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Chapter 1

INTRODUCTION

1.1 Clinical Chart Reviews

Clinical chart reviews [1] are one of the common components of medical research in

which medical students, staff or nurses review thousands of unstructured medical notes for

specific snippets that support or reject specific decisions. For example, Figure 1.1 shows

a sample snippet from an electronic medical record created for a 26-year-old male patient

by a physician in the Neuro-Epilepsy Department at 12:30 pm on January 1, 2016. This

snippet was synthesized by the author, without any sensitive or real information of the

patient. The snippet shown in Figure 1.1, supports the decision that “This medical note

mentions the history of the seizure of the patient” but reject the decision that “The patient

was having a headache when the medical note was created”.

Figure 1.1: An sample electronic medical record.

Since unstructured medical text dominates the EMRs [2, 3], it is difficult to identify

important information, such as complex labels of patients, automatically from EMRs for

medical researches or supervised machine learning tasks. As the example snippet shown in
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Figure 1.1, clinical text is filled with misspellings (e.g., headche), medical acronyms (e.g.,

NEUTAB is the acronyms of absolute neutrophil count) [4], and abbreviations (e.g., SZ is

the abbreviation of seizure) which make disambiguation difficult for software scripts [5] or

even natural language processing techniques [6].

Chart reviews have been widely used to support medical research in analyzing unstruc-

tured and complex medical data, such as the analysis of severe sepsis [7], the evaluation

of the quality of health service to specific patient cohorts [8], and the improvement of the

quality of mental health screening in pediatric primary care [9].

The resulting data of chart reviews, such as labels of patients and text snippets that sup-

port specific decisions, are invaluable resources for both medical researches and supervised

machine learning projects such as medical image processing [10, 11, 12] and medical nat-

ural language processing [13], which otherwise would be limited by smaller training data

sets or training data sets without much high-quality labels (Figure 1.2). For example, in a

chart review task that focuses on the Crohn’s anti-TNF Responsiveness of a certain patient

cohort, the resulted label of a patient is positive if the patient was clinically responsive to

anti-TNF medication. Otherwise, the label is negative. With the produced labels, super-

vised machine learning models could be trained to predict if a patient with Crohn’s will be

clinically responsive to anti-TNF medication or not.

Figure 1.2: Pipeline to provide high-quality labels for medical research through chart re-
views

However, chart reviews are also one of the most time-consuming and expensive steps is

doing medical research, since scrolling through vast amounts of unstructured medical text
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to produce labels or identify snippets is slow and require medical knowledge. For example,

at Vanderbilt University Medical Center, it currently costs $109 per hour for a service which

pays a nurse to review patient charts and produce labels, where a large part of this fee goes

to project management and other overhead. Moreover, examining a patient chart may take

hours or even days for complex data sets. While some researchers have employed software

scripts to infer labels from text data automatically [5], the messiness and complexity of

semi-structured medical notes [14] make verifying the accuracy of the results difficult.

More problematic is that the medical notes are filled with misspellings, medical acronyms,

and abbreviations which make disambiguation difficult with natural language processing

techniques [6]. Consequently, as the size and complexity of EMR systems keep growing

[15, 16], efficient strategies, and tools are needed to help medical researchers efficiently

find relevant information within unstructured medical data to support specific decisions in

medical researches.

1.2 Crowdsourcing Clinical Chart Reviews

To overcome the limitations (i.e., slow and expensive) of generating labels and evidence

through chart reviews, a concept, called “Crowdsourcing”, has been introduced to medical

research fields. The core idea of crowdsourcing a labeling task or a evidence-identification

task is asking a group of people (called crowd workers) doing a list of sub-tasks and then

synthesize the results of sub-tasks to get the final result.

Crowdsourcing [17] has been proven to be a much cheaper way to get labels for a

large number of data points compared to labeling data points by researchers themselves.

Public crowdsourcing platform like Amazon Mechanical Turk (AMT) [18, 19, 20] and

open source crowdsourcing software like PyBossa [21] have enabled researchers to ask

questions to crowds of workers and quickly receive labeled responses.

Figure 1.3 shows an example AMT crowdsourcing project. In this project, the crowd

workers review the question (i.e., choose the best category for a given image) and select
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the correct label (e.g., bed) from multiple options. The resulted labels could be used to

train supervised machine learning models (e.g., random forests or deep neural networks)

to classify the images. Crowdsourcing has already been applied to support many research

fields, such as bioinformatics [22], citizen science [23] and computer science [24, 25, 26,

27, 28].

Figure 1.3: An example project deployed in the Amazon Mechanical Turk (AMT) crowd-
sourcing platform.

The author and other members from the Hail Lab of the Department of Biomedical

Informatics (DBMI), of Vanderbilt University Medical Center (VUMC), have developed a

crowdsourcing system, the VBOSSA system, for medical data sets. The VBOSSA system

contains 20+ tools based on classical machine learning models, deep learning, and semantic

embedding. The VBOSSA system helps to simplify the process of medical data review and

paper preparation, and supported 60+ projects and 60+ medical researchers since 2016.

As shown in Figure 1.4, the VBOSSA system provides a lightweight workflow to simplify

the process of conducting a crowdsourced clinical chart review. We present the design and

evaluation of this system in Chapter 3.
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Figure 1.4: Workflow of the VBOSSA crowdsourcing platform for medical research.

1.3 Challenges in Building Tools to Support Clinical Chart Reviews

The other challenge for doing chart reviews is building efficient tools to help medical

researchers uncover relevant information quickly from complex medical data sets. In a typ-

ical medical research project, patient charts are managed as a collection hundreds, if not

thousands, of clinical documents, each of which may include tens of pages of information.

In this case, even finding the specific snippets related to a patients diabetes care history or

cancer medication adherence is nontrivial. While keyword search can help find some con-

tent, variations in terminology (e.g., “ca” is the abbreviation of “cancer”) and other clinical

semantics make finding all relevant data challenging [29]. For example, (e.g., “Keppra”

and “levetiracetam” are the same medication for treating epilepsy with different names.
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Moreover, identifying all relevant snippets related to seizures in a single note including

thousands of sentences, is time-consuming and requires extensive skimming. For these

reasons, while the VBOSSA crowdsourcing system already reduce the cost (e.g., reducing

from $109 per hour to $20 per hour) and time (e.g., saving the medical researchers an av-

erage 70 hours per chart review) of doing chart reviews, there are still plenty of room to

future improve the efficiency of when doing crowdsourced chart reviews. Specific tools are

needed to assist crowd workers in finding relevant content quickly, such as search engine,

text highlighting and document ranking. We present these tools and the their back-end

methodologies in Chapter 4, 5 and Chapter 6. In the rest of this section, we present the

challenges in building efficient tools to support chart reviews.

1.3.1 Challenge 1: High-Quality Clinically Similar Terms

EMR search engines [30] have been proven to be one of the most efficient tools to assist

medical researchers in finding relevant content from unstructured text in chart reviews.

Query expansion [31, 32, 33], text highlighting [34, 35, 36] and document ranking [37, 30]

are the three core features of an EMR search engine. A query expansion method takes the

original search term, expands it into multiple terms, and returns documents containing any

of the expanded terms. Similarly, a text-highlighting method highlights text within a note

that include a search term or similar terms to quickly focus the reviewer on the important

information. A document ranking method ranks the documents of a patient chart by specific

metrics such as the number of keywords or similar terms in a document.

Underpinning the EMR search engines for supporting chart reviews is the need for high

quality clinically similar terms for a given keyword. Clinically similar terms are terms

that have similar medical meanings or similar usages in medical applications. For exam-

ple, “Keppra” is a similar term of “epilepsy”, since “Keppra” is a medication for treating

“epilepsy”. Clinically similar terms could be used to expand a search query, to enhance the

text highlighting and document ranking features. For example, in a chart review project,
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expanding the search of “epilepsy” with “Keppra”, or highlighting “Keppra” in medical

notes provide the medical researcher additional information of the treatment of the patient.

Similarly, documents that contain both “Keppra” and “epilepsy” could have higher ranks

in specific chart reviews that focus on the treatments of epilepsy.

Previous work developed different types of clinically similar terms generators, includ-

ing (i) ontologies, such as SNOMED-CT [38], UMLS [39], and (ii) EMR-based vector

space models, such as the word2vec embeddings [37, 40]. However, little research has

been done on providing high quality clinically similar terms to chart reviews and system-

atically evaluating the quality and quantity of similar term across various chart reviews.

Also, as the needs of clinically similar terms vary with chart review tasks and user roles,

specific methods are needed to adjust the clinically similar terms for different types of chart

reviews.

1.3.2 Challenge 2: Clinically Similar Terms Recommendation

Adjusting clinically similar terms to the needs of specific chart reviews and medical

researchers is essential to reduce the complexity of doing chart reviews. For example, as

shown in Figure 1.5, when searching for “epilepsy” in a chart review task that focuses on

the diagnosis of “epilepsy,” users may prefer “EEG” and “brain.” However, when searching

for “epilepsy” in a task that focuses on treatment, users may prefer medications, such as

“Keppra” or “Vimpat.” However, current query recommendation methods may recommend

all EEG, brain, Keppra, and Vimpat given “epilepsy”, which is not suitable for varying

tasks. However, previous work [41, 42, 43, 44, 45, 37, 46, 30] provide static clinically

similar terms as query expansion lists to support chart reviews, which may not be suitable

for chart reviews, in which the users might require different similar terms for the same

search terms.

7



Figure 1.5: Example of the requirements of clinically similar terms in different chart re-
views.

When conducting chart reviews with the VBOSSA crowdsourcing system, we inter-

viewed crowd workers, medical researchers as well as analyzed the activity log of chart

reviews, to better understand the users’ needs for clinically similar terms. The main ob-

servation of the requirement for clinically similar terms in different tasks can be quantified

by how whom, and where those terms are used in EMRs. This is exemplified by Figures

1.6 (a) and (b), which show how context differs for “epilepsy” with respect to “EEG” and

“Keppra.” In this case, we could infer that a medical researcher may prefer the medication

information of a patient when searching for “epilepsy” and “Keppra”, and therefore, recom-

mend similar terms that are medications for treating epilepsy, such as “Vimpat”. However,

such relevant contextual information, such as the clinical department of the author of a note

does not always exist within the text, and therefore can’t be captured by training text-based

word embeddings. Therefore, specific methods are needed to capture and leverage such

context information of clinical terms to better fulfill the requirement for clinically similar

terms in chart reviews.
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Figure 1.6: Example text and usage contexts of clinical terms.

1.3.3 Challenge 3: Document Ranking

In some chart reviews, the medical researchers make specific decisions without review-

ing all medical notes of a patient chart. Therefore, specific ranking strategies or automatic

ranking algorithms are needed to reduce the number of documents for making decisions.

A ranking strategy, such as ranking by the dates of documents, is based on the medical

researchers’ experience in writing medical notes and doing chart reviews. Specific ranking

strategies are effective in certain chart reviews, such as “If the patient was welled treated

in the latest visit?”, in which ranking by the dates is the most efficient ranking strategy.

An automatic document ranking algorithm is based on some mathematical metrics, such as

the TF-IDF values of documents with respect to the keywords. The automatic document

ranking algorithm first represents the document with a list of features, such as the number

of keywords, length of the document, or the TF-IDF of the document and then ranks the

document before returning to the users.

Document ranking has been thoroughly researched in areas that are outside the medical

research fields, such as web page ranking [47], and item ranking in online retailers [48].

However, little research has been done in document ranking methods for support clini-

cal chart reviews. Moreover, there exist specific needs for document ranking methods in

chart reviews. The requirements for specific document ranking methods are based on two

interesting observations in the analysis of the activity log of chart reviews.

First of all, we noticed that even if a text snippet contains a search term or its similar
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terms, a user may determine the text snippet or the whole document that includes the snip-

pet are not relevant to the research goal. For example, as shown in Table 4.4 a note may

reference “diabetes” in the past medical history, but the primary purpose of the note is a

recent leg injury. In this case, ranking medical notes by the number of similar terms may

provide irrelevant documents to the users.

Second, we noticed that the crowd workers have their document ranking strategies (e.g.,

rank by note types or by date) during chart reviews. The activity log of finished chart review

tasks shows that while the search engine and text highlighting significantly reduce the time

for reviewing a patient chart, some crowd workers never or rarely used a search engine, but

rather ranked the documents by their types and dates.

Consequently, specific ranking metrics and ranking methods are needed to better sup-

port chart reviews. For example, instead of ranking documents by their importance in a

chart review, it might be better to rank and filter out non-important documents while letting

the users apply their ranking strategies to identify essential documents. In this case, specific

ranking methods to filter out non-important documents and corresponding ranking metrics

are needed for developing and evaluating such methodology.

1.4 Research Approaches and Contributions

1.4.1 VBOSSA Crowdsourcing Platform for Clinical Chart Reviews

A crowdsourcing clinical chart review platform is needed as the first step to improve the

efficiency of chart review. (Figure 1.4). A crowdsourcing clinical chart review platform not

only speeds up the current chart review process more cheaply and easily, but also provides

us enough feedback to develop and evaluate medical search engines for chart reviews. With

a crowdsourcing system, the total time a medical researcher spent in retrieving important

information can be reduced to:

1. Exports the content of the medical data or the indexes of the medical data.
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2. De-identifies the medical data before showing to the crowd workers.

3. Recruits crowd workers with enough medical knowledge.

4. Provides instructions or training sessions to crowd worker.

5. Reviews and verifies the returned results of the crowdsourcing.

If we further provide appropriate mechanisms to support the medical researchers in the

first three steps, the medical researcher could focus on the last step of a crowdsourced chart

review. while waiting for the result of a crowdsourced chart review, the medical researcher

can utilize the time for doing other valuable research projects, which do not require doing

clinical chart reviews.

In Chapter 3, we describe the crowdsourcing framework for medical data sets, including

the Vanderbilt PyBossa crowdsourcing system (Section 3.1), a pool of professional medical

crowd workers and professional workshops (Section 3.4) and efficient tools to support chart

reviews (Section 3.5). As shown in Figure 1.4, a crowdsourcing framework for medical

research includes two main components:

1. An internal crowdsourcing system that has specific mechanisms to secure sensitive

medical data sets, protect the privacy of patients and support crowd worker to find

relevant information fast.

(a) Specific mechanisms to specify workers attributes, roles, and access controls;

(b) A de-identification routine to perturb identifiers and meet ethical and legal re-

quirements.

2. A professional crowd worker pool and a professional workshop:

(a) A pool of professional workers who have the pre-tested medical knowledge to

review patient charts. Also, the crowd workers should be medical students,

nursing students, or faculty who have the authorization to access sensitive med-

ical data sets in an organization.
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(b) A professional design workshop for each crowdsourcing project, including the

researcher, medical personnel, computer science researchers and anthropolo-

gists, to develop crowdsourcing questions, recruit appropriate workers and ver-

ify the result.

1.4.2 Clinically Similar Terms Extraction

A patient chart contains hundreds, if not thousands, of unstructured clinical documents,

each of which may include tens of pages of information. Therefore, finding the specific

paragraphs related to a patients medical conditions (e.g., diabetes care history or cancer

medication adherence) is time-consuming.

A user study of some chart review projects shows that although keyword search can

help find some content, only half of the crowd workers ever used a search engine, even

when searching can save significant time. However, variations in terminology (e.g., “dm”

is used as the abbreviation of “diabetes”) and other clinical semantics make finding all

relevant data challenging [29] (e.g., “ca” is used as the abbreviation of “cancer” in medical

notes but used as the abbreviation of “California” in News ).

To provide an efficient search engine to support crowd worker, in Chapter 4, we present

the EMR-subsets method to extract high quality clinically similar terms from multiple

word2vec embeddings trained with the subsets of an EMR system. We evaluate the method

with user studies, information retrieval analysis, and time efficiency analysis. The result

showed that the extracted similar terms outperformed the baseline methods information

retrieval performance (e.g., increasing the average P@5 from 0.48 to 0.60). Additionally,

the extracted similar terms were preferred by most users and reduced the average time to

answer a question.
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1.4.3 Clinically Similar Terms Recommendation

After developing a method to extract high-quality clinical similar terms from multiple

EMR-based word embedding, specific methods are needed to adjust to users’ preferred

similar terms in different chart review tasks. In Chapter 5, a usage vector space model is

presented, in which each word is represented by a vector that captures how it is used in

different medical contexts (e.g. ordering a prescription vs describing family history). By

asking chart review users which terms they prefer for their given task, the similar terms

can be weighted based on the implied medical context. This usage vector space model

is compared against weighted, word to vector (word2vec) models in three chart review

tasks. The area under the curve (AUC) is measured to determine how well similar terms

are predicted.

The usage vector space outperformed the baseline word2vec embedding (e.g., AUC

0.80 vs. AUC 0.60) in all three chart review tasks. Additionally, the usage vector space

significantly reduced the number of labels required to learn and predict the preferred similar

terms of users (e.g., in one instance, reducing the labeling effort from 500 to 12).

1.4.4 Document Ranking

Since little research has been done in the user-centered document ranking approach,

especially in a crowdsourcing chart review environment, further research is needed to better

understand the users’ needs and propose appropriate ranking metrics for evaluating ranking

methods for chart reviews.

In Chapter 6, we first analyze how crowd workers interacted with the EMR search en-

gines and how they applied ranking during chart reviews. After that, we proposed two

novel ranking metrics, the negative guarantee ratio (NGR), and critical document, which

are critical for developing the next generation of EMR search engine to support chart re-

views. In this end, we tested the IR performance of a serial of ranking and learning-to-rank
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methods using the proposed ranking metrics. The evaluation shows that traditional ranking

and learning-to-rank approach are not efficient enough to support clinical chart reviews.

Therefore, specific methods are needed to better rank documents in chart reviews.

1.4.5 Generalizability of the Approach in this Dissertation in other Domains

In this section, we summarize our approach using general computer science language

and discuss its generalizability in other domains besides the healthcare domain, such as

law, finance, retailing and social media.

Given a database D and an input I, an information retrieval tool T identified relevant

data points from D using some relevance metrics and ranks the relevant data points by their

relevance to the input I. The challenges of building tools to support information retrieval

presented in section 1.3 not only exist in the healthcare domain but also exist in other

domains:

1. Unstructured data [49]. Unstructured data also exists and dominates the other do-

mains. For example, the customers’ comments in the online retailers’ websites,

which also contain typos, personal abbreviations and so on.

2. Requirements for similar terms[50]. Similar terms are also required to support infor-

mation retrieval in other domains. For example, “tax” is similar to “corporation” in

law documents that talked about corporate income tax but is similar to “person” in

law documents that talked about personal income tax.

3. Complex contexts. There also exist complex contexts of words in other domains. For

example, “Apple” may be relevant to “Orange” in food retailing context but may be

relevant to “iPhone” in electronic retailing context.

4. Requirement for recommending dynamic queries with limited examples. For ex-

ample, we recommend “banana” when given “Apple” and “Orange”and recommend

“iPhone” when given “Apple” and “Social Media”.
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Therefore, we can generalize our approach to other domains in three steps:

1. Given a new domain, we first identify the main contexts of words in that domain. For

example, different acts could be the contexts of words in the law domain.

2. We then train word embeddings per main-context and extract similar terms from the

word embeddings using the EMR-subsets method (Chapter 4).

3. We then build a usage vector space based on the sub-contexts in the new domain. For

example, we may consider the law of each state of the U.S.A as the sub-contexts in

the law domain.

After getting the word embeddings and usage vector space of the new domain, we can

support the information retrieval in that domain by supporting query construction, text

highlighting and query recommendation using the same approach presented in this disser-

tation.
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Chapter 2

BACKGROUND AND RELATED WORK

2.1 Electronic Medical Records (EMRs)

Electronic Health Records (EHRs), or Electronic Medical Records (EMRs) [51, 52,

53] include digital data that contain the detailed structured information about patients (e.g.,

ages and genders), unstructured medical text (e.g., discharge summaries), and multimedia

files (e.g., CT images). EMRs allows for the analysis of healthcare processes [54, 55, 56,

57, 58, 52, 59], medical record usage[60], and support clinical research [61].The aggregated

data are a rich resource for medical machine learning[62, 63, 64].

In general, EMRs and EHRs refer to the same type of medical data and are often used

interchangeably [65]. However, EHRs are used more frequently when referring to the

health data of patients in their whole medical history, such as the data generated by pa-

tients themselves (e.g., health data generated from a wearable device such as Fitbit [66])

and data from different medical providers (e.g., different hospitals). In contrast, EMRs are

used more frequently when referring to the health data generated from a single medical

data source, such as the database of one independent medical provider (e.g., the Vanderbilt

University Medical Center). In this dissertation, we use the terms “EMRs” when refer-

ring the medical data generated by Vanderbilt University Medical Center (VUMC). Figure

2.1 shows the structure of an EMR system, which contains multiple databases, users and

patients.
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Figure 2.1: Example structure of an EMR system.

Before the concept of EMRs emerged around the late 1960s, all medical records, such

as diagnoses, prescriptions, clinical visits, were in paper format. Since then, more and

more healthcare providers developed and deployed electronic medical record systems to

make the transmission (e.g., from one hospital to another) and retrieval (e.g., identify all

historical records of patients with diabetes) of medical records easier and faster than using

paper records. As the applications of EMR systems become more and more popular, in

2004, the Office of the National Coordinator of Health Information Technology was cre-

ated to manage and improve the health IT efforts nationwide, including the EMR systems.

After that, in the Health Information Technology for Economic and Clinical Health Act

(HITECH Act [67]) of 2009, EMRs were required to provide “higher payments to health

care providers that meet ‘meaningful use’ criteria, which involve using EHR for relevant

purposes and meeting certain technological requirements.” In addition, the Health Insur-

ance Portability and Accountability Act of 1996 (HIPAA act) was adjusted, according to

the HITECH Act, to provide security and privacy rules for EMR systems.

After years of development and improvement, EMRs systems are widely used in health-

care providers, make the maintenance and transmission of patients health data easy and

secure. In addition, as EMR systems record the details of healthcare services, healthcare
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providers can leverage EMR systems to measure and improve the performance of health-

care [68, 69, 70]. Most importantly, as EMR systems record the detailed healthcare data of

different types of patient cohorts, EMRs become one of the most important data sources to

support clinical research [71, 10, 61, 72, 73, 74, 75, 8, 7].

2.2 Secondary Utilization of EMRs in Medical Research

Researches have shown that the secondary utilization of EMRs have great potential in

enhancing the quality of healthcare. By labeling the raw EMRs and identifying important

snippets in the raw EMRs, medical researchers can further extend EMRs to support medical

research other than recording patients’ medical conditions. Labeled EMRs, all called

labeled medical data sets, contain labeled medical notes, labeled patients and snippets in

medical notes that support the labels. A label could be Boolean values (e.g., whether the

patient had a diabetes history or not), categories (e.g., the types of cancer) or continuous

values (e.g., a patient’s length-of-stay after being admitted).

Labeled medical data sets are utilized in different medical research, such as helping the

diagnosis of specific diseases (e.g., skin cancer [76, 12, 10], diabetes [76, 77]), predicting

the length of stay of patients from a specific cohort [78, 79, 80, 81, 82], predicting the

readmission of specific patient cohorts [83, 84, 85, 86, 87], and predicting the diagnosis

codes(e.g., ICD-9 codes) [88, 89, 90, 63]. In addition, as the size of EMRs increases

significantly in recent years, applying big data analytic to EMRs was introduced to further

enhance the research in healthcare [91, 92, 93, 94, 95, 96].

Automatic scripts and manually review are two methods to produce labeled medical

data sets. An automatic labeling script [5, 97, 98] identifies specific patterns from medical

notes, such as phrases, values, and then determines the labels with a given threshold (e.g.,

labeling a document as important if the number of “diabetes” in the document is more than

10). Automatic labeling scripts are the cheapest and fastest ways to label a medical data

set.
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However, as the unstructured medical data(e.g., progress notes in free text format,

scanned paper documents) dominates the EMR systems [73, 99], it is difficult to generate

reliable and high-quality labels for medical data sets with automatic labeling scripts. In this

case, manual review methods (e.g., chart reviews [71, 100]) are more reliable to produce

labels for medical data sets. In a chart review task, people with professional knowledge

(e.g., the knowledge about the diagnosis of all kinds of cancers) review the medical notes

of a patient (i.e. the patient chart) to label patients or notes(e.g., labeling if a patient had

lung cancer or labeling if a note mentions about lung cancer). Although manual review

methods provide high-quality labels for medical data sets, it is expensive (e.g., range from

hundreds of dollars per hours to thousands of dollars per patient chart) and time-consuming

(e.g., range from days to months).

2.3 Labeling Datasets through Crowdsourcing

Many research and engineering works have been done to improve the methods used for

providing high-quality labels for training supervised machine learning models. For exam-

ple, researchers have developed semi-auto methods to generate high-quality labels, such

as human-in-the-loop [101] and interactive labeling [102], to help non-experts in com-

puter science to transform professional knowledge into automatic scripts to generate la-

bels. Another example is the idea of crowdsourcing [103, 104, 105], which asks a ground

of workers to create labels for a data set. Since most of the medical notes are unstructured

and are filled with misspellings, medical acronyms, and abbreviations, the applications of

semi-auto methods are limited. In contrast, crowdsourcing research data sets have been

proved to be cheap and fast. However, due to the security and privacy rules of HIPAA

act, it is impossible to crowdsource medical data sets in public commercial crowdsourcing

platform, such as the Amazon Mechanical Turk [106, 107, 108, 17, 18, 19, 20]. Although

there exist open-sourced crowdsourcing platforms (e.g., the PyBossa [109]), little research

has been done to build a crowdsourcing platform to fulfill the security and privacy require-
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ments when crowdsourcing medical data sets. Most importantly, crowdsourcing medical

data sets not only requires a platform to protect patients’ privacy but also requires profes-

sional crowd workers and efficient tools to help retrieving information from patients’ chart

fast, such as keyword search engine [110, 30, 45, 46, 44, 111] with advanced features(e.g.,

query expansion and text highlighting) and data visualization [112, 113, 114].

Although crowdsourcing data sets have been proved to be cheap and fast, the reliability

of crowdsourcing data sets depends on multiple facts, such as the design of questions, the

abilities and knowledge levels of workers [28, 105, 20]. The Amazon’s Mechanical Turk

(AMT) has already proved that crowdsourcing provides reliable labels as other traditional

methods in psychology and other social sciences [20]. In healthcare, researchers have

done research about the outcomes from crowdsourcing, such as the reliability of medical

diagnosis from crowdsourcing [105]. In general, a crowdsourced data set has a standard

expectation (e.g., >80% accuracy) for the quality of the results from crowd workers. If

the result is below the expectation, we may introduce redundant workers, since previous

research showed that the more redundant worker we recruited, the better accuracy we can

expect from the workers [28]. For some complex datasets, such as medical datasets, re-

searchers may conduct a training session to train the workers and verify the result with

some golden standards. In this case, we may better guarantee the reliability of the results

of crowd workers [21, 115].

2.4 Information Retrieval Systems

An Information Retrieval System [116, 117, 118] is a collection of computer programs

that runs on the top of electronic files, such as plain text files [119], digital images (e.g., JPG

files or camera data [120, 121]), databases (e.g., SQL [47] and NoSQL [122] databases),

to get inputs (e.g., keywords) from the user and extract and return relevant information in

the electronic files. In some application fields, the information retrieval system and search

engine may refer to the same type of computer programs [123]. However, the informa-
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tion retrieval system is the superset of search engine (as shown in Figure 2.2), which may

also be used when referring to data extraction programs [124, 125, 126, 127, 128, 129,

130, 131, 49] that identifies meaningful data points from complex and abstract datasets,

such as determining phase shifts in multiple types of circadian time-course data [132] or

data visualization programs [113, 85, 133, 114, 112] to help users better understand the

medical data. While search engines are used more frequently when referring to the com-

puter program that identifies the important information the users preferred from structured,

unstructured readable data.

Figure 2.2: Tools to support clinical chart reviews

Researchers have developed different types of information retrieval systems to support

chart reviews, including search engine, text highlighting and document ranking.

A keyword search engine [30, 134, 135] returns documents that contain the search term

and rank documents by a specific metric value, such as the frequency of the search term

in the document. Commercial keyword search engines, such as Google, embed supportive

features, such as query expansion [136, 32, 137, 41, 39] and learning-to-rank [138, 139,

140, 141, 142, 143, 94], to refine the quality of search results. Query expansion is a method
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that expands the search to include terms that are semantically similar to the term (e.g.,

“insulin” is semantic similar to “diabetes,” “boy” is semantic similar to “man”) and returns

documents with any of the similar terms. In addition, some search engine associates with

text highlighting feature, which highlights the similar terms in the returned documents to

support users reading the documents.

2.5 Search Engine

2.5.1 Overview of Search Engine

The first search engine is called Archie, was created in 1990 by Alan Emtage, a stu-

dent from the McGill University in Montreal [144]. Archie searched FTP sites and created

indexes of downloadable files to speed up the searching for specific files. Since then, peo-

ple developed many search engines for different application fields, such as Yahoo! [145],

Google [146] and Bing [147] for web page search, EMERSE [30] for medical note search,

and Pinterest [120] for visual search.

Typically, a search engine retrieves information in three steps:

1. Get input from the users:

• takes explicit input from users, such as keywords [119], example text [119],

example images [120];

• takes implicit input from users, such as click-through data [142], time spent in

each clicked items in web pages [148], saved items in an online retail website

(e.g., the Amazon) [48];

2. Retrieves relevant data, such as text, website, web pages, from candidate locations,

such as a web page index database, using specific metrics (e.g., from simple number-

of-keywords to complex metric such as Text Rank [149]).
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3. Ranks relevant data by some ranking metrics, such as the number of keywords in the

web pages or the page rank values [150] of the pages;

Google [146] (Figure 2.3) and Bing [147] (Figure 2.4) are two typical commercial

text-based search engines that identifies useful web pages back to the user given a list of

keywords. In medical research, the target data points are complex and abstract, which

require specific data extraction methods.

Figure 2.3: Screenshot of the Google search engine, https://www.google.com/. Retrieved
February,13, 2019.

Figure 2.4: Screenshot of the Bing search engine, https://www.bing.com/. Retrieved Febru-
ary,13, 2019.

Figure 2.5 shows an example search engine used for retrieving relevant medical notes
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from a medical data set. The medical search engine helps the user to retrieve relevant

medical notes in three steps:

1. The user first enters a keyword “epilepsy” as the input;

2. The search engine executes a database command in the background to identify all

medical notes that contain the keyword from the database;

3. The medical search engine ranks the retrieved medical notes by the number of key-

word “epilepsy” in each medical note;

4. The medical search engine also provides visualization efforts, such as text highlight-

ing and frequency timeline, to support the user review the retrieved notes;

Figure 2.5: Example search engine for clinical chart reviews.
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2.5.2 Advanced Features of Search Engines

2.5.2.1 Query Expansion and Recommendation

Query expansion [151, 152, 153, 33, 39, 136, 154, 155, 156, 32, 157] is an informa-

tion retrieval technique that automatically adds relevant keywords to the original keywords

provided by the user to expand the search scope and therefore get documents that are rel-

evant to the user’s search goal. Query recommendation is another information retrieval

technique to help the user search more efficiently. Similar to query expansion, a query

recommendation method [158, 159] takes the user’s original keywords and recommends

relevant keywords. However, a query recommendation method may provide the user with

more options to select or refine the recommended expanded keywords. Moreover, many

query recommendation methods applied advanced techniques, such as the users’ previous

search log [160], and the users’ behavior models [160], to better recommend keywords to

the users.

Both the query expansion and query recommendation features of current web search

engines [161, 142, 94] and EMR search engines [43, 44, 46] highly rely on the usage log,

such as the click-through data or search log. However, it is hard to get enough click-through

data or search log from new or small chart review projects. Formally, providing query

expansion or query recommendation with limited information about the users is called as

the “Cold Start Problem” [162] faced by many search engines.

Therefore, pre-identified clinically similar terms are essential to enhance EMR search

engines [30, 163] to support chart reviews. There are two popular ways to produce clini-

cally similar terms: (i) ontologies, such as SNOMED-CT [38], UMLS [39], and (ii) EMR-

based semantic embeddings. While clinical ontologies are hard to construct and update,

EMR-based semantic embeddings are trained using unsupervised machine learning meth-

ods (e.g., GloVe [164], word2vec [40]) on EMR text and identify similar terms based on the

EMRs semantics. For example, Pakhomov et al. [165] found that word embeddings cap-
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ture semantic relatedness between medical terms. Moreover, Zhu et al. [41] and Hanauer et

al. [46] showed that semantically-based query recommendation systems could effectively

expand search queries.

2.5.2.2 Document Ranking

When using the keyword search or expanded-keyword search, a search engine may

return thousands or even billions of results (e.g., web pages that contain “search”). There-

fore, specific methods are needed to rank the search results to show users the best results.

Researchers have developed different types of ranking methods, such as ranking by the

number of keywords [46, 37], the number of expanded keywords [166, 46], the relation-

ships between documents (e.g., the page rank [149, 150]), and information-theory-based

models (e.g., cross entropy [155], TF-IDF [167]).

To further enhance the quality of document ranking, a technique named “learning-to-

rank” was introduced. Learning-to-rank [138, 142] re-ranks search results by learning from

labels provided by the users of search engines. In general, a learning-to-rank system repre-

sents each document by a set of features, such as bag-of-words. It then trains a classification

model, such as support vector machine or logistic regression, with user-provided labels to

re-rank the search result [142, 143]. Learning-to-rank has been widely used in web search

engines, such as Google [141], and recommendation systems in online retail, such as Ama-

zon [168]. In medical research, researchers also applied learning-to-rank approaches to

identify important terms in a clinical document [169, 170] or to re-rank clinical documents

to support medical research [171].

2.5.3 Data Preparation in Information Retrieval

Data preparation is the process to i) clear “dirty and useless” data points from the

database, which may reduce the quality of search result, ii) fix errors, which may bring

incorrect search results and iii) create features for the data points in the database to support
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advanced information retrieval features, such as learning-to-rank. The following are four

typical types of data points that a data preparation process needs to deal with:

1. Missing data [172, 73]. Missing data points are the data points with invalid values.

For example, a patient with “None” age value in an EMR system.

2. Incorrect data [172]. Incorrect data points are the data points with sub-values that are

not in a valid format. For example, the negative age values of patients are incorrect

data.

3. Outliers [172, 173, 174, 175]. Outliers are those data points that have valid format

but do not meet some metrics based on common sense or domain knowledge. For

example, a data point that records a user spent one hour in reviewing a patient’s chart

during a chart review task, which may be an outlier since most of the users in the

same task spent ten minutes in reviewing a patient’s chart.

4. Unstructured data. Unstructured data are those data points with varying formats. For

example, “DOB” and “Date of Birth” are unstructured data points, since there are

used interchangeably in the database. Unstructured data may cause an information

retrieval tool to miss important data points.

It is challenging to handle missing data, incorrect data, outliers and unstructured data in

the data preparation process. Simple solutions include removing incorrect data and outliers

[176, 177], filling missing data with the average value the same type of data points (e.g.,

filling missing pixels with the average value of its neighbors in damaged images) [178].

Depends on the tasks, researchers developed different types of data preparation solutions,

such as using a Naive Bayes model to fill missing data [179] and using Kernel-based meth-

ods to filling missing data [180].

Constructing features[181, 47] is the last step in preparing data before providing infor-

mation retrieval service to users. Features are a list of continuous or categorized values that
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represent the data points in the databases. For example, the length of a document could be

a feature of the document. Constructing features no only reduces the time for identifying

relevant documents in an information retrieval process but also supports advanced informa-

tion retrieval techniques, such as learning-to-rank [141], which could learn from the users’

behavior to improve the search result.

2.5.4 Performance Metrics for Information Retrieval Evaluation

In this section, we introduce the metrics for measuring the performance of information

retrieval tools.

Given an information retrieval tool and an evaluation database, in which the data points

have golden standard labels to certain inputs, we test the performance of the information

retrieval tool using the following steps.

1. Provide input to the information retrieval tool, such as keyword(s), example(s).

2. The information retrieval tool goes through the database and identify the data points,

such as documents, that are relevant to the input.

3. The information retrieval tool then ranks the returned data points by their relevance

to the input.

4. We measure the quality of the ranked result with a certain metric (e.g., the accuracy

of the top 10 returned data points). In the rest of this section, we introduce five typi-

cal metrics for measuring the performance of information retrieval tools: precision,

recall, precision-at-K (P@K), F1 score and ROC AUC [182].

5. To make sure the evaluation results are reliable, we may repeat the evaluation in a

certain way, such as cross validation [183, 184, 185, 186, 187], which is introduced

in the rest of this section, and compute the average performance.
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First of all, we introduce the definitions of basic concepts of measuring the performance of

information retrieval tools.

Given a database D, in which each data point di has a relevance label to an input I j:

l(di, I j). For example, if document di is relevant to keyword “diabetes”, the relevance

label is 1, otherwise the label is 0. We define the relevance subset of the input I j in D as

D(I j) = {d1,d2, . . .dl}, where l(di, I j) = 1

Each information retrieval tool T contains a relevance measurement method RT =

{R1,R2, . . . ,Rn} , in which RT (di, I j), to compute the relevance of a data point to an in-

put I j. For example, given keyword “diabetes” as the input, one possible relevance metric

could be the number of “diabetes” in each documents.

Given an input I j, an information retrieval tool T goes through the database D, computes

the relevance values of all data points, selects data points with relevance values no less than

a cutoff value C, and returns the ranked search result:

ST (D, I j) = {r1,r2, . . . ,rp}, where RT (rq, I j)≥ RT (rm, I j) and q > m and RT (r1, I j)>C

(2.1)

We define the precision of the search result of the information tool T as the ratio of

relevant data points in the search result. Precision is useful when we focus on the accuracy

of an information retrieval tool in identifying relevant data points.

precisionT (I j) =
|r j|r j ∈ D(I j)|
|ST (D, I j)|

(2.2)

We define the precision-at-K (P@K) of the search result of the information tool T as

the ratio of relevant data points in the top K (e.g., top 5) search result. P@K is useful when

we focus on how well an information retrieval tool identifies the most relevant data points.

precision-at-KT (I j) =
|r j|r j ∈ D(I j), j ≤ K|

|ST (D, I j)|
(2.3)
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We define the recall of the search result of the information tool T as the ratio of relevant

data points in the search result to all relevant data points in D. Recall is useful when we

focus on how well an information retrieval tool in identifying all relevant data points.

recallT (I j) =
|r j|r j ∈ D(I j)|
|D(I j)|

(2.4)

We define the F1 score of the search result of the information tool T as the harmonic

mean of the precision and recall. The F1 score measures the balance of precision and recall

value of an information retrieval tool. The higher the F1 score is, the better the information

retrieval in balancing precision and recall.

F1T (I j) = 2×
precisionT (I j)∗ recallT (I j)

precisionT (I j)+ recallT (I j)
(2.5)

Before introducing the ROC AUC score, we first introduce the concepts of true positive

ratio (TPR) and false positive ratio (FPR). TPR is the same concept of recall with a different

name. The FPR is the ratio of the number of irrelevant data points in the search result to

the irrelevant data points in the database D.

TPRT (I j) =
|r j|r j ∈ D(I j)|
|D(I j)|

(2.6)

FPRT (I j) =
|r j|r j /∈ D(I j)|
|D|− |D(I j)|

(2.7)

Given different relevance cutoff value C, the search result changes. With a serial of

cutoff value C, we can get a list of TPR and FPR values. When using the FPR as the x-axis

and the TPR as the y-axis, we draw a receiver operating characteristic curve, also called the

ROC curve. Figure 2.6 shows examples of ROC curves. The Area under the ROC curve is

called the Area Under the ROC Curve (AUC). Since the maximum values of TPR and FPR

are 1.0, the maximum value of AUC is 1.0. AUC measures the trade-off between TPR and
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FPR. AUC is useful in information retrieval experiments, in which we want to balance the

quality of search result. High AUC value means the information retrieval tool returns as

many true positive results as possible while introducing as the less false positive result as

possible. The higher the AUC value is, the better the information retrieval tool is.

Figure 2.6: Example receiver operating characteristic (ROC) curves.

To better test the stability and reliability of information retrieval tools, especially the

ones with the learning-to-rank feature [188, 167, 143, 189, 190, 138], researchers have

introduced the idea of cross-validation. The idea of cross-validation is as following.

1. Divide the evaluation database D into two parts, the training set Dtrain and test set

Dtest .

2. Train a learning-to-rank model using the training set and test the model with the test

set.

31



3. Re-Train the learning-to-rank model using the test set and test the model with the

training set.

K-fold cross-validation [191, 183] is an enhanced version of the cross-validation. Given

a K where K ≥ 2 and K ≤ |D|, we divide the database D into K = {1,2, . . . ,k} equal

subsets, we choose the i subset as the test set and train the learning-to-rank model with the

combination of other subsets. Then, we measure the performance of the learning-to-rank

model K times and compute the average performance. Using K-fold cross-validation, we

can measure how well an information retrieval tool performs when given unseen data points

while guaranteeing the reliability of the result.

Besides the K-fold cross-validation, there are other versions of cross-validation, such

as Leave-p-out cross validation [192, 155], which are designed for the needs to evaluate

different types of information retrieval tools.
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Chapter 3

THE VBOSSA PLATFORM FOR CROWDSOURCING MEDICAL DATA SETS

3.1 Introduction

Crowdsourcing has gained notoriety as services like Amazon Mechanical Turk (AMT)

have enabled researchers to ask questions to crowds of workers and quickly receive labeled

responses. These human labeled data sets are increasingly important for training super-

vised machine models, as labels do not exist for many important research questions and

cannot be produced with automated methods. Unfortunately, crowds composed of individ-

uals from the general public are inappropriate for numerous types of data sets that require

crowdsourcing, such as clinical data, due to legislation (e.g., the Health Insurance Porta-

bility and Accountability Act of 1996) and organizational policies. In particular, privacy

concerns prevent arbitrary users from accessing these data. Moreover, the subject matter

being analyzed requires highly specialized training and expertise to accurately produce a

label, which is often not available in a public crowd.

This chapter outlines the crowdsourcing framework we developed for medical data sets

and one current deployment of the system. There are many components necessary for

building such an environment to allow for scalable human computation on medical data

sets. Broadly, the main components of the system include: (i) a crowdsourcing system that

can be deployed within an organization that has the ability to specify workers’ attributes,

roles and access controls, (ii) de-identification routines to perturb identifiers and meet eth-

ical and legal requirements, (iii) graphical user interfaces to display sensitive data, (iv) and

machine learning tools to assist workers to produce labels quickly. Moreover, beyond the

technical components, this chapter describes organizational processes that are needed to

train researchers about crowdsourcing so they can construct well-defined questions for the

crowd, and approaches to recruit skilled workers.

33



In the rest of this chapter, we present the crowdsourcing framework for medical data

sets. An effective crowdsourcing system for medical data sets can change how medical

research is done and allow researchers to solve important problems. In our experience, the

chart review process is often a key rate limiting step for modern studies; crowdsourcing

has the ability to substantially lower the time to complete clinical studies. Additionally,

the resulting labels are invaluable resources for supervised machine learning researchers

that otherwise would be limited by smaller training data sets. As shown in Figure 3.1,

the crowdsourcing framework consists of an internal crowdsourcing platform, a pool of

professional crowd workers, a professional workshop and the tools to support chart reviews.

Figure 3.1: Structure of the framework for crowdsourcing medical data sets.
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3.2 Challenges in Building a Crowdsourcing Platform for Clinical Chart Reviews

3.2.1 Security and Privacy

First, as there are specific security and privacy requirements for crowdsourcing med-

ical data sets. Crowds composed of individuals from the general public are inappropriate

for numerous types of data sets that require crowdsourcing, such as clinical data, due to leg-

islation (e.g., the Health Insurance Portability and Accountability Act of 1996 [193, 194],

as shown in Figure 3.2) and organizational policies. Privacy concerns prevent arbitrary

users from accessing these data. Moreover, allowing full access to trusted people may still

expose too much sensitive information of patients.

Figure 3.2: Privacy and security rules of the HIPAA act.

3.2.2 Professional Clinical Crowds

Second, the complex medical data sets being analyzed requires highly specialized

training and expertise to accurately produce a label, which is often not available in a public

crowd. For example, as the research question shown in Figure 3.3, researchers need to

answer a complex medical question “Was a patient with Crohn’s clinically responsive to

anti-TNF medication?” by reviewing hundreds of medical notes and identify text snippets

in medical notes as evidence. A professional workshop including medical researchers and

35



computer scientists is needed to design the research question, customize the user interfaces

and tools. In addition, a pool of professorial crow workers with specific medical knowledge

is needed for analyzing complex medical data sets.

Figure 3.3: Example research question for analyzing if a patient with Crohn’s was clinically
responsive to anti-TNF medication.

The crowdsourcing platform should provides medical researchers a lightweight, cus-

tomizable pipeline that significantly reduces the cost and time to complete medical research

while increasing reproducibility and accuracy and maintaining privacy and security stan-

dards.

3.2.3 Customizable Tools to Support Clinical Chart Reviews

One major challenge for crowdsourcing workers is uncovering relevant information

quickly from complex data sets. For example, in healthcare, patient charts are managed as
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a collection hundreds, if not thousands, of clinical documents, each of which may include

tens of pages of information. Finding the specific paragraph related to a patient’s diabetes

care history or cancer medication adherence is nontrivial. While keyword search can help

find some content, variations in terminology and other clinical semantics make finding

all relevant data challenging [29]. Moreover, identifying all relevant text in a single note

related to, say, seizures remains time-consuming and requires extensive skimming. For

these reasons, the crowdsourcing framework requires additional tools to assist workers

in finding relevant content quickly, such as text highlighting and data visualization for

summarization.

3.3 VBOSSA Crowdsourcing System

Figure 3.4: Vanderbilt PyBossa(VBOSSA) crowdsourcing platform.

The open source crowdsourcing framework, PyBossa[25] provides many basic crowd-

sourcing features, such as loading and styling questions (known as a presenter), registering

workers, assigning workers to tasks, collecting answers, timing tasks and extracting ag-

gregate statistics and labels. Unfortunately, the default version of PyBossa lacks many of

the privacy controls that are needed to manage sensitive data. Therefore, fine-grained ac-

cess controls with two-factor authentication were added to limit access for each worker.
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Moreover, we added worker attributes (or properties) to the underlying worker data mod-

els so we can categorize each crowd worker by his or her skill level and specialty. These

attributes allow for fine-grained question assignment and weighting. The VBOSSA system

(Figure 3.4) allows researchers to customize how questions are ‘presented’ to workers via

basic HTML and JavaScript coding. These presenters are simple template HTML forms

that read from an API and populate question text and candidate answers.

The VBOSSA crowdsourcing system provides multiple layers of access control for

securing the sensitive medical data. First of all, the VBOSSA system was deployed on an

internal server within the Vanderbilt University Medical Center firewall. The site was not

open to the public. All worker registration, task assignment, question answering, and data

extraction were managed through a web interface over HTTPS, and the activity is logged.

Second, as shown in Figure 3.5, crowd workers need to manually authorize the login in their

smartphone using the DUO application [124]. The DUO application is an online security

service, which provides two-factor authentication adds a second layer of security for the

user account. The DUO application prevents anyone but the crowd workers from logging

in, even if other people know crowd workers’ passwords.

Figure 3.5: Multiple-layer access control mechanism of the VBOSSA system.

As shown in Figure 3.6, to protect the sensitive information, we first ask the researcher
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to provide the Institutional Review Board (IRB) of the targeted patient cohort and the med-

ical record number (MRN) of each patient. The crowd workers could only access doc-

uments associated with the assigned IRB. Moreover, upon querying the charts, the APIs

apply open-source, de-identification tools (e.g., the MITRE Identification Scrubber Toolkit

[195]), to remove or scrub HIPAA-designated identifiers, such as patient name and resi-

dential addresses.

Figure 3.6: Sensitive data de-identification mechanism of the VBOSSA system.

3.4 Professional Workshop and Crowd Worker Pool

Before deploying a crowdsourcing project, we conduct a design workshop. The work-

shop includes the researcher, medical personnel, computer science researchers and anthro-

pologists. The workshop begins by introducing the researcher to crowdsourcing prelimi-

naries and non-healthcare crowdsourcing examples. Next, the team works to clarify and

decompose the research objective into atomic questions by refining the structure of the

crowdsourcing project as in Figure3.7. The workshop discusses data needs (e.g., all notes

or specific note types), question format (e.g., boolean, multiple choice or text snipping),

scope of tasks (e.g., multiple questions per patient or a single one), and worker skills re-

quirements for the tasks .Crowdsourcing questions are constructed as narrowly as possible.

For example:
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(a) Does a clinical note document patient conversations regarding diabetic diet alterna-

tives? (Y/N)

(b) Which of the following dietary alternatives were discussed with the patient? (Healthy

oil choices, Sugar-free sweets, Unsweetened tea, None)

(c) Of the patient’s current diet choices listed in this note, rank them in terms of most

problematic to their long-term health: (Soda, French fries, Dark chocolate, Broccoli)

In addition to true/false questions, multiple choice questions and ranking questions,

researchers may also ask that workers snip (or extract) text from notes that support the an-

swer.These snippets are extremely helpful when experts need to adjudicate disagreements.

• Choose	answer	from	form	fields
• Note	snipping
• Note	snipping	with	labelling
• Image	demarcation	and	tagging

• A	single	note
• A	group	of	notes	for	a	single	patient
• A dashboard	of	notes	and	charts	for	a	single	patient

• Single	question
• Multiple	independent	questions	asked	at	once
• Multiple	branching	questions	asked	in	a	single	task

WORKER	ACTIONS TASK	SCOPE

TASK	CORPUS
• Workers	answer	question
• Workers	snips	note,	experts	answer	question
• Workers	answer,	unless	marked	for	expert	review
• Workers	answer	if	calibration	questions	are	passed

FINAL	SAY
Questions	asked	with	respect	to:

Figure 3.7: Agenda for crowdsourcing workshop with researchers.

After designing the crowdsourcing project, the researchers need to recruit workers with

enough background knowledge and necessary credentials to access the data. For instance,

in healthcare, only hospital employees (which includes faculty, staff, and trainees) can

access medical records. While the pool of workers is limited (in contrast to the afore-

mentioned public crowd on Amazon), there are often groups of highly motivated workers,

such as medical students, who are willing to work given incentives.As shown in Figure

3.8, our worker pool consists of mostly medical students and nursing students, with a small

number of faculty. These workers were recruited through Grand Round presentations and
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IRB-approved email communications. For a worker to participate, he or she signed a data

use agreement and, in some cases, was added as key personnel to the researcher’s IRB.

We also recorded skill-level of each worker (e.g., medical student, intern, resident, fellow,

attending, and nurse) and their specialization (if any), as these answers can impact which

questions they are qualified to answer.

Figure 3.8: Professional crowd worker pool of the VBOSSA crowdsourcing platform.

Moreover, the medical researcher can further control the access of crowd workers in

a more fine-grained way. As shown in Figure 3.9, the medical researcher can control the

crowd workers to access a specific sub-study of a chart review project by setting constraints,

such as ICD constraints and demographic constraints (e.g., genders and ages). The medical

researcher can easily assign projects to specific workers or remove specific workers from a

project.
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Figure 3.9: Access control of the professional crowd worker pool of the VBOSSA crowd-
sourcing platform.

3.5 Tools to Support Crowd Workers

As shown in Figure 3.10, we design tools to support different types of crowdsourcing

projects, including text search engine, text highlighting and document ranking.
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Figure 3.10: Customizable tools for different types of Crowdsourced chart reviews

3.5.1 Text Search Engine and Document Ranking

Figure 3.11 shows the search engine we developed to support chart reviews. The search

engine provides two search modes:

• Keyword Search: Return documents that contain the search term. Rank documents

by the frequency of the search term in the document;

• Expanded Keyword Search: Given a search term, expand the search to include

terms that are semantically similar to the term, and return documents with any of the

similar terms. Rank documents by a specific metric, such as the number and extent

of similar terms in the document;
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Figure 3.11: Search engine to support crowd workers

3.5.2 Text Highlighting

Figure 3.12: Text highlighting tool to support crowd workers

The text-highlighting tool highlights text within a note that contain a search term or

similar terms to quickly focus the crowd workers on the important text. Figure 3.12 shows

44



the text-highlighting tool we developed to support chart reviews. As shown in Figure 3.12,

the text highlighting tool highlights “diabetes” and similar terms of “diabetes,” such as

“hyperlipidemia” and “obesity.” On the left side of the note, a heat map displays the number

of terms related to diabetes in each section of the note. The crowd workers can quickly

navigate to the important snippets by clicking the highlighted bars in the heat map.

3.5.3 Result Review&Comparison Tool

Figure 3.13: Result review&comparison tool to support medical researchers

The result review&comparison tool is used to support medical researchers to access

and compare the chart review results provided by the crowd workers. As shown in Figure

3.13, the medical researcher can select the worker, the task, and review the decision and

evidence provided by the worker.The medical researcher can update, modify or reject the

result provided by the worker.
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3.5.4 Pixel Selection Tool

Figure 3.14: Medical image review&comparison tool to support medical researchers

The medical image review&comparison tool is used to support medical researchers

to access and compare the medical image chart review results, such as important pixels

in medical images that are relevant to a specific disease (e.g., GVHD), provided by the

crowd workers. As shown in Figure 3.14, the medical researcher can select the worker, the

task, and review the decision and evidence in a medical image provided by the worker.The

medical researcher can update, modify or reject the highlighted pixels provided by the

worker.
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3.6 An Example Use Case of the Framework

In this section, we present an example use case of the framework. As shown in Figure

3.15, The framework simplifies the deploying of a chart review tasks into five steps:

Figure 3.15: Workflow of crowdsourcing medical data sets using the VBOSSA system.

• Design Research Question: Suppose a researcher needs to label notes from a dia-

betes cohort (e.g., patients with ICD-9 code 250. *). For each note, a worker selects

one of the following labels: not relevant, relevant, or partially relevant to diabetes

care. Moreover, for a note with a relevant or partially relevant label, the researcher

also wants to extract supportive snippets from the note.

• Customize Tools and De-identify Data: After clarifying the research question, task

scope, task corpus, and worker action, a presenter with a text search engine (Figure

47



3.16) is customized. Next, notes are extracted from the internal EMR system, de-

identified and loaded into the VBOSSA system.

• Recruit and Assign Crowd Workers: Workers are recruited and assigned to the

project. A pre-test determines if each candidate worker has sufficient knowledge

about diabetes to participate. Only candidates who pass the test are admitted into the

worker pool and assigned tasks.

• Deploy Chart Review Project: Admitted workers then begin reading notes assigned

to them and producing labels. One note is shown to each worker at a time. The

worker reads the content of the note, chooses a label, and selects relevant snippets

from the note. This process continues until all notes are labeled. Depending on the

coverage requirements, multiple workers might answer the same question.

• Leverage Labels: After all the tasks are completed, the researcher receives the labels

and snippets. The researcher then utilizes the data in a supervised machine learning

task, such as document classification.

Figure 3.16: An example VBOSSA presenter with a text search engine.

3.7 Overview of the Finished Crowdsourced Medical Research

In this section, we briefly introduce the medical research projects supported by the

crowdsourcing-based information retrieval system. The result and activity log of these

medical research projects are used in the rest of this section as:

1. the evaluation datasets of advanced machine learning tools to support crowd workers;

2. the sources of user behavior analysis to identify metrics for measuring the perfor-

mance of next generation of information retrieval systems for medical research;
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Figure 3.17 shows the user interface for the Diabetes/Seizure Note Relevance and Patient

Condition Note Relevance Chart Review project. The interface includes the search engine

and text highlighting tools. The crowd workers reviewed each note and determine if notes

are related to a specific medical condition, such as diabetes and seizure. In the rest of

this dissertation, we construct evaluation datasets from the results of these projects for

evaluating the information retrieval performance of the advanced features of search engine,

such as semantic search and semantic ranking.

Figure 3.17: User interface of the diabetes/seizure note relevance and patient condition
note relevance chart review project.

Figure 3.18 shows the user interface for the Acute Myocardial Infarction Chart Review

project. In this project, the crowd workers reviewed documents and snip any portion of

a note which contains references to diagnostic, medication, procedures or symptoms to

AMI. In the rest of this dissertation, we construct evaluation datasets from the results of

this project for evaluating the advanced features of search engine, such as text highlighting

and query recommendation.
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Figure 3.18: User interface of the Acute Myocardial Infarction Chart Review project.

Figure 3.19 shows the user interface for the Crohn’s Anti-TNF Responsiveness Chart

Review project. In this project, the crowd workers reviewed documents and determined

whether a patient with Crohn’s was clinically responsive to anti-TNF medication. In the

rest of this dissertation, we construct evaluation datasets from the results of this project

for evaluating the advanced features of search engine, such as text highlighting and query

recommendation.
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Figure 3.19: User interface of the Crohn’s Anti-TNF responsiveness chart review project.

Figure 3.20 shows the user interface for the Anesthesiology Patients on Dialysis Chart

Review project. In this project, the crowd workers reviewed documents and determined a

patient has undergone dialysis between 2 weeks prior to their surgery. In the rest of this

dissertation, we construct evaluation datasets from the results of this project for evaluating

the advanced features of search engine, such as semantic search and semantic ranking.
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Figure 3.20: User interface of the anesthesiology patients on dialysis chart review project.

Figure 3.21 shows the user interface for the Anesthesiology Patients on Student Patient

Interaction Note Comparison Chart Review project. In this project, the crowd workers

reviewed documents and compared analogous sections of notes. In the rest of this section,

we construct evaluation datasets from the results of this project for evaluating the accuracy,

agreements of the result of the crowdsourcing information retrieval system.
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Figure 3.21: User interface of the student patient interaction note comparison chart review
project.

The other chart review projects, such as the PACS Project (Thrombus) has the similar

project structures, user interfaces and therefore, are also used for the evaluation of advanced

features of search engine, such as semantic search and semantic ranking, in the rest of this

dissertation.

3.8 Evaluation

3.8.1 Overall Result

VBOSSA has been deployed within Vanderbilt University since November of 2016.

Most workers are medical students. The average hours spent per chart review project is

74.2 hours with 4.8 workers. Half of the projects require a 30-60 minute training session.
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The average cost per project (at $20 per worker hour) is $1,459, for an average of 2,066

tasks per project. Workers completed, on average, 433 tasks per project and spent 3.4

minutes per task. Despite striving to make tasks as simple as possible, task decomposition is

challenging for chart-review tasks. As a result, workers often answered multiple questions

at a time about each patient.

VBOSSA has been used by 18 workers to assist 10 researchers from a variety of clinical

specialties answer 22,726 unique questions of varying degrees of difficulty. These workers

have saved experts over 700 hours of manual chart review. Projects for which a gold stan-

dard were established had an average accuracy of 86%, while projects which had coverage

greater than one worker had an average agreement between workers of 78%.

As shown in Table 3.1, crowdsourcing medical data sets have significantly reduce the

time and cost for conducting a clinical chart review.

Chart Review Task Workers Patients Notes Cost
Time

(hours)
1 Acute Myocardial Infarction 3 152 200 $810 40
2 Crohn’s Anti-TNF Responsiveness 6 983 437,993 $3520 179
3 Pediatric Diabetes Note Barriers 6 76 210 $1620 81
4 Anesthesiology Patients on Dialysis 2 670 49476 Free 4
5 PACS Project (Thrombus) 5 1002 7020 $1400 70
6 Diabetes/Seizure Note Relevance 4 1000 600 $600 30
7 Patient Condition Note Relevance 3 465 540 $1080 54

Table 3.1: Chart review projects support by the crowdsourcing-based information retrieval
system.

3.8.2 Impact of Instructions and Training Sessions

As we described in the previous section the projects for which a gold standard were

established had an average accuracy of 86%, while projects which had coverage greater

than one worker had an average agreement between workers of 78%. All these projects

provide rich instructions to the workers or have 30-60 minute training sessions. To measure

the importance of instructions and training sessions, we conducted a baseline project, in
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which we gave the crowd worker unclean goal, limited instruction, without any training

session. As shown in Table 3.2, the average accuracy is 0.58 and the average agreement

is 0.50, which are much lower than the projects with rich instructions and enough training

sessions. Moreover, in the Student Patient Interaction Note Comparison project, we did

two training sessions and updated the instructions multiple time, and the accuracy is nearly

100% based on the review result of the medical researchers, and the agreement is around

97.66%.

Task Goal Average Accuracy Average Agreement

walking 0.69 0.66

respiration 0.43 0.47

pruritus 0.47 0.49

epilepsy 0.48 0.35

fracture 0.48 0.48

rhinorrhea 0.53 0.41

breast cancer 0.58 0.63

Kidney 0.70 0.59

headache 0.84 0.44

Average 0.58 0.50

Table 3.2: Average accuracy and average agreement in nine baseline crowdsourcing chart
review projects.

3.9 Discussion

We have completed more than six crowdsourcing projects with the VBOSSA crowd-

sourcing platform.For each project, we conducted workshops, and recruited medical stu-

dents and nursing students to participate in the crowd (over a dozen have participated). We

paid the workers a flat fee to complete each project, which was determined by multiplying
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an hourly rate times the expected number of hours of work.

For many projects, researchers have asked that workers snip the text used to make their

decision. These snippets are then provided to an expert for validation. Even though this

process requires an expert to review all answers, we find it is useful as the workers complete

the time consuming task of scanning the entire document, while the expert simply reviews

and approves snippets. If an expert’s time is limited and much more costly than workers,

then this design can be effective.

As the next step, we plan to design an optimization function to better design and conduct

crowdsourced clinical chart reviews. First of all, we introduce the basic concepts before

introducing the optimization function.

1. le represents the average number of labels produced by an expert per hour.

2. ce represents the average cost of an expert per hour.

3. le&t represents the average number of labels produced by an expert supported by tools

per hour.

4. ce represents the average cost of an expert per hour.

5. lw represents the average number of labels produced by a worker per hour.

6. cw represents the average cost of a worker per hour.

7. lw&t represents the average number of labels produced by a worker supported by tools

per hour.

In general, we have ce ≥ cw, ce&t ≥ cw&t , le ≥ lw, and le&t ≥ lw&t .

Next, we introduce the verification time functions, which define the time to verify the

labels produced by the experts (Ve) and crowd workers (Vw). In general, the labels and

evidence produced by the expert have fewer noises compared to the labels and evidence
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produced by crowd workers. Therefore, it may take less time to verify the labels produced

by experts than to verify the labels produced by crowd workers (i.e., ve(l)< vw(l)).

Ve(Le) = ∑
l∈Le

ve(l) (3.1)

Vw(Lw) = ∑
l∈Lw

vw(l) (3.2)

The budget of a clinical chart reviews task p could be represented as (C,T ), the up

limitation of cost and time. Lw are the labels assigned to experts and Le are the labels

assigned to workers. E is the number of experts, and W is the number of workers. We

define the cost to produce and verify the labels as following.

Cp =C(E,W,Lw,Le) = Le×
le&t

ce&t
+Lw×

lw&t

cw&t
(3.3)

We define the time to produce and verify the labels as following.

Tp = T (E,W,Lw,Le) =
Le

E× le&t
+

Lw

W × lw&t
+Ve(Le)+Vw(Lw) (3.4)

The optimization function is:

ArgMax{E,W,Lw,Le} = (C−Cp)× (T −Tp),C ≥Cp,T ≥ Tp (3.5)

The trade-off behinds the optimization functions are:

1. The more experts we recruited, the more money we may spend since ce > cw. How-

ever, the time spent in producing and verifying may reduce since ve < vw.

2. The more workers we recruited, the less money we may spend. However, the time

spent in producing and verifying may increase.

3. Given the budget C and time limitation T , we can identify the number of experts and
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the number of workers we need to recruit and the number of labels we need to assign

to recruited experts and workers.

3.10 Conclusion

In this chapter, we presented a crowdsourcing framework for sensitive medical data

sets, such as electronic medical records. We developed a crowdsourcing platform that

protects patient privacy and a set of helper libraries to assist workers complete tasks ef-

ficiently. Also, the user experience analysis shows up clear directions for building and

evaluating supportive tools for chart reviews, such as medical search engine and text high-

lighting. Future extensions of the framework may include level-of-expertise weighted an-

swers, quorum-detection, and machine learning prediction label assistance.
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Chapter 4

CLINICALLY SIMILAR TERMS EXTRACTION

4.1 Introduction

Word embeddings project semantically similar terms into nearby points in a vector

space. When trained on clinical text, these embeddings can be leveraged to improve key-

word search and text highlighting. In this chapter, we present methods to refine the se-

lection process of similar terms from multiple EMR-based word embeddings, and evaluate

their performance quantitatively and qualitatively across multiple chart review tasks.

To evaluate the identified similar terms across quantitative and qualitative dimensions,

we conduct multiple experiments including an information retrieval evaluation, a user pref-

erence study and a timed chart review task. The results show that the identified similar

terms achieved better IR performance than the baseline methods, were preferred by most

users, and reduced the time to answer a question significantly. Moreover, the selection

method is able to identify an optimal number of similar terms.

This work differs from previous work in two critical ways: (1) the EMR-subsets method

extracts similar terms by combining multiple EMR-based word embeddings; and (2) is

evaluated across multiple dimensions including information retrieval performance, user

preference and time to answer a question from a chart.

4.2 EMR-based word2vec embedding

A word2vec embedding projects words into a vector space by training a neural network

with text [196, 197]. Word2vec embeddings can be trained with two different methods,

the Continuous Bag-of-Words (CBOW) method and the skip-gram method (using a set

of words vs. the position of words, respectively). Researchers have already applied the

word2vec embeddings to support clinical chart reviews, such as with query expansion [31]
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and search [171].

In this study, we use the CBOW method for training the EMR-based word2vec embed-

ding, which is the default training algorithm of a word2vec model in Gensim[129]. The

positions of words in the learned embedded vector space are used to estimate their similar-

ity. Specifically, we measure the similarity of two words wordi and wordj using the cosine

similarity of their embedded vectors vi and vj. The range of similarity is from zero to one:

S(wordi,word j) =
vi · v j

‖vi‖×‖v j‖
(4.1)

Table 4.1 lists the documents we used to train word2vec embeddings. The “Complete

EMR” data set refers to all clinical notes from the Vanderbilt University Medical Center

Synthetic Derivative [198], a de-identified mirror of the EMR, which contained approx-

imately 100 million clinical notes at the time of this study. The other data sets are the

largest 14 subsets of the EMR, each containing at least 1 million notes. For each dataset,

we trained a word2vec model with the default parameters using the implementation pro-

vided by Gensim [199], a Python library for semantic analysis. We name each embedding

with the name of its training data set, and we call any embedding trained with a subset of

the EMR system an “EMR-subset embedding.”

In addition to the EMR-based embeddings, we downloaded the pre-trained word2vec

model from Google News (which we refer to as the News embedding) [196], which con-

tains 3 million word vectors in a 300-dimension vector space, as one of the baseline word

embeddings. The News embedding has been used in prior work for query expansion [200]

and identifying similar terms [18].

The preprocessing transformations applied before training the Complete EMR embed-

ding and EMR-subset embedding include:

(1) Parsing XML and HTML data formats to plain text using Beautiful Soup [201].

(2) Excluding stop words, words with a length less than two characters, and words with
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Training Data Set Note Count Vocabulary Size
Complete EMR 100m 277k

Clinical Communication 19.2m 67.0k
HP 8.0m 24.1k
Outpatient rx Order Summary 5.0m 16.2k
Prescription 4.0m 17.1k
Problem List 3.1m 6.4k
Provider Communications 2.6m 12.2k
Clinic Note 2.4m 33.2k
Respiratory Care 2.2m 3.4k
Clinic Summary 2.2m 14.7k
Clinic Summary 2 2.1m 28.2k
Rehab 1.7m 31.5k
Nurse’s Note 1.4m 16.9k
Emergency Department Nurse’s Triage 1.0m 19.3k
Letter 1.0m 26.2k

Table 4.1: Data sets used for training word2vec embeddings. Vocabulary size is the number
of distinct words in the data set appearing at least 50 times

a frequency less than ten in the training data set.

(3) Tokenizing the words using the Gensim [199] word tokenizer and lowercasing all

words.

4.3 EMR-subsets Similar Terms Extraction Method

In this section, we describe the EMR-subsets method to extract and merge similar terms

from multiple EMR-subset embeddings. The approach is motivated by the observation that

embeddings created from the entire EMR can be distorted by frequently occurring text. In-

stead, terms should be similar to the keyword throughout subsets of the EMR. For example,

the “Rehab” EMR-subset embedding identifies “ca” as a top-10 similar term for “cancer.”

Similarly, the “Clinical Summary 2” EMR-subset embedding identifies “grandfather” as a

similar word to “cancer”, likely because physicians document family history (We queried

the complete EMR and found that 27% of the documents that contain “cancer” also contain

“grandfather”, and that many of these were within five words of each other). However, the
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term “cancer” is not similar to “ca” and “grandfather” in other subsets, indicating these

similar terms might be biased by the text in the subset, and therefore may not be ideal for

searching or highlighting clinical documents.

Figure 4.1: Similar terms of “cancer” from the “Clinic Note” EMR-subset embedding
broken down by intra-subset similarity, inter-subsets similarity, and harmonic similarity.
The harmonic similarity is used for ranking terms.

The EMR-subsets method identifies similar terms of a given keyword w that have con-

sistent similarity values across EMR subsets. As shown in Figure 4.1, three metrics are

calculated to determine a similarity score for the EMR-subsets method. The intra-subset

similarity is a term’s similarity to the keyword w using a specific subset’s embedding. The

inter-subsets similarity is a term’s average similarity to the keyword w in all other subsets’

embeddings. The harmonic similarity is the harmonic mean between the intra-subset and

inter-subsets similarities, which is maximized when the two similarities are equal and is

zero if a term exists in a single subset.

Extracting similar terms from the EMR-subset embeddings requires multiple steps:

(1) Candidate Term Generation and Intra-Subset Similarity: For a given keyword

w and an EMR-subset embedding (e.g., the “Clinic Note” embedding), we generate

the top-K similar terms of the keyword w. The similarities of these terms define the
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intra-subset similarities. The first column in Figure 4.1 lists the similar terms from the

“Clinic Note” EMR-subset embedding for “cancer” including family history terms

(e.g., grandfather), misspellings (e.g., caner) and organs (e.g., colon).

(2) Inter-Subsets Similarity: For each candidate term t in each subset, we compute

its average similarity to the keyword w (i.e., inter-subsets similarity) based on other

EMR-subset embeddings (i.e., excluding the “Clinic Note” EMR-subset embedding).

A candidate term that does not exist in some embeddings has a similarity of zero and

lowers the inter-subsets similarity. If a candidate term only exists in the current

EMR-subset embedding, we set its inter-subsets similarity to a minimum value (e.g.,

0.001). The second column in Figure 4.1 lists those terms’ similarities to cancer

across the other subsets - we observe that “grandfathers” has a lower similarity in

other subsets, while melanoma is more similar.

(3) Harmonic Similarity: For each candidate term t in each subset, we compute the

harmonic mean of its intra-subset similarity and inter-subsets similarity. As shown in

Figure 4.1, the inter-subsets similarity of “cancer” and “grandfathers” is 0.21, which

is much lower than its intra-subset similarity. Therefore, “cancer” and “grandfathers”

is only similar to each other in “clinic note” embedding, meaning it is unlikely to be

included the similar term list.

(4) Term Cutoff: For each subset, we apply the similarity-based cutoff method (de-

scribed in detail below) to remove candidate terms with low harmonic similarities.

As shown in Figure 4.1 in red, we remove some of the family terms, such as “grand-

fathers” and “great-grandfather,” using the similarity cutoff 0.33.

(5) Merge Similar Terms: Repeat step (1)-(4) in each subset embedding and merge the

similar terms by merging the similar terms extracted from each EMR-subset word

embedding.
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Formally, we present the process of extracting similar terms from a list of EMR-subset

embeddings M = {M1,M2, . . . ,Mm} for a keyword w (i.e., there are m embeddings in the

list, one for each note type). Given an EMR-subset embedding M j, we define the intra-

subset similarity of two words as S j(w1,w2), and the inter-subsets similarity of two words

as I j(w1,w2).For each EMR-subset embedding M j, we generate the top-K similar terms of

the keyword w as the candidate terms. We then compute the inter-subsets similarity of each

candidate term:

I j(t,w) =
m

∑
k=1,k 6= j

Sk(t,w)
m−1

(4.2)

We then compute the harmonic similarity of each candidate term t:

E j(t,w) = 2×
S j(t,w)× I j(t,w)
S j(t,w)+ I j(t,w)

(4.3)

Next, we remove low similarity terms provided by each EMR-subset embedding M j,

since the number of similar terms impacts the quality of search and highlighting. For

example, Figure 4.2 shows that as the list of search terms is expanded from [epilepsy] to

include additional terms, the relevance of the retrieved documents increase initially but then

decreases as the list grows (here, relevance is defined as the percentage of highly similar

terms from documents in the expanded search result).
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Figure 4.2: Example of expanded document quality analysis for “epilepsy.” The proportion
of high similarity terms (i.e., terms that have similarities larger than 0.60 while 1.0 is the
maximum value) decreases with similar term expansion.

Cutoff Method: The method to determine the similarity cutoff is outlined as follows.

We represent the similar terms of a keyword as a two-dimension curve L (Figure 4.3), with

the similar terms along the x-axis (represented by their indexes) sorted by the harmonic

similarity in descending order, and their similarity values along the y-axis. We define the

cutoff point as the “elbow” of the curve L because the benefit of adding more terms after this

point is lower than the average benefit of choosing all terms. Formally, a cutoff point has

a smoothed derivative equal to the slope of the line ` joining the endpoints of L. Because

there are irregularities in the curve L that produce multiple points with a derivative that

matches the slope of `, we use an approximate method to identify a unique cutoff point in

the curve L:
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(1) Draw a line ` between the endpoints of L.

(2) Calculate the minimum distance from each point in the curve L to the line `.

(3) Choose the point that has the maximum distance to the line ` as the cutoff point. The

derivative of L at this point equals the slope of `, by the fundamental theorem of

calculus.

Figure 4.3: Example of similarity cutoff computation. Since all terms have similarities
larger than 0.40, the y-axis starts from 0.3. Similarity cutoff is at the “elbow” of the simi-
larity curve (arrow).

Finally, we merge the similar terms extracted from the EMR-subset embeddings as the

final similar term list for the keyword w.

The results of the “elbow method” are dependent on the number of terms (i.e., the K)

chosen. It is true that different K values impact the curve and result in different cutoff
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values. In fact, the elbow method can be used to choose the best K value. Given the search

terms “diabetes” and “seizure,” we tested different values for K (from 1 to 1000) and the

elbow method identified K = 100. Larger values of K did not improve results. The K value

may vary for different search terms.

4.4 Evaluation

4.4.1 User Preference Study

(a) User types
Name Knowledge Level Size
MD Medical Doctor Level 11
Non-MD No Verified Level 20

(b) Medical note review tasks
Type Keyword

Advil
Cancer
Fracture

General Headache
Kidney
Ventilator
Walking
Cefuroxime
EEG
Epilepsy

Clinical Irrigate
Keppra
Pruritis
Rhinorrhea

(c) Similar Term
Source Abbreviation
EMR word embedding EMR
News word embedding News
EMR and News word embeddings EMR-News
EMR-subset word embeddings EMR-subsets

Table 4.2: Framework of the user preference study.

We designed a user preference study to evaluate whether the extracted similar terms are

preferred by users with different medical knowledge levels in various chart review scenar-
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ios. We compared the selections of similar terms provided by the EMR-subsets method and

the three baseline methods. As shown in Table 4.2, we recruited 11 Vanderbilt University

Medical Center medical doctors (MDs) at the level of residency training or above, and 20

Non-MD Amazon Mechanical Turk [20] workers in the United States. Only the MDs have

verified clinical knowledge. We chose fourteen keywords (each of which was categorized

as a general or clinical term) and asked users to choose the best list of similar terms for

each keyword.

Figure 4.4 shows the web page for the user preference study, which contains 14 ques-

tions asking participants to choose their preferred similar term list in a chart review task.

Figure 4.4: Screenshot of the preference survey. An introduction is provided, followed by
14 questions that ask the participant to choose the best list to expand a keyword. List orders
were randomized to hide source methods.

We applied multinomial logistic regression [202, 203] to analyze users’ preferences of

similar terms across the extraction methods. As shown below, each logistic model takes

user type (0-MD, 1-Non-MD) and task type (0-Clinical, 1-General) as the input, and out-

puts the log-odd ratio of choosing one method over the reference method. The null hypothe-

ses are: (1) The user type and task type have no effect on the selection of similar terms; (2)
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There is no significant preference among the similar terms provided by the EMR-subsets

method and the baseline methods.

ln(
P(Method)

P(BaselineMethod)
)= Intercept+Coe f f icientu∗UserType+Coe f f icientt ∗TaskType

(4.4)

4.4.2 Information Retrieval Performance

To evaluate the information retrieval (IR) performance of the EMR-subsets method, as

shown in Table 4.2, we selected nine search terms from Table 4.2, including eight single-

word search terms and one multiple-words search term. For each search term, we randomly

selected 60 documents from patient cohorts defined by a specific ICD-9 code (Table 4.3)

in which some documents contain the search term (referred as the exact-match subset)

,and others do not (referred as the non-exact match subset). Then we asked three medical

researchers (referred to as users 1, 2, 3) to label each note’s relevance to the search term

(1-relevant, 2-partially relevant or 3-irrelevant).

Search Term ICD-9 code Type

Number of
Exact-Match
Documents

Number of
Non-Exact Match

Documents
Breast Cancer 174.9 General 40 20
Epilepsy 345.9 Clinical 37 23
Fracture 829.0 General 38 22
Headache 784.0 General 30 30
Kidney 593.9 General 34 26
Pruritus 698.9 Clinical 26 34
Respiration 786.52 Clinical 36 24
Rhinorrhea 478.19 Clinical 31 29
Walking 719.7 General 36 24

Table 4.3: Information retrieval performance evaluation data sets

Next, for each search term and extraction method, we evaluated the P@5, P@10 and

AUC scores for the various methods in different types of evaluation datasets.
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1. We define the datasets extracted from patients with specific ICD-9 codes as the eval-

uation subsets (e.g., the evaluation subset defined by ICD-9 code 250.*).

2. We define the combination of all evaluation subsets as the whole evaluation dataset.

We define the Exact Match subset of the whole evaluation dataset as the combination

of all Exact Match subsets from the evaluation subsets. We define the Non-Exact

Match subset of the whole evaluation dataset as the combination of all Non-Exact

Match subsets from the evaluation subsets.

For each evaluation subset and the whole evaluation dataset, we measure the P@5,

P@10, and AUC score when searching and ranking by (1) keyword(s), (2) similar terms

provided by the EMR-subsets method, (3) similar terms provided by the complete EMR

word2vec embedding, (4) similar terms provided by the Google News word2vec embed-

ding, and (5) similar terms provided by the EMR-News method.

The precision-at-K (P@K) is defined as the number of relevant or partially relevant

notes in the top-K ranked notes. The definition of the AUC score is presented in section

2.5.4.

Notes are ranked proportionally to the number and weight of similar terms in a note.

The formal equation is as follows for a keyword w and terms in a note.

Rank(Note) = ∑
t∈Note

S(w, t) (4.5)

Table 4.4 shows the average percentage of positive labels (i.e., relevant or partially

relevant labels) in the exact match and non-exact match subsets of each evaluation data set.

As we can see from Table 4.4, the non-exact match subsets contain non-negligible amounts

of positive documents as the exact match subsets. Therefore, it is important that we develop

efficient methods to identify useful documents in the non-exact match subsets.
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Search Term

Average percentage of
positive labeled

Exact Match Documents

Average percentage of
positive labeled

Non-Exact Match Documents
Breast Cancer 68.5% 73.6%
Epilepsy 47.7% 59.4%
Fracture 48.2% 54.5%
Headache 83.3% 65.6%
Kidney 69.6% 71.8%
Pruritus 47.4% 68.6%
Respiration 43.5% 51.4%
Rhinorrhea 52.7% 33.3%
Walking 68.5% 73.6%

Table 4.4: Distribution of positive labels in the evaluation data sets.

4.4.3 Elbow Method

To evaluate the elbow method, we randomly identified 300 notes from patients in the

EMR system that have an ICD-9 code for “seizure” (780.39), and another 300 notes from

patients with an ICD-9 code for “diabetes” (250.*). As a result, some notes are relevant to

diabetes or seizure care, and some are not. Then we asked four medical researchers to label

each note’s relevance to a disease (1-relevant, 2-partially relevant or 3-irrelevant), which

produced four labeled document sets for the ‘diabetes’ cohort and four labeled document

sets for the ‘seizure.’

Next, for each document set, we used “diabetes” and “seizure” as the initial queries for

the respective document sets, expanded the search with the similar terms from the EMR-

subsets method and evaluated the impact of the cutoff method by comparing its IR perfor-

mance to three manually selected cutoff values.

4.4.4 Time Efficiency Analysis

Two medical researchers, who were not investigators of this study, analyzed a cohort of

100 patients (with an average of 75 notes per patient) to determine if a patient had dialysis

within 2 weeks of surgery. For each patient, the researchers answered the question YES or
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NO. For half of the patients, we provided exact keyword search and highlighting to support

chart review, in which notes were ranked higher proportionally to the keyword’s frequency

in a note. For the other half of the patients, similar terms were used to expand the search and

highlighting feature. In this case, We recorded and compared the time needed to identify

the answer for the two methods. Moreover, we compared the results of medical researchers

by measuring label accuracy.

4.5 Result

4.5.1 User Preference Study

(a) Preference of Similar Terms
Source EMR News EMR-News EMR-subsets Total
Total 44 (9.9%) 129 (29.0%) 39 (8.8%) 229 (52.0%) 441

(b) Similar Terms Selections by User type
Source EMR News EMR-News EMR-subsets Total
MD 15 (9.7%) 31 (20.0%) 15 (9.7%) 93 (60.0%) 154(100%)
Non-MD 29 (10.0%) 98 (34.0%) 24 (8.0%) 136 (47.0%) 287(100%)

(c) Similar Term Selections by Task type
Source EMR News EMR-News EMR-subsets Total
Clinical 26 (12.0%) 56 (25.0%) 21 (9.0%) 120 (54.0%) 223(100%)
General 18 (8.0%) 73 (33.0%) 18 (8.0%) 109 (50.0%) 218(100%)

Table 4.5: Form (a) records the overall preferences of similar terms extracted from different
sources. Form (b) records the count and the percentage of selections of similar terms by
User type and task type. Form (c) records the selections of each similar term extraction
method.

We received 11 MDs’ and 20 Non-MDs’ response (the response rate is 100%) for a

total 441 preferences (i.e., 31×14 = 434+7 multiple choices). As shown in Table 4.5, the

EMR-subsets method received 52% of the selections, which is more than the other similar

term extraction methods. Moreover, the selection of EMR-subsets method varies with the

user type and task type.

We applied multinomial logistic regression models to analyze the result of the user

preference study. As shown in Table 4.6, both the user type and task type have a significant

72



Index Logistic Regression Model Intercept User type Task type
1 EMR vs. News -0.40 -0.51 -0.64
2 EMR-News vs. News -0.50 -0.69 -0.43
3 EMR-subsets vs. News 1.30** -0.78* -0.38
4 EMR-subsets vs. EMR 1.70** -0.27 0.26
5 EMR-subsets vs. EMR-News 1.80** -0.09 0.06
6 EMR vs. EMR-News 0.09 0.18 -0.21

Table 4.6: Analysis of the impact of user type and task type on the preference of similar
terms. User type (MD=0, Non-MD=1) and task type (Clinical=0, General=1) are the inputs
of the multinomial logistic regression models. The significance levels are: **: p-Value <
0.001, *: p-Value < 0.05, one-tailed.

effect on user preference. Based on the intercepts and coefficients of models with indexes

3, 4, 5 in Table 4.6, we concluded that both the MD and Non-MD users prefer the similar

terms provided by the EMR-subsets method compared to other baseline methods, in both

the clinical and general tasks.

4.5.2 Information Retrieval Performance

Data Sets EMR-subsets EMR News EMR-News Keywords Random
Exact &

Non-Exact
Match 0.60 0.48 0.59 0.55 0.48 0.56

Exact
Match 0.57 0.60 0.59 0.56 0.48 0.58
Non-Exact

Match 0.59 0.39** 0.37** 0.41** 0.00 0.62

Table 4.7: Average P@5 scores of each similar word extraction methods in the evalua-
tion subsets. One-sided Mann-Whitney U test was applied to compare the P@5 scores
of EMR-subsets and other methods. Methods that the EMR-subsets method significantly
outperformed are marked with ** (p-Value < 0.001).
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Data Sets EMR-subsets EMR News EMR-News Keywords Random
Exact &

Non-Exact
Match 0.56 0.46 0.50 0.55 0.50 0.60

Exact
Match 0.53 0.46 0.47 0.57 0.50 0.58
Non-Exact

Match 0.59 0.32** 0.19** 0.39** 0.00** 0.62

Table 4.8: Average P@10 Scores of each similar word extraction methods in the evalua-
tion subsets. One-sided Mann-Whitney U test was applied to compare the P@10 scores
of EMR-subsets and other methods. Methods that the EMR-subsets method significantly
outperformed are marked with ** (p-Value < 0.001).

The average P@5 performances for all search terms in different evaluation datasets are

shown in Table 4.7; The average P@10 performances for all search terms in different evalu-

ation datasets are shown in Table 4.8. As we can see from Tables 4.7 and 4.8, adding similar

words provided by the EMR-subsets method improves the average P@5 and P@10 results

in all evaluation data sets compared to keyword-only search. Moreover, the EMR-subsets

method outperforms the other extraction methods. Particularly, the EMR-subsets method

significantly outperformance other methods in non-exact match subsets, which means the

EMR-subsets method provides better similar words.

As shown in Table 4.9, the EMR-subsets achieved much higher AUC scores than other

methods in the Exact & Non-Exact Match datasets and Non-Exact Match datasets.

Data Sets EMR-subsets EMR News EMR-News Keywords Random
Exact &

Non-Exact
Match 0.65 0.60** 0.60** 0.60** 0.53** 0.50**

Exact
Match 0.60 0.60 0.58 0.59 0.59 0.50**
Non-Exact

Match 0.70 0.61** 0.60** 0.61** 0.50** 0.50**

Table 4.9: Average AUC Scores of each similar word extraction methods in the evalua-
tion subsets. One-sided Mann-Whitney U test was applied to compare the AUC scores
of EMR-subsets and other methods. Methods that the EMR-subsets method significantly
outperformed are marked with ** (p-Value < 0.001).

The average P@5 performances for all search terms in the whole evaluation dataset are
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Data Sets EMR-subsets EMR News EMR-News Keywords Random
Exact &

Non-Exact
Match 0.30 0.21 0.16 0.11 0.38 0.06

Exact
Match 0.39 0.23** 0.21** 0.24** 0.40 0.06**
Non-Exact

Match 0.19 0.10** 0.02** 0.09** 0.00** 0.06**

Table 4.10: Average P@5 scores of each similar word extraction methods in the whole eval-
uation dataset. One-sided Mann-Whitney U test was applied to compare the P@5 scores
of EMR-subsets and other methods. Methods that the EMR-subsets method significantly
outperformed are marked with ** (p-Value < 0.001).

Data Sets EMR-subsets EMR News EMR-News Keywords Random
Exact &

Non-Exact
Match 0.30 0.18 0.17 0.18 0.34 0.07

Exact
Match 0.34 0.25** 0.23** 0.23** 0.40 0.06**
Non-Exact

Match 0.17 0.07** 0.05** 0.05** 0.00** 0.06**

Table 4.11: Average P@10 Scores of each similar word extraction methods in the whole
dataset. One-sided Mann-Whitney U test was applied to compare the P@10 scores of
EMR-subsets and other methods. Methods that the EMR-subsets method significantly out-
performed are marked with ** (p-Value < 0.001).

shown in Table 4.10; The average P@10 performances for all search terms in the whole

evaluation dataset are shown in Table 4.11. As we can see from Tables 4.10 and 4.11,

adding similar words provided by the EMR-subsets method improves the average P@5 and

P@10 results in the whole evaluation dataset compared to keyword-only search. Moreover,

the EMR-subsets method outperforms other extraction methods. Particularly, the EMR-

subsets method significantly outperformance other methods in non-exact match subsets,

which means the EMR-subsets method provides better similar words.

As shown in Table 4.12, when being evaluated with the whole evaluation dataset, the

EMR-subsets achieved much higher AUC scores compared to other methods in the Exact

& Non-Exact Match datasets, Exact-Match datasets, and Non-Exact Match datasets.
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Data Sets EMR-subsets EMR News EMR-News Keywords Random
Exact &

Non-Exact
Match 0.72 0.60** 0.59** 0.64** 0.67** 0.50**

Exact
Match 0.80 0.65** 0.67** 0.70** 0.65** 0.50**
Non-Exact

Match 0.64 0.53** 0.49** 0.56** 0.48** 0.50**

Table 4.12: Average AUC Scores of each similar word extraction methods in the whole
evaluation dataset. One-sided Mann-Whitney U test was applied to compare the AUC
scores of EMR-subsets and other methods. Methods that the EMR-subsets method signifi-
cantly outperformed are marked with ** (p-Value < 0.001).

4.5.3 Elbow Method

As shown in Table 4.13, the similarity cutoff method is able to identify an optimal

similarity cutoff, which provides a better P@20 score than the manually selected similar

cutoffs when using the EMR-subsets method.

Similarity Cutoff
Average P@20

when searching “diabetes.”
Average P@20

when searching “seizure.”
1.0 0.64 0.80
0.8 0.64 0.89
0.4 0.61 0.90
0.2 0.54 0.61

Elbow method 0.68 0.94

Table 4.13: Average P@20 scores of searching “diabetes” and “seizure” with similar words
defined by different similarity cutoff.

4.5.4 Time Efficiency Analysis

For the note review task, we measured the time to complete each task and the quality

of labels produced by the two researchers. Ideally, the researchers would maintain their

label accuracy while completing tasks faster. The result showed that the labels provided

by the researchers were highly consistent. The researchers agreed on all documents except

one. Table 4.14 shows the median time and the Interquartile Range (IQR) of time that each
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researcher spent reviewing notes with or without highlighting similar words of the search

query. We used a one-sided Mann-Whitney U test to analyze the difference in average times

with and without highlighting similar words. All Mann-Whitney U test provided p-values

less than 0.05, which showed that searching and highlighting similar words reduced task

time.

Researcher

Median time in seconds
when reviewing one patient’s notes

(25th and 75th percentile time)
with highlighted similar words

Median time in seconds
when reviewing one patient’s notes

(25th and 75th percentile time)
with highlighted exact words

1 9.0 (8.0 11.0)** 11.5 (9.0 26.3)**
2 76.5 (57.0 112.0)* 91.5 (73.5 135.0)*

Table 4.14: The median time (25th and 75th percentile time) medical researchers spent
on reviewing one patient’s notes. One-sided Mann-Whitney U test was applied for the
analysis. The significance levels are: **: p-Value < 0.001, *: p-Value < 0.05 one-tailed.

4.6 Discussion

This chapter reports the development and evaluation of a novel similar term extraction

method, the EMR-subsets method. The EMR-subsets method utilizes the subsets of an

EMR system to extract similar terms that are applicable to support efficient search and

consumption of clinical documents. The EMR-subsets method (i) utilized less training

data, (ii) received more selections in the user preference study, (iii) achieved higher IR

performance than to the baseline methods, and (iv) reduced the time needed to answer

questions in a timed chart review task.

Previous research demonstrated that ensemble semantic embeddings provide better sim-

ilar terms (for example, summing the similarities from multiple semantic spaces [16] or

combining vectors from multiple semantic embeddings [40]). However, these methods

combined embeddings trained with different data sources or attempted to learn a global

embedding instead of merging the most similar terms from each subset. In this chapter, the

EMR-subsets method utilized the subsets of a single data set and was preferred by users,
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while the combination of the EMR and News embeddings was less preferred in the user

study.

Interestingly, as shown in Table 4.15, highly similar terms for “cancer” in the Com-

plete EMR embedding are related to family history, while the similar terms from the News

embedding describe types of cancer. In contrast, the EMR-subsets method listed more

clinical terms as being similar to “cancer.” One possible reason for this difference is physi-

cians commonly document a patient’s family history of cancer in specific note types. The

EMR-subsets method reduces the impact of co-occurring words from a popular note type.

Therefore, the community should be careful about incorporating increasingly large data

sets when training semantic embeddings for clinical applications.

EMR-subsets EMR-News EMR News
melanoma leukemia cancern lung cancer

breast hashimoto cnacer colon cancer
prostate malignancies endocrinopathies leukemia

carcinoma nonpolyposis at age cancers
metastatic diabetes cousins liver cancer

colon cancer gf brain tumor
malignant alzheimer social history brain tumors

tumor hpth grandfather bladder cancer
radiation sitosterolemia meopausal prostrate cancer

ca masectomy cance colorectal cancer

Table 4.15: The similar terms for “cancer” provided by the EMR-subsets, EMR-News,
EMR , and News similar term extraction methods.

There are several limitations and possible future work of this study. First, we limited

the EMR-subsets method to the largest clinical note types in an EMR system. Future work

can consider all note types or subsets constructed in alternative methods such as by com-

mon phenotypes [204]. Second, while the study attempted to discern the scenarios in which

the News embedding would perform best (i.e., general note review tasks), additional anal-

ysis is needed to understand why some users preferred the similar terms provided by the

News embedding in some tasks. In addition, a fine-grained information retrieval analysis

is needed to determine if positive search preferences correlates with information retrieval
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performance across many search scenarios (i.e., the preferred similar terms provide better

information retrieval performance). Third, the constructions of user types and task types

can be formalized and made more fine-grained, for example, by categorizing MD users

by discipline or skill. Fourth, we utilized semantic embeddings to identify similar words,

while other methods could be used find related terms like graphical models [205]. Fifth,

we only included unigrams when training EMR-based embeddings in our current study.

We did try word embeddings based on bi-grams or trigrams. However, bi- and trigram

embeddings needed much more training data and computational resources due to the larger

vocabulary space. Moreover, some bigrams have no clinical meaning, such as “table also.”

One possible future work is extending the vocabulary with bigrams or trigrams using a clin-

ical dictionary, such as SNOMED CT or RxNorm. Sixth, we ranked notes by the sum of

term similarities. Possible future work includes normalizing the similarities before ranking

and introducing other ranking methods. Moreover, as shown in Table 4.4, many notes con-

tain the search term but were not marked as relevant, which confounds recall evaluations.

Therefore, in the information retrieval experiments, we only presented the P@K scores.

4.7 Conclusion

This chapter presents the EMR-subsets method, which extracts similar terms from mul-

tiple semantic embeddings trained from subsets of the EMR. We systematically evaluated

the similar terms extracted by the approach using qualitative and quantitative methods.

Compared to the other baseline methods, the similar terms provided by the EMR-subsets

method were preferred in a user preference study, achieved higher P@5 and P@10 scores

across multiple search terms, and reduced the time spent searching and consuming clinical

information for two researchers in a small pilot study.
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Chapter 5

CLINICALLY SIMILAR TERM RECOMMENDATION

5.1 Introduction

In Chapter 4, we present the method that extracts high-quality similar terms from a

list of EMR-based word2vec embeddings to support chart reviews. EMR-based word2vec

embeddings capture the semantic relationships of clinical terms by learning to predict a

word from its text context (e.g., as shown in Figure 1.6 (a), “EEG” is in the text context of

“epilepsy”). However, depending on the task, users might require different similar terms

for a search term. For example, when searching for “epilepsy” in a chart review task that

focuses on the diagnosis of “epilepsy,” users may prefer “EEG” and “brain.” However,

when searching for “epilepsy” in a task that focuses on treatment, users may prefer medi-

cations, such as “Keppra” or “Vimpat.” However, methods based on word2vec embeddings

may recommend all EEG, brain, Keppra, and Vimpat given epilepsy, which is not suitable

for varying tasks.

The main observation of the requirement for clinically similar terms in different tasks

can be quantified by how whom, and where those terms are used in EMRs. This is exempli-

fied by Figure 1.6 (a) and (b), which show how context differs for “epilepsy” with respect

to “EEG” and “Keppra.” Figure 5.1 shows the possibilities of five terms (“Keppra,”EEG,”

“seizures,” “epilepsy” and “Vimpat”) across some medical note types. It can be seen that

“EEG” is frequently used in the Diagnosis section while “Keppra” is frequently used in the

Medication section. Therefore, specific methods are needed to capture and leverage such

context information to better fulfill the requirement for clinically similar terms in chart

reviews.
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Figure 5.1: Usage frequencies of the similar Terms of “epilepsy” in different note sections.

In this chapter, we present a usage vector space, which corresponds to a collection

of the usage frequencies of clinical terms in various medical usage contexts, to identify

task-appropriate similar terms. We evaluate the usage vector space to predict the preferred

similar terms of users across chart review tasks for acute myocardial infarction (AMI),

Crohn’s disease, and diabetes, all of which have complex requirements for clinically similar

terms, including terms for relevant diagnosis, medications, findings, history and so on. The

results show that the usage vector space significantly boosts the performance of predicting

users’ preferred similar terms, compared to baseline methods.

5.2 Usage Vector Space

Figure 5.2 shows the medical contexts associated with an example medical note. The

note was created for a 26-year-old male patient by a physician in the Neuro-Epilepsy De-

partment at 12:30pm on January 1, 2016. Our objective is to capture the usage information

regarding how terms are used in different medical contexts.
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Figure 5.2: Usage context information of an example medical note.

We identified four types of contexts of clinical terms from the EMR system [75] of

Vanderbilt University Medical Center(VUMC):

1. Hospital Organizational Structure. The roles of the note writers (i.e., job titles and

departments) based on the hospital organization.

2. Medical Events. Documented diagnoses and procedures of a patient include ICD-9,

ICD-10, CPT codes, and Emergency Department chief complaints.

3. Demographics. Patient gender (male, female and unknown) and age (quantized into

ten-year bins).

4. Medical Note Structure. Clinical note types and sections.

We build the usage vector space from an EMR system through a series of steps:

(1) Preprocessing: (1) Preprocessing: First, we extract a list of medical notes from the

EMR system (e.g., all medical notes created in the year 2016). For each medical

note, we extract its usage contexts (as shown in Figure 4) and filter out stop words,

and words with a length less than two characters from the note.

(2) Initialization: We define ten usage contexts C = {C1,C, ..,C10} as shown in Table

5.1. For each clinical term w, we initialize its usage vector as zero vector, of which
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the value in each dimension of each usage context is zero:

uw = {uc1(w),uc2(w), . . . ,uc10(w)}= { ~0c1, ~0c2, . . . , ~0c10} (5.1)

(3) Accumulation: For each word in an extracted medical note, we update its usage vec-

tor using the usage contexts of the extracted notes. For example, given the example

medical note shown in Figure 5.3, since the total count of “EEG” is 4, and the note

was created by an EMR user from the “Neuro-Epilepsy” department, we add 4 to the

“Neuro-Epilepsy” dimension of the “department” usage context in the usage vector

of “EEG.”

(4) Normalization: We repeat step (3) in each extracted medical note. We then normal-

ize the usage counts of clinical terms in each usage context into usage frequencies

(0.0 ∼ 1.0) (i.e., the usage vectors). At the end of this process, each clinical term

is represented as a usage vector that consists of its usage frequencies in each usage

context.
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Figure 5.3: Usage counts of “EEG” distributed by the medical usage contexts of the exam-
ple note shown in Figure 5.2.
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Figure 5.4: Top 3 dimensions in each medical usage context of the usage vector of the
clinical term “EEG.”

We define the usage frequencies of a clinical term in a context as its usage vector in that

context. We define the set of usage vectors in a usage context as the usage vector space.

We define the usage similarity of two clinical terms wi and w j in an usage context Ck as the

cosine similarity of the usage vectors of wi and w j in the usage context Ck:

Sck(wi,w j) =
uck(wi) ·uck(w j)

||uck(wi)||× ||uck(w j)||
(5.2)
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Figure 5.5: uUsage vectors of “diabetes” and “hypertriglyceridemia” in the “Department”
usage context. Only the non-zero dimensions are displayed.

The usage similarity of two clinically similar terms in a medical usage context provides

intuition into their semantic relationships. For example, as shown in Figure 5.5, in the

department usage context, the cosine of the usage vectors of two clinically similar terms

“Diabetes” and “hypertriglyceridemia” is 0.56, which suggests that they are not very simi-

lar in the department usage context since the top similarity in that context is 1.0. Therefore,

if a user prefers similar terms that are invoked frequently by the “Diabetes/Endocrinology”

department, then the user may not prefer “hypertriglyceridemia.”

We define the usage similarity vector of two clinical terms wi and w j as a vector of their

usage similarities in all usage contexts:

S(wi,w j) = {Sc1(wi,w j),Sc2(wi,w j), . . . ,Sc10(wi,w j)} (5.3)

86



The usage similarity vector of two clinical terms represents their relationships in all us-

age contexts. For example, Figure 5.6 shows the usage similarity vector of “Diabetes” and

“hypertriglyceridemia.” The usage similarities of “diabetes” and “hypertriglyceridemia”

in the “Note Type,” “Department” and “Chief Complaints” contexts are much lower than

in other contexts. Therefore, if a user prefers terms that have the similar distribution of

usage frequencies as “diabetes” in the “Note Type,” Department and “Chief Complaints”

contexts, then the user may not prefer “hypertriglyceridemia.”

Figure 5.6: Usage similarities of “diabetes” and “hypertriglyceridemia” in all usage con-
texts.
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5.3 Evaluation

5.3.1 Usage Vector Space

We extracted the medical records between January 1, 2016, and January 2, 2016, from

the EMR system of VUMC. The usage contexts were each distributed across a set of di-

mensions as follows (Table 5.1):

1. Hospital Organizational Structure. 258 departments and 158 types of staff;

2. Medical Events. 957 ICD-9 codes, 6537 CPT codes and 11595 chief complaints in

free-text format;

3. Demographics. Three patient genders (male, female and unknown) and ten age

ranges (quantized into ten-year bins);

4. Medical Note Structure. 1514 note types; 61 note sections (defined by the headers

as determined by the SecTag method [206]); five sections (“assessment,” “findings,”

“family medical history,” “medications” and “problem list”) that contain the most im-

portant information in a chart review task based on our discussions with the medical

researchers.

Context Type Usage Context Number of Dimensions

Hospital Organizational Structure Departments 258
Staffs 158

Medical Events
CPT events 6537
ICD events 957
Chief Complaint events 11595

Demographics Patient Ages 10
Patient Genders 3

Medical Note Structure
Note Types 1514
Note Sections 61
Top Five Note Sections 5

Table 5.1: Usage dimensions of clinical terms in each usage context.
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5.3.2 Datasets

We created three evaluation datasets associated with chart review tasks (Table 5.2):

(1) Acute Myocardial Infarction Note Relevance (referred to as the AMI project). This

task requires researchers to highlight any portion of a note that contains references

to diagnosis, medications, procedures or symptoms of AMI.

(2) Crohn’s Anti-TNF Responsiveness (referred to as the Crohn’s project). This task

requires researchers need to review and determine whether a patient with Crohn’s

disease was clinically responsive to anti-TNF medication and highlight any portion

of a note that supports the decision (i.e., Yes/No).

(3) Pediatric Diabetes Note Barriers (referred to as the Diabetes project). This task

requires researchers to review a list of medical notes, highlight and label portions of

the notes that may be related to barriers in the documentation of diabetes plans.

Chart Review Tasks Topic Word Patients Notes
Acute Myocardial Infarction AMI 152 200

Crohn’s Anti-TNF Responsiveness Crohn 983 437,993
Pediatric Diabetes Note Barriers Diabetes 76 210

Table 5.2: Chart review tasks defined for the evaluation.

In each of the chart review tasks, the researchers searched and reviewed medical notes

to identify and highlight important text snippets. Given the medical notes DT of a chart

review task T, we define the highlighted count of a clinical term wsi ∈Ws as the sum of its

highlighted counts in each document di from DT :

H(wsi|DT ) = ∑
di∈DT

H(wsi|di) (5.4)
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5.3.3 Experiments

For each chart review task, a topic word K is chosen as the most important keyword of

the research goal (e.g., “diabetes” is a topic word of the research task Pediatric Diabetes

Note Barriers Problem) and serves as the basis for a clinically similar term generator. Table

5.2 shows the topic word of each chart review task.

We define the similar terms that might be preferred by the researchers of a chart review

task as the candidate semantic set. A candidate semantic set could be provided by any

existing similar term generator, such as EMR-based word2vec embeddings [30, 31, 39,

207] or the EMR-subsets method. We define the semantic preference of a chart review task

as a subset of preferred similar terms and a subset of non-preferred similar terms from the

candidate semantic set.

A supervised machine learning model learns the semantic preference from a small set

of preferred similar terms and non-preferred similar terms (i.e., the training label set). The

feature of a similar term wt is its usage similarity vector based on the topic word K. The

label of a similar term is based on its highlighted count and a given importance cutoff I. If

the highlighted count of a similar term wsi ∈Ws is no less than I, we label it as an important

term (i.e., label = 1), otherwise, we label it as a non-important term (i.e., label = 0).

Figure 5.7 shows an example application of the usage vector space to predict the pre-

ferred similar terms of users in a chart review task. A logistic regression model is trained to

weight each usage context and obtain the weights of usage context as Wc =Wc1,Wc2, ,Wc10

and a threshold I. Given the usage similarity vector {Sc1(K, t),Sc2(K, t), . . . ,Sc10(K, t)} of

an unlabeled similar term t, if∑10
k=1Wck · Sck(K, t) ≥ I, the logistic regression model then

predict if an unlabeled similar term t as a preferred similar term of the user.
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Figure 5.7: Workflow of learning and recommending clinically similar terms to users dur-
ing a chart review by re-weighting the usage similarity vectors.

5.3.3.1 Semantic Preference Prediction Experiment

To evaluate the performance of usage vector space for predicting the semantic prefer-

ence of chart reviews, we assessed how well it identified highlighted terms. This Semantic

Preference Prediction Evaluation proceeds as follows:

(1) Given an evaluation data set, we first generate a candidate semantic set Ws for its

topic word using an existing similar term generator.

(2) With the candidate semantic set Ws, we construct a label set with an importance cutoff

I=1. If the highlighted count of a similar term wsi ∈Ws is greater than 1, we label

it as an important term (i.e., label = 1); otherwise, we label it as a non-important

term (i.e., label = 0). For each similar term wsi in the candidate semantic set Ws, we

generate its usage similar vector S(wsi,K) as its feature and its word vector.

(3) We train and evaluate a supervised machine learning model in the label set using

ten-fold cross-validation. We tested three classifiers (Logistic Regression, Random

Forest, and Support Vector Machine) by measuring the ROC (Receiver Operating

Characteristic Curve) AUC (Area Under the Curve).

(4) We increase the importance cutoff I by 1 and repeat step (2) and (3) until the number

of important terms is less than 10 in the resulting label set. Since we do ten-fold
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cross-validation in the experiment, we defined 10 as the minimum number of positive

labels to make sure each test fold has at least one positive label.

We repeated this process with different similar term generators. Specifically, we test

three generators: 1) the EMR-subsets method [37], 2) the Completed EMR word2vec em-

bedding [37] and 3) the Google News word2vec embedding [196]. We use the Complete

EMR word2vec embedding as the baseline.

5.3.3.2 Learning Curve Experiment

We further assessed how the size of the training dataset influences the performance of

the usage vector space. In a chart review task, the fewer labels required for learning the

semantic preference, the earlier we can provide semantic support to users. To conduct this

experiment, we apply the learning curve analysis [208].

The Learning Curve Analysis Evaluation proceeds as follows:

(1) Given an evaluation data set, we first generate a candidate semantic set Ws using an

existing similar term generator;

(2) With the candidate semantic set Ws, we constructed a label set with an importance

cutoff I. When the highlighted count of a similar term wsi ∈Ws is no less than I,

we label it as an important term (i.e., label = 1), otherwise, we label it as a non-

important term (i.e., label = 0). For each similar term wsi in the candidate semantic

set, we generate its usage similar vector S(wsi,K).

(3) Given the label set, we set x to 1% of the data points as the training set and the

remaining 99% as the test set.

(4) Train a supervised machine learning model with the training set and evaluate its AUC

with the test set. Repeat step (3) and (4) 100 times and measure the AUC.

(5) Increase x by 1% and repeat step (3) and (4) until x is greater than 90%.
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(6) Increase the importance cutoff I and repeat step (2) to (5) until the number of impor-

tant terms is less than 10 in the resulting label set.

We repeat this process with the similar term generators used in the Semantic Preference

Prediction Experiment.

5.4 Result

5.4.1 Semantic Preference Prediction

labelSection heading 531 The usage vector space outperformed the baseline EMR-

based word2vec embedding in all evaluation datasets with all similar term generators. Table

3 shows the candidate semantic set provided by the EMR-subsets method. In the remainder

this chapter, we only show the results based on the candidate semantic sets provided by the

EMR-subsets method because the usage vector space achieved a similar performance with

the other similar term generators.

Evaluation Dataset
Number of

Candidate Similar Terms
Number of

Highlighted Similar Terms
AMI 1949 1414
Crohn 1204 438
Diabetes 1055 273

Table 5.3: Candidate semantic sets of the chart review tasks.

Figure 5.8shows the result of the Semantic Preference Prediction evaluation using the

Diabetes dataset and the candidate semantic set generated by the EMR-subsets method

[15]. Table 5.4,5.5 and 5.6 provide the detailed comparisons of the usage vector space and

the baseline Complete EMR word2vec embeddings for three label sets. A one-sided Mann-

Whitney U test indicated that the usage vector space statistically significantly outperformed

the baseline Complete EMR word2vec embedding.
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Figure 5.8: Average AUC scores (based on a 10-fold cross validation) achieved by logistic
regression in the label sets constructed from the Diabetes Dataset.

Machine Learning Model Usage vector space features word2vec features
Logistic Regression AUC 0.80* 0.58
Random Forest AUC 0.68* 0.54
Support Vector Machine AUC 0.78* 0.57

Table 5.4: Average ROC AUC scores (10-fold cross validation) achieved by supervised
machine learning models in the label set constructed from the Diabetes dataset with impor-
tance cutoff 10. One-sided Mann-Whitney U test was applied. The significance levels are:
{***: p-Value < 0.001, **: p-Value < 0.01, *: p-Value < 0.05 one-tailed}

Machine Learning Model Usage vector space features word2vec features
Logistic Regression AUC 0.80** 0.73
Random Forest AUC 0.75*** 0.56
Support Vector Machine AUC 0.75* 0.71

Table 5.5: Average ROC AUC scores (10-fold cross validation) achieved by supervised
machine learning models in the label set constructed from the AMI dataset with importance
cutoff 40. One-sided Mann-Whitney U test was applied. The significance levels are: {***:
p-Value < 0.001, **: p-Value < 0.01, *: p-Value < 0.05 one-tailed}
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Machine Learning Model Usage vector space features word2vec features
Logistic Regression AUC 0.79* 0.68
Random Forest AUC 0.80*** 0.60
Support Vector Machine AUC 0.79*** 0.68

Table 5.6: Average ROC AUC scores (10-fold cross validation) achieved by supervised ma-
chine learning models in the label set constructed from the Crohn dataset with importance
cutoff 1. One-sided Mann-Whitney U test was applied. The significance levels are: {***:
p-Value < 0.001, **: p-Value < 0.01, *: p-Value < 0.05 one-tailed}

5.4.2 Learning Curve Analysis

As shown in Figure 5.9, the usage vector space outperformed the EMR-based word2vec

embedding in training data sets of all sizes. As shown in Figure 5.9, the usage vector

space significantly reduces the number of required labels for learning the semantic prefer-

ence. For example, as shown in Figure 11, with only 1% of the label set, the usage vector

space reached an AUC of 0.7 while the baseline Complete EMR word2vec embedding only

achieved 0.5.
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Figure 5.9: Average AUC score (based on 10-fold cross validation) achieved by the logistic
regression as a function of training data set sizes in the label set constructed from the Crohn
Dataset with an importance cutoff of 1.

5.5 Discussion

This chapter presents a novel vector space model, the usage vector space, to identify

similar terms. The usage vector space is a collection of the usage frequencies of clinical

terms in different medical usage contexts, which provide us with a better understanding of

the relationships between clinical terms. We evaluated the usage vector space in predicting

the preferred similar terms of users in three chart review tasks. The results show that the

usage vector space efficiently learned the preferred similar terms of users and outperformed

the baseline Complete EMR word2vec embedding. Our usage vector space outperformed

baseline EMR-based word2vec embedding (e.g., AUC 0.80 vs. AUC 0.60) in all three
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chart review tasks. Additionally, the usage vector space significantly reduced the number

of labels (e.g., from thousands of labels to tens of labels) required to learn and predict the

preferred similar terms of users.

Possible reasons that the usage vector space outperformed the baseline method are:

(1) the feature space provided by the usage vector space is much smaller than the feature

space provided by the word2vec embedding (i.e., 10 dimensions vs. 100 dimensions). In

general, the smaller a feature space is, the less data required to train a machine learning

model to achieve high prediction performance; and (2) the usage vector space pre-retrieve

the semantic preference from the daily usages of an EMR system (e.g., the clinical terms

used for the same CPT events). Therefore, the learning process is simplified to adjusting

the weights of different usage contexts instead of learning the semantic preference from

scratch.

Training data size has a significant impact on the quality of vector space models, such as

the word2vec embeddings [209, 205]. To test the impact of the number of medical notes to

the resulted usage vector space, we built a list of usage vector space models with different

number of medical notes (experiment details not shown due to space limitations), and the

results show that the structure of the usage vector space is stable (i.e., the vectors of the

usage vector space have no significant change) with enough medical notes (e.g., one years’

medical notes from an EMR system).

Previous research demonstrated that clinical natural language processing models (e.g.,

word sense disambiguation) could be trained by asking experts to provide labeled instances

and contextual features [101, 210]. These methods focus on specific medical research tasks

while the usage vector space demonstrates its potential in supporting multiple types of chart

reviews. In addition to this benefit, the usage vector space requires the users to provide a

small set of labels of clinical terms while other published methods require users to provide

both labels and features.

Constructing interpretable feature space is essential for medical applications [211, 212],
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especially the chart review tasks. In one pilot study, the usage vector space demonstrates its

potential in providing interpretable feature space. We applied the binary logistic regression

to analyze the impacts of usage contexts to users’ semantic preference of the three chart

review tasks (Table 5.2):

ln(
P(Important)

P(Less− important)
) = Intercept +

10

∑
k=1

Wi ·USck(ws,wt) (5.5)

As shown in Table 5.7, 5.8, and 5.9, the “Chief Complaint” usage context has a signifi-

cant positive impact on workers’ semantic preference, which means the clinical terms that

are similar in describing the same chief complaint of a chart review task are preferred by

the users. It is interesting that the “Gender” context (Table 5.7) had the highest significant

positive impact on the semantic preference of the AMI chart review task. Since the topic

word “AMI” is irrelevant to gender, terms highly relevant to gender were not preferred by

the users.

98



Index Context Coefficient

1 Intercept -16.16***

2 Department 0.58

3 Staff 1.90

4 ICD Event -2.94**

5 CPT Event 0.37

6 Chief Complaint 5.75***

7 Note Type 5.70***

8 Note Section 2.00***

9 Top Five Note Section 1.43

10 Age 0.37

11 Gender 8.85***

Table 5.7: Binomial logistic regression analysis of the impact of usage similarity in differ-
ent usage contexts on workers’ preference of similar terms generated by the EMR-subsets
method in the AMI project with importance cutoff 40. The significance levels are: {***:
p-Value < 0.001, **: p-Value < 0.01, *: p-Value < 0.05, one-tailed.}
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Index Context Coefficient

1 Intercept -13.82***

2 Department 0.42

3 Staff 0.64

4 ICD Event 2.18**

5 CPT Event 1.35*

6 Chief Complaint 7.24***

7 Note Type -1.92*

8 Note Section -0.23

9 Top Five Note Section 1.37*

10 Age 2.65***

11 Gender 8.03***

Table 5.8: Binomial logistic regression analysis of the impact of usage similarity in differ-
ent usage contexts on workers’ preference of similar terms generated by the EMR-subsets
method in the Crohn project with importance cutoff 1. The significance levels are: {***:
p-Value < 0.001, **: p-Value < 0.01, *: p-Value < 0.05, one-tailed.}

100



Index Context Coefficient

1 Intercept -22.04

2 Department 0.33

3 Staff -1.49

4 ICD Event 4.89

5 CPT Event 4.10

6 Chief Complaint 4.93***

7 Note Type -0.05

8 Note Section 2.37**

9 Top Five Note Section -2.54

10 Age -5.41***

11 Gender 15.78

Table 5.9: Binomial logistic regression analysis of the impact of usage similarity in differ-
ent usage contexts on workers’ preference of similar terms generated by the EMR-subsets
method in the Diabetes project with importance cutoff 10. The significance levels are:
{***: p-Value < 0.001, **: p-Value < 0.01, *: p-Value < 0.05, one-tailed.}

There are several limitations of this study that may inform future work. First, when

building the usage vector space, we limited the time range for counting the medical event

contexts of a medical note to 48 hours. Future work could consider a different time range

for considering a medical event context or introducing Gaussian distribution to weigh the

impacts of a medical event to a medical note. Second, in this study, we chose ten usage

contexts when building the usage vector space. It may also be helpful to choose other types

of medical usage contexts such as the medical events defined by ICD-10 codes. Third, this

pilot study revealed that some usage contexts (e.g., the “CPT events” usage context) have

a significant impact on users’ semantic preferences in a chart review task. Future work

could incorporate a user survey to better understand why users preferred the clinical terms

that are similar in specific usage contexts. Finally, as shown in Table A in the appendix,
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we analyze the number of major dimensions of clinical terms (i.e., the dimensions that

cover 50% of usage frequencies of a clinical term in a usage context). Table A shows that

most of the clinical terms associate with a limited number of usage dimensions (e.g., most

of the clinical terms are frequently used by 2 3 hospital departments). Future work can

consider developing specific methods to learn fine-grained semantic preference within a

usage context.

5.6 Conclusion

In this chapter, we present a novel vector space model, the usage vector space, to rep-

resent how clinical terms were used in different medical contexts in an EMR system. We

evaluated the performance of the usage vector space in predicting the preferred similar

terms of users in three chart reviews, and the result shows that the usage vector space

achieves high performance (i.e., AUC > 0.75) in predicting users preferred similar terms

and significantly outperforms baseline word2vec embedding. Most importantly, the usage

vector space significantly reduced the number of labels required to learn and predict the

preferred similar terms of users. Therefore, clinician’s preferred similar terms could be

learned faster and more accurate by introducing the usage vector space.
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Chapter 6

DOCUMENT RANKING

6.1 Introduction

In Chapter 4 and 5, we developed methods to i) extract high quality clinically similar

terms from multiple EMR-based word2vec embeddings, and ii) learn the preferred clini-

cally similar terms of users in chart reviews. Clinical similar terms are essential for an EMR

search engine since they are critical to the advanced features, such as query expansion and

query recommendation. As a keyword search or expanded keyword search may still return

hundreds of medical notes in a chart review, ranking documents by their importance to the

search goal is the essential step before returning the search result to users.

Ranking methods have been thoroughly researched and there exists many ranking meth-

ods in both research and commercial applications [213, 135, 150, 169, 214, 215, 216, 188,

190, 141, 168]. However, by analyzing the activity log of our previous chart review tasks,

we noticed that specific document ranking methods are needed to better support informa-

tion retrieval in chart reviews. For example, Table 6.1 shows the statistical results of four

crowd workers in doing the same chart review task. In this chart review, the crowd workers

may use an expanded keyword search to select and review documents. The search result

is ranked by the number of similar terms of the keywords in the documents. As shown in

Table 6.1, we noticed that not all crowd workers prefer to use search and ranking during

chart reviews and crowd workers who do not use search and ranking may finish the tasks

faster than crowd workers who used search and ranking. The analysis shows that a ranking

method may interrupt workers’ cognitive process (e.g., identifying the next document after

reading the current one) and therefore, some workers stopped using searching and ranking

in the middle of chart review tasks. Therefore, a specific metric is needed to measure the

degree of a ranking method in interrupting the cognitive process of a crowd worker.
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worker
Average Search

Per Patient
Average Number of

Reviewed Documents
Average Time

(Second)
1 0.13** 24.59** 784.38**
2 0.09** 9.65** 157.82**
3 0.00** 8.64** 391.24*
4 1.10** 5.54** 1087.75**

Table 6.1: Statistical analysis of the behavior of different crowd workers in searching and
reviewing documents in a chart review. Two-sided Mann-Whitney U test was applied
to compare the activities of crowd workers. Results that are significantly different from
worker 4 are marked with ** (p-Value < 0.001) and *(p-Value < 0.05).

The other example is, as shown in Figure 6.1, there exist some critical documents that

significantly impact the decision of crowd workers during chart reviews. As shown in

Figure 6.1, the workers spent a significantly different time in reviewing some documents

and therefore make different decisions. Therefore, if we can predict such documents in

chart reviews, the system could remind the crowd workers to pay specific attention to such

documents and produce more reliable labels. However, before we move on to training

and applying supervised machine learning to predict such documents, we need to do more

behavior analysis to better define such documents.
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Figure 6.1: Time spent by two crowd workers in reviewing the same document list in a
chart review task. The first worker made positive decision while the second worker made
negative decision.

The above examples motivated us to answer the following question:

“How we develop suitable ranking methods for chart reviews and what ranking metrics

should we choose?”

In this chapter, we first present the behavior analysis of users’ activities during chart reviews

and then propose two novel ranking metrics, the negative guarantee ratio (NGR) and critical

document. We then measure the NGR of different ranking methods. We also measure the

performance of three learning-to-rank methods in predicting critical documents in chart

reviews. The result shows that: i) The NGR and critical document metrics better reflect

users’ need for ranking methods during chart reviews and ii) more research is needed to

develop better ranking methods to support chart reviews.
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6.2 Document Ranking Metrics

6.2.1 Negative Guarantee Ratio (NGR)

By analyzing the activity log of chart reviews, we noticed that in chart reviews that

produce labels for patients, crowd workers don’t review all the medical notes of a patient

to make a decision. Instead, they first rank the documents by note types, dates, or key-

words and then review the documents one by one to make a decision. After making a

decision, some crowd workers keep reviewing additional medical notes to double check or

confirm the decision. In this case, traditional IR performance metrics, such as precision-

at-K (P@K), F1 score and AUC are not suitable to measure if a ranked document list is

better than another. For example, Figure 6.2 shows two ranked document list of the same

patient from a chart review task. In this example patient, to make the correct decision, a

crowd worker needs to review at least 20 relevant documents. Ranking list 1 has high P@5

and P@10 score while ranking list 2 has low P@5 and P@10 scores. However, it is more

time-consuming when we provide ranking list 1 to crowd workers. Given ranking list 1, the

crowd worker needs to review at least 200 documents to review all 20 relevant documents

to make a decision. In the contract, given ranking list 2, the crowd worker only needs to re-

view 50 documents to make a decision. In this case, P@K metric or average precision can’t

reflect such a significant difference between two ranked document list in a chart review.
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Figure 6.2: Comparison of two ranked document list (1-relevant document, 0-irrelevant
document). Ranking 1 list has high P@5 and P@10 scores while Ranking 2 list has low
P@5 and P@10 scores. The last relevant document of ranking 1 list exists in position 200
while the last relevant document of ranking 2 list exists in position 50.

In this section, we present a novel ranking metric, called Negative Guarantee Ratio

(NGR), to better measure the performance of ranking methods for chart reviews. Given

a document set D, there is a small subset of documents d, which is sufficient to make a

decision. Different chart review tasks may have different subsets of sufficient documents.

Given a ranking method R, we rank the document set D as a list LR, and identify a position

C in the list such that all documents below the position C are not in the subset d. We define
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the negative guarantee ratio as the division of the number of documents below cutoff C and

the total number of documents in D.

NGR(LR) = 1− C
|D|

(6.1)

The higher the NGR of a ranking list is, the fewer documents a crowd worker need to

review to make a decision. For example, as shown in Figure 6.2, the NGR of ranking list

1 is 0.0 while the NGR of ranking list 2 is 0.75. Therefore, ranking list 1 is better than

ranking list 2, even ranking list 1 has much higher P@5 and P@10 scores compared to

ranking list 2.

6.2.2 Critical Document

Each selected chart reviews (Table 6.3), had a small subset of patients that were re-

viewed by multiple crowd workers. Therefore, we can compare the time spent in the same

documents and identify the documents that significantly impact workers’ decision. Figure

6.1 shows the time spent in the same document list by two crowd workers. In this pa-

tient, both workers reviewed the document list by default order (i.e., without searching and

ranking). Worker 1 reviewed 12 documents and made a negative decision while worker

2 review 15 document and made a positive decision. By comparing the time spent in the

same document by the workers, we noticed that the workers spent significantly different

time in document 0-7, 11, 12.

We assume that the more time is spent in a document by a worker, the more important

the document is for making a decision. In this case, we identify document 0-7, 11, 12

as critical documents for making a decision. Another example is, Figure 6.3 shows the

processes of two crowd workers in making a decision for labeling the same patient. In this

case, we identify document 1, 5, 6, 7, 8 as the critical document since the workers spent

similar time in other documents.
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Figure 6.3: Examples of critical document in a crowdsourcing chart review project.

Formally, a critical document could be, but not be limited to:

• when two workers made the same decision but review a significantly different num-

ber of documents (e.g., 10 documents vs. 50 documents), we define the first docu-

ment that two workers spent significantly different time as a critical document;

• when two workers made different decisions, the first one that two workers spent a

significantly different time;

The criticality of documents can be used as labels to train supervised machine learning

models and then by predicting if a document is critical or not, we may remind the crowd

workers to pay specific attention to the document.
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6.3 Document Ranking Methods

In this section, we present the ranking methods we selected to evaluate their NGR per-

formance in chart review tasks. Table 6.2 shows the ranking methods we selected based on

three intelligent sources: i) literature, ii) brainstormed ideas of the author, and iii) crowd-

sourced ideas.

Index Ranking Method Source
1 Rank by the lengths of documents crowds
2 Rank by the number of keywords literature
3 Rank by the number of similar words Brainstorm
4 Rank by the normalized number of similar words Brainstorm
5 Rank by the usage similarity of note types to query Brainstorm
6 Learning-to-rank based on bag-of-words (BOW) literature
7 Learning-to-rank based on bag-of-similar-words (BOSW) Brainstorm
8 Learning-to-rank based on word vectors (word2vec) literature
9 Learning-to-rank based on word vectors (doc2vec) literature
10 Learning-to-rank based on usage vectors (usage vector space) Brainstorm

Table 6.2: Ranking and Learning-to-Rank methods defined for the evaluation.

We define the ranking methods shown in Table 6.2 as following:

1. For a document list D= {d1,d2, ,dn}, we rank documents by their lengths: length(di);

2. For a document list D = {d1,d2, ,dn}, we rank documents by the number of keyword

w in the document di: Count(di,w).

3. For a document list D = {d1,d2, ,dn} and a keyword w, we first identify the similar

words of w, S(w) = {s1,s2, ,sm} using a similar term generator such as the EMR-

subsets method, and then rank document di using the number of similar terms in the

document: S(di) =Count(di,wi j),∀wi j ∈ S(w).

4. For a document list D = {d1,d2, ,dn} and a keyword w, we first identify the similar

words of w, S(w) = {s1,s2, ,sm} using a similar term generator such as the EMR-

subsets method [37], and then rank document di using the normalized number of

similar terms in the document: S(di) =
Count(di,wi j)

|di| ,∀wi j ∈ S(w).
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5. For a document list D = {d1,d2, ,dn} and a keyword w, we first identify the similar

words of w, US(w) = {us1,us2, ,usm} using the usage similar term generator based

on the usage vector space, and then rank document di using the number of similar

terms in the document: S(di) =Count(di,wi j),∀wi j ∈US(w).

6. For a document list D = {d1,d2, ,dn}, we first represent each document di using

the bag-of-words (BOW) features and then ask the user to provide some labelled

documents and learn to re-rank the rest documents.

7. For a document list D = {d1,d2, ,dn}, we first represent each document di using

the bag-of-similar-words (BOSW) features and then ask the user to provide some

labelled documents and learn to re-rank the rest documents.

8. For a document list D = {d1,d2, ,dn}, we first represent each document di using the

average word vectors [217] of all the words in di and then ask the user to provide

some labelled documents and learn to re-rank the rest documents.

9. For a document list D= d1,d2, ,dn, we first represent each document di using the doc-

ument vectors [161] of di and then ask the user to provide some labelled documents

and learn to re-rank the rest documents.

10. For a document list D = {d1,d2, ,dn}, we first represent each document di using the

average usage vectors of all the words in di and then ask the user to provide some

labelled documents and learn to re-rank the rest documents.

6.4 Evaluation

6.4.1 Chart Reviews

Table 6.3 shows the chart review projects we selected for evaluating the ranking meth-

ods.

111



Index Chart Review Task Workers Patients Notes
1 Acute Myocardial Infarction 3 152 200
2 Crohn’s Anti-TNF Responsiveness 6 983 437,993
3 Pediatric Diabetes Note Barriers 6 76 210
4 Anesthesiology Patients on Dialysis 2 670 49476
5 PACS Project (Thrombus) 5 1002 7020

Table 6.3: Chart review tasks selected for evaluating the ranking methods.

• Acute Myocardial Infarction Note Relevance (referred to as the AMI project). This

task requires workers to highlight any portion of a note that contains references to

diagnosis, medications, procedures or symptoms of AMI.

• Crohn’s Anti-TNF Responsiveness (referred to as the Crohn’s project). This task re-

quires workers need to review and determine whether a patient with Crohn’s disease

was clinically responsive to anti-TNF medication.

• Pediatric Diabetes Note Barriers (referred to as the Diabetes project). This task re-

quires workers to review a list of medical notes, highlight and label portions of the

notes that may be related to barriers in the documentation of diabetes plans.

• Anesthesiology Patients on Dialysis (referred to as the Dialysis project). This task

requires workers to determine whether a patient has undergone dialysis between 2

weeks before their surgery.

• PACS Project (Thrombus), (referred to as the PACS project). This task requires work-

ers to review documents and identify thrombosis post pediatric surgery and later de-

termine time range when central lines are inserted in patients.

6.4.2 Evaluation datasets for NGR analysis

For each chart review project, we first built a document set D with size |D| (e.g., 200

documents). Then we extract X% (e.g., 10%) positive samples and 1-X% negative samples
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from the label sets of each crowd worker who participated in the projects. We then ranked

the document set and then measured the NGR score of the ranked document list. We tested

a serial of document size |D| and positive ratio X% (from 1% to 90%).

6.4.3 Evaluation datasets for Critical Document Analysis

For each chart review project in Table 6.3, we first extracted documents that are re-

viewed by at least two crowd workers. Then we identified a critical document as the one

that was reviewed by two crowd workers with a minimum time difference as 30, 60 and 90

seconds.

Table 6.4 shows the evaluation datasets we constructed from the Crohn chart review

project for evaluating the critical document prediction.

Index
Minimum Time Difference

(Seconds)
Critical

Document
Non-Critical
Document

1 30 647 2800

2 60 244 3203

3 90 119 3328

Table 6.4: Datasets for evaluating the critical document prediction of learning-to-rank
methods

We selected five types of document features:

1. The bag-of-words (BOW) [213].A document is represented as the bag (i.e., a set) of

its words, without considering the word order in the document.

2. The bag-of-similar-words (BOSW). The BOSW feature is similar to the BOW fea-

ture. A document is represented as the bag of similar words in the document, pro-

vided by the EMR-subsets method.

3. The average word vector of a document. We first transform the words of a docu-

ment into vectors using the word vectors provided by the Complete EMR word2vec
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embedding (Chapter 4). Then we compute the average word vector to represent the

document.

4. The average usage vector of a document. We first transform the words of a document

into vectors, using the usage vectors provided by the usage vector space (Chapter 5).

Then we compute the average usage vector to represent the document.

5. The document vector [218] based on the doc2vec embedding trained with all the

medical notes from the SD EMR system.

We tested three classifiers (Logistic Regression, Random Forest, and Support Vector

Machine) by measuring the ROC (Receiver Operating Characteristic Curve) AUC (Area

Under the Curve) in predicting if a document is critical to the chart review or not.

To better understand the difficulty in predicting the critical documents, we selected the

accessing of documents as the baseline labels (i.e., access=1, ignore=0).

6.5 Result

6.5.1 Negative Guarantee Ratio

The result (Table 6.5, 6.6, 6.7) shows that a ranking method with high traditional IR

performance such as P@10 does not guarantee a high NGR score. A ranking method with

low traditional IR performance such as P@10 may have a high NGR score. For example,

as shown in Table 6.6, ranking by the number of similar words provides high P@10 score,

0.76, but has the lowest NGR score, 0.0. In this case, a crowd worker needs to review all

200 documents to make a decision. In the contract, the other methods, such as ranking by

the length, and ranking by the normalized number of similar words, have relatively low

P@10 score, 0.42, but have relatively high NGR score, 0.17, which means a crowd worker

only need to review 166 documents to make a decision.
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Index Ranking Method NGR P@10

1 Rank by the number of keywords 0.15 0.20

2 Rank by the lengths of documents 0.15 0.71**

3 Rank by the number of similar words 0.24** 0.71**

4 Rank by the normalized number of similar words 0.24** 0.40*

5 Rank by the usage similarity of note types to query 0.20** 0.72**

Table 6.5: IR performances of different ranking methods in the Crohn project with docu-
ment set size 200 and a positive ratio of 20%. One-sided Mann-Whitney U test was applied
to compare the P@10 and NGR scores of ranking methods. Methods that significantly
outperformed the baseline method (Index 1) are marked with ** (p-Value < 0.001) and *
(p-Value < 0.05).

Index Ranking Method NGR P@10

1 Rank by the number of keywords 0.02 0.60

2 Rank by the lengths of documents 0.17** 0.42

3 Rank by the number of similar words 0.00 0.76*

4 Rank by the normalized number of similar words 0.17** 0.42

5 Rank by the usage similarity of note types to query 0.17** 0.42

Table 6.6: IR performances of different ranking methods in the AMI project with document
set size 200 and a positive ratio of 20%. One-sided Mann-Whitney U test was applied
to compare the P@10 and NGR scores of ranking methods. Methods that significantly
outperformed the baseline method (Index 1) are marked with ** (p-Value < 0.001) and *
(p-Value < 0.05).
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Index Ranking Method NGR P@10

1 Rank by the number of keywords 0.02 0.61

2 Rank by the lengths of documents 0.05** 0.60

3 Rank by the number of similar words 0.24** 0.33

4 Rank by the normalized number of similar words 0.05** 0.62

5 Rank by the usage similarity of note types to query 0.06** 0.40

Table 6.7: IR performances of different ranking methods in the Diabetes project with docu-
ment set size 200 and a positive ratio of 20%.One-sided Mann-Whitney U test was applied
to compare the P@10 and NGR scores of ranking methods. Methods that significantly
outperformed the baseline method (Index 1) are marked with ** (p-Value < 0.001) and *
(p-Value < 0.05).

6.5.2 Critical Document Prediction

The result shows that most of the machine learning models provide poor average AUC

scores in critical document prediction (Table 6.8). The bag-of-similar-words (BOSW) fea-

ture space provides relatively higher AUC scores compared to other feature spaces, which

means the number of similar words has a meaningful impact on the importance of a docu-

ment during chart reviews.

Index Feature Space Average AUC

1 bag-of-words (BOW) 0.50

2 bag-of-similar-words (BOSW) 0.62**

3 Average word vectors (word2vec) 0.50

4 Document vectors (doc2vec) 0.50

5 Average usage vectors (usage vecotr space) 0.50

Table 6.8: Average AUC scores (10-fold cross validation) of predicting critical documents
with different feature spaces in the dataset constructed with minimum time difference cutoff
as 30 seconds.
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6.6 Discussion

This chapter proposes two novel ranking metrics based on the behavior analysis of how

crowd workers interact with medical notes in chart reviews.

The first metric, negative guarantee ratio (NGR), focuses on measuring the ability of

a ranking method in filtering out useless documents for crowd workers. The evaluation

result shows that a ranking method with high traditional IR performance (e.g., P@K) may

not have high NGR score and a ranking method with high NGR score may not have high

traditional IR performance.

It is interesting that ranking by the length of documents has high IR performance and

NGR score in some cases. We gathered the idea by interviewing crowd workers and med-

ical researchers. We also identify some complex ranking strategies from the activity log

of crowd workers using sequential pattern mining. As shown in Table 6.9, we identified

the top frequent document access patterns from the activity log of the Crohn project. The

analysis shows that we may identify better ranking methods from the access patterns. For

example, we may conclude that the crowd workers made a positive decision by reviewing

the “Gastroenterology Clinic Visit” document and then review the “Clinical communica-

tion” document to confirm the decision. Therefore, as the next step, we may consider

crowdsourcing ranking methods and behavior pattern mining as two potential sources for

developing efficient ranking methods.

The other metric, critical document, focuses on measuring the performance of a learning-

to-rank approach in predicting if a document is critical for making a decision in a chart

review. A critical document could be i) a document that at least two crowd workers spent

a significantly different time in reviewing and ii) a document that was only selected and

reviewed by one worker. The result shows that it is much more difficult to predict if a

document is critical (maximum AUC score around 0.62 across all feature spaces) than to

predict if a crowd worker would review a document or not (AUC score > 0.75). Therefore,

there is plenty of room to improve the prediction of critical documents. Possible future
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work may consider identifying more efficient features to enhance the power in predicting

critical documents.

Index Frequent Document Access Pattern Final Decision

1
Gastroenterology Clinic Visit
→ Clinical Communication Positive

2
Outpatient Visit Gastroenterology
→ Clinical communication Positive

3
Gastroenterology Clinic Visit
→ Gastroenterology Clinic Visit Negative

4
Gastroenterology IBD Center Clinic Visit

→ Clinical communication Negative

Table 6.9: Top frequent document access patterns for making a decision in the Crohn
project.

6.7 Conclusion

In this chapter, we presented two novel ranking metrics for evaluating ranking methods

for supporting chart reviews. The two ranking metrics, negative guarantee ratio, and critical

document are based on the behavior analysis of crowd workers in a serial of chart review

projects. We selected ranking methods identified from different sources, including crowds,

literature, and brainstorm. The evaluation of the ranking methods shows the current ranking

methods and learning-to-rank methods are not efficient enough to support chart reviews.

Future research is needed to develop better ranking methods and learning-to-rank methods

to support chart reviews.
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Chapter 7

OVERALL CONCLUSION

7.1 Summary

Clinical chart reviews are one of the most critical components of medical research,

which provide high-quality labeled medical data sets, such as patient cohorts with specific

medical conditions (e.g., with diabetes), or medical notes that provide specific information

(e.g., relevant to diabetes or not). Traditional chart reviews have two limitations. They are

slow (e.g., an average of ten hours per patient) and expensive (average payment around

$109 per hour). Therefore, specific strategies and tools are needed to better support clinical

chart reviews.

This dissertation systematically discusses the challenges (Chapter 1 and 2) in: i) doing

chart reviews fast and cheap; and ii) developing efficient information retrieval tools to

support clinical chart reviews. Based on the discussion, we presented our approaches to

support clinical chart reviews:

1. Building a light-weight crowdsourcing framework and maintaining a professional

worker pool for labeling medical data sets (Chapter 3);

2. Providing high quality clinically similar terms to enhance the query expansion feature

of EMR search engine (Chapter 4);

3. Developing method to adaptively adjust to users’ semantic preference during chart

reviews (Chapter 5).

Moreover, we are the first to do a deep and fine-grained analysis on crowd workers’

behavior during chart reviews and propose two novel ranking metrics as the future direc-

tion for building high-quality document ranking methods and learning-to-rank methods for

clinical chart reviews (Chapter 6).
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The evaluation of our approaches to support clinical chart reviews shows that:

1. A Crowdsourced chart review project with appropriate instructions, training sessions,

can provide medical researchers high-quality result as well as save significant time

(Chapter 3, section 3.8);

2. Extracting clinically similar terms from multiple EMR-based word2vec embeddings

can significantly boost the quality of clinically similar terms (Chapter 4, section 4.5);

3. Leveraging the medical contexts of clinical terms can significantly boost the perfor-

mance of adjusting to users’ semantic preference during chart reviews (Chapter 5,

section 5.4);

4. Medical researchers and crowd workers have their own document ranking strategies

when doing chart reviews. Therefore, specific ranking methods and ranking met-

rics are needed for building more efficient ranking systems to support clinical chart

reviews (Chapter 6, section 6.5).

The work of this dissertation has two takeaways. First of all, EMRs are more complex

than general text data, such as messages in social media and News. Therefore, in future re-

search, we should be careful when introducing natural language processing (NLP) methods

that have been proven to be efficient in other areas to the analysis and utilization of EMRs.

For example, some topic models [219, 220, 42], semantic embeddings [221] are based on

the assumption that the training data set contains consistent and single semantic context.

Therefore, the relationships of similar terms in contexts such as News and social media,

are more stable compared to medical contexts. For example, in News, the similar terms of

“cancer” are different types of cancer, such as “breast cancer” and “lung cancer”. However,

in a medical context, the similar terms of “cancer” may include the treatments, diagnosis,

medications, and symptoms of different types of “cancer”. Moreover, the similar terms of

“cancer” may vary with the medical contexts, such as the age, gender of patients or the
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previous medical conditions of the patients. The work in Chapter 4 shows that the clini-

cally similar terms that exist in multiple medical contexts (i.e., note types) are preferred by

medical researchers for general search, which directly motivated us to pursue the work in

Chapter 5.

Second, the usage vector space model provides a new direction in developing NLP

methods to support clinical chart reviews. The usage vector space model (Chapter 5) pro-

vides an efficient and explainable tool to better identify clinically similar terms for varying

medical contexts without training a new semantic embedding each time for a new chart

review.

In summary, this dissertation provides knowledge to better collect and produce labels

for medical research questions, thus allowing for more supervised machine learning oppor-

tunities in healthcare.

7.2 The Impact of this Dissertation

7.2.1 The impact of this Dissertation to the Healthcare

There are some potential impacts of this work on healthcare. First of all, it improves the

efficiency of clinical chart reviews by reducing the time to construct queries and speeding

up the document reading process in clinical chart reviews. Second, the usage vector space

has the potential to provide a non-keyword search to enhance hospitals’ EMR systems.

For example, instead of inputting keyword(s), we may allow the input to be the user type,

patient type, and medical events to start searching. Third, the usage vector space has the po-

tential to provide explainable machine learning to make document recommendation, query

recommendation more user-friendly. For example, when recommending “EEG” when the

user input “epilepsy” and “brain”, we may explain the recommendation as “we recommend

EEG to you because you may prefer the diagnosis of epilepsy”.
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7.2.2 The impact of this Dissertation to Other Domains

There are some potential impacts of this work to the other domains besides healthcare.

First of all, the approach of this dissertation could be generalized to other domains, such

as law, finance, social media and online retailer (section 1.4.5). For example, the EMR-

subsets method may be generalized to other domains to provide high-quality similar terms.

Also, the usage vector space model may also be generalized to other domain by capturing

the semantic relationships among the professional terms in that domain. Example contexts

are shown as follows.

1. Law domain. Possible contexts include acts, cases, policies and so on.

2. Financial domain. Possible contexts include clients’ demographic information, in-

come range and so on.

3. Social media domain. Possible contexts include users’ background information, such

as ages, IP addresses, browser types, forums, threads and so on.

7.3 The Scientific Contributions of this Dissertation

There are three main scientific contributions of this dissertation. First of all, previous

research, such as word embeddings, identified similar terms using only the text contexts of

words. This dissertation expands the resources to identify similar terms from text contexts

to domain-knowledge-based contexts, and systematically evaluated the vector space based

on the domain-knowledge-based contexts better capture the semantic relationships among

the professional terms in a certain domain.

Second, this dissertation presents computational methods that transform context infor-

mation, such as the note type context (e.g., the EMR-subsets method) and the medical

contexts (i.e., the usage vector space) into vector spaces, which better capture the domain

knowledge compared to traditional word embeddings.
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Third, this dissertation proposes a novel dynamic query recommendation method based

on the user’s current input without using any search log or previous data. For example,

we may build a tool that learns and recommends query without saving users’ search log.

Therefore, we may provide such a tool as a lightweight, online service to support infor-

mation retrieval as well as to protect the privacy of users. Moreover, such a dynamic

query recommendation method could be easily generalized to other domains, which re-

quire domain-knowledge-based and lightweight information retrieval tools.
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