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CHAPTER 1

1 Introduction

1.1  Overview

Cementitious materials are regarded as good candidates for the encapsulation and
immobilization of nuclear wastes. They have been used as encapsulation matrices for the
geological disposal of intermediate level radioactive veat@uclear fuel reprocessing plants in
many countriegl]. Nuclear wastes are lyroducts of various activitie® (g, military, nuclear
power generation, medicin&)at contain a variety of radionuclides such as, ceslidn ¢3'Cs),
iodine-129 ¢29), plutonium241 f4Pu), strontium90 (°Sr), andtechnetiur99 °Tc) [2]. 1*"Cs
and®°Tc alone represent about 13% of fission product yield in nuclear Wa$té¥Cs is a high
radiation fi ssio@missips[4,adand€Tci sviemissnbfissimmpdoduct with
along haltlife (211,000 years]5]; both radionuclidespresent significant problems for nuclear

waste management

Several physical and chemical interaction mechanisms between radionuclides and
cementitious materials have been reported in the literf@ itk (i) precipitation as simple salts in
the pores of the cement matrix; (ii) formation of complexes and colloids in the aqueous pore water
solution (iii) lattice incorporation in the major cement hydration produatsl (iv) sorption at
cementhydrate surfacesi.€. physical and chemical adsorptiojhe specific mechanisms of
immobilization, however, depend on the radionuclide tymacentration of radionuclideand
binding capacity of the cement phas¥ghile experimental studies have beperformed to
investigate radionuclide ianteraction mechanisnand cement matrix uptake poten{@/9], the
fundamental mechanisms of interaction of radionuclides with the cement phases remain not well
understood. At the molecular scale, currerperimental techniques are challenged by various
limiting factors, including instrument resoluti¢h0,11]. Particularly, the interaction mechansm
of 1¥'Csand®Tc with important cement phaséscludingcrystalline GS-H phases and ettringite,
have only been addressed by a ##udieqd12,13]. A fundamental understanding of the adsorption
mechanisms of radionuclides on different cement phases is thus important to evaluate the
immobilization processes 8f'Csand®Tc to cement phases and to design cement waste forms

with better performance.



Hypothesis: The chemical performance ofcementwaste forms is related to the chemical
composition of cementitious materiaBifferent hydrated cement phases are expected to provide
differentadsorption capacities for radionuclides.is hypothesized thaalciumsilicate-hydrate
(C-SH) and @lcium aluminate phaseg.@.,ettringite) two main products dPortland Cement
(PC) hydration play a critical role in theimmobilizationof cesium and technetium through

adsorption.

1.2  Objectives and Approach

The overall objective of the research was to develop a fundamental understamdarg
atomicscale levebf the interaction mechanisnué Cs™ and TcO4 ions with Calcium-Silicate
Hydrate (C-S-H) and calciurraluminatesulfate hydrateife. ettringite), two main products of
cement hydration.Three crystalline structures were used as mineral analogs -®&HC
tobermorite 9A, tobermorite 14A, and jennit€his work is significant both because the topics
have not been studied in detail anatdngse of the depth at which this work will look into the

interaction mechanisms.

To date, interactions between'Gsns and cement pastes have been mainly investigated
by experimental method%4i 18]. Although ithas been agred¢kat GS-H playsan important role
in the adsorption of Cdons on cement pastdhe mechanismef interaction and adsorption onto
the different cement phasasenotyetfully understood. A variety of interaction mechanisms have
been suggested in the literatit®i 21], and studies concerning ti@s retention capacity of PC
pastehave indicateatonflicting or differentresults[22i 26]. Studiesconcerning thenteractions
between Csions and CS-H phase$aveindicated that the interaction mechanisms depend on the
type of ions, as well as the propertiestloé solid phase$12,27]. The adsorption capacity of
different cementitious materials f5¥Cs, with respect tdq, ranged from 0.1 to 34,000 mL/g. The
estimatedKq values for CS-H ranged from 7 to 6,900 mL/fd.4,28]. Thelarge variation oKg
values for'3’Cs on the hydrated cement were influenced by the chemical composition of the
cementitious materials, the chemical composition of the solutierti{e initial concentration of
9Cs in the solution, the type of the contact solution and the pH of the system), and the equilibration
time [14,28]. In addition, most research concerniffj c immobilization by cementitious materials
hasbeenfocused on the interaction between less mobddV) (Tc*') ions and cementitious

materialsin reducing environmen{29,30]. Only a few researchers have studied the interaction



between pertechnetate (T£dons and cemempiaste$31,32] The adsorption capacity of different
cementitious materials f0fTc, with respect tq, ranged from 0.7 mL/g for Tc(VII) to 6,000
mL/g for Tc(1V) [28,33,34] Cementitious materials showed lower adsorption capaciyTaf
under oxidizing conditions, and the valence staté€®dbé was a key parameter @6 sorption
behavior on cementitious materialBhefundamental interaction mechanishetween C§ TcQy
ions, and cement phaseateed to be investigated systematically at an atdewvel, so that

knowledge can be provided to design wéastens withbetter performance.

Molecular dynamic simulation has been widely used to investigate the interaction
mechanisms between a variety of ions and cement phases, or clay minerals hResinltscated
that tobermorites and jennite were capable of adsorbimgysach as NaK* and St* [35i 37].
Cs' ions can be adsorbed on the surfaces of some clay minerals asghes and outesphere
complexeg38i 43]. Although a classic forcefielir TcOs ionshas been developgchalculations
haveonly been performed to investigate the hydration energy and aqueous intebstti@en
TcOy4 ionswith other iong44]. Little to no research exists on the interfacial interaction between

TcOy4 ions and cement phasdde three specific objectives addressed in this dissertation are

1. Developa framework forevaluatingthe adsorption mechanisnm radionuclides onto
cement phases. Thfsameworkincludesmonitoring convergence of the simulations to
equilibriumanddevelopng adata analysis methodology.

2. Investigate the adsorption mechanisimgluding interaction energynd structural and
dynamical propertiesf Cs' ionson the surfaces off9tobermorite, 14 tobermorite, and
jennite.

3. Investigate the adsorption mechanisimgluding interaction energgnd structural and
dynamical propertiesfoTcOs ions on the surfaces df4A tobermorite, jennite, and

ettringite.

MD simulations were used to investigate the fundamental interaction mechanismsoofs(<e.
0.5M CsCl) with & tobermorite, 1A tobermorite, and jennite and the interaction mechanisms of
TcOs ions f.e. 0.2M KTcQu) with 14A tobermorite, jennite, and ettringite. Althoughe
concentrations of radionuclides in nuclear waste t6k¥002 to 0.00019Mor Cs" [45] and
0.00005Mfor TcOq4 [46]) arehigher than those usedtimepresent research, chemical interacgion



arenot involved in MD simulationgherefore, the interaction mechanisms between radionuclides
and cement phases waret affected by the concentration of radionuclides in the modéis.
atomicscale energetic, structural, and dynamic properties of thdaogebetween the aqueous
solution containing Csons or TcQ ions and the cement phases were analyzed by using relative
atomic density profiles, radial distribution function (RDF), coordination number (CN), atomic
density contour maps, diffusion coeféat, adsorption energy and hydration energy, and local

structure analysis.

1.3  Structure of the Dissertation

This dissertation is organized into six chapters. Chapter 2 contains a review of relevant
literature pertaining to the research in this dissertation. Chapter 3 disthessethodology used
for evaluating the adsorption mechanisms of iBas and Tc@ ions onto cement phases using
MD simulatiors, including evaluation ofthe convergence of the simulationsetguilibrium and
the data analysisnethodology used, in particular the determination of the location of the inner
sphere and outephere regionhayter 4 discusses the interaction mechanisfrds" ionswith
the basal surfaces &A tobermorite, 14 tobermorite, and jennite. Chapter 5 discusses the
interactionmechanism®f TcOy ions with thebasalsurfaces ofl4A tobermorite, jennite, and

ettringite. Chapter 6 summarizes the results and presents recommendation for future work.



CHAPTER 2

2 Background

2.1 ¥Csand®*Tc

137Cs,among the many radioactive fission produbtss drawn special attention because of
its unique physical and chemical properties. It is commonly produced through nuclear fission of
uranium235 €3*U) and other fissionable isotopes in nuclear reactors and nuclear weapons testing
[47]. 1¥'Cs has a haHife of 30.17 yeard48]. Most 1*'Cs first decaygo ametastabl@uclear
isomerof barium,barium137m(**"™a), throughbeta emission. This then decays through
emission to stable bariudB7 ¢3Ba) [49]. *'Cs is highly soluble in water, and it efficiently
travels through the ait3’Cs binds strongly to soil and concrete, and plants growing in or nearby
contaminated soil can readily take #fCs[47]. 1*'Csis not typically found in the environment in
large quantities; significarlf’Cs contamination often results from mishandlinganfindustrial
source of*’Cs a nuclear detonation, or a major nuclear accigéft While it is used in medical
devices and industrial gaug], external and internal exposure!#Csin humans can cause a
variety of adverse health effects, including dermal injuries, radiation sickness and even death,

depending on the radiation ddse].

®Tc naturally occurs in the earth%lsiscrust
produced through nucleéission[51]. ®Tc is a key radionuclida spent nuclear fuel (SNF) and
high-level waste (HLW)[52]. *°Tc is also a byproduct of nuclear weapons explosjbal The
half-life of °*Tc is 210,000 yearf52]. A shortlived form of °*Tc (with a halflife of 6 hours),
technetium@9m €°MT¢), is also a component of nuclear reagtaseous and liquid effluelff™ ¢
is can be found as a component of industrial and medical wastes, and it is used as a medical
diagnostic tool[51]. The environmentaturally contains very low concentrations %Tc,
although some plants and aquatic life can concenttiteand fix mobile®*Tc into less mobile
9T ¢ organics, oxides, and sulfidfs3i 55]. Exposure td°Tc from the environment under normal
circumstances is unlikely. However, higher concentration$*dé may be found close to
contaminated facilities, including federal weapons facilities and nuclear fuelfagdlges [51],
which may increase thprobability of exposureOnce in the human body®Tc is readily

transferred to the bloodstreaand concentrates iin soft tissuesAs with any other radioactive
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material, exposure t@diationcan result in cancer or other adverse health effdé{isHowever,

the body constantly excret&d ¢ once it is ingestefb1].

2.2  Cementitious Materials and the Hydrated Phases

The chemtal compositiorof cementitious materiatsan baepresentedntheCaOAl20z-
SiOp ternary diagranj56]. PCsare generally characterized by higher calcium content and lower
silica and aluminum content than supplementary cementitious matevigisexception of fine
limestone [56]. The silicato-alumina and silicao-calcium weight ratios in supplementary

cementitious materials can be extended, wlfich is higher than those in R&5I 58].

Due to the wideange of chemical composition of cementitious materi#fgrdnthydrate
phasesare generatedduring the hydration process(Figure 2.1) [56]. The largefield of
compositions of th€-S-H phasen thehydrated Ca@Al.03-SiO; ternary diagram indicates that
C-S-H is the most important phase in cempaste Cement paste generated Hgring of PC
with supplementary cementitious materials will le¢adthe formation of €S-H with a lower
Ca0/SIO2 (C/S) ratio, and the formation of loér cement phases, such asmincferrite-
monasulfate (AFmM). Because tte limits of the hydrate phasepossibly generatedre not well
known,especiallywith respect to the amount of alumina which can be incorpqithtetioundaries

shown inFigure2.1 are only an approximatidi6].

Sio,

wt%

C-S-H:C/s 1.7

Figure2.1. Hydratal phases in the Ca@l.03-SiO, system(adapted froni56]).



2.2.1 Crystalline Caltum Silicate Hydrate§C-S-H)

C-S-H phasesrethe most abundaphasesn PCpastg59i 62]. C-S-H phasesreformed
by the hydration of tricalcium silicate {8 ) arn chl ci umCyS),iwhichtcogether ( b
constitute about 75% of a PC paste by weji§B}. The structure of €5-H has been widely studied
but is still poorly understogtbecause it has a wide range of chemical composiifaii§7]. Single
phase €S-H hasC/Sratios of 0.411.85[65]. The C/S ratios of €&-H in PCpasteare in the range
of 1.2t0 2.1[68]. In most caseshe C/Sratio isnear 1.759,68]. If a paste contains supplementary
cementitious materials such as silica fume, fly asldlground granulated blastirnace slg, the
mean valuef the C/S ratiass much reducedp less than in some casg$8]. The molar HO/SIOG,
(H/S) ratios are in the range of % [69], andthesevalues are influenced byhe mechanisrof
C-S-H formation[59].

Giventhe fact that concrete is the most widely used building material in the world, the
structural and mechanical propertiescaient pastdave beerintensivelystudied, and various
modelshave been proposddr the nanostructure of-S&-H gel Two categories of modelsave
beenproposed: oneategory includednonomerbased mode]svhere the silicate anionsere
entirely monomericthe othercategory includedireierkettebased modelsvhich wereprimarily
derived from thestructure ofl4A tobermorite (and ®arietyof other minerals)70].

Monomerbasedmodels were suggested by some researchensg thel950s and 1960s,
when people first begateveloping models for&-H [71]. Bernal[71] studied aseriesof cement
typesand suggested that a greater part of the hgdmiases includes monomeric silicate anion
[SiIO2(OH)]?. Two hydrated calcium silicates, with the general formula
Ca[SiIQ(OH)2][Ca(OHY]x[H20]y wereproposedwherex is between 0 and 0.5 for CSH(I) and
held at 1 for CoSH(Il). However, while monomeric hydrated silicate speciegre the only
observedspeciesduring the induction period of hydratimgment monometbased modelaere
notconsistent with the experimentally observed distributidinefr silicate chaisfor the GS-H
that formedafterwardq66].

Linear silicate chain structusdor the C-S-H have beemmore widely acceptedand a
variety ofdreierkettebasedmodels hae been proposed sindbe 1990s[71i 73]. In dreierkette
basedstructuressilicate tetrahedraare coordinated tdhe centralCaO sheeton both sidesand

repeat every three units in linear kinked chaihso of the thredetraheda, which share GO

7



edges with the C® part ofthecentrallayer, arereferrd t o as Opai rTeedhird t et r a
tetrahedon, which shares a@ atom at the pyramidal apex of a@golyhedrorandconnects the
two pairedtetraheda, is referredasa6 b r i degrahedondB) [70].

Most of dreierkettebasedmodels irclude tobermoritelike structurs; however, the C/S
ratio in an intactl4A tobermoritestructureis 0.83[72], which is lower than thealue observed
experimentally in @S or neat PC pastes., 1.7 1.8[68]. Thisissuewasaddresseth dreierkette
basedmodels by incorporatingdefecive silicate chainssome of the bridging tetrahedra are
replaced by interlayer Chions so thatthe C/Sratio was raisecabove0.83 Two categories of
dreierkettebasedmodelswere proposetbase@ on this methodof raisingthe C/S ratio the first
categoryis characterized byobermoritelike structuresinterstratified with layers of calcium
hydroxide[74,75], the second category characterized bipbermoritelike structura intermixed

with thoseof ajennitelike structurg61].

A classicdreierkettebasedmodel of CS-H is T a y b 1986 énodethat classifiedC-S-H
into G-S-H(l) and GS-H(ll) [61]. The formeris structurally similar to 14A tobermorite, atfte
latter is structurally similarto jennite[61]. This C-S-H system is described by an ideal solid
solution with hybrids jennite (Ca0)eASiOy)1-(H20).1 and 14A tobermorite (CaQ)ss
(SiOy)1:(H20)1.3. Although C-S-H gel is amorphous, at theanoscalet presents a short range
ordered structurg’6]. A sequence of finite silicate chains containimgto3n-1 tetrahedra (where
n= 1, 2, 3, éemovngdridgirg terahadia mtdrmddigtbetween none (infinite
length chainsand all (dimers)70]. This finite chain structuris corsistent with the silicatehain
structure observed in hardenegs@Gnd PC past§88,70]. Thelength ofsilicate chains for €&-H
in PCsvary from 2 in young passto about 5 in mature pasté&e silicate chains with length of
20 or greater can be found itebded cement pasteared ahightemperature[70,77]

The crystalline structure of 14A tobermoi(@gsSisO16(OH)2- 7H20) is built up of complex
layers[78] (Figure2.2). In each layer, seveiold coordinated calcium cations form a centrabDga
sheet on both sides with dreierketten arrangemaeants{licate chains with periodicity of three
tetrahedra)The distance between two Ca®heets is 14A. Thanterlayer spaces between two

complex layers are occupied bglcium cations andatermoleculeq70,78].



Jennite CaSisO18(OH)s-8H20) (Figure 2.3) is another crystalline &H that has
dreierkette silicate chaingith a much higher C/S ratio (C/S ratio of 1[89]. Jennite haasimilar
structureto tobermoritejthe main difference is that about half of the oxygen sites on the CaO
polyhedra sheets are not linked to silicate chains but tag@idps[79].

Beyond thel4A tobermoriteand j enni t e di s c WAteberchoritd8] Tay !l or
has alsobeenwidely accepted as a useful model to study amorpho@HCgel [13]. 9A
tobermorite has a similar crystalline structure to 14A tobermorite, but with two main differences:
the basal space between two complex layers is 9A, and it doesomiaiin interlayer water

molecules.
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Figure2.2. Schematic diagram showing dreierkette chains present in 14A toberratmitg(1 0
0) as described if¥8]. Blue balls and octahediaCa yellow tetrahedrail Si; grey lines H; red
linesi O.
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Figure2.3. A projection of the jennite crystalline structure as viewed al@r@®Q) as described
in [79]. Blue ballsand octahedra Ca; yellow tetrahedrdl Si; grey lines H; red linesi O.

2.2.2 CalciumaluminatesulfateHydrate (Ettringite)

Ettringite (Ca[Al(OH)e¢)2(SQy)3-D26H0) represers ~1P6 of weight at the early
hydration stage of P@astg81] andis alsoof interestbecause the formation of ettringite can cause
expansion and cracking, eventually affiegthe durability of cement pasi82]. Ettringitecan be
found at the early hydration stages of [RG]. Ettringite in cement is formed mainly through two
interactions: (1) gpsum and othesulfate compoundsinteract with calcium aluminate (2)
portlandite andnonosulfoaluminaténteract with sulfat¢83]. The crystal structuref ettringite
was first proposed by Moore and Tayl@4]: ettringite has a columbased structure with
empirical compositin [Ca[Al(OH)¢]-12H0]%*, with sulfateions and remaining water molecules

between columng={gure2.4).
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2.3 13'Csimmobilization in Cementitious Materials

Immobilization of cesium iongCs") in cementpastes has been studieg usinga variety
of experimental methogsncluding batch sorption experimearitL4i 16], high resolution'®Cs
solid-state nuclear magnetic resonancBIMR) spectroscopy{17,18], and X-ray diffraction
spectroscopy17,22] The binding capacity ahe cementmatrix for Cs" ionshas been shown to
beaffectedby the chemicatomposition othecement pastbecause differertemenfphases hae

different binding capacities and mechanig®85,86]

While some researchas showrthat PC paste arenot very effectie inimmobilizing Cs
ionswith the majority of theCs' ions found as free ions in the énstitial cement pore watf22i
25], otherresearchhasindicated that the diffusivity of Csons in PC was significantly lower than
that of Nd ions whichsuggestedhe binding of Csions orio PC pastg26]. On the other hand,
it wasgenerally agreed th&is" ions adsorbed oRC have ahigh leaching ratf87]. The kaching
tests which werecarried out according to themerican National Standards Institdfamerican
National Standards (ANSI/ANSprovided only qualitative information amtlicated that PC had
facceptabled to figood igmg[88f92.r manceo i n captur.i

The interaction mechanisms between” @ms and cement phases are still not well
undestood. It has been reported in the literature thati@ss are highly adsorbed by calcium

silicate compounds and hydroxide and that electrostatic adsorptiorf @nSscan occur on the
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surface of cement phasgk9,20] It has also been suggested that theogstion of Cs' ions
increased at lower C/S ratifE9], and that a decrease of pH was concomitant with a decrease of
the C/S ratio and a corresponding increase in surface sites with high affin@g fans [14].
However, the oposite effect was found by other researchEng adsorption of Csons has been
found to increase with increasing CaOf®d (C/A) ratio and with increasing C/S ratjn5]. A
matrix composition low in A0z and nearly equimolar in Sg@nd CaO content proved to be the
best for Cs retentiofi5].

Supplementary cementitious materials have been shown to improve Cs binding capacity
and decrease the leachability of @ms[93]. Blends of PC and blast furnace slag can effectively
immobilize C$ ions because of the generation of Magnes&ilicate Hydrate (MS-H) gel,
which is a principal adsorbent of large ionic radii alkali ions, such a®@s[94,95]. Silica fume
can improve the retention of Cons because silica fume react with other oxides and generated
stratlingite (2Ca@Al203-Si0O-8H.0 or GASHg or C-A-S-H), which can help Cs trappiri§6].

Cs' ions were found chemically bound to theACS-H with low C/S ratio or aluminositate gel
[97]. Cationic exchange between'@snsand C&"ions (C$ - Si** <-> C&" - AlI®*) was proposed
for the adsorption of Cdons in GA-S-H [98]. Particularly, densified silica fume agglomerates
blended in cement pastes contained unreacted silica tisarbad Cs and increased the

immobilization of C$ions[99].

2.3.1 Interactions of-*"Cs with Amorphous -G-H

Batch adsorption experimental data suggested dlettrostatic interactions occurred
between CSions and CS-H gel[14,17,18] The GS-H surface was negatively charged due to the
ionization of silanol groups (8DH) [8,17,18] The interaction mechanism between @ss and
C-S-H was regarded as an i@xchange process between” @ms and alkali ions (NaK®) on
negatively charged sit§400], or acidic silanol (SiOH) sites[8]. Cs' ions adsorbed to -G-H
were suggested to form two types of sites with weak and strong affinities. At both sidd, Si
groups interacted with Csons to generate $DCs. However, the adsorption of‘Gsns to GS-
H gel was dominated by adsorption to strong sites. Theref@éywbsite adsorption model could
be simplified to a onsite model, except at high Cs concentrations, at which the strong sites have

become saturatdd8]. The desorption experiment results showed that the adsorptiGs"abns
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onto GS-H gel involveda shorteningf silicate chains, and thaiydroxide played an important

role in this procesgs7].

X-ray microanalysis indicated that a large portion of iBas can be captured by&H
[17]. Some research has suggested physical interaction betwe@gn€and CS-H, due to the
amorphous pragrty of GS-H, and GS-H intermolecular channels can contribute to the physical
entrapment of Csons[22]. Other research suggested that i6ss substituted the interlayer sites
of C-S-H [68,101,102] NMR results have indicated that*Ggas highly adsorbed on-&H; Cs’
ions directly interacted with the oxygen atocasried by the bridging silicon to form innsphere
complexeg103,104]

2.3.2 Interactions of*'Cs with Tobermorites

The interactions between C®ns and tobermoritehave been mainly studied by using
experimental method42,27,10%107]. The interaction mechanisrhave been shown tepend
on the structure of theolid phase. For example, threechanismfor the interactionbetveen C$
ions and 11A tobermorite avefound to bedifferent from the interaction between*Gsns with
14A tobermoritg105,105].

Experimental data indicated that the uptake of iBas to 11A tobermorite might be
attributed to the crystalohemical incorporation of Csn alayered lattice framewor7]. The
Cs' fixation in the layered lattice framework of the 11A tobermorite was also confirmed by the
expansion othed spacing from 11.336 to 11596A. Otherexperimental data indicated that the
uptake of Csions in11A tobermorite was partly due to the breaking of bonds from planar and

edge surface sites of the layered latfid@7].

14A tobermoriteshoweda smalér ion exchange capacitwith Cs ions than 11A
tobermorite[12]. It was suggested that the uptake of @s14A tobermoriteresulted from the
exchange of surface Ea&ations and the exchange of protons from broken borgisoate chains
The small exchange capacity of 14A tobermorite and smdlle®shange distribution coefficient
(Kq) indicated that therezereno C&* ions present in the interlayer space and exchange was not
taking placeTheKq for Cs' ions and 14A tobermorite was smallean that for Csions and 11A

tobermorite (10 and 12 meqg/100g, respectively).
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Although the interactiombetween Csions and cementitious materiaks well as some
specific phases in cement pastaje beenwidely studied, the interactianechanismare stillnot
well understoodThis is nost likely due to the multpha® natureof cement paste, and the fact
that the interaction mechanismwvere significantly affected by the experimentanditions
(temperature, concentration of liquid phases).etberefore, it is important tiind a way tostudy
the fundamentainteractionmechanismbetween Csions and cement phasesioferest in an

environment without intervening external factors

2.4  °°Tcimmobilization in Cementitious Materials
2.4.1 Speciation of°Tc in theCement Matrix
The stable form of®Tc under aerobic conditions is T¢PL08,109] The speciation of Tc
is very sensitive tdhe redox potential, Eh, of the system, and it also depends qoithevater
chemistry, which is characterized by high amounts of alkaline earth metal and hydroxyl ions (pH

> 12) in most cemen{d 10].

The solubility of °°Tc is significantly lowered under reducing conditions compared to
oxidizing conditions. Low Eh values in cementitious waste forms can be imposed by blending
specific additivese.g, iron blast furnace slag (BFS), and/or the corrosion of the steel containers,
which leads to the formation of magnef{itd.0]. pH values as low as 11 and Eh values as low as
T400 mV have been m#la]sliruarlosv gHENh enviroriment*dodscpredert s
as hydrous oxide (T¢) (Figure2.5).

PC and fly ash pastes both have high pH and Eh values (pH ~ 13.5 and Eh ~ 250mV for
PC, pH ~12 and Eh ~ 50mV for fly agi)11], and theoretical calculations indicated that under
these pHEh conditions, the dominant redox specie®’6€ is TcOs [110] (Figure2.5).
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Figure2.5. Solubility limits for Tc according to the national education association (Nabase
[Tc] = 1e7M (adapted fronj110]).

2.4.2 Retention of°Tc in theCement Matrix

PC and fly ash grouts have been shown to be marginally acceptable for retention of
radioactive Tc@ [32]. Experimental data have indicated that the primary adsorption mechanism
was anion exchange, and that the exchange withi@as was weak; the distribution coefficient
Kq ranged from 0.8 to 96 mL[§2].

Leading tests have shown that ground blast furnace slag could improve the leach
resistance of cemeiased waste forms fdfTc [29,32,109] Compared to PC pasteement
materials made withlast furnace slag or solidified slag had fewer and smaller pores, sitwead
%Tc from leaching. Moreover, thesultingreducing environment could convert Te@ns to a
less soluble Tt species and effectively immobiliZ&Tc as Tc$sor TcQA x28 [29,30] When
ground blast furnace slag was adttethe grout, the uptake performancé%ic was significantly
improved: theleachability index I(I) of °°Tc was reduced by several units from 10.5 to 6.1
[109,112] the effective diffusion coefficientDer) of 9*Tc was 10 times smaller thahat in
ordinary grout{29]; and theKq was geater than 1000 mL/g, which was much higher than that
under aerobic conditions €., Kq = 0.87 96 mL/g)[32].
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2.5 Molecular Dynamics (MD) Modeling of the Interactions between lons and Clay

Minerals/ Cement Phases

2.5.1 MD Studies of Adsorption onto Cement Phases

Although tobermoritgenniteand ettringite have beatudied using MD simulatiGnmost
studiesto date havéocused on structural and mechanical properties of cement jha8e$22]
Thosestudies concerning dynamic propertiegherfocusedon the interactiombetween cement
phases and other ionsr molecules such as Na SP* ions and HO molecules [13,35
37,123,124] or used forcefielsl other than the ClayFF forcefield that was used in this work
[117,118,125,126]Results from the literature have showat tobermorite and jennitewere
capableof adsorling and incorporatingons. Alkali ions such as Neand K" ions can be adsorbed
both on the surface and penetrate into the silicate chasfrédlstobermoriteand jenniteo interact
with oxygenatoms on the silicate chairend interactiosin the silicate channels were suggested
to be chemicabonding[35]. The alkali ions associated with the solid phase had low diffusion
coefficiens, which were much lower than the ions in bulk solu{i®$,36] H.O moleculesn the
silicate channels anabove the surfacdeveloped integrated-Bond network with surface sites
anddemonstrated the following features: large density, layered arrangement, preferred orientation,
and low diffusion coefficienf35,36]. S©* exchanged with interlayer &ain the 9A tobermorite
structure ad was bonded to the solid phasdile the integrity of the silicate @ns was
maintainedThe 9A tobermoritestructurehas been shown to segood candidate for immobilizing
radioactive®°Sr [37]. 14A tobermorite adsorbed &adue to the negative interfacial charged
C&* ions interacted with hydroxyl O through strong electronic attraction. However, the stability
of surface adsorbed €acan be disturbed by coterions such as Clionsin the solution, and
eventually diffug away from the surfadd 24].

2.5.2 MD Studies of Adsorption of Radionuclides onto Clay Minerals

The interactios betweenCs' ions and clay mineral® mica, illite, smectite(such as
montmorillonite bentonite, hectorite and beidellit¢ d have been studied by using MD
simulations Theresults suggested thaeinteractions were thermodynamically favoraatelthat
Cs' ionsformed both innesphere and outesphere complexes whilateracing with theseclay
minerals Cs'" ions competedwith other ions present in the solution, such asibas, as well as
water moleculeso adsorb on the solid phag@8i 42,127 130]. The results indicated Csons
mainly formeda singletype of innersphere complegn basakurface while interactng with illite
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and mica[127,129,130] Different edge sites were observed in illite, aDsf ions adsorled

primarily at edge sites where cleaved pocketseexposed at the edge surfdta7].

When Cs ions interacted with smectite, inagpherecomplexes coexisted withuter
sphere complexeand innersphere complexesere preferentially formef{B8i 42]. For smectite
hydrates, partially hydratedCs" ions generally formed two different types of innesphere
complexes with the basslirface: above the centertbésurface ditrigonal or hexagonatavities
and abovesurfaceSi tetrahedra]39i 41]. The surface of smectitgontainedvarious hexagonal
cavity sites (Hsites) and tetrahedral Si sites-gifes) which were capable of coordinatir@s’
ions. The preferenceof Cs' ionsinteracting withdifferent siteswas illustrated by the following
sequencetetrahedrally substituted-kites> nonsubstituted ksites> tetrahedrally substituted-T
sites> nonsubstituted -Bites [40,41] Especially,on the surface of montmorillonit€Cs" ions
adsorbed otetrahedrallysubstitutedH-sitesandformed exclusively innesphere complexe€s’
ionsadsorbed on other sites formiedth innersphere and outespherecomplexeswith roughly
equal probability40]. Cs" ions were found strongly coordinated to bridgingr@he clay surface
and diffusedmuchmoreslowly than in bulk solutiof39,42]

While the mechanical and structural properties of ettringite have been studied using MD
simulation[131,132] interaction mechanisms between ettringite and ions hatdeeen studied
in detail [13]. However, some of these MD simulations were performed @GidlyFFforcefield

[13], whichhasalsobeenused to study the interfacial dynamic properties for other cement phases

MD simulationsanddensity functionallteory (DFT) MD simulations have been applied
to studythe interactions between TgGand other ions or water molecules in aqueous solution
[1337135]. The adsmption of TcQ ions on a mesoporous amorphous silica known as- self
assembled monolayers on mesoporous supports (SANIsESalso been investigated using MD
simulations[136]. The application of MD simulations on the T£@ns has been drawing more
and more attentiorlhe classicalforcefield parameteref TcOs ionsused in this worlhave just
been developef4], and thestructural and dynamic properties of hydrated # a@hsin aqueous
phase have been studidthe hydration free energy obtained by ushmeclassic forcefield method
has been proved tbe comparable with the value obtained by udingoretical calculatiofl37]
andaquantum physics simulatigad4]. The comparisonsdicated that the forcefield parameters

were reliableMD simulaion dataon the interactiombetween Tc® ionsand cement phases
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otherclay mineralshave not been published yetyereforethiswork is meaningfuto bothfuture

theoetical and experimental work.

2.6  Conclusionsand Literature Gaps
While the interactiorof Cs" and TcQ™ ionswith cementitious phasdgve been studiad
the literatureusingmostly experimental metha&ithe mechanismsf adsorptiorare stillnot well

understood most likely due to the wide racgenpositionof C-S-H.

The adsorptiorprocesse®f ions on the basal surface/interface of the cement plaases
strongly influenced by the following parameters: (1) the structure and composition of the cement
phases substrat@nd (2) the composition and structure of the reaface solution and its
dynamics, which are different from that of the bulk liquid ph@&83. MD simulation has been
used to study thimterfacial adsorption mechanisms between crystallfHCphases and other
ions and has also been used to study the interaction betweem€&and other clay mineralBhe
adsorption of CSsions on the surfaces of crystallineSeH phases can be envasied given the fact

that Cs ions had strong interaction with smectite.

PC was studied because it is the most widely used cementitious wastdtfmugh blast
furnace slag blended cementitious waste forms may be more effectiventobilize *°Tc.
Moreove, understanding the interaction mechanidrasveen PC paste and T£@& the key to

decreasing leaching and designing better waste forni&Tor

Although MD has been widely used to study the interfacial interactions between ions and
solid phases, thateractions between Cons and crystalline <G-H phases have only been briefly
studied.Furthermore the nteraction mechanisms between Fcions and cement phases have
never been addressading MD simulationslt is necessary to study the fundameirtgdraction
mechanisms betweeadionuclidegi.e. Cs" and TcQ’) and specific cement phases (crystalline
C-S-H and ettringite) at the atomic level with moldar dynamics (MD) simulations, so tthats

knowledge could be used to improve geformance of future wasterms.
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CHAPTER 3

3 MD Simulation and Data Analysis Methods

3.1  Overview and Objectives

The MD simulation resultareinfluenced by the following factors: (1) the equilibrium
status of the systen?) the amount of data used fiaita analysisand (3) the methods employed
for data analysis. This chaptevelos aframeworkfor evaluating thénteractionmechanismsef
radionuclideswith cement phases thatcludesmonitoring convergence of the simulations to
equilibrium and develjoing a data analysis methodology that can provide statistically reliable

results

3.2 Methods Used to Construct the SolidLiquid Interface Computational Cell

Two different methods to construct the sdlglid interface computational cells were
investigatedin method 1 the liquid and solid phases were first built individually and then stacked
on top of each othein method 2, the water molecules and ionsey#aced into a vacuum between

two layers of solid phases.

Method 1.Method 1 was widely used in the literature in previous MD stydi@g 140]
to investigate interfacial interactions between liquid and solid phases. To simulate the imteractio
of 9A tobermorite witranaqueous solution, the 9A tobermorite was cleaved parallel to the (0 0 1)
and (0 0-1) crystallographic planes in such a way that only hydroxyl groups were exposed on the
surfaces. The (0 0 1) surface was characterized by tetrahedralclsaids with Sibonded
hydroxyls pointing outandthe (0 0-1) surface was characterized &yoctahedral Ca®layer
with the Cabonded and Shonded hydroxyl groups pointing olrtiterlayer water molecules were
evenly distributed on both surfaces. A layer of liquid phaitle the same andb length of the
solid phase and a thickness of 50A wadt. The thickness of the layer of aqueous solution was
large enough to effectively eliminate direct interaction between the two solution/solid interfaces
[139]. Cs and Cl ions were randomly inserted in the midplane of the aqueous region to avoid
biased adsorption. The 9A tobermorite crystal and solution were kept charge neutral. Periodic

boundary conditions were applied in all three dimensi&ash phase was geometry optzed
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before the solidiquid-solid structure was built up. The geometry optimization was then performed

on the whole structure.

Method 2 Both layers of 9A tobermorite used in method 1 were used in method 2 to build
the simulation box, with a 50A thick waum in between and the tetrahedral S#Rd the
octahedral Ca@surfaces facing the vacuum. Thep(Hmolecules, Csions, and Cl ions were
packed into the vacuurnthe concentration of the solution was made to match the data measured
by experimen{141]. Periodc Boundary Conditios (PBC) were applied in all three dimensions.
Each layer was geometry optimized individually by constraining the other layersg@&beretry

optimization was performed on the whole structure.

Evaluation of the two methods described abov&s conducted byvisualizing the
computational cell after hanosecond (ng)f MD simulation and comparing the density of the

liquid phase before and after MD simulation.

Constructing the solitiquid interfacecomputational cells with method 1 posed several
difficulties: 1) a vacuum layer was automatically placed (by Materials Studio) between the liquid
layer and the solid layer to avoid overlap between these two layers, which increased the volume
of the liquid phase during the MD simulationd. after the MD simulation began, the vacuum
layer disappeared and that volume became associated with the liquid layer) and eventually changed
the concentration of the solution; 2) a void area was generated in the ofitlibesolution after
equilibration of the system withecanonical ensemb(®&VT) (Figure3.1a);and3) with Materials
Studio, the aqueous phase was only allowed to be budtcabic, tetragonalor orthorhombic
lattice. As a result, the angle of aqueous lattice had to be changed to match the cell parameters of

the solid phase, which would change theaamtration of solution.

Compared to method 1, method 2 had several advantages: 1) the space between the liquid
phase and the solid phase was eliminated; 2) the dimension of the liquid layer could be matched
with that of the solid phase; 3) void areasha tiquid phase were no longer observed after MD
equilibration Figure3.1b); and4) the vacuum between the solid layers represented the pore space

which was more realistic.
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Figure3.1. Configuration of simulations with two different methods aftesf MD simulation:
(a) method Jand(b) method 2. Void area was seen intthiddle section for method 1.

3.3 The Effect of Different Ensembles to Equilibrate the Liquid-Solid Interface
Computational Cell
After finishing the geometry optimization of the models and choosing me2htmd
construct solidiquid interface computational cells, MD simulations were performed with
different ensembles to equilibrate the systems. TI820ns of MD simulation were performed

for further dataanalysis.

According to the postulate of the ergodypbthesis, for an isolated system at equilibrium,
all the accessible states are equally probable over diloegeriod, independently from the initial
time, positions, momenta for a given number of atoms (N) in a volume (V) and at a constant energy
(E). Thus, the property average over tiarethe average over all the states (ensemble average) at
the equilibriumarethe samd101, 102. However, real physical systems are usually either too
small to follow the ergodic hypothesis or contain at least some uncertainty in energy. Therefore,

an alternative is to simulate a system, which is coupled with an external thermal bath by applying
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canonical ensembl¢NVT). In other cases, for systems with unknown parameters, such as the
density and the chemical composition of the system, isothasoiahricensembleNPT) or grand
canonical ensemblgVT) could provide more useful simulation resultsthe present work, the
computational cells were equilibrated in two different ways to study the effect of different
ensembles on the performance of MD simulation: (i) NVT ensemble; (ii)) NPT ensemble was added
to NVT ensemble in a cascade manmMP.T enseble was necessary to relax the sdiligiid-

solid system and adjust the size of the simulation cell so that the system could reach the energy
minimum point and the physical state of the liquid phase could maintain realistic.

3.4  ConvergenceMonitoring of the Simulations to Equilibrium

Several techniques for the definition of the equilibrium of a systdviD simulationexist
and have beereportedn the literatur¢142], including intramolecular interaction energy, number
of hydrogen bonds, root meaguarefluctuations (RMSF), torsion angle transition cluste
counting[143], structural histograms of clustg¥44], principle component analysj$45], and
configurational energy146]. A very common technique is theotomean square deviation

(RMSD), which describes the spatial difference between two static structures.

In present workthe NPT MD followed by NVT MD strategy was used to equilibrate the
system. This methodology was applied due to the requiremeamdinfaining the concentration of
the liquid phase and the fact that NPT ensemble is closer to experimental cenditomver,
after the energy, temperature, pressure and some of the structural properties (size, density of the
supercell) of the system bmue stabilized NVT ensemble was preferred to continue the MD
simulation to decrease simulation time. NPT ensemble MD was performed fpict3@conds
(p9 even though the energy, temperature, pressure, cell parameters of the supercell and the density
of the liquid phase became stable several ps after NPT ensemble MD started.nShan\\V T
ensemble MDwas used ta@ontinueto equilibrate the system. The trajectory of a second NVT
ensemble MD, which was named data acquisition, was recorded evey. (e length of data
acquisitiondependeabn the dynamic convergence of the system and the requirement of statistic
reliability of data analysif35,124,147,148]Thelength ofthedataacquisition ranged from 13
to 20ns, and the last Bs to 6ns of equilibrated trajectory in data acquisition was usedlfohe

data analysis.
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Theconvergence tequilibrium of the system was evaluated by calculating the Root Mean
Square Displacemé&@RMSD) of ions and the first layer atom on the surface because the purpose
of this research was to study the properties of dmjidd interface. RMSDs were calculated
between the starting point of the NVT ensemble MD sitartaand all succeeding frageghe
plateau of RMSD values was considered equilibrj@Agi 153]. Particularly, the RMSD values
in the z-directionwereused as the most important fasttw evaluate the adsorption equilibrium
becausehe surfaces were paralle thexy-plane the movement of ions on the surfacetire z-
directionwas related to the adsorptidesorption process.

3.4.1 Equilibrium Monitoring of Cs" lons on the Surface of Crystalli®®SH Phases

The first layerof atoms on the Sigxetrahedraburface((0 0 1) plane)included hydroxyl
oxygen, bridging oxygen with tetrahedral substitution, and silica ions at the surface in the first
layer of silicate chains, as well as O in the interlayer water molecules and hydroxyl groups at the
interface fothe14A tobermorite angennite modelsAlthough same types of atoms at the surfaces
of crystalline GS-H phases were selected to calculate the RMSD, the amounts of atoms were
different due to the different structurd@hetotal number of atom the first layer and thussed
for the RMSD calculation were 60 foine 0.5M CsCI/9A tobermoritesystem 69 forthe 0.5M
CsCl/14A tobermoritesystem and 92 fothe 0.5M CsCl/jennitesystem(Figure3.2). All systems
were assumetb have reached equilibrium at the end of the simulation. The data acquisition
trajectories were segmentiedio a series of-ns piece$10,000 framesat a runnind.1-ns interval
(1,000 frames) backward3his process generated 140 or 130 pieces of trajectautigsh were
overlapping.The intervalmean and corresponding running meia@. (the mean calculated from
the last frame of the data acquisition trajectory to the first frame of trajectory segment) for the
RMSD curvesn thez-direction were calculated for each piece of trajectory, then compared. If the
running mean and interval meaarsed to diverge, and the difference was larger than maximum
difference between the running mean and interval mean, the systerongaeredinequilibrated.
The RMSD plataus continued for at leastris Figure 3.3). The results indicatethat at the
tetrahedral Si@surfacesthe 0.5M CsCI/9A tobermoritesystemreached equilibrium at ~6s,
0.5M CsCl/14A tobermorite model reached equilibrium ainsland 0.5M CsCl/jennite model
reached equilibrium at ~4r&s.
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Based on the results from RMSD and analysis of the total number of ions adsorbed per unit
area, the last-8 ns of all the trajectories (& for tobermorites andré for jennite) were sampled
for structural, statisticahnd dynamical analysis. The large samplirag used tensurestatistia@l
reliability of the data
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Figure3.2. The RMSD ofCs' ions andhe first layer atomat the tetrahedral Si3urfaces of: (a)
9A tobermorite, (B) 14A tobermorite and (c) jennite.
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