3 presents the design of the measurement system that applied an intelligent agent to interact with 

humans in a CVE, as well as a feasibility study used to test the measurement system. Section 5.4 presents 

a data analysis framework to indicate how the system measured these skills and how we evaluated the 

system measurements. Results and discussions are presented in Section 5.5. Section 5.6 shows the 

limitations of the current work and outlines possibilities for future work.  
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5.3. Method 

In this section, we present the design of a system that combined Collaborative viRtual Environment 

and inTelligent Agent (CRETA) technologies to support both human-agent interactions and human-

human interactions. We also conducted a feasibility study with 20 pairs of children with ASD and TD 

children to test the system. In the next section, we present a framework of data analysis to measure both 

communication and collaboration skills of these children based on their interactions in CRETA.  

5.3.1. System Design 

5.3.1.1. Overall description 

The measurement system, named CRETA, was aimed at controlling and indexing communication and 

collaboration behaviors of children with ASD and their TD peers when they play collaborative games in a 

CVE. CRETA had two components, i.e., a CVE and an intelligent agent. The CVE component was 

designed for two users to converse and play collaborative games with each other. The puzzle games were 

equipped with strategies to elicit both communication and collaboration between the two users. The 

intelligent agent component was designed to interact with humans as well as generate meaningful features 

to measure their communication and collaboration skills. Fig.  21 shows the architecture of the 

measurement system. In Fig.  21, Human_1 and Human_2 present two humans within the system. These 

humans used their CVE nodes (CVE Node_1 and CVE Node_2) to interact with each other and with their 

own intelligent agents, i.e., Agent_1 and Agent_2. The arrows represent data transmission between these 

components

 

 
Fig.  21 System architecture 
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The measurement system provided a platform for both human-agent interactions (HAIs), i.e., interactions 

between a human and an intelligent agent, and human-human interactions (HHIs), i.e., interactions 

between two humans. During the HAIs, the agent i) acted as a partner to perform consistent, controlled, 

and replicable interactions with a child, and ii) measured both communication and collaboration skills of 

the child through the controlled interactions. During the HHIs, i) the child interacted with his/her peer; 

and ii) the intelligent agent monitored the interactions between these two peers. The HHI mode was 

included in order to evaluate whether the measurements in HAIs could reflect important aspects of peer-

mediated interactions by comparing a child’s behaviors in HAIs to his/her behaviors in HHIs.  

5.3.1.2. System components 

One important component of CRETA was a CVE, which supported interactions between two users 

from different locations in a shared environment. Each user, a human or an intelligent agent, utilized a 

CVE node, which was an instance of the environment, to converse and interact with his/her partner in the 

shared environment in two ways: conversing via an audio chat functionality, and playing collaborative 

games. Fig.  22 shows an example of the collaborative games. In addition, the environment could record 

users’ game performance, such as how successfully and how collaboratively one moved the puzzle pieces, 

as well as task-performance features to represent their collaborative interactions in the CVE. Details about 

the implementation of the environment are presented in Chapter II.  

 

                   
Fig.  22 Environment views of two users (the left image shows the environment view of Human_1 while the 

right image shows the environment view of Human_2)  
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We designed multiple collaborative puzzle games with different collaborative strategies in order to 

elicit communication and collaboration between the users. These collaborative strategies were 

implemented by manipulating three game features: i) who can see the color; ii) who can move the puzzle 

pieces; and iii) whether the target area is moving or stationary. The characteristics of these games are 

shown in Table 20. Take Game_9 for an example: two users need to drag puzzle pieces together to a 

moving target area, and only one user can see the color of puzzle pieces. Therefore, two users are required 

to converse with each other to share color information as well as to synchronize their actions in this game.  

 

Another important component of CRETA was an intelligent agent that could not only converse and 

play games with a human but also generate meaningful features to reflect his/her communication and 

collaboration skills. The intelligent agent is a computer program developed using machine learning and 

natural language processing technologies. When communicating with humans, the intelligent agent, first, 

transcribed their speech to text in real time using a speech recognition software, i.e., Google Cloud 

Speech APIs (https://cloud.google.com/speech/). Then, it understood the human language using a 

dialogue act classification. At the same time, it extracted users’ game information, including the human’s 

game actions and current game states, from the CVE. After that, the intelligent agent combined humans’ 

natural language and game information to understand human behaviors. Finally, based on its 

understanding, the intelligent agent generated speech and game-related responses using a finite state 

machine. In this procedure, the transcribed text and classified dialogue acts were recorded as verbal-

Table 20 The Features of Each Collaborative Puzzle Game 

Game 

Name 

Who can move the 

puzzle pieces 

Who can see 

the color 

Whether the target is 

moving  

Game_1 One by one Both users No 

Game_2 One by one One user No 

Game_3 One by one Another user No 

Game_4 Two users together Both users No 

Game_5 Two users together One user No 

Game_6 Two users together Another user No 

Game_7 Two users together Both users Yes 

Game_8 Two users together One user Yes 

Game_9 Two users together Another user Yes 
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communication features to present the communication between users. Details of how to design the 

intelligent agent are presented in Chapter IV.  

5.3.1.3. Data transmission between components 

These system components communicated with each other by exchanging data. As shown in Fig.  21, 

CVE node_1 and CVE node_2 transferred audio data (i.e., what Human_1 and Human_2 said), game 

actions (i.e., what these humans did), and game states (i.e., what kind of game they were playing) between 

two humans, so that human-users in different locations could converse and play games with each other. In 

addition, these CVE nodes needed to transfer the audio data and game information to the intelligent 

agents in order for the intelligent agents to monitor human behaviors in HHIs. The data transmission 

between CVE node_1 and CVE node_3, and the data transmission between CVE node_2 and 

CVE_node_4 were used for humans to converse and play games with their intelligent agents within the 

CVE. All of the data transmission was implemented with socket programming.  

By enabling and disabling different kinds of data transmission, CRETA could switch between HHIs 

and HAIs. In Fig.  21, when the data transmission labeled with number 2 was enabled and the data 

transmission labeled with number 1 was disabled, each human could communicate with his/her intelligent 

agent. As a result, a human could converse and play games with his/her intelligent agent. When the data 

transmission labeled with number 1 was enabled and the one with number 2 was disabled, two humans 

could communicate with each other. Under this condition, two humans conversed and played games with 

each other. In the meantime, their audio, game action, and game states data were transferred to the 

intelligent agents for the intelligent agents to monitor the HHIs.  

5.3.2. Feasibility study 

We conducted a feasibility study with 20 age- and sex- matched pairs, in order to evaluate whether the 

intelligent agent could measure both communication and collaboration skills of children with ASD and 

their TD peers in the CVE.  
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5.3.2.1. Participants  

20 age- and sex- matched pairs were recruited from an existing clinical research registry. Each pair 

included a child with ASD and a TD child. Participants with ASD had diagnoses from licensed clinical 

psychologists based upon DSM-5 criteria as well as Autism Diagnostic Observation Schedule-2 scores 

(Pruette 2013). Additional inclusion criteria included the use of spontaneous phrase speech and IQ scores 

higher than 70 as recorded in the registry. The IQ criterion was established as a rough proxy for the 

estimated 5th grade reading level necessary for understanding/completion of the instructions of the CVE 

tasks. Participants in the TD group were recruited through an electronic recruitment registry accessible to 

community families. To index initial autism symptoms and screen for autism risk among the TD 

participants, parents of all participants completed the Social Responsiveness Scale, Second Edition (SRS-

2) (Constantino and Gruber 2002) and the Social Communication Questionnaire Lifetime (SCQ) (Rutter 

et al. 2003). Table 21 shows the characteristics of these participants. The study was approved by the 

Vanderbilt University Institutional Review Board (IRB). 

 
5.3.2.2. Experimental Procedure 

Each ASD/TD pair completed a one-visit experiment. The procedure for the experiments is shown in 

Fig.  23. At the very beginning of the experiments, participants were shown an introduction about how to 

play games in the CVE. Then the participants played nine collaborative puzzle games in a random order. 

Each game was played in a HHI mode followed by a HAI mode. In the HHI mode, a child with ASD 

played a game with a TD child for a certain time. Game_1, Game_2, and Game_3 were played for one 

minute each. Game 4, Game_5, and Game_6 lasted for two minutes each. Each of the other games was 

played for three minutes. The duration of each game was determined based on our previous study, where 

four ASD/TD pairs were recruited to play each game without time limitation. In a HAI mode, each child 

Table 21 Participant characteristics 

 

 
Age 

Gender 

Female/male 

SRS-2 total 

raw score 

Mean (SD) 

SRS-2 T 

score 

Mean (SD) 

SCQ current 

total score 

Mean (SD) 

ASD (N=20) 13.33(2.12) 4/16 102.45(23.73) 77.75(9.35) 22.58(8.87) 

TD (N=20) 13.50(2.30) 4/16 27.4(21.68) 47.65(8.45) 3(4.08) 

Note: SD means standard deviation 
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played the same game with his/her intelligent agent. Between two different games, there was a 10-second 

break. Each experiment lasted approximately 40 minutes. Participants’ behaviors and their computer 

screens were audio and videotaped during the experiments.  

 

5.4. Data analysis 

We present a framework to measure both communication and collaboration skills of the participants in 

HAIs. The framework measured these skills in three steps, which are shown by the solid lines in Fig.  24. 

First, the system automatically generated verbal-communication and task-performance features to 

represent the behaviors of these participants in HAIs. Second, in the feature evaluation step, we evaluated 

whether the system could accurately generate these features, as well as whether these features could 

reflect important aspects of the behaviors of these participants in HAIs. Third, the system-generated 

features were then used to measure both communication and collaboration skills in HAIs. In addition, the 

framework has a Ground Truth Generation step, which generated ground truth of the features and the 

skills.  

 

 
Fig.  24 A framework of data analysis. The solid lines show the procedure to measure communication 

skills and collaboration skills; while the dotted lines show the procedure to evaluate the measurements 

 
Fig.  23 Experimental procedure 
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In addition to the framework, we evaluated whether behaviors of the participants in HAIs could reflect 

important aspects of their behaviors in HHIs. First, we evaluated the system-generated features of HHIs 

using the method in the feature evaluation step of the framework. Then, we computed correlations 

between each feature of HAIs and the same feature of HHIs. These correlations could demonstrate 

relationships between their behaviors in HAIs and their behaviors in HHIs.   

5.4.1. System-generated features  

System-generated features based on previous literature were selected to represent participants’ within-

system behaviors. All the features and their descriptions are shown in Table 22. The first seven features in 

Table 22 are verbal-communication features, which were used to represent conversations of the 

participants. Hourcade and colleagues found that word frequency and sentence frequency could reflect the 

engagement of children with ASD in collaborative games (Hourcade et al. 2013). Dialogue act features, 

such as requests for information (McManus and Aiken 1995), providing information (Gogoulou et al. 

2008), and acknowledging other people’s actions (Vieira et al. 2004), have been proven to be useful in 

understanding group discussion behaviors of children with ASD and TD children. Task-performance 

features included how many puzzle pieces have been successfully moved per minute (named success 

frequency), how many times a participant failed to move puzzle pieces (named failure frequency), how 

long he/she dragged puzzle pieces (named dragging time), and how often two users collaboratively 

moved puzzle pieces together (named collaboration time). Bauminger-Zviely and colleagues found that 

the success frequency and failure frequency features reflected important aspects of collaborative 

behaviors of children with ASD in collaborative games (Bauminger-Zviely et al. 2013). White and 

colleagues reported that the dragging time and collaboration time features could reflect collaboration 

efficiency of children with ASD when they played collaborative games with their TD peers (White et al. 

2007). All these task-performance features were collected by the system in real time; while the verbal-

communication features were generated by the intelligent agent using machine learning and natural 

language processing technologies.  
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The procedure to generate verbal-communication features included two steps. First, the system 

automatically detected when spoken sentences ended and transcribed these sentences into text, using the 

Google Cloud Speech APIs. The word frequency and sentence frequency features were generated based 

on the speech recognition results. Then, each sentence was classified into one of the predefined 

categories, i.e., Request_color, Provide, Direct_Movement, Acknowledgement, and Request_Object, using 

a dialogue act classification (see Chapter IV for more information). The corresponding features, such as 

how many times a participant asked for color information, i.e., Request_color frequency, how many times 

the participant provided game information for his/her partner, i.e., Provide frequency, and how many 

times the participant directed his/her partner to move puzzle pieces, i.e., Direct_Movement frequency, 

were computed based on the classification results.  

The verbal-communication features and task-performance features, which were generated in different 

system components and computers, were synchronized using multiple synchronization methods for 

Table 22 system-generated features and their descriptions 

Index Name Description Note 

1 Word frequency 
How many words a user speaks per 

minute 
-- 

2 
Request_color 

frequency 

How many times per minute a user 

asks color information 

An example of asking color: what’s 

the color of this piece 

3 Provide frequency 
How many times per minute a user 

provides game information 

An example of providing game 

information: this is a red piece 

4 
Direct_movement 

frequency 

How many times per minute a user 

directs movements 

An example of directing movements: 

move number three 

5 
Acknowledge 

frequency 

How many utterances belong to 

acknowledgements 

An example of acknowledgements: 

okay 

6 
Request_object 

frequency 

How many times per minute a user 

asks for objects 

An example of asking for objects: 

which one do you want to move 

7 Sentence frequency 
How many utterances a user speaks 

in a minute 
-- 

8 Success frequency 

How many puzzle pieces have been 

successfully moved to the target 

area 

-- 

9 Failure frequency 
How many times a user fails in 

moving puzzle pieces 
-- 

10 Collaboration time 

The time duration of puzzle pieces 

being moved by two users 

simultaneously in a minute 

-- 

11 Dragging time 
The total time duration of a user 

dragging puzzle pieces 
-- 

12 
Collaborative 

movement ratio 

The ratio of collaboration time and 

dragging time 
-- 
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offline data analysis. The intelligent agent component, including Agent_1 and Agent_2 in Fig.  21, 

generated and recorded verbal-communication features; while the CVE component, including CVE 

Node_1, Node_2, Node_3, and Node_4 in Fig.  21, generated and recorded task-performance features. 

These system components were located on two desktop computers. Specifically, the CVE Node_1, 

Node_3 and Agent_1 were run on one computer, while CVE Node_2, Node_4, and Agent_2 were run on 

another computer. The features on the same computer were synchronized using timestamps corresponding 

with these features; while the features on two different computers were synchronized using game start 

times. The game start times of two computers were recorded and synchronized at the beginning of each 

game in real time. Because all the features generated during a game were grouped as one data sample, 

these synchronization methods were sufficient for our data analyses.  

5.4.2. Human Ratings 

Two human raters, a primary human rater and a secondary human rater, watched videos of the 

experiments, and rated both communication and collaboration skills of the participants in order to provide 

the ground truth of these skills. The primary human rater was blinded to the study; while the secondary 

human rater was not blinded to the study. The primary human rater rated all the experiments, and her 

ratings were used as the ground truth of the skills. The secondary human rater rated 25% of the all the 

experiments, and her ratings were used to evaluate the human rating results. We selected the human 

ratings of these skills as the ground truth because the goal of this study was to replace the time-consuming 

human-rating method in measuring these skills. 

These two human raters utilized the same rating scheme, and rated the skills independently. The human 

raters rated these skills along two kinds of rating scales: i) a binary rating, which has a value 1 or 0, and 

ii) a continuous rating, which has a value between -4 and 4. Values of the binary rating indicated whether 

the raters felt participants had high levels or low levels of communication skills or collaboration skills in 

the current game. Values of the continuous rating showed how good the participants’ skills were in the 

current game. 
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The inter-rater reliability, which indicated the degree of agreement between two human raters in their 

ratings, was assessed in two ways. First, inter-rater agreement on the binary ratings was assessed using a 

Cohen’s Kappa method, which is suitable to assess inter-rater agreement for categorical items of two 

coders (Eugenio and Glass 2004). Agreement on a binary rating in this study means both human raters 

rated skills of a participant as a high level or both of them rated the skills as a low level. Second, the inter-

rater reliability of continuous rating was assessed using the Spearman’s rank correlation (Mathiowetz et 

al. 1984) to indicate the relationship of the continuous ratings between two human raters.  

A human rater, different from the previous two human raters, manually rated participants’ 

conversations from 20% of experimental sessions in order to provide ground truth for system-generated 

verbal-communication features. This human rater was a native English speaker and was blinded to the 

study. Specifically, the rater watched videos recorded during the experiments and manually transcribed 

the participants’ speech to text. Then the rater labeled each sentence with one of the predefined dialogue 

acts, i.e., Request_Color, Provide, Direct_Movement, Acknowledge, and Request_Object. The manually 

transcribed texts and the labels assigned to these sentences were used as the ground truth to evaluate the 

system-generated verbal-communication features.  

5.4.3. Feature processing 

We preprocessed system-generated features by removing outliers and normalizing these feature values. 

Statistical tests and machine learning methods are sensitive to the outliers in data samples. Therefore, we 

removed outliers using a univariate method, which removed data samples that have extreme values on one 

feature (Grubbs 1969). Then, each feature of the data samples was normalized using a min-max 

normalization method (Jain and Bhandare 2011) to allow comparisons across different features. After the 

preprocessing procedure, we evaluated i) whether the system could accurately generate verbal-

communication features; and ii) whether the system-generated features could reflect important aspects of 

both communication and collaboration skills of the participants.  
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We analyzed performance of the system in generating verbal-communication features. As discussed in 

Section 5.4.1, the intelligent agent generated the verbal-communication features using a speech 

recognition software and a dialogue act classification model. We evaluated the performance of the speech 

recognition software using its word error rate (Klakow and Peters 2002). Then, we evaluated the 

performance of the dialogue act classification model by showing its confusion matrix, which included 

true positives, true negatives, false positives, and false negatives of each dialogue act class (Srinivasan 

and Petkovic 2000). Finally, we computed error rates of system-generated verbal-communication 

features.  A feature error rate is a ratio of a feature error to its true value. The feature error is the 

difference between the measured feature and its true value. We also computed the ratio of the sentence 

number of each dialogue act to the total number of sentences. The ratio helped describe the error rate of 

the corresponding verbal-communication feature. Results of the analysis indicated whether the system 

could accurately generate the verbal-communication features.   

To evaluate whether the system-generated features could reflect important aspects of both 

communication and collaboration skills, we computed correlations between the system-generated features 

and the human ratings of communication skills on a continuous scale, as well as correlations between 

system-generated features and the human rating of collaboration skills on a continues scale. We selected 

Spearman’s rank correlation, which is a non-parametric measure of rank correlation between two 

variables (Krishnaiah 1980), to compute the correlation because these features did not follow a normal 

distribution. It has been commonly accepted that if the correlation between a feature and the skills is 

between -.3 and .3, the feature has a small strength of association with the skills (Cohen 1988). If the 

correlation is between .3 and .5 or between -0.5 and -0.3, the feature and the skills have a moderate 

strength of association. Otherwise, the features and the skills have a strong correlation. We also computed 

correlations between each feature and the human ratings of the skills on a binary scale using a Rank 

Biserial correlation, which is used to find a correlation between binary nominal data and ranked data 

(Cureton 1956).   
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5.4.4. Skill measurements 

We built machine learning models to measure both communication and collaboration skills using the 

system-generated features. In particular, we trained machine learning models to classify a data sample, 

which includes all system-generated features of a game, into a binary-class, i.e., a high level of skills or a 

low level of skills. We selected Support Vector Machine with Radial Basis Function (SVM-RBF) kernel 

as the machine learning methods for the classification given the fact that SVM-RBF methods usually have 

good performance for classifying data with a small sample size (Chang et al. 2010). A SVM-RBF model 

was built to measure communication skills using the system-generated features and ratings of 

communication skills on a binary scale; while another SVM-RBF model was built to measure 

collaboration skills using these features and rating of the collaboration skills on a binary scale. In 

addition, we trained two models to classify these skills based on balanced training data. The balanced 

training data were generated by randomly under-sampling the majority class, which is a commonly used 

resampling techniques to improve classification performance in unbalanced datasets. The performance of 

these models in measuring these skills was evaluated using their classification accuracies, which were 

computed using a 6-fold cross-valuation method.   

5.5. Results  

5.5.1. Human-Agent interaction results  

We present results of each step of the framework to measure both communication and collaboration 

skills of the participants in HAIs. In Section 5.5.1.1, we present results of inter-rater reliability regarding 

human ratings of the skills in HAIs to indicate whether the human ratings were reliable. Then, we show 

feature evaluation results to indicate i) whether the system could accurately generate verbal-

communication features, and ii) whether the system-generated features could reflect important aspects of 

behaviors of the participants in the HAIs. Finally, we provide results of measuring both communication 

and collaboration skills from the system-generated features in HAIs. 
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5.5.1.1 Results of human ratings of HAIs 

We computed inter-rater reliability regrading human ratings of communication skills and human 

ratings of collaboration skills in HAIs. The inter-rater agreement on the human ratings of communication 

skills on a binary scale in HAIs was 85.50%; while the inter-rater agreement on the human ratings of 

collaboration skills on a binary scale in HAIs was 77.96%. Regarding the human ratings of 

communication skills on a continuous scale in HAIs, we found a moderate correlation (𝑟𝑠=0.42, p<.001) 

between two human raters. Regarding the ratings of collaboration skills on a continuous scale in HAIs, 

Spearman’s rank correlation indicated a strong correlation (𝑟𝑠=0.54, p<.001) between the two human 

raters. 

5.5.1.2. Results of feature evaluation of HAIs 

We tested whether the system could accurately generate verbal-communication features. The word 

error rate of the speech recognition was 18.01% in HAIs. In HAIs, the accuracy of the five-class dialogue 

act classification was 70.27%, which was much higher than the random accuracy, 20%, of a five-class 

classification. Detailed results of the dialogue act classification are shown in Table 23. These accuracies 

were computed based on 1337 spoken sentences of the participants. 

 

Table 23 dialogue act classification accuracies in HAIs 

 

Classification results 

Request_

color 
Provide 

Direct_ 

movement 
Acknowledge 

Request

_object 
Sum 

Expected 

results 

Request_c

olor 
0.60% 0.07% 0.07% 0 0 0.74% 

Provide 0.07% 47.49% 5.76% 3.74% 0 57.06% 

Direct_m

ovement 
0 18.18% 17.47% 0.75% 0 36.40% 

Acknowle

dge 
0 0.45% 0.60% 4.71% 0 5.76% 

Request_

object 
0 0.07% 0 0 0 0.07% 

Sum 0.67% 66.26% 23.90 9.20% 0 100% 
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The error rate6 of each verbal-communication feature in HAIs are shown in Table 24. The setence 

frequency feature in HAIs had the lowest error rate, 0.0566. This result indicated that the system has the 

potential to accurately generate the sentence frequency feature in HAIs. However, the Request_color 

frequency and Request_object frequency feature had high error rates in HAIs. Because of the high error 

rates, we removed these features for the following data analysis.  

 

We computed correlations between system-generated features and continuous ratings of 

communication skills, as well as correlations between system-generated features and continuous ratings 

of collaboration skills, when participants interacted with the intelligent agents. In Table 25, the 2nd 

column (named correlation between a feature and continuous communication skills in HAIs) shows the 

correlations between each system-generated feature and the ratings of communication skills on a 

continuous scale in HAIs. The 3rd column (named correlation between a feature and continuous 

collaboration skills in HAIs) shows the correlations between each system-generated feature and ratings of 

collaboration skills on a continuous scale in HAIs. Regarding the continuous ratings of communication 

                                                      

6 The error rate may be larger than 1. Take word frequency for example. If a participant says “one” and the 

system detects “one and”, the system incorrectly detects one word and the error rate is 1. Note that the system 

correctly detects one word even when the error rate is 1. The error rates of other features depended on errors of both 

speech recognition and dialogue act classification, which are presented at the very beginning of Section 5.5.1.2.   

 

Table 24 Error rate of each system-generated feature in HAIs 

System-generated Feature 
Error rate in 

HAIs 

Ratio of the number of sentences 

belonging to a dialogue act class 

to the total number of sentences 

Word frequency 0.1289 -- 

Request_color frequency 1.0000 0.0055 

Provide frequency 0.3527 0.5027 

Direct_movement frequency 0.6408 0.4611 

Acknowledge frequency 0.5789 0.0266 

Request_object frequency 1.0000 0.0041 

Sentence frequency 0.0566 -- 

Note: error rate means the ratio of incorrectly detected features to the true value of the features. It may be larger 

than 1.  
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skills in HAIs, although many correlations were significant, none were considered strong. Regarding the 

continuous ratings of collaboration skills in HAIs, there was a negative strong correlation between the 

ratings and failure frequency (𝑟𝑠=-0.5487, p<.001).  

 

The correlations between each system-generated feature and the ratings of skills on a binary scale in 

HAIs are shown in the 2nd column and 3rd column of Table 26. Regarding the binary ratings of 

communication skills in HAIs, moderate correlations were found for Provide frequency (𝑟𝑟𝑏=.3464, 

p<.001), sentence frequency (𝑟𝑟𝑏=.4175, p<.001), success frequency (𝑟𝑟𝑏=.3117, p<.001), and failure 

frequency (𝑟𝑟𝑏=-0.3970, p<.001). Regarding the binary ratings of collaboration skills in HAIs, moderate 

correlations were found for success frequency (𝑟𝑟𝑏=.3101, p<.001), and failure frequency (𝑟𝑟𝑏=-0.4416, 

p<.001). 

Table 25 Correlation between a system-generated feature and human ratings on a continuous scale in HAIs 

System-generated feature 

Correlation between a feature 

and continuous communication 

skills in HAIs 

Correlation between a feature and 

continuous collaboration skills in 

HAIs 

Word frequency 0.3804** 0.1536* 

Provide frequency 0.4294** 0.3403 

Direct_movement frequency 0.2186** -0.0069 

Acknowledge frequency 0.0292 0.0382** 

Sentence frequency 0.3541** 0.2288** 

Success frequency 0.4039** 0.4091** 

Failure frequency -0.4479** -0.5487** 

Collaboration time 0.3540** 0.3528** 

Dragging time 0.1844* 0.1269* 

Collaborative movement 

ratio 
0.3369** 0.3538** 

Note: ** indicates a p value less that .001; * indicates a p value less than .05 
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5.5.1.3. Results of skill measurements of HAIs 

The system-generated features with SVM-RBF models could assess both communication and 

collaboration skills in HAIs with high accuracies. The accuracy to assess binary communication skills in 

HAIs is 76.67% with balanced data samples, i.e., 32 data samples belonging to high levels of 

communication skills and 32 in low levels. The collaboration skills could be assessed with a high 

accuracy, 82.14%, with balanced data samples, i.e., 42 data samples belonging to high levels of 

collaboration skills and 42 data samples belonging to low levels. The accuracies of measuring both 

communication and collaboration skills with all the data are shown in the Table 27.  

 

5.5.2. Human-Human interaction results 

In order to evaluate whether participant behaviors in HAIs could reflect important aspects of their 

behaviors in HHIs, we i) evaluated system-generated features in HHIs, and ii) compared the features of 

HAIs to the features of HHIs in this section. In Section 5.5.2.1, we present results of inter-rater reliability 

of human ratings in HHIs to indicate whether the human ratings in HHIs were reliable. Section 5.5.2.2 

shows feature evaluation results to indicate whether the system could accurately generate verbal-

Table 27 Accuracies of measuring both communication and collaboration skills 

Index Which skills to measure? 
Data sample size 

(high level / low level)  

Accuracy of 

balanced data 

Accuracy of all 

data 

1 Communication skills in HAIs 244/32 82.14% 93.75% 

2 Collaboration skills in HIAs 234/42 76.67% 88.69% 

 

Table 26 Correlation between a system-generated feature and human ratings in a binary scale in HAIs 

System-generated feature 

Correlation between a feature and 

binary communication skills in 

HAIs 

Correlation between a feature 

and binary collaboration skills 

in HAIs 

Word frequency 0.1865** 0.0344 

Provide frequency 0.3464** 0.2443** 

Direct_movement frequency 0.0628 -0.0804 

Acknowledge frequency 0.1221 0.0729 

Sentence frequency 0.4175** 0.1594* 

Success frequency 0.3117** 0.3101** 

Failure frequency -0.3970** -0.4416** 

Collaboration time 0.2380** 0.2769** 

Dragging time -0.2756* 0.0718 

Collaborative movement ratio 0.0456** 0.2782** 

Note: ** indicates a p value less that .001; * indicates a p value less than .05 



 127 

communication features in HHIs, as well as whether the system-generated features could reflect important 

aspects of participant behaviors in HHIs. Finally, we present correlations between features of HHIs and 

features of HAIs. These system-generated features were used to reflect important aspects of participant 

behaviors within the system. The correlations were computed to indicate relationships between participant 

behaviors in HAIs and their behaviors in HHIs.  

5.5.2.1. Results of human rating of HHIs 

We computed inter-rater reliability regrading human ratings of communication skills and human 

ratings of collaboration skills in HHIs. The inter-rater agreement on the human ratings of communication 

skills on a binary scale in HHIs was 74.47%; while the inter-rater agreement on the human ratings of 

collaboration skills on a binary scale in HHIs was 87.50%. Regarding the ratings of communication skills 

on a continuous scale in HHIs, we found a strong correlation (𝑟𝑠=0.73, p<.001) between two human 

raters. Regarding the ratings of collaboration skills on a continuous scale in HHIs, Spearman’s rank 

correlation also indicated a strong correlation (𝑟𝑠=0.78, p<.001) between two human raters.  

5.5.2.2. Results of feature evaluation of HHIs 

We tested whether the system could accurately generate verbal-communication features in HHIs. The 

error rate of the speech recognition was 23.16% in HHIs. The dialogue act classification, a five-class 

classification, could classify participants’ spoken sentences with a 68.78% accuracy in HHIs. The detailed 

results of the dialogue act classification in HHIs are shown in Table 28. These accuracies were computed 

based on 868 sentences. 
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The error rate of each verbal-communication feature in HHIs are shown in Table 29. The Word 

frequency feature in HHIs had the lowest error rate, 0.1777. This result indicated that the system has the 

potential to accurately generate the word frequency feature in HHIs. However, the Request_color frequency 

and Request_object frequency feature had high error rates in HHIs. Because of the high error rates, we 

removed the features for the following data analysis.  

 

As seen in Table 30, we found strong correlations between several system-generated features and 

continuous ratings of communication skills in HHIs, as well as strong correlations between several 

system-generated features and continuous ratings of collaboration skills in HHIs. Regarding continuous 

ratings of communication skills in HHIs, Spearman’s rank correlation indicated strong positive 

correlations between the ratings and word frequency (𝑟𝑠=.7578, p<.001), provide frequency (𝑟𝑠=.5422, 

p<.001), Direct_movement frequency (𝑟𝑠=.6673, p<.001), and sentence frequency (𝑟𝑠=.7649, p<.001). 

Table 29 Error rate of each system-generated feature in HHIs 

System-generated Feature Error rate in HHIs 
Ratio of a frequency to sentence 

frequency in HHIs 

Word frequency 0.1777 -- 

Request_color frequency 1.4615 0.0110 

Provide frequency 0.5339 0.6988 

Direct_movement 

frequency 
0.8589 0.1379 

Acknowledge frequency 0.4471 0.1438 

Request_object frequency 1.2000 0.0085 

Sentence frequency 0.1991 1 

Note: error rate means the ratio of incorrectly detected features to the true value of the features. It may be 

larger than 1.  

 

Table 28 dialogue act classification accuracies in HHIs 

 Classification results 

  
Request

_color 
Provide 

Direct_mo

vement 
Acknowledge 

Request

_object 
Sum 

Expected 

Request_c

olor 
1.38% 0.35% 0.58% 0 0.12% 

2.42% 

Provide 0.23% 33.06% 15.09 5.53% 0.12% 54.03% 

Direct_m

ovement 

0 2.07% 21.66% 0.46% 0 
24.19% 

Acknowle

dge 

0 3.92% 3.92% 12.33% 0 
18.66% 

Request_

object 

0 0.12% 0.23% 0 0.35% 
0.69% 

Sum 1.61% 38.02% 41.47% 18.32% 0.58% 100% 
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Regarding continuous ratings of collaboration skills in HHIs, although many correlations were 

statistically significant, the only one considered strong was success frequency (𝑟𝑠=0.5378, p<.001).   

 

As seen in Table 31, we used a Rank Biserial correlation to examine relations between each system-

generated feature and binary ratings of communication skills in HHIs. Regarding the binary ratings of 

communication skills in HHIs, strong positive correlations were found for word frequency (𝑟𝑟𝑏=.5750, 

p<.001), Direct_movement frequency (𝑟𝑟𝑏=.5249, p<.001), and sentence frequency (𝑟𝑟𝑏=.6446, p<.001). 

Regarding binary ratings of collaboration skills in HHIs, although many correlations were significant, 

none were considered strong.  

 

Table 31 Correlation between a system-generated feature and human ratings in a binary scale in HHIs 

System-generated feature 
Correlation between a feature and 

binary communication skills in HHIs 

Correlation between a feature and 

binary collaboration skills in HHIs 

Word frequency 0.5750** 0.2316** 

Provide frequency 0.3965** 0.1618* 

Direct_movement frequency 0.5249** 0.2540** 

Acknowledge frequency 0.2988** 0.1384 

Sentence frequency 0.6446** 0.3107** 

Success frequency -0.1462 0.3214** 

Failure frequency -0.0061 -0.3147** 

Collaboration time -0.0060 0.3404** 

Dragging time 0.1945** 0.2480** 

Collaborative movement ratio -0.1827 0.2178** 

Note: ** indicates a p value less that .001; * indicates a p value less than .05 

Table 30 Correlation between a system-generated feature and human ratings on a continuous scale in HHIs 

System-generated feature 

Correlation between a feature 

and continuous communication 

skills in HHIs 

Correlation between a feature 

and continuous collaboration 

skills in HHIs 

Word frequency 0.7578** 0.2994** 

Provide frequency 0.5422** 0.1855** 

Direct_movement frequency 0.6673** 0.2908** 

Acknowledge frequency 0.3472** 0.1489 

Sentence frequency 0.7649** 0.3932** 

Success frequency -0.0843 0.5378** 

Failure frequency -0.0345 -0.3714** 

Collaboration time -0.0294 0.3839** 

Dragging time 0.2696** 0.2183** 

Collaborative movement 

ratio 
-0.1548 0.3864** 

Note: ** indicates a p value less that .001; * indicates a p value less than .05 
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5.5.2.3. Correlations between features of HHIs and features of HAIs 

A Spearman’s rank correlation analysis was used to determine the relationship between a feature of 

HAIs and the feature of HHIs, as shown in Table 32. There was a strong correlation (𝑟𝑠=0.6080, p<.001) 

between the HHIs’ word frequency and the HAIs’ word frequency. In addition, there was a strong 

correlation (𝑟𝑠=0.5922, p<.001) between the sentence frequency feature of HHIs and the sentence 

frequency feature of HAIs. Spearman’s rank correlation also indicated a strong correlation (𝑟𝑠=0.5913, 

p<.001) between the collaboration time of HHIs and the collaboration time of HAIs.   

 

5.6. Conclusion, limitations, and future work 

We applied an intelligent agent in order to measure both communication and collaboration skills of 

children with ASD and their TD peers in a CVE. Given the challenges in understanding unrestricted 

conversation between real-users in the CVE, we designed an intelligent agent that could interact with 

these children to control their behaviors in the CVE, as well as to automatically measure both 

communication and collaboration skills of these children through the controlled interactions. Our results 

indicated that i) the system could measure these skills of children with ASD and their TD peers when they 

played games with the intelligent agent; and ii) their interactions with the intelligent agent could reflect 

important aspects of peer-mediated interactions in the CVE.  

Table 32 Correlations between features in HHIs and them in HAIs 

System-generated feature1 System-generated feature2 

Correlation between system-

generated feature1 and 

system-generated feature 2 

Word frequency in HHIs Word frequency in HAIs 0.6080** 

Request_color frequency in HHIs Request_color frequency in HAIs 0.2749** 

Provide frequency in HHIs Provide frequency in HAIs 0.4463** 

Direct_movement frequency in 

HHIs 

Direct_movement frequency in 

HAIs 
0.3366** 

Acknowledge frequency in HHIs Acknowledge frequency in HAIs 0.2765** 

Sentence frequency in HHIs Sentence frequency in HAIs 0.5922** 

Success frequency in HHIs Success frequency in HAIs 0.0562 

Failure frequency in HHIs Failure frequency in HAIs 0.1382 

Collaboration time in HHIs Collaboration time in HAIs 0.5913** 

Dragging time in HHIs Dragging time in HAIs 0.3631** 

Collaborative movement ratio in 

HHIs 

Collaborative movement ratio in 

HAIs 
0.2217** 

Note: ** indicates a p value less that .001; * indicates a p value less than .05 
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We found that our system could generate meaningful features to automatically measure both 

communication and collaboration skills of the participants in HAIs. First, the system could accurately 

generate verbal-communication features as indicated by the low error rates of these features. For example, 

the sentence frequency feature in HAIs had a low error rate 0.0566. Second, we found a moderate 

correlation between the word frequency features and human ratings of communication skills in HAIs, as 

well as a negative strong correlation between the ratings and failure frequency (𝑟𝑠=-0.5487, p<.001) and 

the continuous ratings of collaboration skills in HAIs. Third, all the features together could measure these 

skills with high accuracies using machine learning models. The accuracy to measure the communication 

skills was 82.14%, while the accuracy to measure the collaboration skills was 76.67%. Although these 

machine learning models were built offline, they could be used for real-time measurements in the future. 

Therefore, the system has the potential to automatically measure both communication and collaboration 

skills in human-agent interactions based on these system-generated features.  

Some system-generated features in HHIs may reflect important aspects of the peer-mediated 

interactions. Previous literature found that word frequency and sentence frequency features could be used 

to evaluate social communication of children with ASD in collaborative games (Hourcade et al. 2013).  

Our results were in line with these findings. We found a strong correlation between the word frequency 

feature and the communication skills on a continuous scale in HHIs, as well as a strong correlation 

between the sentence frequency feature and the skills. These results indicated a strong association 

between each of the features and the skills. Therefore, these features could reflect important aspects of the 

communication skills of the participants in peer-mediated interactions. We also found a strong correlation 

between a success frequency feature and collaboration skills on a continuous scale in HHIs, as well as a 

moderate correlation between a collaboration time feature and the skills in HHIs. These results may 

indicate that these features could reflect important aspects of the collaboration skills in peer-mediated 

interactions. This finding is in line with previous literature, which utilized success frequency (Bauminger-

Zviely et al. 2013) and collaboration time (Wilson and Russell 2007) to evaluate system impacts on the 

collaboration skills of children with ASD when they played collaborative puzzle games.  
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The interactions between a human and the intelligent agent may reflect important aspects of peer-

mediated interactions. Spearman’s rank correlation demonstrated strong positive correlations between 

each of the system-generated features, i.e., word frequency, sentence frequency, and collaboration time, in 

HAIs and the features in HHIs. These results support our hypothesis that human-agent interactions could 

reflect important aspects of the interactions between real-participants.  

The errors when the system generated verbal-communication features were because of errors in speech 

recognition and errors in dialogue act classification. Errors of the word frequency and the sentence 

frequency features were due to errors of the speech recognition; while errors of other verbal-

communication features, such as the Request_color frequency, Provide frequency, and Direct_movement 

frequency, were due to both the speech recognition errors and the dialogue act classification errors, as 

shown in Table 23 and Table 28. This might be the reason why the word frequency and sentence 

frequency features had the lowest error rates. We also found a high error rate for the Request_object 

frequency feature. This may be because the participants spoke a very few Request_object sentences, as 

indicated by the small ratio of the Request_object frequency to the sentence frequency in Table 24. As a 

result, a very few incorrectly detected Request_object sentences could lead to a high error rate. We found 

the same results regarding the Request_color frequency feature.   

Our system represents a novel contribution to the literature by providing a way to automatically 

measure both communication and collaboration skills of children with ASD and their TD peers in a CVE. 

Most existing CVE intervention systems can only automatically generate task-performance features to 

measure peer-mediated interactions. Verbal-communication behaviors are informative in representing 

collaborative interactions between peers (Owen-DeSchryver et al. 2008). Previous work has examined 

verbal-communication behaviors in order to understand peer-mediated interactions (Matthew Schmidt et 

al. 2012). However, past studies utilized a time-consuming human-coding method for the analysis. Our 

system could automatically generate meaningful verbal-communication and task-performance features to 

measure both communication and collaboration skills of the participants within the CVE. Therefore, this 
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system has the potential to save time, effort, and costs associated with the human coding methodology in 

measuring these skills of children with ASD and their TD peers in the CVE.  

Although these results are promising, there are some limitations in current study. First, the sample size 

was relatively small, and the experimental design consisted of only one session. Note that the goal of the 

present study was to design a measurement system to automatically measure important aspects of 

interactions in a CVE with a preliminary study. Our preliminary results indicated that this system has the 

potential to automatically measure both communication and collaboration skills of children with ASD and 

their TD peers in the CVE. In the next step, we will utilize this system for real-time measurements with 

more participants and a longer intervention duration.  

Second, in order to be used as a measurement tool, the measurement system needs to be tested across a 

range of treatment approaches. This study only tested whether it could measure both communication and 

collaboration skills in a CVE with collaborative puzzle games. The system in this study was limited in 

understanding verbal-communication and task-performance within this system. This system will need to 

be extended to measure interactions in other domains by modifying the dialogue act classification of the 

intelligent agent. To modify the classification means to train a different classification using conversational 

data in that domain (see Chapter IV for more information about the classification).  

Third, the system-generated features were limited. We only explored 12 features for the measurements 

in the current study. Human behaviors, such as their eye gaze, body language, and facial expression, 

could also provide essential information in peer-mediated interactions. However, features to represent 

these behaviors have not been explored in this study. In the future, these features will be captured with 

separate algorithms, such as eye gaze recognition, gesture recognition, and emotion recognition, in order 

to understand the non-verbal communications.  

Despite these limitations, this work contributes to the literature by proposing a novel way to 

automatically measure both communication and collaboration skills of children with ASD and their TD 

peers within a CVE using an intelligent agent. To the best of our knowledge, this is the first system that 

could automatically measure these skills. Such a system can reduce time and costs associated with the 
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traditional human-coding methodologies, as well as enable real-time feedback within an intervention 

system. As a result, this work, at least partially, addresses the limitations in measuring important aspects 

of interactions within a CVE.   
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CHAPTER VI. MULTIMODAL FUSION FOR COGNITIVE LOAD MEASUREMENTS  

6.1. Abstract 

In this chapter, a novel virtual reality (VR)-based driving system was introduced to teach driving skills 

to adolescents with ASD. This driving system is capable of gathering eye gaze, electroencephalography, 

and peripheral physiology data in addition to driving performance data. The objective of the current work 

is to fuse multimodal information to measure cognitive load during driving such that driving tasks can be 

individualized for optimal skill learning. Individualization of ASD intervention is an important criterion 

due to the spectrum nature of the disorder. Twenty adolescents with ASD participated in our study and the 

data collected were used for systematic feature extraction and classification of cognitive loads based on 

five well-known machine learning methods. Subsequently, three information fusion schemes—feature 

level fusion, decision level fusion and hybrid level fusion—were explored. Results indicate that 

multimodal information fusion can be used to measure cognitive load with high accuracy. Such a 

mechanism is essential since it will allow individualization of driving skill training based on cognitive 

load, which will facilitate acceptance of this driving system for clinical use and eventual 

commercialization. 

6.2. Introduction 

We have developed a novel VR-based driving system aimed at training driving skills in adolescents 

with ASD (Wade et al. 2016 (In press)). Training efficiency may be improved by adjusting difficulty 

levels of the driving tasks based on users’ cognitive load. A cognitively intelligent system, which can 

sense, analyze and respond to a user’s cognitive state has the potential to improve learning efficiency 

(Novak et al. 2012). For example, Koenig et al. implemented a cognitively intelligent system to maximize 

the training efficiency in their rehabilitation environments (Koenig et al. 2011). We will develop the VR-

based driving system into a cognitively intelligent system because cognitive load appears to be more 

appropriate in the context of driving and is commonly used in driving related applications (Yannakakis 
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and Togelius 2011). This chapter explores fusion of multimodal information from a novel VR-based 

driving system for cognitive load measurement, which is a necessary step before building a cognitively 

intelligent VR-based driving system.  

6.2.1. Background 

Cognitive load is a multidimensional construct representing the working load that is imposed on a 

learner’s cognitive system when performing a particular task (Fred GWC Paas and Van Merriënboer 

1994). Cognitive load is believed to be a crucial factor in learning of complex tasks (F. Paas et al. 2003), 

such as driving tasks. The capacity of working memory is limited and it varies from person to person. If a 

learning task requires too little or too much cognitive capacity, learning may be impeded (De Jong 2010). 

Therefore it is important to design learning tasks that provide an appropriate level of cognitive load, 

which is neither too high nor too low (Schoor et al. 2012).  

Cognitive load theory is concerned with efficient usage of people’s limited working memory to acquire 

knowledge and skills. There are different types of cognitive load, such as intrinsic load and extraneous 

load (Sweller 2010). Intrinsic load reflects the natural complexity of learning information and the 

expertise of a learner. Extraneous load is related to the design of instructions (F. Paas et al. 2003). When 

task difficulty exceeds a learner’s expertise, additional extraneous load is generated and the required 

cognitive load exceeds the learner’s working memory capacity. When the learner’s expertise exceeds the 

task difficulty, the learner wastes time and energy to solve tasks that are too simple and therefore will not 

benefit from learning. Thus the task difficulty level should match a learner’s expertise in order to enable 

effective learning (Schnotz and Kürschner 2007). 

Compared to TD individuals, working memory of individuals with ASD may be different (Rajendran 

and Mitchell 2007). Individuals with ASD performed significantly worse than TD individuals on tasks 

related to working memory (Bennetto et al. 1996). Remington et al. reported altered performance of 

individuals with ASD under different levels of cognitive load (Remington et al. 2009). Individuals with 

ASD also have difficulty in understanding the mental states of their own and others (Rajendran and 
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Mitchell 2007). Therefore, a targeted system that can automatically measure cognitive load of individuals 

with ASD and then optimize their cognitive load may have the potential to improve their learning 

efficiency (Ozonoff and Strayer 2001). 

6.2.2. Related research 

Real-time measurement of cognitive load in individuals with ASD is critical for a cognitively 

intelligent system. There are three general ways to measure cognitive load (Meshkati et al. 1995): 

subjective scales, performance-based measures and physiology-based measures. Subjective scales are 

inappropriate in a cognitively intelligent system for ASD intervention because: 1) individuals with ASD 

may have difficulty in accurately reporting their own cognitive load (Rajendran and Mitchell 2007), and 

2) subjective scales are not real-time measures. We therefore explored measuring real-time cognitive load 

using information from eye gaze, electroencephalography (EEG), and peripheral physiology modalities 

along with a task performance modality.  

Each of the above-mentioned modalities has been studied with regards to cognitive load measurement. 

It has been found that eye gaze signals are reflective of a user’s cognitive state (Pomplun and Sunkara 

2003). Pupil dilation is known to quickly respond to changes in a person’s cognitive workload (Pomplun 

and Sunkara 2003). EEG signals are sensitive and reliable for continuous memory load measurement 

(Gevins et al. 1998). Alpha and theta wavebands of EEG are correlated with task difficulty (Gevins and 

Smith 2000). Peripheral physiological signals are also important components of cognitive load 

measurement (Mehler et al. 2009). Electrocardiogram (ECG), respiration (RSP), and HR were 

demonstrated to be sensitive to cognitive load in (Reimer et al. 2013; Novak et al. 2012). Performance-

based measurement is a typical way to measure cognitive load (F. Paas et al. 2003). In terms of driving 

studies, performance metrics, such as steering wheel movements, lane-keeping behavior, speed control, 

and time-to-line crossing, have been found to be related to cognitive load (Son and Park 2011).   

In order to classify cognitive load using observed information, several well-known machine learning 

algorithms and different parameter values of these algorithms have been evaluated in TD populations. 



 141 

Hussain et al. tested k-nearest neighbor (KNN) with different k values in measuring cognitive load using 

face, physiology, and task performance data (M. S. Hussain et al. 2013). Different kernel functions of 

support vector machine (SVM), including linear kernel (M. S. Hussain et al. 2013) and Gaussian kernel 

(Son et al. 2013), were used in cognitive load measurement. Novak et al. analyzed linear discriminant 

analysis (LDA), diagonal LDA, and stepwise LDA to classify cognitive load (Novak et al. 2011). Lin et 

al. explored backpropagation and radial basis functions to build artificial neural networks (ANN) in 

cognitive load measurement (Lin et al. 2005). One of the most important parameters of building a 

decision tree is the splitting criterion (Narsky and Porter 2013). Hussain et al. selected cross-entropy as 

the splitting criterion to build decision trees for cognitive load measurement (M. S. Hussain et al. 2013). 

However, the studies using machine learning algorithms in measuring cognitive load of individuals with 

ASD are limited. Lagun et al. showed that SVM can achieve higher classification accuracy than naïve 

Bayes and logistic regression when measuring cognitive load of individuals with ASD (Lagun et al. 

2011).  

Fusing multimodal information to measure cognitive load has been explored in different applications. 

Novak et al. fused physiological and performance information for upper extremity rehabilitation (Novak 

et al. 2011). Steichen et al. used eye gaze together with performance information for cognitive load 

measurement in visualization systems (Steichen et al. 2014). Son et al. estimated users’ cognitive 

workload using two spoken tasks by integrating performance and eye gaze information (Son and Park 

2011). However, there is no study to our knowledge that has systematically studied fusing multimodal 

information to measure cognitive load of individuals with ASD during VR-based driving.  

6.2.3. Current work 

This work fuses multimodal information collected from a novel VR-based driving system for cognitive 

load measurement, which is a necessary step before building a cognitively intelligent VR-based driving 

system. We hypothesize that multimodal information can lead to a more accurate cognitive load 

measurement than single modality-based measurement approaches. This hypothesis is tested by 
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comparing single modality information to multimodal information in cognitive load measurement with 

multiple well known machine learning algorithms using data collected during VR-based driving in 

adolescents with ASD.   

The key contribution of the current work is to design a cognitive load measurement technique for VR-

based driving such that the driving difficulty can be adjusted for each individual based on their cognitive 

load, which will likely enhance learning. The ground truth of cognitive load used in this work is based on 

perceived task difficulty as experienced by the individuals with ASD and is rated by an experienced 

clinically trained rater. This ground truth, as we have shown, correlates well with the driving performance 

of users, and thus provides a method to measure cognitive load that overcomes the difficulty associated 

with self-rating, which is problematic for individuals with ASD.  Thus this work contributes in the 

following aspects: 1) to analyze eye gaze, EEG, peripheral physiological and performance data in the 

context of VR-based driving, which is designed to provide a safe and flexible environment to teach 

driving skills to adolescents with ASD who often have deficits in this regard; 2) to extract useful features 

from these data that can be used to measure their cognitive load; and 3) to apply several machine learning 

algorithms for measuring cognitive load of a user as well as explore how multimodal information can be 

fused at different levels to yield highly accurate cognitive load measurement.  

The work is organized as follows. Section 6.3 describes our novel VR-based driving system, including 

system design and experimental setup. Section 6.4 lists the features extracted from four modalities. 

Section 6.5 presents the classification algorithms as well as three data fusion strategies for cognitive load 

measurement. The results are provided in Section 6.6 followed by a discussion in Section 6.7. Finally 

conclusions of the presented work and future research plans are discussed in Section 6.8.  
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6.3. VR-Based Driving System 

6.3.1. System design 

A VR-based driving system was designed to train and improve the driving skills of adolescents with 

ASD. The three primary components of the VR-based driving system were: a driving simulator, a data 

capture module and a rating module, as shown in Fig.  25.  

 

Fig.  26 shows the driving simulator. A Logitech G27 steering wheel controller was used to control a 

virtual agent vehicle in the virtual driving environment. Models in the virtual driving environment, such 

as traffic lights, stop signs, and vehicles were developed with the modeling tools ESRI CityEngine 

(www.esri.com/cityengine) and Autodesk Maya (www.autodesk.com/maya). The game development 

platform Unity3D (www.unity3d.com) was used to implement the system logic. A total of six different 

difficulty levels, each level consisting of three driving assignments, were developed for the VR-based 

driving system.  

 

 
Fig.  26 The driving simulator of the VR-based driving system 

 
Fig.  25 The framework of VR-based driving system 
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 These difficulty levels were tested and validated in our previous works (Wade et al. 2016 (In press)). 

Control parameters (Table 33), such as speed of vehicles, responsiveness of the agent vehicles’ brake and 

accelerator, and weather conditions, were manipulated to produce a range of difficulties. Table 34 shows 

the values of these control parameters used in each designed difficulty level. 

  

 

The data capture module recorded a user’s multimodal information while the user was engaged in 

driving. A Tobii X120 remote eye tracker (www.tobii.com) logged the eye gaze data at 120 Hz. A Biopac 

MP150 (www.biopac.com) physiological data acquisition system wirelessly sampled multiple peripheral 

physiological signals, including ECG, electromyography (EMG), RSP, SKT, photoplethysmogram (PPG), 

and galvanic skin response (GSR). The PPG and GSR signals were measured from toes instead of fingers 

in order to reduce the motion artifact from driving. The SKT signal was collected from the upper arm. An 

Emotiv EPOC wireless EEG headset (www.emotiv.com) recorded 14-channel EEG signals. Metrics of 

the user’s performance was recorded within the virtual driving environment.  

Table 34 The Configuration of the Designed Difficult Level 

Level As Aa Hs Rb Ra Rs W L Nv Sd 

1 0.85 1 Enabled 1 1 1 sunny 0.5 0 to 1 4 

2 1 1 Disabled 1 1 1 sunny 0.466 1 to 2 3.35 

3 1.35 1 Disabled 1 1 1 overcast 0.409 2 to 3 2.66 

4 1.35 1 Disabled 1 1 1 sunny 0.329 2 to 3 1.97 

5 1.35 1.35 Disabled 0.675 1.25 2.375 sunny 0.226 3 to 5 1.29 

6 1.75 1.5 Disabled 0.35 1.5 3.75 rainy 0.01 3 to 5 0.6 

 

Table 33  The Control Parameters of Difficulty Level 

Label Description of parameter Domain 

sA  Speed of autonomous vehicles [0.85,1.75]sA
 

aA  Aggressiveness of autonomous vehicles [1,1.5]aA
 

sH  Traffic light alert sound. {Enabled,Disabled}sH   

bR  Responsiveness of the brake pedal. [0.35,1]bR
 

aR  Responsiveness of the accelerator pedal. [1,1.5]aR
 

sR  Responsiveness of the steering wheel. [1,3.75]sR
 

W  Weather condition. 
{Sunny,

Overcast,Rainy}

W

 

L  Intensity of light in the environment. [0.01,0.5]L
 

vN  Number of vehicles at intersections. {1,2,...,5}vN
 

dS  Duration of time to permit driving on sidewalk. [0.6,4]dS
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We designed a rating mechanism for a rater to observe and rate a user’s affective and cognitive state in 

real time. A live video with sound, recording of the user’s frontal face and the virtual driving 

environment, was displayed for the rater. The rater could also view the entire experimental environment 

via a one-way mirror from an adjacent room. The computer used by the rater was connected to the driving 

simulator and the data capture module via a local area network (LAN). The data of each system 

component were labeled according to timestamps of the driving simulator component in order to facilitate 

offline synchronization.  

6.3.2. Experimental setup 

A total of 20 adolescents with ASD, from 13 to 18 years old, were involved in a series of six 

experimental sessions. The participants were recruited through an existing university based clinical 

research registry. Although the study was open to adolescents from both genders, the majority (19 out of 

20) were male participants. ASD is much more common in males than in females (Werling and 

Geschwind 2013) and we were not able to recruit more female participants. All participants had a clinical 

diagnosis of ASD from a licensed clinical psychologist. The Social Responsiveness Scale, second edition 

(SRS-2) was completed for each participant by his/her parent to quantify the severity of his/her ASD 

symptoms (Kim and André 2008). This study was approved by the Vanderbilt University Institutional 

Review Board (IRB). Table 35 shows detailed participants’ information.   

 

Each of the participants completed six sessions on different days. Each session lasted approximately 

one hour. Fig.  27 shows the experimental protocol of a session. The blocks with dashed lines represent 

experimental steps that are only parts of the first session. At the beginning of the first session, informed 

consent was obtained. A video tutorial regarding the VR-based driving system was then shown to a 

participant in the first session. Three researchers set up peripheral physiological and EEG sensors, and 

calibrated an eye tracker in the sensor application step. Before data recording, all signals were checked by 

Table 35 The Participants’ Information 

Gender (%male) Age (year) SRS-2 total raw score SRS-2 score 

95% 15.29(1.66) 97.85(28.35) 75.45(10.23) 
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the researchers to make sure all the sensors were placed correctly. Then, baseline data were collected for 

three minutes for the peripheral physiological and EEG signals in a silent environment. In the first 

session, after the baseline recording step, the participant took part in driving tasks in a free-form mode. 

Following this step, three pre-selected driving assignments were carried out. During the driving 

assignments, the researchers monitored the peripheral physiological and EEG signals in real time to 

ensure the quality of the recorded data.  

 

The first and the last sessions acted as pre- and post-tests and included the same three driving 

assignments (i.e., one easy driving assignment and two difficult driving assignments). The pre- and post-

tests were included in order to evaluate the system in improving a participant’ diving skills. However, we 

do not consider performance improvement from the pre-test to the pose-test in this work. Each of the other 

four sessions were composed of three driving assignments from the same difficulty level, with the driving 

difficulty increasing from the second to the fifth sessions.  

During the experiment, a rater rated a participant’s affective and cognitive states in real time using the 

rating mechanism described in Section 6.3.1. The rater had extensive experience working with individuals 

with ASD at the Treatment and Research Institute for Autism Spectrum Disorders (TRIAD) at Vanderbilt 

University. The rater had been trained to utilize a rating system across a series of other works regarding 

human-computer interaction in ASD populations (C. Liu et al. 2009). She was directly supervised by 

licensed clinical psychologists who specialized in ASD diagnosis and treatment. Five categories of rating 

were collected: perceived task difficulty level, engagement, enjoyment, boredom, and frustration. 

 

Fig.  27 The experimental protocol of a session 
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However, only the rating of perceived task difficulty is considered in this work. The rater rated the 

perceived task difficulty experienced by the participant in a continuous interval from 0 to 9 using 5 as the 

threshold. Specifically, a task was rated with a value higher than 5 if it was perceived to be hard with 

larger value indicating higher perceived task difficulty, and vice versa. The continuous rating of perceived 

task difficulty was later mapped into binary classes offline using 5 as the threshold. That is, if a rating of 

perceived task difficulty had a value less than five, it was mapped into the low cognitive load class; 

otherwise, it belonged to the high cognitive load class.   

We did not use the designed task difficulty as ground-truth for cognitive load considering that the 

cognitive load caused by the same task may vary: 1) from person to person, and 2) at different times for 

the same person (Schnotz and Kürschner 2007). We therefore utilized the rating of perceived task 

difficulty by a trained rater for the ground truth of cognitive load. It was assumed that a high rating of 

perceived task difficulty was indicative of a high cognitive load experienced by the participant (Fred G 

Paas 1992).  

6.4. Feature extraction  

6.4.1 Eye gaze features 

The eye tracker signals, recorded by the Tobii X120 eye tracker, were preprocessed in order to remove 

invalid data and reduce noise. If the time duration of continuous lost data was larger than 1000 ms, the 

lost data were removed. This long duration lost data were primarily attributed to the movement of a 

participant’s head beyond the eye tracker’s detection range. If the time duration of continuous lost data 

was less than 75ms, the lost data were filled in with valid data using a linear interpolation method (Olsen 

2012). 75ms was selected as the threshold because it is the minimum closure duration of a blink. Any lost 

eye gaze data with a duration less than 75ms was deemed to be due to noise. The noise in the eye gaze 

data was then reduced with a median filter.  

After preprocessing, we extracted 4 basic eye gaze features guided by previous literature (Lahiri et al. 

2011; Pomplun and Sunkara 2003): blink, pupil diameter, fixation and saccade (Table 36). We then 
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extracted 10 secondary eye gaze features from the basic features, i.e. blink rate, fixation rate, Mean and 

Standard Deviation (M and SD) of blink duration, M and SD of pupil diameter, M and SD of fixation 

duration, and M and SD of saccade duration.  

 

6.4.2 EEG features 

We recorded EEG signals using the Emotiv EPOC neuroheadset. EEG signals were collected at 128 

Hz from 14 channels at locations AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4 as 

defined by the international 10-20 system (Klem et al. 1999). The reference sensors were placed at 

locations P3 and P4. The recorded EEG signals had bandwidth from 0.2 Hz to 45 Hz, covering five 

frequency bands, which are delta (frequency<4Hz), theta (4Hz<frequency<8Hz), alpha 

(8Hz<frequency<13Hz), beta (13Hz<frequency<30Hz), and gamma (frequency> 30 Hz). The theta, 

alpha, beta, and gamma frequency band activities have been reported to be sensitive for measuring 

cognitive load for ASD populations (Lushchekina et al. 2013). The delta band was less informative and 

was susceptible to movement artifacts during driving. Therefore, we excluded the delta band from feature 

extraction in this work.    

The raw EEG signals were preprocessed by removing the outliers, which were defined as the change 

between two adjacent data points >50 v . Then, a low pass filter and a high pass filter were used to 

remove the noise with frequency larger than 45Hz and less than 0.2Hz. After filtering, data were chopped 

into 1s epoch and those with poor contact quality were rejected. Eye blink, eye movement, and muscle 

movement artifacts were removed with an EOG-EMG artifact correction algorithm (De Clercq et al. 

2006). 

Table 36 Basic Eye Gaze Feature 

Basic features Definition 

Blink  A rapid closing of eye with closure duration between 75 ms to 400 ms  

Pupil diameter The pupil diameter, unit in mm 

Fixation  The eye gaze maintains in one point with a very slow eye movement 

Saccade A quick eye movement between two fixations. 
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The power spectral density was the feature that best reflected the changes of the EEG activities and 

therefore was utilized in the previous literature for cognitive load measurement (Antonenko et al. 2010). 

In this work, power spectral density variables of theta, alpha, beta, and gamma bands, were extracted 

from the preprocessed signals in each channel, resulting in a total number of 56 features (14 channels × 4 

wave bands = 56 features).  

6.4.3. Peripheral physiological features 

We used the Biopac MP150 and recorded ECG, EMG, RSP, SKT, PPG, and GSR signals with a 

1000Hz sampling frequency. The EMG signals were recorded from Corrugator, Zygomaticus, and 

Trpezius muscles. These peripheral physiological signals were preprocessed offline with three steps: 1) 

outlier removal; 2) noise reduction with filters; and 3) subsampling. The details about how to analyze the 

peripheral physiological data can be found in (Sarkar 2002). In the first step, very small and very large 

outliers in each peripheral physiological signal were removed separately. Then, the noise was reduced 

using a low pass filter, a high pass filter, and a notch filter. The slowly changing signals, SKT, RSP, and 

GSR, were subsampled to reduce computation. The subsampling equation used with k=10 was: 

[ ] [ ]subsample initialx n x kn . We identified 60 features from peripheral physiological signals as shown in Table 

37.  
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6.4.4. Performance features 

In the described work, participants’ performance data were recorded through their driving behavior and 

task performance. The driving behavior included how a participant used the brake and accelerator during 

driving. The task performance indicated how well a participant completed a task, such as how many times 

Table 37 The Peripheral Physiological Features and Their Descriptions 

Signal Basic features Description 

PPG Amplitude of peak values (M and 

SD) 

The amplitude of the detected pulse 

Pulse Transit Time 

(M and SD) 

The width of the detected pulse 

GSR Tonic activity level 

(M and SD) 

Tonic level of electrical conductivity of skin 

Slope of tonic activity The change of the tonic per second 

Amplitude phasic activity (M and 

SD) 

The amplitude of detected skin conductance response (SCR) 

peak 

Rate of phasic activity The number of the detected SCR peak per second 

Rise time (M and SD) Temporal interval between SCR initiation and SCR peak 

Recovery time 

(M and SD) 

Temporal interval between SCR peak and point of 50% 

recovery of SCR amplitude 

EMG EMG activity 

(M and SD) 

One of the EMG signal 

Slope of activities The slow change of one EMG signal per minute 

burst activities frequency Number of EMG burst peak per minute 

The burst activities (M and SD) The time duration of EMG burst peak 

Activity frequency (M and SD) The frequency of one EMG signal 

Amplitude of burst activities The amplitude of the detected EMG burst peak 

RSP Amplitude 

(M and SD) 

The amplitude of the detected breath peak 

Subband spectral entropy The spectral entropy in three subband 0.003-0.04Hz, 0.04-

0.15Hz, and 0.15-0.4Hz 

Minimum and maximum difference The difference between the minimum and the maximum 

amplitude of detected breath peak 

peak frequency The number of the detected breath peak per minute 

Power spectrum density of low 

power 

The power of low-frequency component (0.04-0.15Hz) 

Power spectrum density of high 

power 

The power of high-frequency component (0.15-0.4Hz) 

The first order difference The output of the first-order difference equation 

Poincare plot geometry SD1 The variance corresponding to short-term breathing rate 

variability. 

Poincare plot geometry SD2 (M and 

SD) 

The variance corresponding to long-term breathing rate 

variability. 

Peak valley magnitude (M and SD) The magnitude between the peak and the valley 

Respiratory rate 

(M and SD) 

The number of breaths per minute 

SKT Temperature 

(M and SD) 

Peripheral temperature united in degree centigrade 

Slope of temperature The change of the temperature per second 
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he/she failed in one assignment and the driving score he/she achieved during one driving assignment. All 

the performance features and their descriptions are listed in Table 38. 

 

6.5. Classification and Data Fusion Method 

6.5.1 The classification algorithm 

We applied five well-known classification algorithms: SVM (Bishop 2006), KNN (Aditya and 

Tibarewala 2012), decision tree (Safavian and Landgrebe 1990), discriminant analysis (Fisher 1936), and 

ANN (Hagan et al. 1996), to classify the cognitive load from recorded data. Because the accuracy of each 

machine learning algorithm depended on its key parameter (Bergstra and Bengio 2012), we tested each 

machine learning algorithm with a variety of parameter values. Table 39 summarizes the evaluated 

classification algorithms and specifies their parameter values used for cognitive load measurement in this 

work. Regarding SVM, the value of the C parameter was 1 and the size of the radial basis function was 

also 1, which are used in this work because they resulted in high accuracy in our previous work (C. Liu et 

al. 2009).  In terms of ANN, the value of the calculated number of hidden neurons is given by ( ) / 2f cN N

, where fN is the input feature number and cN  is the output class number.  

6.5.2 Data fusion methods 

In general, multimodal information can be fused in different levels: feature level fusion, decision level 

fusion, and hybrid level fusion (Atrey et al. 2010). Feature level fusion is easy to use but is not robust if 

information of some modalities is lost. Decision level fusion is a more robust method that combines the 

sub-decision of each modality (Koelstra et al. 2012). The disadvantage of decision level fusion is its 

Table 38 Performance Features and Their Description 

Features Description 

Brake  

(M and SD) 

The level of using brake. A value between 0 and 1. 0 means 

no brake. 1 means full brake. 

Accelerator 

(M and SD) 

The level of using accelerator. A value between 0 and 1. 0 

means no acceleration. 1 means full acceleration. 

Failure times The number of driving failures 

Driving score Number of points achieved during one assignment 
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failure to reflect the correlation between features of different modalities (E. S. Liu and Theodoropoulos 

2014). Hybrid level fusion methods seek to combine the advantages of feature level fusion and decision 

level fusion (Atrey et al. 2010). However, it is not clear which level of fusion gives the highest accuracy 

in cognitive load measurement with eye gaze, EEG, peripheral physiological, and performance data in the 

VR-based driving system. We therefore compared these three fusion levels in fusing multimodal 

information in cognitive load measurement. The frameworks of the three level fusion techniques are 

shown in Fig.  28. 

  

Fig.  28 (a) shows the framework of feature level fusion. The input to the feature level fusion is a 

feature vector, which is composed of features from eye gaze modality (Eye), EEG modality (EEG), 

peripheral physiology modality (Phy), and performance modality (Per). In the preprocessing module, each 

feature of the feature vector is first normalized into a range from 0 to 1. Then, the dimension of the 

Table 39 The List of Classification Algorithms Used to Measure Cognitive Load 

Classifier Index Algorithm Parameters and their values 

1 

SVM 

Linear kernel 

2 Quadratic kernel 

3 Polynomial kernel of degree 3 

4 Gaussian radial basis function kernel 

5 

KNN 

Euclidean distance and k=1 

6 Euclidean distance and k=3 

7 Euclidean distance and k=5 

8 Covariance distance and k=1 

9 Covariance distance and k=3 

10 Covariance distance and k=5 

11 Cosine distance and k=1 

12 Cosine distance and k=3 

13 Cosine distance and k=5 

14 
Decision 

Tree  

Gini’s diversity index as split criterions  

15 Deviance as split criterions  

16 Twoing as split criterions  

17 Discriminant 

analysis 

Linear discriminant analysis  

18 Quadratic discriminant analysis  

19 

ANN 

Conjugate gradient backpropagation and with 10 hidden neurons  

20 RPROP algorithm and with 10 hidden neurons  

21 Marquardt algorithm and with 10 hidden neurons  

22 Conjugate gradient backpropagation and with calculated number of hidden 

neurons 

23 RPROP algorithm and with calculated number of hidden neurons 

24 Marquardt algorithm and with calculated number of hidden neurons 
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feature vector is reduced with principal component analysis. A classifier takes the feature vector after 

preprocessing as input and outputs a level of cognitive load (CL).   

Fig.  28 (b) shows the framework of decision level fusion. Each of the four modalities yields a feature 

vector. Each feature vector is preprocessed in a preprocessing module as discussed in feature level fusion. 

Because the dimensions of the feature vectors extracted from eye gaze and peripheral 153hysiology 

modalities are small, dimension reduction is not needed for these feature vectors. After preprocessing, 

each feature vector is input into a classifier, which outputs a level of cognitive load as a sub-decision. The 

fusion module calculates the final decision based on the weighted average of the four sub-decisions (2). 

The weighted average, y, is a function of a sub-decision vector, D , and a weight vector, W , (3). The 

elements of the sub-decision vector are four sub-decisions 1 2 3 4( , , , ) d d d dD . Each sub-decision is an output 

of a binary classifier and therefore its value can be either 0 (meaning a low level of cognitive load) or 1 

(meaning a high level of cognitive load). The elements of the weight vector are four weights, 

1 2 3 4( , , , ) w w w wW . Each weight is in the range [0,1]  and the sum of all four weights is 1. 

 

 
(a) 

 
(b) 

 
(c) 

Fig.  28 (a) Feature level fusion framework; (b) decision level fusion framework; and (c) hybrid level 

fusion framework 
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The final decision depends on the weight vector. The weight vector that produces the highest accuracy 

of decision level fusion is the optimal weight vector, which is usually found by exhaustive search. For 

example, Koelstra et al. incremented each weight of a two-dimensional weight vector from 0 to 1 by 0.01 

in order to find an optimal weight vector for emotion recognition using EEG and peripheral physiological 

signals (Koelstra et al. 2012). However, the exhaustive search method is computationally expensive for 

decision level fusion with a high-dimensional weight vector. For example, a decision level fusion with a 

four-dimensional weight vector using exhaustive search with 0.01 step width needs to evaluate 610  weight 

vectors in order to find the optimal one. Because that the sub-decisions of our decision level fusion were 

binary data, the search space of weight vectors can be reduced. We present a new approach that allows 

finding an optimal weight vector from a small number of weight vectors and thereby reducing 

computational load significantly. We prove that the optimal weight vector can be found from the small 

number of selected weight vectors. 

Lemma 1: A small number of weight vectors can yield the optimal one for a decision level fusion with 

four binary sub-decisions.   

Proof: We define a small number of sets of weight vectors that cover the optimal one for the decision 

level fusion (Step 1). We prove that all weight vectors of each set yield the same final decision (Step 2).   

Step 1: The universal set of weight vectors can be presented as (4).  

 
44

1 2 3 4 1
 [0, 1]{( , , , ) | 1}


   ii

U w w w w w  (4) 

First, based on whether maxw (the maximum weight of a weight vector in U  (6)) is greater than, equal 

to, or less than 0.5 , the universal set U  can be partitioned into three disjoint subsets: O , P , and Q , 

respectively. If a weight vector is a member of the subset O as defined by (7), the final decision is 

determined by the sub-decision associated with the maximum weight of the weight vector. This condition 

is discussed separately in the results section as the single modality classification. If a weight vector is a 

member of the subset P as defined by (8), the decision level fusion produces a low accuracy because of 
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the possible boundary condition, 0.5y  . We, therefore, excluded the subset P  for the decision level 

fusion in this work. The subset Q as defined by (8) is a collection of weight vectors, where the weights 

are each less than 0.5. 

   U O P Q
 

(5) 

 w w w w w
max 1 2 3 4

max( , , , )   (6) 

 1 2 3 4 max{( , , , ) | 0.5}  O w w w w U w  (7) 

 1 2 3 4 max{( , , , ) | 0.5}  P w w w w U w  (8) 

 1 2 3 4 max{( , , , ) | 0.5}  Q w w w w U w  (9) 

Second, based on whether max min
w w (the sum of the maximum weight of a weight vector from (6) and 

the minimum weight of the weight vector from (11)) is greater than, equal to, or less than 0.5, set Q can 

be partitioned into three disjoint subsets as shown by (10). We excluded CQ for the decision level fusion 

in this work. If a weight vector is a member of CQ , the decision level fusion produces a low accuracy due 

to the possible boundary condition, 0.5y  .   

   A B CQ Q Q Q
 

(10) 

 
min 1 2 3 4

min( , , , )w w w w w  
(11) 

 1 2 3 4 max min{( , , , ) | 0.5}   AQ w w w w Q w w  (12) 

 1 2 3 4 max min{( , , , ) | 0.5}   BQ w w w w Q w w  (13) 

 1 2 3 4 max min{( , , , ) | 0.5}   CQ w w w w Q w w  (14) 

Third, the set AQ  can be further partitioned into four subsets according to the index of the maximum 

weight of a weight vector in AQ , i.e. 1 1 2 3 4 1 max{( , , , ) | }  A AQ w w w w Q w w ,…, and 4 1 2 3 4 4 max{( , , , ) | }  A AQ w w w w Q w w . 

The maximum weight of the weight vector in AQ  is unique. This can be shown by the fact that a weight 

vector with more than one maximum weights will result in an invalid sum of the vector’s elements: 

w w w w w w
1 2 3 4 max min

2 2 1      . Therefore, these subsets of AQ  are disjoint sets.  

Fourth, the set BQ  can be further partitioned into four subsets according to the index of the minimum 

weight of a weight vector in BQ , i.e. 1 1 2 3 4 1 min{( , , , ) | }  B BQ w w w w Q w w ,…, and 4 1 2 3 4 4 min{( , , , ) | }  B BQ w w w w Q w w . It is 

easy to prove that the subsets of BQ  are disjoint sets. These eight disjoint sets, A A B
Q Q Q

1 2 4
, ,..., , were 

considered in this work for decision level fusion.  
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Step 2:  We prove that, within each of these eight subsets, the final decision of the decision level fusion 

is independent of the choice of the weight vector. We prove this assertion using the subset, 1AQ (15) as an 

example. 

1 1 2 3 4 1 max max min{( , , , ) | , 0.5}    AQ w w w w Q w w w w
 (15) 

The value of an element of a sub-decision vector is 0 or 1 and, therefore, there are a total of 42 16  sub-

decision vectors. Any sub-decision vector belongs to one of the four cases shown below by (16) to (19).  

 1Case 1: 1,  1,  2,3,4   kd d k  (16) 

  1Case 2: 1,  0,  2,3,4   kd d k  (17) 

  1Case 3:  0,  0,  2,3,4   kd d k  (18) 

  1Case 4: 0,  1,  2,3,4   kd d k  (19) 

The final decision associated with weight vectors in 1A
Q  is shown in Table 40.  As can be seen, if a 

weight vector is in 1A
Q , the final decision is dependent on the sub-decision vector, but is independent of 

the weight vector. Therefore, a weight vector of 1A
Q can represent all its weight vectors. It follows, then, 

that we can prove the assertion for any of the 8 subsets.  

 

In conclusion, we defined a small number of subsets that cover the optimal weight vector for the 

decision level fusion. We proved that all weight vectors of a subset yielded the same final decision. 

Therefore, we can find the optimal weight vector by, 1) randomly selecting a weight vector from each of 

the eight subsets; and 2) computing and comparing accuracies of the decision level fusion with these eight 

weight vectors. The weight vector that yields the highest accuracy is the optimal one. Thus a small 

number of weight vectors can yield the optimal one for a decision level fusion with four binary sub-

decisions and hence proves the lemma 1.   

Fig.  28 I shows one instance of hybrid level fusion. Hybrid level fusion combines the processes of the 

feature level fusion and decision level fusion. The feature fusion module takes multimodal features (Eye 

Table 40 The Values of Final Decision when Sub-decision in Different Cases  

W  D  
y

 
finald

 
1AQ
 Case 1 

4

1 min1
0.5


   i ii

w d w w
 1 

1AQ
 Case 2 

4

11
0.5


  i ii

w d w
 0 

1AQ
 Case 3 

4
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
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and EEG in Fig.  28 I) as input and outputs a level of cognitive load as a sub-decision. Each of other sub-

decisions is calculated by inputting the feature vector of one modality into a classifier. The final decision 

of hybrid level fusion is the weighted average of all sub-decisions.  

We have calculated results of the hybrid level fusion with two sub-decisions and with three sub-

decisions. Hybrid level fusion with one sub-decision is equivalent to feature level fusion; while hybrid 

level fusion with four sub-decisions is equivalent to decision level fusion. All the possible combinations 

of different modalities’ features were tested for the feature fusion module of the hybrid level fusion, 

which is listed in Section 6.6.3.   

6.6. Results 

Each participant completed six experimental sessions. Each session included 3 driving assignments. A 

binary cognitive load label (i.e., 0 or 1) was assigned to each driving assignment. Each driving assignment 

yielded one data sample. A total of 360 data samples were extracted (20 participants × 6 senssions × 3 

assignments = 360 samples). However, because of data loss during the experiments, mostly due to the 

movement of participants, 74 bad data samples were removed after preprocessing. Ultimately, 286 data 

samples were included for the data analysis.  

K-fold cross validation was selected to evaluate classification results. Usually, 5- to 10-fold cross 

validation is used in the literature to compute classification accuracy. In this work, 5-fold cross validation 

was selected so that enough test data were included for validation. We ran the 5-fold cross validation 10 

times and averaged their results as the final accuracy in order to make the result more robust. 

6.6.1. Analysis of rating of perceived task difficulty 

Fig.  29 depicts a histogram of ratings of perceived task difficulty for data analysis (M = 5.28, SD = 

1.39). As can be seen, a large portion of the ratings of perceived task difficulty lie around 5, which means 

a majority of the driving tasks were perceived at medium difficulty level by the participants. This 

distribution fits our goal of training driving skills of adolescents with ASD because very easy or very hard 

tasks are not conducive to train driving skills. 57.34% of all the assignments were labeled as high level 
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cognitive load, while 42.66% data samples have low cognitive load labels. For the almost balanced data, 

an accuracy was used to evaluate performance of classification models.  

 

Performance is an implicit estimation of cognitive load (Miller 2001). Performance features, such as 

reaction time (S. Hussain et al. 2011) and success frequency (Wu et al. 2010), were previously utilized to 

evaluate the ground truth of cognitive load. In this work, the correlation between ratings of perceived task 

difficulty and driving scores (a driving score is a performance feature, as shown in Table 38, and 

represents the success frequency in an assignment) was tested. The statistical analysis method, Spearman 

rank correlation, was selected because the driving score was an ordinal variable (Mukaka 2012). There 

was a strong negative correlation between the driving score and the rating of perceived task difficulty, 

(284)=-0.62 , 0.01p  . No correlation between the driving score and the designed difficulty level was 

found, (284)=0.06 , p=0.93 , from the experimental data. Because performance is an indicator of cognitive 

load (Miller 2001), these correlation results support that the rating of perceived task difficulty was a more 

reliable ground truth for cognitive load as compared to the designed difficulty level.   

6.6.2. Feature level fusion and single modality classification 

The first hypothesis of this work is that by combining multimodal information, the accuracy of 

cognitive load measurement will increase. The hypothesis is tested by comparing multimodal information 

to each single modality information in cognitive load measurement with several classifiers. The choice of 

a classifier is data dependent (Bishop 2006). Thus, a classifier may be insufficient to show the impact of 

different datasets in cognitive load measurement. We selected several commonly used classifiers, shown 

 
Fig.  29 The histogram of the rating of perceived task difficulty  
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in Table 39, for cognitive load measurement. All classifiers were used in feature level fusion and each 

single modality classification. Their accuracies are shown in Table 41 for the purpose of comparison. The 

best accuracy of feature level fusion and the best accuracy of each single modality classification are 

shown in bold font type. The average accuracy of feature level fusion and the average accuracy of each 

single modality classification are shown at the bottom of the table. The best accuracy of feature level 

fusion, 84.43%, is higher than the best accuracy of each single modality classification. On average, 

feature level fusion also achieved a higher accuracy compared to each single modality classification. The 

accuracy of feature level fusion was statistically significantly higher than the accuracy of each single 

modality classification, i.e. the accuracy of the eye gaze based classification ( 4.88Z   , .001p  ), the 

accuracy of the EEG based classification ( 1.97Z   , .05p  ), the accuracy of the peripheral physiological 

information based classification ( 2.96Z   , .05p  ), and the accuracy of the performance based 

classification ( 4.61Z   , .001p  ). These results suggest that combining multimodal information has the 

ability to increase the accuracy of cognitive load measurement.  

6.6.3. Decision level fusion and hybrid level fusion 

The final decision of decision level fusion is a weighted average of four sub-decisions as discussed in 

Section 6.5.2. All classifiers listed in Table 39 were used for each of the four sub-decisions in the decision 

level fusion. Each possible weight set (described in Section 6.5.2) was tested for the weighted average in 

decision level fusion. The highest observed accuracy of decision level fusion was 81.48%.  

There are two types of hybrid level fusion for our data: hybrid level fusion with three sub-decisions and 

hybrid level fusion with two sub-decisions as discussed in Section 6.5.2. The best accuracies for these two 

types of hybrid level fusion are shown in Table 42 and Table 43, respectively. In both tables, the column 

Classifier indicates the Classifier index in Table 39 that gives the best accuracy when classifying cognitive 

load using the corresponding features. The highest accuracy of hybrid level fusion was 83.42%.  
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Table 42 Accuracies of Hybrid Level Fusion with Three Sub-decisions 

Sub-decision 1 Sub-decision 2 Sub-decision 3 
Accuracy 

Features  Classifier Features  Classifier Features  Classifier 

performance 24  physiological 8 EEG & Eye gaze 4 81.35% 

performance 24  
physiological 

& EEG 
8 Eye gaze 4 80.89% 

performance & 

EEG 
18 Physiological  8 Eye gaze 4 73.84% 

performance 24  EEG 8 
physiological & 

Eye gaze 
8 80.57% 

performance & 

physiological  
24  EEG 8 Eye gaze 4 79.10% 

performance & 

Eye gaze 
8/4 physiological  8 EEG 8 79.46% 

 

Table 43 Accuracies of Hybrid Level Fusion with Two Sub-decisions 

Sub-decision 1 Sub-decision 2 
Accuracy 

Features  Classifier Features  Classifier 

EEG 8 performance & Eye gaze & physiological  8 83.00% 

Eye gaze 4 performance & EEG & physiological  8 83.42% 

physiological 8 performance & Eye gaze & EEG 8 81.52% 

performance 24  physiological & EEG & Eye gaze 8 82.86% 

 

 

Table 41 Accuracies of All Algorithms/Parameters (%) 

Classifier Index Eye EEG Phy Per Fusion 

1 58.45 64.10 65.52 69.77 73.66 

2 60.15 69.08 67.04 68.66 73.65 

3 63.92 72.93 71.21 61.45 78.13 

4 73.16 78.18 70.58 65.44 81.53 

5 72.83 79.33 78.77 64.11 82.80 

6 67.99 76.64 73.00 60.46 78.48 

7 62.17 76.46 73.36 59.47 77.94 

8 70.94 79.96 79.31 63.75 84.43 

9 68.73 76.35 75.76 62.79 79.27 

10 61.89 77.29 74.92 63.08 79.34 

11 71.27 79.62 78.71 65.19 81.77 

12 66.16 77.63 73.90 61.63 79.56 

13 63.60 77.52 74.98 60.78 78.44 

14 59.17 63.50 56.97 68.39 64.15 

15 59.91 62.15 57.99 62.50 62.70 

16 58.33 63.62 57.19 61.34 62.21 

17 59.79 70.06 62.77 70.53 74.32 

18 68.72 63.52 73.86 67.37 80.89 

19 66.15 70.71 65.18 59.08 72.21 

20 54.47 70.16 66.68 66.29 75.26 

21 53.50 63.66 57.62 69.16 67.18 

22 64.19 72.18 60.14 66.64 69.79 

23 55.53 67.12 58.56 70.68 73.24 

24 58.09 65.64 62.08 73.72 69.17 

AVG 63.30 71.56 68.17 65.09 75.01 
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6.7. Discussion 

6.7.1 Feature level fusion and single modality classification 

We found that feature level fusion performed better than all single modality classifications in cognitive 

load measurement indicated by statistical tests results, their best accuracies, and average accuracies. There 

are several existing studies that use multimodal information to measure cognitive load (Son et al. 2013; 

Novak et al. 2011). We cannot compare the numerical results of our study with the numerical results of 

these studies because of differences in experimental design, populations, and measured signals. We can, 

however, compare our study with the existing studies to understand the effect of multimodal information 

in cognitive load measurement. Son et al. collected three modalities of  information – physiological, gaze, 

and performance information, for cognitive load measurement in a driving simulator (Son et al. 2013). In 

their study, the best accuracy using the three-modality information was higher than the best accuracy 

using each single modality for cognitive load measurement. In an adaptive upper extremity rehabilitation 

task, Novak et al. showed that measuring cognitive load with physiological signals and task performance 

together can produce higher accuracy than using task performance or physiological signals, separately 

(Novak et al. 2011). In a mental arithmetic task, Hussain et al. found that multimodal fusion could 

increase the accuracy of cognitive load measurement when no affective interference was involved (M. S. 

Hussain et al. 2013). While these studies were not designed for individuals with ASD, our results are in 

line with the existing results in cognitive load measurement using multimodal information for TD 

individuals. To the best of our knowledge, no study fused multimodal information to measure cognitive 

load of individuals with ASD. 

6.7.2. Decision level fusion and hybrid level fusion 

We investigated the following research question in this work: which level of multimodal fusion can 

give the best accuracy in cognitive load measurement? In order to answer this question, we compared the 

best accuracies that can be achieved using different levels of fusion, including feature level fusion, 

decision level fusion, and hybrid level fusion, in cognitive load measurement. Table 44 summarizes the 
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best accuracies of the three multimodal fusion levels and shows that feature level fusion outperforms all 

other multimodal fusion levels in cognitive load measurement. Referring to previous literature in 

multimodal fusion, feature level fusion can achieve higher accuracies than decision level fusion due to the 

fact that feature level fusion utilizes the correlation among features from different modalities (Atrey et al. 

2010). In our case, the effect of the correlation among features from different modalities can be seen from 

the best accuracy of hybrid level fusion with three sub-decisions. The best accuracy of hybrid level fusion 

with the three sub-decisions was achieved when eye gaze and EEG features were combined for one sub-

decision, shown in Table 42. The correlation between eye gaze and EEG signals are significant (Dement 

and Kleitman 1957). The instance of hybrid level fusion utilizing this correlation achieved a higher 

accuracy than those that did not use this correlation. 

 

6.8. Conclusions and Future Research 

6.8.1. Conclusions 

ASD is a highly prevalent neurodevelopmental disorder. A novel VR-based driving system was 

presented for ASD intervention that could present driving scenarios with variable task difficulties to 

facilitate individualized learning. The primary contribution of this work is to systematically present the 

cognitive load measurements of individuals with ASD based on their eye gaze, EEG, peripheral 

physiology and performance data collected when they used the VR-based driving system, and to provide 

multimodal fusion schemes to more accurately measure cognitive load of these users. Feature level, 

decision level and hybrid level fusions demonstrate how multimodal information can be fused to measure 

cognitive load with increased accuracy. The model development for cognitive load measurement in this 

work is aimed at building a cognitively intelligent VR-based driving system. In the future, the difficulty 

Table 44  Comparison Between Different Levels of Fusion 

 Feature level fusion Decision level fusion  Hybrid level fusion 

Best accuracy 84.43% 81.48% 83.42% 
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level of driving tasks will be adjusted in the cognitively intelligent VR-based driving system based on the 

research findings.  

Our study has two distinct strengths that indicate the commercial viability of this system. First, it was 

tested with the intended target population, i.e., adolescents with ASD. Thus the system was acceptable 

and engaging to the target users. Second, the users used the driving simulator in a naturalistic way – they 

moved frequently and used it like a video game. As a result, the data was noisy and lost on occasions. 

Even then the cognitive load analysis was robust enough to predict cognitive load with a high accuracy in 

the presence of lost and noisy data. Thus we believe that this system will be commercially viable once 

cognitive load measurement mechanism presented in this work is integrated with the rest of the system.  

6.8.2. Limitations and future research directions 

There are several limitations of this research that need to be addressed in future work. First, we lost a 

relatively large quantity of data (20.56 % of all the data). The data were lost primarily due to participants’ 

movements during driving, which was inevitable in the VR-based driving system aiming at training 

driving skills of adolescents with ASD in naturalistic conditions. One possible solution is detecting the 

valid data in real time in the cognitively intelligent VR-based driving system. If insufficient data for 

feedback is detected, the experiment could be extended in order to get more data.  

Second, no multiple-class classification was analyzed in this work. We attempted binary classification 

as a starting point because it was simpler and in many cases, sufficient. However, in a more complex 

system, multi-class classification may yield richer results and should be investigated in the future.   

Third, the data fusion method used in this work was limited. We combined sub-decisions for the final 

decision using a weighted average method. It is possible to use other methods to combine the sub-

decisions, such as majority voting and classification algorithms (Atrey et al. 2010). We plan to explore 

different methods to combine sub-decisions in the future.  

Finally, predefined, rather than randomized, difficulty levels were used in our experiments. Presenting 

randomized difficulty levels would be a better strategy for ultimately deciphering and analyzing potential 



 164 

confounds associated with task difficulty level. We chose to present increasing difficulty levels in this 

initial pilot study in order to match a participant’s expected skill increase with the higher levels of task 

difficulty. We will implement randomized difficulty levels in the future.  

Even with above-mentioned limitations, we believe that this current work presents significant 

contributions towards developing cognitively intelligent VR-based driving systems that are robust, 

accurate, and useful for real-world applications indicating commercial viability in the near future. This 

system was explicitly designed for an ASD population who evidence both challenges with this functional 

adaptive skill (e.g., driving) and also historically found to evidence systemic, but complex heterogeneous 

impairments regarding information processing (e.g., working memory and executive functioning 

challenges, difficulties with social processing). We hypothesize that a multimodal fusion methodology 

capable of use within/across readily controllable intervention platforms (such as VR) could yield a tool 

for dramatically improving current modes of treatment. In this capacity the current findings will be used 

in future work developing a cognitively intelligent VR-based driving system. Its efficiency will be 

evaluated by comparing with a system without cognitive load-based feedback.  

The generalizability of the training using our VR-based driving system will be evaluated in the real 

world in the future. A driving simulator, such as our VR-based driving system, is obviously not perfect 

for the on-road setting (Godley et al. 2002). However, it should be noted that driving behaviors of people 

in such kinds of simulators are similar to their driving behaviors in real-world driving (Keith et al. 2005). 

The speed patterns of people driving in a driving simulator were found to be similar to the speed patterns 

when driving in real world (Bella 2008). Traffic risk pattern, in terms of crash history, has also been 

shown to generalize from the simulator to the real world (Yan et al. 2008). The extant literature supports 

the usefulness of driving simulators. Evaluating the usefulness of training using our VR-based driving 

system for real world driving, in terms of speed-maintenance and error-reduction, will be carried out in 

future work. 
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CHAPTER VII. CONTRIBUTIONS AND FUTUER WORK 

7.1. Contributions 

7.1.1. Main Contributions 

This dissertation describes my research on the design, development and evaluation of multi-user and 

intelligent Human-Computer-Interaction (HCI) systems for Autism Spectrum Disorder (ASD) 

intervention. Currently, cost and resource limitations impede access to effective ASD intervention. 

Previous work has shown that HCI systems hold promise as alternative ways of providing innovative, 

low-cost, and accessible clinical treatments for children with ASD.  However, these investigations were 

based on rigid and limited interactions between users and computer programs. Such interactions 

demonstrate weak transfer of the trained skills to real world settings, which is the ultimate goal of 

therapies. Therefore, HCI intervention systems that could facilitate real-world interactions between 

multiple users are highly needed. In addition, the literature lacks efficient measurement strategies to index 

interactions within HCI systems. Consequently, manual coding of the interactions is necessary to 

understand users’ behaviors for meaningful measurements. However, the human-coding methodology not 

only requires considerable human efforts but also limits the precision and scale-up of these paradigms (M 

Schmidt et al. 2011). As a result, there are pressing needs for both effective treatments to impact the 

neurodevelopmental trajectories of children with ASD and less burdensome measures to evaluate impacts 

of the treatments. 

This research addresses these critical existing gaps in the literature. The main technical contributions of 

this work include, i) designing, developing, and applying Collaborative Virtual Environment (CVE) 

systems, which are computer-based, distributed, virtual spaces for multi-user interactions (Benford et al. 

2001), to facilitate realistic interactions between real-users, and ii) exploring artificial intelligence 

methodologies to automatically measure users’ behaviors in HCI-based intervention systems. In addition, 

this work also contributes to the science of ASD intervention by providing controllable and intelligent 

environments where different treatment paradigms can be accessed by multiple users in a flexible manner. 
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7.1.2. Technical Contributions 

System design contribution 

The first technical contribution of this work is the design and development of CVEs to encourage 

collaborations between real users. CVEs preserve the advantages of traditional HCI-based intervention 

systems but also facilitate realistic interactions between real users, increasing possible generalizability of 

learned skills to real-world settings. We developed CVEs to facilitate collaboration skills of children with 

ASD using collaborative puzzle games with multiple collaborative strategies, which required the children 

to talk with each other and move pieces together. Early studies in this area usually utilized a rule-based 

method to implement the collaborative strategies (Leman 2015; Benford et al. 2001). However, the rule 

based method could only model discrete actions. We applied a hybrid automaton to implement the 

collaborative strategies in our CVEs. Compared to the rule-based method, the hybrid automaton has the 

advantage to model both discrete variables and continuous actions of multiple users in the CVEs.  

The feasibility of our CVE systems for children with ASD have been evaluated using several studies. 

In Chapter II, we developed a CVE, named CoMove, with a castle game and a set of seven tangram 

games, and equipped these games with collaborative strategies using the hybrid automaton. A study with 

seven TD/TD pairs and seven ASD/TD pairs demonstrated its feasibility with this population. In Chapter 

III, we transferred these games into a CVE on the Android platform and determined its feasibility using 

five ASD/TD pairs of children. Results of these studies indicated that CVEs can be used to encourage 

collaborations between children with ASD and their TD peers. In addition, these studies demonstrated the 

usability of the hybrid automaton in implementing collaborative strategies to encourage collaborations. 

As a result, this work contributes to the literature for the purpose of informing other researchers in 

designing HCI systems to encourage collaborations between real-users.    

Contributions in measuring interactions in CVEs 

The second set of technical contributions of this work relies on measuring peer-mediated interactions 

in CVEs. This type of measurement is essential to determining the CVE’s impacts on users’ social 

communication. The majority of existing CVEs for ASD intervention measure the users’ interactions 
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based on their task-performance. However, understanding how the users verbally communicate and 

converse with one another is essential to the measurements. Existing work has relied upon a labor 

intensive human-coding methodology to understand the verbal communications (Matthew Schmidt et al. 

2012). However, systems using this time-consuming methodology could not provide feedback in real-

time. To address these limitations, we designed a measurement system that applied an intelligent agent to 

automatically index important aspects of the peer-mediated interactions in a CVE.  

First, we designed an intelligent agent to address fundamental challenges in measuring peer-mediated 

interactions in CVEs, which are dynamic in nature and consist of open-ended verbal communications. In 

order to address these challenges, we developed an intelligent agent that could not only communicate and 

play games with users in a CVE, but also generate task-performance and verbal-communication features 

to represent the users’ behaviors within the CVE. This intelligent agent was developed using a novel 

hybrid method, which combined a dialogue act classification and a finite state machine. The dialogue act 

classification classified users’ natural language into one of several predefined dialogue acts, which are 

believed to be informative in indexing verbal-communication in CVEs (Caballé et al. 2011; Van Boxtel et 

al. 2000). The finite state machine combined users’ verbal-communication and task-performance to 

generate speech responses and take game actions. This hybrid method allowed the intelligent agent to 

consistently interact with all users, as well as automatically generate meaningful features to measure these 

users’ behaviors. As described in Chapter IV, a test study involving five children with ASD demonstrated 

the feasibility of the intelligent agent to communicate and collaborate with participants in a CVE.  

Second, we proposed a framework to automatically measure users’ communication skills and 

collaboration skills in a CVE to fill gaps in this area. The literature lacks efficient methods to measure 

users’ behaviors in CVEs. In order to fill this gap, we proposed a framework to automatically measure 

these behaviors. This framework works in three steps. First, both task-performance and verbal-

communication features were automatically generated using the intelligent agent. Second, the reliability 

of these features were evaluated using statistical analysis tests. Third, all the features were combined 

together to measure users’ communication and collaboration skills with machine learning techniques.  
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We evaluated the feasibility of the framework using a user study with 20 pairs of children with ASD 

and TD children. Results of the study demonstrated the framework’s ability to measure participants’ both 

communication and collaboration skills in a CVE. This is the first attempt to automatically measure peer-

mediated interactions in CVEs. This framework, if utilized, could reduce the time, costs, and efforts 

involved in measurements compared to traditional human-coding methodologies. In addition, it has the 

potential to enable real-time feedback for each individual to improve their learning efficiency. Although 

the framework was evaluated in a CVE with collaborative puzzle games, it could be transferred for 

measurements in other CVEs.  

Contributions in cognitive load measurements 

We also provided a framework to measure cognitive load of children with ASD using data fusion 

technologies. Cognitive load is believed to be a crucial factor for children with ASD to acquire 

knowledge and skills (Paas et al. 2003). Previous literature has analyzed eye gaze (Pomplun and Sunkara 

2003), peripheral physiology (Liu et al. 2009), and electroencephalography data (Fan et al. 2015), 

respectively, for cognitive load measurements in the ASD population. We contributed to this area by 

combining these multimodal data to increase the measurement accuracy. Three data fusion strategies, i.e. 

feature-level fusion, decision-level fusion, and hybrid-level fusion, were explored in this study. Results 

indicated that multimodal fusion methods could outperform single modality classification in measuring 

cognitive load of individuals with ASD. In addition, we developed a novel method to find the optimized 

weights, which are the parameters used to fuse different modalities’ results in the data fusion strategies. 

Compared to the traditional exhaustive search method (Koelstra et al. 2012), our method could 

significantly reduce computational load. In conclusion, this work contributes to the larger area of applying 

intelligent HCI systems to measure cognitive load of children with ASD. 

7.1.3. Contributions to the Science of ASD Intervention 

In addition to its technical contributions, this work also contributes towards the science of ASD 

intervention by providing controllable and intelligent environments wherein different intervention 
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paradigms can be assessed by multiple users in a flexible manner. Traditional paradigms often require 

significant time and effort-intensive burdens for implementation, suffer from limited availability in 

community settings, and ultimately demonstrate weak transfer of skills to real world settings (Weitlauf et 

al. 2014; Veenstra-VanderWeele and Warren 2015). The CVE-based intervention systems in this work 

offer a flexible alternative to conventional modalities of both in-vivo (e.g., social skill groups, peer-

mediated programs) and technological intervention (e.g., confederate controlled HCIs, computerized skill 

programs) where multiple individuals can share and interact in a virtual space using network 

communication. Such technologically sophisticated systems are highly controllable, and can be adapted 

and structured in ways that mimic aspects of real-world interactions. As a result, the systems could 

tangibly impact the very nature of the collaborative interaction itself.  

7.2. Future Work 

Although this preliminary work is promising, future studies should address several important 

limitations. First, the sample size was relatively small, and the intervention duration for each work was 

relatively short. Therefore, the clinical impact of the proposed systems on everyday functioning of 

children with ASD is still unclear. Although the CVE-based intervention systems developed in this work 

demonstrated the potential to encourage collaborations within the systems, future studies should evaluate 

how the within-system interactions correlate with and potentially impact participants’ skills in real life 

using a longitudinal clinical study with a large number of participants.  

Second, current CVE-based intervention systems in Chapter II and Chapter III have the potential to 

facilitate verbal communication between real-users. These intervention systems without face-to-face 

communication have the advantages to simplify data analysis with emphasis on the verbal communication 

in preliminary studies. However, face-to-face communication is essential for real world interactions, 

improving which is the ultimate goal of treatment. Future systems should enable and assess aspects of 

face-to-face communication using a video chat functionality. 
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Third, the measurement system presented in Chapter V could only measure verbal-communication and 

task performance with 12 features. It did not assess other aspects of human behaviors that relate to peer-

mediated interaction, such as eye gaze, body language, and facial expression. Additional work is needed 

to investigate how these features can be captured with separate computer programs, such as eye gaze 

recognition, gesture recognition, and emotion recognition, in order to understand the non-verbal 

communications.  

Finally, we intend to utilize the real-time measurements in this work for a future adaptive system. The 

current intervention systems utilized performance-based feedback. We intend to incorporate verbal-

communication-based feedback in order to foster communication skills based on these real-time 

measurements for children with ASD. In particular, the measurement results will be used to adapt system 

tasks for each individuals. Such an adaptive system will provide appropriate tasks for each child with 

ASD to practice his/her social communication skills in an efficient way based upon measured 

vulnerabilities.  
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APPENDIX 

A. Results of Chapter V 

A.1. Data analysis for ASD  

Based on the framework discussed in Section 5.4, we also analyzed data of children with ASD. All the 

results of children with ASD are shown in Table 45, Table 46, and Table 47.  

 

Table 45 Correlation between each system-generated feature and human ratings on a continuous scale 

System-generated feature 

Correlation 

between a feature 

and 

communication 

skills in HHIs 

Correlation 

between a 

feature and 

collaboration 

skills in HHIs 

Correlation 

between a 

feature and 

communication 

skills in HAIs 

Correlation 

between a feature 

and collaboration 

skills in HAIs 

Word frequency     0.6766**     0.2401*     0.3283**     0.1199 

Request_color frequency     0.1858     0.0709     0.0762     0.0022 

Provide frequency     0.5054**     0.2218     0.4521**     0.3460** 

Direct_movement 

frequency 

    0.6118**     0.2250     0.2177     0.0298 

Acknowledge frequency     0.3371**     0.1788    -0.0001     0.0928 

Request_object frequency     0.1568     0.0807    -0.03724    -0.1880 

Sentence frequency     0.7624**     0.3408**     0.4674**     0.3823** 

Success frequency    -0.1805     0.4276**     0.3784**     0.5378** 

Failure frequency    -0.0892    -0.4252**    -0.4896**    -0.5977** 

Collaboration time     0.0224     0.4208**     0.3041     0.4289** 

Dragging time     0.0493     0.0610   -0.3727**    -0.3281** 

Collaborative movement 

ratio 

   -0.2298     0.2850     0.1018     0.1668 

Note: ** indicates a p value less that .001; * indicates a p value less than .05 
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A.2. Data analysis for TD 

Based on the framework discussed in Section 5.4, we also analyzed data of TD children. Table 48, 

Table 49, and Table 50 shows results of TD children. 

Table 47 Accuracy of measuring communication skills and collaboration skills 

Index Which skills to measure? 
Data sample size 

(High level /Low level) 

Accuracy of 

balanced data 

Accuracy of 

all data 

1 Communication skills in HHIs 84/71 80.95% 0.8008 

2 Collaboration skills in HHIs 119/36 73.61% 0.8256 

3 Communication skills in HAIs 109/28 80.37% 0.7958 

4 Collaboration skills in HAIs 100/37 77.03% 0.7740 

 

Table 46 Correlation between a system-generated feature and human ratings on a binary scale 

System-generated feature 

Correlation a 

feature and 

communication 

skills in HHIs 

Correlation a 

feature and 

collaboration 

skills in HHIs 

Correlation a 

feature and 

communication 

skills in HAIs 

Correlation a 

feature and 

collaboration 

skills in HAIs 

Word frequency     0.6085**    0.2189*     0.2184    -0.0153 

Request_color frequency     0.2097     0.0854     0.0744     0.0161 

Provide frequency     0.3894     0.1224     0.3523**     0.2465* 

Direct_movement 

frequency 

    0.5703**     0.2248*     0.1358    -0.0288 

Acknowledge frequency     0.2547     0.1056     0.1338     0.1043 

Request_object frequency     0.1460     0.0873    -0.03502    -0.1819 

Sentence frequency     0.6550**     0.2625**     0.4638**     0.2573* 

Success frequency    -0.1384     0.3065**     0.3236**     0.3882** 

Failure frequency    -0.1160    -0.3317**    -0.4145**    -0.4802** 

Collaboration time     0.0474     0.3052**     0.3265**     0.3128** 

Dragging time    -0.0433     0.0229    -0.2865    -0.2537 

Collaborative movement 

ratio 

   -0.1510     0.1949     0.1540     0.1429 

Note: ** indicates a p value less that .001; * indicates a p value less than .05 
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Table 50 the accuracy of measuring communication skills and collaboration skills in HHIs 

Index Which skills to measure? 
Data sample size 

(good/not good) 

Accuracy of 

balanced data 

Accuracy of all 

data 

1 Communication skills in HHIs 110/45 0.8117 .7999 

2 Collaboration skills in HHIs 117/38 0.7628 0.7428 

3 Communication skills in HAIs 4/136 --* 0.9712 

4 Collaboration skills in HAIs 5/135 --* 0.8256 

Note: * indicate that the data sample size is too small to build a SVM-RBF model 

Table 49 correlation between a system-generated feature and human ratings on a binary scale 

System-generated feature 

Correlation 

between a feature 

and 

communication 

skills in HHIs 

Correlation 

between a 

feature and 

collaboration 

skills in HHIs 

Correlation 

between a 

feature and 

communication 

skills in HAIs 

Correlation 

between a feature 

and collaboration 

skills in HAIs 

Word frequency     0.5256**     0.2487*     0.2253*     0.0369 

Request_color frequency     0.0650     0.0853     0.0504     0.0292 

Provide frequency     0.3747**     0.2022*     0.2275*     0.1663 

Direct_movement 

frequency 

    0.4686**     0.2847     0.0171    -0.1748 

Acknowledge frequency     0.3787**     0.1691     0.0435     0.0231 

Request_object frequency     0.0209    -0.1631     0.0146     0.0164 

Sentence frequency     0.6336**     0.3578**     0.2782     0.0642 

Success frequency    -0.1613     0.3237**     0.0792     0.0601 

Failure frequency     0.0305    -0.3870**    -0.0814    -0.0673 

Collaboration time    -0.0796     0.3768**    -0.1678    -0.0249 

Dragging time     0.1624     0.0908     0.0788     0.0502 

Collaborative movement 

ratio 

   -0.2347*     0.1083    -0.2768*    -0.0336 

Note: ** indicates a p value less that .001; * indicates a p value less than .05 

Table 48 correlation between a system-generated feature and human ratings on a continuous scale 

System-generated feature 

Correlation 

between a feature 

and 

communication 

skills in HHIs 

Correlation 

between a 

feature and 

collaboration 

skills in HHIs 

Correlation 

between a 

feature and 

communication 

skills in HAIs 

Correlation 

between a feature 

and collaboration 

skills in HAIs 

Word frequency     0.6389**     0.3117*     0.5905**     0.2562* 

Request_color frequency     0.0967     0.1243     0.1473    -0.0281 

Provide frequency     0.4504**     0.2335*     0.3426*     0.3107* 

Direct_movement 

frequency 

    0.6050**     0.3596*     0.2378    -0.0322 

Acknowledge frequency     0.3935*     0.1809    -0.2022    -0.0699 

Request_object frequency    -0.0077    -0.1338    -0.0986    -0.0577 

Sentence frequency     0.7623**     0.4467**     0.2794**     0.1838 

Success frequency    -0.1861     0.4219**     0.0334     0.1804 

Failure frequency    -0.0733    -0.4309**    -0.2368*    -0.2280** 

Collaboration time    -0.0299     0.4306**    -0.0438     0.0569 

Dragging time     0.1539     0.1507     0.0205     0.0753 

Collaborative movement 

ratio 

   -0.2744     0.1898    -0.1684    -0.0309 

Note: ** indicates a p value less that .001; * indicates a p value less than .05 
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A.3. Data analysis for different games 

We combined all the data of Game_1, Game_2, and Game_3 to be group1, all the data of Game_4, 

Game_5, and Game_6 as group2; and all the data of Game_7, Game_8, and Game_9 as group3. The 

characteristics of these games are shown in Table 20. Then, we calculated the correlations between each 

system-generated features and communication skills and communication skills, respectively, for each 

group. Table 51, Table 47, Table 48, and Table 54 shows all the correlations of these groups.  

 

 

 

Table 52 correlations between features and continuous collaboration skills in different games 

System-generated feature 

Correlation with each 

feature and continuous 

collaboration of 

group1 in HHIs 

Correlation with each 

feature and continuous 

collaboration of group 

2 in HHIs 

Correlation with 

each feature and 

continuous 

collaboration of 

group 3 in HHIs 

Word frequency     0.4453**     0.2874*     0.1984 

Request_color frequency    -0.0130    -0.0327     0.2586 

Provide frequency     0.3153*     0.1710     0.0994 

Direct_movement frequency     0.4330**     0.2240     0.1800 

Acknowledge frequency     0.2952     0.1599     0.0049 

Request_object frequency    -0.0843    -0.0258    -0.0692 

Sentence frequency     0.5533**     0.3583**     0.2855* 

Success frequency     0.5487**     0.4593**     0.5960** 

Failure frequency    -0.4482**    -0.3421**    -0.3935** 

Collaboration time     0.4399**     0.3379**     0.4217** 

Dragging time     0.1944     0.1334     0.2283 

Collaborative movement ratio     0.4356**     0.1490     0.3329* 

 

Table 51 correlations between features and continuous communication skills of three games 

System-generated feature 

Correlation between 

each feature and 

continuous 

communication skills 

of group1 in HHIs 

Correlation between 

each feature and 

continuous 

communication skills 

of group2 in HHIs 

Correlation between 

each feature and 

continuous 

communication skills 

of group3 in HHIs 

Word frequency     0.7804**     0.7993**     0.7596** 

Request_color frequency     0.1462     0.3345**     0.2176* 

Provide frequency     0.5527**     0.6138**     0.5138** 

Direct_movement frequency     0.7127**     0.7220**     0.7072** 

Acknowledge frequency     0.3708**     0.3972**     0.1569 

Request_object frequency     0.0793     0.0697     0.1153 

Sentence frequency     0.7815**     0.8334**     0.7337** 

Success frequency     0.0303    -0.2907    -0.0822 

Failure frequency    -0.1907     0.1742    -0.1537 

Collaboration time     0.0953    -0.1860    -0.0476 

Dragging time     0.3211*     0.2898*     0.2089* 

Collaborative movement ratio     0.1805    -0.0931    -0.0206 

 



 182 

 

 

 

 

 

Table 54 correlations between features and continuous collaboration skills in different games 

System-generated feature 

Correlation with each 

feature and continuous 

collaboration of 

group1 in HAIs 

Correlation with each 

feature and continuous 

collaboration of group 2 

in HAIs 

Correlation with each 

feature and continuous 

collaboration of group 

3 in HAIs 

Word frequency     0.3296*     0.3757*     0.2101* 

Request_color frequency     0.0409    -0.1142    -0.0076 

Provide frequency     0.3552*     0.4092**     0.4875** 

Direct_movement frequency     0.1184     0.1464     0.1095 

Acknowledge frequency    -0.2574    -0.0488    -0.0754 

Request_object frequency    -0.2188    -0.2487    -0.2761 

Sentence frequency     0.2737*     0.2920*     0.4084** 

Success frequency     0.3949**     0.3901**     0.5418** 

Failure frequency    -0.4794**    -0.4169**    -0.4839** 

Collaboration time     0.4750**     0.3343**     0.4695** 

Dragging time     0.4056**     0.0272     0.1030 

Collaborative movement ratio     0.3408*     0.3160*     0.3868** 

 

Table 53 correlations between features and continuous communication skills of three games 

System-generated feature 

Correlation between 

each feature and 

continuous 

communication skills 

of group1 in HAIs 

Correlation between 

each feature and 

continuous 

communication skills 

of group2 in HAIs 

Correlation between 

each feature and 

continuous 

communication skills of 

group3 in HAIs 

Word frequency     0.5611**     0.6027**     0.4752** 

Request_color frequency     0.0693     0.0412     0.2442* 

Provide frequency     0.3203*     0.4826**     0.5784** 

Direct_movement frequency     0.1440     0.2013*     0.1489 

Acknowledge frequency    -0.1643    -0.0262    -0.0558 

Request_object frequency    -0.1970    -0.2876    -0.2982 

Sentence frequency     0.1968     0.3563**     0.4081** 

Success frequency     0.2429*     0.2306*     0.3598** 

Failure frequency    -0.3211*    -0.4063**    -0.4296** 

Collaboration time     0.2874*     0.2008*     0.2507* 

Dragging time     0.2215     0.0280     0.0681 

Collaborative movement ratio     0.2058     0.1408     0.1706 

 


