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CHAPTER I 

 

INTRODUCTION 

 

Overview 

 As the epidemic of obesity continues to expand worldwide, it has become 

imperative to understand its impact and that of related co-morbidities on the health, 

morbidity and mortality of affected patients. Non-alcoholic fatty liver disease (NAFLD) 

is one such obesity-associated co-morbidity, characterized by the accumulation of fat in 

the liver resulting in impaired liver function, and linked to the increased risk of primary 

liver cancer. Of note, obesity is clinically an independent risk factor for the development 

of malignancies including colon and breast cancer that frequently metastasize to the liver. 

However, the role of NAFLD in metastatic disease has not been adequately investigated. 

My work, presented herein, was initiated to determine the impact of NAFLD on the 

establishment of colorectal cancer metastasis to the liver. 

   Alterations in the liver microenvironment with NAFLD could influence the 

ability of tumors to spread and metastasize to the liver. The Matrix Metalloproteinases 

(MMPs) are a family of proteases that can degrade components of the extracellular 

matrix and are important in normal physiology, yet frequently altered in many disease 

settings. Comparative analysis of normal and NAFLD livers revealed altered MMP levels 

in the liver with NAFLD. MMPs have been demonstrated to exhibit both pro and anti-

tumorigenic roles and could be important modulators of the liver microenvironment, 

influencing tumor establishment and progression in the setting of NAFLD. 
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 In this chapter, I set the historic and scientific foundation for understanding the 

impact of NAFLD on cancer development and progression. Following this, I introduce 

the obesity epidemic and the implications it has on the development of NAFLD and 

cancer. I then describe the MMPs and their role in cancer progression and changes to the 

liver microenvironment, and end with my hypothesis and dissertation goals.    

The Obesity Epidemic 

Obesity refers to a medical condition that arises from an excess amount of body 

fat negatively impacting a person’s health [1]. Obesity is the result of a substantial 

increase in caloric intake which exceeds the caloric expenditure, culminating in an 

accumulation of fat throughout the body [2]. The most common criterion used to define 

obesity is the body mass index (BMI). BMI is calculated with the help of a mathematical 

formula and takes into account both a person's height and weight to determine their 

degree of obesity.  

BMI =       weight in kilograms 

                  square of height in meters 

The World Health Organization (WHO) and the National Institutes of Health 

(NIH) [3, 4] have defined normal weight in adults as a BMI between 20 and 25 BMI 

units, overweight from 25 to 30, and obesity above 30. The BMI however is not 

considered very accurate as it does not take into account the actual body fat percentage. 

Use of measures that take into account body fat measured by tissue resistance using dual-

energy X-ray absorptiometry would be more accurate, and are beginning to be used more 

commonly [5, 6]. The origins of obesity can be traced back 30,000 years to our 

prehistoric ancestors, when the body habitus was considered a sign of wealth and 
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prosperity [7]. Over the past few decades there has been a tremendous increase in the 

incidence of obesity both in the United States and worldwide (Figure 1). Obesity was 

formally recognized as a global epidemic by the World Health Organization in 1997 [8].  

Incidence of obesity has doubled in the past 20 years in the United States and over one 

third (35%) of adults and 17% of youth are considered obese [9]. Of particular relevance 

to public health is the fact that obesity is increasingly being seen at earlier ages with 

about 18% of children in the age group of 6-11 in the United States qualifying as obese 

[10].    

The overall increase in the incidence of obesity is a result of several factors. 

These encompass genetic and environmental alterations that ultimately result in excessive 

caloric intake and/or a decrease in physical activity [11]. Several genetic variations that 

influence metabolism and food intake are addressed in “The human obesity gene map” 

and can contribute to the development of obesity [12, 13]. Some examples include 

alterations in leptin or serotonin and their receptors that control energy uptake and 

expenditure [14, 15]. Mutations in genes involved in lipid metabolism including β-

oxidation, very low density lipoprotein (VLDL)  secretion, and fatty acid synthesis such 

as SREBP-1c and PPARα [16] can lead to a predisposition to obesity [12, 13].  

The ancient Greeks and Egyptians were the first to recognize the dangers of 

obesity and its association with disease, and recommended diet and exercise to treat it 

and its side effects [7]. Obesity is now recognized as a major health problem worldwide 

and roughly 300,000 deaths in the US per year are related to obesity either directly or 

through obesity-related co-morbidities [9, 11]. Obesity is associated with increased risk 

of development of a number of serious chronic diseases including high blood pressure,  
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Figure 1: Incidence of obesity worldwide. This graph shows the rate of increase in the 

number of cases of obesity in several countries across the globe over the past few decades 

[17]. 
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high cholesterol, type 2 diabetes, coronary heart disease, osteoarthritis, respiratory 

problems, as well as certain types of cancer. Obesity can also result in accumulation of 

excessive fat within the liver termed non-alcoholic fatty liver disease (NAFLD) which 

will be discussed in more detail in the next section [18]. Obesity related co-morbidities 

are subsequently linked to a reduced life expectancy and premature death. Another major 

health concern is that with the increased incidence of childhood obesity, which often 

persists into adulthood, there will be earlier onset of obesity associated chronic illnesses 

including NAFLD, and increased morbidity and mortality rates in obese patients. Efforts 

to impart individual and population-based behavior changes leading to healthier eating 

habits and increased physical activity are being initiated and are anticipated to reduce the 

incidence of obesity and its related co-morbidities.  

Obesity and chronic inflammation 

In the setting of obesity, the fat or adipose tissue expands with the increased fat 

storage and proliferation of the adipocytes [19]. The principal function of adipocytes was 

believed to be fat and energy storage, and until relatively recently they were considered 

to play a passive role in the onset of obesity and its related co-morbidities [20]. Evidence 

demonstrates that the adipocytes actively secrete cytokines and inflammatory mediators 

as a stress response to excessive accumulation of fat. These findings necessitate a further 

understanding of how adipocytes and inflammation contribute to the health complications 

of obesity [20].  

With the accumulation of fat, the adipocytes enlarge and undergo molecular and 

cellular alterations that affect systemic metabolism and trigger an inflammatory response. 

In the obese state, the adipose tissue produces several pro-inflammatory factors including 
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tumor necrosis factor-α  (TNFα) and interleukin-6 (IL-6) [20, 21]. The finding that TNFα  

is overexpressed in the adipose tissue of obese mice was the first link  between obesity, 

diabetes and chronic inflammation [22]. TNFα can interfere with the insulin signaling 

pathway and contribute to development of insulin resistance [23]. Obesity induced 

changes also result in a reduction in adiponectin and an increase in leptin levels that can 

further contribute to insulin resistance [24]. Other cytokines such as monocyte 

chemotactic protein 1 (MCP-1), inducible nitric oxide synthase (NOS), transforming 

growth factor β (TGFβ) , pro-coagulant proteins such as plasminogen activator inhibitor 

type 1 (PAI-1), tissue factor (TF), and factor VII (FVII) are also increased leading to 

infiltration of leukocytes into the adipose tissue [20, 25, 26]. Macrophage numbers 

increase in the obese adipose, contributing to local increases in the production of pro-

inflammatory cytokines [27]. Macrophages display a range of phenotypes broadly 

classified as M1 “inflammatory” or M2 “repair” phenotypes, shifting toward the classical 

M1 phenotype with increasing adiposity [28]. Direct and paracrine signals from “M1 

like” activated macrophages can impair insulin signaling and adipogenesis in adipocytes, 

leading to development of insulin resistance [25]. Macrophages are also responsible for 

the removal of necrotic adipocytes and form characteristic crown-like structures to 

facilitate this process in obese adipose [29]. The expanded systemic influence of the 

inflammatory response and release of cytokines is responsible for the multi-organ nature 

of the obesity-related co-morbidities (Figure 2) [25].  

Many molecular signaling pathways have been linked with obesity related 

inflammation and metabolic function. Nutrients and metabolites have resulted in the 

activation of pattern recognition receptors (PRR) of the innate immune system such as  
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Figure 2: Multi-organ effects of obesity related inflammation. Obesity triggers 

inflammatory pathways in the brain and adipose tissue that dysregulate physiological 

responses that maintain insulin and leptin sensitivity. Over time, ectopic lipid 

accumulation in muscle, liver, and blood vessels activates tissue leukocytes, contributes 

to organ-specific disease, and exacerbates systemic insulin resistance. Cellular and 

cytokine mediated inflammation in pancreatic islets accelerates the progression toward 

diabetes. FFA, free fatty acids; T regs, regulatory T cells; Tconv, conventional T cells; 

NKT cells; natural killer T cells; INS, insulin [25]. 
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the cytokine or Toll-like receptor (TLR) pathways [30, 31]. These lead to activation of 

several downstream effectors including c-jun N-terminal kinase (JNK), protein kinase R 

(PKR) and IKK which activate metabolic responses and result in insulin resistance by 

inactivation of the insulin receptor IRS-1 [26]. In addition, JNK and IKK/NF-κB 

pathways are strongly correlated with ER stress in multiple metabolically active tissues 

leading to activation of ER stress signaling components that include inositol-requiring 

enzyme 1 (IRE-1), PKR-like endoplasmic-reticulum kinase (PERK) and activating 

transcription factor 6 (ATF6) [21, 32]. Activation of PRRs alternately induce an 

inflammatory response through activation of transcription factors AP-1, NF-κB, and IRF. 

These factors increase the gene expression of inflammatory mediators, which in turn lead 

to receptor activation, thus leading to a positive feedback loop of inflammation [26, 33].   

Unlike the classical inflammatory response, obesity produces a chronic low grade 

activation of the innate immune system that over time affects the steady state measures of 

metabolic homeostasis. In addition, the multi-organ pathophysiology of obesity-induced 

inflammation presents a challenge to researchers attempting to tease out disease 

mechanisms in complex metabolic systems [25]. It is thus clear that inflammation plays 

an important role in the downward health spiral of obesity. Understanding the 

mechanisms underlying chronic inflammation in the setting of obesity might lead to 

methods through which pharmacologic manipulation could reverse the adverse effects of 

obesity on an individual’s health.  

Obesity and cancer 

Epidemiological studies show that obesity is associated with an increased risk of 

development of several types of cancer, including cancers of the colon, endometrium, 
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postmenopausal breast, kidney, esophagus, pancreas, gallbladder, liver, and 

hematological malignancies [34, 35]. In addition to risk of development of cancer, 

obesity can also be an indicator of worse prognosis leading to poorer treatment outcome 

and  increased cancer-related mortality [36, 37]. Figure 3 shows the increased risk in 

cancer related mortality in both men and women with obesity. 

Several potential mechanisms can explain the link between obesity and the 

increased risk of development of certain cancers. Changes in obesity-related hormones, 

growth factors, cytokines and adipokines, alterations in metabolism, hyperinsulinemia, 

modulation of energy balance and calorie restriction could impact cancer initiation and 

progression. Comorbidities such as diabetes and NAFLD are also associated with 

increased risk of development of cancer [35, 38–40].  

Obesity as discussed earlier leads to a state of chronic inflammation, with increase 

in levels of circulating cytokines such as TNFα and IL-6. Increase in TNFα has been 

linked to the development of skin, liver, and colon cancer, possibly through NF-κB 

induced gene transcription [41]. High circulating levels of IL-6 are associated with the 

development of Kaposi sarcoma, multiple myeloma, colon cancer and Hodgkin's 

lymphoma and have been shown to promote cell growth and inhibit apoptosis [42]. Park 

et al. show that increased IL-6 and TNF as a result of diet-induced obesity, lead to 

enhanced tumorigenesis in the liver via induction of STAT3 [43].  

Changes in adipokine levels, particularly leptin and adiponectin have been 

associated with cancer development. Increase in leptin levels with obesity can induce 

cancer progression by activation of PI3K, MAPK, and STAT3 pathways [44, 45].  

Adiponectin, which can function as an anti-cancer mediator by decreasing IGF and  
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Figure 3: Risk of mortality from cancer with obesity. Summary of mortality from cancer 

according to body mass index (BMI) for (A) men and (B) women in the United States in 

the cancer prevention study, 1982 through 1998 [36]. 
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mTOR signaling and inhibiting NF-κB, is decreased with progression of obesity [46].
 
 

Hyperinsulinemia may contribute to cancer development through the growth-promoting 

effect of elevated levels of insulin. Prolonged obesity leads to insulin resistance and 

hyperinsulinemia and increased IGF signaling. Insulin and IGF-1 signal through the 

Akt/PI3K/mTOR cascade and promote cell growth and proliferation, thus facilitating 

cancer growth and progression [47, 48].  

Several other factors, including genetic alterations, sex hormones and obesity- 

related hypoxia, can also play a role in obesity related tumorigenesis [48]. Understanding 

the mechanisms by which obesity and related co-morbidities influence cancer initiation 

and progression is necessary to impact treatment of obese cancer patients.  

 

Obesity and colorectal cancer 

Colorectal cancer is the third most commonly diagnosed cancer and the third most 

common cause of cancer related deaths in the US [49].  Epidemiological studies have 

shown that in the US, obesity increases the risk of colon cancer by 1.5-2 fold with 

obesity-associated colon cancer accounting for 35% of total incidence [50].  

Metastases are responsible for a majority of cancer related deaths. Although 

tumor cells could theoretically go anywhere in the body, the liver is the most common 

site of metastasis for colon cancer with about 60% of patients developing liver metastases 

[51]. This could in part be explained by the venous drainage of the colon and upper 

rectum that goes through the portal vein and drains directly into the liver. More complex 

molecular mechanisms influencing tumor cell adhesion to the endothelial cells and 

extravasation from the vasculature may contribute as well. Although primary colon 
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cancer has a good prognosis when resected with clear margins and negative lymph nodes, 

the diagnosis of liver metastases portends a poor outcome [52].  

Properties of both the primary tumor and the microenvironment of the distant 

organ site are important for the establishment of metastases. NAFLD represents an 

altered microenvironment of the liver, which was demonstrated to preferentially support 

colorectal metastases [53]. Accumulation of fat in the liver and recruitment of 

inflammatory cells are hallmarks of this altered liver microenvironment which could 

contribute to the establishment of metastases in the liver. Before going into detail on the 

changes in the liver microenvironment, I will first describe the steps involved in the 

progression of cancer and establishment of metastasis and how it pertains to colon cancer. 

The metastatic cascade 

The high rate of cancer mortality is most commonly due to the development of 

metastases at distant organ sites and represents about  90% of cancer related deaths [54]. 

The development of clinically detectable metastases is the result of a multi-step process 

commonly referred to as the metastatic cascade (Figure 4).  It involves a complex series 

of sequential biological events starting with the exit of tumor cells from the primary 

tumor site. This involves local invasion of individual tumor cells into the surrounding 

tissue and through the basement membrane and their intravasation into the vasculature. 

The tumor cells need to survive in the circulation and be transported to the distant organ 

site. Once tumor cells arrive at the distant organ site, they arrest in the vasculature and 

extravasate from the vasculature into the metastatic organ site. Establishment of clinically 

detectable metastases requires the tumor cells to adapt, survive and grow in the secondary 

microenvironment at the distant organ site [55]. 
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Figure 4: The Metastasis Cascade. CSF-1, colony stimulating factor-1; IL-4, Interleukin-

4; Angptl4, Angiopoietin-like 4; SDF-1, stromal cell-derived factor-1; MMP9, Matrix 

Metalloproteinase 9; OPN, Osteopontin [55]. 
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 Each of these steps  is a complex biological event involving the activation of 

multiple molecular pathways within both carcinoma cells and the surrounding stromal 

cells [56]. Metastasis is thus a highly inefficient process and only select cells are capable 

of completing all the steps to develop clinically evident metastases [57]. Even though 

tumor cells can potentially grow at any secondary site in the body, many cancers have a 

propensity to metastasize to specific organs. This observation gave rise to the seed and 

soil hypothesis proposed by Stephen Paget in 1889 [58] in which he likens the cancer cell 

to a seed and the site of distant metastasis as fertile soil. Several factors could contribute 

to this phenomenon including the establishment of a pre-metastatic niche resulting from 

factors secreted by the primary tumor prior to the arrival of circulating tumor cells [59].  

Alternately, a passive process that results in mechanical trapping of tumor cells within the 

distant vasculature bed based on the size of the capillaries, could also contribute to 

metastatic site selectivity. Colorectal cancer most frequently metastasizes to the liver, and 

this could be a combination of both proposed mechanisms. Trapping of colorectal 

carcinoma cells in the liver is dictated by direction of blood flow from the colon through 

the portal vein that drains the mesenteric circulation directly into the liver [60]. The 

vasculature of the liver consists of fenestrated sinusoids that are highly permeable in 

normal livers and could thus provide only a minor impediment to extravasating tumor 

cells. Additionally, entry of colorectal carcinoma cells into the hepatic microvasculature 

can initiate a proinflammatory cascade that results in Kupffer cells being triggered to 

secrete chemokines that upregulate various vascular adhesion receptors, thereby enabling 

adhesion of tumor cells in the microvasculature of the liver [61]. Factors expressed by the 

tumor cells as well as stromal cells including various members of the MMP family 
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including MMP9, MMP2 and MT1-MMP, selectins and their ligands, integrins and other 

molecular factors may facilitate tumor cell adhesion to and extravasation from the 

vasculature and mediate organ specific dissemination and adhesion of tumor cells [56, 62, 

63]. 

The Liver Microenvironment 

As the epidemics of obesity and its associated diabetes and metabolic syndrome 

continue to grow, so has the incidence of NAFLD. NAFLD is a progressive disorder 

initiated by the accumulation of fat in the liver in the absence of excess alcohol 

consumption or viral infection. Development of NAFLD can lead to complications of 

decreased liver function, chronic inflammation and increased risk for development of 

liver cancer. Before delving into the pathophysiology of the liver in the setting of 

NAFLD, I will first introduce the normal anatomy and physiology of the liver. I will then 

discuss how alterations in the liver microenvironment with NAFLD increase the risk of 

development of liver cancer.  

Anatomy and physiology of the liver 

The liver is one of the largest organs in the human body and is essential for 

normal physiology. It synthesizes and secretes bile, fatty acids, proteins and cholesterol 

while it absorbs and stores nutrients, vitamins and fats, and is critical for maintenance of 

glucose balance in the body. Hepatic function is required for the breakdown of toxic 

substances and aids in the excretion of bilirubin, cholesterol and drugs. The liver is 

essential for survival and any disease affecting its normal function can be life threatening.  
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The liver is divided into two principle lobes in humans, a large right lobe and a 

smaller left lobe that are separated by the falciform ligament. The lobes of the liver are 

made up of numerous microscopic hexagonal functional units called lobules (Figure 5). 

In addition to the hepatocytes, each lobule consists of a central vein that surrounded by 

six hepatic portal veins and hepatic arteries. The liver has a dual blood supply. The 

hepatic artery is a source of oxygenated blood that comes from the lungs. Additionally, 

the portal vein supplies blood rich in absorbed nutrients from the gastrointestinal tract. 

Branches of the hepatic portal vein, hepatic artery and the bile duct are typically 

distributed across the liver in close proximity to each other and are collectively referred 

to as the portal triad. Additionally, the liver contains sinusoids, which are small 

fenestrated capillary like tubes that extend from the portal veins and arteries to meet the 

central vein like spokes on a wheel and facilitate exchange of blood and nutrients to the 

hepatocytes lining the sinusoids.  

Hepatocytes are the epithelial component of the liver and perform most of the 

liver’s physiologic functions (Figure 6). The sinusoids are partly lined with Kupffer cells, 

the resident liver macrophages that phagocytose aging blood cells and bacteria as well as 

toxic substances. When Kupffer cells are activated, they can secrete several inflammatory 

cytokines which are important for the innate immune response. The hepatic stellate cells 

(HSCs) are pericytes found in the perisinusoidal space of the liver, also known as 

the space of Disse. They store fat and vitamin A in normal liver. HSCs become activated 

to a myofibroblastic phenotype during liver injury. Activation of stellate cells leads to  

changes in their gene expression profiles and  synthesis of various extracellular matrix 

components known to facilitate the development of fibrosis and cirrhosis [66–68]. 

http://en.wikipedia.org/wiki/Pericyte
http://en.wikipedia.org/wiki/Space_of_Disse
http://en.wikipedia.org/wiki/Liver
http://en.wikipedia.org/wiki/Space_of_Disse


 17 

 

 

 

 

 

 

 

Figure 5: Anatomy of the liver. (A) Normal gross anatomy of the liver. (B) Histology of 

the liver and (B’) histological view of a lobule of the liver [64]. 
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Figure 6: Cellular composition of the liver sinusoid. HSC, hepatic stellate cell [65]. 
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The liver performs many vital metabolic functions. It is responsible for the production of 

fundamental protein components of the blood plasma and storage of essential nutrients, 

vitamins, and minerals obtained from the blood [66, 67]. The hepatocytes secrete bile into 

the bile canaliculi draining into the bile ducts forming a branched network called the 

biliary tree that carries bile through the liver and into the gall bladder. The bile acids are 

important for digestion and play a key role in intestinal absorption of fats by 

emulsification of lipids in the food. Besides its digestive function, bile also serves as the 

route of excretion for bilirubin, a byproduct of breakdown of hemoglobin from aging red 

blood cells [69]. 

In addition to its metabolic and digestive functions, the liver also plays an 

important role in blood detoxification. When blood passes through the gastrointestinal 

tract it absorbs toxic substances and microbes that need to be eliminated before the blood 

is circulated to the rest of the body. These are either filtered when the blood passes 

through the liver, excreted in the bile or neutralized by the members of the cytochrome 

P450 enzyme superfamily. The members of the cytochrome P450 superfamily are 

hemoproteins that reside on the mitochondrial or ER membranes in hepatocytes. These 

are terminal oxidase enzymes in the electron transfer chain and catalyze the metabolism 

of a large number of xenobiotics, such as pharmaceuticals, and toxic endogenous 

compounds. The enzymes function either by directly neutralizing certain chemicals, 

enhancing the water solubility of toxins that enables excretion through the kidneys, or by 

converting the toxin to a more chemically active form that facilitates further 

neutralization reactions. These include sulfation and glucuronidation, glutathione 

conjugation, methylation, amino acid conjugation, and acetylation. [70–72]. Additionally, 

http://en.wikipedia.org/wiki/Erythrocyte
http://en.wikipedia.org/wiki/Erythrocyte
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the liver plays an important role in immunity by capturing and digesting bacteria, fungi, 

parasites, and cellular debris that are phagocytosed by the resident Kupffer cells [66, 67]. 

The liver plays a critical role in maintaining normal blood glucose levels by 

balancing the uptake and storage of glucose via glycogenesis and the release of glucose 

via glycogenolysis and gluconeogenesis. Glucose homeostasis is further regulated by 

levels of glucose transporters on the hepatocytes which facilitates the final step in the 

transport of glucose between the liver and the bloodstream [66, 67].   

The liver has a central role in lipid metabolism and is instrumental in the 

regulation of fatty acid and cholesterol levels in the body. The hepatocytes are a hub for 

de novo fatty acid and cholesterol synthesis, and further facilitates lipid circulation 

through regulation of lipoprotein synthesis. Fatty acids are converted to energy rich 

triacylglycerols and along with cholesterol packaged into VLDL for export to other 

tissues. Excess cholesterol from non-hepatic cells is then brought back to the liver by 

high density lipoproteins (HDL) that are rich in cholesterol and have low triacylglycerol 

content. The cholesterol is then either converted to bile salts in the liver or excreted in the 

bile [73, 74]. Disruption of lipid homeostasis can eventually lead to the accumulation of 

lipid droplets in the hepatocytes and result in hepatic steatosis.  

Non alcoholic fatty liver disease (NAFLD) 

NAFLD has become the most common cause of chronic liver disease in the 

United States and several developed countries worldwide. Some estimates suggest that 

NAFLD may be present in 17-33% of the US population and that 33% of these patients 

have a significant component of non-alcoholic steatohepatitis, NASH [75]. Currently 4-

10% of liver transplants in the United States are performed for end stage liver disease due 
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to NAFLD [76] and fatty liver disease is likely to become the leading indication for liver 

transplant in the next 10 years.  

The umbrella term “NAFLD” was first used in 1986 [77] and broadly describes a 

wide spectrum of liver diseases ranging from simple fatty liver or steatosis to non-

alcoholic steatohepatitis (NASH), which may progress to fibrosis and cirrhosis (Figure 

7). Though historically cirrhosis is associated with increased risk of development of 

hepatocellular carcinoma (HCC), a primary cancer of the liver, there is an increasing 

incidence of cases with steatosis or NASH alone in association with the development of 

HCC [78]. Simple steatosis results from the accumulation of fat droplets in the 

hepatocytes. It results in a unique liver microenvironment typified by accumulation of 

triglycerides and other glycerophospholipids within the cytoplasm of hepatocytes in the 

liver [78, 79]. Steatosis generally represents a non-progressive disease condition with 

minimal treatment requirements and low risk of development of end stage liver disease.  

Transition from steatosis to steatohepatitis is believed to occur when the capacity of 

hepatocytes to store fat is overwhelmed by continued uptake, local synthesis or impaired 

breakdown of fatty acids. This leads to lipotoxicity causing cell death and resulting in 

inflammation [80, 81]. NASH is characterized by the infiltration of inflammatory cells in 

the liver in the setting of steatosis that results from hepatocyte ballooning and cell death. 

Untreated, NASH can progress to endstage liver disease characterized by fibrosis and 

cirrhosis. Factors such as mitochondrial injury, stellate cell activation and microvascular 

injury can amplify the pathogenic process that lead to the development of fibrosis or 

cirrhosis through deposition of collagen and scar tissue [82]. Equally ominous is the 

recognition that NASH and progressive liver fibrosis increase the risk for liver cancer. In  
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Figure 7: Progression of non-alcoholic fatty liver disease (NAFLD). NASH, non-

alcoholic steatohepatitis  [78]. 
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fact, about 25% of patients affected by NASH can develop cirrhosis with the 

subsequent risk of HCC [76]. Moreover, there is an increasing number of HCCs 

developing in non-cirrhotic NASH and steatotic livers [83, 84]. Clinically NAFLD is 

distinct from other liver diseases including viral hepatitis and ethanol abuse that may also 

be characterized by accumulation of fat in the hepatocytes.Assessment of disease severity 

and monitoring of NAFLD disease progression is a major challenge. Currently, a liver 

biopsy is still considered the gold standard. This procedure is invasive and can put the 

patient at potential risk for severe complications [85]. Available serum biomarkers and 

imaging techniques lack sensitivity and specificity to distinguish steatosis from NASH 

and cannot stage the presence and extent of liver fibrosis [80, 86]. There is thus a need 

for better non-invasive tools and biomarkers to identify the progression of disease in 

NAFLD as well as to determine the risk of disease progression, and/or response to 

therapy [87]. Several studies have been carried out to identify serum markers of 

inflammation, apoptosis, oxidative stress, and fibrosis to distinguish the different stages 

of NAFLD [88–92]. Although some markers can distinguish between early and late stage 

disease, there is still a need for more robust markers. Imaging techniques such as 

elastography, magnetic resonance elastography and acoustic radiation force imaging are 

becoming more established and can distinguish fibrosis in a variety of chronic liver 

conditions in addition to NAFLD [93–95], however there is still a need to be able to 

distinguish steatosis from steatohepatitis. Biomarkers for early detection of NASH and of 

possible indicators of progression to cirrhosis could establish novel therapeutic 

approaches and thus prevent progression to cirrhosis. Assessment of changes in the lipid 
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profiles in the blood or urine could identify a lipid signature that would be able to 

distinguish steatosis from NASH [96].  

NAFLD and cancer 

While major advances have been made in understanding the physiological 

characteristics of NAFLD, the pathogenesis of this progressive condition and the exact 

mechanism behind the development of HCC with NAFLD remains unclear [97]. Figure 8 

highlights some of the proposed mechanisms of NAFLD related HCC. Accumulation of 

excessive fat in the liver can initiate liver hepatocyte damage, which when followed by 

inflammation and cycles of necrosis and regeneration could potentiate the induction of 

HCC. Hepatic inflammation and injury in NASH are effective in activating HSCs. 

Activation of HSCs during liver regeneration can also promote cirrhosis by production 

and deposition of type I collagen-rich scar tissue and production of MMP13 [98]. This 

results in an environment that promotes hepatocyte proliferation and is permissive to 

genetic modulations leading to neoplastic transformation [43, 99]. Increase in obesity 

related pro-inflammatory cytokines including TNFα, IL-6 and leptin, as well as a 

reduction in the amount of adiponectin could favor tumorigenesis within the liver [100]. 

HCC has extraordinary heterogeneity of genomic aberrations, and more than 90% of 

HCC develops in the setting of chronic inflammation as displayed in NASH. Such 

evidence highlights the critical role of hepatic inflammation in NAFLD associated 

hepatocarcinogenesis [98, 101].  

The importance of the steatotic change in the liver microenvironment for the 

establishment and growth of primary tumors is recognized, however little is known about 

its effect on establishment of metastasis. Study of the tumor/stromal interactions in this 
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Figure 8: Proposed pathogenesis of hepatocellular carcinoma (HCC) in non-alcoholic 

fatty liver disease (NAFLD). IGF-1, Insulin-like growth factor; IRS-1, Insulin receptor 

substrate 1; JNK-1, c-Jun N-terminal kinase; FFA, free fatty acids; ROS, reactive oxygen 

species; TNF α, tumor necrosis factor- α; IL-6, interleukin-6; NF-B, nuclear factor 

kappa-light-chain-enhancer of activated B cells; Nrf1, nuclear respiratory factor-1 [100].  
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unique liver microenvironment is important as a greater percentage of the population 

increasingly suffers from NAFLD. Changes in inflammatory mediators and cytokines as 

well as other important metabolic regulators have been implicated in the progression of 

NAFLD and liver fibrosis, and may be important in tumorigenesis [102]. A better 

understanding of the tumor and microenvironment interplay for the progression of 

primary and metastatic tumors in the setting of NAFLD, may prove valuable for 

understanding the development and devising treatment of these diseases. 

Matrix Metalloproteinases 

Matrix Metalloproteases (MMP) were first described by Jerome Gross and 

Charles Lapiere in 1962 when they identified the collagenase activity of MMP1 during 

tadpole tail morphogenesis [103]. Since then, many other MMPs have been identified and 

characterized for their activity. The MMPs are a subfamily of zinc dependent 

endopeptidases that together are collectively capable of cleaving all components of the 

extracellular matrix (ECM). They include 23 members in humans and were originally 

classified as collagenases, stromelysins, gelatinases, matrilysins, membrane type MMPs 

and others based on their ability to cleave specific types of ECM components [104]. As 

newer MMPs began to be identified, and it became clear that their substrates were not 

limited to ECM components, MMPs were assigned a sequential numbering system. 

Another means to classify MMPs is according to their structure. The MMPs all share a 

similar domain structure that typically consists of a pro-domain, a catalytic domain, a 

variable length hinge region and a C-terminal hemopexin domain. The catalytic domain 

is the enzymatic domain that is conserved amongst MMPs and contains the zinc-binding 

domain that is essential for function. Based on their domain structures, MMPs are 
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classified into 8 groups as shown in Figure 9 [105].  MMPs are initially synthesized as 

inactive zymogens with the pro domain that must be removed prior to enzymatic activity. 

The pro peptide is part of the “cysteine switch” that contains a conserved cysteine residue 

that prevents access to the activation site by interacting with the zinc in the active site, 

maintaining the enzyme in an inactive form [106]. The catalytic domain of all MMPs is 

similar and has a shallow cleft on the front that forms a grove that runs across the 

catalytic domain forming the active site [107]. The active site contains two zinc ions and 

one or two calcium ions. One zinc ion is involved in the catalytic process and coordinates 

with three histidine residues that are conserved among all the MMPs [108]. The catalytic 

domain is connected to the C-terminal hemopexin domain though a hinge region of 

variable length and structure. The hemopexin domain has structural homology to the 

serum protein hemopexin and is highly conserved in all MMPs except MMP7 and 

MMP26, which lack this domain. The hemopexin domain has been shown to play a 

functional role in substrate binding and interaction with the tissue inhibitors of 

metalloproteinases (TIMPs), the endogenous MMP inhibitors [109]. The hemopexin 

domain has also been shown to be important for cell migration and invasion [110]. 

Correia et al. showed that the hemopexin domain of MMP3 simulates mammary 

epithelial invasion and branching though interaction with the intracellular chaperone 

heat-shock protein 90β [111]. In addition to these basic domains, members of the MMP 

family are further classified based on additional structural and functional domains they 

have incorporated.  

MMPs are highly regulated and their expression as well as their activity is 

controlled at multiple levels. In order to maintain normal physiological function, MMPs  
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Figure 9: Classification of MMPs based on domain structure. MMPs are divided into 

eight groups, five of which are secreted and three are membrane bound. Pre, signal 

sequence; Pro, propeptide with a free zinc-ligating thiol (SH) group; Fu, furin-susceptible 

site; Zn, zinc-binding site; Fi, fibronectin domain; H, hinge region; TM, transmembrane 

domain; C, cytoplasmic tail; GPI, glycophosphatidyl inositol-anchoring domain; (CA) 

cysteine array and (Ig) immunoglobulin like domains [104, 105].  
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have to be expressed in the right cell type and maintain the correct pericellular location in 

required amounts to elicit relevant physiological activity. They are tightly regulated at the 

transcriptional and post-transcriptional levels [112]. In addition, the proteolytic activity is 

controlled by multiple mechanisms. They are secreted as inactive zymogens, and 

activation requires proteolytic removal of the propeptide by either other activated MMPs 

or serine proteases. Endogenous inhibitors include the TIMP family members, that 

reversibly inhibit MMPs by binding to them, thus preventing MMP interaction with their 

substrates. Other endogenous inhibitors of MMPs include α2-macroglobulin and 

thrombospondin that bind to MMPs and facilitate scavenger receptor mediated 

endocytosis and clearance of MMPs [104, 105].  

MMPs in cancer 

MMPs have long been recognized to be associated with almost every type of 

human cancer, correlating with late stage disease, increased migration and invasion and 

poor prognosis [104].  Historically, the  ability of MMPs to cleave major components of 

the ECM including collagen, gelatin, proteoglycans, laminin and fibronectin surrounding 

the tumors has been considered to be their principle role in processes of tumor invasion 

and metastasis [113]. In recent years, the biologic functions of metalloproteinases have 

expanded to include roles in cell growth and differentiation, apoptosis, migration, tumor 

angiogenesis, and immune surveillance as a result of their ability to cleave and alter the 

biological activity of potent regulatory molecules [104, 114]. MMPs have now been 

shown to be involved at almost all stages of tumor progression starting with malignant 

transformation and tumor initiation, cellular proliferation, cell intravasation as well as 
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extravasation from the vasculature, and culminating in the establishment of distant 

metastases [115].  

MMPs can cleave substrates that are responsible for regulating cell death, 

including Fas ligand (FasL). Deactivation of such regulators help tumor cells circumvent 

apoptosis [116, 117]. MMP mediated proteolysis of ECM has been shown to initiate 

cytokine signaling through release or activation of growth factors such as IGF, EGF, 

PTK7 or TGF that are either anchored in the matrix or inactive and contribute to cell 

proliferation, invasion, and survival [118–121]. Specifically, MMP release of TGF can 

stimulate alpha smooth muscle actin and collagen secretion from activated HSCs upon 

liver injury [122, 123]. Additionally, the reciprocal interaction between adhesion proteins 

such as E cadherin and MMP expression have been shown disrupt junction integrity and 

lead to an increase in the invasive ability of tumor cells [124].  MMPs can thus be viewed 

as mediators of cell: cell communication or host: tumor interaction that further modulate 

tumor progression.  

Apart from their anti-tumorigenic effect, MMPs have also been shown to exert 

protective functions as well. For example, elevated MMP12 and MMP9 were shown to 

decrease tumor vascularity and growth of endothelial cells leading to decreased tumors 

and metastases in the lung and skin respectively [125, 126]. Increased MMP8 was shown 

to decrease tumor growth as well as establishment of metastasis with breast cancer cell 

lines [127, 128]. Mice without MMP3 expression, showed enhanced tumor growth rates 

and increased metastasis in squamous cell carcinoma (SCC) suggesting that MMP3 was 

protective in SCC tumorigenesis [129]. Thus, the findings that MMPs can have a 

protective role in cancer progression have put to rest the general belief that upregulation 
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of MMPs by either tumor or host cells benefit tumor development at both the primary and 

secondary site [130]. 

The protective features of select MMPs, including their function in development, 

wound healing and normal physiology, could explain why clinical trials using MMP 

inhibitors have failed [131]. The MMP inhibitor trials used broad spectrum MMP 

inhibitors targeting the majority of MMPs, good or bad, which led to an overall adverse 

outcome. Current understanding of pro and anti-tumorigenic roles of select MMPs, in 

combination with selective targeting of individual MMPs in a particular disease setting, 

could circumvent some of the issues encountered by these trials. Thus, further 

understanding of the roles of the individual MMPs and how they function in a particular 

microenvironment and their role in normal physiology could be important for the future 

use of MMPs as potential drug targets [131, 132]. 

MMPs in liver development and disease 

MMPs play an important role during embryonic development, being required for 

remodeling of the ECM and cell migration. During embryologic liver development, an 

epithelial liver bud consisting of liver progenitors called hepatoblasts forms as an 

outgrowth of the endoderm. The hepatoblasts then invade into the neighboring septum 

transversum mesenchyme (STM) at embryonic day 9 where they intermingle with 

mesenchymal and endothelial cells. Several MMPs including MMP2, MMP11, MMP14, 

MMP15, MMP16, MMP17 and MMP19 are expressed during liver development. MMP2 

and MMP14 activity is important for transit of hepatoblasts from an epithelial state to a 

migratory phenotype and enable them to invade the STM [133]. Liver development then 

proceeds through proliferation of the hepatoblasts and their differentiation into 
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hepatocytes or biliary cells. MMP1, MMP13, MMP2, MMP7, and MMP9 are expressed 

in the early developing human liver, although their function is  still unknown [134]. 

The normal adult liver has a basal expression level of most MMPs and TIMPs 

[135, 136]. Upon liver injury, changes in MMP levels are frequently observed. For 

instance, MMP13, MMP2, MMP9, MT1-MMP, MMP3 and MMP10 were all increased 

after experimental CCl4 exposure in rats with the highest expression changes coinciding 

with induction of inflammatory cytokines [137]. Expression of MMPs is altered during 

tissue regeneration. For example, following partial hepatectomy there is rapid induction 

of MMP2 and MMP9 [138].
 
This suggests that MMPs play an important role in hepatic 

tissue repair post injury. Immuno-histochemistry revealed MMP9 localization in the scar 

areas that contained active fibrogenesis [139]. Further, bile duct ligation studies also 

showed that MMP2 and MMP9 were elevated throughout the fibrotic process [140]. 

During the process of liver injury, HSCs, the liver resident stromal fibroblasts, become 

activated and undergo morphological and functional changes with increased expression 

of αSMA. Further, elevated MMP9 has been shown to be important in activation of HSCs 

when stimulated with IL1α, suggesting the importance of MMPs in the fibrogenic process 

[141]. Progression of fibrosis results from changes either in the deposition or removal of 

the ECM. By modulating the levels of MMPs, there may be hope for the reversal of 

cirrhosis, characterized by extensive fibrosis, and regarded as the end-stage of liver 

disease [142]. Adenoviral-mediated delivery of MMP1 promoted the resolution of 

thioacetamide induced fibrotic liver tissue [143]. Further, Murphy et al. show that 

inhibition of MMP activity decreases apoptosis of HSCs and leads to persistence of liver 

fibrosis [144]. Thus, MMPs play dual roles and have both adverse and beneficial 
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outcomes on liver fibrosis depending on the timing of their expression and activation 

[145]. 

Chemokines play an important role in shaping this inflammatory response and 

MMPs have been shown to be important in regulation of chemokine activity [146]. 

MMPs can directly cleave these chemokines or their precursors resulting in their 

activation or inactivation. MMPs can additionally lead to the physical release of 

chemokines and growth factors that are bound to the ECM or to other substrates, and 

facilitate their release by proteolytic cleavage of the ECM [147]. NAFLD results in an 

inflammatory microenvironment in the liver. Changes in MMP levels might be 

responsible for maintaining a prolonged state of chronic inflammation in NAFLD by 

activation of cytokines and inflammatory mediators that could potentiate inflammatory 

cell infiltration [148]. Studies using mouse models of diet induced obesity show that 

MMP12 and MMP13 are elevated in the livers and adipose tissue of mice [149]. The 

recognized role of MMPs in inflammatory processes and their ability to alter chemokine 

levels could thus impact tumor development and progression in the liver 

microenvironment affected by steatosis and steatohepatitis [150].  

Matrix metalloproteinase 13 

MMP13 is a member of the collagenase subfamily of MMPs, along with MMP1 

and MMP8. MMP13 was originally cloned from a breast carcinoma and identified as 

collagenase-3 based on presence of specific residues (Tyr-214, Asp-235, and Gly-237), 

fundamental for collagenase specificity and the ability to degrade type I fibrillar collagen 

[151]. The human MMP13 gene shares 84% homology to murine Mmp13, which is the 

primary collagenase in mice. Normal physiological expression of human MMP13 is 
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limited to the hypertrophic chondrocytes and osteoblasts in the developing fetal bone 

where it is required for restructuring the collagen matrix for bone mineralization [152, 

153]. There is little or no expression of MMP13 in normal human adult tissue with 

undetectable MMP13 mRNA levels  in normal liver, placenta, ovary, uterus, prostate, 

parotid gland, or even breast tissues [151, 154]. However, MMP13 is re-expressed in 

diseases where there is a need for tissue repair and remodeling of the ECM. MMP13 

expression is elevated in several pathological conditions including arthritis, chronic 

cutaneous ulcers, intestinal ulcerations, chronically inflamed periodontal tissue, and in 

atherosclerotic plaques and aortic aneurysms that are characterized by inflammation and 

remodeling of collagenous ECM [154].  

MMP13 expression has been observed in invasive malignant tumors either within 

the tumor cells or the surrounding stroma, including breast carcinomas, where it is 

associated with metastasis to the bone, as well as invasion and metastasis in melanoma 

and basal cell carcinomas [155–157]. MMP13 is associated with squamous cell 

carcinomas (SCCs) of the head and neck and vulva [158], transitional cell carcinoma of 

the urinary bladder [159] and in colorectal cancer where it is associated with poor 

prognosis in patients with the presence of liver metastases [160, 161]. 

Importantly, MMP13 has also been associated with liver disease. Uchinami and 

colleagues demonstrated that MMP13 contributes to progression of fibrotic liver disease 

[162]. They showed that mRNA expression levels of inflammatory mediators, such as 

TNF, were suppressed in livers of mice genetically deficient in Mmp13. They noted that 

upregulation of fibrogenic factors including TGF1, was also significantly suppressed in 

livers of Mmp13 deficient mice as compared to wildtype mice. Functionally MMP13 
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contributed to fibrogenesis by mediating the initial inflammation of the liver in 

cholestatic livers induced by bile duct ligation in mice [162]. Other investigators found 

MMP13 to be active in the reabsorption of scar tissue in the liver, reflecting the activity 

of this protease in the setting of liver injury [163]. MMP13 was shown to be elevated in 

the liver tissue and epididymal fat of mice with diet induce obesity and NAFLD [149].  

These reports suggest that MMP13 could play an important role in altering the 

liver microenvironment with progression of NAFLD. Since MMP13 expression is limited 

in normal tissues and elevated in the setting of disease, MMP13 could be a realistic target 

for treatment of several types of cancers.  

Summary and Dissertation Goals 

The obesity epidemic has led to an increase in the incidence of NAFLD. As a 

greater percentage of the population lives with fatty liver disease, the impact of this 

steatotic microenvironment on progression of liver disease, development of primary liver 

cancers such as HCC and cholangiocarcinoma, and the establishment of metastatic 

tumors in the liver must be better understood. Metastasis represents the final stage in 

cancer progression and is the most significant cause of cancer related mortality. The liver 

is a common site of metastasis of several epithelial cancers and we have previously 

demonstrated an increase in the incidence of colon cancer metastasis to the liver in the 

setting of steatosis [53].  

Prolonged steatosis results in a state of chronic inflammation that leads to several 

changes in the liver microenvironment that could explain the differences in tumor 

establishment and metastasis observed in patients with NAFLD. The extracellular matrix 

plays an important role in cell-cell interactions and changes in the matrix components 
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have been shown to affect all stages of tumor progression. MMPs can degrade 

components of the ECM and have been shown to influence the ability of tumor cells to 

migrate and invade into tissues and affect the ability to form metastases. MMP13, 

collagenase 3, is a member of the MMP family that becomes elevated in the setting of 

NAFLD and could be integral to some of the changes seen in the steatotic liver. MMPs 

can be produced by both tumor and stromal cells and reports suggest that MMP13 is 

produced by activated stellate cells, Kupffer cells and other subpopulations of 

inflammatory cells; all of which could potentiate the increased level of MMP13 observed 

in the setting of steatosis. Activation of Kupffer cells can also lead to changes in gene 

expression and upregulation of pro-inflammatory cytokines that can further recruit 

inflammatory and bone marrow derived cells, ultimately impacting adjacent cell 

populations and sustaining NASH.  

 The goals of this dissertation were to better understand the steatotic liver 

microenvironment and identify cellular and molecular factors altered in the setting of 

steatosis and steatohepatitis that impact the establishment of metastases in the liver. 

Many studies have demonstrated that alterations in specific genetic factors, as well as 

stromal-tumor interactions, are important in the establishment of carcinoma metastases. 

The molecular mechanisms governing the growth and proliferation of tumors in the 

setting of steatosis and steatohepatitis are only beginning to be elucidated. I hypothesize 

that molecular and cellular changes in the steatotic liver relative to the normal liver 

contribute to a more permissive microenvironment for tumor growth and establishment of 

metastases in the liver. My thesis work examines how changes in the liver 

microenvironment, as the result of hepatic steatosis and steatohepatitis, affect the 



 37 

processes of tumor cell establishment and growth in the liver. In chapter III, I explore the 

changes in inflammatory cell population and cytokine production in the steatotic liver 

microenvironment and how this effects hepatocellular proliferation. Chapter IV evaluates 

the role of MMP13, an MMP elevated in the setting of steatosis, on tumor cell 

extravasation and establishment of metastases in the steatotic liver microenvironment. 

My results show that both tumor and stromal derived MMP13 play a role in 

establishment of liver metastases. This suggests that inhibiting MMP13 could be a 

possible target to suppress cancer metastasis to the liver.  
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Ethics Statement 

All animal experimental procedures and protocols were approved by the Vanderbilt 

University Medical Center IACUC protocol #M/09/216 and performed according to 

institutional ethical guidelines for animal care and use. Human de-identified tissue 

samples were collected under National Cancer Institute (NCI) Best practices and 

Cooperative Human Tissue Network (CHTN) standard operating procedures. 

Patient Samples 

Liver biopsies from consented patients undergoing bariatric surgery were collected and 

flash frozen for protein or RNA collection and further de-identified in accordance with a 

protocol approved by Vanderbilt’s Internal Review Board (VUMC IRB#120829).  A 

portion of the sample was sent for histology and reviewed by a Vanderbilt University 

pathologist and classified as either Normal (<5% Steatosis), Steatosis, Steatohepatitis or 

NAFLD related cirrhosis. Additional de-identified formalin-fixed, paraffin-embedded 

liver tissue sections from normal and steatotic patients, and patients with colorectal 

cancer metastasis to the liver were obtained with permission from the Vanderbilt 

Translational Pathology Shared Resource.  
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Mice 

C57bl/6J male mice were obtained from Jackson Research Laboratories (Bar Harbor, 

ME) and a breeding pair of B6-Mmp13-/- mice was obtained (Laboratory of Dr. Zena 

Werb, UCSF). The Mmp13-/- mice were originally generated by crossing mice 

homozygous for the floxed Mmp13 allele (Mmp13
fl/fl

) with mice carrying the Cre 

recombinase driven by the β-actin promoter [164]. Mmp13-/- mice have no observable 

liver phenotype. Mice were housed in a level 6 animal facility at Vanderbilt University. 

Once mice were 8 weeks old, they were fed either regular chow, a 13.5% fat diet (RD, 

5001, LabDiet: 13.5% calories from fat, 58% from carbohydrates, and 28.5% from 

protein) or a 42% fat “high fat/western-style” diet (HF, TD.88137, Harlan Teklad (North 

America): 42% calories from fat, 42.7% from carbohydrates, and 15.2% from protein) ad 

libitum for 3 months at which time point we have shown that wildtype mice develop 

prominent steatosis (Figure 10) [53].  

Acquisition of Liver Inflammatory Cells 

At the end of 3 months, mice were sacrificed and weighed. To isolate liver cells from 

both normal and steatotic mice, mice were anesthetized and an incision was made in the 

abdomen cavity. Hepatic tissue was dually perfused, first through the heart and then 

though the portal vein with heparinized Krebs Ringer Buffer (KRB) (154mM NaCl, 

5.6mM KCl, 5.5mM Glucose , 20.1mM HEPES, 25mM NaHCO3, pH7.4) to remove any 

intravascular blood cells. The liver was then perfused with 2.5mls warm heparinized 

KRB (37°C) containing collagenase IV (500U/ml), DNase I (1500 U/ml), CaCl2 (2.5mM)  
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Figure 10: Characterization of the mouse model of diet induced steatosis. Mice fed 

regular diet (RD: A-C) of 13.5% fat or high fat diet (HF: D-F) consisting of 42% fat 

through a time course of 1 to 9 months (mo). Gross liver images show that livers of mice 

on the regular diet remain dark, red, free of lipid accumulation, and show little change in 

size over time (A). Mice on high fat diet show an increase in gross size along with 

yellowish appearance characteristic of steatosis over time (D). Accumulation of fat and 

development of steatosis can be seen in livers of mice on high fat diet as seen by 

vacuolation in hematoxylin and eosin stain (H&E) (E) and more definitively by oil red O 

(ORO) staining of lipids (F, red droplets) in mice on a high fat diet. Mice on regular diet 

do not show such changes (B, C). Gross liver weight (G), the percent liver weight as 

compared to total body weight (H), and the percent area of ORO staining (I) in livers of 

mice fed regular diet and mice fed the high fat diet are plotted on the right. Scale bars are 

10mm for all gross liver images and 100m for H&E and ORO images [53]. 
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and MgCl2 (2mM) through the portal vein. Post perfusion, livers were removed and 

weighed. For flow cytometric analysis, 1 gram of liver tissue was transferred to a MACS 

C tube, processed on cycle A of the gentle MACS dissociator in 5ml of the KRB 

collagenase solution. The resulting tissue suspension was incubated at 37°C for 30 min 

on a MACSmix tube rotator. Following enzymatic digestion, the C tube was put back on 

the MACS dissociator and processed with liver cycle 02. The suspension was passed 

through a 40 mm filter and 20 ml of ice cold PEB (Phosphate buffered saline pH7.2, 

2mM EDTA, 0.5%BSA; Miltentyi Biotec) with DNase I (1500 U/ml) was added to the 

filtrate and centrifuged at 30g for 6 minutes to pellet out the hepatocytes. The supernatant 

was collected and centrifuged at 300g for 10 minutes to pellet the inflammatory cells, 

which were subsequently processed for flow cytometry. The remaining tissue samples of 

each liver were either fixed in buffered formalin, frozen in OCT compound, or 

homogenized in RIPA buffer (10mM Tris pH 7.5, 150mM NaCl, 0.1% SDS, 0.5% 

deoxycholate, 1% Triton) with addition of a complete Mini protease inhibitor cocktail 

tablet (Roche Diagnostics, Indianapolis, IN) for protein analysis. Additionally, endpoint 

heparinized blood samples were collected prior to perfusion and centrifuged at 2000xg 

for 20 minutes at 4
o
C to collect plasma for cytokine array analysis. All samples not 

immediately used were stored at −80°C. 

Histology 

Formalin-fixed, paraffin-embedded tissue samples from both mouse and human samples 

were cut at 6μm on a Leica microtome and dried. For histology, sections were rehydrated 

with xylenes and a decreasing ethanol series and then stained with Mayer’s Hematoxylin 

(Sigma) and Eosin. For immunohistochemistry, hydrated sections were boiled in a citric 
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acid solution (10 mM trisodium salt dihydrate pH 6.0, 0.5% Tween-20) for 8 minutes to 

unmask antigen. OCT embedded frozen tissue sections were cut at 8 μm on a Microm 

HM550 cryostat, air dried and fixed in ice cold acetone for 10 minutes. Slides were 

stained with primary antibodies at 4
o
C overnight directed against: Ki67 (Abcam, 

ab15580), HNF4(Santa Cruz, sc-655), CD68 (eBioscience, 12-0689-71), CD3 

(BioLegend, 300415), CD8 (BioLegend, 301008), CD56 (BioLegend, 318327), MMP13 

(Santa Cruz sc-12363), Cleaved caspase 3 (cell signaling D175) or vWF (Dako A0082). 

For diaminodenzidine, sections were labeled with appropriate species specific 

biotinylated secondary antibody (Vector Labs, Burlingane, CA), processed with a 

Vectastain kit (Vector Labs) and developed in chromogen solution (0.1M Tris-HCl pH 

7.4, 1.125mM diaminobenzidine, 0.01% H2O2), counterstained with Mayer’s 

Hematoxylin Solution (Sigma), dehydrated with ethanols and mounted with permount. 

Slides were imaged with a Q Imaging Micropublisher color digital camera mounted to a 

Zeiss Axioplan 2 microscope using MetaMorph software for acquisition. For 

immunofluorescence, sections were labeled with anti-rabbit Alexa Fluor (594) conjugated 

secondary antibody and counterstained with DAPI (4',6-diamidino-2-phenylindole, 

dihydrochloride). Fluorescent images were acquired with a Hamamatsu Orca ER CCD 

camera mounted to a Zeiss Axioplan 2 Microscope using MetaMorph software 

acquisition (Molecular Devices, Dowington, PA). The number of total cells, the number 

of hepatocytes and the number of proliferating cells were determined using nuclear 

markers by quantifying the number of DAPI positive, HNF4 positive and Ki67 positive 

nuclei respectively. This was done by thresholding images to a preset background level 

through imageJ software and measuring the total number of particles over 75 pixels, to 
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eliminate background and select only nuclei. Average number of cells from five random 

20x fields per sample were obtained. Quantification of immunohistochemical (IHC) 

staining in was carried out by setting a threshold to a fixed intensity and calculating the 

percent thresholded area with metamorph software analysis. For IHC analysis, the 

average thresholded area from five random 10x fields per sample were obtained.  

Flow Cytometry 

Pelleted inflammatory cells from digested livers were resuspended in PEB. CD45 or 

CD11b positive cells were isolated using positive selection with magnetic beads. 20 l of 

respective magnetic beads (Miltenyi Biotec) were incubated with the pelleted cells for 20 

minutes on ice, inverting the tubes every 5 minutes. Cells were spun down at 300g, 

resuspended in PEB, filtered through 0.3 m mesh and magnetically isolated via LS 

columns (Miltenyi Biotec) according to manufacturer’s instructions. Total number of 

cells, isolated by CD45 magnetic beads, was determined per gram of liver tissue with a 

BioRad TC10 automated cell counter. CD45 isolated cells were resuspended in 250 l of 

staining solution containing lineage specific markers. Markers used for mouse T-cell 

subpopulations staining were CD3 (488), CD4 (A700), CD8 (PE), CD25 (APC) and 

CD62L (e-Fluor 450). Granulocytes were stained with F4/80 (APC), GR1 (PE), Ly6C (e-

Fluor 450). Dendritic cells were identified with monoclonal antibodies to CD11c (e-Flour 

450) and B-cells were revealed as CD19 (APC) positive. 7-AAD was used as a vital 

stain. All fluorophore-conjugated monoclonal antibodies were obtained from BD 

Pharmingen. Cells were labeled for 20 minutes at room temperature with constant 

agitation on a Nutator. Post staining, cells were washed twice with 1ml PEB and 

resuspended in a final volume of 250 l. Flow cytometry data acquisition was performed 
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on a 3-laser BD LSRII at the VMC Flow Cytometry Shared Resource. Five mice per 

group were used for flow cytometric analysis. FlowJo software was used for data and 

statistical analysis of flow cytometric results. Figure 11 depicts the gating stategy used 

for the analysis. Additionally, magnetically isolated CD11b positive cells were spun at 

300g and resuspended in RPMI media and 150,000 cells per well were cultured for 24 

hours before isolating conditioned media for cytokine analysis.  

Cytokine Arrays 

Liver tissue lysates from normal and steatotic mice were quantified using the BCA assay 

(Pierce). 100 micrograms of protein lysate was added to each array (n=3). Plasma 

collected from both normal and steatotic mice was diluted 1:10 in blocking buffer and 

100 l of sample was used for cytokine array analysis (n=3). Additionally, 100l of 

pooled conditioned media collected from CD11b positive cells isolated from both normal 

(n=3) and steatotic mice (n=3) was run for cytokine profile analysis. Cytokine array 

analysis was carried out using RayBiotech Mouse cytokine arrays (AAM-CYT-G3) as 

directed by their protocol. Briefly, the array surface was first blocked and then incubated 

with sample overnight. Arrays were washed and subsequently incubated with 

fluorescently tagged secondary antibody. Stained slides were scanned using a GenePix 

4000B Microarray Scanner at the Vanderbilt VANTAGE Core. Densitometric analysis 

was then performed using GenePix Pro Acquisition and Analysis Software. Background 

was subtracted and data were normalized against positive controls included on each 

array. All data directly compared were derived from the same batch of arrays.  
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Figure 11: Gating strategy for flow cytometry analysis of inflammatory cells in the liver. 

Inflammatory cells were gated for based on forward and side scatter distribution. Cells 

within this region, negative for 7-AAD were identified as live cells. Among the live cells, 

CD45 positive inflammatory cells were identified by positive staining on the APC-Cy 7 

channel. CD45 positive cells were then classified as CD11b positive myeloid cells, CD3 

positive lymphocytes, CD19 positive B cells, CD11c positive dendritic cells and NKp46 

for Natural killer cells. CD11b myeloid cells were further stained with F4/80, Gr1 and 

Ly6C to identify myeloid cell sub populations and CD3 positive lymphoid cells were 

stained with CD4, CD8, CD62L and CD25 for lymphoid cell subpopulations.  
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Cell Lines 

HepG2 human hepatocellular carcinoma cells were obtained from American Tissue 

Culture Collection (ATCC, Rockville, MD, USA). MC38 murine colon cancer cells lines, 

syngeneic to C57Bl/6 background were provided by Dr. Steven Libutti, National Cancer 

Institute. HCT116 human colorectal carcinoma cell line was obtained from ATCC (CCL-

247). Cell lines were grown in culture conditions of 10% fetal bovine serum (Atlanta 

Biologicals, Lawrenceville, GA) in Dulbecco’s Modified Eagle Media (Gibco BRL, 

Carlsbad, CA) at 37°C and 5% CO2, and harvested at 75% confluence for experimental 

studies. HEPT mouse hepatocyte cells were isolated from the immortomouse expressing 

the temperature sensitive SV40 gene encoding large T antigen [165]. The HEPT cells are 

grown in DMEM with 10% FBS, P/S, L-glutamine and ITS (insulin, transferrin, 

selenium, Gibco 41400045), 1U/ml IFN- and incubated at 32°C in 5% CO2. Prior to 

experimental analysis, cells were split and transferred to 37
o
C in 5% CO2 to deactivate 

SV40 for a minimum of 24hours.  

MTT Assay 

Proliferation of cells was determined using the MTT assay. Briefly, 1x10
5
 cells were 

plated in each well of a 96 well plate and allowed to attach overnight. Cells were then 

serum starved for 24 hours. For determination of effect of cytokines on proliferation 

different concentrations of Leptin, CXCL1, CXCL2 and CXCL16 (100 ng/ml, 25 ng/ml 

and 1 ng/ml) in serum free media were added to each well. Serum free conditions and 

10% FBS were used as controls. For effect of loss of MMP13 on proliferation, 24 hours 

post serum starvation, media was replaced with DMEM containing 10% FBS. After 24 
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hours, 20 μl of MTT reagent (5 mg/ml, Sigma) was added to each well and returned to 

the incubator for 2 hours after which the media was aspirated from each well and the 

remaining MTT formazan crystals dissolved in 100 μl of isopropanol. Absorbance at 570 

nm was read using a Victor3 V 1420 Multilabel Plate Counter. Experiments were carried 

out in triplicate with 5 replicates per plate. 

Western Blot Analysis 

Protein lysates were prepared with RIPA lysis buffer. Protein concentration was 

determined by the Pierce BCA protein assay (Thermo Scientific). 30 μg of protein was 

loaded into each well and separated on a 10% SDS-PAGE gel.  Proteins were transferred 

onto a nitrocellulose membrane, subsequently blocked with 3% milk, and then incubated 

with anti MMP13 antibody (Abcam, ab39012) overnight at 4
o
C. The blots were washed 

and then incubated with secondary antibody (IR700 conjugated donkey anti rabbit IgG) 

for 1 hour at room temperature.  Blots were washed and then imaged with Licor Odessy 

scanner. 

qRT-PCR 

RNA was extracted using a combined Qiazol extraction and subsequent Qiagen RNeasy 

mini kit. One microgram of total RNA was reverse transcribed using the high capacity 

cDNA reverse transcription kit (Applied Biosystems) and real-time PCR was performed 

using specific primers for  mouse MMPs with GAPDH as control (Qiagen, QT00116116, 

QT00107751, QT00110012, QT00113540, QT00108815, QT00115521, QT00099729, 

QT01658692, QT00098945, QT01064308). Real-time PCR was performed with the iQ 

SYBR green supermix kit (Bio-Rad) according to the manufacturer's instructions and 
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measured via a CFX96 real time PCR detection system (Bio-Rad). Experiments were 

done in triplicate with three replicates per sample. Fold-change was determined relative 

to normal wildtype samples and calculated using GAPDH levels as a reference. 

Experimental Liver Metastasis 

Experimental liver metastasis was carried out as previously described (Figure 12) [53]. 

Briefly, five month old wildtype or Mmp13 knockout mice that had been on diet for 3 

months were injected with 5 × 10
5
 MC38 parental or Mmp13 knockdown cells into the 

spleen and allowed to perfuse to the liver for 3 minutes before splenectomy. Mice were 

sacrificed at 14 days post-injection and the burden of metastatic liver tumors were 

compared between the different groups. At the time of sacrifice the mice were weighed, 

the livers were removed and weighed, and the livers were processed for histology as 

described above. Graphical representation of metastatic burden was calculated using 

GraphPad software to compare the total liver weights, as well as the percentage of liver 

weight relative to the total animal weight. Further, in-depth quantitative analysis of tumor 

burden was assessed on the left lateral lobe of the liver. The fixed liver was cut sagittally 

into four parts and paraffin-embedded, sectioned and stained for H&E. Slides were 

scanned at 20X using an Ariol® SL-50 scanner. Ariol software was used to quantify the 

size and number of tumors per section.  

Tumor Cell Extravasation 

To determine the number of tumor cells extravasating in the liver, we utilized the 

methodology previously described by Martin et al. [166], with slight modifications 

(Figure 13,14). Briefly, mice were injected intrasplenically with 1x10
6
 cell tracker red  



 49 

 

 

 

 

 

 

 

Figure 12: Splenic injection model of experimental liver metastasis. Tumor cells are 

injected via the spleen and populate the liver through the portal venous route. 
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Figure 13: Schematic demonstrating use of whole organ confocal microscopy determine 

tumor cell extravasation. Cell tracker red labeled MC38 cells are injected into wildtype or 

Mmp13-/- mice. 24 or 48 hours post injection vasculature is labeled with 488-tagged 

tomato lectin followed by dual perfusion of the liver. Whole liver is then harvested and 

imaged with confocal microscope to identify individual tumor cells in the vasculature. 
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Figure 14: Classification of tumor cells as within or extravasating from the vasculature. 

2-Dimentional images showing MC38 tumor cells labeled in red (A) that are completely 

within the liver vasculature labeled with 488- tagged tomato lectin (green) or (B) that are 

extravasating outside the vasculature. Scale bar represents 25 microns. 
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(Life Technologies) labeled MC38 tumor cells. At 24 and 48 hours post injection, mice 

were anesthetized using isoflurane and placed on mechanical ventilation at a rate of 60 

breaths/ minute through surgical tracheostomy. 100 μl of 0.5 mg/ml 488-tomato lectin 

vascular label (Vector Laboratories, DL-1174) was injected into the spleen and allowed 

to circulate throughout the body for 6 minutes. Next, the abdominal aorta was cut to 

provide outflow and livers were perfused using gravity pressure through the heart and 

spleen. After the effluent had cleared, the liver was resected en-bloc, placed in a glass 

bottom dish with #1.5 glass (In Vitro Scientific) and immediately imaged.  

 All the images were acquired using a LSM780 confocal microscope (Carl Zeiss 

Inc.) using a Fluar 40X oil objective with NA =1.30 at room temperature. 488nm and 

561nm laser lines were used to simultaneously excite fluorescence from the vasculature 

stain and from the cell tracker loaded tumor cells. The band-pass emission filters for the 

two channels were set as follows: 499 – 552 nm for the green fluorescence, and 602 – 

747 nm for the red fluorescence. The pixel size was set to 0.692 µm and the dwell time 

was 12.6 µs. Images were acquired every 0.700 µm for every z-stack. The laser power of 

the laser lines was independently adjusted for each stack, between 0.1% and 3%, to avoid 

saturated pixels and to maintain a good signal to noise ratio through all the planes. The 

bit depth of the images was set to 12 bit. The image analysis was performed using Fiji 

[167]. The tridimensional structure of the vasculature was reconstructed from each z-

stack by using the tubeness function [168]. The resulting tridimensional vasculature was 

overlaid to the red channel to identify a cell as extravasating or not. Percentage of cells 

extravasating at each time point was determined from over 30 individual tumor cells per 

mouse (n=3 per group). 
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Establishment of Stable Mmp13 Knockdown Cell Lines 

Pooled lentiviral particles targeting three different regions of murine Mmp13 (Open 

Biosystems: V2LMM_28573, V2LMM_ 34601, V2LMM_37490) and control particles 

were used to transfect MC38 cells. Control non-target and specific human MMP13 

shRNA lentiviral particles targeting three different regions of human MMP13 (Santa 

Cruz Biotechnologies, sc-41559) were used to transfect HCT116 cells. Post-transfection, 

shRNA-expressing cells were selected with puromycin. Knockdown was confirmed in 

resulting clones with qRT-PCR and western blot analysis. 

Transwell Migration and Invasion Assays 

Cell migration and invasion were assessed by a modified Boyden assay using 24 well 

multiwell inserts (BD) with 8 µm pore PET membrane. MMP13 knockdown and control 

MC38 or HCT116 cells (1x10
5 

cells/chamber) were seeded in DMEM plus 1% FBS 

directly on the insert membrane (Migration) or resuspended in 100 µl of 1 mg/ml of 

basement membrane matrix (BD) (Invasion) and seeded on the membrane. DMEM with 

10% FBS was added to the lower chamber and cells were allowed to migrate through the 

filter for 16 h at 37°C in 5% CO2 for MC38 cells and 48 h for HCT116 cell lines. MC38 

cells were allowed to invade for 24 h and HCT116 cells for 72 hours. Cells on the lower 

surface of the membrane were fixed in 100% methanol, stained with Dapi, and imaged. 

Experiments were carried out in triplicate with three replicates per experiment and the 

number of cells migrated/invaded per 10X field was determined from five random fields 

per well.  
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Bone Marrow Transplants 

WT C57Bl6/J male and Mmp13-/- male mice at 8 weeks of age, were the recipients of 

either WT or Mmp13-/- bone marrow. Using a cesium irradiator, the recipient mice were 

placed in a plastic pie shaped container and rotated at a very slow speed to be exposed to 

a single lethal dosage of 900 rads from the cesium source. There is no external damage to 

the mice during this procedure. Mice were injected with donor bone marrow after 4 

hours. WT C57Bl6/J female and Mmp13-/- female mice, at 6-8 weeks of age, were used 

as donors for the bone marrow transplant experiments. To harvest the bone marrow, mice 

were euthanized using CO2 and their hind legs amputated, and as much muscle and tissue 

removed as possible from the femur and tibia. The bones were then clipped as close to 

the tips as possible to retain bone marrow. Using a 5 ml syringe filled with RPMI, 2% 

FBS and 10U/ml heparin, the bone marrow was flushed into the petri dish and drawn up 

and down to break up the marrow. Cells collected from all mice were pooled in a conical 

tube and spun at 1200 rpm for 10 min at 4
o
C. The supernatant was aspirated and 

resuspended in 20 mL filtered RPMI and again spun at 1200 rpm for 10min at 4
o
C. 

Washed cells were resuspended in 1 ml of RPMI and counted, then diluted to 20 million 

cells/ml. Recipient mice were anesthetized, 4 hours post irradiation, using an isovet and 

then injected with 100 μl of donor bone marrow cells (2 million cells) via the tail vein. 

Mice were routinely monitored and maintained on antibiotic water for 3 weeks before 

putting them on specified diet for 3 months prior to splenic injection with MC38 tumor 

cells as previously described. 
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Statistical Considerations 

Statistical analysis was performed using GraphPad Prism software. Data was analyzed by 

using one-way ANOVA or Kruskal-Wallis test followed by Newman-Keuls Multiple 

Comparison Test or Dunns test between all sample sets. P values are represented by stars 

where: * P≤.05, ** P≤ .01, and *** P≤ .001. 
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CHAPTER III 

 

HEPATOCELLULAR PROLIFERATION CORRELATES WITH INFLAMMATORY 

CELL AND CYTOKINE CHANGES IN A MURINE MODEL OF NONALCOHOLIC 

FATTY LIVER DISEASE 

 

The contents of this chapter have been published:   

Mendonsa AM, VanSaun MN, Gorden DL (2013): PLoS ONE 8(9): e73054. 

doi:10.1371/journal.pone.0073054 [169] 

 

Introduction 

 Nonalcoholic fatty liver disease (NAFLD) is commonly associated with obesity, 

the metabolic syndrome and type II diabetes mellitus and thus its significance parallels 

that of the epidemic rise of these diseases in this country and much of the world [170]. 

NAFLD can present as a spectrum of pathology ranging from benign steatosis, defined by 

triglycerides and other glycerophospholipids within hepatocytes of the liver and progress, 

to non-alcoholic steatohepatitis (NASH) characterized by the development of 

concomitant inflammation in the liver. Steatohepatitis is a unique liver microenvironment 

typified by accumulation of triglycerides, characteristic pathologic findings such as 

Mallory bodies as well as the infiltration of inflammatory cells as the disease progresses 

to steatohepatitis [78, 79]. Over time, this can progress to end-stage liver disease with 

fibrosis and cirrhosis. Some estimates suggest that NAFLD may be present in 17-33% of 

the U.S. population and that 33% of these patients have a significant component of 

NASH [75]. Currently 4-10% of liver transplants in the U.S. are performed for end stage 

liver disease due to NASH [76]. Equally ominous, is the increasing recognition that 
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NASH and progressive liver fibrosis in this setting are risk factors for primary 

hepatocellular cancer. 

Obesity is a recognized independent risk factor for the development of a number 

of epithelial malignancies including breast, colon and hepatocellular carcinoma 

(HCC)[100].  As many as 10% of patients with end stage liver disease due to NASH have 

concomitant hepatocellular carcinomas [100, 171].  In addition, there are increasing 

reports of HCC developing in the background of NASH, without accompanying cirrhosis 

[82]. Preclinical studies have shown that hepatic steatosis increases both development of 

primary hepatocellular cancer growth as well as the seeding of metastatic tumors [43, 53, 

100]. In accordance with these reports, previous studies from our lab have shown that 

there is an increase in the number of metastatic tumor foci in the liver in the setting of 

steatosis using a mouse model of diet induced steatosis. Mice fed a high fat diet for over 

9 months also develop spontaneous premalignant adenomatous tumors [53] .The 

importance of the steatotic change in the liver microenvironment for the establishment 

and growth of primary and metastatic tumors is not clearly defined. Obesity-associated 

alterations in cytokine levels leading to increased levels of reactive oxygen species may 

evoke proliferative response from the hepatocytes [172]. There is mounting evidence that 

alterations in inflammatory mediators and cytokines as well as other factors such as 

insulin resistance, lipotoxicity and other metabolic regulators such as leptin, adiponectin 

and TNF-α have been implicated in the progression of NAFLD and liver fibrosis, and 

may also be important in tumorigenesis [102]. 

The liver is comprised of several resident cell types, which can contribute to 

recruitment of circulating inflammatory cells [173].  Hepatocytes comprise 60% to 80% 
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of all liver cells and conduct the metabolic, biosynthetic, detoxification and biliary 

secretory functions of the liver. During development of steatosis, hepatocytes accumulate 

lipids and stain positive for triacylglycerides (TG). Accumulation of TGs in hepatocytes 

leads to generation of lipid metabolites such as lysophosphatidylcholine (LPC) and is 

associated with endoplasmic reticulum (ER) stress, c-Jun NH(2)-terminal kinase (JNK) 

activation that leads to lipoapoptosis of hepatocytes [174, 175]. Lipoapoptosis in turn 

leads to the recruitment of inflammatory cells contributing to the progression to NASH. 

Subsequently, NASH elicits pathological elements of hepatocellular injury, evident as 

cellular ballooning, appearance of Mallory bodies and apoptosis which exacerbates 

NAFLD. 

As the epidemic of NAFLD increases, improved understanding of the changes in 

inflammatory cell populations and concomitant release/activation of cytokines in this 

unique liver microenvironment is necessary in order to develop strategies that could 

modulate these for therapeutic benefit. Importantly, studies of murine models that 

recapitulate human disease are crucial for translational studies to succeed. This study 

demonstrates significantly increased hepatocyte proliferation, alterations in serum and 

tissue cytokine levels, as well as local recruitment of inflammatory cell populations in 

livers in the setting of high fat diet induced steatosis.  

Results 

Hepatocellular proliferation in steatotic livers 

 To study the progression of NAFLD, we have used a previously validated mouse 

model of diet induced steatosis [53]. In this study, prolonged 42% high fat diet led to 

fibrosis, inflammation and development of dysplastic lesions in the liver. We therefore 
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wanted to determine whether high fat diet induced hepatic steatosis led to changes in 

proliferation of cell populations within the steatotic liver. To do so, human and murine 

liver tissues with and without steatosis were triple stained for the nuclear markers Ki67, 

HNF4 and DAPI. HNF4 has previously been demonstrated to specifically stain 

hepatpatocytes in the liver [176]. The overall number of proliferating Ki67 positive cells 

as a percentage of total number of DAPI positive cells as well as the percentage of co-

positive Ki67/HNFproliferating hepatocytes vs total HNF4 positive hepatocytes were 

counted and quantified per field. We found a significant increase in the percentage of 

total Ki67 positive cells as well as the percentage of Ki67 positive hepatocytes in both 

human and murine steatotic liver samples vs normal liver samples (Figure 15). These 

results indicate that as NAFLD correlates with an increase in the number of proliferating 

hepatocytes in the liver.  

Inflammatory cell population changes in the murine steatotic liver 

 As NAFLD progresses to NASH, it is characterized by an influx of circulating 

inflammatory cells and an alteration in the subpopulations of local inflammatory cells. 

Studies have shown a significant increase in CD45 positive hematopoietic inflammatory 

cells in mice with diet-induced steatosis [177]. To profile early changes in inflammatory 

infiltrates in the steatotic liver, samples were characterized for the effect of high fat diet- 

induced steatosis on various inflammatory cell populations by flow cytometry analysis. 

CD45 positive inflammatory cells were isolated from dissociated livers using magnetic 

beads and a positive selection. Absolute number of CD45 positive cells per gram of liver 

tissue were counted and demonstrated a significant increase in the steatotic livers versus 

normal livers (8.027x10
6
±0.38x10

6
 and 4.84x10

6
±0.32x10

6
 respectively, p<0.0029). 
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Figure 15: Steatosis results in increased cellular proliferation in the liver. The percentage 

of total Ki67 positive cells and the percent of Ki67/HNF4double positive hepatocytes 

are increased in steatotic livers compared to normal livers in (A, B) murine and (C, D) 

human samples. Representative images of Ki67 (green), HNF4(red) and DAPI (blue) 

immunofluoresence staining in livers of normal and steatotic (B) murine and (D) human 

liver sections showing increased number of Ki67 positive cells in steatotic livers. Images 

are taken at 40X and scale bars represent 50 microns. 
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Figure 16A is a representative scatter plot showing an overall increase in CD45 positive 

cells in the steatotic compared to normal livers. Changes in inflammatory cell populations 

were further represented as a percentage of the isolated CD45 positive cells. High fat 

diet-induced steatosis resulted in an overall increase in the CD45/CD11b positive 

myeloid cell population and the CD45/CD3 positive lymphocytic population (Figure 

16B). Next, to look at whether there were changes in the individual myeloid cell 

subpopulations, cells were co-stained with F4/80, Gr1 and Ly6C to look at differences in 

macrophage, activated monocytes, infiltrating neutrophil and MDSC cell populations 

after gating for CD11b as shown in Figure 17. No significant difference was observed in 

the percentage of the subset of F4/80 positive macrophages, however there was a 

significant decrease in the percentage of GR1
hi

 expressing MDSC’s and Ly6C
+
Gr1

+
 

activated monocytes while there was a decrease in the percentage of Ly6C
-
Gr1

+
 

infiltrating neutrophils in the steatotic livers compared to the normal livers. 

The lymphocytic cell population was identified from CD45 positive isolated cells 

by staining for CD3 and additionally T cell subpopulations were identified with markers 

for CD4, CD8, CD25 and CD62L (Figure 18). From the overall increase in CD3
+
 cells 

in steatotic livers, we did not detect any significant differences in percentage of T cell 

subpopulations except for a slight increase in the total number of CD25 positive 

regulatory T cells in steatotic livers compared to normal livers (P=0.05).  

Additionally, CD45 positive cells were stained with CD19, CD11c and NKp46 to 

look at changes in B cell, dendritic cell and natural killer cell subpopulations respectively 

between the livers of normal and steatotic mice (Figure 19). There was a significant 

decrease in B cell subpopulation, an increase in dendritic cell population and no  
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Figure 16: Steatosis results in changes in the inflammatory cell populations in the murine 

liver. CD45 positive cells were isolated from normal and steatotic digested liver samples 

by immuno-magnetic beads and then stained for the immune markers CD3 and CD11b 

before being subjected to flow cytometric analysis.  (A) Diagrams are representative 

scatter plot of flow cytometric analysis for overall CD45 positive inflammatory cells in 

the livers. (B) CD45 positive cells were then gated for CD3 positive T lymphocytes or 

CD11b positive myeloid cells. CD3 positive and CD11b positive subpopulations were 

both increased in the steatotic livers versus the control livers. FSC, forward scatter; SSC, 

side scatter. 
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Figure 17: Changes in the myeloid cell sub-populations in normal vs steatotic murine 

livers. Isolated CD45 positive cells from normal and steatotic livers were stained for 

myeloid markers, subjected to flow cytometry and gated as a fraction of CD11b positive 

myeloid cells. (A) CD11b positive cells were analyzed for changes in the total percentage 

of F4/80 positive macrophages, (B) Gr1
hi

 expressing cells, (C) Ly6C positive Gr1 

positive activated monocytes and (D) Ly6C negative Gr1 positive infiltrating neutrophils 

between normal and steatotic murine livers. Results show a significant decrease in the 

GR1
hi

 and Ly6C
+
Gr1

+
 subpopulations and a significant increase in the Ly6C

-
Gr1

+
 

subpopulation of steatotic versus normal livers, while there was no difference in the 

F4/80 positive subpopulation. 
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Figure 18: Changes in the lymphoid cell sub-populations in normal vs steatotic murine 

livers. Isolated CD45 positive cells from normal and steatotic livers were stained for 

lymphoid lineage markers, subjected to flow cytometry and gated as a fraction of CD3 

positive lymphocytic cells.  CD3 positive cells were analyzed for changes in the 

percentage of (A) CD4 positive helper T cells, (B) CD8 positive cytotoxic T cells, (C) 

CD25 positive regulatory T cells, and (D) CD62L negative activated T cells between 

normal and steatotic murine livers. Results showed a significant increase in the overall 

CD25 positive subpopulation of CD3 positive cells in the steatotic livers when 

compared to normal livers. The percentage of CD4 positive helper T cells, CD8 positive 

cytotoxic T cells and CD3
+
CD62L

-
 activated T cells were not significantly different 

between steatotic and normal livers. 
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Figure 19: Changes in cell sub-populations of B cells, dendritic cells and natural killer 

cells in steatotic livers. Isolated CD45 positive cells from normal and steatotic livers were 

stained for markers for (A) B cells (CD19
+
), (B) dendritic cells (CD11c

+
, CD19

-
) and (C) 

natural killers cells (NKp46
+
) before being subjected to flow cytometry and gated as a 

fraction of CD45
+
 cells to determine the percentage of different cell types present.  

Results demonstrate a significant decrease in B cells and a significant increase in 

dendritic cells in steatotic livers compared to normal livers. The percentage of natural 

killer cells were not significantly different between steatotic and normal livers. 
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difference in the natural killer cell subpopulation in the steatotic livers. To ensure 

inflammatory changes were specific to the steatotic liver and not generally associated 

with effects of obesity in other organs, we additionally profiled inflammatory 

subpopulations from the spleen. The resident inflammatory cell subpopulations in the 

spleen are shown in Table 1. 

Inflammatory cell population changes in the setting of human NAFLD 

 In order to test whether changes seen in inflammatory cell populations using the  

mouse model of high fat diet induced steatosis were corroborated in human samples with 

NAFLD, frozen liver sections were obtained from patients with and without steatosis and 

stained for inflammatory cell markers CD45, CD68, CD3, CD8 and CD56  as shown in 

Figure 20. We detected a significant increase in overall CD45 positive cells (P=0.04) as 

well as the total T lymphocytes as determined by the positive staining for CD3e marker 

(P=0.05) in steatotic livers. Staining for the CD8 subpopulation of T cells showed a slight 

increase in the steatotic livers, although this increase was not statistically significant. No 

significant differences were observed in the percent area stained for macrophages (CD68) 

or NK cells (CD56) by immunohistochemical analysis of normal and steatotic human 

liver samples, consistent with our findings in the steatotic murine livers.  

Changes in cytokine profiles in a murine model of NAFLD 

 Changes in inflammatory cell populations are associated with activation and 

secretion of various cytokines such as TNF, IL-6, MCP-1, IL-10, have been shown to 

be elevated in patient serum samples in the setting of NASH [43, 178–180]. These 

specific cytokines have additionally been proposed to play critical role in NAFLD  
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Table 1: Inflammatory cell profiles in the spleen of normal vs steatotic mice 

 

Cell Type  Normal 

% 

Steatotic 

% 

P Value 

CD3
+
 27.58 36.275 **0.0036 

CD3
+
 CD4

+
 51.02 50.975 0.9882 

CD3
+
 CD8

+
 37.16 39.05 0.4916 

CD3
+
 CD25

+
 10.592 14.45 *0.0234 

CD3
+
 CD62L

-
 8.036 10.5975 0.2968 

CD11b
+
 9.72 8.825 0.6062 

CD11b
+
 F480

+
 16.52 12.74 0.1948 

CD11b
+
 Gr1hi 23.84 14.9025   *0.0471   

CD11b
+
 Ly6c

+
 Gr1

+
 26.225 15.925 *0.0496 

CD11b
+
 Ly6c

-
 Gr1

+
 22.18 24.275 0.5718 

CD19
+
 66.2 64.625 0.6423 

CD11c
+
 CD19

-
 1.54 1.8025 0.0868 

NKp46
+
 2.498 2.7525 0.7138 
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Figure 20: Quantification of inflammatory cell populations in human liver samples. 

Immunohistochemical staining was used to detect and quantify changes in inflammatory 

cell populations between normal and steatotic human liver samples. Positive 

immunoreactive staining (dark brown) was calculated as a percentage of total area for (A) 

CD45 positive inflammatory cells, (B) CD68 positive macrophages (C) CD3 positive T 

lymphocytes (D) CD8 positive cytotoxic T cells and (E) CD56 positive NK cells in 

frozen sections of normal and steatotic human livers. Results demonstrate a significant 

increase in the number of CD45 and CD3 positive cells in the steatotic livers when 

compared to normal liver samples. CD68 macrophages, CD8 cytotoxic T cells, and CD56 

NK cells were not significantly altered between sample sets. Images were acquired with a 

20X objective, scalebar represents 100 microns. 
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pathogenesis [181–184]. To examine changes in additional cytokines we utilized a 

commercially available cytokine array to quantify the relative changes in various 

cytokine levels circulating in the plasma, in the liver tissue proper, and cytokines secreted 

from isolated CD11b positive myeloid cells of normal versus high fat diet induced 

steatotic mice. The cytokine array also contained some additional relevant adhesion 

molecules associated with the array. Array proteins that were significantly different are 

reported in Table 1 for each respective group. When comparing arrays from steatotic vs 

normal mice, several cytokines and relevant adhesion molecules were increased in both 

plasma and liver lysates, including Axl, CXCL16, Eotaxin, IL-13, IL-2, Leptin, CXCL4 

(Platelet factor 4), P-selectin and VCAM-1. Further, CTACK (Cutaneous T cell-

attracting chemokine), IL-6, IL-3 Rb and SCF (Stem cell factor) were elevated in the 

liver lysates and not plasma of steatotic mice. CTACK and IL-9 were significantly 

reduced in the plasma of steatotic mice when compared with plasma from normal mice.  

Kupffer cells have been shown to undergo activation and play a role in 

progression of various liver diseases by secretion of cytokines that lead to activation of 

stellate cells and chemoattraction of inflammatory cell populations to the liver [173, 185]. 

Therefore, CD11b cells were isolated from dissociated normal and steatotic livers and 

used to generate conditioned media. Kupffer cells represent the majority (85% to 95%) of 

the CD11b positive population in the liver. Cytokine arrays were used to analyze 

differences in secreted cytokines from conditioned media of CD11b positive cells 

isolated from normal and steatotic livers. MIP-1r, MIP-2, RANTES, KC, sTNF RII and 

CXCL16 were elevated in the conditioned media from CD11b positive cells isolated from 

steatotic versus normal livers (Table 2).  
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Table 2. Fold change in cytokine levels of high fat diet fed mice. 

 

Cytokine Plasma Liver Lysate CD11b
+
 Cell CM 

Axl 2.13280389 1.831922538 2.443505541 

CTACK 0.21229807 2.179987169 0.75720946 

CXCL16 1.93180689 1.58065464 4.028336666 

Eotaxin 1.65832784 2.007739833 0.130455649 

IL-13 1.36055055 1.768719618 0.473546075 

IL-2 2.34419611 2.618608513 0.859891851 

IL-3 1.1356281 1.519534855 0.651248631 

IL-3 Rb 1.09612642 2.513275758 0.858366742 

IL-6 1.06119747 1.40169613 0.864977387 

IL-9 0.46101177 1.508281212 0.874990301 

KC 1.72431495 1.406850455 4.207922861 

Leptin 1.86116246 1.840166242 0.840621661 

L-selectin 1.36488563 1.520783331 0.722070716 

MCP-1 1.01054898 1.340761806 0.694198945 

MCP-5 1.02686785 1.319179552 0.657637641 

MIP-1 1.68656519 1.178307719 11.43207136 

MIP-2 1.47759187 1.656782016 4.711865379 

PF-4 1.73472362 3.080963553 0.983425609 

P-selectin 1.73297843 2.002406638 0.983425609 

RANTES 1.02225724 1.36710967 6.589157964 

SCF 0.9931903 2.093534246 2.293077231 

sTNF R1 0.72735291 0.994273435 1.778782317 

sTNF RII 2.5148749 1.022674689 4.160571141 

TNF- 1.20435513 1.290203739 0.793791961 

VCAM-1 1.91774475 1.574854392 0.886619198 

 
Table 2: Plasma, liver tissue lysates and conditioned media from CD11b

+
 magnetically isolated 

cells Cytokine arrays were used to detect changes in cytokine levels in the plasma, perfused liver 

tissue lysate (Liver Lysate), and from conditioned media of isolated CD45
+
CD11b

+
 

subpopulations (CD11b
+
 Cell CM) between normal and steatotic samples. Cytokine values are 

presented as fold change with values greater than 1 representing increased levels and values less 

than 1 representing decreased levels in steatotic samples. (n=3). Axl (Tyrosine protein kinase 7), 

CTACK (Cutaneous T-cell attracting chemokine, CCL27), CXCL16 (CXC chemokine ligand 

16), IL-2 (Interleukin-2), IL-3 (Interleukin-3), IL-6 (Interleukin-6), IL-9 (Interleukin-9), IL-13 

(Interleukin-13), IL-3 Rb (Interleukin-3 receptor beta, CD131),  KC (CXC chemokine ligand 1), 

MCP-1 (Monocyte chemotactic protein-1, CCL2), MCP-5 (Monocyte chemotactic protein-5, 

CCL12), MIP-1 (Macrophage inflammatory protein-1 gamma), MIP-2 (macrophage 

inflammatory protein -2, CXCL2), PF-4 (Platelet factor 4 , CXCL4), RANTES (Regulated on 

activation normal T-cell expressed and secreted, CCL5), SCF (Stem cell factor), TNF (Tumor 

necrosis factor), VCAM-1 (Vascular cell adhesion molecule 1 , CD106). 
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Cytokines increase hepatocyte proliferation in vitro 

 To determine whether alterations in cytokines could reflect changes in the 

observed increase in hepatocellular proliferation in the steatotic livers, we tested the 

effect of select cytokines (leptin, CXCL1, CXCL2 and CXCL16) that were increased in 

steatotic samples on hepatocyte proliferation. The effect of various cytokines on the 

growth of HepG2 human hepatocellular carcinoma cells and mouse SV40 transformed 

hepatocyte (HEPT) cells was determined using the MTT assay. Leptin, CXCL1, CXCL2 

and CXCL16 significantly increased proliferation off both cell lines after 12 hours of 

treatment with different concentrations of each cytokine (Figure 21). Thus the increases 

in cytokine levels observed in the setting of steatosis could explain the increased 

hepatocellular proliferation determined by Ki67 staining. 

 

Discussion 

 With the rising incidence of obesity, NAFLD is an increasing cause of chronic 

liver disease in the United States and the world, encompassing a spectrum of pathology 

marked by hepatic steatosis in the absence of significant alcohol consumption. Although 

simple steatosis follows a generally benign course, the more aggressive form, non-

alcoholic steatohepatitis, can progress to cirrhosis and result in complications including 

hepatocellular carcinoma. A significant number of cases of hepatocellular carcinoma are 

occurring in the setting of NASH without underlying cirrhosis [40, 186]. A number of 

cellular and molecular mediators have been shown to be involved in the progression of 

NAFLD and some of these may be linked to tumor initiation and progression in the 

hepatic microenvironment of NAFLD.  Accumulation of lipids in the liver cells can lead  
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Figure 21: Cytokines effect hepatocyte proliferation in vitro. The effect of different 

concentrations of Leptin, CXCL1, CXCL2 and CXCL16 (1 ng/ml, 25 ng/ml and 100 

ng/ml), added to serum free media, on proliferation of (A) HepG2 and (B) HEPT cells 

determined by MTT assay. 10% FBS was used as a positive control. ** represents 

P<0.001 and *** P<0.0001 when compared to Serum Free conditions.  
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to hepatocellular injury [79, 174, 175], one manifestation of which is apoptosis, which in 

turn can trigger a regenerative response. We have previously shown that mice fed a high 

fat diet for a prolonged period of time develop liver tumors [53]. To determine whether 

steatosis, progressive inflammation, and hepatocellular injury could impact hepatocyte 

proliferation, the total number of Ki67 positive cells as well as Ki67 positive hepatocytes 

were quantified and showed a statistically significant increase in hepatocellular 

proliferation in the steatotic livers as compared to normal livers. Repetitive cycles of 

apoptosis and regeneration/proliferation of these principal cells of the liver could lead to 

aberrant repair in some individuals culminating in tumor initiation. 

Our current studies using a mouse model of diet-induced steatosis have shown 

that there are significant changes in specific inflammatory cell populations in the liver in 

the setting of steatosis. We observed significant increases in myeloid cell, T and B 

lymphocytes and dendritic cells populations. Accumulation of TGs in hepatocytes leads 

to the generation of lipid metabolites such as lysophosphatidylcholine (LPC), which has 

been associated with oxidative stress and hepatocellular death [172, 174, 178]. Cell death 

can lead to activation of inflammatory pathways such as the JNK and NF-B pathways 

through release of damage-associated molecular patterns (DAMPs), which can then lead 

to the recruitment of inflammatory cells and contribute to the progression to NASH [99, 

170, 173–175]. Kupffer cells are resident macrophages and act as the first responders to 

hepatic injury, they likely detect the expression of DAMPs on hepatocytes which have 

been injured by accumulation of triglycerides in the setting of steatosis [187, 188]. The 

subsequent production of TNF and other chemoattractant cytokines by Kupffer cells 
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thus propagates the initial insult, leading to inflammation through the recruitment of 

inflammatory monocytes [189]. 

Recent studies by other groups have additionally shown that changes in Kupffer 

cell and dendritic cell populations can play an important role in the progression of 

NAFLD. Work by Henning et al. showed an increase in CD11c
+
 dendritic cell 

populations and demonstrated a regulatory role for dendritic cells (DCs) in NASH by 

limiting sterile inflammation via their role in clearance of apoptotic cells and necrotic 

debris. They found that DCs increase regulatory T cell activation and production of the 

anti-inflammatory cytokine IL-10. Further, they showed that ablation of dendritic cells 

led to increased Toll-like receptor expression and cytokine production in innate immune 

effector cells in NASH, including Kupffer cells, neutrophils, and inflammatory 

monocytes [177]. In concordance with their data, we detected a significant increase in the 

percentage of CD11c
+
 dendritic cells in the high fat diet induced steatotic livers 

compared to normal livers. Though we were not able to detect any changes in the 

percentage of CD11b
+
F480

+
 cells (Kupffer cells) as a percentage of the CD11b

+
 myeloid 

cells between normal and steatotic livers, we did see a significant increase in the 

percentage of CD11b
+
 cells in the steatotic livers compared to normal livers. 

Additionally, we were able to detect changes in cytokine production from conditioned 

medium (CM) obtained in vitro from isolated CD11b
+
 myeloid cells. Since the Kupffer 

cells make up the majority of this population (85%-95%), cytokine alterations reflect 

changes in the resident Kupffer cells of the liver and their activation status. 

Multiple chemokines and cytokines have been implicated in the development of 

steatosis and the progression to NASH; including IL-6, TNF, MCP-1 and IL-10 [182, 
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183]. The development of NASH in human patients and in murine models of NASH have 

each exhibited elevated serum levels of TNF- and increased expression of TNF 

transcripts in liver as well as adipose tissue [43, 190, 191]. Our results comparing plasma 

and liver tissue samples from normal and steatotic livers, showed a slight increase in IL-6 

and TNFwith steatosis (Table 2). Park et al recently reported that proinflammatory 

cytokines IL-6 and TNF are important for the progression from hepatic steatosis to 

steatohepatitis in obese mice and that absence of either IL-6 or TNFR1 reduced lipid 

accumulation in the liver and also reduced influx of macrophages and neutrophils in 

livers of mice fed a high fat diet [43]. However, other studies have shown that IL-6 

deficiency or blockade reduced liver inflammation without affecting the development of 

steatosis suggesting a role for IL-6 only in promoting liver inflammation [192, 193]. 

MIP-1, MIP-2, RANTES, CXCL1, sTNFRII and CXCL16 represented the most 

significantly elevated cytokines specifically from the CD11b conditioned media. MIP-1 

has been shown to attract dendritic cells and immature myeloid cells that possess the 

CCR1 chemokine receptor [194] and its expression in tumor cells aids colon cancer 

metastasis to the liver and accumulation of immature myeloid cells [195]. Increased 

expression of MIP-2 has been shown to contribute to neutrophil and lymphocyte 

recruitment [196] which could help propagate the inflammatory response observed in 

NAFLD. CXCL1 is expressed by macrophages, neutrophils and epithelial cells, and has 

neutrophil chemoattractant activity. It is involved in inflammation and gene expression 

levels are elevated in patients with NASH [182, 197].  Recent  studies have shown that 

elevated RANTES and sTNFRII levels correlate with the progression of NAFLD [198, 

199] though further functional studies will need to be carried out for these and other 

http://en.wikipedia.org/wiki/Macrophages
http://en.wikipedia.org/wiki/Neutrophils
http://en.wikipedia.org/wiki/Epithelial_cells


 77 

altered cytokines in the setting of NAFLD. A recent study identified CXCL16 in 

preoperative serum as a marker for poor prognosis and high level of recurrence of liver 

metastasis in patients with HCC [200–202]. 

Specifically decreased in the conditioned media of CD11b cells from steatotic 

livers were IL-13, MCP-5 and MCP-1.  IL-13 is a Th2 cytokine that plays a central role 

in various inflammatory diseases [203]. IL-13 induces tissue fibrosis by stimulating and 

activating TGF-β1 and was shown to play a role in progression from NASH to fibrosis in 

a rat model fed a choline deficient diet [204]. However, no studies have evaluated levels 

at early stages of NAFLD. MCP-5 specifically attracts eosinophils, monocytes and 

lymphocytes and is therefore found predominately in lymph nodes and thymus under 

normal conditions, yet its expression can be  induced in macrophages [205]. It has been 

shown to play a role in exacerbation of pulmonary fibrosis by recruitment of bone 

marrow derived fibrocytes to the lung [206, 207], but its role in progression of NAFLD is 

yet to be assessed.  Several studies have reported an important pathological role of MCP-

1 in the progression of NAFLD. However we detected no significant differences in 

cytokine levels from plasma or tissue samples. In NASH, the role of MCP-1 is 

controversial; MCP-1 deficiency in mice fed a methionine choline deficient diet didn’t 

affect the development of steatohepatitis, but actually decreased fibrosis [180], and didn’t 

impact liver disease progression [208]. Recently, pharmacological inhibition of MCP-1 or 

the lack of CCR2 expression (MCP-1 receptor) in a murine model of NASH was shown 

to decrease liver inflammation and steatosis without affecting hepatic fibrogenesis [209, 

210] The current study provides evidence that various cytokines are differentially 

expressed during the early stages of NAFLD in a mouse model of diet-induced steatosis 

http://en.wikipedia.org/wiki/Eosinophil
http://en.wikipedia.org/wiki/Lymph_node
http://en.wikipedia.org/wiki/Thymus
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and further studies are required to determine the precise role of each of cytokines at 

different stages of NAFLD. 

While effects of microenvironmental as well as systemic alterations of chemokine 

levels have been demonstrated for the recruitment of inflammatory cells, less is known 

about the effects of these chemokines on hepatocytes. We were able to show that high fat 

diet-induced steatosis results in a significant increase in hepatocyte proliferation 

compared to normal livers. Interestingly, Sydor et al. were able to also demonstrate a 

significant increase in proliferation in steatotic livers after partial hepatectomy, which 

correlated with increased levels of leptin [211]. Leptin has been shown to directly 

increase proliferation of chick hepatocytes [212], although conversely administration of 

leptin was unable to restore replicative competence after partial hepatectomy [213], 

leaving conflicting evidence for the ability of leptin to promote hepatocellular 

proliferation. CXCL16 and Axl have both been shown to increase epithelial proliferation, 

yet we detected an increase in growth when hepatocytes were exposed to CXCL16. 

MCPs can induce proliferation, yet hepatocytes are known to not express CCR2 and 

therefore hepatocytes should not directly respond to these chemokines. Hepatocytes do 

constitutively express CXCR2 and can respond to MIP-2 [214, 215] and possibly 

CXCL1. We found both CXCL1 and CXCL2 to be upregulated in conditioned media 

from CD11b isolated myeloid cells in steatotic livers and both of these cytokines were 

able to increase the growth of murine conditionally immortalized hepatocyte cells (HepT) 

and human HepG2 cells hepatocytes in vitro. Further, ELR-CXC chemokines have been 

shown to induce hepatocyte proliferation in culture [215]. We were further able to show 

that leptin was also capable of inducing growth of hepatocytes in vitro. Indirectly, 
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increased activating chemokines in the steatotic liver may also influence resident stromal 

cells to impact the growth of hepatocytes.  

In summary, this study demonstrates that there are significant changes in 

hepatocellular proliferation, influx of inflammatory cell populations and cytokine levels 

in the steatotic liver. The recognition of their roles in progression of NAFLD to end stage 

liver disease and a potential tumor-initiating role in the steatotic liver microenvironment 

may open the door for modulation of these cell populations and cytokines as part of novel 

therapies, especially for difficult-to-treat cancers such as HCC. Additional investigations 

are needed to understand the mechanisms by which these changes in inflammatory cell 

populations, cytokines, and the proliferation of hepatocytes have on the progression of 

NAFLD.  
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CHAPTER IV 

 

MMP13 PROMOTES TUMOR CELL EXTRAVASATION AND ESTABLISHMENT 

OF METASTASIS IN THE STEATOTIC LIVER MICROENVIRONMENT 

 

The contents of this chapter have been accepted for publication the journal Molecular 

Cancer, December 22, 2014  

 

 

 

Introduction 

The obesity epidemic has been closely linked with an increased incidence of non-

alcoholic fatty liver disease (NAFLD) [216]. NAFLD results from accumulation of fat in 

the liver which alters the local liver microenvironment leading to changes in lipid 

profiles, recruitment of inflammatory cells and changes in cytokine expression [169, 

217]. Changes in the tissue microenvironment can affect cell-cell interactions and 

influence the development of both primary and metastatic tumors. Epidemiological 

studies show that NAFLD has been linked to an increase in the risk for development of 

primary liver cancer [218, 219] but very little is known about the effect of steatosis on 

tumor metastasis to the liver. The liver is a frequent site of metastasis for several cancers 

such as colorectal cancer, breast and pancreatic cancer. In addition, obesity is an 

independent risk factor for the development of these tumor types among others [34]. 

Previous studies from our laboratory have shown that mice with high fat diet induced 

steatosis  have an increase in metastatic burden compared to mice with normal livers 

[53]. Metastasis represents the end-stage of cancer progression and is responsible for 
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most cancer related deaths [220]. Improved understanding of the metastatic tumor 

microenvironment is important in devising therapies to impact this stage of the disease. 

Matrix Metalloproteinases (MMPs) are a family of zinc dependent proteases that 

are capable of cleaving various components of the extracellular matrix. Apart from 

matrix molecules, they can also cleave adhesion proteins, activate growth factors such as 

TGF-β and VEGF as well as release and activate cytokines [114, 221]. MMPs are 

produced by tumor cells, stromal cells and infiltrating inflammatory cells and facilitate 

host-tumor interactions. Members of the MMP family have been associated with 

progression through multiple stages of cancer, from initiation to acquisition of metastatic 

properties [104, 105]. However, MMPs have also been shown to have anti-tumorigenic 

functions and are important for normal developmental and wound healing responses 

[222]. Early clinical trials, broadly targeting the MMP family as a whole, led to 

unintended clinical side effects.  Improved understanding of specific roles for individual 

MMPs and development of pharmaceutical agents that selectively target individual 

MMPs may be part of effective therapeutic strategies in the future [131].  

MMP13 is an interstitial collagenase that is capable of cleaving multiple 

collagens, preferentially collagen II, as well as other matrix substrates such as gelatin, 

fibronectin, and aggrecan relevant to tumor metastasis [154]. This protease  has been 

previously linked to the progression of fibrotic liver disease [162]. In addition, increased 

expression of MMP13 has been associated with poor prognosis in patients with colorectal 

cancer metastasis to the liver [161]. MMP13 was identified as a part of the breast cancer 

metastasis signature and was associated with decreased overall survival and metastasis in 

breast cancer and renal cell carcinoma [223–225]. Furthermore, stroma-derived MMP13 
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was found to be involved in the growth of liver, lung, brain and heart metastases of 

melanoma cells [155]. In this study we show that both stromal and tumor derived 

MMP13 play important roles in modulating the liver microenvironment and facilitating 

the establishment of liver metastasis.  

Results 

MMP13 expression is elevated in the steatotic liver 

Previous studies in our lab have found a significant increase in the metastatic 

tumor burden to the liver in the setting of steatosis as compared to normal mouse livers 

[53]. Additionally, our group has identified MMP9 as an important mediator of tumor 

metastasis to the liver [226] and other groups have shown several additional MMPs to be 

important in metastasis [227]. Therefore, we wanted to determine which MMPs were 

altered in the steatotic microenvironment and whether these MMPs contributed to the 

increased metastasis. We assessed the relative gene expression levels of a panel of 

MMPs, associated with tumor progression, in the liver tissue of mice with steatosis 

compared to normal mice. We found that Mmp12 and Mmp13 were significantly 

upregulated in the liver of mice with steatosis compared to normal livers (Figure 22A). 

MMP13 has previously been associated with fibrotic liver disease [162] and its 

expression in tumors has been associated with poor prognosis in patients with colorectal 

cancer metastasis to the liver [161].  MMP13 protein levels were evaluated in the mouse 

liver and were found to be increased in the steatotic livers compared to normal livers 

(Figure 22B). To determine whether changes in MMP13 levels were relevant to the 

human progression of NAFLD, we evaluated the MMP13 protein levels by western blot  
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Figure 22: MMP13 is elevated in the steatotic liver. (A) Relative gene expression of 

matrix metalloproteinases (MMPs) in liver tissue of mice with steatosis (black bars) 

compared to normal (white bars) mice. Transcript levels were normalized to GAPDH and 

expressed as fold change relative to normal controls. Values represent the mean (n = 3 

per group). Statistical analysis was carried out using 2-way ANOVA followed by 

Bonferroni post-test between normal and steatotic samples for each MMP tested (*, P < 

0.05). (B) Western Blot and densitometric quantification of MMP13 protein levels 

relative to actin levels in livers of wildtype C57bl/6 mice with and without steatosis. (C) 

Western Blot and densitometric quantification of MMP13 protein levels relative to actin 

levels in human liver samples through multiple stages of non-alcoholic fatty liver disease 

(NAFLD), (n=9 per group). Statistical analysis was carried out using a 2-tailed t-test with 

respect to normal livers. No significant differences were observed between the different 

stages of progression of NAFLD. (D) Representative immunohistochemical staining 

(IHC) of MMP13 in murine normal and steatotic livers. Inset represents IgG control. (E) 

IHC of human MMP13 at different stages of NAFLD.  MMP13 staining is detected at 

low levels in the normal liver hepatocytes and is increased in the stromal cells of livers 

with steatosis and steatohepatitis. Additionally, MMP13 is present in select hepatocytes 

in cirrhotic livers. Images were taken at 20X, Scalebar represents 100 microns. N, 

Normal; St, steatosis; StH, steatohepatitis; C, Cirrhosis. 
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from liver lysates of normal livers and compared them to livers with steatosis, 

steatohepatitis or NAFLD related cirrhosis.  Figure 22C shows that MMP13 protein 

expression is increased with the progression of NAFLD. Immunohistochemical analysis 

of MMP13 expression shows increased staining of MMP13 with steatosis in the murine 

liver (Figure 22D) and varied distribution of the protein in both stromal cells as well as 

hepatocytes which is increased with disease progression of NAFLD in human patient 

samples (Figure 22E). Thus, MMP13 is elevated both in human NAFLD progression as 

well as in our mouse model of diet-induced steatosis.  

Loss of host derived MMP13 leads to decreased tumor metastasis to the liver 

Elevation of MMP13 in the steatotic liver suggested that it could play an important role 

in priming the steatotic liver microenvironment for tumor establishment. To elucidate the 

role of host MMP13 on tumor metastasis to the liver, Mmp13 null (Mmp13-/-) mice were 

fed a high fat diet to induce steatosis. Mmp13-/- mice developed steatosis comparable to 

the wildtype counterparts (Figure 23). Subsequently, wildtype and Mmp13-/- mice with 

and without steatosis were inoculated with 5 × 10
5
 syngeneic MC38 colon cancer cells 

through the intrasplenic/portal route to generate experimental liver metastases. After 2 

weeks, mice were sacrificed and livers were harvested. The liver weight and percent liver 

weight to total body weight ratios were measured to determine metastatic burden (Figure 

24B,C), and livers were fixed, dissected and stained by H&E (Figure 24A) to record the 

incidence (Figure 24D) and area (Figure 24E) of metastasis. We found that the tumor 

burden and incidence of metastases increased in the steatotic compared with normal mice 

in both the wildtype and Mmp13-/- mice. However, the tumor burden, incidence and area 

of liver metastases was markedly reduced in the Mmp13-/- mice compared to the  
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Figure 23: Characterization of Mmp13 -/- mice. Wildtype and Mmp13 deficient mice 

were fed regular (Normal) or high fat diet (Steatosis) for 3 months to determine overall 

body weight and liver weight. (A) Graph illustrating total body weight over time with 

respect to diet and genetic status show that Mmp13-/- mice gain weight similar to 

wildtype mice (n=5). (B) Graph illustrating total liver weight after 3 months on diet, 

which trends the same as body weight (n=10). (C) Lipid accumulation visualized as red 

staining via Oil Red O lipid dye and graphic quantification (n=10). (D) Relative gene 

expression of matrix metalloproteinases (MMPs) in liver tissue of Mmp13-/- mice with or 

without steatosis compared to normal wildtype mice. Relative transcript levels were 

normalized to GAPDH and expressed as fold change relative to normal controls. Values 

represent the mean (n = 3). N, normal; St, steatosis; WT, wildtype; 13-/-, Mmp13-/-.  
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Figure 24: Loss of host derived MMP13 leads to decreased tumor metastasis to the liver. 

(A) Representative liver cross sections stained with Haematoxylin & Eosin of wildtype 

and Mmp13-/- mice with normal or steatotic livers show an increased tumor burden in 

wildtype mice compared to Mmp13-/- mice. Tumors are denoted by black dashed line. 

Quantification of metastatic tumor burden by (B) liver weight, (C) tumor burden 

measured as percent liver weight to total body weight, metastatic seeding by 

quantification of (D) tumor number and (E) tumor area per liver section in normal and 

steatotic livers. Statistical analysis was performed using GraphPad Prism software. Data 

was analyzed by using one-way ANOVA followed by Newman-Keuls Multiple 

Comparison Test. P values are represented by stars where: * ≤.05, ** ≤ .01, and *** ≤ 

.001. N, normal; St, steatosis; WT, wildtype; 13-/-, Mmp13-/-. 
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wildtype mice after tumor cell injection, thus supporting the role of MMP13 in metastatic 

tumor growth to the liver both in normal and steatotic mice. 

Additionally, liver metastases were stained for Ki67 (proliferation marker) and 

cleaved caspase-3 (apoptosis marker) to further examine the role of MMP13 in promoting 

the survival and outgrowth of metastatic tumors (Figure 25A, B). The percentage of 

tumor cells proliferating or undergoing apoptosis was similar between the wildtype and 

Mmp13-/- tumors of comparable size, suggesting no difference in the rate of tumor 

growth between the WT and Mmp13-/- mice. Additionally, there was no difference in 

tumor vascularity as determined by vWF staining (Figure 25C). To determine whether 

there were changes in tumor outgrowth, we plotted a histogram of tumor size distribution 

(Figure 26). Mmp13-/- mice had fewer tumors and the distribution curve shifted to the 

left compared to WT mice, however the tumors were still capable of becoming large; 

suggesting that loss of host MMP13 could affect some of the earlier steps in the 

metastatic cascade such as tumor cell survival and seeding to the liver or ability of tumor 

cells to adhere to the vasculature and extravasate into the liver tissue.  

Loss of host MMP13 affects the ability of tumor cells to extravasate from the vasculature 

 Since we observed a decrease in tumor burden with the loss of MMP13 in both 

normal and steatotic mice, we focused on the role of MMP13 on tumor metastasis to the 

liver irrespective of the diet. To determine whether the decrease in tumor burden in the 

Mmp13-/- mice compared to wildtype mice resulted from a difference in the ability of the 

tumor cells to survive in circulation and seed the liver, we injected normal wildtype or 

Mmp13-/- mice with 1×10
6 

MC38 tumor cells, labeled with cell tracker red, and 

sacrificed the mice 24 and 48 hours post injection. Livers were harvested, processed,  
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Figure 25: Effect of loss of host MMP13 on tumor proliferation, apoptosis and 

vascularity. (A) Quantification of tumor proliferation by Ki67 staining determined by 

plotting number of Ki67 positive cells per unit tumor area. (B) Change in apoptosis 

within tumors in wildtype and Mmp13-/- mice determined by percentage of cleaved 

caspase 3 staining per unit tumor area. (C) Quantification of tumor vascularity as 

determined by percentage area of von Willebrand factor staining per unit tumor area. 

Quantification was done using Metamorph software. Statistical analysis was performed 

using GraphPad Prism software. Data was analyzed by using one-way ANOVA followed 

by Newman-Keuls Multiple Comparison Test (* ,P ≤ 0.05). N, normal; St, steatosis; WT, 

wildtype; 13-/-, Mmp13-/-. 
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Figure 26: Tumor size distribution in Wildtype and Mmp13-/- mice. Histogram of MC38 

tumor size distribution plotted as a percentage of total number of tumors in (A) wildtype 

normal, (B) wildtype steatotic, (C) Mmp13-/- normal and (D) Mmp13-/- steatotic mice.  
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sectioned and the number of tumor cells per section were quantified (Figure 27A). These 

results demonstrate no significant differences in the number of tumor cells present in the 

livers of these mice of wildtype and Mmp13-/- mice at 24 and 48 hours post injection and 

therefore no difference in survival or seeding of the cells to the liver.  

To investigate the role of host MMP13 on the ability of MC38 colon cancer cells 

to extravasate from the vasculature, we adapted the methodology developed by Martin et 

al. [166]. MC38 cells were labeled with cell tracker red and injected into normal wildtype 

or Mmp13-/- mice. Mice were sacrificed at 24 and 48 hours post-injection, their livers 

perfused with saline and their vasculature labeled with tomato lectin. The liver explants 

were then imaged using a confocal microscope to visualize individual tumor cells relative 

to the vasculature and to compare the percentage of tumor cells that had extravasated in 

wildtype versus Mmp13-/- mice at each time point. We observed a significant decrease in 

the percentage of tumor cells that had extravasated in the Mmp13-/- mice compared to 

that of the wildtype mice at 48 hours post tumor cell injection (Figure 27B). 

The hepatic vascular volume was evaluated from the 3-D vascular reconstructions 

(Figure 27C, D) of wildtype and Mmp13-/- mice liver. No difference in quantity of 

vascular staining was observed between the wildtype and Mmp13-/- mice indicating that 

changes in extravasation do not result from changes to the vascular capacity (P=0.7 using 

2-tailed t-test).  

Loss of tumor derived MMP13 leads to decrease in migratory and invasive properties of 

cells in vitro 

MMP13 is a part of the breast cancer metastasis signature and tumor cell 

expression of MMP13 is linked with increased invasiveness and ability to metastasize in  
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Figure 27: Lack of stromal MMP13 leads to decreased tumor cell extravasation from the 

microvasculature. (A) Number of tumor cells in the liver at 24 and 48 hours post 

intrasplenic injection of MC38 tumor cells quantified as average number of cell tracker 

red labeled cells per 10X field from 5 random images per mouse (n=3). (B) 

Quantification of the percentage of tumor cells extravasating in the liver at 24 and 48 

hours post injection of wildtype and Mmp13-/- mice (n=3). Statistical analysis was 

performed using the 2-tailed t-test. (C) Representative image of 3D reconstruction of 

wildtype and Mmp13-/- hepatic vasculature and (D) quantification of hepatic vascular 

volume in wildtype and MMP13-/- mice (n=5). Statistical analysis was performed using 

the 2-tailed t-test. WT, wildtype; 13-/-, Mmp13-/-. 
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melanoma and breast cancer [155, 223]. Immunohistochemical analysis of human 

colorectal cancer metastases to the liver and murine experimental MC38 colon carcinoma 

tumors in the liver show MMP13 staining within these tumors (Figure 29A, B). We 

evaluated Mmp13 gene expression in murine and human colorectal cancer cell lines and 

found that Mmp13 is expressed by the MC38 (murine) and HCT116 (human) colorectal 

cancer cell lines. To assess the role of tumor-derived MMP13 on the ability of tumor cells 

to metastasize to the liver, we developed Mmp13 stable knockdown cell lines (Figure 28) 

using RNA interference. We found that knock down of Mmp13 does not have a 

significant effect on cell proliferation as determined by the MTT assay in the MC38 nor 

the HCT116 cell line (Figure 29C, F). To study the effect of MMP13 on cell migration, 

control and Mmp13 knockdown cells were seeded in a modified Boyden chamber. Both 

MC38 and HCT116 cell lines showed a decrease in transwell migration compared with 

the respective control cells (Figure 29D, G). Next, the knockdown cell lines were 

evaluated for their ability to invade through matrigel with the modified Boyden chamber 

and demonstrated a decreased invasive ability with the knockdown of Mmp13 in both cell 

lines (Figure 29E, H). For the HCT116 cell line, there was an average 9 fold decrease in 

transwell invasive ability between the knockdown cell lines and controls, and a 2.5 fold 

decrease in transwell migration, suggesting loss of MMP13 effects cell invasion in 

addition to its effect on cell migration. These results suggest that tumor derived MMP13 

is essential for migration as well as invasion. 
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Figure 28: Establishment of stable MMP13 knockdown cell lines. Stable knockdown of 

MMP13 cell lines were developed using RNA interference. (A) Western blot of MMP13 

protein levels secreted into the media and quantification of mRNA expression of Mmp13 

in MC38 control and knockdown cell lines. sh13 is a pooled MMP13 knockdown 

population. sh13_1 and sh13_2 are expanded cell lines from individual clones. (B) 

Western blot of MMP13 protein levels secreted into the media and quantification of 

mRNA expression of MMP13 in HCT116 control and knockdown cell lines. HshC1 and 

HshC2 are expanded clonal cell populations of control shRNA treated HCT116 cells. 

Hsh13 is a pooled population of MMP13 shRNA treated cells. Hsh13a and Hsh13b are 

derived from single clones.  
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Figure 29: Effect of knockdown of MMP13 in tumor cells on various hallmarks of cancer 

in vitro. Immunohistochemical staining for MMP13 in representative sections of (A) 

murine MC38 tumor in the mouse liver and (B) human colorectal cancer metastasis to the 

liver taken with a 20X objective. Scalebar represents 100 microns. Inset shows individual 

tumor cells at 63X magnification. MTT assay shows no change in proliferation after loss 

of MMP13 in vitro in (C) MC38 or (F) HCT116 control and MMP13 knockdown cell 

lines. Knockdown of MMP13 leads to decreased ability of tumor cells to migrate in vitro 

as determined by a transwell migration assay in (D) MC38 and (G) HCT116 cell lines. 

Knockdown of MMP13 leads to decreased ability of tumor cells to invade in vitro as 

determined by the transwell invasion assay in (E) MC38 and (H) HCT116 control and 

knockdown cell lines. Statistical analysis was performed using GraphPad Prism software. 

Data was analyzed by using one-way ANOVA followed by Newman-Keuls Multiple 

Comparison Test. P values are represented by stars where: *** P ≤ 0.0001 when 

compared to the respective non-silencing control treated cell lines. 
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Loss of tumor-derived MMP13 reduces the ability of tumor cells to metastasize in vivo  

To test the importance of tumor cell derived MMP13 on establishment of 

metastasis to the liver, we utilized the splenic injection model to deliver 2.5 x 10
5
 Mmp13 

knockdown or control MC38 cell lines into wildtype C57bl/6 mice. After 21 days, mice 

were sacrificed and livers harvested. The liver weight and percent liver weight to total 

body weight ratio was measured to determine metastatic burden (Figure 30B, C). Liver 

sections were stained by H&E (Figure 30A) to record the incidence (Figure 30C) and 

area (Figure 30D) of metastasis. We found that the tumor burden and incidence of 

metastases decreased in the mice injected with Mmp13 knockdown cells compared to 

control cells. Liver metastases were stained for Ki67 (proliferation marker) and cleaved 

caspase-3 (apoptosis marker) to examine the role of MMP13 in promoting the survival 

and outgrowth of metastatic tumors (Figure 31A, B). The percentage of tumor cells 

proliferating or undergoing apoptosis were similar between the wildtype and Mmp13-/- 

tumors of comparable size, suggesting no difference in the rate of tumor growth between 

the WT and Mmp13-/- mice. Additionally, there was no difference in tumor vascularity as 

determined by vWF staining (Figure 31C). These results indicate that tumor-derived 

MMP13 facilitates the establishment of metastases in the liver without affecting 

metastatic outgrowth.  

Combined loss of both stromal and tumor derived MMP13 leads to further decrease in the 

ability of tumor cells to metastasize in vivo 

To test the importance of combined loss of both stromal MMP13 and tumor cell 

derived MMP13 on establishment of metastasis to the liver, we utilized the splenic 

injection model as described previously to deliver 2.5 x 10
5
 Mmp13 knockdown or 
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Figure 30: Knockdown of tumor derived MMP13 leads to decreased tumor metastasis to 

the liver. (A) Representative liver cross sections stained with Haematoxylin & Eosin of 

wildtype mice injected with control or MMP13 knockdown MC38 cell lines (MSh13 

pooled, MSh13-1, and MSh13-2). Dashed black lines denote tumors. Quantification of 

metastatic tumor burden measured by (B) liver weight, (C) tumor burden as a percent 

liver weight to total body weight, (D) metastatic seeding by quantification of tumor 

number and (E) percentage of tumor area to total liver area in normal and steatotic livers 

(n=5 per group). Statistical analysis was performed using GraphPad Prism software. Data 

was analyzed by using one-way ANOVA followed by Newman-Keuls Multiple 

Comparison Test. P values are represented by stars where: *P ≤.05, **P ≤ .01, and ***P 

≤ .001 when compared to mice injected with non-silencing control cell lines. 
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Figure 31: Effect of loss of tumor derived MMP13 on tumor proliferation, apoptosis and 

vascularity. (A) Quantification of tumor proliferation by Ki67 staining determined by 

plotting number of Ki67 positive cells per unit area. (B) Change in apoptosis within 

tumors in determined by percentage of Cleaved caspase 3 staining per unit tumor area. 

(C) Quantification of tumor vascularity as determined by percentage area of von 

Willebrand factor (vWF) staining per unit tumor area. Quantification was done using 

Metamorph software. Statistical analysis was performed using GraphPad Prism software. 

Data was analyzed by using one-way ANOVA and showed no significant differences 

between different test groups. 
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control MC38 cells into Mmp13-/- C57bl/6 mice. At the endpoint of 21 days post 

injection, mice were euthanized and their livers harvested.  The liver weight and percent 

liver weight to total body weight ratio was measured to determine metastatic burden 

(Figure 32B,C). Liver sections were stained by H&E (Figure 32A) to record the 

incidence (Figure 32C) and area (Figure 32D) of metastasis. We found that the tumor 

burden and incidence of metastases decreased in the mice injected with Mmp13 

knockdown cells compared to control cells. These results suggest that combined loss of 

both stromal and tumor derived MMP13 lead to a further decrease in tumor burden and 

targeting both stromal and tumor derived MMP13 would be beneficial to prevent 

establishment of metastases in the liver.  

Discussion 

The liver is a common site of metastasis of several types of cancer [228] and 

identification of molecular effectors that can prevent metastasis to the liver is of 

important clinical relevance. NAFLD is increasingly becoming recognized as the most 

common cause of liver disease and it is associated with increased risk of development of 

primary liver cancers, even prior to establishment of cirrhosis [216]. Progression of 

NAFLD results in changes in the liver microenvironment and alterations in the 

extracellular matrix, which effects cancer progression and outcome [78, 100]. The MMPs  

are an important class of proteases that can alter the extracellular matrix and influence the 

microenvironmental integrity. There is considerable evidence supporting the role they 

play at different steps of malignant tumor metastasis including tumor cell intravasation 

and extravasation [229]. We initially evaluated the steatotic microenvironment for 
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Figure 32: Combined loss of both tumor derived and host MMP13 lead to additional 

decrease in metastatic tumor burden to the liver. Normal Mmp13-/- mice were injected 

with either Control or Mmp13 knockdown MC38 colon cancer cell lines (sh13, 

sh13_1,sh13_2). Quantification of metastatic tumor burden measured by (A) liver weight, 

and (B) tumor burden as a percent liver weight to total body weight. Metastatic seeding 

was determined by quantification of (C) tumor number and (D) percentage of tumor area 

to total liver area in normal and steatotic livers. Statistical analysis was performed using 

GraphPad Prism software. Data was analyzed by using one-way ANOVA followed by 

Newman-Keuls Multiple Comparison Test. P values are represented by stars where: *P 

≤.05, **P ≤ .01, and ***P ≤ .001 when compared to mice injected with non-silencing 

control cell lines. 
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alterations in the gene expression levels for a panel of MMPs that have been previously 

associated with cancer progression. Our results demonstrate that MMP13, an interstitial 

collagenase, is elevated in the steatotic liver in our murine model as well as with 

progression of NAFLD in human patient samples. Others had previously shown that 

MMP13 was elevated with fibrotic liver disease [162]. Several studies also link elevated 

levels of MMP13 in either the stroma or tumor cells with cancer progression [155, 161, 

223, 225], however there are reports that alternately suggest a protective role for MMP13 

[230, 231]. There still remains a limited understanding of the role of MMP13 in the liver 

microenvironment and its influence on the establishment of hepatic metastases. Here, we 

evaluated the role of both stromal and tumor cell derived MMP13 on the establishment of 

metastases in the liver.  

Using mice genetically deficient in Mmp13, we have shown that loss of stromal 

MMP13 leads to a significant decrease in the tumor burden in the liver. This effect was 

seen in both normal and steatotic livers, suggesting that elevation of MMP13 in the liver 

plays a role in tumor metastasis. In addition, elevated MMP13 in the setting of other liver 

diseases such as fibrosis and hepatitis may cultivate a pro-metastatic liver 

microenvironment. Although we saw a significant decrease in tumor burden in the 

Mmp13 deficient mice, differences in proliferation or apoptosis were not observed within 

the tumors, nor were any differences in the vascularity of the tumors. This suggested that 

the difference in metastastic burden was due to early events in the metastatic cascade. 

Similar levels of metastatic cell dissemination and early cell survival were observed in 

wildtype compared to MMP13 deficient livers, yet the loss of host MMP13 diminished 

the ability of tumor cells to extravasate. Several factors can influence the ability of tumor 
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cells to adhere to the vascular walls and extravasate into the surrounding tissues. Studies 

have shown that changes in expression level and structure of collagen surrounding the 

vasculature are important in the ability of tumor cells to extravasate [231–233]. Since 

MMP13 is a collagenase, we evaluated the levels of collagen I, II and IV in the liver but 

found that mice lacking MMP13 had no significant differences in collagen 

immunofluorescence staining pattern compared to the wildtype mice (Figure 33). 

Although we did not observe changes in collagen in the liver, MMP13 may mediate 

release or activation of critical factors involved in tumor cell extravasation. MMP13 can 

cleave, release and activate cytokines thereby altering recruitment and or activation of 

inflammatory cells such as neutrophils and macrophages that have been shown to 

facilitate tumor cell extravasation [61, 234–236]. We evaluated changes in the lymphoid 

and myeloid lineage inflammatory cell sub populations within the liver of wildtype and 

Mmp13-/- mice, in the absence of tumor cells (Figure 34). I found an increase in the 

CD3 positive lymphoid population in the Mmp13-/- mice on regular diet but did not 

observe significant differences within the myeloid cell subpopulations. Changes in the 

lymphoid cell subpopulations as well as the activation state and function of the immune 

cells could explain the differences in tumor burden observed with the loss of MMP13. In 

the tumor studies, the spleens were removed following splenic injection of tumor cells, to 

prevent the interference of “primary” tumors developing in the spleen that could provide 

a continuous supply of circulating tumor cells to the liver and impact the assessment of 

metastatic tumor burden. Additionally, splenectomy prevents development of large 

“primary” tumors in the spleen. The spleen plays an important role in the immune 

response, and a splenectomy could influence the immune cells infiltrating the liver and 
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Figure 33: Immufluorescence of collagen in the livers of wildtype and Mmp13-/- mice. 

(A) Representative images of immunoflourescent staining of Collagen I, Collagen II and 

Collagen IV in the livers of wildtype and Mmp13-/- mice. (B) Quantification of the 

percent area stained over set threshold show no significant differences in the amount of 

collagen stained within the livers of wildtype and Mmp13-/- mice (n=6). WT, wildtype;  

13-/-, Mmp13-/-. 
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Figure 34: Effect of loss of MMP13 on inflammatory cell populations in the liver. CD45 

positive cells were isolated from wildtype and Mmp13-/- digested liver samples with and 

without steatosis using immune-magnetic beads and then stained for the immune markers 

CD3 and CD11b before being subjected to flow cytometric analysis. CD45 positive cells 

were then gated for the percentage of (A) CD3 positive T lymphocytes or (B) CD11b 

positive myeloid cells. Data was analyzed by using one-way ANOVA followed by 

Newman-Keuls Multiple Comparison Test. P values are represented by stars where:  

*P ≤.05, **P ≤ .01, and ***P ≤ .001. N, normal; St, steatosis; WT, wildtype; 13-/-, 

Mmp13-/-. 
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impact tumor growth. To ensure consistency, spleens were removed in all study groups. 

Even without the spleen, the study takes into consideration the changes in the immune 

complement within the liver microenviromnet and recruitment of circulating 

inflammatory cells and from the bone marrow. 

 Cytokine array analysis with liver protein lysates showed no significant changes 

between lean wildtype or lean Mmp13-/- mice. Steatotic mice did have observable 

increases in multiple cytokines compared to lean mice for both wildtype and Mmp13-/- 

mice. We noted a decrease in the level of IGF binding proteins in livers of Mmp13-/- with 

steatosis compared to wildtype mice with steatosis. IGF signaling has been previously 

shown to be important in regulating the liver microenvironment in the setting of obesity 

and can facilitate liver metastasis [237]. Changes in IGF signaling with the loss of 

MMP13 could impact the liver microenvironment with steatosis and warrant further 

study.  

 MMP13 is produced by resident stellate cells and Kupffer cells that are activated 

by the accumulation of fat in the liver MMP13 is also produced by infiltrating 

inflammatory cells into the liver [163, 238]. Identification of the cellular source 

responsible for the increase in MMP13 would be important to target these cells for 

treatment and limit enhanced MMP13 production. To understand whether resident or 

bone marrow derived cells were responsible for MMP13 production and important for the 

establishment of metastases, I carried out bone marrow transplant experiments where 

wildtype bone marrow was replaced with bone marrow from Mmp13-/- mice and vice 

versa. Post tumor cell injection, the tumor burden observed exceeded previous studies in 

all study groups. This could be a result of the irradiation required for the bone marrow 
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transplants which can affect the liver microenvironment. These results could not clearly 

identify the bone marrow derived cells as being responsible for changes in the metastatic 

burden observed in the Mmp13-/- mice (Figure 35). 

MMP13 expression has been observed in invasive malignant tumors such as 

breast carcinomas, squamous cell carcinomas (SCCs) of the head and neck and vulva, 

primary and metastatic melanomas, and transitional cell carcinoma of the urinary bladder 

[159]. Our results indicate that both the MC38 murine colon cancer line and the HCT116 

colon cancer cells express MMP13. Knockdown of MMP13 utilizing lentiviral shRNA 

resulted in a decreased ability of tumor cells to migrate and invade in vitro and 

correspondingly led to the development of fewer metastasis in vivo. Coupled together, 

both tumor cell and host derived MMP13 promote the establishment of metastases.   

 The use of selective MMP13 inhibitors may be an important step to control tumor 

growth and metastasis to the liver, however, the clinical use of MMP inhibitors has been 

hampered by their lack of specificity [239]. Fortunately, progress is being made toward 

developing specific inhibitors and a few MMP13 selective inhibitors are currently being 

studied [224, 240]. It will therefore be important to determine whether MMP13 selective 

inhibitors can pharmacologically block metastasis to the liver. 

In conclusion, we have shown that MMP13 is elevated in the setting of hepatic 

steatosis and that both tumor and stromal derived MMP13 are involved in attenuating 

metastatic tumor burden in the liver. Collectively, these data suggest that MMP13 could 

represent a new therapeutic target in the management of metastasis to the liver.  
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Figure 35: Effect of loss of bone marrow derived MMP13 on tumor development in the 

liver. Quantification of metastatic tumor burden measured by (A) tumor burden as a 

percent liver weight to total body weight and (B) percent tumor area in normal and 

steatotic livers of wildtype and Mmp13 deficient mice with either wildtype or Mmp13 

deficient bone marrow show no significant differences in tumor burden. N, normal; St, 

steatosis; WT, wildtype; 13-/-, Mmp13-/-. 
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CHAPTER V 

 

CONCLUDING REMARKS 

 

Summary 

The overall goal of this thesis was to characterize alterations in the liver 

microenvironment of NAFLD that influence the establishment of tumor metastasis to the 

liver. The increasing recognition of NAFLD as an important disease has spawned a 

relatively new field of study. There is still a limited understanding of the pathogenesis of 

the disease and the complications associated with its incidence. NAFLD is associated 

with an increased risk of development of primary HCC as discussed earlier. However, 

there is very limited understanding of the impact of NAFLD on tumor metastasis to the 

liver. We previously demonstrated a significant increase in the tumor burden and number 

in steatotic livers compared to normal livers [53]. Additionally, Wu et al. showed that 

elevated IGF-1 in the setting of obesity alters macrophage number and function in the 

liver and promotes cancer metastasis to the liver [237]. These studies indicate that 

obesity, and associated NAFLD, are important in the establishment of metastases in the 

liver. I thus hypothesized that molecular and cellular changes in the steatotic liver, 

relative to the normal liver contributed to a more permissive microenvironment for tumor 

growth and establishment of metastases in the liver. To test this hypothesis I evaluated 

the changes in inflammatory cell populations and cytokines in steatotic compared to 

normal livers. To further determine changes in the steatotic liver that could be responsible 

for this difference in metastatic tumor burden in the liver, I adopted a candidate approach 



 109 

and performed a microarray between mRNA from normal and steatotic livers, and found 

that Mmp12 and Mmp13 were elevated. Figure 36A summarizes some of the current 

knowledge in the field of liver metastasis in the setting of NAFLD. The results and 

contributions that my dissertation work has made to this field are represented in Figure 

36B and summarized below. 

 Characterization of the steatotic livers showed a significant increase in the 

number of CD45 positive inflammatory cells that infiltrated into the liver upon 

development of steatosis. Inflammatory infiltrates contained CD11b positive myeloid and 

CD3 positive lymphocytic populations. Additionally, infiltrates contained a decrease in 

the B cell sub-population and an increase in the dendritic cell populations. Using cytokine 

array analysis, the secretion of several cytokines in the plasma, liver tissue and 

conditioned media from isolated myeloid cells were found to be altered in the setting of 

steatosis and are listed in Table 2. Leptin, CXCL1, CXCL2 and CXCL16 were all found 

to be increased in plasma and in the conditioned media of cultured myeloid cells. These 

cytokines were further shown to directly increase the proliferation of hepatocellular cell 

lines following treatment in vitro. The proliferative capability of these cytokines is one 

explanation for the overall increase in hepatocyte proliferation observed with Ki67 

staining in both human and mouse liver tissue sections. Therefore, I believe that the early 

inflammatory stages of hepatic steatosis provide a proliferative microenvironment that 

could potentiate the growth of metastatic foci as well as potentiate the development of 

primary HCC associated with NAFLD. 

Dysregulation of MMPs has been associated with liver disease and have also been 

shown to be important in all stages of tumor progression, playing key roles in metastatic 
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Figure 36: Proposed mechanisms of liver metastasis in the setting of non-alcoholic fatty 

liver disease (NAFLD). (A) Summary of knowledge in the field of NAFLD and the 

potential mechanisms of cancer metastasis to the liver prior to this dissertation. VanSaun 

et al. observed that NAFLD leads to increased risk of colorectal cancer metastasis to the 

liver [53]. Wu et al. showed that IGF-1 alters the liver micoenvironment in the setting of 

obesity, leading to increased liver metastasis [237]. Potential mechanisms for this 

increase in liver metastasis include alterations in the liver microenvironment. Changes in 

Matrix Metalloproteinases (MMPs), particularly MMP13 could further alter the liver 

microenvironment, impact tumor vascularity, tumor cell migration, invasion and 

extravasation, thus influencing establishment of metastasis in the liver. (B)  

Modifications to the field based on data from this dissertation. These results show that 

NAFLD leads to alterations in inflammatory cell populations and cytokines in the 

steatotic liver. MMP13 impacts the ability of tumor cells to migrate and invade in vitro 

and extravasate from the vasculature in vivo. Bold text indicates what is known. Un-

bolded text indicates proposed mechanisms that have not been fully elucidated. Changes 

as a result of alterations in MMP13 are shown in green and those observed in NAFLD in 

brown.  
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potential of tumor cells and alteration of the tissue microenvironment at secondary sites 

of metastasis [229]. To gain further insight into alterations in MMPs, I evaluated the 

change in mRNA expression for a panel of MMPs between normal and steatotic livers.  I 

found that Mmp12 and Mmp13 were significantly elevated in the steatotic murine liver 

compared to normal livers. The role of MMP13 on tumorigenesis in the setting of 

steatosis became the principle focus of my thesis. In addition to MMP13 from the stromal 

cells in the steatotic liver, I was able to demonstrate that the tumor cells themselves were 

a source of MMP13. The aims of my studies were thus to assess the contribution of 

stromal and tumor derived MMP13 on the establishment of colorectal cancer metastasis 

to the liver. Loss of stromal MMP13 led to a decrease in the ability of tumor cells to 

metastasize to the liver in both a normal and steatotic setting compared to wildtype mice. 

This decrease in metastatic tumor burden can be explained in part by the significant 

decrease in the ability of the tumor cells to extravasate from the vasculature in the 

absence of MMP13 48 hours post injection determined using confocal microscopy 

(Figure 27). Additionally, stable MMP13 knockdown cell lines were used to demonstrate 

that reduction of tumor derived MMP13 decreased migratory and invasive properties in 

vitro and decreased metastatic burden in vivo. Taken together, the loss of both stromal 

and tumor derived MMP13 have an additive effect on preventing the development of 

metastasis. These results suggest that MMP13, both stromal and tumor derived, 

contribute to the establishment of metastases in the liver. Furthermore, this suggests that 

MMP13 could be a potential therapeutic target for treatment of patients with primary 

CRC, that are at risk of developing liver metastases, by blocking the motility of tumor 

cells and their ability to exit from the vasculature into the liver.  
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These studies define some of the changes in the steatotic liver microenvironment. 

We have identified differences in inflammatory cell infiltration and cytokine levels in the 

steatotic liver. We further demonstrate that MMP13 is an important mediator of 

metastasis in this setting and confirmed that both stromal and tumor derived MMP13 play 

a role in establishment of metastasis in this setting. Though much progress has been made 

in understanding the changes in the liver microenvironment with NAFLD, there are still 

questions to be answered to fully understand the complexities of this microenvironment 

and its effect on tumor development and progression, which are discussed below. 

Future Directions 

As the incidence of obesity continues to increase, NAFLD has become a major 

health concern. The risks of disease associated co-morbidities increases with progression 

of NAFLD. Initial stages of NAFLD, prior to the development of fibrosis, can be revert 

back to normal liver with proper diet and exercise regimens in some cases [241]. As such, 

development of safe noninvasive methods to stage NAFLD would have important clinical 

implications in the treatment of patients with NAFLD. NAFLD is increasingly being 

recognized as the most common risk factor for the development of HCC and further 

understanding of the cellular and molecular factors involved with this disease progression 

are necessary to prevent cancer associated co-morbidities. My studies have identified 

changes in inflammatory cell populations and cytokine levels in the steatotic livers but 

their effects on activation of signaling pathways and development of primary and 

metastatic tumors needs to be further assessed. I found additional molecular factors 

including MMP12 and MMP13 to be markedly upregulated in the steatotic liver 

microenvironment. My results show that MMP13 is important in the motility of tumor 
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cells and their ability to extravasate form the vasculature and thus plays an important role 

in establishment of metastases in the liver. However, I did not evaluate the role of 

MMP13 on the development of primary tumors in the liver.  

In addition to the importance of MMP13 in this disease, increased levels of 

MMP12 in the steatotic setting could have additional effects on modulating the steatotic 

liver microenvironment and affect tumor development and progression in the setting of 

NAFLD.  Further understanding of the molecular and cellular factors altered in NAFLD, 

and the signaling pathways they trigger, could provide potential drug targets and 

therapeutic options that would have great clinical implications. Importantly, targeted 

therapeutics could prevent progressive disease and/or the development of primary or 

metastatic liver cancers. Important future directions in the area of hepatic steatosis and 

NAFLD are discussed below. 

Identification of biomarkers for the progression of NAFLD 

Currently there are no reliable non-invasive techniques to distinguish patients 

with steatosis from NASH, which is clinically important as prognosis and treatment of 

each stage of the disease is different. Reliable methods to make this assessment require a 

liver biopsy which is an invasive procedure. Therefore, the development of non-invasive 

biomarkers for the different stages of NAFLD has become of major interest. Several 

studies have used a combination of serum markers and advanced imaging techniques but 

still lacked the capability to reliably distinguish simple steatosis from NASH [242].  

One of the prominent features of the development of NAFLD is the accumulation 

of lipids in the liver. Determination of changes in lipid composition and function are only 

now being examined [81]. Several lipid mediators typically associated with lipotoxicity 



 115 

such as diacylglycerols (DAGs), oxysterols, ceramides and free fatty acids (FFA) are 

suggested as potential key links in the mechanism of disease progression towards NASH. 

Previous studies were able to link changes in lipid composition in plasma with that of the 

liver in the setting of NASH [243, 244]. We hypothesized that analyzing specific changes 

in lipid composition in the liver and accessible body fluids such as plasma/urine could 

provide a unique and reliable set of non-invasive biomarkers in the blood/urine that 

represent the changes taking place in the liver and could distinguish the different NAFLD 

stages.  

To identify unique lipid species, in collaboration with the laboratory of Alex 

Brown,  lipids were profiled from liver biopsies, plasma, and urine samples in a double-

blinded study from 88 individuals diagnosed as either normal (n=31), steatotic (n=17), 

NASH (n=20), or cirrhotic (n=20). Additionally, metabolites of the citric acid cycle, 

glycolytic pathway, nucleotides, and CoA-derivatives were profiled. Finally, gene 

expression from liver samples was analyzed by RNA-Seq and the results were correlated 

with both lipid and intermediary metabolite levels on a sample-by-sample basis.  

Our lipidomic and metabolomic based analysis significantly discriminated 

between the different stages of NAFLD. Sphingolipids and glycerophospholipids were 

the most reliable predictive indicators of a given disease stage. Cirrhosis which represents 

end stage liver disease, with alterations in liver function is clearly distinguishable from 

the normal and intermediate stages of NAFLD with a small panel of analytes and 

transcripts. Distinguishing between normal, steatosis and NASH poses more of a 

challenge due to the high variability in lipid expression and overlap between the different 

stages of NAFLD. We were able to identify a diverse panel of just 20 plasma lipid and 
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aqueous metabolites that efficiently separated all disease states by linear discriminant 

analysis. This study provides a signature that could be used to non-invasively stratify 

patients based on the stage of NAFLD. Further validation on a larger sample set is 

required before implementation in the clinic, but our analysis provides a viable 

alternative to a liver biopsy. (Manuscript in revision, Journal of Lipid Research). 

The role of MMP13 in primary tumors of the liver 

 

My studies showed a 10-fold increase in mRNA expression of Mmp13 in the 

steatotic liver compared to normal liver. Our lab has further demonstrated that the 

steatotic liver microenvironment promotes the establishment of tumor metastases in the 

liver [53]. In addition to metastasis, NAFLD has been associated with an increased 

incidence of primary HCC [186]. It would thus be important to determine whether 

increased MMP13 regulates primary tumor growth and progression in addition to the role 

it plays on tumor metastasis to the liver in the setting of NAFLD.  

Our previous studies demonstrated that prolonged consumption of high fat diet 

results in the development of primary liver tumors in mice [53]. Using mice deficient in 

Mmp13, we did not see tumor growth at 12 months of age, suggesting that loss of Mmp13 

in the mice may be protective against primary tumor development in the setting of 

steatosis. We have shown that Mmp13 deficient mice indeed develop steatosis similar to 

wildtype mice. Although the difference in incidence of primary tumors is intriguing, the 

low numbers of mice in these studies did not provide statistical power for definitive 

results. For future studies, we propose that both wildtype and Mmp13-/- maintained on a 

high fat diet be exposed to a “second hit” with DEN (Diethylnitrosamine) which could 

decrease the lag time for tumor development and increase the aggressiveness of the 
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tumors [245]. Inclusion of longitudinal screening with CT would further provide 

evidence for the onset of primary HCC and rate of tumor progression in either wildtype 

or Mmp13-/- mice. Endpoint histological analysis and grade of tumors would be 

determined by a pathologist. 

Alternative methods to generate primary tumors in the setting of steatosis would 

be to utilize syngeneic primary HCC cell lines, which are injected into the liver via spleen 

of either wildtype or Mmp13-/- mice. The splenic injection model allows seeding of 

primary tumor cells into the orthotopic liver site via the portal vein circumventing any 

added injury that would be caused by direct injection to liver. MMP13 expression of the 

primary HCC cell lines before and after tumor establishment can be assessed as well to 

determine whether tumor cells express MMP13 that could play a role in tumor 

progression and metastasis. Additionally, we could control the expression of MMP13 

from the primary tumor cells as we demonstrated in our colorectal metastatic model.  

Studies such as these would be able to determine whether loss of MMP13 was 

protective against development of primary HCC. This would provide viable information 

as to whether MMP13 or its downstream effectors could be targeted to prevent tumor 

onset and progression in NAFLD patients at high risk of developing HCC. 

The use of MMP13 inhibitors in treatment of liver metastasis 

MMPs have been associated with incidence of cancer for a long time and there 

was extensive preclinical data that led to clinical testing of synthetic MMP inhibitors 

(MMPIs) for the treatment of cancer [131]. The results of these Phase III clinical trials 

were disappointing and did not increase patient survival [131]. Several reasons for their 

failure have been now identified, particularly the fact that these trials used broad 
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spectrum MMP inhibitors on patients with advanced disease. It is now known that even 

though MMP inhibition can slow tumor progression, several MMPs are important for 

normal function and some MMPs exert a protective role. Therefore, use of broad-

spectrum inhibitors of MMPs could in some cases worsen the prognosis by blocking 

protective actions of MMPs [246].  Selective MMPIs may yet have therapeutic potential 

in the appropriate clinical setting, but a detailed understanding of each MMP in specific 

stages of disease progression is required before these reagents can be effectively 

translated to clinical benefit.   

Evidence presented in this dissertation showed elevated MMP13 in the setting of 

steatosis, which facilitated metastatic tumor cell extravasation in the liver. Additionally, 

tumor derived MMP13 was also shown to enhance the migratory and invasive potential 

of tumor cells. Selective MMP13 inhibitors could thus be a viable drug target to block 

establishment of metastases in the liver. Although the clinical use of MMP inhibitors has 

been hampered by their lack of specificity [239], progress is being made toward 

developing specific inhibitors and a few MMP13 selective inhibitors are currently being 

studied [224, 240].  Shah et al. show that the use of an MMP13 selective inhibitor Cmpd1 

is successful in limiting breast cancer metastasis to the bone with little toxicity to the 

animal at the presented dosages, suggesting that developing drugs targeting specific 

MMPs with limited toxicities is a possible line of future treatment [224]. It will therefore 

be important to determine whether MMP13 selective inhibitors can pharmacologically 

block metastasis to the liver.  
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Role of proteolytic function of MMP13 on tumor progression 

 Historically, the function of MMPs has been attributed to their ability to 

proteolytically cleave substrates in order to remodel the ECM, activate/deactivate growth 

factors and generically degrade other substrates [247]. Recently, studies have identified 

several non-proteolytic functions of MMPs that are just beginning to be understood [110, 

248, 249]. Dufour et al. showed that the proteolytic activity of MMP9 is not required for 

MMP9-induced cell migration in COS-1 cells through the use of structural domain 

swapping and truncated MMP9 proteins lacking catalytic activity. They demonstrated 

that it was the hemopexin domain of proMMP-9 that was responsible for increased cell 

migration and not the catalytic domain [110]. Thus, even though the collagenase function 

of MMP13 is thought to breakdown the basement membrane and facilitate tumor cell 

escape, this would require further testing. Using cells expressing mutated or collagenase 

dead (catalytically inactive) MMP13, it would be possible to determine whether the 

proteolytic function of MMP13 is necessary for tumor cell motility and extravasation 

from the vasculature. Additional truncated versions of the MMP13 protein lacking the 

hemopexin domain and other regions of the protein will determine whether MMP13 has 

non-proteolytic functions that are important in tumor progression as well. Understanding 

the role of each domain of MMP13 would be important to develop drugs that would 

specifically target each individual domain and its related functions.  

Role of MMP12 in tumor metastasis to the liver 

MMP expression analysis in steatotic compared to normal livers demonstrated 

that MMP12 (macrophage metalloelastase) was significantly upregulated in the steatotic 

liver (Figure 22). Mmp13-/- mice maintained on the high fat diet also had elevated 
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Mmp12 mRNA expression (Figure 23). Though Mmp13-/- mice had a significant 

decrease in metastatic tumor burden in both normal and steatotic livers compared to 

respective wildtype livers, we still observed an increase in the tumor burden in the 

MMP13-/- steatotic livers compared to Mmp13-/- normal livers. This suggests that 

MMP12 and MMP13 together could have an additive effect on tumor burden in the liver, 

and elevated MMP12 could explain the increased tumor burden in the Mmp13-/- mice 

with steatotic relative to normal livers. MMP12 could regulate inflammatory infiltrates 

and damage during steatohepatitis and therefore increases the susceptibility to the 

development of primary or metastatic tumors to the liver. 

The role of MMP12 in tumorigenesis is controversial and studies have shown 

both pro [250–252] and anti [253, 254] tumorigenic effects. Overexpression of MMP12 

in the tumors was found to be an indicator of poor prognosis in patients with HCC [255]. 

Paradoxically, MMP12 expression levels were higher in primary CRC without liver 

metastasis compared to those with liver metastasis [256] MMP12 expression was found 

to suppress orthotopic tumor growth of colon cancer cells as a result of decreased VEGF 

(vascular endothelial growth factor) expression and increased angiostatin levels [257]. 

These contradictory findings regarding the role of MMP12 in tumor progression suggest 

that additional microenvironmental cues in the setting of steatosis might govern whether 

MMP12 functions in either a pro or anti-tumorigenic fashion, thus warranting further 

study.  

 MMP12 deficient mice were placed on diet similar to the MMP13 studies 

discussed. Preliminary studies using Mmp12-/- mice show that loss of Mmp12-/- leads to 

an increase in the number of macrophage crown like structures in the steatotic liver. 
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Additionally, an increased CK19 positivity in MMP12 deficient steatotic livers suggested 

development of ductal reaction in the setting of steatosis compared to wildtype mice. 

Further studies to characterize inflammatory cell populations and cytokine levels in the 

liver are underway. We would like to examine how the loss of MMP12 leads to increased 

macrophage crown like structures (CLS) in the liver. Increased prevalence of CLS have 

been observed in the peripheral fat tissues surrounding injured and dying adipocytes 

[258]. The CLS in the liver might be playing a similar function in the Mmp12-/- mice and 

the elevated numbers could be a result of increased hepatocyte injury in Mmp12-/- mice.  

Significance 

Steatosis and steatohepatitis result in unique microenvironments in the liver. 

Although the setting of NAFLD has been previously recognized to be conducive to the 

development of progressive fibrosis and primary hepatocellular carcinoma [171], there is 

still a need to understand the molecular factors altered in the setting of NAFLD that could 

potentiate this tumor promoting microenvironment. The work presented in this 

dissertation has identified unique changes in the inflammatory cell populations and 

cytokine profiles as a result of steatosis, both in our murine model as well as in human 

patients with NAFLD. Alteration of several cytokines in the setting of NAFLD increased 

the proliferation of liver cell lines in vitro and hepatocytes in vivo. These results implied 

that steatosis induces a proliferative liver response that could potentially facilitate the 

development of HCC. Further understanding of these changes could help determine the 

risk of development of HCC and help to devise strategies for the prevention of this 

devastating cancer.  
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Additionally, I identified MMP13, a member of the matrix metalloproteinase 

family, to be elevated in the setting of steatosis. MMP13 had been previously shown to 

be associated with fibrotic liver disease and the wound healing response, suggesting a 

role in modulating the stromal response in the steatotic liver  [162]. The findings that 

both stromal and tumor derived MMP13 are important in the establishment of metastasis 

in the liver is highly clinically relevant. The loss of stromal and tumor derived MMP13 

led to a decrease in tumor burden in both instances, suggesting that inhibition of MMP13 

could be an ideal therapeutic target. MMP13 is unique in that it is expressed during early 

development and bone remodeling and typically not in adult human tissue, except during 

the wound healing processes and in pathologic settings such as cancer. Elevated MMP13 

in steatosis might be the result of a healing response to counteract the fibrogenic process 

initiated by the activation of HSCs upon liver injury. Thus use of inhibitors selectively 

targeted for MMP13 could circumvent several of the side effects seen with broad 

spectrum MMPs drugs and could potentially be used to treat primary or metastatic 

cancers of the liver in patients with NAFLD.  

As the incidence of NAFLD continues to increase worldwide, it is very important 

to identify and understand the pathophysiology that characterizes this disease. We 

demonstrate that NAFLD results in molecular and cellular alterations in the liver 

microenvironment that lead to an increased risk in the development of both primary and 

metastatic liver cancer. The results presented in this dissertation show alterations in 

cytokine levels in the liver that have a proliferative effect on the resident cells in the liver, 

and may play a role in tumorigenesis. Further we show that MMP13 plays a key role in 

establishment of metastasis in the liver by facilitating tumor cell motility and 
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extravasation from the vasculature. These results suggest that counteracting liver 

inflammation and controlling the levels of MMP13 in the liver could prevent 

development of primary and metastatic tumors in the liver in the setting of NAFLD.   
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