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CHAPTER I

Introduction

Modern scientific investigations have increasingly relied on the expanded collection and

analysis of data. Big data have played a vital role in novel discoveries across various

disciplines. In genomic research, decreasing costs in high-throughput sequencing tech-

nologies, in combination with large repositories of clinical information (such as electronic

health records or EHR linked to biobanks) [111], has enabled many novel discoveries by

examining the associations between genetic variants and disease phenotypes. Among these

are several active research paradigms, such as genome-wide association studies (GWAS)

[20, 151] and phenome-wide association studies (PheWAS) [35]. These achievements are

facilitated by increased collection and reuse of genomic and clinical data [57], as well as

broad efforts to obtain larger sample sizes (by sharing and combing data) for increased

statistical power [126].

At the same time, the unique and sensitive nature of human genetic data and its close

connection to clinical sensitive information has led to numerous discussions around the

governance of genomic records [52, 86, 43]. Currently, policy and advisory groups recom-

mend removing identifying information (such as personal names) to uphold the privacy of

study participants [102, 130].

I.1 Privacy Concerns in Data Sharing

In genetic data sharing, the efficacy of existing policies and protections is increasingly be-

ing questioned [132, 43, 12, 75, 11]. Recent years have witnessed various demonstrations

[43, 59, 95, 69, 77, 134] that successfully extracted various kinds of privacy-sensitive in-

formation of individuals, such as the identity of study participants, study participation or

disease status, or even exact traits. These studies have striking and long-lasting effects on

various fields involving human subjects because the shared genomic data (often summary
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statistics) enabling such privacy attacks have long been considered safe for individual-level

privacy and openly published. For instance, in a famous study it was shown that a male’s

identity (mainly surname) could be ascertained by profiling his short tandem repeats (Y-

STRs) on the Y-chromosome and referencing against various public genealogy databases

on the internet – even if the individual’s identity was not initially tied to a DNA sequence

[59]. Earlier in 2004, it was illustrated that only fewer than 80 single nucleotide polymor-

phisms (SNPs) of a personal genome were necessary to uniquely distinguish an individual’s

sequence [95]. Next, in 2008 and later, it was shown that the originally widely-available

(published) allele frequencies of genetic studies could reveal study participation and poten-

tially even disease status [69, 78, 134]. Furthermore in 2012, it was indicated that releasing

even basic summary information (i.e., association effect size or its direction) of genome-

wide association studies (GWAS) could lead to study (or disease) related privacy leaks [77].

And in 2013, it was also suggested that the disclosure of one individual’s genome sequence

could even jeopardize his relatives’ privacy due to the high correlation between familial

genomes [74, 81].

The series of privacy attacks have already raised concerns from scientists, policy mak-

ers, and the general public. They have also led to reduced sharing of individual-level

genome sequences and even site-level summary statistics of studies. For instance, based on

[69], the National Institutes of Health (NIH) and Wellcome Trust stopped sharing aggregate

genomic data directly to the public [167]. These privacy breach demonstrations have also

influenced proposed regulations such as [143, 44, 45].

Other fields involving human subject data are sharing similar concerns. These in-

clude healthcare [107], social sciences (especially education and psychology) [32], ma-

chine learning [79, 40, 63, 62] and statistics [124].
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privacy (summary statistics)

2. Secure quality control of 
GWA meta-analysis
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6. Accelerating secure logistic 
regression using local models

5. Customizing optimizers for 
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Figure I.1: An overview of this dissertation and its chapters. 1. We first propose multiple
statistical inference attacks on genomic summary statistics (Chapter III), which provides
novel findings as well as serving as motivations for this dissertation; 2. We then develop
new methods to protect quality control of meta-analysis of genome-wide association studies
(GWAS) (later in Chapter III); 3. Later, we present novel cryptographic solutions to protect
meta-analysis of GWAS; 4. We also propose methods to protect distributed (regularized)
logistic regression and benchmark extensively. Later on, to make cryptographic protections
more practical and efficient, we propose two novel paradigms to accelerate cryptographic
solutions: 5. by tailing numerical optimizers and 6. by leveraging local models.

I.2 Outlines for This Dissertation

The main focus of this dissertation is to quantify privacy risks in sharing genomic data, and

provide novel and efficient methodologies for safeguarding participant privacy in statistical

genetics and machine learning models. An overview of this dissertation is illustrated in

Fig. I.1.

This dissertation begins by first proposing several statistical inference methods to re-

veal vulnerabilities of current practice of genomic data sharing including on individual-

and summary statistics-level data. This will serve as the motivation for the rest of the dis-

sertation. Specifically, in Chapter III, we introduce quality control (QC) for meta-analysis,

a concrete example and very important topic in genetic research. This chapter will demon-
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strate various statistical methods to breach personal privacy from genetic QC summary

statistics, followed by our proposed solutions and QC pipeline based on cryptography and

distributed computing to enhance privacy.

In Chapter IV, we describe a closely related and widely-used statistical method for

large-scale genomic studies across institutions – meta-analysis, and propose novel crypto-

graphic methods to safeguard this model and the underlying sensitive data.

In recognition of increasing popularity of advanced statistical and machine learning

methods in genomics and related domains [94, 27, 170, 25, 166], we then cover such

methodologies broadly in Chapter V and demonstrate how they can be made privacy-

preserving. We choose logistic regression as a representative model throughout this chap-

ter, due to its wide adoption in various domains such as genetics, biomedicine, and social

sciences as well as being a routinely benchmarked model in machine learning and statistics

research.

Later on, we observe that cryptography-based machine learning is still prohibitively

slow for large-scale tasks. We thus propose novel models and algorithms from a distr-

buted machine learning and optimization perspective to tackle the computational ineffi-

ciency challenge in cryptograhy, one of the major obstacles to practical secure solutions in

the real-world.

In summary, Chapter V consists of three sections (each corresponding to a new contri-

bution):

• First, in Section V.1, we present the design of a new state-of-the-art for privacy-

preserving regularized logistic regression, leveraging distributed machine learning

and cryptography. We also provide extensive empirical evaluations and benchmarks

on performance that are lacking in existing literature.

• Second, in Section V.2, we present a contrasting perspective to privacy-preserving lo-

gistic regression and introduce the novel concept and method of tailoring numerical

optimization for secure computing to drastically improve performance (in addition
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to improvements of latest cryptography). Computational inefficiency is the biggest

bottleneck of cryptographic protocols, and our solution provides an entirely different

approach to make related protocols more practical. Moreover, it is cryptography-

agnostic due to its design and can be built ontop of new (future) cryptographic

schemes or systems.

• Last, in Section V.3, we introduce a novel paradigm for privacy-preserving dis-

tributed logistic regression, by leveraging local-site models to better guide numerical

optimization. This paradigm improves significantly over which is common practice

dominating the field of privacy-preserving distributed machine learning for over a

decade. The drastic performance improvement from our new method makes crypto-

graphic protocols more practical.
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CHAPTER II

Background

In this chapter, I provide background information regarding several common genetic datasets

used throughout this dissertation, and some main building blocks and methodologies for

privacy protection.

II.1 Genetic Datasets

This dissertation leverages an extensive collection of datasets for demonstration and evalu-

ation, ranging from human genome (including variants and summary statistics) and pheno-

types data, various public datasets, and simulated datasets. Below, I briefly describe several

datasets that are common for several studies in this dissertation. Details of application-

specific datasets are postponed until their corresponding chapters.

II.1.1 eMERGE hypothyroidism study.

The first collection of datasets is from a genome-wide association study (GWAS) on hy-

pothyroidism [36] provided by the Electronic Medical Records and Genomics (eMERGE)

network [111]. This study focuses on a binary phenotype (hypothyroidism), with case/con-

trol ratio at 0.26. It consists of 6,370 study participants across five study sites/institutions

who contributed data: i) the Group Health Cooperative (now Kaiser Permanente Washing-

ton), ii) the Marshfield Clinic, iii) the Mayo Clinic, iv) Northwestern University Medical

Center, and v) Vanderbilt University Medical Center.

II.1.2 PAGE obesity study.

The second collection of datasets is from a genetic association study on obesity and body

mass index [49] provided by the Population Architecture using Genomics and Epidemiol-

ogy (PAGE) consortium [110]. This study focuses on a binary phenotype (obese or not)

6



and consists of 53,238 participants (37,823 European Americans and 15,415 African Amer-

icans in specific), and spans across six study sites: i) the Atherosclerosis Risk in Commu-

nities Study (ARIC), ii) the Coronary Artery Risk in Young Adults (CARDIA), iii) the

Cardiovascular Health Study (CHS), iv) the Epidemiologic Architecture for Genes Linked

to Environment (EAGLE) accessing the National Health and Nutrition Examination Sur-

veys (NHANES), v) the Multiethnic Cohort (MEC), and vi) the Women’s Health Initiative

(WHI). We primarily used meta-analysis-related summary statistics from this dataset, thus

no individual-level records are involved.

II.1.3 EAGLE diabetes study.

The third collection of datasets is from a genetic association study on type 2 diabetes pro-

vided by the EAGLE group [60], which is a sub-site of PAGE, and itself can be divided

into two sub-studies associated with the National Health and Nutrition Examination Sur-

veys (NHANES): i) NHANES III and ii) NHANES 1999-2002. This study focuses on a

binary phenotype (obese or not) and contains 14,998 participants and spans several ethnic-

ities (e.g., non-Hispanic white, non-Hispanic black, Mexican-American, and others). We

used meta-analysis summary statistics (no individual-level records) from the study.

II.1.4 Other Public Genetic Data.

In addition to the aforementioned genetic datasets, there are also several widely used

data repositories, including the 1000 Genomes Project [29], the International HapMap

project [54], and the NCBI dbGaP database [106]. We postpone the introduction of these

repositories and the data within them until they are first used in the dissertation.

II.2 Experimental Evaluation and Reproducibility

Unless otherwise specified, all experiments have been run multiple times to ensure stabil-

ity and replicability of all findings throughout the dissertation. All proposed methods and

models are deterministic (no randomness) in this dissertation. In addition, whenever pos-
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sible and needed, we also demonstrate the replicability and generalization of the results on

different datasets.

For reproducibility, I also share the main software packages and code I developed and

experimental parameters when needed.

II.3 Building Blocks for Privacy Protection

II.3.1 Secure Multiparty Computation (SMC)

Secure multiparty computation (SMC) was initialized by the seminal work of Yao [164]

and increasingly used in various domains and applications to allow for computations to

be performed without violating the privacy of the underlying data. The use scenario is

similar to ours: a group of independent organizations (“federation”) hope to engage in a

joint study (which can be represented as a statistical or machine learning model); they each

possess their individual private datasets, and are not allowed to publicly disclose them to

any external parties (including other member organizations in the collaborative study). The

challenge is how to support such a collaborative study without actually sharing private data

(which violates privacy otherwise).

Over the years, the original theoretical concept of SMC has been realized in working

software and significantly improved to make it computational feasible (partially surveyed

in [70, 98]). Currently, multiple methods (building blocks) are available and widely used

to support various tasks following this privacy-preserving notation.

II.3.1.1 Yao’s Garbled Circuit.

Yao’s garbled circuit [164] is a popular secure two-party computation technique for se-

curely supporting the evaluation of a joint function f (x1,x2) from two sources of secret

inputs, i.e., x1 held by Party P1 and x2 held by Party P2. In brief, function f (.) is first rep-

resented in a binary circuit form. Then Party P1 translates (called “garbles”) the function

circuit into a secure version (i.e., “garbled” versions of the circuit and computation table)

based on its private input x1. The resulting garbled circuit and computation table are later
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sent to the opponent P2, who initiates a 1-out-of-2 oblivious transfer protocol [164] (as-

sisted by P1; as mentioned above) to obliviously compute garbled values corresponding to

his input x2 and outputs the result to prescribed parties. The protocol reveals nothing to any

parties other than the final result.

II.3.1.2 Additive and Linear Secret-Sharing Schemes.

The main goal of secret-sharing schemes is to split a secret value into multiple shares and

let independent parties hold them collectively. In our case, the secret can be raw genetic

or health-related data, or institution-level summary statistics. The secret is split such that

it allows for: 1) some mathematical operations to be performed, and 2) reconstruction of

secret (original or later derived).

Additive Secret-sharing.

Additive secret-sharing ([15] and the references therein) is based on simple mathematical

arithmetic to split and recover secrets among several independent entities (or parties). For

any secret m to be protected, the secret shares s1, ...,si, ...,sk can be constructed such that:

m = ∑
k
i=1 si. In other words, one can first randomly generate shares for the first (k− 1)

shares, and compose the final to satisfy the above equation. Because m is kept secret from

any individual parties, the k shares are guaranteed to look random for any parties, thus

providing provable security. A (more restrictive) 3-party instantiation of the scheme is

commercialized and underlies the ShareMind software [15].

Linear Secret-sharing (Shamir’s scheme).

Linear (or polynomial) secret-sharing (also known as Shamir’s scheme) [136] is another

classical and widely used scheme which is built on top of polynomial interpolation. The

general idea underlying Shamir’s secret sharing is that for a t-dimensional Cartesian plane,

at least t independent coordinate pairs are necessary to uniquely determine a polynomial

curve. Formally, a t-out-of-w secret-share scheme is defined as follows: we intend to
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protect a secret m such that the only way to successfully recover the secret is through

cooperation of at least t (i.e., the “threshold”) share-holding parties (out of a total of w

parties). To achieve the goal, we construct a random polynomial q(x) of degree (t−1) with

the secret m embedded (we point out that the calculations actually occur in a finite integer

field and modulo operation is thus required. However, for presentation simplicity, we skip

the technical details):

q(x) = m+
t−1

∑
i=1

aixi , (II.1)

where m is the secret we want to protect and ai’s are randomly generated polynomial coef-

ficients. Note that the polynomial itself will be kept secret.

To split and share the secret, we proceed to evaluate q(x) and derive t or more dis-

tinct values from the polynomial, yielding coordinate pairs < 1,q(1) >,< 2,q(2) >,...,<

t,q(t)>,...,< w,q(w)>. Due to the inherent randomness in the specified polynomial, the

coordinate pairs we obtain here are random and reveal nothing meaningful about the se-

cret. These pairs, each of which constitutes a share of the secret, are then distributed to t or

more Computation Centers, respectively (i.e., each participant only receives one piece of

the secret). Under this mechanism, we can claim that the secret is successfully protected,

because no more than a limited few Centers (and, in special cases, no single Center) are

capable of inferring anything about the polynomial or the embedded secret. When it is

necessary to recover the original secret, t or more share holders will collectively perform

Lagrange polynomial interpolation [136] to uniquely determine the polynomial q(x). The

secret can be derived by evaluating q(0): m = q(0).

II.3.2 Paillier Additively Homomorphic Encryption

There have been an increasing number of investigations into novel and efficient encryption

schemes that guarantee strong security while allowing for (partial or all) computation on

top of the encryptions (a property called homomorphism). Here, we begin with a widely

used (partially or additive) homomorphic encryption scheme called Paillier’s cryptosys-
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tem [125].

The Paillier cryptosystem [125] is a public-key cryptographic scheme that is additively

homomorphic (meaning that it supports additive computations as explained below). In

brief, a message m (“secret”) can be encrypted by:

Enc(m,r) = gmrn mod n2 , (II.2)

where n = pq corresponds to an RSA modulus, g is a public parameter and r is a ran-

domization. Here the public (i.e., encryption) key would be (n,g), and the private (i.e.,

decryption) key would be (p,q,λ ) (where λ equals the least common multiple of p−1 and

q−1).

In addition to its strong security guarantees, Paillier cryptosystem also possesses a few

useful partially homomorphic properties. For instance, secure addition can be computed

as:

Enc(m1 +m2,r1r2) = Enc(m1,r1)×Enc(m2,r2) mod n2

and multiplication-by-constant follows (for a constant k):

Enc(k ∗m) = Enc(m,r)k mod n2

II.3.3 Differential Privacy

Differential privacy [37] is a rigorous notion of privacy which guarantees that the output

of a function is almost unchanged in the presence or absence of any specific data record.

Differential privacy has received extensive investigation in recent years and is especially

popular in machine learning and database domains [39]. Note that this dissertation focuses

on a cryptographic notion of privacy which primarily intends to protect the intermediate

results and computation process, as opposed to final result privacy (main goal of differential

privacy). Regardless, many of our proposed privacy protection methods can be extended in
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a straightforward way to become differentially private by injecting calibrated noise into the

final output of our protected model (this is beyond the scope of this dissertation).

More formally, differential privacy has the following definition:

Definition II.3.1. (Differential Privacy) A randomized function f (with output space Ω and

well-defined probability density P) is ε-differentially private if for all adjacency data sets

D,D′ that differ in a single record and for all measurable sets ω ∈Ω:

P[ f (D) ∈ ω]

P[ f (D′) ∈ ω]
≤ eε , (II.3)

Differential privacy essentially implies that even if a strong adversary knows the whole

dataset D except for the target record (individual), he still cannot infer much information

about the target from the function output.

II.3.3.1 Output Perturbation.

A popular way to achieve differential privacy is output perturbation, which calibrates arti-

ficial noise to the exact output of the function. The level of noise is carefully chosen based

on the sensitivity of the function, which measures the maximum change in the function

output when a single record in the input data is changed [37].

Definition II.3.2. (Sensitivity) The l2 sensitivity of function f is defined as:

S( f ) = max
D,D′
‖ f (D)− f (D′)‖2 , (II.4)

where ‖.‖2 denotes the l2 or Euclidean norm.

It has been shown that, for a function f and the desired privacy parameter ε , the output

perturbation returns f (D)+η , where noise η is generated according to density

P(η) ∝ exp(− ε

S( f )
‖η‖2) (II.5)
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CHAPTER III

Privacy Leaks in Quality Control on GWAS Meta-analysis and Effective

Countermeasures

This chapter is based on our work in [160]. My contribution in this work includes con-

ception, design and supervision of the study, implementation and experimental evaluation,

analysis of results, writing the manuscript and addressing reviewer comments.

Quality control (QC) is fundamental to reliable and reproducible genome research. This

is particularly the case for meta-analysis of genome-wide association studies (GWA meta-

analysis), where data are contributed by disparate and often heterogeneous cohorts. Tra-

ditionally, QC for meta-analysis is enforced by sharing and contrasting summary statistics

beyond their respective cohorts, under the belief that such summaries are respective of per-

sonal privacy and thus ethically safer to disclose than individual-participant data. Our in-

vestigation, however, refutes such a belief and pinpoints a series of privacy vulnerabilities

of current QC practices for GWA meta-analysis, which result in the leakage of sensitive

information of individual participants. Notably, empirical assessments using real GWA

meta-analyses on 6370 participants indicate that our demonstrated inference attacks can re-

veal 1) GWAS participation status (with accuracy of 99.9% in one type of attack, and AUC

of 0.78 in another), 2) disease status (i.e., case/control) for dichotomous phenotypes (with

1.00 in AUC), and 3) quantitative traits ( with R2 correlation of 0.96 against actual traits).

Furthermore, we demonstrate countermeasures for mitigating privacy risks by developing

novel technological protections and present a privacy-preserving QC pipeline. Empirical

evaluations on several consortium studies suggest that our secure pipeline enhances par-

ticipant privacy, and incurs only modest computational overhead. Our implementation is

available at: http://github.com/XieConnect/SecureQC.
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III.1 Introduction

Meta-analysis of genome-wide association studies (GWA meta-analysis) is a dominant

method for detecting associations between genetic variants and traits [46, 151]. Increas-

ingly, modern studies mandate large sample sizes [127, 21, 115] that can be achieved only

through data sharing and result synthesis across many institutions [46]. The success of

GWA meta-analysis is contingent upon the quality of source data [142], which is typically

enforced by an essential process of quality control (QC). Currently, various QC procedures

and toolkits for GWA meta-analysis are in practice at various consortia [51, 144, 153].

Meanwhile, plans for more extensive collection and sharing of genomic data have raised

major concerns around data management, especially on privacy issues [43]. Recent years

have witnessed a burgeoning number of far-reaching studies demonstrating privacy vul-

nerabilities due to inappropriate or unitended disclosure of genomic information rang-

ing from individual genomic records to various summary statistics (such as those from

GWAS) [43, 95, 59, 69, 77, 78, 134]. Increasing concerns over genome privacy could neg-

atively impact study participant recruitment, wide dissemination of research results [167],

data reuse and data access policies [143], all of which are fundamental for enabling novel,

as well as reproducible research.

Despite the pervasive adoption of QC in multi-site meta-analysis, no investigation has

considered the extent to which QC procedures are vulnerable to privak leaks. To answer

this question, here we perform a systematic privacy assessment on common QC procedures

and manage to pinpoint various privacy leaks throughout the process via intuitive demon-

strations. Our privacy assessment covers individual-participant genomic data as well as

various summary statistics, both of which are routinely shared beyond their originating in-

stitutions for QC purposes and are widely perceived to be privacy-safe in practice (such as

in [153]).

Our privacy assessment, on the contrary, indicates that widely-used QC practices for

GWA meta-analysis disclose much information (e.g., allele frequency and effect size of
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GWAS associations) beyond their respective institutions, leading to unanticipated disclo-

sure of individual-participant sensitive information. Notably, our empirical demonstrations

on several large consortia studies suggest that we can breach genomic privacy with high

success, leading to unanticipated revelation of study participation status (with accuracy as

high as 99.9% ∼ 100%), disease case and control status of individual participants (with

area under the ROC curve, or AUC, of 0.70), and accurate recovery of quantitative traits

(with Pearson R2 = 0.96). Surprisingly, our findings contradict with common belief that

meta-analysis (and its integrative process of QC) and summary statistics-based methods

are preferred approaches and considered ethnically safer for supporting large GWAS due

to concealment of sensitive individual-participant genomes, over pooled analysis of directly

consolidating individual-participant data [46, 152].

Later on, to mitigate the aforementioned privacy risks, we develop a privacy-enhanced

QC pipeline with provable privacy guarantees. We validate our new pipeline with synthetic

and real-world studies from several large consortia [36, 49, 60]. Empirical evaluations

indicate that our protections can prevent these privacy attacks on human genome, while

introducing little computational and monetary overhead for actual deployment.

Our privacy protection software, SecureQC, is freely available at: http://github.com/

XieConnect/SecureQC

III.2 Privacy Inference Attacks and Cryptographic Protection

Here we first describe our methods to infer (quantify) private information from summary

statistics in meta-analysis QC. We will then analyze QC sub-procedures in detail and pro-

pose ways to mitigate the aforementioned privacy risks, using distributed computing and

cryptography.

III.2.1 Privacy Inference Attacks

The summary statistics exposed in meta-analysis QC are vulnerable to multiple types of

privacy breaching attacks, which we introduce below.
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III.2.1.1 Study Participation Status Inference from Allele Frequencies.

Allele frequency can be leveraged to distinguish participants from non-participants in GWAS

[69]. Effect allele frequency (EAF), which is routinely shared for meta-analysis QC, is

vulnerable to such risk. To illustrate this, for each target individual i, we measure the devi-

ations of his genome (denoted Y i) from two different allele frequency references: the study

mixture (the EAF shared in QC; denoted Std), and a pubic reference panel (e.g., the 1000

Genome Project [29] or HapMap [54]; denoted as Ref ). We then accumulate such devia-

tions over many SNPs (indexed by j), leading to distinct distributions of attack score for

study participants and non-participants. For individual i and SNP j, the distance measure is

defined as [69]:

D(Yi, j) = |Yi, j−Re f j|− |Yi, j−Std j| , (III.1)

where Re f j and Std j denote the allele frequencies for SNP j from public reference and

study mixture, respectively. To quantify the differences in distribution of the deviations,

we take a one-sampled t-test across all M SNPs and derive the risk score for each target

individual i [69]:

T (Yi) =
E(D(Yi))

SD(D(Yi))/
√

M
(III.2)

where E(.) denotes the expectation, and SD(.) is the standard deviation.

III.2.1.2 Inference of Exact Traits and Study Participation Status.

GWAS summary results, such as effect size estimates and direction of the effect, can

be leveraged to breach privacy of target individuals (e.g., recovering quantitative eQTL

traits [77]). This works well especially when GWAS regression overfit to the data (i.e., fit-

ting too well). Specifically, given the regression estimates (denoted β j for each SNP j) and

the target individual’s genotypes (i.e., predictor Xi, j for SNP j), we can predict the corre-

sponding response variable for Individual i (i.e., the sensitive trait; denoted Yi) as averaged
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across many SNPs [77]:

Yi =
n
M

M

∑
j=1

β j(Xi, j−Re f j) , (III.3)

where Ref j denotes the public reference panel (for SNP j), n denotes the total number of

individuals, M is the number of SNPs.

For dichotomous traits, we design a different attack score (or inferred trait; in the range

between 0 and 1):

Yi = 1/{1+ exp[− n
M

M

∑
j=1

β j(Xi, j−Re f j)]} (III.4)

The direction of the effect can also reveal much private information, such as recovery

of quantitative traits [77]. The inference approach is based on the aforementioned attacks

on effect size estimates, such that:

Si =
1
M

M

∑
j=1

sign(β ) sign(Xi, j−Re f j) , (III.5)

where sign(.) corresponds to the sign of the data.

III.2.2 QC practice and adversarial scenarios.

We focus on the common scenario of conducting GWA meta-analysis across multiple co-

horts in consortia. Such a collaborative study typically involves the following entities: i)

multiple local sites who possess (private) individual-level data and contribute (summary)

data to the joint study, ii) a coordinating center (i.e., the central authority) who is responsi-

ble for coordination, data consolidation and management, and joint analysis/computations

(e.g., QC and meta-analysis).

In GWA meta-analysis, the primary target of protection is the privacy of individual

study participants, including sensitive attributes such as disease (participation) status and

quantitative traits of disease-related measurements.

By assessing privacy, our ultimate goal is to identify and protect procedures in which

private information is disclosed to potentially malicious parties – it could be another partic-
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ipating site in the consortia who wants to peek into others’ data, or a breached coordinating

center or participating site who wants to infer personal sensitive information from genome,

or even a malicious insider/employee at the coordinating center who hopes to gain sensitive

information about all sites and their study participants. Therefore, we consider genome pri-

vacy to be violated if: i) sensitive individual-level genome information is directly revealed

to unintended parties (e.g., other sites in or outside the consortia, including the coordinat-

ing center); ii) summary statistics of studies are disclosed elsewhere (e.g., other sites or

the coordinating center) which prove to be directly linkable to private information about

individual participants (examples include a large body of inference attacks on genetic pri-

vacy [43, 69, 78, 134, 77, 124]).

III.2.3 Major QC procedures.

We present a high-level overview of the typical QC workflow for meta-analysis in Fig-

ure III.2. Most QC procedures deal with data quality problems at one the following three

levels: i) site-specific QC which mainly checks and cleans data files from each site; ii)

cross-site-level QC which contrasts diagnostic summary statistics or plots across different

sites to identify site-level issues, and iii) post-study-level QC which mainly verifies meta-

analysis result reliability through heterogeneity tests,.

Current QC practice relies on one centralized entity such as a Coordination Center

(or other analysis organizations) to perform all the procedures, even though this entity is

not fully trusted to host privacy sensitive data, such as individual genomes (protection of

individual raw data is a major reason advocating meta-analysis in the community). There

is a common belief that summary statistics for QC maintain individual privacy. Here we

analyze the summary statistics disclosed at various levels of QC, their privacy implications,

and our proposed protections.
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Figure III.1: Meta-analysis QC pipeline.

Figure III.2: The meta-analysis QC workflow and disclosed summary statistics. Each site
performs their respective GWAS, after which result files are submitted to the Coordinating
Center for QC and meta-analysis. The QC process is invoked through a series of layers:
File QC, Cross-study QC, and Post-analysis QC. During the process, various summary
statistics are disclosed beyond their originating sites.

III.2.3.1 Site-specific QC.

This goal of site-specific QC is mainly to perform a series of local checks on various quality

issues. Common checks include: removing monomorphic SNPs or SNPs with incomplete

or inaccurate information, requiring a minimum sample size per study and a minimum

number of minor alleles contributing to an SNP for each participating study, filtering by

imputation quality using a threshold, and so on.
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III.2.3.1.1 Privacy Analysis.

To assess the privacy on site-specific QC, it is important to first determine where these QC

checks are performed. If all these procedures fall within the responsibility of local sites,

then this process does not incur privacy issues, since there are no data sharing beyond their

owner site. The analysis below mainly concerns the other scenario where the coordinating

center performs site-specific QC’s.

Site-level QC requires access to highly detailed genome information, including all allele

information, association effect size estimates, standard errors, etc. Sharing such informa-

tion beyond the originating site could raise privacy concerns, since much of such informa-

tion could lead to inference attacks on privacy, such as inference attacks based on summary

statistics of association [124], linear regression coefficients [77], and disease case/control

status inference on allele frequencies [69].

While it is possible for the consortia center to perform site-specific QC procedures, we

point out that it may not be a wise choice, given the complexity of the task and potential

privacy issues.

III.2.3.1.2 Our Protection.

We propose to offload the site-level QC checks to individual sites due to efficiency and

privacy considerations. We observe that nearly all filtering criteria at the site-level can

be standardized and distributed either as computer scripts or guidelines. By asking local

sites to perform such tasks, the privacy issue is naturally avoided since no data sharing is

necessary. As a side result, the QC procedure could be accelerated as local sites have the

greatest expertise in checking and cleaning their own local data.

III.2.3.2 SE-N plot.

The general concept for the SE-N plot is as follows: For each study file, depict the inverse

of the median standard error of the beta estimates across all SNPs against the square root

of the sample size. High-quality data should yield a straight (diagonal) line.
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Suppose we denote the sampling variance of a linear regression-derived beta estimate

of a specific SNP j as SE j, the variance of the phenotype as Var(Y ), the sample size as N.

Then according to [153], the theory underlying the plot is that

c
√

Var(Y )∗ 1
median(SE j)

=
√

N, (III.6)

where constant c = median( 1√
Var(X j)

) ≈ median( 1√
2MAFj(1−MAFj)

) and is computed per

study file (dependent on ethnicity, genotyping platform, imputation reference panel, and

imputation quality).

For the final QC comparison, we plot the c
median(SE) v.s.

√
N. So in fact the plot will

indicate variance of the phenotype.

III.2.3.2.1 Privacy Analysis.

Standard practice asks each site to submit the SE-N plot with their data. So here we an-

alyze whether the plot itself reveals sensitive information. Specifically, several statistics

are implicitly contained in the composite terms (e.g., tuples of 〈median(SE), sample size〉)

disclosed by the plot, including genotype frequencies or genotype dosages and imputation

quality, median standard error, and the sample size. However, most of these information

does not pose privacy concerns. While genotype dosage may be sensitive, it seems there is

no easy way to distill such information from the revealed plot.

III.2.3.2.2 Our Protection.

The generation of the above plot is typically done locally at each site. So the generation

itself does not incur privacy issues. And we just showed that the plot itself does not reveal

sensitive information either. So it appears it is relatively safe to release the plot.

However, if we want to maximize protection by avoiding information disclosure, we

may want to perform the SE-N plot solely at local sites. This is because comparison of

SE-N plots across sites does not bring additional benefits for the judgment on site-level
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quality, since the “gold standard” for SE-N is quite obvious and public knowledge (i.e., the

identity line in the plot). Such quality check can be easily enforced by local sites without

cross-referencing outside counterparts.

III.2.3.3 The P-Z plot.

Standard practice for generating the P-Z plot aim at comparing the reported p-value against

the that derived from computed Z-statistic based on reported beta estimate and standard

error. This way, potential analytical problems involving the above statistics could be ob-

served.

III.2.3.3.1 Privacy Analysis.

By examining the above process, we note that the computation itself may be vulnerable to

inference attacks based on regression beta, p-value and standard error [77, 148].

III.2.3.3.2 Our Protection.

To eliminate privacy concerns, it is advised that the computation and comparison be per-

formed locally at each sites. This way, no sensitive data sharing is necessary and the deci-

sion and correction can be performed solely at local sites without privacy problems.

If cross-site comparison, or center-led judgment, is truly necessary, advanced secure

computation technologies can be used to quantity the correlation of the two parameters

across sites.

III.2.3.4 Effect allele frequency (EAF) plot.

The general concept of the EAF plot is to compare local data statistics against a reference

set to visually identify quality issues (e.g., strand issues, allele miscoding, misreported

ancestry, and so on)
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III.2.3.4.1 Privacy Analysis.

The EAF plot requires disclosing detailed EAF information, which might be vulnerable to

inference attacks based on allele frequencies [69, 134, 78].

III.2.3.4.2 Our Protection.

From a scientific perspective, cross-site comparison also seems unnecessary, since the ref-

erence set (“gold standard”) is typically public. Local sites can easily perform local checks

against those public references. So it seems more appropriate to retain the data and analysis

at local sites to resolve privacy concerns.

However, if cross-site comparison is indeed necessary, SMC protocols can be leveraged

to support the task.

III.2.3.5 The lambda-N plot.

Plotting genomic control inflation factor λGC increases with sample size can help detect

population stratification [153]. The genomic inflation factor λGC is defined as the ratio of

the median of the empirically observed distribution of the test statistic to the median under

the null hypothesis, thus quantifying the extent of the bulk inflation and the excess false

positive rate.

λGC = median(χ2)/0.456 (III.7)

III.2.3.5.1 Privacy Analysis.

We note that the derivation of λGC depends on (a χ2-test for) allele frequencies, which is

know to reveal disease and study participation status [69]. Thus, the computation pro-

cess should be safeguarded. Meanwhile, the factor itself does not seem to reveal sensitive

information. Specifically, only one value (i.e., median of χ2) was revealed which is not

sufficient for any known privacy attacks.
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III.2.3.5.2 Our Protection.

Given the sensitive nature of computing λGC, we propose to compute site-specific λGC

locally at each site (in fact already a common practice by many consortia such as GI-

ANT [153]). Since the gold standard and threshold for distinguishing good from bad statis-

tics can be defined a priori (e.g., 1.0 and 1.1, respectively), local sites can perform their

individual checks using computer scripts distributed by the consortia.

The site-specific factors could also be pooled by the consortia center for a global plot-

ting and comparison, which technically does not incur privacy issues. However, such cen-

tralized pooling should be avoided to maximize privacy guarantee. Under certain situa-

tions where centralized checking is truly necessary and minimal information should be

disclosed, we suggest a secure computation-based solution. Specifically, GC factors are

encrypted prior to submission and the center will perform threshold-based comparison or

outlier detection to pinpoint those problematic factors and sites.

III.2.3.6 Heterogeneity Tests.

The heterogeneity test QC [153] is mainly performed after the main meta-analysis task is

performed. The goal of related tests is to double check the reliability of meta-analysis result

by quantifying the heterogeneity in the data used. Three closely related test statistics are

typically used in practice: i.e., the Q-, I2-, and H-statistics [68, 153, 50]. Among these tests,

H and I2 are preferred measures by their original authors [68]; and in modern GWA meta-

analyses, typically Q-statistic and I2 are used [153, 116, 50]; some studies only reported I2

[80].

Here we briefly introduce the three common heterogeneity tests and their relations.

The Q-statistic [68] aggregates weighted variances across sites to test heterogeneity:

Q =
k

∑
i=1

wi(yi− µ̂F)
2, (III.8)

where k is the total number of sites, wi is the weight (e.g., the inverse of variance for fixed-
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effect meta-analysis), yi is the estimate from site i, and µ̂F =∑yiwi/∑wi is the weighted es-

timate (i.e., note that it is NOT the Z-score from meta-analysis because Z = ∑yiwi/
√

∑wi).

The H-statistic [68] improves over Q-test by quantifying the relative excess in Q-

statistic over its degrees of freedom:

H2 =
Q

k−1
, (III.9)

where k is the total number of sites, Q is the aforementioned Q-statistic. We typically report

max{H,1} [68]. Intuitively, H = 1 implies homogeneity of effects (since E(Q) = k− 1).

Larger values mean heterogeneity is present (empirical thresholds are given in [68]).

The I2-statistic [68] indicates the fraction of total variation in the estimate that is due to

between-study heterogeneity.

I2 =
H2−1

H2 = 1− k−1
Q

, (III.10)

where Q, H are the aforementioned test-statistics, and k is the total number of sites. An I2

of 0 means no heterogeneity.

III.2.3.6.1 Privacy Analysis.

Computing the Q-statistic requires several potentially sensitive inputs, such as effect size

estimates (yi), standard errors (related to wi), many of which are subject to generic infer-

ence attacks on summary statistics [124, 77]. Since H2 is directly correlated with Q, so

it is vulnerable to the same privacy threats. According to the original definition of I2, it

requires between-study heterogeneity and within-study variance, the computation of which

both involve individual-SNP-level summaries which could be sensitive. So a straightfor-

ward implementation of I2 will bring about more privacy risks. However, if we choose to

compute I2 leveraging its correlation with Q via Equation III.10, it would be vulnerable

to the same set of risks as computing Q (note that the number of sites k is not considered
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sensitive).

III.2.3.6.2 Our Protection.

Our goal is to securely compute the statistics defined in Equations III.8, III.9 and III.10. As

shown before, these statistics are correlated and can be derived from one another easily. So

here we mainly focus on how to securely compute Q-statistic.

So to summarize, our major challenge in supporting these heterogeneity tests is to

securely compute the Q-statistic (Equation III.8). When designing a secure-version Q-

statistic, we have the following assumptions:

1. Inputs yi, wi are private and should not be disclosed to parties other than their respec-

tive owners Pi.

2. The weighted estimate µ̂F is also private, and its derivation also occurs in secure.

3. The Q-statistic final result should only be disclosed to the query issuer (i.e., the user).

In Equation III.8, µ̂F has to be derived through an expensive process involving secure

division.

Here we describe a simplified solution to securely compute Equation III.8, without

relying on secure division. The new approach is based on the following observation:

Q =
k

∑
i=1

wiy2
i +

k

∑
i=1

wiµ̂F
2−2

k

∑
i=1

wiyiµ̂F

=
k

∑
i=1

wiy2
i −Z2

(III.11)

There can be two alternatives to implement the above computation:

1. Straightforward approach: terms wiyi,Z2 were already provided by SecureMA [159]

(to be introduced in later Chapter IV), so we only need secure multiplication (i.e.,

wiyi ∗ yi), secure addition and subtraction.
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Table III.1: Privacy issues with QC summary statistics and countermeasures.

Summary statistic QC procedure Privacy leaks Suggested protection

SNP identifier
File QC,

Unique variants (sets) Secure hashing
Meta-analysis

Allele frequency
File QC, Study participation [69, 134]

Distributed computing
Cross-study QC

Effect sizes, File QC, Study participation,
Secure computation [159]standard error Meta-analysis, disease status/traits [77]

Post-analysis QC
File QC, Study participation,

Secure computation [159]Direction of effect Meta-analysis, disease status/traits [77]
Post-analysis QC

2. Lightweight approach: We ask sites to directly submit encrypted composite terms

E(wiyi) and E(Z2). This way, we only require secure addition and subtraction to

complete the above computation.

III.3 Experimental Design and Results

We conduct a systematic privacy assessment on various types of summary statistics that are

routinely shared beyond their originating institutions during meta-analysis QC. We demon-

strate that privacy sensitive individual-level information can be extracted with high success

from different levels of QC and through various approaches. To mitigate the aforemen-

tioned privacy leaks, we develop and evaluate our privacy-enhanced QC pipeline based on

cryptography and distributed computing.

Before delving into the details, we provide a high-level overview of summary statis-

tics for meta-analysis QC, related privacy issues, and (our) proposed countermeasures in

Table III.1.

Our empirical evaluations for both privacy breaching attacks and protections span sev-

eral large meta-analyses from several large consortia: 1) a hypothyroidism study of 6,370

participants from 5 institutions within the eMERGE network [36], 2) an obesity study of

53,238 participants from 6 institutions in the PAGE consortium [49], and 3) a Type II Di-
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abetes study with 14,998 participants from 2 sites (sub-studies) from the EAGLE consor-

tium [60]. In addition, for comprehensive evaluation, we also simulated additional studies

with pseudo quantitative traits based on real genotypes from the eMERGE network (see

corresponding subsections for details), similar to earlier publications [77].

Below, we first present our emprical privacy assessment on various QC summaries.

Later, we evaluate our privacy-preserving QC pipeline.

III.3.1 Site-level QC.

Currently, site-level QC is often performed by a central organization to check for prob-

lems in various site-level submission files (i.e., inputs to meta-analysis), such as formatting

errors, missing values, nonsensical values, imputation quality issues, and so on. Our pri-

vacy assessment indicates that site-level QC is highly vulnerable to privacy breaches when

performed at one centralized location (e.g., Coordinating Center or designated analysis

organization), which is (unfortunately) often common practice [153]. This is because sub-

mission files from each site disclose very detailed genomic information such as Z-score,

p-value, effect allele frequencies (EAF), and so on, which are privacy sensitive and could

lead to a series of privacy leaks about individuals’ sensitive disease and study participation

status (many of which will be demonstrated later).

III.3.1.1 Cross-site QC.

The goal of cross-site QC is mainly to detect site-specific data problems by cross-referencing

other sites. It typically involves a few widely accepted procedures, which are all conducted

by a central organization.

III.3.1.1.1 Effect allele frequency (EAF) plot.

The EAF plot is utilized in QC to contrast allele frequencies across different sites to de-

tect data anomalies. Unfortunately, disclosing allele frequency is known to be vulnerable

to privacy inference attacks on participation status in (potentially sensitive) GWAS [69].
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To show that disclosing effect allele frequencies from cross-site QC incurs privacy issues,

we aim to distinguish between participant (i.e., in-study) and non-participant (i.e., hold-

out) individuals using (site-level) EAF summaries and public reference genomes (e.g., the

1000 Genome Project [29] or HapMap project [54]). Given the genotypes of each target

individual, the privacy breaching method will quantify a per-person risk score, of which

the distribution may differ significantly between in-study and holdout individuals. Using

1456 in-study participants from an eMERGE study and 99 holdout samples from the 1000

Genome Project, our inference on GWAS participation status is highly successful as evi-

denced by the obvious pattern differences of attack scores between in-study and holdout

groups (Fig. III.3). Based on the y = 0 threshold, almost 99.9% of the in-study and 100%

of the holdout individuals can be correctly discriminated. Similar results have also been

observed on other GWA meta-analysis studies from different consortia. This confirms that

in cross-site QC, the revelation of EAF can disclose sensitive (disease or trait) information

of individuals.

III.3.1.1.2 P-Z plot.

The p-Z plot is another useful procedure in QC to ensure the correctness of Z-score (GWAS

association effect size) from per-site file submissions. Unfortunately, disclosing such in-

formation may lead to detection of (sensitive) disease status. Specifically, when coupled

with public genome references (e.g., the 1000 Genome Project [29]) and the genotypes of

the target individual, an adversary could infer the exact traits of the target individual (ei-

ther quantitative or binary), as well as detecting his study participation status (i.e., in-study

or holdout). Similar to [77], we simulated quantitative traits (e.g., blood pressure, eQTL

traits, and so on) based on real genotypes from an eMERGE study and a simple additive

genetic model [163]. We tested different simulations with different parameters, such as

disease prevalence being from 0.01 to 0.1, along with different causal SNPs. Since our

statistical attack model does not make any assumptions on these parameters and they all
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Figure III.3: Detection of GWAS participation status on target individuals using QC effect
allele frequencies. Each individual (x-axis) from the eMERGE study is quantified an attack
score (y-axis) per the inference attack method, and the difference in distributions of the
score reveals GWAS participation status. With the y= 0 threshold, individuals with inferred
scores above the threshold are likely to be (classified as) real participants in the released
study, while individuals below the threshold are non-participants.

lead to similar attack results, we report one simulation result selected at random (disease

prevalence = 0.1). In Fig. III.4a, we present our privacy inference results of recovering

(simulated) quantitative traits on an eMERGE study (with real genotypes and simulated

traits). It is shown that the recovery of quantitative traits is highly successful for in-study

individuals (with a Pearson correlation R2 = 0.96), while holdout individuals are centered

around the (normal-looking) y = 0 line and their traits are not predictable (as expected,

since they did not contribute to the study underlying the disclosed summaries). As illus-

trated in Fig. III.4a, the inferred traits from this method can also be used to distinguish

GWAS participation status, with in-study individuals shown in the upper and lower regions

(highlighted) and the holdout individuals within the middle region around y = 0 line. Infer-

ence on GWAS participation yields great detection power, with AUC = 0.78 (much better
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(a) Attack on (raw) regression coefficients.
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(b) Attack on our protected regression coeffi-
cients.

Figure III.4: Trait inference using regression coefficients when: (a) without protection (i.e.,
standard practice), and (b) after applying our protection. All results are based on eMERGE
dataset (516 and 940 individuals for the in-study and holdout test samples, respectively;
Both are genotyped on 368,657 SNPs. ). Before protection, the inferred traits (y-axis) are
in excellent alignment with the actual traits (x-axis) on the diagonal line, implying that traits
are well predictable. Looking vertically, the distinction in the value ranges of inferred traits
also allows us to discriminate participation status, where highlighted regions (non-white)
are dominated by in-study individuals, and the middle white region by holdout individuals.
After protection, trait inference is almost random and unsuccessful, and participation status
is obfuscated too.

than random guessing of 0.5). Dichotomous trait-based GWAS is also vulnerable to sim-

ilar attacks on Z-score or p-value, as demonstrated in Fig. III.5. Contrasting patterns are

present in the distributions of our inferred scores, which allow us to differentiate in- and

out-of-study (holdout) individuals (with AUC = 0.70), as well as to tell apart cases and

controls (with AUC = 1.00) within the in-study sub-population.

III.3.1.2 Post-analysis QC.

Post-analysis QC mainly checks for meta-analysis output through several heterogeneity

tests. To do so, it requires cross-site sharing and contrasting of summary statistics that
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(b) Using protected effect size estimates.

Figure III.5: Inference of dichotomous traits on targeted individuals, using effect size esti-
mates that are: a) as originally disclosed for QC; and b) protected using our proposal. In
a), cases (“red”) and controls (“green”) reside at the extremes of the distribution. Controls
and holdouts are relatively harder to distinguish because neither contribute to the GWAS by
biasing the effect size estimate away from the norm. This pattern allows us to distinguish
different types of participants.

seem sensitive. For instance, several heterogeneity tests rely on effect size estimates and

variance of GWAS results, which can be leveraged to recover sensitive traits [124, 77,

43]. In addition to the previously demonstrated privacy breaches of inferring disease traits

and study participation status from effect size estimates (Figs. III.4a and III.5a), we show

that it is problematic even to reveal the direction of the effect in GWAS (i.e., positive

or negative) [77] for QC purpose. Our results of inferring study participation and exact

traits are demonstrated in Fig. III.6a for continuous traits. In general, one single bit of

disclosed information is sufficient to achieve high inference accuracy. This evaluation on

disclosure of direction of effect is notable because otherwise one may wrongfully claim

that privacy could be assured by just obfuscating or truncating the numeric precision of

disclosed summaries (a common practice exercised in genome research such as in [53]).

32



−20

−10

0

10

20

−20 −10 0 10 20

Actual traits

In
fe

rr
e
d
 t
ra

it
s

Samples: In−study Holdout
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(b) Attack on our protected direction of effects.

Figure III.6: Trait inference using direction of effect: (a) without protection, and (b) after
applying our protection. ).

III.3.2 Privacy-enhanced QC.

To safeguard the QC without impeding the workflow, we proposed to substitute vulnerable

QC components with our secured procedures. We implemented a privacy-preserving QC

pipeline as computer software. The workflow of our proposal is illustrated in Fig. III.7.

The QC workflow is initiated once individual sites have derived their local GWAS results,

which will serve as inputs to the pipeline. The data will go through a series of multi-tiered

QC procedures to ensure data quality, for instance, to locally check data quality (i.e., site-

specific QC), compare data quality with other sites (i.e., cross-site QC), and quality check

meta-analysis results (i.e., post-analysis QC). The pipeline will provide an informative QC

report at the end. We emphasize that the whole QC workflow here proceeds securely with-

out leaking sensitive information.

Our privacy-enhanced QC is based on the following observations:

Firstly, for site-level QC, we note that there is no cross-site check or dependency be-

tween QC of different sites. We thus suggest that site-specific QC be performed at their
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Figure III.7: Overview of our privacy-enhanced system. Each study site performs its local
QC procedures, and provides encrypted diagnostic summaries to the Center. The Center
performs cross-site comparison and post-analysis checks in a encrypted fashion without
needing to see data content.

respective local sites where privacy issues could be circumvented. In practice, this could

be achieved by disseminating standardized computer scripts for QC [153, 51, 144] to each

site along with the study plan and scripts for running local GWAS.

Secondly, for cross-site QC, we note that most of the steps still do not involve cross-site

contrast or dependency. The gold standards for comparison are often public information

or can be easily standardized and distributed to local sites (e.g., for MAF plots, the public

HapMap project acts as the public baseline; for P-Z plots the diagonal line is the gold stan-

dard). We thus suggest distributing these QC tasks to local sites for independent running.

Lastly, regarding QC results, we note that current practice does not incur privacy con-

cerns. This is because QC seldom returns bulk of results (e.g., thousands of summaries of

SNPs) to unintended entities. In QC, detailed reporting is only needed when quality issues

were observed, and in those situations, only a handful few of problematic data points were
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revealed to their originating sites. In addition, there are existing solutions such as differen-

tial privacy for ensuring result privacy and can be easily embedded in our system if truly

necessary.

For evaluation, we apply our framework on the three multi-site meta-analyses men-

tioned earlier. Below we report our empirical evaluation in terms of result accuracy and

system running time.

III.3.3 Accuracy of Secure Heterogeneity Tests.

Heterogeneity tests are a major component of QC and require contrasting local associa-

tion summary statistics across sites. Standard practice requires sharing too detailed (and

sometimes sensitive) summary statistics, which is vulnerable to privacy inference attacks.

Our framework protects this process leveraging strong Cryptography-based methods (see

Online Methods). Since in our secured pipeline, the protected data and computation are

treated as a black box, it is essential to ensure result accuracy during evaluation so that

researchers regard the results to be reliable.

We thus compare the accuracy of heterogeneity scores yielding from our secure pipeline

against those from mainstream software (e.g., METAL toolkit [152]). We focus on I2,

which METAL outputs directly and can trivially translate into other heterogeneity tests. As

illustrated in Fig. III.8, our results are always identical to the gold standard (with perfect

correlation R2 = 1.0). In fact, result accuracy is easy to prove theoretically since our secure

framework replicates the exact original computation without any approximations.

III.3.4 Accuracy of Other Secure Procedures.

We also want to ensure the accuracy of other QC sub-procedures that have been upgraded

and become different from existing (non-secure) practice. However, we point out that since

all other safeguarded sub-procedures are still reusing previous software building blocks

(albeit changes in occurence location of QC operations), correctness of QC operations is

not affected.

35



R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1R
2

= 1

0

20

40

60

0 20 40 60

METAL I
2
−statistic

O
u
r 

s
e
c
u
re

 I
2
−

s
ta

ti
s
ti
c

(a) eMERGE study
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(b) PAGE study
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(c) EAGLE study

Figure III.8: Correlation of I2-statistics between our secure result and standard
METAL [152] output (numeric values represent percentages). All three empirical evalua-
tion studies yield perfect correlations (R2 = 1.0). In particular, heterogeneous SNPs (with
I2 > 75%) are still identified as heterogeneous via secure implementation, and normal SNPs
are also correctly labeled as normal.

Table III.2: Running time of secure heterogeneity tests.

Dataset # SNPs (# sites) Local-site time (S) Total time (S)
eMERGE hypothyroidism 500k (5) 2.5 64
PAGE obesity 500k (6) 2.4 42
EAGLE diabetes 500k (2) 3.7 58

III.3.5 Computation runtime.

Naive implementation of secure systems may incur high computational overhead. Mean-

while, however, we believe careful optimizations in framework design (such as a hybrid

architecture) and engineering efforts often lead to drastic efficiency improvements. In our

case, we note that our cryptography-based protections introduce very minimal overhead to

whole pipeline, as evidenced by running time results in Table V.6. These were evaluated

on a commodity desktop with 2.4 GHz dual-core and 8 GB memory.

Also, it is important to point out that since our framework works in an automated and

reusable manner (i.e., different meta-analysis studies could rely on the same infrastructure

and setup), our framework often provides significant speed-up over traditional (manual)

QC process. As one example, it may take months to complete even individual steps of the

QC process [153].
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III.4 Discussion

Our work has strong relevance to genome research for several reasons, especially given the

urgency for both scientific data sharing (either for increased sample size or for reproducible

research) and guaranteeing participant data privacy.

III.4.1 Implications for genome research.

With respect to participant privacy risk, we demonstrate that sharing various summary

statistics that are routinely available and necessary to QC and meta-analysis tasks (both

at the individual and study levels) is indeed equivalent to or only slightly safer than directly

disclosing individual genomic information.

Concealment of individual-participant data and privacy protection has always been the

primary, if not the sole, motivation for adopting and advocating summary statistics-based

approaches towards collaborative genome research. A popular and representative exam-

ple is meta-analysis (and its essential component of QC). Here instead, we prove that

the promised advantage of meta-analysis is not fulfilled, and conducting meta-analysis

and QC on summary statistics does not offer significant advantage over directly handling

individual-participant genome information. From this perspective, meta-analysis and QC

may (and should) be subject to the same regulatory frameworks governing individual-level

genomic information and thus subject to the same legal risks.

Our privacy assessment has major implications for genome research, as ever-larger

study consortia are being formed nationally and internationally [135, 168]. This will con-

tinue to pose significant challenges in mandating universal trust between institutions, guar-

anteeing sufficient maturity in security and privacy standards among all investigators, and

detecting and prosecuting inappropriate disclosure of genomic information.

With respect to privacy protection, we illustrate that technological advancements can

be of help for simultaneously balancing participant privacy requirements and supporting

scientific workflows even as complex as QC for GWA meta-analysis. A recent work [71]
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published a few years later than our current work reached similar conclusions, by showing

that cryptographic methods (using Yao’s garbled circuit [164]) are feasible and relatively

efficient in protecting quality control pipelines. Overall this is a striking message to convey

to the genetics community, as most existing works on genome privacy only demonstrate

the privacy risks without providing proper solutions or advice, leaving general scientists in

the misconception that privacy is dead [42] and one can only choose between data sharing

or privacy.

III.4.2 Limitations.

The inference attack in our privacy assessment focused on a simplified GWAS model which

did not account for covariates such as gender, age, and ethnicity. Incorporating such factors

into our attack model might boost the success rate of our attacks, but only with marginal

improvements since it is generally expected that the contribution of such covariates would

be very small to the GWAS regression problem. So in theory, even given that correlation

effects are not reported on such covariates in most published GWAS or meta-analysis, our

attacks would still be successful regardless.

While we have tried our best to empirically validate our methods and claims as compre-

hensively as possible, we point out that an even larger-scale evaluation would still be ideal

to generalize our findings and significance more broadly. Our statistical inference attacks

were empirically validated using a selected collection of multi-site consortia meta-analaysis

and GWAS datasets and simulated (phenotype) studies due to resource constraints. While

our methods were designed to be generic and widely applicable, we yet have to benchmark

our methods on a wider variety of genomic and phenotypic datasets.

Our protections and the secure QC pipeline are primarily motivated to safeguard inter-

mediate data and analytics in the whole QC process, while incurring minimal changes to

the original scientific or administrative workflows. While this makes our secure pipeline

more accurate and easy to deploy in real studies, it sometimes may bring about the side
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effect of privacy leaks from QC results themselves. For instance, the Q- or I2-statistics

themselves may be leveraged for privacy inferences. However, we point out that there

are currently no known studies demonstrating such risks; also, since better protections for

this scenario most probably would require revamping the complete scientific workflow and

retaining scientifically critical information and decision making, we leave it as follow-up

discussion for the general scientific community; finally, our protections could be enhanced

by enforcing the concept of differential privacy on all revealed QC results. However, this

would certainly deteriorate the scientific utility of the results and QC in general.

Due to computational efficiency considerations, we adopted a hybrid computing ar-

chitecture by leveraging safe and faster distributed computing. We point out that in some

scenarios, it may still be necessary for the consortia center to enforce central quality control

on all steps, including on file-level. A a natural extension, we hope to implement a fully

centralized and secure version of the pipeline.

III.4.3 Conclusion.

In this chapter, we demonstrated important privacy vulnerabilities of disclosing various

summary statistics that are routine in QC for GWA meta-analysis. We further demonstrated

the design and evaluation of our privacy-enhanced QC pipeline which incorporated novel

and practical technical countermeasures. Empirical evaluations on various real studies con-

firmed the privacy vulnerabilities in traditional QC workflow. Meanwhile, our secure QC

pipeline prove to support QC accurately and efficiently while guaranteeing strong privacy.

We hope that our solution could alleviate privacy concerns over genome privacy and enable

broader scale of collaborations and data sharing in genome research.
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CHAPTER IV

SecureMA: Safeguarding Meta-analysis of Genome-wide Association Studies

(GWAS)

This chapter is based on our work in [159, 158]. My contribution in this work includes

conception and design of the study, implementation and experimental evaluation, analysis

of results, writing the manuscript and addressing reviewer comments.

Sharing genomic data is crucial to support scientific investigation such as genome-

wide association studies. However, recent investigations suggest the privacy of the indi-

vidual participants in these studies can be compromised, leading to serious concerns and

consequences, such as overly restricted access to data. In this chapter, we introduce a

novel cryptographic strategy to securely perform meta-analysis of genome-wide associ-

ation studies (GWAS) in multi-site consortia. Our methodology is useful for support-

ing joint studies among disparate data sites, where privacy or confidentiality is of con-

cern. We validate our method using three multi-site association studies. Our research

shows that genetic associations can be analyzed efficiently and accurately across sub-

study sites, without leaking information on individual participants and site-level asso-

ciation summaries. In additional to the above methodology improvement, we also re-

lease our open-source software, SecureMA, for secure meta-analysis of GWAS at: http:

//github.com/XieConnect/SecureMA. Our customized secure computation framework is

also open-source at: http://github.com/XieConnect/CircuitService.

IV.1 Introduction

Decreasing costs in sequencing technologies, in combination with large repositories of

clinical information, has enabled the discovery of novel associations between genetic vari-

ants and disease. These achievements are facilitated by increased collection and reuse

of genomic data [57], as well as broad efforts to obtain larger sample sizes (by sharing
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and combing data) for increased statistical power [126]. Meta-analysis is a common solu-

tion for aggregating sub-study results across large consortia to achieve this goal. In fact,

meta-analysis is responsible for approximately 37% of the 15,845 genome-trait associa-

tions listed in the NHGRI GWAS Catalog [151]. At the same time, the sensitive nature of

genomic data has led to numerous discussions around the governance of genomic records

[52, 86]. Currently, policy and advisory groups recommend removing identifying informa-

tion (e.g., personal names) to uphold the privacy of study participants [102, 130].

Yet, the efficacy of such protections is increasingly being questioned [132]. Various

studies demonstrate that the identity of participants, as well as sensitive information (such

as disease status) can still be inferred from the shared genomic data [59, 95, 69, 78, 134,

77]. This can occur by leveraging an individual’s genome sequence or the study summary

statistics about associations, such as (genotype) allele frequencies and association effect

sizes that would be used in meta-analysis. Most recently, it was shown that an individual’s

identity could be ascertained through Y-chromosome short tandem repeats (Y-STRs) using

public genealogy databases on the internet [59]. Inference attacks on genetic privacy have

already raised serious concerns from scientists, policy makers, and the general public. They

have also led to reduced sharing of genome sequences and site-level summary statistics. For

instance, based on [69], the NIH and Wellcome Trust stopped sharing aggregate genomic

data directly to the public [167]. These demonstrations have also influenced proposed

regulations such as [44, 45], some of which would designate all biospecimens and their

derived data as identifiable [143].

To address the privacy concerns on individual genomic information as well as site-level

summary statistics, we propose a practical protocol to securely perform meta-analysis of

genome-wide association studies (GWAS) in large multi-site consortia (Fig. IV.1). Our

protocol leverages cryptographically secure technology to provide provable security guar-

antees. Unlike alternative proposals [82], in our protocol, sub-study sites retain full control

of their respective individual participants’ data and local site analyses. This allows each
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site to make appropriate adjustments to effect estimates to account for study-specific dif-

ferences in design, which is pervasive in multi-site studies but not supported in [82]. Our

protocol also allows sites to contribute to meta-analysis without exposing site-level sum-

mary statistics. Such comprehensive protections make our protocol impervious to popular

privacy attacks over genomic data at both the individual- and site-level.

In this paper, we demonstrate the design and implementation of our secure meta-analysis

protocol (called SecureMA), and provide empirical evaluations with three separate multi-

site genetic association studies.

IV.2 Overview of Proposed Framework

IV.2.1 Secure Meta-analysis Protocol

The SecureMA protocol consists of two main steps: 1) Setup and 2) Secure Computation.

The Setup initializes the system by: i) generating and distributing the encryption/decryption

keys, ii) encrypting association statistics locally at each study site, and iii) submitting the

data encryptions to the data managers (e.g., coordination centers in practice). The Secure

Computation step securely performs meta-analysis over the encrypted submissions of site-

level association statistics (Fig. IV.1).

IV.2.2 Setup Step of the Protocol

To setup the process, a one-time step for generating and disseminating the encryption/de-

cryption keys is coordinated by a trusted authority who is not involved in any data manage-

ment or computations (Fig. IV.2).1 For protection purposes, the decryption key is then split

into multiple shares and distributed across the participants of the protocol, as described

below. By doing so, to successfully decrypt data, collaboration is required between the

majority of key holders. As detailed in Section IV.4, the splitting of the key enforces an

“honest-majority” to mitigate collusion for illicit decryption.

1Following standard practice in security for cryptographic systems, this authority generates keys and has
no further interaction with any of the participants involved in SecureMA.
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Optionally, to make the protocol more practical, several intermediate parties, which

we call Data Managers, can be setup to host the (encrypted aggregate) data on behalf of

the local sites. Following this scheme, the local sites submit encryptions of their study

summary statistics (e.g., effect size and the inverse of its variance) to their entrusted data

managers and can then go offline. In doing so, one manager can coordinate for several local

sites, such that only a limited number of online participants are required for the protocol to

proceed. And, as mentioned, enforcing an honest majority ensures no manager alone can

decrypt the data. Further details on this management model can be found in Section IV.4.

IV.2.3 Secure Computation Step of the Protocol

When a scientist issues a study inquiry to the system, encryptions of site-level association

statistics are requested from the data managers and then provided to a third party respon-

sible for coordination and computation - the Mediator - who securely sums the encrypted

submissions (Fig. IV.1a).

Next, the mediator coordinates with one randomly selected data manager to perform

a secure division to derive the weighted average, the last operation of meta-analysis (Fig.

IV.1b; details in Section IV.4.2.1).

At this point, the meta-analysis result is still in an encrypted state. The mediator is then

responsible for initiating a final round of collaborative decryption by distributing the en-

crypted result to a majority of the trusted data managers for partial decryption (Fig. IV.1c).

By collecting a sufficient number of the partially decrypted shares from the data managers,

the scientist combines them to reveal the final decryption from which the final result of

his study query would be derived. Thus, until the scientist requests the final decryption,

no individual or site-level aggregate information is ever disclosed because all information

remains encrypted throughout the protocol.

A complete activity diagram of the SecureMA protocol is provided in Fig. IV.3.
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(a) Secure summation

(b) Secure division (c) Result description

Figure IV.1: The SecureMA protocol (secure computation step). (a) The process begins
when a scientist submits a meta-analysis study inquiry. Each data manager in the study
submits encrypted local statistics (e.g., effect size and the inverse of its variance) to the
Mediator for secure summation. (b) The Mediator then coordinates with one random data
manager to securely divide the numerator by the denominator of the meta-analysis function.
(c) The results of the meta-analysis are partially decrypted by the data managers, which
are composed into the final full decryption of the meta-analysis p-value at the scientist’s
computer.
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IV.3 SecureMA for privacy-preserving meta-analysis

IV.3.1 Meta-analysis

Meta-analysis [66] is a statistical technique widely-used in genetic association studies for

synthesizing study results from across consortia in order to obtain larger sample sizes and

gain statistical power. In this work, we focus on the fixed-effects model to perform meta-

analysis [152], which yields a weighted average of the effect size (e.g., beta coefficient)

using the inverse of its variance as the weight:

Z = β/se =
∑i βiwi

∑i wi

/√ 1
∑i wi

= ∑
i

βiwi

/√
∑

i
wi , (IV.1)

where β is the aggregated effect size, se is the aggregated standard error, βi is the effect

size of an association for the ith sub-study (i.e., site contributing data to the meta-analysis),

weight wi = 1/se2
i , and sei corresponds to the standard error of the effect for the ith sub-

study.

IV.3.2 Secure Computation of Meta-analysis

To enable direct computation in a cryptographic setting, we square Equation IV.1 (i.e., Z2)

(Section IV.4.2.1). The final square root and conversion from Z-score to p-value is per-

formed by software running on the computer of the scientist who issued the meta-analysis

request.

For reference, the core (secure) computations for the proposed SecureMA protocol are

summarized in Table IV.1. For each meta-analysis study, the mediator requests and re-

ceives encryptions of site-level association summaries (denoted as E(βiwi), E(wi)) from

the data managers. Then, the mediator leverages the secure summation sub-protocol ADD

(Section IV.4.7) to compute the sums in the numerator and denominator of Equation IV.1

without decryption (resulting in encryptions: E(∑
i

βiwi) and E(∑
i

wi)).

The final step of meta-analysis involves a division operation (for deriving the weighted

average of effect size), where in our case, both the numerator and the denominator are
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Table IV.1: The core variables and computations for SecureMA.

Notations
βi – effect size estimate for sub-study i
wi – weight term for sub-study i
E() – encrypted data or secure computation

Inputs
E(βiwi) – encrypted statistic for sub-study i
E(wi) – encrypted statistic for sub-study i

Intermediate Computations

Summations: E(∑
i

βiwi), E(∑
i

wi)

Logarithms: E(ln∑
i

βiwi),E(ln∑
i

wi)

E(lnZ2) = E(2ln∑
i

βiwi− ln∑
i

wi)

Decrypt E(lnZ2) to obtain lnZ2

Overall Z-Score Z =
√

exp(lnZ2)

Overall P-value P = 2Φ(−|Z|)

encrypted. There is no efficient method for directly computing the division of two en-

cryptions. Thus, we convert it into a subtraction problem which is easier to implement in

cryptography, by applying a logarithmic transformation on the squared Equation IV.1 (e.g.,

Z2):

lnZ2 = 2ln∑
i

βiwi− ln∑
i

wi (IV.2)

The logarithmic transformation, lnx (where x is encrypted), is approximated using se-

cure computation techniques and a Taylor series (Section IV.4.8). The result from this step

is still in an encrypted form.

Next, secure sub-protocols for multiplication-by-constant and subtraction (e.g., the

MULC and SUB sub-protocols in Section IV.4.7) are utilized to complete the rest of the

operations in Equation IV.2, yielding encryption E(lnZ2). The final Z2 can be obtained by

decrypting and computing the exponential operation at the study inquiry issuer’s site.

IV.4 Technical Details and Secure Implementation

Here we provide technical details regarding the implementation of our proposed system.

Section IV.4.1 provides additional figures to complement the description of the SecureMA
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protocol. Section IV.4.2 introduces the details of the meta-analysis and the specific work-

flows associated with SecureMA. Section IV.4.3 provides additional experiments on the

computational accuracy by controlling for tunable parameters associated with the protocol.

Finally, Section IV.4.4 describes SecureMA in greater detail, while covering the specific

technical aspects regarding how each computation is securely performed to support meta-

analysis.

IV.4.1 Cryptographic Key Management and Secure Workfkow

This section provides additional figures to describe the SecureMA protocol in greater detail.

Specifically, Fig. IV.2 illustrates the Setup step around cryptographic keys in the proto-

col (Section IV.2.2). We emphasize that, as illustrated later in Fig. IV.3, the Key Manager

who facilitates key generation and distribution is isolated from the rest of the SecureMA

system and thus has no access to any data or computations. In practice, this role could be

played by a semi-trusted third-party, who is outside the set of participants. For instance,

the role could be assumed by a neutral organization with a good reputation in key manage-

ment, a trustworthy computing module, or even a virtual party representing a distributed

and secure mechanism for key generation among many protocol participants [85].

Fig. IV.3 presents the complete activity diagram of SecureMA in sequential order,

including the Setup and Secure Computation steps (Section IV.2).

IV.4.2 Meta-analysis and Protocol Participants

Here, we provide additional details regarding the computation of meta-analysis, as well as

the specific workflow of SecureMA.

IV.4.2.1 Meta-analysis of Genome-wide Association Studies

To simplify and increase secure computational efficiency, we try to avoid the expensive se-

cure square root operation (in the denominator of meta-analysis equation). To do so without

affecting the final output, we square aforementioned Equation IV.1 for easier implementa-
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Figure IV.2: During the Setup step of the SecureMA protocol, encryption/decryption keys
are generated and distributed. The public key (for encryption) is broadcast to the mediator
and local sites, while the private key (for decryption) is split into secret shares (SK1, ...,
SKK) which are securely transmitted to the respective data managers.

tion:

Z2 = (∑
i

βiwi)
2
/

∑
i

wi , (IV.3)

where the final square root, as well as conversion from Z-score to p-value, of the result

of the meta-analysis is performed by the software running on the computer of the scientist

issuing the inquiry.

IV.4.2.2 Protocol Participants

The major participants of the secure meta-analysis protocol and their roles are summarized

below:

• A Scientist (e.g., genomicist) issues meta-analysis queries to the protocol and re-

ceives the encrypted final results which only he can fully decrypt.

• The Local Sites are the individual sites who collect genomic and phenotypic data, as

well as conduct their local association studies.

• (Optional) The Data Managers (e.g., coordination centers in practice) manage the

(encrypted) genomic information on behalf of local sites. This optional optimiza-
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Public key

Public key

Share m of private key

Share n of private key

E(wi), E(wiβi)

E(wj), E(wjβj)

Study inquiry
E(wi), E(wiβi)

E(wj), E(wjβj)

Secure summation

Secure division

Secure division

E(result)

E(result)

Partial decryption m of E(result)

Partial decryption n of E(result)

Full decryption: D(result)

Scientist:

Mediator Data Manager m Data Manager n Local Sites: Key Manager

Key distribution

Site statistic submission

Secure computations

Study inquiry

Decryption of result

Figure IV.3: The activity diagram of the SecureMA protocol. Denoted in gray boxes is the
one-time Setup step covering key distribution and submission of encrypted site statistics.
In a typical running, a scientist issues a study inquiry to start the protocol, and obtains the
study result in the end. In the figure, E(data) and D(data) correspond to the encryption
and decryption of data, respectively. There can be multiple local sites and data managers.
The key manager is isolated from the rest of the system and his only involvement is key
generation and distribution.
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tion makes the protocol more practical by supporting meta-analysis while reducing

the number of participants required at runtime (e.g., one manager can delegate mul-

tiple local sites). The data managers only have limited decryption capabilities, as

introduced later.

• The Mediator computes the secure meta-analysis equations and responds to the sci-

entist’s queries with encrypted results.

IV.4.3 Computational Accuracy in a Controlled Setting

As mentioned earlier, the secure computation results were close to the “true” association

values (from the original publications), but not perfect. We note that in replication studies,

it is not uncommon for there to be minor variability in the statistical routines performed.

Thus, to present a more controlled evaluation on the computational accuracy, we performed

additional comparisons with a non-secure meta-analysis as the baseline (i.e., results taken

directly from the widely-used METAL software [152] instead of using the reported results

from their original studies).

The comparisons are reported as QQ-plots on a negative logarithmic scale (Fig. IV.4).

It can be seen that our secure results are extremely close to the non-secure results. Specif-

ically, a linear regression with the y-intercept forced to zero, yielded both a slope and

correlation coefficient of ∼1.000 for all three datasets. These results lend further evidence

that our SecureMA protocol is accurate.

IV.4.4 Details on Securely Computing Meta-analysis

Here we provide the technical details regarding the various sub-protocols underpinning the

secure meta-analysis computation.

IV.4.5 SHARES: Converting Encryptions to Secret Shares

The secure logarithm protocol (a step of secure division) introduced later in Section IV.4.8

requires inputs to be in the form of secret shares, while all data in our protocol are en-
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Figure IV.4: A controlled comparison of the P-values derived from a non-secure and secure
meta-analysis protocol. These results are based on (a) 100 SNPs from eMERGE, (b) 40
SNPs from PAGE, and (c) 216 SNPs from EAGLE.
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crypted using the Paillier crypto-system. We propose the following SHARES sub-protocol

to convert Paillier encryptions into two-party secret shares (i.e., two participants collabo-

ratively keep the secret). Given an encryption E(x), the goal is to find two random values

x1 and x2 (to be held by two participants respectively), such that x1 + x2 = x. These val-

ues are randomized to ensure it is not possible to predict the value of one from the other.

This is accomplished as follows. First, a data manager generates a random value rand to

obfuscate the given (encrypted) value E(x) by computing E(x+ rand) (via the secure sum-

mation sub-protocol ADD introduced later). The resulting encryption E(x+ rand) is then

transmitted to the mediator. Later, a decryption process helps obtain the mediator’s data

share x2 = x+ rand, while the data manager holds his share x1 =−rand.

IV.4.6 Garbled Circuits for Secure Division

In our protocol, we leverage Yao’s garbled circuit [164] to perform part of the secure di-

vision operation introduced below. As introduced in earlier (Chapter II), this approach

allows two participants to collaboratively evaluate an arbitrary function on their individual

data without disclosing anything other than the final output. This is enabled by implement-

ing the function to compute as a binary circuit and the security is achieved by randomizing

(garbling) the data in the circuit. We design our own function circuits and enhance the

low-level FastGC framework [70] for execution. Our garbled circuit software is released

open-source [157].

IV.4.7 Secure Arithmetic Operations

The Paillier crypto-system supports secure summation through an additive homomorphic

property. The secure addition sub-protocol, ADD, is defined as follows: given two mes-

sages m1,m2 (and n being the Paillier field size), the encryption of sum (m1 +m2) can be

computed as:

E(m1 +m2) = E(m1) ·E(m2) mod n2
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It is also straightforward to implement multiplication of an encrypted value by a known

constant in the Paillier crypto-system. The multiplication-by-a-constant sub-protocol (MULC)

proceeds as follows. Suppose we are provided with encryption E(m) of message m and

need to compute E(k ·m), where k is a known constant. This can be accomplished by

computing:

E(k ·m) = (E(m))k mod n2

Secure subtraction (SUB sub-protocol) can be achieved by taking advantage of the

multiplication-by-constant and addition protocols described above. In brief, given two

encryptions E(m1),E(m2), we can compute the subtraction as:

E(m1−m2) = ADD(E(m1), MULC(E(m2),−1))

It can further be observed in Equation IV.3 that a meta-analysis requires the final divi-

sion of a numerator by a denominator. However, there is no existing protocol for directly

computing the division of two Paillier-encrypted numbers. We therefore choose to convert

the division operation (denoted as DIV sub-protocol) into a subtraction problem using a

secure logarithmic transformation. For simplicity, we denote: a = ∑
i

βiwi and b = ∑
i

wi. Via

the logarithmic transformation, the goal in Equation IV.3 becomes:

lnZ2 = ln
a2

b
= 2lna− lnb (IV.4)

We leverage the secure logarithm sub-protocol described below (Section IV.4.8) to com-

pute lna and lnb for the transformed division operation. The final Z2 can be easily derived

by taking the exponential, exp(.), on the final subtraction result.

IV.4.8 Secure Logarithmic Transformation

As described earlier, secure logarithmic transformation is utilized in our protocol to per-

form the division operation. Our lnx transformation builds upon the secure ln(x) sub-
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protocol in ([96]). Given input x, which is composed of secret shares x1 and x2 from two

participants (following the SHARES sub-protocol), a two-phase process is applied to ap-

proximate the logarithm and output two secret shares of the result.

More specifically, x is approximated by 2y, with a relative error of ε :

lnx = ln(2y(1+ ε)) = y ln2+ ln(1+ ε) (IV.5)

Based on this representation, approximating lnx requires securely computing the two

terms in Equation IV.5, which is facilitated by the two-phase process described below.

IV.4.8.1 Logarithm Phase 1: Rough Estimate via Garbled Circuits

In the first phase, lnx is approximated by 2y using a garbled circuit evaluation to protect

sensitive data. The output of this phase contains two portions, γ and α , each of which

is composed of two secret shares obfuscated to prevent disclosure and is scaled up (i.e.,

multiplied by a power of 2 and truncated) to avoid numbers with decimals and use only

integers:

γtrue + γrand = 2N · y ln2 (IV.6)

αtrue +αrand = 2N · ε (IV.7)

Equation IV.6 approximates the first term in Equation IV.5, which is a rough estimate of

lnx. The terms are scaled up to avoid decimal values because the computation is performed

over encrypted data, which requires the operands to be integers. Here, the term 2N is as a

scaling factor, where N is the upper bound for the exponent estimate y.

Equation IV.7 denotes the scaled relative error of the approximation, and will be applied

in the next phase to boost the accuracy of approximating Equation IV.5.

Since a garbled circuit evaluation involves two participants and no meaningful informa-

tion should be disclosed to any single participant, we adopt random values γrand and αrand

contributed by one of the two participants in the computation for proper protection.
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At the end of this process, one participant will hold αrand and γrand , while a second

participant will be in possession of αtrue and γtrue, as illustrated in Equations IV.6 and IV.7.

IV.4.8.2 Logarithm Phase 2: Refined Estimate via Taylor Series

In the second phase, we further refine our lnx approximation by estimating the second term

in Equation IV.5. This is accomplished via an oblivious polynomial evaluation ([117]), such

that a secure polynomial from one participant is computed on the data contributed by the

other participant without disclosing additional information. To perform the approximation,

ε is substituted with αtrue+αrand
2N (derived from Equation IV.7). Next, we apply the following

Taylor series (with proper scaling up to avoid fractional values):

ln(1+ ε) ·2Nklcm(2, ...,k)≈
k

∑
i=1

(−1)i−12N(k−i) · lcm(2, ...,k)
i

· (αtrue +αrand)
i (IV.8)

The polynomial on the right side (denoted as Q(αtrue)) will be expanded and evaluated

leveraging our MULC and ADD sub-protocols. The result at this point is still encrypted.

IV.4.8.3 Result Assembly for Logarithm

Based on the results from the previous two phases, the final result of ln(x) is obtained

through an assembly process. First, the γ’s in Equation IV.7 are scaled up by a factor

2N(k−1)lcm(2, ..,k):

(γrand + γtrue) ·2N(k−1)lcm(2, . . . ,k) = y ln2×2Nklcm(2, . . . ,k) (IV.9)

Next, the scaled γ’s are encrypted and securely summed via Equations IV.9 and IV.8:

E((ln(1+ ε)+ y ln2) ·2Nklcm(2, . . . ,k))

≈ E(lnx ·2Nklcm(2, . . . ,k))
(IV.10)

After obtaining the encryptions of scaled-up lna and lnb, we can compute the scaled-
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up E(lnZ2) via Equation IV.4. The final Z-score (in decimal) can easily be derived after

decryption and scaling the result back down. And the desired p-value can be obtained

following the instruction in Section IV.4.2.1.

IV.5 Results

We implemented the SecureMA protocol in working software and released it open-source.

To demonstrate its feasibility and practicality, we reproduced three multi-site genetic as-

sociation meta-analyses. For the purposes of evaluation, we focus on the efficacy of pro-

tecting participant privacy, the computational accuracy, the running time efficiency and the

sensitivity to certain protocol parameterizations.

IV.5.1 Study Data

While details of some datasets for evaluation have been introduced earlier (Section II.1).

Here we re-state related information for completeness.

IV.5.1.1 The eMERGE hypothyroidism study.

The first collection of datasets is from a GWAS on hypothyroidism provided by the eMERGE

consortia [36]. It consists of 6,370 study participants across five study sites, and for eval-

uation we analyzed 100 single nucleotide polymorphisms (SNPs) – these include the 16

statistically significant SNPs (p < 10−6) reported in their original study and an additional

84 random SNPs for running time efficiency analysis (Section II.1). Local-site studies were

adjusted for birth decade and sex following the approach described in [36].

IV.5.1.2 The PAGE obesity study.

The second collection of datasets is from a genetic association study on obesity and body

mass index provided by the PAGE consortia [49]. It consists of 53,238 participants across

six study sites, and for evaluation we analyzed 40 SNPs – these include the 25 statistically

significant SNPs (p < 0.05) as identified by their original study, and an additional 15 SNPs
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(Section II.1). Local-site studies were completed following the processing procedures de-

scribed in [49].

IV.5.1.3 The EAGLE diabetes study.

The third collection of datasets is from a genetic association study on Type II Diabetes

provided by the EAGLE group [60]. It contains 14,998 participants across two sub-studies

and we analyzed 216 SNPs. The published study did not report p-values for all SNPs and,

thus, for comparison, we only focus on a controlled benchmark using the standard non-

secure meta-analysis as the baseline (reported in Section II.1) and running time analysis.

IV.5.2 Protection of Sensitive Information

Throughout the SecureMA protocol, the privacy of the genomic records of the individual

participants is ensured. This is because the records are maintained solely at their respective

local sites and are never disclosed. This resolves privacy concerns over individual genome

sequences (e.g., no risk of unique identifiability based on the uniqueness of SNPs as posed

by [95]).

Moreover, site-level summaries (e.g., association study statistics of each local site) are

protected via strong encryption throughout the process. And the final meta-analysis results

(limited to aggregate p-values only) are only made known to the inquiry issuer. Such pro-

tections make it impossible to perform inference attacks based on group statistics or allele

frequencies or regression coefficients; which are features relied upon in various attacks;

e.g., [69, 78, 134, 77].

IV.5.3 Accuracy of GWAS Meta-analysis Results

We compared the accuracy of our secure computations with those reported by the original

studies associated with these datasets [36, 49] (EAGLE is excluded from comparison due

to lack of published p-values as baseline). These results are summarized as QQ-plots of

the SNP association p-values on a negative logarithmic scale (Fig. IV.5). The plots for
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the eMERGE and PAGE genotype-phenotype summary statistics correspond to the 16 and

25 SNPs, respectively, that were reported as significant in the publications. To compare

the secure and non-secure estimates of the p-values, we applied a linear regression with

the y-intercept forced to zero. The Pearson correlation coefficient was found to be ∼0.998

and ∼1.000 for eMERGE and PAGE, respectively, implying that the secure meta-analysis

yielded results directly in line with those in the original publications. The regression slopes

for the PAGE and eMERGE datasets were 1.001 and 0.952 respectively, and in both cases

the rank order of the significance of the SNPs was retained. These results illustrate that the

secure and non-secure meta-analysis approaches produce highly consistent results.

We noticed that certain original studies utilized different analysis methods (e.g., pooled

analysis instead of meta-analysis) and additional data processing, which may introduce

replication discrepancy. We thus performed additional controlled experiments with the

standard non-secure meta-analysis as the baseline (i.e., we used the METAL software [152]

to compute significance). The findings indicate our secure results are accurate, yielding

both a slope and correlation coefficient of ∼1.000 for all datasets evaluated (Fig. IV.5c and

Fig. IV.4).

Overall, these results demonstrate our secure protocol supports genetic association stud-

ies with high accuracy. Further details on how to achieve even greater accuracy can be

found in the sensitivity analysis (Section IV.5.5).

IV.5.4 Running time Efficiency

To evaluate the running time of the protocol, we performed a series of experiments on a

desktop computer (2.4 GHz dual-core, 4 GB memory) running Java 1.7. We simulated the

different participants of the protocol using separate system processes. All experiments were

performed without parallelization to mitigate interference in the measurement of running

time.

On average, the secure meta-analysis for most SNPs completed in 1.20 to 1.34 seconds
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Figure IV.5: Protocol accuracy. The correlation plots correspond to: (a) the p-values (se-
cure protocol vs. original publication) based on the 16 SNPs from eMERGE; (b) the
p-values (secure protocol vs. original publication) based on the 25 SNP-ethnicity pairs
from PAGE (all SNPs annotated correspond to one ethnicity sub-population, except for
rs6548238’, which corresponds to another); and (c) the p-values (secure protocol vs.
standard non-secure meta-analysis) based on a controlled comparison of 100 SNPs from
eMERGE).
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(with a standard deviation ≤ 0.024 seconds) and no SNP required more than 1.38 seconds

(Table IV.2). In comparison to the eMERGE and PAGE datasets, the EAGLE study con-

sumed slightly more time, due to the fact that EAGLE consists of much larger numeric

values which leads to longer processing time.

Table IV.2: Per-SNP running time for SecureMA and the proportion of the time dedicated
to the secure division process (mean and standard deviation in seconds).

Dataset Total Division Sub-step Proportion of Division
eMERGE 1.2028 (0.0169) 1.2017 (0.0169) 0.9991 (0.0002)

PAGE 1.2148 (0.0239) 1.2136 (0.0240) 0.9990 (0.0005)
EAGLE 1.3427 (0.0164) 1.3423 (0.0165) 0.9997 (0.0003)

IV.5.4.1 Sample size.

It is important to recognize that the running time of our protocol is weakly dependent on the

number of study participants in the study (i.e., sample sizes), because the secure computa-

tions only occur on site-level summaries2. This implies that our protocol can be efficient

even in studies with very large sample sizes, which is common for GWAS in large consor-

tia.

IV.5.4.2 Number of sites.

We also point out that the majority of the computation time is dedicated to the secure

division of the meta-analysis (more than 99.9%), as opposed to other computations such as

secure summation (Table IV.2). This indicates the protocol is scalable to a large number

of data-contributing sites. Specifically, the division operation only involves the mediator

and one other participant, and thus its running time is not dependent on the number of

sites. While the running time of other computations (e.g., secure summation) may increase

linearly with the number of sites, its overall running time (and increase) is negligible.

2Individual participant records are used by sites only for their local analyses. These are computed without
encryption and, thus, the running time is negligible when compared to secure computations.
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To demonstrate the scalability of our technology for large consortia, we randomly se-

lected sites from the eMERGE dataset to simulate environments consisting of up to 100

data-contributing sites (e.g., data managers participating in the protocol). For each setting,

we computed a meta-analysis for 100 SNPs (Fig. IV.6). We illustrate that even when the

protocol is composed of 100 sites, the time to complete the computation is around 1.22

seconds, which is approximately the same as the initial case studies.
0
.0

0
.4

0
.8

1
.2

# of sites

R
u
n
n
in

g
 t
im

e
 (

d
iv

is
io

n
)

R
u
n
n
in

g
 t
im

e
 (

s
u
m

m
a
ti
o
n
)

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

secure division

secure summation

2 5 10 20 100

Figure IV.6: Average running time of SecureMA, per SNP, as a function of the number of
sites providing data (all times reported in seconds).

IV.5.5 Sensitivity Analysis

The SecureMA protocol incorporates several tunable parameters to allow users to tune the

computational accuracy and running time efficiency as necessary. These are introduced

because neither decimal values, nor division over encryptions, are directly supported in

cryptographic protocols. Here we demonstrate their impact both theoretically and empiri-
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cally (Section IV.4.4 provides further details on these tunable parameters).

IV.5.5.1 Parameters Influencing Protocol Sensitivity.

There are three primary parameters that influence the accuracy and running time of the

SecureMA protocol. These parameters were introduced due to a series of transformations

and approximations to the square of Equation IV.1.

The first parameter corresponds to a scale-up factor 10s, where the scale s is defined

a priori by protocol participants. This is multiplied against every value submitted by the

local sites. In doing so, every value is converted from a decimal to an integer.

The next two parameters are associated with the approximation of secure division,

which relies on the secure logarithmic transformation (Equation IV.2). Briefly, lnx can

be approximated as follows:

ln x≈ y ln 2×2Nk · lcm(2, . . . ,k)
2Nk · lcm(2, . . . ,k)

+

k
∑

i=1
(−1)i−12N(k−i) · lcm(2,...,k)

i · (αtrue +αrand)
i

2Nk · lcm(2, . . . ,k)
,

(IV.11)

where integer y is a rough estimate of the exponent such that 2y ≈ x, and additional terms

such as 2Nk and lcm(2, . . . ,k) are for scaling purposes. The first term on the right side of

Equation IV.11 obtains a rough estimate of lnx while the second term refines the previous

approximation using a Taylor series.

Based on the above function, the second tunable parameter corresponds to the max-

imum exponent (i.e., N, or the upper bound of exponent estimate y) required to roughly

estimate lnx. And, the third tunable parameter corresponds to the number of expansions

(i.e., k) to perform in a Taylor series when refining the accuracy of approximating lnx.

For evaluation purposes, we randomly selected five significant and five non-significant

SNPs from the eMERGE dataset to execute a series of secure meta-analyses.
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Figure IV.7: Impact of the scale-up factor on (a) computational accuracy; (b) running time
efficiency. Results are based on the 10 SNPs from the eMERGE dataset (mean +/- one
standard deviation).

IV.5.5.2 Evaluation of the Scale-up Factor.

As mentioned, the scale-up factor 10s is used to convert decimal values into integers. Larger

factors result in the truncation of a fewer number of trailing digits and, thus, a smaller

amount of information loss during computation.

Fig. IV.7 depicts how the computational error and the overall running time, respectively,

of the secure meta-analysis are influenced as the factor is varied from 104 to 1016. For

context, SecureMA uses a default value of 108.

In Fig. IV.7a), it can be seen that, in general, the computational error of the p-value de-

creases (approaching 0) as the scale-up factor increases. Overall, the absolute and relative

errors are always bounded within the range [−3.0×10−5, 8.2×10−6] and [−0.03%, 0.01%]

respectively. However, we note there are several outlying points in the graph, such as at

106 and 109. We note that these occur because, at times, the error of the two logarithms in

Equation IV.2 diverge in opposite directions, which results in a magnification of the total

error.
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Nonetheless, in Fig. IV.7b) it can be seen that the variance of the overall running time

is relatively small as the scale-up factor increases. This is an expected result because the

change of the scale-up factor has limited influence on the secure division operation, which

is the most time-consuming process in the protocol.

IV.5.5.3 Evaluation of the Maximum Exponent of the Logarithm Approximation.

The secure logarithmic transformation (i.e., lnx where x is encrypted) involves two phases

to the approximation. The first phase aims to find an optimal integer exponent to roughly

estimate the number x. The maximum exponent we analyze in this section corresponds to

the upper bound for the exponent estimate. The second step corresponds to the application

of a Taylor series, which we discuss in further depth below.

Fig. IV.8 shows how the computational error and the overall running time, respectively

of the secure meta-analysis (per SNP) are affected as the exponent varies from 64 to 96.

For context, SecureMA uses a default value of 80.

It was expected that a larger exponent would yield better approximation accuracy, with

a trade-off in a longer running time. It is confirmed that the overall running time changes

almost linearly with the increase of the maximum exponent (Fig. IV.8b). However, it

can be seen that the computational accuracy is almost identical across all test cases (Fig.

IV.8a). This is because, in this particular scenario, the other two protocol parameters are

the dominating factors regarding computational accuracy.

IV.5.5.4 Evaluation of the Number of Steps in the Taylor Series.

A Taylor series is applied in the second phase of the secure logarithm sub-protocol to boost

the approximation accuracy. Fig. IV.9 shows how the computational error and the overall

running time, respectively, of the secure meta-analysis is affected as the number of steps in

the series varies from 6 to 12. For context, SecureMA uses a default value of 10.

Fig. IV.9a illustrates that the more steps in the Taylor series, the better the computa-

tional accuracy is on average. Fig. IV.9b further demonstrates that there is a slight linear
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Figure IV.8: The impact of the maximum exponent on (a) computational accuracy and (b)
running time efficiency. The results are based on 10 SNPs from the eMERGE dataset (mean
+/- one standard deviation).

increase in the running time as the number of steps in the Taylor series grows. This result

stems from the fact that the number of terms required to compute in secure computation is

increasing, which causes a longer running time.

IV.6 Discussion

IV.6.1 Analysis on GWAS Scale

As discussed earlier, one of the benefits of the SecureMA protocol is that its running time

has only a weak dependence on the sample size. As a result, it can be efficient for studies

run over very large consortia. This is a notable improvement over alternative cryptographic

proposals such as [83, 82] whose running time is positively correlated, in a linear and

sometimes exponential manner, with the number of study participants and sites.

At the same time, the SecureMA protocol can be made more efficient to support anal-

ysis on a genome-wide scale (e.g., millions of association tests). First, the SecureMA pro-

tocol can easily be run in parallel on large computer clusters or cloud computing servers
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Figure IV.9: The impact of the number of steps in the Taylor series (i.e., k in Equation
IV.11) on (a) computational accuracy and (b) running time efficiency. The results are based
on 10 SNPs from the eMERGE dataset (mean +/- one standard deviation).

because each SNP can be analyzed independently. Thus the total computation time for a

large-scale GWAS would be inversely proportional to the computing resources allocated.

As a rough estimate, a GWAS on 2,000,000 SNPs would require around 10 hours on six-

teen 8-core computers without further optimization. Second, from a scientific perspective,

it might be permissible to disclose the aggregate effect size of meta-analysis (i.e., the nu-

merator in Equation IV.1). In such a scenario, the time-consuming secure division opera-

tion could be avoided entirely, reducing the overall running time per SNP to milliseconds.

Third, recent advances in the optimization of secure computations such as [8, 67] may be

ready to transition into practice in the near future. This could allow for certain SecureMA

sub-protocols, such as secure division, to be run on parallel computing frameworks and

make significant gains in efficiency.
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IV.6.2 Limitations

There are several limitations to the SecureMA protocol as currently designed. First, Se-

cureMA assumes that study data has already been carefully cleaned and subject to rigorous

quality control (QC) (e.g., deposited data in dbGaP [106]). To support more dirty data in the

wild, it will be necessary to embed QC processes for meta-analysis in the protocol [153].

Certain procedures may be vulnerable to attacks on privacy, but those which are based on

standard algebraic computations should be translatable into secure computations. At the

same time, it should be noted that many procedures can be directly applied in the clear

because they do not violate privacy (e.g., file-level QC and SE-N plots in [153]). Since QC

is a relatively independent and large pipeline, we leave it for future disucssion in a separate

chapter (Chapter III).

Second, the current SecureMA implementation relies on a trusted authority to generate

cryptographic keys, which sometimes may not be desirable (alternative solutions are in

Section IV.4.1).

Third, in situations when individual-level genomic records need to be processed, it will

be necessary to pair secure data management technologies with effective societal controls

(e.g., use agreements and mandated limits on investigator behavior) that deter misuse and

limit the extent to which genomic information can be abused and cause harm to people

(e.g., expansion of laws to prevent utilization of genomic data in life insurance eligibility

and support for long term care [6]).

IV.6.3 Alternative Methods to Maintain Genomic Privacy

To provide context for the contributions of the SecureMA protocol, we take a moment to

review other recent developments in the field. There are generally two categories of data

protection mechanisms that have been proposed to maintain participant privacy while sup-

porting scientific investigations on genomic data. From a societal and regulatory perspec-

tive, it has been suggested that research participants consent to the risk of being re-identified
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[105] (which may bias participant recruitment), while users of such data contractually agree

not to attempt to re-identify the participants [141]. We believe such mechanisms can lower

risk and, while data use agreements assign liability, they do not provide any technological

deterrent and can only be enforced when violations could be detected.

On the other hand, various technological techniques have been proposed to promise ge-

nomic privacy. These include encrypting genomic sequences and supporting simple queries

[83], obfuscating raw (short) genome sequences and allowing for retrieval [9], splitting

regression analyses into local-site computations and center-level aggregation [154], and

hosting participant-level genomic data using a cryptographic technique and facilitating ge-

netic association studies [82]. The two approaches most similar to ours are hampered

by practical limitations. First, the work [154] may leak sensitive information because lo-

cal sites inappropriately disclose intermediate summary statistics during computation [41];

The other recent proposal [82] fails to account for site-specific covariates and other data

preprocessing within sites, which is a common practice for multi-site genetic association

studies. Their solution may also suffer from computational scalability and network com-

munications issues in studies with large sample sizes because all individual genomic data

must pass through, and be analyzed by, every server.

IV.6.4 Conclusion

This work illustrates that the privacy of individual participants, and site-level summary

statistics, in genetic association meta-analysis can be guaranteed without sacrificing the

ability to perform analysis that use shared data. Our proposal, SecureMA, is useful for

running joint studies over disparate data sites in large consortia, where privacy or confi-

dentiality is a concern. If appropriately implemented, our approach can prevent privacy

intrusions posed by the attacks published to date. While there are opportunities to make

this protocol more efficient and to incorporate quality control measures, we believe it is

possible to enable much broader analytic access to genomic data for the purposes of effect
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estimation and statistical association via meta-analysis.
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CHAPTER V

Privacy-preserving Regression Analysis and Efficiency Optimizations in Distributed

Collaborative Studies

The previous chapters mainly focused on the privacy risk and protection of genomic data

and several classical statistical methods. In the following chapters, we expand our scope,

and focus on more general methods of statistics and machine learning which are increas-

ingly popular in scientific research. Such models are the foundation of many scientific

disciplines, including genomics and biomedicine in general [94, 27, 170, 25, 166], social

sciences [165], and physical sciences [26].

Among these, regression analysis is perhaps the most utilized statistical and machine

learning methods in various domains. Representative tasks include linear and logistic re-

gression [20, 149, 155], feature selection and regularization, and so on. It is increasing

popular to conduct collaborative regression studies among disparate or federated organi-

zations, by collectively aggregating large sample sizes and reaching reliable conclusions

[87, 159, 63]. However, to enable and coordinate such multi-institution collaborative stud-

ies, serious privacy concerns around human subject data remain one of the biggest hurdles

[124, 40, 64, 122]. This subfield is often referred to as privacy-preserving distributed ma-

chine learning or data mining, or secure federated machine learning [87].

Without loss of generalization, this chapter focuses on (regularized) logistic regression,

a representative and relatively complex regression model with wide adoption in practice. It

is also straightforward to extend our work to the generalized linear models (GLM) or apply

to simpler models such as linear (ridge) regression.

We tackle this challenge of safeguarding collaborative regression analysis on two fun-

damental aspects: privacy/security protection and computational efficiency. In particular,

• We propose a secure and efficient framework for privacy-preserving regularized lo-
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gistic regression (Section V.1) [93]. This safeguards a novel application that has not

been addressed before and also provides the first practical secure implementation for

logistic regression.

• We propose to tailor numerical optimization methods for privacy-preserving logistic

regression, which drastically improves computational efficiency and makes secure

protocols more practical (Section V.2) [161]. This provides a contrasting perspec-

tive and significantly differentiates with the common practices in data security and

privacy research.

• We propose a novel paradigm for privacy-preserving logistic regression, by leverag-

ing local-institution models (Section V.3) to accelerate the performance. This is a

different approach than the traditional distributed machine learning-based formula-

tion common in the community.

The approaches we propose here are generic and widely applicable to privacy-preserving

distributed machine learning in general.
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V.1 Safeguarding Regularized Logistic Regression

This section is based on our work [93]. My contribution in this work includes conception,

design and supervision of the study, implementation and experimental evaluation, analysis

of results, writing the manuscript and addressing reviewer comments.

As one of the most popular statistical and machine learning models, logistic regression

with regularization has found wide adoption in biomedicine, social sciences, information

technology, and so on. These domains often involve data of human subjects that are con-

tingent upon strict privacy regulations. Concerns over data privacy make it increasingly

difficult to coordinate and conduct large-scale collaborative studies, which typically rely

on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding

regularized logistic regression, a widely-used statistical model while at the same time has

not been investigated from a data security and privacy perspective. We consider a common

use scenario of multi-institution collaborative studies, such as in the form of research con-

sortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make

our privacy-enhancing solution practical, we demonstrate a non-conventional and compu-

tationally efficient method leveraging distributing computing and strong cryptography to

provide comprehensive protection over individual-level and summary data. Extensive em-

pirical evaluations on several studies validate the privacy guarantee, efficiency and scalabil-

ity of our proposal. We also discuss the practical implications of our solution for large-scale

studies and applications from various disciplines, including genetic and biomedical studies,

smart grid, and network analysis.

V.1.1 Introduction

The ever-increasing amount of data have posed significant demand for effective analyti-

cal methods to sift through them. Logistic regression and its regularized variants [150,

90] are among the most widely-used statistical models in data analysis. It has seen a

wide range of applications across various human endeavors, including genetics and ge-
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nomics (e.g., genome-wide association studies, or GWAS [147], gene-gene interaction de-

tection [128]), epidemiology (e.g., [33, 154]), social sciences [129, 88], and information

technology (e.g., computational advertising on the internet [131] and personalized recom-

mender systems [31]).

Many of the aforementioned disciplines and applications rely on huge numbers of data

records (i.e., large sample sizes) to make reliable discoveries or predictions. The scale

of data desired is often beyond the capability of any single institution, and thus depends

heavily on collaboration across different institutions through data collection, data sharing

and collaborative analysis.

However, data sharing and collaborative studies across different institutions bring about

serious privacy concerns, as most such studies involve raw data of human subjects that are

considered private and sensitive. In biomedicine, for instance, individual patient records

are highly sensitive and protected under stringent regulations such as the Health Insur-

ance Portability and Accountability Act (HIPAA) [123]; Genetic information of humans

are also deemed highly sensitive [43, 159] and partially covered by the Genetic Informa-

tion Nondiscrimination Act (GINA) [73]; in the education domain, students’ data privacy

is strictly regulated under the Family Education Rights and Privacy Act (FERPA) [32]. In

other domains, failing to respect data privacy and misuse of personal information has even

outraged users [18] and raised awareness of regulators [47], as in the case of targeted in-

ternet advertising. Meanwhile, various high-profile data breaches [1, 2] have exacerbated

the situation, damaging the credibility of centralized data hosts and analytical centers in

upholding user privacy.

A classical approach to alleviating privacy concerns is by concealing individual raw

data via artificial perturbation (e.g., k-anonymity [140] or differential privacy [38]), cryptography-

based methods (e.g., encrypting genetic data [83]), or distributed computing (e.g., private

records residing at local institutions only [159, 154]). Increasingly, such protections prove

to be insufficient, due to various privacy attacks [69, 43, 139, 124, 41] leveraging numerous

73



types of side channels (mostly aggregate information or summary statistics), such as allele

frequencies from published GWAS studies and public reference genotypes of humans, cor-

relation quantification between genetic variants in the form of linkage disequilibrium (LD),

regression coefficients or effect size estimates, p-values, and variance-covariance.

Our work here studies the data privacy issues in regularized logistic regression [90].

Regularized logistic regression is widely used in various domains, and is often the preferred

model of choice over standard logistic regression in practice [90, 10, 128, 108]. Despite its

popularity, it has received little investigation from a data privacy and security perspective.

The work in this chapter intends to bridge the gap.

Here, we focus on use scenarios where multiple disparate institutions hope to collab-

oratively perform joint regression analysis (ideally on their consolidated data collection).

However, they do not want to disclose their respective data (either individual-level or aggre-

gate information) to others due to privacy and/or confidentiality concerns. Such scenarios

are ubiquitous in large collaborations in healthcare, genetics, epidemiology, finance, net-

work analysis and so on (as we will elaborate later). Throughout our work, we assume

the widely accepted honest-but-curious adversary model [56], meaning that the adversaries

would perform computations as exactly specified, but may passively listen to and infer

knowledge from information passed between entities in the system. Specific to our focused

scenario, the adversaries may be a dishonest analysis/computation center (e.g., maybe due

to ill-intentioned employees or breached servers), or curious business competitors in the

collaborative study.

In this work, we show how to perform regularized logistic regression while preserving

data privacy. To do so, we adapt an efficient optimization method based on distributed

computing [154]. The method partitions and distributes sensitive computations such that

no (private) raw individual data need to be shared beyond their owner institutions. This

leads to better privacy protection on raw data and orders-of-magnitude efficiency gains

over a straightforward centralized implementation. In addition, we propose highly secure
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and flexible protocols to protect intermediate data and computations from model fitting of

regularized regression. These altogether lead to an efficient framework for safeguarding

regularized logistic regression which provides comprehensive privacy protection over raw

as well as intermediate data.

V.1.1.1 Contributions.

In summary, we consider our contributions to be three-fold:

• Firstly, we demonstrate that regularized logistic regression can be supported effi-

ciently without violating privacy. As mentioned earlier, regularized logistic regres-

sion is widely used in practice and enjoys continued investigation from a method-

ological and computational perspective, yet very few efforts have been devoted to

address its related privacy issues. Our work is the first to address such an important

issue.

• Secondly, we present a secure and efficient method tailored for regularized logistic

regression. We adapt an emerging method of distributed Newton-Raphson [154] for

our problem of focus, enhance and extend its privacy protection leveraging strong

cryptographic techniques [136]. Our resulting framework not only safeguards regu-

larized logistic regression in particular, but is also relevant to the broader community

of privacy-preserving regression analysis where intermediate data do not often re-

ceive sufficient protection.

• Lastly, we validate our privacy-enhanced regularized logistic regression extensively

with both synthetic and real-world studies. We also demonstrate its scalability to

large-scale collaborative studies, and illustrate its practical relevance to various ap-

plications from different disciplines.
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V.1.1.2 Outlines.

This section is organized as follows: in Subsection V.1.2, background information on reg-

ularized logistic regression and Newton method is provided; then, I present the method

details in Section V.1.3; This is followed by experimental results in Section V.1.5; we con-

clude in Section V.1.6.

V.1.2 Preliminaries

V.1.2.1 (Regularized) Logistic Regression.

Logistic regression [150] is a probabilistic model for predicting binary or categorical out-

comes through a logistic function. It is widely used in many domains such as biomedicine

[20, 128, 33, 170, 155], social sciences [129, 88], information technology [131, 31], and so

on. Briefly, logistic regression is of the form:

p(y = 1|x;β ) =
1

1+ e−β
T x

, (V.1)

where p(.) denotes the probability of the response y equal to 1 (i.e., “case” or “success”

depending on the scenario), x is the d-dimensional covariates (or features) for a specific

data record, and β is the regression coefficients we want to estimate.

In this work, we focus on regularized logistic regression with the `2 norm [90], i.e.,

with the regularization term equal to λ

2 ||β ||
2
2, where λ is the regularization parameter and

β is the regression coefficients (note that incorporating other regularizations such as the `1

norm is also possible).

V.1.2.2 Newton-Raphson Method.

A common way to estimate the (regularized) logistic regression model (i.e., to obtain β

coefficients in Equation V.17) is through the Newton-Raphson, or iteratively reweighted

least squares (IRLS) method [58, 114]. The repeated Newton-Raphson method adopts an

iterative refinement process that eventually converges to the “true” values of the β coeffi-
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cients.

To illustrate the process, we use β
old and β

new to denote the β coefficient estimates for

the current and next iterations, respectively. Each step of the Newton-Raphson method can

be expressed as:

β
new = β

old−H−1(β old) g(β old) , (V.2)

where H(β old) and g(β old) denote the Hessian matrix and gradient of the objective function

evaluated at the current estimate of the β coefficients. Details of computing H(.) and g(.)

will be introduced later.

V.1.3 Privacy-preserving Regularized Logistic Regression

Here, we introduce our privacy-preserving approach for supporting `2-regularized logistic

regression, based on an adapted Newton-Raphson method. Our proposal was driven by

two goals: strong privacy protection and efficient computation. In below, we first provide

a high-level overview of our framework; then we introduce the mathematical derivation

underlying the method; later, we describe the detailed computations occurring at each stage

of the framework and explain how data privacy is preserved thoroughly.

V.1.3.1 Hybrid Architecture.

Our privacy-preserving method for performing `2-regularized logistic regression features

a hybrid architecture combining distributed (local) computing and centralized (secure) ag-

gregation (Fig V.1). It is motivated by the observation that certain computations of model

estimation could be decomposed per institution, resulting in local-institution computa-

tions and center-level aggregation. The careful partitioning and distributing of computa-

tions significantly accelerate the process compared with naı̈ve centralized secure imple-

mentations of Newton-Raphson method, while still guaranteeing the same level of, if not

stronger, privacy. Similar strategies of distributed computing have been explored in earlier

works [154, 156] for other analytical tasks and prove successful in practice.
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Figure V.1: Overview of our secure framework for regularized logistic regression. Each
institution (possessing private data) locally computes summary statistics from its own data,
and submits encrypted aggregates following a strong cryptographic scheme [136]. The
Computation Centers securely aggregate the encryptions and conduct model estimation,
from which the model adjustment feedback will be sent back as necessary. This iterative
process continues until model convergence.

Without delving into technical details, we first introduce our framework as illustrated in

Fig V.1. The framework (and the underlying iterative procedure) consists of two classes of

computations: i) the distributed phase for computing institution-specific summary statis-

tics locally at individual institutions, and ii) the centralized phase for securely aggregating

and updating regression coefficient estimates. For each iteration, individual institutions in-

dependently compute their local summary statistics (i.e., denoted as aggregates in Fig V.1.

These can be local gradient and Hessian matrix as introduced later) based on their own data,

respectively. Such aggregates are then encrypted (via Shamir’s secret-sharing [136] which
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will be explained later) and securely submitted to the Computation Centers (typically multi-

ple independent Centers are designated to collectively hold the data for maximum security).

The Computation Centers then collaborate to perform a series of secure data aggregation

on the encrypted data, and perform the Newton-Raphson updating (Equation V.2) to ob-

tain a globally consistent β . In addition, model convergence checks will also be securely

performed. The new β (i.e., denoted as adjustment in Fig V.1) will then be redistributed

to local instituions for the next iteration. The above process of distributed and centralized

computing will proceed in iterations until model convergence criteria is satisfied.

V.1.3.2 Newton-Raphson Method for `2-regularized Logistic Regression.

Our framework (Fig V.1) leverages an adapted Newton-Raphson method for model estima-

tion. Here we first demonstrate how the aforementioned Newton-Raphson method applies

to `2-regularized logistic regression. Then we identify the limitations of naı̈vely apply-

ing the method, which motivate us to derive a more efficient approach based on a hybrid

architecture.

First, we reformulate the Newton-Raphson method (Equation V.2) by defining a di-

agonal matrix W as wii = pi(1− pi) ,∀i = 1..N, where pi corresponds to the probability

estimate for the ith data record (i.e., a row) and N denotes the total number of records. By

expanding H(.) and g(.) for `2-regularized logistic regression, Equation V.2 becomes:

β
new = β

old +(XWXT +λ I)−1(
N

∑
i=1

(1− pi) yixi−λβ
old) , (V.3)

where X corresponds to the design matrix (i.e., covariates) of dimension N× d, λ is the

regularization parameter for the `2-norm (defined a priori or derived via cross-validation),

and I denotes the identity matrix.

Traditionally, the aforementioned model estimation method (Equation V.3) proceeds in

a centralized fashion. This indicates that all individual-level raw data are consolidated into

one large (centralized) collection, on which the Hessian matrix and gradient are computed
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and the Newton-Raphson updating applied. Similar approaches are commonly pursued by

the privacy-preserving data mining community (e.g., [118]).

We point out that such a centralized approach could suffer from severe computational

inefficiency especially for large studies with privacy protection requirement. In particular,

pooling raw data often results in datasets of large scale, on which secure computations can

be prohibitively slow (if not infeasible) due to the complexity of supporting matrix opera-

tions in secure. Consequently, many alternative privacy-preserving proposals (e.g., [118])

do not seem practical especially for large studies. Such limitations have been illustrated in

subsequent studies even on much simpler analytical tasks [120].

V.1.3.3 Distributed Model Estimation.

Observing the inefficiency of the centralized Newton-Raphson method, we intend to ac-

celerate the process by carefully partitioning the computations to extract “safe” procedures

that can be performed more efficiently without violating privacy. Such a solution leads to

two anticipated benefits: First, the majority of computations could be supported without

relying on expensive secure computation techniques; Second, careful partitioning of com-

putations guarantees the same level of privacy as centralized secure alternatives. We point

out it is increasingly the trend to leverage distributed computing for faster computation in

privacy-preserving frameworks [120]. The partitioning of Newton-Raphson method has

proven successful on other simpler tasks [154] than ours.

To accelerate the Newton-Raphson method (Equation V.3), we observe that the compu-

tations of H(.) and g(.) in Equation V.2 can be decomposed, such that some sub-procedures

can be performed locally at each institutions on their own respective data where privacy is

not of concern. More formally, the per-institution decomposition of computations can be
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expressed as:

H(β ) =−
N

∑
i=1

wii(t)xixT
i −λβ =−

S

∑
j=1

Per-institution H j(β )︷ ︸︸ ︷
N j

∑
i=1

wii(t)xixT
i −λβ︸ ︷︷ ︸

All institutions

(V.4)

and

g(β ) =
N

∑
i=1

(1− pi) yixi−λβ =
S

∑
j=1

Per-institution g j(β )︷ ︸︸ ︷
N j

∑
i=1

(1− pi) yixi −λβ︸ ︷︷ ︸
All institutions

(V.5)

where S denotes the total number of participating (distributed) institutions and Nj denotes

the total number of data records for Institution j – it is easy to see that N = ∑
S
j=1 N j.

According to this decomposition, each institution can individually compute their local

Hj(.) and gj(.) on their respective data collections following their traditional practice.

Later, the global Computation Centers only need to securely aggregate these (protected)

intermediate results to derive the globally consistent H(.) and g(.), which would facilitate

the Newton-Raphson algorithm.

In addition, the deviance test (for checking model convergence) [150] can also be de-

composed similarly, since it depends on the log-likelihood which can be regarded as a series

of sums.

Dev =−2logL(β ) =−2
S

∑
j=1

Per-institution dev j︷ ︸︸ ︷
Ni

∑
i=1

(yi log pi +(1− yi) log(1− pi))︸ ︷︷ ︸
All institutions

, (V.6)

where L(β ) corresponds to the likelihood.

Based on the above intuition, we introduce a hybrid architecture for supporting `2-

regularized logistic regression (Algorithms 1, 2, and 3). The framework features an it-

erative process composed of two types of computations: distributed (local) computation

81



(Algorithm 2) and centralized aggregation (Algorithm 3). In the following sections, we

will describe these computations in greater detail.

V.1.3.4 Distributed Computation.

The goal of the distributed computation phase (Algorithm 2) is for local institutions to

pre-compute their respective summary statistics. During this phase, each participating in-

stitutions compute their local Hessian matrix Hj and gradient gj (Equations V.4 and V.5)

using their own data. Local deviance test dev j can also be computed similarly (Equation

V.6). Since each institution has complete ownership over their respective data and no data

sharing is involved, such local computations naturally preserve privacy without requiring

computationally-expensive cryptographic protections.

Next, all intermediate summary statistics (e.g., Hj, gj, devj) need to be synthesized and

processed at the center-level to obtain a globally fitting coefficient estimate (Algorithm 3).

To prevent potential privacy inference attacks on aggregate information (partially summa-

rized in [139, 124, 159]), we require each institution to obfuscate their local summaries

prior to data submission (Steps 5-6 in Algorithm 2) leveraging a strong protection mech-

anism known as Shamir’s secret-sharing [136] (also introduced later). This mechanism

ensures that all intermediate summary statistics (the “secrets”) are split into multiple shares

to be collectively held by many participants (e.g., one participant would possess only one

piece of the secret). The actual content of the “secrets” can only be recovered if the major-

ity of share-holding participants cooperate to decrypt. This way, even if there is collusion

between a (minority) few of the secret-share holders, the system is still secure. For our use

case, we designate many independent Computation Centers to be share holders.

V.1.3.5 Centralized Aggregation.

Once the distributed computation is completed, the subsequent phase of centralized com-

putation (Algorithm 3) would follow. As the first step, the Computation Centers will ag-

gregate the respective (secret-share-protected) data submissions in a secure way. This pro-
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cess requires collaboration between the Centers who hold the “secrets”. Once the globally

adjusted H(.) and g(.) are derived, the Computation Centers will perform the Newton-

Raphson updating on the β
old estimate and check for model convergence afterwards. If the

model is still not converged, then the updated β
new estimate will be redistributed to local

institutions to initiate the next iteration of running.

Algorithm 1 Privacy-preserving regularized logistic regression.

Input: Regression coefficient (of previous iteration) β
old; Penalty parameter λ

Output: New regression coefficients β
new

1: while model not converged do
2: Compute summary statistics on local institutions: SecureLocal(β old)

3: Securely aggregate on Computation Centers: β
new = SecureCenter(β old,λ )

4: Check for model convergence
5: β

old = β
new

6: end while
7: Return coefficient β

new

Algorithm 2 SecureLocal(β old): securely compute summary statistics on local institu-
tions.

Input: Regression coefficient (of previous iteration) β
old

Output: Shamir’s secret shares of H j,g j,dev j (∀ j ∈ institutions S)
1: for Institution j = 1 to S do
2: Compute local Hessian matrix Hj
3: Compute local gradient gj
4: Compute local deviance devj
5: Protect Hj, gj, devj via Shamir’s secret-sharing
6: Securely submit Hj, gj, devj secret shares to many (independent) Computation Cen-

ters respectively
7: end for

V.1.4 Protecting Privacy

The presented framework involves various types of data and computations, many of which

are sensitive or quasi-sensitive. In this section, we analyze how privacy are preserved at

each level.
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Algorithm 3 SecureCenter(β old,λ ): securely aggregate on Computation Centers.

Input: Secret shares of H j,g j,dev j (∀ j ∈ institutions S); Coefficient β
old; Penalty param-

eter λ

Output: Updated regression coefficient β
new

1: Securely aggregate Hessian: H =−∑
S
j=1 H j−λβ

old

2: Securely aggregate gradient: g = ∑
S
j=1 g j−λβ

old

3: Securely aggregate deviance: Dev = ∑
S
j=1 dev j

4: Securely compute β
new via Newton-Raphson method

5: Return coefficient β
new

V.1.4.1 Privacy on Individual Data.

The hybrid architecture is designed in such a way that individual raw data are fully and

solely controlled by their owner institution, and no sharing of individual-level data is in-

volved in any subsequent computations. This means that no adversarial institutions or

Computation Centers would be capable of peaking into individual participants’ data. As a

result, individual-level privacy is maintained. We note that decoupling from raw individual

data for privacy protection is a proven and increasingly popular approach in methodological

development in genetics and related fields [154, 159].

V.1.4.2 Privacy on Aggregate Data.

We observe that various inference attacks on privacy are only possible because of the dis-

closure of summary statistics. For instance, the genome-disease inference attack in [69]

relies on certain genomic summaries of case/control groups; it has also been analyzed in

[139, 124, 41] regarding the risks associated with disclosing summary statistics, such as

covariance matrix, information matrix and score vector. Meanwhile, we note that aggre-

gate data may also constitute confidential or proprietary information for some institutions

and thus should be protected (a similar opinion was briefly communicated in [156]) . This

is not uncommon for joint studies in competitive scenarios, such as financial collabora-

tions, healthcare quality comparisons, and association studies involving sensitive and rare

diseases.
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Specific to our task of regularized logistic regression (and logistic regression in gen-

eral), the vulnerable summaries are the hessian and gradient, which collectively could result

in inference attacks on private response variables and model recovery [139, 124, 159].

To prevent potential attacks or confidentiality breaches, our framework encrypts sum-

mary statistics from participating institutions (prior to data submission to Computation

Centers) leveraging a strong Cryptographic mechanism known as Shamir’s secret-sharing [136]

(to be introduced in the following section). Due to encryption, neither the potentially ad-

versarial institutions nor Computer Centers could access aggregate information, which is

the prerequisite to any aforementioned attacks. The idea of protecting intermediate data

has been explored before [120, 156, 41], however, mostly only on simpler tasks (e.g., ridge

linear regression, standard logistic regression, etc) than ours. In a more related work [156],

summaries from distributed Newton method have been obfuscated with simple tricks, how-

ever, the protection is insufficient and easily vulnerable to collusion attacks as we will

discuss later.

V.1.4.3 Shamir’s Secret-Sharing for Protecting Data.

In our protocol, we leverage Shamir’s secret-sharing [136] to protect intermediate data (in-

cluding summary statistics from institutions). The general idea underlying Shamir’s secret

sharing is that for a t-dimensional Cartesian plane, at least t independent coordinate pairs

are necessary to uniquely determine a polynomial curve. Formally, a t-out-of-w secret-

share scheme is defined as follows: we intend to protect a secret m (e.g., certain institution-

specific summary statistic in our case) such that the only way to successfully recover the

secret is through cooperation of at least t (i.e., the “threshold”) share-holding participants

(out of a total of w). To achieve the goal, we construct a random polynomial q(x) of degree

(t− 1) with the secret m embedded (we point out that the calculations actually occur in a
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finite integer field. However, for presentation simplicity, we skip the technical details):

q(x) = m+
t−1

∑
i=1

aixi , (V.7)

where m is the secret we want to protect, and ai’s are randomly generated polynomial

coefficients. Note that the polynomial itself will be kept secret.

In order to split and “share” the secret, we proceed to evaluate q(x) and derive t or more

distinct values from the polynomial, yielding coordinate pairs

(1,q(1)),(2,q(2)), ...,(t,q(t)), ...,(w,q(w)). Due to the inherent randomness in the speci-

fied polynomial, the coordinate pairs we obtain here are random and reveal nothing mean-

ingful about the secret. These pairs, each of which constitutes a share of the secret, are

then distributed to t or more Computation Centers, respectively (i.e., each participant only

receives one piece of the secret). Under this mechanism, we can claim that the secret is

successfully protected, since no single Center or a limited few are capable of inferring

anything about the polynomial or the embedded secret. When it is necessary to recover

the original secret, t or more share holders will collectively perform Lagrange polynomial

interpolation [136] to uniquely determine the polynomial q(x). The secret will naturally

emerge by evaluating q(0): m = q(0). To facilitate complex data and computations in our

framework, we have extended the scheme to support matrices and vectors.

V.1.4.4 Privacy on Computations.

Since all data in our framework are in encrypted form, special care must be taken to support

analytical procedures. Here we introduce several secure primitives for supporting necessary

computations without decrypting intermediate data. We focus on secure addition and secure

multiplication by a public value, which are necessary for our task under question.

Secure addition is a fundamental building block for the central aggregation phase (Al-

gorithm 3). Briefly, the primitive helps securely derive the sum A+B without knowing the

actual content of A and B, since both of which are encrypted via Shamir’s secret-sharing.
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As illustrated in Algorithm 4, the general idea of the secure addition primitive is to ask

each share holders to locally aggregate original shares of the two secret addends in order to

derive new shares, which will serve as the shares for their sum.

Algorithm 4 Secure addition (aggregation).
Input: Secret-shared data A and B (among w institutions)
Output: Sum sum = A+B in secret-shared form (among w institutions)

1: for institution j := 1 to w do
2: [At Institution j]
3: Compute and store new share: sum j = A j +B j
4: end for

To show that the secure addition primitive is correct, we assume the (secret-sharing)

polynomials to be qA(x), qB(x), respectively, for the two secrets A, B. In other words:

A = qA(0), B = qB(0). Since both polynomials share the same covariates and degrees, we

have: qA(0)+ qB(0) = (qA + qB)(0). This indicates that, the aggregated coordinate pairs

satisfy the newly defined polynomial (qA +qB)(.) and thus represent the new shares of the

to-be-computed sum A+B.

Next, we show how secure multiplication-by-a-constant can be implemented, which is

required by the Newton-Raphson method. In particular, we consider multiplying a secret

value (in secret-shared form) by a known constant value. The primitive is surprisingly

simple: share holders only need to locally multiply their shares (of the secret value) by the

public constant to derive the new shares for the product of the two values. The proof for

this method is straightforward, since multiplication by a constant can be reformulated as a

series of secure additions by the secret value itself.

Note that in our current implementation, we take a pragmatic approach to security for

better computational efficiency without degrading privacy. Specifically, the primary reason

why protecting intermediate data is necessary in regularized logistic regression is due to

privacy inference attacks [139, 124, 159]. Feasibility of existing attacks rely on both Hes-

sian and gradient. Our protection thus only needs to protect one of the summaries to prevent

such attacks. This can lead to significant speedup as compared to an “encrypting-all” strat-
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egy and our privacy protection goal is still achieved. Extending our current implementation

to a fully encrypted setting is also straightforward, as the additional secure primitives (e.g.,

secure matrix inversion) have already been demonstrated before [120]. A fully secure ver-

sion is implemented as the baseline in our later work [161].

Since none of our aforementioned primitives change the original Shamir’s scheme, the

information-theoretical security still holds in our protocol. Interested readers are kindly

referred to relevant literature [13] for a detailed security proof.

V.1.4.5 Generating synthetic data.

To allow for comprehensive evaluation on our framework, we also generate synthetic datasets

(in addition to other real datasets as introduced later) according to Algorithm 5. We first

generate coefficients and covariates at random (according to uniform and Gaussian distribu-

tions, respectively). Later, based on the calculated probabilities, we generate the response

variables from the Bernoulli distribution. The resulting synthetic dataset is partitioned per

institution.

Algorithm 5 Generate synthetic data
Input: Covariate dimensionality d
Output: Covariates X j, responses y j for Institution j ∈ S.

1: Generate coefficients β ∈ Rd at random
2: for institution j := 1 to S do
3: Generate covariates cov j ∈ RN j×(d−1) from N (µ,σ2)
4: Output concatenated covariates X j =

[
1 cov j

]
∈ RN j×d

5: Calculate probabilities p j = 1/(1+ e−β
T X j) ∈ RN j

6: Generate and output response variables y j ∈ RN j from Bernoulli(p j)
7: end for

V.1.5 Results

We have implemented our privacy-preserving framework for `2-regularized logistic regres-

sion. To validate our proposal, we perform extensive empirical evaluation on both synthetic

and real-world studies. We report on the evaluations in terms of result accuracy, computa-
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tional efficiency, as well as scalability to large studies.

V.1.5.1 Evaluation Datasets

Included in our empirical evaluation are four studies, which represent a wide spectrum of

applications from different domains and data scales. In specific,

• The Synthetic dataset is a large-scale dataset we generated at random according to

Algorithm 5. While specific simulation parameters do not matter in our case, for

demonstration purpose, I generated coefficients uniformly from range -5 to 5, and

covariates from Gaussian distribution with mean of 0 and standard deviation of 1.

This dataset consists of 1 million records spanning 6 features from 6 institutions,

which is quite representative for most real-world use cases.

• The Insurance dataset [145] is a dataset from an insurance company with the goal

of predicting users’ insurance policy status based on socio-demographic features. It

contains 9,822 records and 84 features, and we simulated 5 institutions by randomly

partitioning the dataset horizontally.

• The Parkinsons.Motor and Parkinsons.Total datasets both relate to one dataset

targeted for predicting parkinson’s tele-monitoring quantities, with 5,875 samples

spanning 20 features [97]. Since there are two distinct target predictions in the

original dataset, we partition the dataset into two sub-studies which we denote as

Parkinsons.Motor (for predicting motor UPDRS) and Parkinsons.Total (for total

UPDRS). They share the same covariates but with different response variables. We

randomly partitioned the records among 5 institutions.

V.1.5.2 Regression Result Accuracy

The first question we consider in validating our framework is whether the regression result

is accurate and reliable. To answer this question, we compare our estimated regression

coefficients with that obtained from standard software packages. As illustrated in Fig V.2,
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our framework yields identical results to the expected ground truth across all evaluations

(with correlation R2 = 1.00). The result accuracy is also evidenced by the mathematical

proof explained earlier, where we have shown that our distributed model estimation method

follows an exact derivation and no approximation is involved in the secure computation

procedures.

V.1.5.3 Running Time

We implemented the prototype in R and Scala, a Java Virtual Machine-based programming

language. Experiments were performed on a quad-core computer with 2.4GHz CPU and

8GB memory, running Ubuntu 13.04. To eliminate network latency effects, we simulated

distributed computing nodes on a single computer and report the network data exchanged.

We performed each experiment several times and reported the mean of the running time.

Empirical evaluation indicates that our protocol is highly efficient, as demonstrated

in Table V.1. For datasets with as many as 1 million records, our protocol completed in

less than 12 seconds. For datasets of more modest sizes as typically found in everyday

applications, our protocol took only around 2 ∼ 4 seconds or less.

Since our framework is focused on a novel analytical application that is not addressed

in the privacy/security domain, technically we do not have any alternatives to compare

against. We do however, try to provide brief comparisons against similar secure approaches

in related problems – mostly from linear (ridge) regression which also considered regular-

ization and adopted a similar hybrid architecture. Our evaluation indicate that our protocol

is more efficient than other related secure proposals (even though they focused on much

simpler regression models). For instance, as a rough comparison, secure linear regres-

sion in [61] on 51,016 samples with 22 covariates took two days. Our framework is also

competitive compared with the state-of-the-art secure solution for the ridge (linear) regres-

sion [120] (a much simpler model), which took 55 seconds on a smaller-scale Insurance

dataset (with only 14 features). We do acknowledgment that such comparisons are not very
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Figure V.2: Model accuracy of our securely estimated β against the gold standard for
four evaluation datasets. As illustrated, the regression coefficients estimated via our secure
framework are identical to the gold standards, with correlation R2 = 1.00.

fair, as our proposal solves a different and more complicated regression model; also some

alternatives implemented additional features. Nevertheless, the results demonstrate that our

secure framework for regularized logistic regression is efficient and competitive.

Overall, the repeated Newton-Raphson process converged within a limited number of
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Table V.1: Computational efficiency on evaluation datasets.

Dataset Insurance Parkinsons.Motor Parkinsons.Total Synthetic
# samples 9,822 5,875 5,875 1,000,000
# features 84 20 20 6
# iterations 8 6 6 6
Central runtime (S) 0.42 0.264 0.236 0.076
Total runtime (S) 3.77 2.017 2.352 12.76
Data transmitted (MB) 80 492 492 612

iterations, as evidenced by Fig V.3. Across all evaluation datasets, the models converged

within 6 ∼ 8 iterations. As common in statistics, we set the convergence criteria to be

10−10. Also, the amount of data to be exchanged during computation is also modest. As

an example, for the Synthetic dataset with 1 million records, only around 612 megabytes

of data are transmitted over the network. We might see minor variance in the iterations to

converge, depending on the difference of the input datasets and data simulation parameters.

However, this is out of scope for this work since these are agnostic of our cryptographic

protections and our conclusions are not affected.

Figure V.3: Model convergence (i.e., deviance) for all datasets (deviance smaller than the
threshold indicates convergence). All models converged within 6 ∼ 8 iterations. Note
that the convergence scores for the Parkinsons.Motor and Parkinsons.Total studies almost
overlap due to their high similarity in the plot.
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To further demonstrate the efficiency of our method, we report on the time efficiency of

its major procedures (i.e., the central phase and the total runtime) in Table V.1. We empha-

size that the vast majority of runtime is spent at individual local institutions (on conven-

tional computations), and secure computation at the Computation Centers only consumes

around 11.14%,13.09%,10.03%,and 0.60% of the total time for the datasets evaluated,

respectively.

V.1.5.4 Scalability to Large Studies

With the advent of the big data era, large-scale collaborative studies are becoming ubiqui-

tous in many domains. A few notable examples include the International Cancer Genome

Consortium [73], the Patient-Centered Outcomes Research Institute (PCORI) [135], and

financial systematic risk protection [3].

To meet the demand of large-scale cross-institution studies, we also demonstrate the

scalability of our framework. Since regression accuracy is not affected by the increase

of participating institutions, we mainly focus on evaluating the running time. To do so,

we first generate a large-scale synthetic dataset (Algorithm 5, and then simulated multi-

insitutional studies with up to 100 institutions by randomly partitioning the dataset by rows

(thus each subset rows blong to an institution). We reported the results in Fig V.4 (we

simplified the scenario by assuming that each institution contributes 10000 records. So in

fact, our evaluation reflects the running time affected by the increase of both the number of

institutions and the total number of data records).

It can be seen that the total time is always between 3.0 ∼ 3.3 seconds, exhibiting min-

imal fluctuation as the number of participating institutions increases. This is especially

the case for the secure-computation-based centralized phase, which consistently takes only

around 0.088 seconds.

Such a trend is well explained from a theoretical perspective (as evident in the com-

putation details in Algorithm 1 , as individual institutions perform their local (distributed)
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Figure V.4: Running time (in seconds) for the central phase and total computation respec-
tively, as the number of participating institutions increases. Negligible time fluctuation is
present, especially for the central (secure) computation.

computations simultaneously without interacting with (or waiting for) other participants.

As a result, local computations are relatively stable from the change. The increase of the

number of institutions does slightly influence the centralized aggregation of institution-

level summary statistics, as more summaries need to be transmitted and aggregated. But

the effect is minimal, since the summary data size is relatively small and the majority of

computations for aggregating secret shares occur locally at each Computation Center (as

explained earlier regarding secure addition and multiplication).

Overall, the evaluation has demonstrated that our secure framework could support

large-scale studies with hundreds of institutions and millions of data records.

V.1.6 Discussion

The proposal presented in this chapter works even when data are imbalanced among dif-

ferent institutions. This is because our model updating/fitting are (securely) conducted at

a global central server, ensuring that minor data (imbalance) noise will still be dominated

by desirable true signals. While the prototype implementation has already demonstrated
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impressive efficiency, we point out that further speed-ups can be obtained for production

systems. For instance, local data can be cached in computer memory to greatly streamline

and accelerate subsequent iterations of computations; further acceleration can be gained

locally by adopting high-performance programming languages (e.g., C/C++) and libraries

(e.g., BLAS/LAPACK [89]); as for the central computation, it can also greatly benefit

from multi-core parallelism, since many secure operations can be parallelized naturally.

In addition, the cryptography community continues to improve efficiency of secure primi-

tives which could be useful to us in future. In addition to Shamir’s secret-sharing we used

here [136], there are also several alternative schemes that prove to be useful on many tasks,

such as Paillier encryption and Yao’s garbled circuit (as used by [159, 120, 41]). Due to

space constraint, we intend to explore other potential schemes for related tasks in future.

There have been various alternative proposals for protecting privacy while supporting

regression analysis. Most of them only focused on much simpler regression models, such

as linear (ridge) regression, or standard logistic regression without regularization. And typ-

ically there is no or only weak protection over summary statistics during the computation

process. One line of research that is directly relevant to our proposal is cryptography-based

approaches. For instance, a privacy-preserving method was proposed for (linear) ridge re-

gression [120], which directly solves the linear system in secure centrally. Other secure

solutions [61, 118, 41], for linear or logistic regression relied on some expensive cryotp-

graphic primitives and approximations, which add significant computational overhead and

do not seem scalable to modest or large sample sizes. Increasingly, distributed-computing-

based solutions [154, 156, 159] emerged as promising solutions for linear/logistic regres-

sion and related analytics. However, none of these support regularized regression which is

a more widely used model in practice. Many related proposals [154] directly expose sum-

mary data from model fitting, leading to serious privacy concerns over inference attacks

on intermediate data [139, 124, 159, 41]. While preliminary efforts have started to gather

around protecting institution-level summary information (especially regarding logistic re-
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gression), existing protections seem quite weak. For instance, the obfuscation protection

in [156] is vulnerable to collusion attacks by the center (who generates the randomiza-

tion noise) and any of the institutions, causing single points of failure or breach from a

security perspective. In addition to cryptographic solutions, there have been recent works

(some developed for different machine learning models than ours) based on information-

theoretically secure methods [34] or secure hardware [24]. However, since this is out of

scope for our work and these works were published much later than ours, we ommit fur-

ther discussion here. Another popular research direction in privacy-preserving logistic re-

gression leverages non-cryptographic approaches, such as the classical k-anonymity model

[140] or differential privacy [38]. One notable example is the ε-differentially private lo-

gistic regression [22], which adds artificial noise to the result or perturbs the optimization

objective function to make the regression result private. Such methods, however, distort the

computation or output, often rendering the result inaccurate and scientifically not useful to

domain experts. In addition, such methods do not protect intermediate computations.

Our framework demonstrated here for regularized logistic regression differentiates in

several ways. Firstly, we focus on an important and (more) widely-used statistical model

that has not been addressed by the data security/privacy community. While there is re-

cent privacy-preserving work [120] specifically targeted for ridge (linear) regression (i.e.,

with `2-regularization), it focused on a much simpler regression model (i.e., linear regres-

sion) and the model estimation process is completely different from regularized logistic

regression (the focus of our work). None of the other related works have considered reg-

ularization, despite its wide adoption and popularity in various application domains as

well as methodological development in statistics and machine learning. Secondly, for effi-

cient model estimation on regularized logistic regression, we adapted a distributed Newton

method that previously has only been validated on simpler analytical models [154]. The

distributed process makes our secure protocol for regularized logistic regression highly ef-

ficient compared to a straightforward centralized implementation [41]. Thirdly, we protect
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intermediate data and computations with stronger cryptographic schemes [136], providing

strong security guarantees thanks to decentralization of trust while still allowing for effi-

cient and flexible computation. While privacy protection on summary statistics has been

explored for other tasks [159], ours is the first to safeguard regularized logistic regression

regarding intermediate data. Among the two closely related works, [154] failed to provide

any protection over summaries; And [156] had very weak protection as discussed earlier.

Lastly, our model does not involve approximation or artificial perturbation (contrary to so-

lutions based on classical k-anonymity [140] or differential privacy [38]) on the data or

computations, thus maintaining accuracy of the predictive model.

V.1.6.1 Application Scenarios

We believe the proposed privacy-preserving framework is applicable to a wide range of

domains where the privacy/confidentiality of study participants and/or institutions is of

concern. Here we briefly describe a few representative application scenarios.

V.1.6.1.1 Genetic and Biomedical Studies.

Genetic studies have enjoyed continued investigation efforts with the ultimate goal of un-

covering connections between genes and human traits (e.g., diseases). Regularized logistic

regression is an increasingly important tool for related applications, including for genomic

selection [10, 138], gene-gene interactions [128], GWAS [101], etc. Other biomedical

studies such as prediction of adverse drug reactions [100] are also potential application

domains.

Many such studies rely on large-scale data sharing across institutions, while at the same

time, many such data involve sensitive data such as genome information, or participant

phenotypes [159]. We envision that our framework can provide an automated and privacy-

preserving solution for supporting such collaborative investigations.
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V.1.6.1.2 Analytics for Smart Grid.

Smart electrical grid is a transformative technology that provides detailed data pertaining

to the monitoring and management of energy consumption of individual households. Data

sharing and analytics on such data have raised serious privacy concerns from both everyday

consumers and governmental regulators [112] due to various privacy inference attacks on

energy monitoring data. We believe that our distributed-computing-based technology can

support some useful analytics on smart grid data, such that household privacy could be

maintained.

V.1.6.1.3 Large-scale Network Analysis.

Many important innovations involve analysis of social network data, such as [109, 88,

5]. These include anomaly detection, novel discoveries in online social networks (such

as personalization and link prediction), etc. Social networks data often involve person-

level private information, making them inappropriate to share across institutions in large

collaborative studies. Our framework could serve the purpose by allowing for joint network

analysis without disclosing private information.

V.1.7 Conclusion

In this work, we propose new cryptographic methods for preserving privacy in regular-

ized logistic regression, a widely-used statistical model in various domains. To make the

model efficient in a secure setting, we adapted a distributed method for model estimation.

To further enhance privacy and prevent inference attacks over intermediate data during

model estimation, we introduced strong cryptographic protections. These lead to an effi-

cient framework for supporting regularized logistic regression across different institutions

while guaranteeing strong privacy both for individual study participants and institutions.

Extensive empirical evaluations have demonstrated the efficacy of the framework in guar-

anteeing privacy with modest computational overhead. We hope that careful implementa-

tion of our framework could enable a wider range of cross-institution joint analytics, which
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would otherwise be impossible due to privacy or confidentiality concerns.
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V.2 PrivLogit: Efficient Privacy-preserving Logistic Regression by Tailoring Nu-

merical Optimizers

The section is based on our work [161]. My contribution in this work includes conception,

design and supervision of the study, implementation and experimental evaluation, analysis

of results, writing the manuscript and addressing reviewer comments.

Safeguarding privacy in machine learning is highly desirable, especially in collaborative

studies across many organizations. Despite popularity, existing cryptographic solutions for

privacy-preserving distributed machine learning incur excess computational overhead, par-

tially due to naive adoption of mainstream model estimation algorithms (such as the New-

ton method) and failing to tailor for secure computing-specific characteristics. Here, we

present a contrasting perspective on designing numerical optimization method for crypto-

graphically secure settings. We introduce a seemingly less-favorable optimization method

that can in fact significantly accelerate privacy-preserving logistic regression. Leverag-

ing this new method, which we call PrivLogit, we propose two new secure protocols for

conducting logistic regression in a privacy-preserving and distributed manner. Extensive

theoretical and empirical evaluations prove the competitive performance of our two secure

proposals while ensuring accuracy and privacy: with speedup up to 2.3x and 8.1x, respec-

tively, over state-of-the-art; and even faster as data scales up. Our drastic improvement

makes privacy-preserving logistic regression more scalable and practical to large-scale

studies which are common for modern science. In addition, our proposal of the PrivLogit

optimizer is agnostic of and parallel to existing and future performance innovations from

cryptography alone, thus can serve as a drop-in replacement for any privacy-preserving

(distributed) logistic regression protocols.

V.2.1 Introduction

Logistic regression is a fundamental statistical model with wide adoption in various do-

mains, such as in computer science, biomedical and social sciences (e.g., healthcare, ge-
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netics, psychology, education, etc), etc. To reach powerful and reliable statistical conclu-

sions, it is increasingly popular for these disciplines to perform collaborative regression

through data sharing and joint analysis across a federation of organizations [111]. Such a

trend, however, is often hampered by serious privacy concerns as human subject data un-

derlying these studies are typically considered sensitive and strictly protected by various

privacy laws and regulations [123, 72, 32]. Meanwhile, many organizations are also re-

luctant to reveal their data content to external entities (due to concerns around privacy and

business secrets), even though they still want to contribute to collaborative studies. This is

increasingly common in areas such as healthcare, business, finance, etc.

More formally, we are interested in the following common scenario: multiple inde-

pendent organizations (e.g., different institutions, medical centers, etc) want to conduct

joint analytics (e.g., logistic regression). They each possess their respective private data

of a sub-population (e.g., patient health records or human genomes), but are not willing

or permitted to disclose the data beyond their respective organizations due to privacy and

proprietary reasons. We focus on the horizontally partitioned setting [4]. In such a col-

laborative study, potential adversaries include: distrustful aggregation center (e.g., due to

breached servers or malicious employees), distrustful member organizations (due to curios-

ity about other organizations’ secrets or business competition), and external curious people

or hackers. The adversary’s goal is to learn privacy-sensitive information of individual data

records or organizations by peeking into raw and summary-level data. The challenge here

is on how to support such a collaborative study while preserving privacy, especially when

it is difficult or economically impractical to find a fully entrusted central authority.

Cryptography (secure multi-party computation or SMC in particular) and distributed

computing are classical and reviving solutions for tackling the challenge [4]. Numerous

efforts have attempted to support data mining without disclosing raw and intermediate

data [4, 155, 118, 121, 159, 17, 93] (known as privacy-preserving distributed data min-

ing). Among these, significant attention is devoted to logistic regression [154, 155, 41,
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118, 93, 7].

Despite encouraging progress, few proposals have seen wide adoption in real world for

privacy-preserving logistic regression. A major reason seems to concern the excess com-

putational overhead of cryptographic protocols. While it is generally expected for secure

computation to be slower than non-secure counterparts, we also make a surprising observa-

tion: much of the computational overhead indeed traces back to the sub-optimal technical

decisions made by humans experts (e.g., authors of secure protocols) and could have been

avoided. For instance, nearly all existing secure protocols [155, 41, 93] directly apply

mainstream (distributed) model estimation algorithms (e.g., the popular Newton method

for logistic regression [65]), failing to account for secure computing-specific characteris-

tics and thus missing valuable opportunities for performance improvement.

In this work, we present a contrasting perspective on privacy-preserving logistic re-

gression, and propose an improved model estimation method tailored for secure computing

which significantly accelerates the computation while guaranteeing privacy and accuracy.

In our proposal (termed PrivLogit), we derive a constant approximation for the second-

order curvature information (i.e., Hessian) in the Newton method for logistic regression.

This adapted optimizer seems counter-intuitive and “unfavorable” due to its elongated con-

vergence and increased network interactions, but surprisingly turns out to be highly com-

petitive in performance.

Following PrivLogit, we propose and evaluate two highly-efficient cryptographic pro-

tocols for privacy-preserving distributed logistic regression, i.e., PrivLogit-Hessian and

PrivLogit-Local.

V.2.1.0.1 Contributions

Our contributions are as follows:

• We propose a secure computing-centric perspective for selecting model estimation

methods, and introduce a counter-intuitive but surprisingly better approach (i.e.,
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PrivLogit) for privacy-preserving logistic regression.

• We propose two highly-efficient secure protocols (i.e., PrivLogit-Hessian and PrivLogit-

Local) for privacy-preserving logistic regression.

• We provide detailed theoretical analysis on our proposals.

• We extensively evaluate our proposals on various simulated and real-world studies

of large scale.

V.2.1.0.2 Outline

To set context, we first provide background on logistic regression and model estimation

methods in Section V.2.2. In Sections V.2.3 and V.2.4, we describe our improved optimiza-

tion method PrivLogit, and two secure implementations. In Section V.2.5, we elaborate

on theoretical details regarding security guarantees, computational complexity, model con-

vergence of our proposals. This is followed by experimental results in Section V.2.6. In

Section V.2.7, we survey related works. We discuss and conclude in Section V.2.8.

V.2.2 Logistic Regression and Newton Method

Before introducing logistic regression and the model estimation Newton method, we first

list the main notations in this work in Table V.4.

Table V.2: Notations.

Notations Meaning
X ∈ Rn×p Regression covariates: n samples, p features
y ∈ Rn Regression response vector: n samples
β ∈ Rp Regression coefficients
H, H̃ ∈ Rp×p Hessian, approximate Hessian matrices
g ∈ Rp Gradient
λ ∈ R Regression regularization parameter
l2(β ) Log-likelihood (objective)
Enc(data) Encryption of data
⊕,	,⊗,� Secure arithmetics for +,−,×,÷
Esqrt(data) Secure square root of data
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V.2.2.1 Logistic Regression

This work concerns conducting logistic regression in a collaborative (distributed) envi-

ronment. Logistic regression is a probabilistic model that can be used for predicting binary

(i.e., categorical) outcomes [65]. It is among the most utilized statistical models in practice,

with wide adoption in biomedicine [103], genetics [92], economics [65], online advertis-

ing [113], and so on. Briefly, the logistic regression model is defined as:

p(y = 1|x;β ) =
1

1+ e−β
T x

, (V.8)

where p(.) denotes the probability of the binary response variable y equal to 1 (i.e., “case”

or “success” in practice), x is the p-dimensional covariates for a specific data record, and

β is the p-dimensional regression coefficients we want to estimate.

In practice, regularization is often applied to the model estimation process to aid fea-

ture selection and prevent overfitting by penalizing extreme parameters [119]. Here we

consider the popular `2-regularization (or ridge) for logistic regression [119] to make our

work generically applicable. The standard logistic regression can be derived by simply

setting the regularization to 0. The `2-regularized logistic regression imposes an additional

regularization term, −λ

2 β
T

β , to the optimization objective during model estimation. For a

dataset (X ∈ Rn×p,y ∈ Rn) = [(x1,y1), ...,(xn,yn)] with n independent samples and p fea-

tures, the log-likelihood (i.e., optimization objective) of `2-regularized logistic regression

is:

l2(β ) =
n

∑
i=1

[yi(β
T xi)− log(1+ eβ

T xi)]− λ

2
β

T
β , (V.9)

where λ is the predefined penalty parameter to tune the regularization.

V.2.2.2 Distributed Newton Method

When fitting a (regularized) logistic regression, the goal is to estimate the coefficients β

from existing training data (X,y). Since logistic regression does not have a closed form,
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model estimation is often accomplished by numerical optimization over the objective l2(β ).

The de facto approach for estimating the (regularized) logistic regression coefficient β

(Equation V.8) is the Newton method (or iteratively reweighted least squares, known as

IRLS) [65]. Newton method iteratively approaches the optimal coefficients, and for each

iteration, the coefficient estimates are updated by:

β
(t+1) = β

(t)−H−1(β (t)) g(β (t)) , (V.10)

where H(β (t)) and g(β (t)) denote the Hessian and gradient of the objective l2(β ) (Equa-

tion V.18) evaluated at the current β
(t) coefficient estimate. The superscripts (t),(t + 1)

denote the tth,(t +1)th iterations, respectively. This updating process iterates until model

convergence.

Based on Equation V.18, the gradient and Hessian for `2-regularized logistic regression

can be computed as follows (setting λ = 0 will skip regularization and yield the standard

logistic regression):

g(β ) = ∇β l2(β ) = XT (y−p)−λβ =
S

∑
j=1

gj(β )−λβ , (V.11)

H(β ) =
d2l2(β )

dβdβ
T =−XT AX−λ I =

S

∑
j=1

Hj(β )−λ I , (V.12)

where X represents covariates of n samples and p features; y denotes the response vector

of n data records; p ∈ Rn is the vector of logistic regression probabilities for n records;

A ∈ Rn×n is a diagonal matrix with elements defined as ai,i = pi(1− pi); and gj(β ) and

Hj(β ) are the per-organization gradient and Hessian, respectively, that will be introduced

afterwards in the distributed version; S is the total number of organizations contributing

data to the collaborative study.

As is also manifested in the last equalities of Equations V.21 and V.22, the computation

of both g(β ) and H(β ) can be decomposed per participating organizations (who can freely
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access their respective private data such as X j,y j), and thus need not invoke expensive

cryptographic computation (except for the final summation across organizations).

The (distributed) Newton method is widely implemented in statistical software and also

underlies almost all existing solutions for privacy-preserving logistic regression [154, 155,

41, 93].

V.2.3 PrivLogit: A Novel Optimizer Tailored for Fast Logistic Regression

Here, we first point out problems with mainstream secure Newton method, which motivates

us to design a better optimization method (PrivLogit) tailored for secure computing. We

later analyze the attractive properties of PrivLogit.

V.2.3.1 Limitations of Newton Method.

To estimate regression coefficients via the aforementioned Newton method (Equations V.19),

the evaluation and inversion of the Hessian have to be repeated for every iteration until

model convergence. These two operations can be prohibitively expensive in computation

and network communication especially when implemented using cryptography.

For (distributed) Newton method in general (e.g., privacy-free applications), it has been

well acknowledged that the evaluation and inversion of the Hessian matrix are the over-

all computational bottleneck due to large data sizes, inherent complexity and repetitive

nature of these operations [28, 99]. This in fact has motivated numerous improved opti-

mizers referred to as Quasi-Newton or Hessian-free optimization in machine learning and

optimization [28, 99] (unfortunately, most such enhancements do not seem amenable to

efficient and data-agnostic secure implementation and thus are not covered in our work).

In data security and privacy research, the issue of expensive Newton method is exacer-

bated as secure inversion of Hessian matrix requires complex operations (e.g., secure divi-

sion and square root) which have to resort to expensive primitives and approximations from

secure multi-party computation (SMC) [118, 41]. As a result, almost all existing secure lo-

gistic regression proposals have to compromise privacy protection or result accuracy to
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increase performance (e.g., to selectively reveal intermediate data/computations [155, 93]

or to use approximations [118, 7]).

In addition, the lack of model convergence guarantee in Newton method is also a known

issue, when poor initialization (initial guess of coefficients) is provided [16].

V.2.3.2 PrivLogit for Fast Privacy-preserving Logistic Regression.

We are motivated to design a tailored optimizer for secure computing by addressing the

aforementioned limitations of Newton method. Our proposal is inspired by a classical

work on quadratic function approximation [16] and with new theoretical analysis. In brief,

we propose to use one carefully-chosen constant matrix as a surrogate for the exact Hessian

matrices across all iterations. Specifically, the following approximate Hessian (denoted H̃)

is proposed:

H̃ =−1
4

XT X−λ I , (V.13)

here H̃ is a tight lower bound because for all pi ∈ [0,1] (the probability in logistic re-

gression), we have that: max {ai,i = pi(1− pi)} = 1
4 (where ai,i denotes elements of the

diagonal matrix A defined in Equation V.22 for Hessian). We highlight that this approx-

imation guarantees exact model convergence and do not affect accuracy (with theoretical

proof later).

The calculation of approximate Hessian H̃ can be decomposed per-organization (hori-

zontally partitioned) and computed in a distributed manner among many organizations:

H̃ =−1
4

S

∑
j=1

Xj
T Xj−λ I =

S

∑
j=1

H̃ j−λ I (V.14)

where X j is the (privacy-sensitive) raw data stored locally at Organization j, S is the total

number of organizations contributing data, and H̃ j = −1
4XT

j X j denotes the approximate

Hessian for Organization j.

Substituting this approximate Hessian into the Newton method (Equation V.19), along
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with the distributed evaluation of gradient, the iterative updating formula for our new opti-

mizer (denoted as PrivLogit) follows:

β
(t+1) = β

(t)− [
S

∑
j=1

H̃ j−λ I]−1 [
S

∑
j=1

g j(β
(t))−λβ

(t)] (V.15)

The above iterative process continues until model convergence. Convergence can be mea-

sured by the relative change of log-likelihood and compared against a predefined threshold

(e.g., 10−6):
|l(t+1)

2 − l(t)2 |
|l(t)2 |

< 10−6 , (V.16)

where l(t+1)
2 , l(t)2 correspond to the log-likelihood of logistic regression for Iterations (t+1)

and (t), respectively.

V.2.3.3 Advantages of PrivLogit.

Our new PrivLogit optimizer enables a few attractive properties, which seem highly promis-

ing for efficient privacy-preserving logistic regression.

V.2.3.3.1 Asymmetric Computational Complexity in Secure Distributed Settings

The PrivLogit adaption comes at the cost of more iterations required for convergence (and

also increased local-organization computation), which seems counter-intuitive and less fa-

vorable because more iterations mean slower convergence. However, this view fails to

consider computational cost as a whole and the different computational characteristics of

distributed model estimation with and without cryptographic protections. In secure imple-

mentations, the local computation at each organization is essentially “free” because orga-

nizations have full control of their respective private data and fast non-secure computations

are applicable; but secure computation at the aggregation center is usually orders of mag-

nitudes slower than non-secure counterparts (due to expensive cryptographic protections

against an adversarial center). This implies that eliminating complexity of center-based

108



secure computation (current bottleneck) can potentially lead to significant speedup (as is

the case in PrivLogit).

V.2.3.3.2 Constant Hessian

Our proposed Hessian approximation stays constant and independent of the varying β
(t)’s

coefficients across all iterations. This indicates that it only needs to be evaluated and in-

verted once during preprocessing and can then be reused across all iterations, leading to

dramatic reduction in computation compared with traditional Newton method.

V.2.3.3.3 Decomposition of Computation

The new optimizer allows for easy decomposition the computation among participating

organizations, which can be leveraged to achieve significant speedup. For instance, the

approximate Hessian can be computed in a distributed manner via a series of aggregations,

as demonstrated in Equation V.14. So is the gradient.

In addition, further reduction in computation is possible after the approximate Hes-

sian is securely inverted and properly protected. As will be introduced later in our second

implementation PrivLogit-Local (Section V.2.4.2), partial Newton update direction can be

computed locally by each local nodes (who has privacy-free access to their respective pri-

vate data and thus local gradient need not be encrypted). The center only needs to securely

aggregate these local Newton steps, which is highly efficient.

V.2.3.3.4 Guaranteed Model Quality

Despite the approximation to Hessian, the PrivLogit optimizer is guaranteed to converge to

accurate model estimates. We will demonstrate this property both analytically and empiri-

cally later.
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V.2.3.3.5 Guaranteed Model Convergence

Finally, our adapted optimizer has better convergence guarantee than standard Newton. In

particular, PrivLogit will generate a sequence of parameter estimates which monotonically

increase the value of the objective function, leading to guaranteed convergence to the op-

timal solution of the convex objective no matter what initializations the algorithm adopts.

In contrast, Newton method may fail to converge with “poor” initializations (as demon-

strated later). Moreover, unlike gradient descent and Newton method, there is no need for

complicated and expensive line searching for best step size.

V.2.4 Safeguarding PrivLogit

Based on our new PrivLogit optimizer, we propose two secure protocols for preserving

privacy in logistic regression. The first is called PrivLogit-Hessian and is a straightforward

cryptographic implementation of PrivLogit. Our second proposal, called PrivLogit-Local,

further offsets some expensive matrix operations to local organizations and take advantage

of their fast and privacy-free computing power.

Both our secure protocols adopt the distributed architecture consisting of local Nodes

(organizations) and an aggregation Center (semi-honest), as illustrated in Figure V.5. In

brief, participating organizations (i.e., Nodes) are responsible for protecting their respec-

tive data and only generating (safe) summary-level data, which would be encrypted and

securely consumed by the Center for model estimation. In a strongly protected system

such as ours, all data and computations at the Center are encrypted and not visible even to

the Center itself. The role of Center is typically played by two or more mutually indepen-

dent semi-trusted authorities (denoted as different Servers in Figure V.5), as is common for

secure multi-party computation applications [4, 121, 159, 93]. As long as there is no major

collusion between the authorities, the security of the system is guaranteed. For practical

deployment such as in biomedical or social sciences, the role of Center could be assumed

by the coordinating center (of a consortium, federation or association) in addition to a
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third-party authority (e.g., audit organizations or even a respectful member organization).

Figure V.5: Distributed architecture for privacy-preserving logistic regression. Two main
types of computations are involved between: 1) local Nodes and the Center; 2) different
Servers/authorities at the Center.

Our proposals are agnostic of specific choices of cryptographic schemes and many ex-

isting or new cryptographic sub-protocols can be leveraged. Since the focus of our work

is not on specific cryptographic protocols and due to space constraint, we avoid specific

cryptographic details (e.g., cryptographic key management) that are common knowledge

in privacy-preserving (distributed) data mining [4, 121]. For demonstration purpose, we

build on a hybrid of two popular schemes, i.e., Yao’s garbled circuit [164] (mainly for

Type 2 computations between independent Center servers as depicted in Figure V.5) and

the Paillier cryptosystem [125] (mainly for Type 1 computations between local Nodes and

the Center as depicted in Figure V.5). Such hybrid schemes also underlie various state-

of-the-art protocols for privacy-preserving logistic regression and other machine learning
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models [4, 41, 121].

Note that our protocols do not address output privacy (i.e., privacy issues of releasing

regression coefficients), which is typically covered by an independent topic called differ-

ential privacy [37] (also briefly discussed earlier in Section II.3.3). This complies with

security guarantees and primary focus of SMC-based secure protocols. For simplicity, we

use intuitive symbols to denote a few common secure mathematical arithmetics. Each of

these operations take encrypted operands as inputs, and securely compute without decryp-

tion to output an encrypted result. As before, encrypted data are represented as Enc(.).

And we denote secure addition, subtraction, multiplication, division and square root as:

⊕,	,⊗,�,Esqrt(.), respectively.

V.2.4.1 PrivLogit-Hessian: Secure Distributed Approximate Hessian

PrivLogit-Hessian is our straightforward secure and distributed implementation of the PrivLogit

optimizer, as presented in Algorithm 6. In Algorithm 6, we flag computations by their lo-

cation of occurrence in accordance with the distributed architecture in Figure V.5 (i.e.,

whether the computation is conducted by local Nodes or by SMC servers at the Center).

The secure PrivLogit-Hessian protocol consists of two phases of computation: a one-

time setup phase of securely approximating and inverting the Hessian, and a repeated (iter-

ative) secure model estimation phase.

The first phase (Step 1 in Algorithm 6 or SetupOnce() function in Algorithm 7) focuses

on securely approximating and inverting Hessian. Specifically, based on Algorithm 7, each

local organizations compute their local Hessian approximation H̃ j (based on covariance

matrix XT
j X j) and encrypt it before sharing with the Center (Steps 1 to 4 in Algorithm 7).

The Center securely aggregates these encrypted per-organization Hessians (and the regu-

larization term as necessary), yielding an encrypted global Hessian approximation Enc(H̃)

(Step 5 in Algorithm 7 and Equation V.14). Later, the Center needs to securely invert the

Hessian, which is typically achieved by secure Cholesky decomposition (see Appendix)
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Algorithm 6 PrivLogit-Hessian: Fast and Secure Logistic Regression.

Input: Random initial β
(0); Regularization parameter λ

Output: Globally fit coefficient estimate β

[At local organizations and Center] :
1: Securely approximate and Cholesky-decompose (negated) Hessian: Enc(L) =

SetupOnce() (where Enc(LLT ) = Enc(−H̃))

2: while regression model not converged do
[At local organizations] :

3: for each organization j = 1 to S do
4: Compute local gradient g j and encrypt
5: Compute local log-likelihood ls j and encrypt
6: Securely transmit encryptions Enc(g j),Enc(ls j) to Center
7: end for

[At Center] :
8: Securely aggregate gradients across organizations: Enc(g) = Enc(g1) ⊕ ... ⊕

Enc(g j)⊕ ...⊕Enc(gS)	Enc(λβ
(t))

9: Secure back-substitution: Enc(H̃−1g)← Enc(L) , Enc(g)
10: Securely update coefficient estimates via PrivLogit: β

(t+1)← β
(t) (Equation V.15)

11: Securely aggregate log-likelihood across organizations: Enc(l2) = Enc(ls1)⊕ ...⊕
Enc(ls j)⊕ ...⊕Enc(lsS)	Enc(λ

2 [β
(t)]T β

(t))
12: Securely check model convergence
13: Securely disseminate new coefficient estimates to each local organizations:

Enc(β (t+1))
14: end while
15: return β

(t) (final converged estimate)

Algorithm 7 SetupOnce() for securely approximating and inverting Hessian.
Input: Local organizations with their respective data
Output: Encrypted triangular matrix Enc(L) from Cholesky decomposition (where

Enc(LLT ) = Enc(−H̃))
[At local organizations] :

1: for each organization j = 1 to S do
2: Approximate local Hessian H̃ j
3: Encrypt and securely transmit Enc(H̃ j) to Center
4: end for

[At Center] :
5: Securely aggregate Hessians across organizations: Enc(H̃) = Enc(H̃1) ⊕ ... ⊕

Enc(H̃ j)⊕ ...⊕Enc(H̃S)	Enc(λ I)
6: Secure Cholesky decomposition to obtain: Enc(L) (where Enc(LLT ) = Enc(−H̃))
7: return encryption Enc(L)
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on the protected (negated) Hessian and obtains its encrypted “inversion” (the encrypted

Cholesky triangular matrix Enc(L) to be precise), such that Enc(LLT ) = Enc(−H̃). Note

that the whole phase only needs to occur once, which is a significant improvement over

Newton method-based protocols.

The second phase (Steps 2 to 14 in Algorithm 6) of PrivLogit-Hessian resembles that of

the widely-used privacy-preserving distributed Newton method, except for the substitution

of repeated Hessian evaluation and inversion. Model estimation proceeds in a secure and

iterative process. Model convergence is checked at each iteration (Step 12 in Algorithm 6).

For each iteration, local organizations only need to compute their local gradient g j and log-

likelihood ls j (where j indexes each organization), and securely transmit their encryptions

to the Center (Steps 3 to 7). The Center securely aggregates the gradient and log-likelihood

submissions, and compose the encrypted global gradient (Step 8) and log-likelihood (Step

11). Later on in Step 9, back-substitution is securely performed to derive the encrypted

product Enc(H̃−1g) from previously derived encryptions Enc(L) and Enc(g). The Center

then updates current coefficient estimates following the PrivLogit updating formula (Step

10 and Equation V.15). This iterative process continues until model converges.

V.2.4.1.1 Secure Cholesky Decomposition

Secure Cholesky decomposition (Algorithm 8; also used by [121]) is used in our protocol

to help “invert” the (negated) Hessian, which is the main computation in PrivLogit (and

the bottleneck in Newton method). We denote the input matrix to be B ∈ Rp×p, and each

elements of it as Li, j, where i, j index the row and column positions, respectively.

V.2.4.2 PrivLogit-Local: Further Offsetting Computations to Local Nodes.

Our second and even faster secure protocol, PrivLogit-Local, is presented in Algorithm 9.

This protocol takes advantage of the fact that the centrally aggregated approximate Hessian

H̃−1 (or encryption Enc(H̃−1)) can be regarded as a (private) constant value. We note that

for each local Nodes, local gradient g j is privacy-free and essentially a public constant.
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Algorithm 8 Secure Cholesky decomposition of matrix B.

Input: Encryption Enc(B), where B = (Li, j) ∈ Rp×p

Output: Encrypted triangular matrix Enc(L), such that LLT = B
[At Center] :

1: for j = 1 to p do
2: for k = 1 to j-1 do
3: for i = j to p do
4: Enc(Li, j) = Enc(Li, j)	Enc(Li,k L j,k)
5: end for
6: end for
7: Enc(Li, j) = Esqrt(L j, j)
8: for k = j+1 to p do
9: Enc(Lk, j) = Enc(Lk, j)�Enc(L j, j)

10: end for
11: end for
12: return Enc(L) = Enc(updated B)

This means that we can further distribute the expensive (center-based) matrix-vector multi-

plication to local Nodes by leveraging cheap secure multiplication-by-constant locally: i.e.,

to locally compute Enc(H̃−1)⊗g j (which can be centrally aggregated efficiently in secure

later).

In greater detail, the first step of PrivLogit-Local still involves the local organizations

and Center securely approximating and “inverting” the Hessian (Step 1 in Algorithm 9; or

SetupOnce() in Algorithm 7), similar to Phase 1 of PrivLogit-Hessian. Next, we directly

materialize the inversion of approximate Hessian in encrypted form, i.e., Enc(H̃−1). Af-

ter that, this encrypted inversion is disseminated to each local organizations where local

computation of gradients only involves privacy-free operations.

Later on, at each iteration, local organizations derive their local summaries, such as

log-likelihood (Step 5) and gradient (Step 6). Then they compute their respective versions

of (partial) Newton updating step, by using efficient secure multiplication primitives. Since

the local gradients g j do not involve privacy concerns at their respective local organizations

(thus can be regarded as a public constant value), the computation is greatly simplified to

highly efficient secure multiplication-by-constant primitives. Afterwards, local organiza-
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Algorithm 9 PrivLogit-Local: offsetting partial Newton update step to local organizations.

Input: Random initial β
(0); regularization parameter λ

Output: Globally fit coefficient estimate β

[At local organizations and Center] :
1: Securely approximate and Cholesky-decompose Hessian: Enc(L) = SetupOnce()

(where Enc(LLT ) = Enc(−H̃))
2: Securely invert Hessian: Enc(H̃−1)← Enc(L)

3: while regression model not converged do
[At local organizations] :

4: for each organization j = 1 to S do
5: Compute local log-likelihood ls j and encrypt
6: Compute local gradient g j
7: Secure multiplication: Enc(H̃−1g j)← Enc(H̃−1), g j;
8: Securely send encryptions Enc(H̃−1g j), Enc(ls j) to Center
9: end for

[At Center] :
10: Securely compose global numerical updating step: Enc(H̃−1g) = Enc(H̃−1g1)⊕

...⊕Enc(H̃−1g j)⊕ ...⊕Enc(H̃−1gS)	Enc(λ H̃−1β
(t))

11: Securely update coefficient estimates via PrivLogit: β
(t+1)← β

(t) (Equation V.15)
12: Securely aggregate log-likelihood across organizations: Enc(l2) = Enc(ls1) ⊕

Enc(ls2)⊕ ...⊕Enc(ls j)	Enc(λ

2 [β
(t)]T β

(t))
13: Securely check model convergence
14: Securely disseminate new coefficient estimates to each local organiztions:

Enc(β (t+1))
15: end while
16: return β

(t) (last converged estimate)

tions send their encrypted summaries Enc(H̃−1g j),Enc(ls j) back to the Center (Step 8).

For regularized logistic regression, the regularization term also needs to be securely com-

posed, which can be prepared by the local organizations and then aggregated centrally, i.e.,

Enc(λ H̃−1β
(t)) = Enc(H̃−1

∑
S
j=1 λβ

(t)
j ). Finally, the Center only needs to perform trivial

secure aggregation to complete the Newton updating process and convergence check (Steps

10 to 13).

The correctness of Algorithm 9 is evident. Briefly, H̃−1g= H̃−1(∑ j g j−λβ )=∑ j H̃−1g j−

λ H̃−1β .
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A slight variant to this protocol would be to directly use the Cholesky triangular matrix

Enc(L) (as is generally recommended for privacy-free scenarios) instead of the actual Hes-

sian inversion. Our evaluation indicates that they have equivalent performance in secure.

Thus we opt for the implementation introduced above.

In addition to earlier improvements from PrivLogit-Hessian, our second protocol fur-

ther avoids expensive secure matrix multiplication (between encryptions), which leads to

significantly less computation than PrivLogit-Hessian and Newton.

V.2.5 Theoretical Analysis and Proof

In this section, we present theoretical analysis and proof for our proposals regarding com-

putational complexity, and model convergence.

V.2.5.1 Complexity Analysis

Here we roughly analyze the computational complexity of the operations involved, loosely

following the Big-O notation. Since cryptographic operations are dominating the total com-

putation of secure protocols introduced, we thus focus on cryptography-related procedures

only.

For gradient g ∈ Rp and Hessian H ∈ Rp×p, the main operations concerning privacy

protection are: matrix-vector multiplication (O(p2) complexity), matrix inversion (O(p3)),

Cholesky decomposition (O(p3)), and back-substitution (O(p2)).

State-of-the-art privacy-preserving Newton method requires repeatedly decomposing

Hessians and matrix multiplication, with total complexity of O(p3×Newton iterations).

PrivLogit in general requires one step of Hessian inversion, and many iterations of

matrix-vector multiplication, with total complexity of O(p3+ p2×PrivLogit iterations).

Note that specifically for PrivLogit-Local, the second complexity term can much lower

(than PrivLogit-Hessian) since multiplication-by-constant (the main computation involved)

is much more efficient than secure multiplication of two encryptions (as in PrivLogit-

Hessian).
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Since the relationship between p and iteration numbers (of Newton and PrivLogit) is

not determined, performance improvement is not strictly guaranteed for (directly applying)

PrivLogit over Newton method. This is a limitation of one related work [118]. In practice,

we show that PrivLogit tends to have lower amortized cost, since PrivLogit iterations are

of low cost. And this advantage grows with data dimensionality p. Our second adaption

PrivLogit-Local should guarantee to outperform Newton and the speedup is significant.

This is because statistics and optimization theory suggests that the iteration numbers (for

Newton or PrivLogit) grows slower than dimensionality (p). So the dominant factor for

complexity is the first term involving p3, where PrivLogit-Local manifests obvious im-

provement over Newton empirically.

V.2.5.2 Security Guarantees

Our work considers the honest-but-curious adversary model [55], where the adversary al-

ways follows the prescribed protocol, but may attempt to learn additional knowledge from

the information flowed by. Since the focus of our work is not on specific cryptographic im-

plementations and for demonstration we use standard secure primitives (e.g., Yao’s garbled

circuit [164], Paillier cryptosystem [125]) whose security are well established, we only

provide concise security analysis for brevity.

In both PrivLogit-Hessian and PrivLogit-Local, local-Node summaries are encrypted

prior to submission to guarantee privacy. In PrivLogit-Local, the inverted approximate

Hessian is also encrypted before being shared with local Nodes. At the aggregation Cen-

ter, all incoming inputs are encrypted in Paillier or Yao’s garbled circuit shares. All data,

computations and results are also encrypted. Based on the composition theorem of secu-

rity [55], the composition of these secure sub-protocols also yield a secure protocol overall.

The only information disclosure is the regression coefficients (shared with local nodes),

which share the same privacy properties as the final output (e.g., final regression coeffi-

cients). By definition, cryptographic protocols do not guarantee security on final output
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itself (as mentioned earlier), so this practice does not violate security. The only potential

way to breach security here is for local nodes to form a linear equation system using many

regression coefficients from all iterations [124, 41]. However, since the number of itera-

tions is small and (private) data size/dimensionality is huge (n× p), the system is severely

undetermined and such attacks are not possible.

V.2.5.3 Convergence Proof for PrivLogit

Since our PrivLogit introduced approximation to Hessian, the convergence properties of

standard Newton no longer apply. We thus present theoretical proof regarding the conver-

gence of PrivLogit, which is based on quadratic function approximation [16]. We show

that our PrivLogit optimizer is guaranteed to converge to the optimum, and at a linear con-

vergence rate. Specifically, we prove the following proposition:

Proposition 1. Assume the optimal solution β
∗ to the objective function l2(β ) (Equation

V.18) exists and is unique. Let {β (t)} be a sequence generated by PrivLogit with the update

formula in Equation V.15. The sequence has the following properties:

(a) l2(β
(t+1))> l2(β

(t)) and β
(t) will converge to the optimal solution β

∗.

(b) The rate of convergence of PrivLogit method is linear.

Proof.

(a) By using the negative definiteness of H̃ and the second-order Taylor expansion of l2(β ),

we have,

l2(β
(t+1))− l2(β

(t))

=−g(β (t))ᵀH̃−1g(β (t))+
1
2

g(β (t))ᵀH̃−1H(β̂ )H̃−1g(β (t))

>−g(β (t))ᵀH̃−1g(β (t))+
1
2

g(β (t))ᵀH̃−1H̃H̃−1g(β (t))

=−1
2

g(β (t))ᵀH̃−1g(β (t))> 0
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where β̂ is between β
(t) and β

(t+1).

The objective function l2(β ) is strictly concave with a negative definite Hessian matrix

and therefore is maximized at the optimal solution β
∗. From the previous derivation, we

obtain the lower bound of the increment of the objective function at each iteration. If

g(β (t)) is bounded away from 0 for all t, in other words, ||g(β (t))|| > ε for some positive

constant ε , then the increment of each iteration is also bounded above 0, which contradicts

the upper boundedness of the objective function. Therefore, g(β (t))→ 0 as t → ∞, which

means the sequence {β (t)} converges to the optimal solution β
∗.

(b) Since XᵀX is positive semi-definite, its eigenvalues are all non-negative. Denote the

biggest eigenvalue of XᵀX as λmax. Furthermore, we also assume XᵀAX is positive definite

at every iteration, with the smallest eigenvalue λ min > 0. Then we have

− 1
1
4λmax +λ

I� H̃−1

and

−(λ min +λ )I�H(β )�−(1
4

λmax +λ )I

Let M = 1
4λmax + λ and m = λ min + λ . By the strong concavity assumption and the

second-order Taylor expansion of l2, we have for any υ and ω in the parameter space,

l2(ω)< l2(υ)+g(υ)ᵀ(ω−υ)− 1
2

m||ω−υ ||22

< l2(υ)+
||g(υ)||22

2m

Since the inequality holds everywhere in the parameter space, we have ||g(υ)||22 > 2m(l2(β
∗)−

l2(υ)) for any υ . Next we need to investigate the relation between l2(β
∗)− l2(β

(t+1)) and
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l2(β
∗)− l2(β

(t)) for all t. From part(a), we have

l2(β
(t+1))> l2(β

(t))− 1
2

g(β (t))ᵀH̃−1g(β (t))

> l2(β
(t))+

1
2M
||g(β (t))||22

Subtracting both sides from l2(β
∗) , we get

l2(β
∗)− l2(β

(t+1))< l2(β
∗)− l2(β

(t))− 1
2M
||g(β (t))||22

< (1− m
M
)(l2(β

∗)− l2(β
(t)))

< (1− m
M
)t(l2(β

∗)− l2(β
(1)))

where the factor 1− m
M

< 1. It shows that l2(β
(t)) converges in a linear rate to β

∗ as

t→ ∞.

V.2.6 Experiments

We implement both PrivLogit-Hessian and PrivLogit-Local in the Java and Julia [14] pro-

gramming languages. At a lower-level, our Yao’s garbled circuit evaluation is building

on top of state-of-the-art framework ObliVM-GC [98]. Numerical values are denoted in

floating-point representations. We use the recommended 2048-bit security parameter for

encryption. Other security parameters follow standards or default values from NIST and

ObliVM-GC. Since no open-source code is available as baseline, we also implement state-

of-the-art privacy-preserving distributed Newton method. We run all experiments between

two commodity PC with 2.5 GHz quad-core CPU and 16 GB memory, connected via eth-

ernet.

Our empirical evaluations focus on the following criteria: 1) Model estimation quality

(the accuracy of estimated coefficients) (in Section V.2.6.2); 2) Model convergence perfor-

mance (in Section V.2.6.3); 3) Guarantee in model convergence (in Section V.2.6.4).

In our experiments concerning numerical optimizers (i.e., PrivLogit and Newton method),
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we randomly initialize first coefficient estimates as commonly suggested (e.g., 0 as initial

guess). We use 10−6 as our stopping threshold when checking model convergence (i.e.,

relative change of likelihood). Other thresholds have also been tested, such as 10−7 and

10−8, which do not affect our main results and conclusions and thus are not reported.

V.2.6.1 Datasets

Our empirical evaluation includes a series of simulated and real-world studies, covering a

wide spectrum of applications from different domains and of different scales.

Among these, we have compiled four real-world studies, including: 1) the Wine quality

study (with 6,497 samples and 12 features) [30] for predicting wine quality from physico-

chemical tests, 2) online Loans data (with 122, 578 samples and 33 features) from Lending

Club [91] for studying loan default status from loan application data, 3) company Insurance

study (of dimension: 9,882× 38) for predicting caravan issurance from demographic in-

formation and personal finance attributes, and 4) News dataset (of dimension 39,082×52)

[48] for predicting the popularity of Mashable.com news from article features.

To make our evaluations more comprehensive, we have also simulated a series of stud-

ies with varying data scales, including: SimuX10 (of dimension 50,000× 10), SimuX12

(1,000,000× 12), SimuX50 (1,000,000× 50), SimuX100 (3,000,000× 100), SimuX150

(4,000,000×150), SimuX200 (5,000,000×200), SimuX400 (50,000,000×400), etc. We

also evaluated on additional studies with various data sizes and numbers of participating

organizations. Since these factors do not have direct influence on the secure computation

process (which primarily concerns summary data) both theoretically and empirically, we

do not report on them separately. We following standard data simulation approach, by

randomly generating covariates X ∈ Rn×p and coefficients β ∈ Rp×1, and then deriving

responses y ∈ Rn×p according to Bernoulli distribution.

These evaluation datasets should be representative for most large-scale studies in our

focused domains in the foreable future. We also randomly partition datasets into subsets
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(by row or horizontally) in order to emulate different organizations in collaborative studies.

V.2.6.2 Model Accuracy

First and foremost, we want to ensure that our proposals are scientifically sound and re-

liable. To do so, we examine the model quality (as measured by accuracy of coefficient

estimates and subsequent predictions) estimated from PrivLogit-Hessian and PrivLogit-

Local. The standard non-secure distributed Newton method serves as the ground truth. Our

hypothesis is that despite the significant change in our numerical optimizer and reliance on

cryptographic operations, the accuracy of our model estimation (measured in coefficients

β ) should still be guaranteed.

Numerical results have confirmed our hypothesis, as is illustrated in the QQ-plots in

Figure V.6. Specifically, our β coefficient estimates from PrivLogit-Hessian and PrivLogit-

Local are in perfect alignment with the ground-truth Newton across all studies, with cor-

relation R2 = 1.00 (perfect correlation). Since there is deterministic mapping between β

and prediction target y for given input data X and our coefficient estimates are exactly

the same as the ground-truth, we omit the comparison result in terms of model prediction

performance for brevity.

This implies that the approximate Hessian adaption we introduced in PrivLogit does

not affect model quality and is scientifically reliable. Moreover, it also confirms that the

various cryptographic protections underlying PrivLogit-Hessian and PrivLogit-Local have

no influence on the model quality. All such observations are in accordance with our earlier

analytical evidence.

V.2.6.3 Computational Performance

Next, we evaluate the computational performance of PrivLogit-Hessian and PrivLogit-

Local in terms of model convergence with respect to iterations count and total runtime.

We partition each evaluation datasets into 4∼20 blocks horizontally (i.e., by rows) to emu-

late different data-contributing organizations. As it has been demonstrated both analytically
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Figure V.6: QQ-plot comparison of coefficients estimated by PrivLogit-Hessian and
PrivLogit-Local vs. that by baseline Newton, across various datasets. PrivLogit-Hessian
(in black) and PrivLogit-Local (in blue) points overlap significantly.

and empirically that cryptographic protections do not affect the accuracy of computation in

our case, we refer to our two secure protocols as PrivLogit in general for simplicity. Our

model convergence threshold is set at 10−6, as mentioned earlier.

V.2.6.3.1 Iterations to convergence

As is illustrated in Figure V.7, all protocols managed to converge within a reasonable num-

ber of iterations. For instance, the Loans study (of dimension: 122,578× 33) requires 6

and 17 iterations, respectively, to converge for the Newton and our PrivLogit-based secure

proposals. For the smaller Insurance study, it takes 7 (for Newton) and 59 (for PrivLogit)

iterations, respectively. As the data size (especially dimensionality) increases, we observe

increases in the number of iterations both for Newton and PrivLogit, with the former grow-

ing slower. For instance, SimuX150 (with 4 millions samples and 150 features) requires

7 iterations for Newton (only 17% increase over Loans) and 83 iterations for PrivLogit
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Figure V.7: Convergence iterations of PrivLogit and the Newton method baseline on real-
world (upper panel) and simulated (lower panel) datasets. Red horizontal line denotes the
stopping threshold.

(388% increase over Loans).

Judging from model convergence iterations, PrivLogit seems “unfavorable” to Newton,

as PrivLogit often requires a few tens of or more iterations, while the latter seems signifi-

cantly faster with only single-digit number of iterations. The elongated convergence rate is

perhaps the main reason why methods similar to PrivLogit have never been considered in

the data security and privacy community. However, we will soon refute such a misconcep-

tion by comparing the total runtime.
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V.2.6.3.2 Convergence runtime

Surprisingly, detailed runtime benchmark in Table V.3 manifests that both our secure proto-

cols, i.e., PrivLogit-Hessian and PrivLogit-Local, turn out to be quite competitive in com-

putational performance. For instance, in the Loans study, while Newton method takes

only 6 iterations, its actual runtime reaches as much as 492 seconds (because of expensive

per-iteration computation); On the other hand, despite requiring substantially more itera-

tions (i.e., 17), our PrivLogit-Hessian and PrivLogit-Local protocols only take around 260

and 104 seconds, respectively, leading to 1.9x and 4.7x speedup, respectively. For even

larger-scale studies such as SimuX150, Newton method takes 42,951 seconds or roughly 12

hours. PrivLogit-Hessian and PrivLogit-Local are respectively 1.7x and 7.1x times faster

than Newton in this case.

One interesting observation is that in rare occasions, PrivLogit-Hessian can be slightly

slower than Newton. For instance, the Insurance study requires around 843 seconds for

Newton (for 7 iterations), but 978 seconds (1.16x slower) for PrivLogit-Hessian. This

indicates that directly applying PrivLogit (i.e., PrivLogit-Hessian) does not guarantee im-

provement. Our second protocol, PrivLogit-Local, however, always outperforms Newton

with dramatic speedup: requiring only 144 seconds (5.9x speedup).

Overall, PrivLogit-Local constantly outperforms other methods with significant speedup,

while PrivLogit-Hessian is generally faster than Newton most of the time.

Furthermore, we also test on datasets with dimensions as high as 400, a scale that has

never been tested before for privacy-preserving logistic regression. Unfortunately, only

PrivLogit-Local converges within reasonable time (110,598 seconds or roughly 1.28 days;

for 206 iterations). The other two protocols still did not complete after 4 days. While

PrivLogit-Hessian did not complete, its convergence iterations is expected to be the same

as PrivLogit-Local (i.e., 206 iterations). For Newton method, a non-secure implementation

requires 8 iterations.
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Table V.3: Model convergence iterations (Iter.) and runtime (in seconds) benchmark for
Newton (Ntn.), PrivLogit (Priv.), PrivLogit-Hessian (-Hessian), PrivLogit-Local (-Local).

Dataset
Iterations
Ntn. (Priv.)

Time
Ntn.

Time
-Hessian

Time
-Local

Wine 5 (13) 32 24 17
Loans 6 (17) 492 260 104
Insurance 7 (59) 843 978 144
News 5 (13) 1442 621 313
SimuX10 6 (20) 26 24 13
SimuX12 6 (22) 38 37 17
SimuX50 6 (32) 1549 1052 383
SimuX100 7 (59) 13138 7817 1807
SimuX150 7 (83) 42951 25030 6055
SimuX200 8 (105) 114522 56917 14105
SimuX400 8 (206) N/A N/A 110598

V.2.6.3.3 Relative speedup

To better demonstrate the relative performance of PrivLogit-Hessian and PrivLogit-Local

over existing secure Newton methods, we extensively benchmark the relative speedup of

our methods over the baseline Newton. As illustrated in Figure V.8, PrivLogit-Hessian

outperforms Newton most of the time (except for one occurrence of Insurance), and the

speedup is between 1.03x∼2.32x. For PrivLogit-Local, the speedup is even more strik-

ing, with a speedup of up to 8.1x. For small datasets, PrivLogit-Local is around 2x

faster than Newton; for medium datasets such as Loans, Insurance, News, its speedup

is around 4x∼6x. The largest increase in relative performance is from PrivLogit-Local on

the SimuX200 dataset, with 8.1x speedup. PrivLogit-Hessian also performs well, with 2x

speedup. In general, as data dimension increases, we see much more relative efficiency

gain for both PrivLogit-Hessian and PrivLogit-Local.

Overall, this provides further evidence that our secure PrivLogit proposals have better

performance compared to state-of-the-art privacy-preserving distributed Newton method,

and our relative competitive advantage increases along with data scale. This indicates that

our methods hold much better potential for large-scale studies in the big data era.
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Figure V.8: Relative speedup of PrivLogit-Hessian and PrivLogit-Local over the secure
distributed Newton baseline (the y = 1 line), across various datasets. Our protocols can
speed-up the computation by up to 2.32x and 8.1x times, respectively.

V.2.6.4 Model Convergence Guarantee

Another advantage of PrivLogit is its guaranteed convergence to the optimum, a highly

desirable property that is absent from Newton method. Newton method is widely known

to be sensitive to initial β values. Certain sub-optimal choice of initialization may cause

divergence of the method, leading to indefinite iterations.

To compare the convergence of our PrivLogit optimizer and Newton method, we use

the SimuX50 dataset and run a series of random initializations by setting all (dimensions of)

β
(0) = 0.8,1,1.5,or 2, respectively (the converged version of Newton reported before uses

0 as initialization). We report on the Euclidean distance between the coefficient estimates
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at each iteration and the ground-truth β . The larger the distance is, the less accurate the

model estimation is and less likely to converge.

The superior convergence guarantee of PrivLogit is manifested in Figure V.9, where

PrivLogit always converges within a reasonable number of iterations. Newton method,

however, diverges significantly starting from the first few iterations and its coefficient es-

timation is getting worse and worse. Our extensive evaluations on other datasets indicate

that the divergence of Newton is not uncommon in practice.
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Figure V.9: Model convergence guarantees for PrivLogit and Newton methods under dif-
ferent coefficient initializations. Distance between per-iteration coefficient estimates and
the ground-truth is reported (large distance implies inaccurate estimation and thus poor
convergence).

V.2.7 Related Works

Privacy-preserving regression analysis and machine learning in general is actively investi-

gated. Here we discuss several closely related lines of research.
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V.2.7.1 Cryptographic Protections on Logistic Regression and Other Models.

Extensive efforts have focused on protecting privacy in logistic regression, from centralized

solutions [41] to distributed architecture [84, 154, 118, 155]. Due to complexity of securely

computing logistic function, many existing proposals compromise on security guarantee

by providing no or only weak protections over intermediate summary data [154, 155, 93],

which can be problematic given various inference attacks [124, 159, 41]. Other works

approximate the logistic function, resulting in accuracy loss [118, 41, 7]. Nearly all exist-

ing works directly apply mainstream model estimation algorithms (i.e., Newton method)

without customization. Our proposal, however, provides a secure computing-centric per-

spective, and proposes an optimizer that significantly outperforms alternatives while guar-

anteeing accuracy.

Hessian approximation was briefly explored by [118], but without justification or even

(comparative) performance evaluation. Our results show that direct application of the

method does not necessarily lead to better performance, and even when it does, the im-

provement is modest. In addition, for datasets of size n× p, Newton method has per-

iteration complexity O(np2 + p3) (where the first term is dominating the cost). And the

main improvement of approximate Hessian is by limiting the first term np2 to one oc-

currence only (as in [118]). However, our use case is different as our local-organization

computation is privacy-free (i.e., independent from sample size n) and total cost is only

determined by the second term O(p3), making it not obvious of the benefits of approxi-

mate Hessian. In fact, there is no performance guarantee if directly adopting approximate

Hessian in our situation.

Cryptography is also widely used to safeguard linear regression, association rule min-

ing, and other data mining tasks. It is known as privacy-preserving (distributed) data mining

(partially reviewed by [4]).
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V.2.7.2 Perturbation-based Privacy Protection.

Perturbing data via artificial noise is also a popular technique for privacy preservation (e.g.,

k−anonymity, differential privacy). However, since such methods inherently change the

data and computation, their results may no longer be scientifically valid and thus are not

widely accepted in practice. In addition, they do not protect the computation process.

V.2.7.3 Improved Numerical Optimization for Regression.

Numerical optimization for regression analytics is under extensive investigation. These in-

clude various efforts to approximate or eliminate the Hessian from Newton-style optimiz-

ers, such as the Quasi-Newton or Hessian-free optimization (e.g., BFGS and L-BFGS [99]).

However, none of them have seen adoption in data security and privacy research, partially

because they are heavily tailored for privacy-free scenarios and often data-dependent and

thus difficult for cryptographic implementation. Hessian approximation was described in

the 1980s for maximum likelihood (in privacy-free applications) [16], but only with limited

adoption in practice maybe due to their not-obvious efficiency improvement for privacy-

free settings.

V.2.8 Discussion

In PrivLogit-Hessian and PrivLogit-Local, the network bandwidth and transmission cost

is small, since the encrypted summary information exchanged has very minimal size even

for large studies, especially given that Hessian only needs to be preprocessed once. Since

these factors are already accounted for in the total runtime benchmark, we omit detailed

discussion for brevity.

The PrivLogit optimizer is designed for secure computing in general and agonostic of

specific cryptographic schemes. PrivLogit-Hessian can be further accelerated using more

efficient schemes, given that the computation is simplified. However, since we aim to

provide a direct comparison with state-of-the-art based on the same secure primitives, we

leave it as future work to explore alternative schemes.
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While our work focuses on logistic regression, our proposal of tailoring optimizers for

secure computing is widely applicable to privacy-preserving machine learning, as main-

stream (distributed) optimizers are not necessarily competitive for secure computing de-

spite their wide adoption in data security and privacy. We consider extending this novel

approach to other statistical models such as other regression problems and classification.

V.2.8.1 Conclusion

We have introduced an improved numerical optimizer (i.e., PrivLogit) and demonstrate

its obscure but surprisingly competitive performance for privacy-preserving logistic re-

gression. This contrasts to common wisdom in privacy-preserving data mining which

naively applies mainstream numerical optimization methods, which often disregards secure

computing-specific characteristics and thus misses valuable opportunities for significant

performance boost. Based on PrivLogit, we also propose two secure and highly-efficient

protocols for privacy-preserving logistic regression. We validate our proposals extensively

using both analytical and empirical evaluations. Results indicate that our proposals out-

perform alternatives by a significant margin while ensuring privacy and accuracy. Our

methods should be helpful for making privacy-preserving logistic regression more scal-

able and practical for large collaborative studies. And our generic perspective on tailoring

optimizers for secure computing should also inspire other research in privacy-preserving

machine learning in general.
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V.3 QuickLogit: A Novel Paradigm for Efficient Privacy-preserving Logistic Re-

gression

The following section is based on our work in [162]. My contribution in this work in-

cludes conception, design and supervision of the study, implementation and experimental

evaluation, analysis of results, writing the manuscript and addressing reviewer comments.

Protecting privacy while supporting machine learning on human subject data is highly

desirable in basic sciences, especially when data are naturally distributed or decentral-

ized among different organizations (such as in multi-site consortia-based investigations).

Privacy-preserving machine learning has benefited significantly from distributed machine

learning in general. Nearly all state-of-the-art methods for privacy-preserving distributed

data mining directly apply distributed machine learning algorithms. While progress is

impressive in this domain, we question the common practices of privacy-preserving dis-

tributed machine learning, and ask a fundamental question: is state-of-the-art performance

guaranteed in the secure setting by directly building on mainstream distributed machine

learning algorithms? Our work answers the question in the negative. We provide contrast-

ing insights to the problem, and propose a novel paradigm (called QuickLogit) to privacy-

preserving logistic regression in the multi-site distributed learning setting, which drastically

improves performance (faster by 3x to 6x or more) over standard practices of directly build-

ing on distributed algorithms. We show our our superior performance both theoretically and

empirically over multiple large-scale studies.

V.3.1 Introduction

Data sharing and joint statistical analytics in a distributed system consisting of various inde-

pendent databases (belonging to different institutions) is widely used in many “small data”

domains, such as biomedical and social sciences. The goal of multi-institution collabora-

tive studies is to accumulate large sample sizes across institutions and reach more powerful

and generalizable statistical conclusions from bigger databases. However, often times such
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databases involve privacy-sensitive human subject data, sharing of which across different

institutions often require complicated and time-confusing legal and ethical reviews.

Privacy-preserving distributed machine learning (or data mining) [4] is a popular re-

search endeavor to solve the challenge, which leverages distributed algorithms and cryp-

tography such as secure multi-party computation (SMC) to support machine learning while

protecting privacy. Recently, there is a resurgence of privacy-preserving machine learning

research, mainly due to their increasing adoption in various practical applications of multi-

institution investigations where there is increasing tension between privacy and social good

(such as in human genetics [43, 76], smart grid, and healthcare).

Despite encouraging progress, privacy-preserving (distributed) machine learning is fre-

quently criticized for its significant computational overhead. Inefficiency remain the biggest

bottleneck in wide-spread adoption of privacy-preserving machine learning protocols.

In this work, we propose a novel and generic paradigm for privacy-preserving dis-

tributed machine learning, which deviates significantly from common practices of the com-

munity which are directly based on distributed machine learning formulations. The main

merit of our proposal is to significantly accelerate privacy-preserving distributed machine

learning (the main hurdle of the field), by leveraging local models from distributed nodes.

To keep our presentation concrete, this work will primarily focus on logistic regression

as a representative machine learning and statistical model throughout this work. Logistic

regression is widely adopted in various domains and often the primary model for biomed-

ical and social sciences. The model is also fairly complex and its model estimation pro-

cess (second-order optimization) and cryptographic implementation are representative for

privacy-preserving machine learning in general.

Our work begins by questioning the common practice of heavily relying on (privacy-

free) distributed machine learning formulations that has dominated the field of privacy-

preserving distributed machine learning for over a decade. In particular, we pose a funda-

mental question: is competitive performance guaranteed by directly following distributed
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machine learning formulations? Unfortunately, our works answers the question in the neg-

ative.

Our results indicate that we have constantly neglected performance shortcuts that are

unique only to privacy-preserving distributed machine learning, but not present in generic

privacy-free distributed settings. This means that by deviating from standard distributed

machine learning formulations and customizing protocols/workflows specifically for privacy-

preserving distributed machine learning, we can gain unexpected (and significant) perfor-

mance.

V.3.1.1 Contributions and Outlines

Our main contributions are as follows:

• We propose a new paradigm for privacy-preserving distributed machine learning, by

leveraging the unique performance shortcuts in the secure setting.

• We propose a novel and significantly accelerated method, called QuickLogit, for

privacy-preserving logistic regression as demonstration of the aforementioned paradigm.

• We provide extensive theoretical and empirical support.

This manuscript is organized as follows: background information about logistic regres-

sion is introduced in Section V.3.2. We then introduce the theories and secure implemen-

tation in Section V.3.3. Later it is followed by in-depth theoretical analysis regarding the

convergence performance of QuickLogit in Section V.3.4. We empirically evaluate our pro-

posal in Section V.3.5. Lastly, we discuss related works in Section V.3.6 and conclude in

Section V.3.7.

V.3.2 Preliminaries

We briefly review logistic regression, our representative model for machine learning in this

work.

Throughout this work, we follow the main notations summarized below in Table V.4.
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Table V.4: Main notations.

Notations Description
X ∈ Rn×p Regression covariates: n samples, p features
y ∈ Rn×1 Regression responses: n samples
β ∈ Rp×1 Regression coefficients: p features
H ∈ Rp×p Hessian matrix
g ∈ Rp×1 Gradient
`(β ) Likelihood (of logistic regression)
E(.) Encryption of data

V.3.2.1 Logistic Regression

Logistic regression is a probabilistic model popular for binary (i.e., categorical) outcomes

classification. It is one of the most adopted statistical models in various applications, in-

cluding biomedicine and genetics, psychology and other social sciences, and internet in-

dustry. For a single record, logistic regression model is represented by:

p(y = 1|x;β ) =
1

1+ e−β
T x

, (V.17)

where p(.) denotes the probability of the binary response variable y equal to 1 (or a nominal

class label), x is a d-dimensional covariates (or features) for a specific data record/sample,

and β is the regression coefficients we want to estimate during model training.

Because logistic regression does not have closed form solution, in order to estimate

regression coefficients β , we need to perform (iterative) numerical optimization on the

objective function of the model. The optimization objective of logistic regression is of the

form:

`(β ) =
n

∑
i=1

[yi(β
T xi)− log(1+ eβ

T xi)] (V.18)

V.3.2.2 Distributed Newton Method

Newton method is an iterative optimization method and is the standard model estimation

approach for logistic regression, with implementations in various software packages. It
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is often the default optimizer whenever it is applicable because of its fast quadratic con-

vergence rate. Our proposal also utilizes the distributed version of Newton method as a

building block, similar to various privacy-preserving logistic regression protocols [154,

155, 93].

At each Iteration (t +1) of Newton, the new model estimate is updated by:

β
(t+1) = β

(t)−H−1(β (t)) g(β (t)) , (V.19)

where H(β (t)) and g(β (t)) denote the Hessian and gradient of the objective `(β ) (Equation

V.18) evaluated at the current β coefficient estimate. And superscripts (t) and (t +1) index

the t th and (t + 1)th iterations, respectively. This updating process iterates until model

convergence, as determined by the relative change of log-likelihood against a predefined

threshold (e.g., 10−6):
|`(t+1)− `(t)|
|`(t)|

< 10−6 , (V.20)

where `(t+1), `(t) correspond to the log-likelihood of logistic regression for Iterations (t +

1),(t), respectively.

Following Equation V.18, the gradient and Hessian for logistic regression can be com-

puted following a distributed formulation (partitioned by S institutions):

g(β ) = ∇β `(β ) = XT (y−p) =
S

∑
j=1

gj(β ) , (V.21)

H(β ) = ∇
2
β
`(β ) =−XT AX =

S

∑
j=1

Hj(β ) , (V.22)

where A ∈ Rn×n is a predefined diagonal matrix with elements ai,i = pi(1− pi); gj(β )

and Hj(β ) denote the per-institution gradient and Hessian, respectively, computed using

local-institution data (xj,yj); S is the total number of organizations contributing data to the

collaborative study.
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Note that the log-likelihood (optimization objective) V.18 can also be decomposed per-

institution (we use ll j to denote per-institution likelihood):

`(β ) =
S

∑
j=1

ll j(β ) (V.23)

V.3.2.3 Common Workflow of Privacy-preserving Distributed Machine Learning

Privacy-preserving distributed machine learning has greatly benefited from, and is thus

heavily influenced by, (generic privacy-free) distributed machine learning. As a result,

nearly all existing proposals in the field directly adopt distributed machine learning formu-

lations and apply cryptographic protection on them [118, 4]. This pervasive workflow for

privacy-preserving distributed machine learning (and logistic regression) can be summa-

rized as follows:

(a) Given some model estimates, local institutions (resembling distributed nodes in dis-

tributed machine learning) compute (sufficient) summary statistics from their respec-

tive private databases. In logistic regression, these include local gradient and Hessian

summaries.

(b) Local institutions apply cryptographic protection respectively and share encrypted

summary statistics with a semi-honest Analysis Center;

(c) Analysis Center securely 1) aggregates all per-institution summaries, and 2) performs

global model fitting and updates model estimate. In Newton method for logistic

regression, this means securely deriving global gradient and Hessian, and performing

Newton updating on β .

(d) Use the updated model estimates as the new initialization, and repeat previous Steps

1 to 3 in iterations (for iterative numerical optimization), until model is converged

and final estimation derived.
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This is also the workflow of the popular privacy-preserving (distributed) Newton method,

which underlies various logistic regression protocols [93, 118].

V.3.3 QuickLogit: accelerating performance using local models

This section will focus on our novel paradigm for efficient privacy-preserving (distributed)

logistic regression. We begin with discussion of the limitations of common practice of

privacy-preserving machine learning that relies heavily on distributed algorithms. This

motivates us to design drastically different approaches that can significantly improve per-

formance.

V.3.3.1 Problems of Traditional Approaches

The common practice of coupling distributed machine learning with cryptography has

worked well for privacy-preserving distributed machine learning, and is the standard ap-

proach for the past decade (Section V.3.2.3).

However, despite its popularity, this common practice is not necessarily the optimal

approach to the problem in terms of computational efficiency (perhaps the biggest obstacle

to practical deployment of privacy-preserving protocols). This is because distributed algo-

rithms have been primarily customized for generic privacy-free settings, in which compu-

tations exhibit similar complexity patterns across all computing nodes (despite distributed

nodes or center) and all computing servers are of comparable computational power. In

cryptography-based secure settings (e.g., multiple local institutions and a semi-honest cen-

ter), however, the scenario is drastically different. Here, the center is not trusted (for any

privacy-sensitive computation or data, including summary statistics). Thus all its data and

computations need to occur using cryptography. This incurs orders of magnitudes more

computational overhead at the center (compared with privacy-free scenarios), whereas

local-institution-based computing is extremely fast and simply generic privacy-free com-

putations (because they have unrestricted access to their local data). This unique compu-

tational asymmetry in secure settings between the center and local nodes is not present in
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generic privacy-free scenarios, thus giving rise to a long missed opportunity to significantly

improve performance by going beyond traditional distributed machine learning-based for-

mulations.

V.3.3.2 Our Novel Paradigm Leveraging Local Models

Our novel paradigm to privacy-preserving distributed machine learning is customized to

leverage the aforementioned computational asymmetry between local nodes and the center

in the secure settings. The ultimate goal is to significantly improve performance without

affecting model accuracy, making related protocols more practical.

On a high level, we propose a two-phase computation process in our novel paradigm:

• Phase 1 (Local Models): Local institutions independently estimate their complete

models (instead of intermediate summary statistics) based on their private databases,

respectively.

• Phase 2 (Global Refinement): The Analysis Center securely aggregates these local

models, and use globally aggregated model to initialize the iterative numerical opti-

mizer (such as the secure distributed Newton method). The center and local institu-

tions then follow the traditional approach of privacy-preserving distributed machine

learning to iteratively refine the global model.

Our proposal guarantees exact model accuracy as with standard Newton method (i.e.,

without approximations), while significantly reducing the total computation by several

times.

The main merit of our new paradigm stems from utilizing many local (sub-optimal)

models to better initialize and guide the subsequent iterative numerical optimization. As

we will show later both theoretically and empirically, this provides significantly better-

informed initialization to the optimizer, and can shortcut the vast majority of optimization

iterations. As a comparison, traditional approaches in privacy-preserving distributed ma-

chine learning often start with some random initialization (e.g., 0 as recommended) to the
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model estimates, which may turn out to be arbitrarily far way from the optimal model and

a lot of trial-and-error iterations are necessary.

V.3.3.2.1 A Geometric Intuition

Our novel paradigm has very intuitive geometric explanation, as illustrated in the optimiza-

tion contour Figure V.10. Traditional Newton method (denoted in red) starts with some

random model initialization x0 (which may be far away from the optimum at the core), and

make iterated progress towards the optimum.

Our proposal (denoted in green), however, aggregates various local-institution models

to guide our initialization. It has been proven later that our aggregated initialization (q0

in Figure V.10) can quickly reach the vicinity of the optimum, thus circumventing a large

number of intermediate iterations and significantly accelerating the overall computation.

Figure V.10: Convergence path of Our Approach (green) vs. Newton (red). Ours can
directly reach the vicinity around optimum in the very first iteration and quickly converge
to optimum afterwards.
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V.3.3.3 QuickLogit: A Novel Approach to Privacy-preserving Logistic Regression

Our novel proposal, QuickLogit, for efficient privacy-preserving distributed logistic regres-

sion is based on our two-phase paradigm just introduced (Section V.3.3.2). It is designed

with two goals in mind: 1) Significant performance improvement; 2) Same model accuracy

as traditional and non-secure solutions.

A high-level description of QuickLogit is presented in Algorithm 10. The two main

phases of the algorithm is detailed later in Algorithms 11 and 12 and also in the following

two Sections V.3.3.4 and V.3.3.5.

Overall, as demonstrated in Algorithm 10, our QuickLogit protocol closely follows the

aforementioned two-phase paradigm, with the first phase a one-shot attempt and the second

typically an iterative process. In the first phase (Local Models), the goal is to derive a good

central initialization to model estimate, by securely leveraging multiple local-institution

models (Step 1 in Algorithm 10). This is jointly completed by the local institutions and the

computation center using one single interaction. This approximate initialization is denoted

as E(β̄ ) in its encrypted form (encryption is performed by local institutions and decryption

is not accessible to the center). We point out that this step occurs only once.

Algorithm 10 QuickLogit: efficient privacy-preserving logistic regression.

Output: Globally fit coefficient estimate β

[At local Nodes and Center; one-step only]
1: E(β̄ ) = BetterInitialization()

[At local Nodes and Center; a few iterations]
2: E(β ) = NewtonRe f inement(E(β̄ ))
3: return E(β )

The second phase of QuickLogit, as listed in Algorithm 10, aims to refine model estima-

tion centrally and securely. This essentially means that we start with the (better-informed)

initialization provided by the previous phase, and simply invoke involves additional in-

teractions and perhaps more local-institution information, and takes similar approaches

as traditional privacy-preserving distributed logistic regression protocols. We emphasize,
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however, that this process in QuickLogit requires far fewer iterations and is thus signifi-

cantly faster, as will be demonstrated later both theoretically and empirically.

Below, we will introduce the detailed steps for both phases.

V.3.3.4 Phase 1: Local Models

As mentioned before, the goal of the first phase is to locally estimate models independently,

so that they can be aggregated centrally later to approximate the global model. As demon-

strated in Algorithm 10, we first have each local institutions estimate their locally optimal

models β j (where j ∈ S institutions) (Step 2). Since there is no privacy concern (institutions

can freely access their own data), any standard statistical software is applicable. These lo-

cal models will be encrypted locally using advanced cryptography (e.g., Paillier partially

homomorphic encryption [125] in our implementation) before sharing with the Analysis

Center. The encryptions are denoted as: E(β j)

Later, local model encryptions will be securely transmitted to the Center. The Center

will construct an improved global model approximation by securely aggregating all local

models (encryptions) E(β j). There are various approaches for model aggregation, and in

our case, simple linear averaging (over S institutions) suffices (Step 5). We denote this

globally aggregated model estimate as (in encrypted form): E(β̄ ), which will serve as a

good initialization estimate in the second phase.

Algorithm 11 BetterInitialization(): leveraging local models for better Newton initializa-
tion.
Output: Globally aggregated model (encryption) E(β )

[At local institutions]:
1: for each institution j = 1 to S do
2: Learn local model: β j
3: Encrypt and securely transmit to Center: E(β j)
4: end for

[At Center]:
5: Securely compose initialization: E(β̄ ) = E(1

S ∑
S
i β j)

6: return E(β̄ )
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V.3.3.5 Phase 2: Global Model Refinement.

The second phase of QuickLogit is similar to the widely-used privacy-preserving dis-

tributed Newton method, except for the use of our better-informed model initialization

instead of random initialization as commonly pursued. As discussed in Section V.3.2.2, the

privacy-preserving distributed Newton method is widely-adopted in the security/privacy

community.

Algorithm 12 illustrates how we apply Newton method in QuickLogit. The first step

highlights the main difference: in the first Newton iteration (i.e., when t = 0), we ini-

tialize our model estimation with our centrally aggregated model E(β̄ ) from the Phase 1

(Section V.3.3.4). All subsequent Newton iterations are following exactly the traditional

approaches (Section V.3.2.2). For completeness, we describe the workflow of privacy-

preserving distributed Newton method in our case.

Algorithm 12 NewtonRefinement(E(β̄ )): refining model estimation via Newton method.

Input: Model initialization E(β̄ ) (for Newton)
Output: Globally optimal model β

1: Initialize Newton: E(β (0)) = E(β̄ )
2: while regression model not converged (Iteration t) do

[At local institutions] :
3: for each institution j = 1 to S do
4: Compute summary statistics: g j, H j, ll j
5: Send encrypted summaries to Center: E(g j), E(H j), E(ll j)
6: end for

[At Center] :
7: Securely aggregate gradient: E(g) = E(∑ j g j)
8: Securely aggregate Hessian: E(H) = E(∑ j H j)
9: Securely aggregate likelihood: E(ll) = E(∑ j ll j)

10: Secure Cholesky decomposition (for inversion): E(L) =
SecureCholeskyDecomposition(E(−H))

11: Secure back-substitution (for inversion): E(H−1 g)← E(L),E(g)
12: Secure model updating (Newton): E(β (t+1))← E(β (t)) (Equation V.19)
13: Secure comparison to check model convergence (Equation V.20)
14: end while
15: Return β (latest β

(t+1))
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As illustrated in Algorithm 12, at each Newton iteration (Steps 3 to 13), two main types

of computations occur (in sequential): 1) local-institution-based preparation of summary

statistics (privacy-free computation; Steps 3 to 6); 2) Center-based secure aggregation of

summaries and Newton model updating (Steps 7 to 13). This will iterate until model con-

vergence is reached (Step 13; Section V.20).

V.3.3.5.1 Local-institution Summary Statistics in Newton

At each Newton iteration, for each local institution j (out of a total of S institutions), it needs

to compute its local gradient gj, Hessian Hj, and likelihood ll j (for model convergence

check) (Step 4 in Algorithm 12). Since local institutions have unrestricted access to their

respective private data (xj,yj), these local computations simply follow generic arithmetics

without cryptography involved (thus are extremely fast).

Such summaries will then get encrypted, and shared with the untrusted Analysis Center

(Step 5). We emphasize that only the local institutions hold the decryption (private) key,

thus only them (not the Center) have decryption capabilities.

V.3.3.5.2 Central Aggregation and Model Fitting in Newton

Once the Analysis Center receives summary statistic encryptions from local institutions, it

will securely aggregate them (mostly leveraging secure summation primitives) to construct

global summaries for gradient E(g) (Step 7), Hessian E(H) (Step 8), and likelihood E(ll)

(Step 9).

According to the main step of Newton method (Equation V.19), to derive H−1g, we

need to securely perform matrix inversion and multiplication. This is often achieved (more

efficiently) by Cholesky decomposition on (−H), followed by back-substitution. Both

are standard textbook algorithms and have been used in the security/privacy community.

Specifically, in Step 10, we securely perform Cholesky decomposition with encrypted input

E(−H), such that: LLT =−H.
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Later, secure back-substitution is performed to obtain E(H−1g), using Cholesky de-

composition result E(L) and E(g) as inputs (Step 11).

Now secure Newton model updating is straightforward following Equation V.19 and

secure summation (Step 12).

After that, we use secure comparison over encrypted likelihoods to check model con-

vergence, following Equation V.20. The above procedure will proceed until convergence is

reached.

V.3.3.6 Security Guarantees and Information Disclosure

Here we briefly analyze the security guarantees of our proposal. We mainly discuss the

information disclosed in our protocol, and assess their privacy implications. Our demon-

strate is built upon existing secure schemes and subprotocols with well established security

guarantees, so the main components are provably secure. Potential information disclosure

mainly occurs in the bridging between different schemes or organizations, including the

transition between different schemes, and the different privacy definitions between differ-

ent parties.

V.3.4 Theoretical Proof

In this section, we first analyze the model convergence properties of our QuickLogit pro-

posal in terms of convergence guarantees and rate. We then prove that our proposal guar-

antees much faster speed and better model quality in practice.

V.3.4.1 Same Theoretical Convergence as Newton

Our QuickLogit can essentially be regarded as Newton method with a carefully chosen (in-

stead of random) initialization. This means that it should at least share the same theoretical

convergence properties as Newton method, whose convergence is well established in liter-

ature. We thus briefly summarize the convergence of QuickLogit below (similar to Newton

method) (interested readers are encouraged to read related proof from classical numerical
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optimization textbooks [19, 104]):

(a) QuickLogit can often converge to the global optimum.

(b) QuickLogit has quadratic convergence rate.

V.3.4.2 Better Practical convergence than Newton.

The aforementioned equivalence of convergence between QuickLogit and Newton is mainly

from a sense of Big-O notation (i.e., order of magnitude). In practice, our proposal tends

to be much better than the Newton method both in terms of model quality and the amor-

tized rate of convergence. This is because our carefully chosen initialization proves to have

bounded error and is often much closer to the optimum than some random initialization

(the latter is commonly pursued by standard Newton method), a condition for Newton to

reach its promised convergence. Our approach can potentially address two well-known

limitations of standard Newton method: 1) when faced with poor initializations (e.g., ran-

dom guesses that are arbitrarily far away), Newton method may divert severely and never

reach the optimum; 2) with poor initializations, Newton do not guarantee the fast quadratic

convergence rate (not at least in the first many iterations).

In below, we provide theoretical evidence to support our claim on the superior conver-

gence of QuickLogit. Briefly, we prove in two steps:

(a) We prove that our carefully chosen initialization has bounded error to the optimum,

thus being more likely to fall in the vicinity of the optimum than random initializa-

tion.

(b) We prove that Newton method with an initialization nearer to optimum leads to ac-

celerated convergence.

In order to present the statistical properties of our QuickLogit algorithm, we first state

the standard regularity assumptions on the parameter space and loss functions, which are

commonly encountered in the context of asymptotic statistics [146, 169].
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Assumption 1. The parameter space is a compact convex set.

Assumption 2. In the neighborhood of the optimal value β ∗, the objective function is

locally strongly concave and the Hessian matrix at β ∗ is negative definite.

Assumption 3. The first, second and third partial derivatives of the objective function exist

and are bounded. To be more specific, moments of the derivatives are bounded by G, L,

and M respectively.

Assumption 4. The samples are evenly distributed among S local nodes.

Assumption 1 to 3 are clearly satisfied in our distributed logistic regression model.

Assumptions 4 is assumed mainly to simplify the notation without losing generalization. In

practice, multiparty datasets are often of equivalent sample size, rendering this assumption

valid.

Under these regularity assumptions, some recent work [169, 133] examines the statisti-

cal properties of the averaged estimator and derived the bound of its mean square error. It

is shown that the mean square error of the averaged estimator β̄ is bounded above by

E[‖β̄ −β
∗‖2

2]≤ O(
G2

λ 2N
+

G4M2S2

λ 6N2 +
L2G2 log(d)S2

λ 4N2 ), (V.24)

where N is the total number of samples and S is the number of nodes [137]. In addition,

since the objective function is Lipschitz continuous with Lipschitz constant L, Equation

V.24 implies that the suboptimality is bounded by

E[l2(β̄ )]− l2(β ∗)≤O(
LG2

λ 2N
+

LG4M2S2

λ 6N2 +
L3G2 log(d)S2

λ 4N2 ) (V.25)

Therefore, compared to a random initial value, β̄ has the advantage of being more likely to
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be close to the optimum β ∗. In particular, by Markov’s inequality, for any ε > 0,

P(‖β̄ −β
∗‖2

2 ≥ ε)

≤
E(‖β̄ −β ∗‖2

2)

ε

≤ O(
G2

ελ 2N
+

G4M2S2

ελ 6N2 +
L2G2 log(d)S2

ελ 4N2 )

When N goes to ∞, the probability of β̄ being far away from β ∗ will converge to zero.

Moreover, if the number of nodes S is in the order of O(
√

N), then β̄ is a
√

N-consistent

estimator of β ∗ since the MSE of β̄ will be bounded above by O(N−1) from Equation V.24.

For Newton method, it is critical to find an initial value close to the optimal solution.

The convergence process of Newton iterates usually falls into two stages [19]. The first

stage is called a damped Newton phase, which is quantified by the condition ‖∇l2(β )‖2≥η

for some constant η . During this phase, there exists a number γ > 0 such that objective

function value increases by at least γ per iteration,

l2(βk+1)− l2(βk)≥ γ

When the estimate is close enough to the optimal solution, namely ‖∇l2(β )‖2 ≤ η , the

optimization process enters the second stage – the quadratically convergent phase, where

the estimate βk converges to the optimal solution β ∗ quadratically:

l2(βk+1)− l2(β ∗)≤C[l2(βk)− l2(β ∗)]2

for some constant C. In conclusion, the number of iterations until l2(β ∗)− l2(βk) ≤ ε is

bounded above by
l2(β ∗)− l2(β0)

γ
+ log(log(ε0/ε)), (V.26)

where β0 is the starting value, γ and ε0 are constants depending on the objective function.
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The second term is usually small due to the quadratic convergence speed. The dominating

term is the first term and the closer the starting value is to the optimal solution, the smaller

the iteration number during this phase will be. Equation V.25 shows that the suboptimality

of averaged estimator is bounded, which implies that the first term in Equation V.26 is also

bounded compared to a random starting values β0. Moreover, this bound will converge to

zero as more samples are collected at each institution.

V.3.4.3 Computational complexity

Regarding computational complexity, we observe that QuickLogit has similar Big-O com-

plexity as the standard (distributed) Newton. However, our proposal has drastically lower

amortized cost (as determined by a large constant, which directly translates into our speedup).

Since secure computing involving cryptography incurs orders of magnitudes more expen-

sive computation than non-secure counterparts, this literally means that our computational

complexity is dominated by center-based cryptographic operations which thus becomes our

focus of analysis.

Table V.5: Computational complexity of secure subprotocols.

Operation Complexity Note
Cholesky decomposition O(p3) Hessian inversion
Back substitution O(p2) Hessian inversion
Newton method O(p3) Per-iteration
QuickLogit O(p3) Per-iteration

Specifically, the second stage of our proposal still relies on traditional Newton updat-

ing iterations, which has per-iteration complexity of O(p3) (note that distributed nodes do

not have privacy issues for both methods, thus the other term np2 of standard Newton is

reduced here). For QuickLogit, when taking into account the one-time preprocessing for

centrally aggregating local models which has complexity O(p) (which is negligible), our to-

tal complexity is roughly: O(p3×QuickLogit iterations). For the traditional Newton,

the complexity is: O(p3×Newton iterations). As is obvious, the complexity difference
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is mainly due to the number of iterations to model convergence. As has been proven both

theoretically and empirically (later), the iterations required by QuickLogit is substantially

fewer than that of Newton. This directly translates into significant time saving.

V.3.5 Experiments

Our secure implementations are primarily in Java and Julia [14]. For demonstration, we

choose a hybrid of Yao’s garbled circuit and Paillier encryption for cryptographic protec-

tions, which also underlie various protocols for privacy-preserving logistic regression and

machine learning [118, 121]. Roughly, protection of local summary statistics and cen-

tral aggregation are using Paillier encryption. Center-based complex computations such

as model fitting primarily use garbled circuit. We also implement state-of-the-art secure

distributed Newton method as baseline. All our secure implementations leverage state-of-

the-art software packages (such as ObliVM-GC [98]). We use default security parameters

recommended by NIST or ObliVM-GC.

We also point out that our proposed method is agnostic of, and compatible with, dif-

ferent cryptographic schemes from now and future. This is because the only necessary

condition for our protocol is the computational complexity asymmetry between center and

distributed nodes, which holds true for any cryptographic distributed settings.

The primary goal of our proposal is on efficiency improvement without compromising

model accuracy. Thus, our empirical evaluations will concentrate on performance bench-

marks, such as the iterations required for model convergence and the total runtime. We also

validate the accuracy of our estimated model.

V.3.5.1 Datasets

Our empirical evaluation covers a wide range of simulated as well as real-world studies.

We have simulated datasets of varying scales. We also take several common real-world

studies from different domains as case studies, and perform in-depth analysis. We briefly

describe these datasets below and later in Table V.6.
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• Simulated datasets: DataX5, DataX10, DataX20, DataX50, DataX100, DataX200,

DataX400, DataX500, DataX1000.

• Real-world studies: 1) Adult data for predicting income level (whether it is greater

than $50,000 or not) from several societal factors such as demographics; 2) Loans

data from a popular online lending platform for predicting the loan application status

based on anonymized personal profiles.

V.3.5.2 Runtime Benchmarks

First, we demonstrate the main results in terms of performance gain of our proposal. State-

of-the-art secure distributed Newton method is used as the baseline. Certain problems are

too large in size to solve securely, thus their iteration performance is based on non-secure

simulations and highlighted with brackets in Table V.6.

V.3.5.2.1 Significantly reduced number of iterations to convergence.

In Table V.6, we report on the number of iterations required to reach model convergence

for QuickLogit and the baseline Newton method. Note that the number of iterations are

directly comparable between QuickLogit and Newton due to their similarities (as will be

introduced later). It can been seen that QuickLogit requires substantially fewer iterations

to convergence across all datasets. For instance, for the Loans data, QuickLogit only re-

quires 2 iterations, a significant improvement over 6 iterations of standard Newton. For

DataX100, despite the large dimensions, QuickLogit still only requires 2 iterations, com-

pared to 11 iterations for Newton (a 5.5x improvement). When the data dimensionality

increases, the iterations numbers also gradually increase and the relative speedup slightly

drops (as the denominator, i.e., iterations of Newton, becomes larger) but the overall abso-

lute improvement is still growing (due to the increasing complexity of per-iteration cost).
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Figure V.11: Comparison of iterations to convergence between QuickLogit (ours) and New-
ton baseline. Fewer iterations imply faster convergence.

V.3.5.2.2 Dramatic runtime improvement.

Due to the similarity of QuickLogit (second phase) and baseline Newton in terms of the

iterative optimization process, the above improvement in convergence iterations would di-

rectly translate into significant runtime reduction overall. This is indeed evidenced by

Table V.6, where overall runtime is almost proportional to the iteration numbers. Note in

addition to the standard iterative Newton updating, QuickLogit has one extra preprocess-

ing step of securely averaging local models (as the Newton initialization). This step only

involves trivial secure primitives, secure aggregation, which is very efficient and can be

implemented in many SMC schemes. Since the runtime of this step is negligible compared
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with the complicated Newton updating, the comparison of runtime between QuickLogit

and Newton essentially reduces to that of Newton iteration numbers.

Table V.6: Runtime benchmark (iteration counts and in seconds).

Datasets Dimension Iterations
(Newton)

Runtime
(Newton)

Iterations
(QuickLogit)

Runtime
(QuickLogit)

Adult 32,561 X 30 7 443.6 2 126.7
Loans 122,578 X 33 6 491.6 2 163.9
DataX10 100k X 10 9 38.3 2 8.5
DataX20 250k X 20 9 197.7 2 43.9
DataX50 250k X 50 10 2582.2 2 516.4
DataX100 250k X 100 11 20645.2 2 3753.7
DataX200 100k X 200 12 171782.6 2 28630.4
DataX400 250k X 400 (13) (NA) 3 347993.2
DataX500 100k X 500 (13) (NA) (4) (NA)
DataX1000 250k X 1000 (14) (NA) (4) (NA)

To better demonstrate the runtime speedup, we plot the relative speedup in runtime for

QuickLogit over Newton baseline in Figure V.12. It can be seen that QuickLogit achieves

consistently drastical speedup between 3x to 6x. Overall, QuickLogit is consistently more

efficient in iterations, and with speedup by a large factor.

V.3.5.3 Guaranteed Model Accuracy

Many existing privacy-preserving machine learning protocols achieve efficiency improve-

ment by compromising on model accuracy. In our work, however, model accuracy is guar-

anteed and no approximations are involved. To see this, we directly compare the final model

accuracy from QuickLogit and that from the Newton baseline, as illustrated in Figure V.13.

Across all evaluations, we observe that QuickLogit provides exact model estimation, with

perfect alignment with Newton baseline (R2 = 1.00 and slope of fitted line is 1.00). This

provides empirical evidence for our theoretical proof in Section V.3.4.1 regarding model

convergence guarantees.

In addition, we also provide empirical results to demonstrate the properties of aggre-

gated models of local-institution models.
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Figure V.12: Relative speedup of QuickLogit over Newton baseline (y = 1 dashed line)
across all datasets, based on runtime. Larger speedup indicates faster computation.

V.3.5.3.1 Simple model averaging has good approximation power.

Our experimental results indicate that simple averaging of local-institution models tend

to be rather accurate (though not perfect). This is evidenced from two aspects. First, as

discussed earlier in Table V.6, QuickLogit has dramatic reduction in the iterations required

for convergence. This means that our initialization based on simple averaging is indeed a

very good approximation for (thus very close to) the globally optimal model. Additional

results are also illustrated in Figure V.14, where simple averaging-derived models are quite

close to, though not exact with, the Newton baseline.

V.3.5.3.2 Simple averaging alone is not perfect.

One the other hand, we point out that many times one-step of averaging alone is not perfect,

and may not be sufficient in terms of accuracy. For instance, when the data dimensionality
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(b) DataX20
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(e) DataX200
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Figure V.13: Accuracy of model coefficient estimates from our QuickLogit, with Newton
as baseline (x-axis). All correlation R2 = 1.00 and slope of fitted line is 1.00
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Figure V.14: Accuracy of model coefficient estimates from one-step simple averaging, with
Newton as baseline (x-axis).
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grows larger or the data is imbalanced between different institutions, the discrepancy be-

tween the simple averaging-based model and the optimal baseline may become apparent.

This is evident in cases such as DataX1000 (Figure V.14). Moreover, Table V.6 indicates

that some datasets (e.g., DataX500, DataX1000) require increased iterations for Quick-

Logit. This is a sign that our initialization is not perfect and thus it needs more iterations to

refine the model estimation from that initialization.

V.3.6 Related Works

Here we discuss a few streams of research that are closed related to ours.

Privacy protection on logistic regression has received extensive investigation, from the

centralized solutions [41] to more recent solutions leveraging distributed machine learn-

ing [154, 118, 156, 23, 159, 93]. Many existing proposals [154] directly expose organization-

level summary data of model fitting, leading to serious privacy concerns over inference

attacks on intermediate data [139, 124, 159, 41]. Nearly all of the aforementioned pro-

posals directly follow distributed machine learning formulations, thus missing the unique

performance improvement introduced in our work.

Cryptography-based protocols have also found application in other machine learning

tasks such as linear (ridge) regression and association rule mining [96, 84, 121, 4]. None

of these solutions provide formulations that are different than off-the-shelf distributed ma-

chine learning.

To the best of our knowledge, our proposal is the first to introduce the concept of lever-

aging local complete models to better initialize numerical optimizers and provide signifi-

cant performance improvement.

V.3.7 Discussion

Our current implementation does not consider potential privacy concerns on the final out-

come of the collaborative study. This is in line with the assumption and guarantees of

cryptography and SMC (that nothing but the final output is revealed). Another considera-
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tion is due to computational efficiency. If we consider the coefficient output to be private,

then local computations (across iterations) will have to involve cryptographic protection

too because computing summary statistics relies on the coefficients. This will make the

secure computation significantly more complicated and expensive, given that many func-

tions involved (e.g., the logistic regression objective) is highly non-linear and not directly

computable in secure. Thus it often has to resort to approximations, which is still an open

problem because it is difficult to maintain trade-off between computational efficiency and

proper approximation accuracy [118]. For such reasons, we do not consider alternatives

based on approximation. But we point out that our approach is also directly applicable to

the approximation case.

While this work uses logistic regression as our focus application, the proposed new

paradigm is widely applicable to nearly all statistical and machine learning models in the

secure multi-party setting. In future, we hope to extend to and significantly improve other

related tasks by providing a generic secure learning framework.

V.3.7.1 Conclusion

This dissertation questions the common practice of building secure protocols directly from

distributed machine learning algorithms, and propose a drastically different paradigm to

privacy-preserving distributed logistic regression leveraging local models. Extensive theo-

retical and empirical evidence demonstrate significant performance advantage of our pro-

posal.
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Rosa R Bernabé, MK Bhan, Fabien Calvo, Iiro Eerola, Daniela S Gerhard, et al.
International network of cancer genome projects. Nature, 464(7291):993–998, 2010.

[74] Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and Amalio Telenti. Ad-
dressing the concerns of the lacks family: Quantification of kin genomic privacy. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 1141–1152. ACM, 2013.

[75] Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and Amalio Telenti. Quanti-
fying interdependent risks in genomic privacy. ACM Transactions on Privacy and
Security (TOPS), 20(1):3, 2017.

[76] iDash Privacy & Security Workshop. Secure genome analysis competition.
http://www.humangenomeprivacy.org/2015, 2015. Accessed: 2015-05-03.

[77] Hae Kyung Im, Eric R Gamazon, Dan L Nicolae, and Nancy J Cox. On sharing
quantitative trait gwas results in an era of multiple-omics data and the limits of ge-
nomic privacy. The American Journal of Human Genetics, 90(4):591–598, 2012.

[78] Kevin B Jacobs, Meredith Yeager, Sholom Wacholder, David Craig, Peter Kraft,
David J Hunter, Justin Paschal, Teri A Manolio, Margaret Tucker, Robert N Hoover,
et al. A new statistic and its power to infer membership in a genome-wide association
study using genotype frequencies. Nature genetics, 41(11):1253–1257, 2009.

[79] Zhanglong Ji, Zachary C Lipton, and Charles Elkan. Differential privacy and ma-
chine learning: a survey and review. arXiv preprint arXiv:1412.7584, 2014.

[80] Daniel E Jonas, Halle R Amick, Cynthia Feltner, Georgiy Bobashev, Kathleen
Thomas, Roberta Wines, Mimi M Kim, Ellen Shanahan, C Elizabeth Gass, Cas-
sandra J Rowe, et al. Pharmacotherapy for adults with alcohol use disorders in
outpatient settings: A systematic review and meta-analysis. JAMA, 311(18):1889–
1900, 2014.

[81] Gulce Kale, Erman Ayday, and Oznur Tastan. A utility maximizing and privacy
preserving approach for protecting kinship in genomic databases. Bioinformatics,
34(2):181–189, 2017.

[82] Liina Kamm, Dan Bogdanov, Sven Laur, and Jaak Vilo. A new way to protect
privacy in large-scale genome-wide association studies. Bioinformatics, 29(7):886–
893, 2013.

[83] Murat Kantarcioglu, Wei Jiang, Ying Liu, and Bradley Malin. A cryptographic
approach to securely share and query genomic sequences. Information Technology
in Biomedicine, IEEE Transactions on, 12(5):606–617, 2008.

165



[84] Alan F Karr, William J Fulp, Francisco Vera, S Stanley Young, Xiaodong Lin, and
Jerome P Reiter. Secure, privacy-preserving analysis of distributed databases. Tech-
nometrics, 49(3):335–345, 2007.

[85] Aniket Kate and Ian Goldberg. Distributed key generation for the internet. In Dis-
tributed Computing Systems, 2009. ICDCS’09. 29th IEEE International Conference
on, pages 119–128. IEEE, 2009.

[86] Jane Kaye, Catherine Heeney, Naomi Hawkins, Jantina de Vries, and Paula Bod-
dington. Data sharing in genomics—re-shaping scientific practice. Nature Reviews
Genetics, 10(5):331–335, 2009.
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