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ABSTRACT

This work develops an empirical Bayes approach to statistical difficulties that arise in

real-world applications. Misuse of these methods as though the resulting posterior distri-

butions were true Bayes posteriors has lead to limited adoption. The first problem solved

via an empirical Bayes approach deals with surrogate outcome measures In this work we

propose criteria similar to the Prentice criteria for using surrogates to develop risk scores.

Their behavior is investigated through a series of simulation studies and an empirical Bayes

weighting scheme is developed which alleviates their pathologic behavior. It is then hy-

pothesized that a common clinical measure, change in perioperative serum creatinine level

from baseline, is actually a partial surrogate. The result is a more acurate predictive model

for both short and long-term measures of kidney function. The second problem solved deals

with likelihood support intervals. Likelihood intervals are a way to quantify statistical un-

certainty. In this work we develop a novel procedure based on the bootstrap for estimating

the frequency characteristics of likelihood intervals. The resulting intervals have both the

frequency properties of the set as well as each individual member of the set attaining a spec-

ified support level. An R package, supportInt, was developed to calculate these intervals

and published on the Comprehensive R Archive Network. The third problem addressed

deals with the design of clinical trials when the potential protocols for the intervention are

highly variable. It is demonstrated that large single protocol designs that are frequently

advocated for can be replaced by multi-arm protocols to more accurately assess the ques-

tion of an interventions potential efficacy. Simulation studies are conducted that make use

of a novel adaptive randomization scheme based on an empirically estimated likelihood

function. A Shiny app allows for the conduct of further studies by the reader under a wide

variety of conditions.
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Chapter 1

Introduction

The methods presented in this dissertation revolve around empirical data methods. In

each situation we are faced with a unique problem that can be addressed by using an empir-

ical Bayes approach. The empirical Bayes approach is then compared to more traditional

methods to determine what advantages or disadvantages it may demonstrate. Ultimately in

each case the empirical Bayes approach demonstrates a potential for large gains, however,

these gains are sometimes dependent on the particular situation.

1.1 Introduction to Empirical Bayes Methods

1.1.1 Robbins and Early Empirical Bayes Methods

The orgins of empirical Bayes estimation begin in the mid 1950s, with Herbert Robbins

pioneering the area of empirical Bayes point estimation. In 1956 he outlined how empirical

Bayes estimates would also be expected to dominate the usual MLE (1). His formulation

of the problem begins with a discrete random variable X ∼ p(X = x|Λ = λ ) dependent on a

parameter Λ, which is itself randomly distributed Λ∼ G(λ ) = P(Λ≤ λ ). He is concerned

with finding the realization of Λ, call it λ , that minimizes the expected value of a specified

loss function. The expected value of a loss function is called risk. In this case the loss

function Robbins seeks to minimize is squared-error loss. Then he shows that for any

estimate of the random quantity Λ, say ϕ(x),

EX [ϕ(X)−Λ]2 = EΛ[EX |Λ[(ϕ(X)−Λ)2]]

=
∫

∑
x

p(x|λ )[ϕ(x)−λ ]2dG(λ )

1



is minimized by,

ϕ(x) =
∫

λ p(x|λ )dG(λ )∫
p(x|λ )dG(λ )

=
∫

λ p(λ |x) = E[Λ|X ]

In other words it is the Bayesian posterior mean that minimizes squared error loss.

Proof: The expected squared error loss is minimized by:

argminϕ(x)
∫

p(x|λ )[ϕ(x)−λ ]2dG(λ )

= argminϕ(x)
∫

p(x|λ )dG(λ )
(

ϕ(x)−
∫

λ p(x|λ )dG(λ )∫
p(x|λ )dG(λ )

)2
+
(∫

λ 2 p(x|λ )dG(λ )− (
∫

λ p(x|λ )dG(λ ))2∫
p(x|λ )dG(λ )

)
= argminϕ(x)

∫
p(x|λ )dG(λ )

(
ϕ(x)−

∫
λ p(x|λ )dG(λ )∫
p(x|λ )dG(λ )

)2
+ c

⇒ ϕ(x) =
∫

λ p(x|λ )dG(λ )∫
p(x|λ )dG(λ ) = E[Λ|X ]

Having illustrated that the posterior mean is optimal in mean square error (MSE), he

then addresses the practicality that the prior of Λ,G(λ ), is largely unknown in real-world

problems making the posterior mean difficult to estimate in many applied scenarios. He

suggests that if there were a sequence of experiments available,

(X1,Λ1),(X2,Λ2), . . . ,(Xn,Λn)

that one could substitute the marginal empirical distribution (ecdf) of the combined X =

(X1, . . . ,Xn) for the actual marginal distribution
∫

p(x|λ )dG(λ ). This is reasonable because

the ecdf F̂n(x)
a.s.→ p(x), by the strong law of large numbers. Robbins then shows how to

calculate empirical Bayes estimates and demonstrates some superiority in MSE for the

Poisson, Geometric, Binomial, and Laplace distribution families.

2



1.1.2 The James-Stein Estimator

In 1955 Charles Stein shocked the statistical community. He showed that when estimat-

ing 3 or more means, from normally distributed populations, the vector of sample means

is actually inadmissible with respect to squared error loss (2). An estimator θ̂ is inadmis-

sible if there is another estimator θ̃ that has lower expected squared error loss (i.e., risk)

for every value of θ . At the time, the vector of maximum likelihood estimators was widely

believed to be optimal; after all, one or two sample means was known to be admissible

under squared error loss, so why not 3 or more? This counter-intuitive result came to be

known as Steins Paradox.

James and Stein (3) provided an estimator that dominated the vector of sample means,

but their suggestion has since been shown to be inadmissible as well. Some years later,

Efron and Morris (1973) recognized that, under certain fairly general conditions, Stein-

type estimators were equivalent to employing an Empirical Bayes estimation scheme (4).

An empirical Bayes estimator is an estimate derived from the posterior distribution of a

Bayesian model where the hyperparameters, the parameters that define the prior distribu-

tion, are estimated from the data. This is not a traditional Bayes approach, which requires

that the statistician take into account their uncertainty about the hyperparameter. Moreover,

the empirical prior is envisioned as a tangible marginal distribution that can, in theory, be

observed. Empirical Bayes procedures are also considered suspect for “using the data

twice”: Once to estimate the prior and again in the likelihood. Although much work has

been done to develop valid confidence methods for empirical Bayes estimators, the highly

technical nature of many of the proposed solutions has resulted in limited utilization in

many areas of research.

3



Efron-Morris

In addition to identifying the empirical Bayes structure of James-Stein estimator, Efron

and Morris (1973) also proposed a slight modification to the procedure in which MLEs

would be shrunk toward the grand mean as opposed to zero (4). Thus the Efron-Morris

estimate is given by the posterior mean of the model,

xi j|µi ∼ N(µi,σ
2) µi ∼ N(x,τ2)

and is given by

θ̂i
EM

= X +

(
1− k−3

∑(Xi−X)2

)
(Xi−X)

In 1975 Efron and Morris published an applied example using their proposed estimate (5).

This example involving baseball batting averages was one of the first and highest impact

tutorials in practical usage of empirical Bayes estimates.

Random Effects Regression

Stein’s phenomenon also applies in the regression setting. The empirical Bayes pre-

dictions from a random effects model are the best linear predictors of the individual mean

values (6). As mentioned in Laird and Ware 1982, the model

yi =Xiα+Zibi+ei

where ei ∼ N(0,Ri) and bi ∼ N(0,D) gives rise to the empirical Bayes prediction

b̂i =DZ
t
iWi(yi−Xiα̂)

Where W is the inverse of the covariance of the y’s (7). In this case b̂i = E[bi|yi, α̂,θ],

where θ is a q-vector of variance covariance parameters. Because the prior mean of the

4



random-effects distribution is commonly assumed to be zero, the resulting b̂i is an aver-

age of the ordinary least squares fixed effect and the zero vector (because the residuals

have mean zero by design). This makes the estimates quite similar to James-Stein type

estimators.

The Bootstrap as an Empirical Bayes Process

Point estimation is not the only area where empirical Bayes methods can be used to

improve one’s understanding of an applied statistical problem. The bootstrap has become

an extremely popular method for analyzing complicated data. The basic idea behind the

bootstrap, commonly referred to as the “plug-in principle” or the “bootstrap principle”,

begins with a goal of estimating some functional of the true unknown distribution, θ(F0).

Since the true distribution is unknown, a sample (x1, . . . ,xn) is collected from the population

and F0 can be estimates and used to calculate θ(F̂). F̂ is typically taken to be the empirical

distribution function resulting in the non-parametric maximum likelihood estimate (8). For

ease of notation F̂ and F1 will be used interchangably. The bootstrap principle suggests

plugging in F1 will likely result in good estimates, depending on the resemblance between

F0 and F1 (9).

Although this initial point estimation is the simplest instance of the plug-in principle, it

is far from the most useful. Now suppose that there is a bias associated with our estimate,

θ(F1), which requires an adjustment. Instead of using θ(F1) as our estimate of θ(F0), we

could introduce an additive correction, t, giving

θ(F0)≈ θ(F1)+ t

where

t = θ(F0)−E[θ(F1)|F0].

Although the ability to make this correction would be ideal in practice, the definition of

5



t again requires that the analyst know the true value of θ(F0). The bootstrap principle

suggests a potential solution replacing Fi with Fi+1. This eliminates the need for knowledge

of F1 but requires the estimation of E[θ(F2)|F1], which is done using a bootstrap resampling

scheme. The sample data is resampled with replacement B times. Each time a new θ(F2,i)

is calculated. When the sampling is complete the estimate is then calculated as

Ê[θ(F2)|F1] =
1
B

B

∑
i=1

θ(F2,i).

We can now estimate t using the bootstrap principle as

t̂ = θ(F1)−E[θ(F2)|F1]

and alter our point estimate accordingly.

Understanding the bootstrap/plug-in principle is the key to understanding the bootstrap

as an empirical Bayes procedure. This principle not only guides the application of the

bootstrap, but was the central idea in Robbins’ original presentation of empirical Bayes

methods (recall that his formulation called for writing the posterior as a function of the

unknown prior predictive distribution and then replacing it with the empirical distribution).

A deeper understanding of this relationship requires a slightly different formulation of the

bootstrap as repeated multinomial draws from the observed data.

Suppose that as the analyst I want to conduct a Bayesian analysis of my data, ultimately

calculating my estimate of θ(F0) from the posterior distribution. Also suppose there is a

discrete distribution FX that places a certain probability pi on each point in the support. A

logical model to consider would be the Dirchlet-multinomial conjugate model, which gives

p∼ Dir(α)

f (x|p) = ∏
n
i=1 pi, i|xi ∈ x1, . . . ,xn

p|x∼ Dir(α +N{i|xi∈x1,...,xn})

6



where N{i|xi∈x1,...,xn} is a vector corresponding to the number of times a particular point in

the support of X appeared in the sample. Now consider a bootstrap analysis of the same

data which would yield

x∗ ∼ 1
n

Mult(n, p̂)

since the bootstrap samples are multinomial draws on the observed data. This is very

similar to the result of the Bayes analysis when α ≈ 0, i.e. when the prior weight is evenly

distributed over the observed data points. Thus bootstrap methods can be thought of as

approximating samples from the posterior predictive result from an empirically defined

prior distribution.

1.1.3 Latent Class Models as Empirical Bayes Methods

Another application in modern statistics that relies heavily on empirical Bayes methods

is the latent class model. Latent class models are useful when there is a categorical covariate

that is unmeasured, but crucial for the model’s success. These models rely heavily on

the expectation maximization (EM) algorithm to obtain maximum likelihood estimates.

As an example consider a binary latent class model. The EM fitting process starts with

random class assignments and updates the probability of class membership using the fitted

likelihood for two classes. In other words there is an estimated prior probability of class

assignment that is iteratively updated along with the likelihod fits as the EM algorithm

progresses. When convergence is achieved, the result is estimates of the prior probability of

class assignment which are updated via the likelihoods to yield an empirical Bayes posterior

estimate of class membership.

7



Chapter 2

Modeling Partial Surrogate Outcomes: applications to acute kidney injury

2.1 Introduction to the Chapter

This chapter begins by addressing an applied problem, and expands on the statistcal

ideas that must be considered in order to properly address the problem. I begin with an

explanation of the applied scenario which served as the inspiration for this section. This

example will serve as motivation for a general statistical issue that has gone unrecognized

in the clinical literature to this point. Having elaborated on the statistical issues, simulated

examples will be used to illustrate the statistical principles that allow the problem to be

addressed. Finally, I will return to the original problem and attempt to demonstrate how

this novel statistical approach improves the modeling of relavent clinical outcomes.

2.2 Acute Kidney Injury

Acute kidney injury (AKI) can refer to any number of situations in medicine. It is

meant to describe a patient that has experienced a physiologic stress resulting in damage to

the kidneys. This damage can refer to structural damage or a decreased filtration capacity.

Historically the way this has been assessed clinically is using a functional biomarker called

serum creatinine and the need for hemodialysis. AKI has been linked to a host of adverse

clinical outcomes including increased length of stay, development or progression of chronic

kidney disease (CKD), and mortality (10; 11).

Creatinine is a byproduct produced by the breakdown of muscle in the body. As a per-

son goes about their daily business the production and removal of creatinine from the serum

reaches a steady state which is representative of the kidney’s filtration. This measurement

at steady state provides the definition for chronic kidney disease by providing an estimate

of a patient’s glomerular filtration rate at baseline. In an acute setting however, it is un-

8



clear how good of a marker serum creatinine is when it comes to assessing the condition of

the kidney. When exposed to physiological stress that causes kidney damage, the kidneys

have the ability to transiently increase their functionality which masks the injury from any

change in a functional biomarker, such as serum creatinine. This ability to increase filtra-

tion is commonly known as functional renal reserve. Perhaps the most poignant example of

serum creatinine’s failure to detect nephron damage is that it is not uncommon for patients

who are donating a kidney for transplant to not experience any increase in their serum cre-

atinine despite having permanently lost roughly 50% of their nephrons as a result of the

surgical procedure.

Despite its apparent limitations as a marker of injury in the perioperative period, serum

creatinine elevation has been the centerpiece of virtually every attempt to define or detect

AKI. The most widely known criteria (RIFLE, AKIN, and KDIGO) by which AKI is de-

fined all contain elevated serum creatinine to some degree as their most sensitive marker

of damage (12; 13; 14). Attempts in the clinical literature to either identify clinical factors

that are associated with nephron damage or to predict which patients will develop it have

largely utilized multivariate logistic regression models whose outcomes are one of these

three most popular criteria, which largely represent a dichotomization of serum creatinine

change with minor contributions of extreme damage markers like the development of new

dialysis. Due to the degree to which AKI has become synonymous with serum creatinine

elevation in clinical circles and for the sake of clarity, for the remainder of this chapter

“AKI” will refer to experiencing an acute serum creatinine increase and “nephron damage”

will refer to sustaining some physical kidney damage that may or may not result in serum

creatinine increase.

The primary question of clinical interest is whether it is possible to overcome serum

creatinine’s deficiency as a biomarker in order to makes legitimate inferences about likely

associations with nephron damage and how best to predict it. For the purposes of this

chapter we will be focused on perioperative AKI and nephron damage. Perioperative AKI
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is when the damage occurs during the time directly after a surgical intervention and is often

attributed to the stress of the surgery.

2.3 Statistical Issues with Modeling AKI

The first and most obvious statistical issue with the modeling of AKI to this point is

the shear amount of information that is discarded through the arbitrary dichotomization of

serum creatinine change. This approach inappropriately treats minor and severe cases of

AKI as though they were the same. For the duration of the chapter examples will revolve

around modeling AKI continuously using linear models.

In the previous section, I have given a very brief summary of the biological consider-

ations of AKI. In statistical terms this biology suggests that serum creatinine change is a

surrogate measure of nephron damage, which is not easily observable. As a surrogate there

are certain criteria that must be upheld in order for serum creatinine change as an outcome

to be a valid surrogate for nephron damage. In 1989, Prentice described a set of four criteria

sufficient to ensure valid hypothesis tests (15).

1. The proposed risk factor must be related to the surrogate. f (S|Z) 6= f (S)

2. The proposed risk factor must be related to the true outcome. f (T |Z) 6= f (T )

3. The surrogate must be related to the true outcome. f (T |S) 6= f (T )

4. The risk factor must be related to the true outcome only through the surrogate.

f (T |S,Z) = f (T |S)

Although these criteria, when satisfied, assure legitimate hypothesis testing they are

often difficult or impossible to verify in practice and therefore often have to be taken on

assumption based on the best available scientific knowledge. This is especially true in cases

where the true outcome is impossible to measure such as with nephron damage. Review-

ing the criteria with serum creatinine change in mind as a surrogate of nephron damage,
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suggests that with careful covariate selection Prentice criteria 1, 2, and 3 are quite likely

satisfied. Criterion 4 on the other hand is almost certainly in gross violation. Due to the

previously described functional renal reserve, we expect that there are patients experienc-

ing real nephron damage which do not manifest changes in the surrogate, serum creatinine.

This would mean that the covariates Z would contain information about the truth that was

not contained in S, violating the 4th criterion. This violation means that hypothesis testing

with serum creatinine change as an outcome is in no way guaranteed to have the nominal

error rate as a test for associations between covariates and nephron damage.

To reiterate, criterion 4 failed due to the fact that nephron injuries can be masked from

serum creatinine changes when the amount of damage fails to exhaust the patient’s func-

tional renal reserve. However, if we were to restrict our population under study to those

whose functional renal reserve was exhausted criterion 4 would be quite plausible. In other

words, there exists a subpopulation in which serum creatinine change is likely a valid sur-

rogate for nephron damage. In the complement population the effects of nephron damage

on serum creatinine are masked producing a violation of not only Prentice’s 4th criterion

but likely criteria 1 and 3 as well.

This concept that a measure could be a valid surrogate in one subpopulation and an

invalid surrogate in a complementary subpopulation has lead me to adopt the term partial

surrogate.

2.4 Partial Surrogates

Definition: A partial surrogate is a measure that satisifies Prentice’s four criteria for a

given subpopulation but does not in its complementary subpopulation.

The statistical approach to dealing with a partial surrogate is situationally dependent.

For example, suppose you had an indicator variable in your data set that defines the valid

and invalid surrogate subpopulations. Then an analyst can simply conduct the analysis in
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the valid surrogate subpopulation by performing the appropriate regression:

Yi = (1− Iinvalid)(Xiβ + εi)+ Iinvalid(Xiγ +δi), ε ∼ N(0,σ2), δ ∼ N(0,τ2).

If the subpopulation information is unavailable as in the AKI example however, a more

sophisticated approach is required. I propose the use of a latent variable regression model

to attempt to distinguish the subpopulations and achieve valid inference. In 1977 Demp-

ster, Laird, and Rubin demonstrated how the expectation-maximization (EM) algorithm

could be used to obtain maximum likelihood estimates when data is missing under specific

conditions (16).

In either case the analyst must be explicit about what population they believe the results

are generalizable to. The population consideration is due to the fact that there is no guaran-

tee that the valid subpopulation is a representative sample of the entire population. Other

systematic differences between the populations effect to what population the result can be

generalized to. Considering serum creatinine change as an example, we speculate that the

valid surrogate subpopulation consists of the patients whose nephron damage exceeds their

functional renal reserve. It is therefore easy to imagine this subpopulation representing

those with some combination of severe nephron damage and compromised baseline renal

function. Therefore after fitting the model it is necessary to consider whether science sug-

gests extrapolation to other populations is reasonable or whether covariate realtionships

with nephron damage may differ in lower risk populations.

2.4.1 Ignoring the Partial Surrogate

In order to motivate the discussion of the treatment of partial surrogates in the non-

trivial case where the subgroup indicator variable is missing, consider the consequence of

ignoring the partial nature of the surrogate as it has been done in the clinical literature on

perioperative AKI to this point. Again we will restrict consideration to the linear model

12



of the continuously valued outcome. Suppose that there is a single parameter of interest β

whose relationship with the true outcome, T , is given by

ti = βxi + εi, εi ∼ N(0,1).

Now assume that for this particular problem T cannot be observed. Instead, S is ob-

served which is related to T . To draw further analogy to the AKI problem, suppose that S

is equal to T in a subpopulation and in the complementary population of proportion p, S is

a standard normal deviate. If we ignore the partial surrogate nature of S, we would fit the

linear model E[S] = Xβ and the maximum likelihood estimate would have expectation

E[(X ′X)−1X ′S] = (X ′X)−1X ′E[S]

= (1− p)(X ′X)−1X ′Xβ + p(X ′X)−1X ′E[Z], Z ∼ N(0,1)

= (1− p)β +0 = (1− p)β .

Ignoring the partial nature of the surrogate outcome results in a biased estimate of the

parameter of interest. In cases where the subpopulations are defined by a threshold effect

below which the surrogate is expected to produce a null value, this bias is manifested as a

null-bias. In the case of linear models the degree of bias is given by the size of the null sub-

population. In the case of perioperative AKI (AKI in the time surrounding surgery) this null

subpopulation accounts for around 70−80% of the entire population. This large null-bias

effect combined with the loss of power resulting from the unnecessary dichotomization of

serum creatinine change explains why attempts in to identify relevant associations between

supposed risk factors and AKI in clinical research have yielded inconsistent results even in

studies that appear to be well-powered with respect to serum creatinine change.

To illustrate this point further, consider again the above scenario in which the true

data generating model is a linear relation. A simple simulation can demonstrate both the

loss in power and the bias introduced by the partial surrogate as a function of the residual
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variance and subpopulation proportion, p, respectively. In the simulation 1000 data points

are generated from the true linear model. In the first simulation the residual variance,

the variance of ε , is allowed to vary from 52 to 152 while the subpopulation proportion

is fixed at 75% of observations being reduced to standard normal deviates. In the second

simulation, the residual variance is fixed at 10 and the subpopution proportion, p, is allowed

to vary from 10% to 90%. In both simulations 5000 replicates are performed for each

experimental situation.

These simulations clearly demonstrate the price that is paid for ignoring the partial

surrogate nature of, S. Depending on the structure of the problem, i.e. the Var(ε) and

p, the analyst will be operating at substantially reduced power and be obtaining biased

estimates of β even in this case where in the valid subpopulation S = T , which will not

necessarily be true generally, see Figure 2.1.
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Figure 2.1: UL: Difference in power between the analysis of the true outcome (solid) and the analysis of
the surrogate outcome (dashed) over various values of residual variance. LL: Relative efficiency of surrogate
analysis to the true outcome analysis over various values of residual variance. UR: Difference in expected
value of the coeficient estimate over various subpopulation proportions, p, between the true outcome analysis
(solid) and the surrogate outcome analysis (dashed).
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2.4.2 Latent Variable (Mixture) Models for Partial Surrogates

The mixture model approach to dealing with a latent categorical variable, in the case

of AKI this is subpopulation ID, is well developed and will only be briefly summarized

here. As previously stated, if the subpopulation were known it would be a simple matter

to conduct the analysis within the subpopulation for which the surrogate is valid, or to

perform a stratified analysis using the model

Yi = (1− Iinvalid)(Xiβ + εi)+ Iinvalid(Xiγ +δi), ε ∼ N(0,σ2), δ ∼ N(0,τ2).

Given that certain conditions hold, The mixture model approach provides maximum

likelihood estimates for β despite the missingness of the subpopulation indicator that pre-

cludes the fitting of the above model. This is accomplished by using the expectation max-

imization algorithm (16). The EM algorithm is an iterative algorithm that sequentially

calculates the expected log-likelihood given some current parameter values and then cal-

culates new parameter values by maximizing the expectation over the parameters. This

process is continued until the algorithm converges to a maximum with care taken to ensure

that the attained maximum is a global one.

In the case of a partial surrogate, the latent factor we are concerned with defines the

subpopulation in which S is a valid surrogate for T . The goal of the EM procedure is to

come up with a probability that a given patient is from one subpopulation or the other. In

clinical problems these subpopulations will define two phenotypes exhibited by patients.

For example, in the AKI problem we expect that one of the two phenotypes will exhibit little

to no relationship between preoperative and intraoperative patient characteristics and the

surrogate, serum creatinine elevation, whereas the other will suggest clinically meaningful

relationships. The more distinct and less variable these phenotypes are, the more reliable

the EM procedure will be at assigning probabilities that a given patient is of a particular

phenotype.
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The mixture model that results from the EM-procedure is an empirical Bayes type

model. It consists of two linear regression models representing the two phenotypes de-

scribed above. These two models are combined by the subpopulation proportion p.

Yi ∼ p̂ f1(Y |X)+(1− p̂) f2(Y |X)

This model weights the two linear models by the estimated subpopulation proportion. This

estimate of the subpopulation proportion is know as the prior mixing proportion and is

updated at each step of the EM algorithm. This prior proportion is then combined with

with the likelihood ratio of the two linear model pieces, the relative probability that a patient

exhibits a particular phenotype, to give a patient specific probability of belonging to a given

phenotype, which I shall denote p̂i.

p̂i =
oi

1+oi
, oi =

1

1+ p̂
1−p̂

f1(Yi|Xi)
f2(Yi|Xi)

In the AKI example p̂ and p̂i are defined to represent the marginal (prior) and person spe-

cific (posterior) probabilities of belonging to the phenotype that shows little to no relation

between suspected risk factors and serum creatinine change.

These person specific probabilities are used to weight each participant’s contribution

to each of the phenotype linear models. If patient p̂4 = 0.80 on the last iteration of the

EM algorithm then patient 4 will contribute 80% weight to the model estimating the null

phenotype and 20% weight to the model estimating the valid surrogate phenotype. The

phenotype models can thus be estimated via weighted least squares as

minβ

(
n

∑
i=1

(1− p̂i)(yi− xiβ )
2

)
and minγ

(
n

∑
i=1

p̂i(yi− xiγ)
2

)
.

Fitted values can be obtained for the mixture by weighting the predicted values from the

two phenotype models by their personal empirical Bayes posterior probabilities of being
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from the appropriate phenotype.

When the phenotypes defined by the partial surrogate subpopulations are sufficiently

distinct and precise, it is possible to obtain maximum likelihood estimates and correspond-

ing hypothesis tests of suspected risk factors within the phenotype defined by the valid

surrogate subpopulation regardless of whether the subpopulation ID variable is available.

The analyst must then utilize scientific knowledge to determine which populations the re-

sult is generalizable to.

2.5 Simulated Examples

2.5.1 Example 1

Simulations done in R version 3.2.0.

Having outlined the statistical principles behind using mixture models for making valid

statistical inferences when presented with a partial surrogate, these principles will now be

demonstrated via a simulated example. This example was designed to mimic the suspected

biology in the AKI example. It contains two suspected risk factors, A and B. A is continu-

ously values whereas B is binary. These risk factors are linearly related to the true outcome,

T . Each patient is assigned a positively valued ci representing their person specific func-

tional renal reserve. The partial surrogate is equal to Ti− ci in 25% of the population and

reduced to a Normal deviate in the remainder of the population.

Ai ∼ 0.7N(0,1)+0.3N(0.2,1)

Bi ∼ Bern(0.7)

Ti = 0.518+0.3Ai +0.8Bi

ci ∼ Gam(2,2)/5

Ui ∼Uni f (0,1)

Si = I[Ui>0.25]N(0,0.3)+(1− I[Ui>0.25])(Ti− ci)

500 samples were generated using this mechanism. The data were then analyzed using
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linear regression of S on A and B and the corresponding mixture model approach.

Estimate Std. Error Pr(>|t|)
Intercept 0.0509 0.0402 0.2062

A 0.0671 0.0285 0.0190
B 0.1989 0.0477 0.0000

Table 2.1: Results from linear model analysis of the surrogate, S.

As previously discussed ignoring the partial surrogate nature of S in this type of scenario

results in a null bias in estimating the coeficients and overly conservative hypothesis testing,

see Table 2.1. The BIC for the linear model was 719.55.

Estimate Std. Error Pr(>|t|) Estimate Std. Error Pr(>|t|)
Intercept -0.0443 0.0231 0.0559 0.3585 0.0111 0.0000

A 0.0073 0.0161 0.6473 0.2988 0.0086 0.0000
B 0.0599 0.0274 0.0294 0.7999 0.0132 0.0000

Table 2.2: Results from mixture model analysis of the surrogate, S.

The same analysis was conducted with the mixture model approach. Because this ex-

ample was designed with the biology of the AKI problem in mind and the surrogate is a

nonuniform translation of the true outcome within the valid subpopulation (i.e. the surro-

gate is equal to Ti−ci when not reduced to nullity), it is expected that the mixture approach

will result in one component with largely null associations and one component with unbi-

ased estimates of the associations. Table 2.2 shows the results of the two mixture model

components verifying this expectation. The BIC for the mixture model was 514.67. Cali-

bration plots for both the linear and mixture model approach are given in Figure 2.2

This simulated example demonstrates how the mixture model can acheive accurate es-

timates of the data generating parameters by accounting for partial surrogate nature of S. It

also shows the hazard of pooling estimates across phenotypes.
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Figure 2.2: Calibration plots for the linear model fit (left) and the mixture model fit using posterior probabil-
ities as weights (right)

2.5.2 Example 2

However, this method is not without its limitations. As previously noted, this method is

dependent on the phenotypes being sufficiently different so that the EM procedure can

determine a reliable probabilistic framework for which phenotype a given observation

belongs to. In this second example the data generating mechanism is changed so that

Ti = 0.518+ .1A+ .2B effectively reducing the distinction between the phenotypes. The

analysis was then repeated as before.

Estimate Std. Error Pr(>|t|)
Intercept -0.0205 0.0217 0.3454

A 0.0307 0.0154 0.0466
B 0.0698 0.0258 0.0070

Table 2.3: Results from linear model analysis of the surrogate, S.

Again ignoring the partial surrogate nature of S in this type of scenario results in a null

bias in estimating the coeficients and overly conservative hypothesis testing, see Table 2.3.
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Figure 2.3: Calibration plots for the linear model fit (left) and the mixture model fit using posterior probabil-
ities as weights (right)

The BIC for the linear model was 103.19.

Estimate Std. Error Pr(>|t|) Estimate Std. Error Pr(>|t|)
Intercept 0.1415 0.0146 0.0000 -0.1715 0.0217 0.0000

A 0.0718 0.0100 0.0000 -0.0120 0.0160 0.4540
B 0.0211 0.0172 0.2210 0.1074 0.0260 0.0000

Table 2.4: Results from mixture model analysis of the surrogate, S.

Table 2.4 shows the results of the two mixture model components. The BIC for the mix-

ture model was 200.83. Calibration plots for both the linear and mixture model approach

are given in Figure 2.2

In this case the EM procedure was unable to resolve the different phenotypes. Whereas

in the previous example the BIC of the mixture model dominated that of the linear ap-

proach, in this example the mixture approach is substantially worse than the linear model

due to the increased number of fit parameters. The failure of the EM procedure to dis-

tinguish the phenotypes is further evidenced by examining the distribution of posterior

probabilities, p̂i, see Figure 2.4. The high density in the middle of the histogram represents

21



a high degree of entropy, uncertainty of phenotype assignment, and can be used along with

the BIC as a diagnostic for failure of the EM procedure.
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2.6 Clinical Example

This clinical example is based on data collected as part of a clinical trial examining the

effect of preoperative statin administration on the development of AKI following cardiac

surgery. The dataset contains data from 541 patients. Suspected risk factors were identified

by clinical subject matter experts. Serum creatinine measurements were made preopera-

tively and on the first postoperative day on all patients. Serum creatinine measurements

were available on the second postoperative day on all but three patients. The primary out-

come is the maximum serum creatinine change over the first two postoperative days. The

data was analyzed via a linear and mixture model approach.

2.6.1 Linear Model Analysis of Perioperative AKI

The maximum serum creatinine change over the first two postoperative days was re-

gressed on the suspected risk factors using a multivariate linear regression model, see Table

2.5. The BIC for the model was 525.38
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Estimate Std. Error Pr(>|t|)
Intercept -0.3324 0.2890 0.2506

BMI 0.0100 0.0028 0.0005
Urine Output -0.0001 0.0001 0.0250

Fluid Given 0.0000 0.0000 0.8304
Baseline SCr 0.2898 0.1710 0.0907

Age 0.0031 0.0033 0.3472
Length of Surgery 0.0006 0.0002 0.0091

Maximum Lactate Level -0.0129 0.0130 0.3187
Cross Clamp Time 0.0007 0.0003 0.0491

Baseline - Mean Diastolic -0.0013 0.0013 0.3298
Pulse Pressure 0.0011 0.0006 0.0742

Bypass Time 0.0003 0.0003 0.2558
Hespan 0.0002 0.0001 0.0337

Hypertension 0.0196 0.0362 0.5882
Diabetes -0.0241 0.0364 0.5075

CHF 0.0009 0.0361 0.9801
COPD -0.0697 0.0686 0.3106

HB -0.0312 0.0092 0.0008
Baseline SCr*Age -0.0018 0.0026 0.4860

Table 2.5: Results from linear model applied to clinical data.

2.6.2 Mixture Model Analysis of Perioperative AKI

The mixture model was applied to the same clinical data. The two phenotype com-

ponents of the mixture were identical to the linear model fit in the previous section. The

results from both components are given in Table 2.6. The BIC for the mixture model was

270.03.
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Estimate SD p Estimate SD p
Intercept -0.1134 0.1705 0.5063 -0.2926 0.6634 0.6594

BMI 0.0033 0.0016 0.0353 0.0263 0.0079 0.0009
Urine Output -0.0000 0.0000 0.1374 -0.0003 0.0001 0.0083

Fluid Given -0.0000 0.0000 0.6474 0.0000 0.0000 0.3639
Baseline SCr -0.0876 0.1382 0.5268 0.6862 0.5583 0.2196

Age 0.0021 0.0021 0.3187 0.0060 0.0085 0.4800
Length of Surgery 0.0004 0.0001 0.0009 0.0007 0.0005 0.1793

Maximum Lactate Level 0.0029 0.0057 0.6164 -0.0377 0.0283 0.1838
Cross Clamp Time -0.0002 0.0002 0.3223 0.0022 0.0008 0.0045

Baseline - Mean Diastolic -0.0008 0.0006 0.2411 -0.0029 0.0027 0.2847
Pulse Pressure 0.0005 0.0003 0.1105 0.0016 0.0014 0.2374

Bypass Time 0.0000 0.0001 0.8849 0.0010 0.0006 0.0857
Hespan -0.0000 0.0000 0.9372 0.0004 0.0002 0.1138

Hypertension -0.0093 0.0156 0.5530 0.1298 0.0655 0.0481
Diabetes -0.0164 0.0180 0.3629 -0.1488 0.0973 0.1269

CHF -0.0015 0.0180 0.9316 0.1132 0.0875 0.1961
COPD -0.0335 0.0304 0.2706 -0.1496 0.1367 0.2744

HB -0.0073 0.0046 0.1149 -0.0835 0.0237 0.0005
Baseline SCr*Age 0.0003 0.0021 0.8692 -0.0066 0.0077 0.3915

Table 2.6: Results from the mixture model applied to clinical data. The estimates on the left represent the
null-subpopulation and the right represent the valid surrogate subpopulation.

2.6.3 Comparing the Linear vs. Mixture Model Approach

The mixture approach was heavily favored by BIC with a difference of 255.35 between

the two models. This is evidence that the phenotypes were sufficiently different to allow

the EM algorithm to seperate them reliably. This is further evidenced by examining the

distribution of posterior probabilities produced by the EM algorithm, see Figure 2.5.

The difference in fit between the linear and mixture model approaches is also evident

when examining the calibration plots that compare the linear model fit to that of the mixture

model with posterior probability assignments, see Figure 2.6.

It is clear that the mixture model provides superior fit, and the hallmarks of having suc-

cessfully identified the phenotypes defined by the partial surrogate are present. Thus, we

expect that the component of the mixture representing the valid surrogate subpopulation

contains legitimate hypothesis tests of association between the proposed risk factors and
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Figure 2.6: Calibration plots for the linear (left) and mixture (right) models applied to the clinical dataset.

27



nephron damage because we know suppose the Prentice criteria are satisfied in that sub-

population. However, careful consideration must be taken to determine to what surgical

population these results are generalizable. In the partial surrogate’s phenotypes are defined

by a threshold effect, i.e. if the amount of nephron damage you receive is sufficient to ex-

haust your functional reserve the surrogate measure will be valid. As a consequence of this

thresholding patients demonstrating the non-null phenotype are sampled from those who

receive substantive damage and it is not clear that the identified associations will apply to

more mild incidents of damage. These hypothesis tests are therefore legitimate associations

amongst those who develop AKI at the least. Further work is needed to show that these

associations can be valuable for predicting sub-clinical AKI, i.e. those sustaining nephron

damage that are part of the null-phenotype. We will revisit this idea later in the chapter.

2.6.4 Prediction of Short Term Outcomes

Despite having set out to acheive legitimate hypothesis testing with respect to nephron

damage precisely because of serum creatinine’s deficiency as a biomarker, there is no other

standard of any kind to benchmark the performance of the mixture model approach in the

acute perioperative period. Accordingly, if the mixture model were capable of predicting

which patients were likely to develop AKI in the first 48 hours directly after surgery this

would still represent a clinical utility of the model beyond its ability to provide appropriate

hypothesis tests.

Obtaining predictions from a latent variable model does not always yield satisfying re-

sults even when the model fits well. The mixture gives two predictions for each person,

one for each phenotype. Therefore we must predict to which phenotype a patient likely

belongs, or at least their probability of being of a particular phenotype. Having predicted

phenotype probabilities in hand, we can implement an empirical Bayes approach to predic-

tion, i.e. averaging the predictions according to their predicted probability of representing

the correct phenotype.
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Figure 2.7: ROC curves for KDIGO1 (left) and KDIGO2 (right).

A regression-type support vector machine with a radial kernel was fit to the posterior

probabilities resulting from the EM algorithm containing the same covariates used to fit the

mixture model. This model was used to provide predicted probabilities and mixture predic-

tions were calculated as discussed above. The predictive ability of this approach was then

assessed via mean square error (MSE) and area under the receiver operating characteric

curve for various cutoffs determined to be clinically meaningful.

Of the most widely used clinical definitions of perioperative AKI the most current is

the KDIGO criteria (14). This criteria is staged but only the first two stages are represented

in this dataset. The ROC curves for these two clinical criteria are represented in Figure

2.7. The p-values of DeLong’s test for the difference in AUC were 5×10−4 and 0.0013 for

KDIGO I and KDIGO II respectively.

Perhaps the most common measure used to assess prediction accuracy is mean square

prediction error. The apparent mean square prediction error for the two models was 0.123

and 0.112 for the linear and mixture models respectively. This is a relative reduction in

MSE of 8.9% by using the mixture approach. The MSE difference was validated in 2000
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bootstrap replications whose results are presented in Table 2.7.

Mixture Linear p-value
0.115(0.099, 0.13) 0.129(0.121, 0.133) 0.034

Table 2.7: MSE results from 2000 bootstrap replications to validate the model comparison.

By utilizing the support vector machine model to get estimates of the probability of the

latent variable, it is possible to use the mixture model approach to achieve more accurate

predictions of the maximum serum creatinine change within 48 hours than the linear model

is capable of producing. This benefit is due to the support vector machine’s ability to

model abstract relationships to get accurate predictions of the fitted responsibilities from

the EM algorithm. These predictions allow the calculation of an estimated empirical Bayes

posterior probability and corresponding estimate of serum creatinine change.

2.6.5 Predicting Long-Term Outcomes

In a previous section it was suggested that further study would be necessary to under-

stand the population to which associations estimated by the mixture model approach would

be generalizable. In particular, a different approach would be required to demonstrate that

the mixture approach was valid among patients with a more minor degree of nephron dam-

age. As discussed in the previous section, there is no gold standard in the perioperative

period to which the mixture predictions could be compared to support this hypothesis. Mi-

nor injuries could however lead to more long term renal adverse events after the patient

has been discharged from the hospital. The general hypothesis would be that the portion

of the mixture model that represents the valid surrogate phenotype’s predictions could be

extrapolated to lesser renal injuries. Although it is unlikely that this model’s predictions

are well calibrated, it is possible that these predictions maintain a degree of discrimination

that can be utilized for detecting subclinical injury.

Unfortunately among the 541 clinical trial patients in the data used in the last section

only 30 of them had any longer term followup data that could be utilized for a longer term
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Figure 2.8: ROC curve for predicting 90-day eGFR decrease exceeding 20 for the mixture model (solid)
versus perioperative serum creatinine change (dashed).
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analysis. In an attempt to gain more precision in estimating the performance of the mixture

model, a larger data set of cardiac surgery patients is necessary. This data set is observa-

tional in nature and as a consequence has major issues with missing data, particularly lab

values and intraoperative records. These issues will require a modification of the included

variables to exclude variables that are extensively missing. In addition, the patients there

is no compelling reason to believe the patients that have longer-term data available (n =

1268) are a random sample, so there is the potential that the outcome variable is not miss-

ing at random. With all these limitations in mind, a comparison was made as to how well

the mixture model predicts 90-day decreased renal function as compared to perioperative

serum creatinine change.

The most widely utilized measure of chronic kidney function is called estimated glomeru-

lar filtration rate (eGFR). Although also a serum creatinine based measure, because it is

calculated at steady-state conditions it does not suffer from the problems induced on serum

creatinine by the activation of renal functional reserve in cases of acute injury. Decreased

eGFR is indicative of progression of chronic renal disease.

The discrimination of the mixture model vs perioperative serum creatinine change was

first assessed via AUC. A ROC curve was constructed for the prediction of 90-day eGFR

decrease greater than or equal to 20 ml/min/m2, see Figure 2.8. Delong’s test for the dif-

ference in AUCs resulted in a p-value of 0.002. In order to demonstrate that this measure

is not cutoff specific, the two candidate measures were also compared using spearman’s

rank correlation. The correlations with 90-day eGFR change were 0.305 and 0.231 for the

mixture approach and serum creatinine change respectively. A permutation test was done

with 5000 replications to compare these correlations resulting in a p-value of 0.033.

These results suggest that the mixture model approach was able to predict injuries better

than perioperative serum creatinine change. This is evidence that the mixture approach is

able to discern biological changes that serum creatinine cannot.
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2.7 Manuscript 1: Clinical Presentation of AKI results

2.7.1 Abstract

Acute kidney injury (AKI), a serious adverse event following cardiac surgery, is di-

agnosed based on postoperative serum creatinine change. Models for predicting the risk

for AKI have not consistently performed well, likely due to the omission of clinically im-

portant, but practically unmeasurable, variables. We hypothesized that a latent variable

mixture model of postoperative serum creatinine change following cardiac surgery would

partially account for these unmeasured factors and therefore increase power to identify risk

factors of AKI and improve predictive accuracy compared to a traditional linear model. We

constructed a two-component latent variable mixture model and a linear model using data

from a prospective, 653-subject randomized clinical trial of AKI following cardiac surgery

and included established AKI risk factors and covariates known to affect serum creatinine

values. The latent variable mixture model demonstrated superior fit (likelihood ratio of

6.68x1071) and enhanced discrimination (permutation test of Spearmans correlation coef-

ficients, p <0.001) compared to the linear model. The latent variable mixture model was

94% (-13% to 1132%) more powerful (median [range]) at identifying risk factors as the

linear model, and demonstrated increased ability to predict postoperative change in serum

creatinine (relative mean square error reduction of 6.8%). Incorporation of latent variable

mixture modeling into AKI research will allow clinicians and investigators to account for

clinically meaningful patient heterogeneity resulting from unmeasured variables, and there-

fore provide improved ability to examine risk factors, measure mechanisms and mediators

of kidney injury, and more accurately predict AKI.

2.7.2 Introduction

The diagnosis of acute kidney injury (AKI) relies primarily on changes in serum crea-

tinine concentrations (SCr).[13] Changes in serum creatinine, however, can be insensitive
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and nonspecific for renal injury [4,5] due to unmeasured confounders such as changes in

creatinine production, myocyte injury, intravenous fluid administration, and renal func-

tional reserve.[6,7] Many of these unmeasured confounders, also known as latent vari-

ables,[8] represent an important source of patient heterogeneity with respect to how and if

AKI manifests, but are clinically impractical or impossible to measure. Failure to account

for factors like these decreases power to identify risk factors for AKI and hinders accurate

prediction of postoperative AKI. Latent variable mixture modeling improves the ability to

assess the associations between independent variables and an outcome by accounting for

the effect of a latent variable. The model uses measured covariates to empirically stratify

a cohort into subpopulations of patients, represented by a latent variable, which are more

homogenous than the total cohort. These subpopulations are represented by component

models which can be combined to form a comprehensive model to represent the entire

cohort[9]. We hypothesized that a latent variable mixture model would increase power

to identify significant risk factors for AKI and improve accuracy in predicting a patients

postoperative SCr compared to a traditional linear model. To test this hypothesis, we built

a traditional linear model and a two-component latent variable mixture model to predict

SCr in a well-phenotyped clinical trial of AKI following cardiac surgery and compared the

models goodness-of-fit, power to identify established AKI risk factors, discrimination, and

prediction of 48-hour postoperative SCr.

2.7.3 Results

Subject Characteristics and AKI Six hundred fourteen patients comprised the study co-

hort. The cohort was primarily Caucasian, and one third of patients were female (Table 1).

Half of the patients received coronary artery bypass surgery, two-thirds valve replacement

or repair, and three quarters of surgeries were performed with the use of cardiopulmonary

bypass. One hundred thirty five patients (22.1%) developed KDIGO AKI. One hundred

and nineteen of these patients met the 0.3 mg/dL increase within 48-hour criterion, 72 the
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Characteristic All subjects (n=615) 
Age, years 67 (50, 81) 
Female 188 (30.6%) 
African American 26 (4.2%) 
Body mass index, kg/m2 27.7 (22.5, 36.9) 
Medical history   

Hypertension 544 (88.5%) 
Congestive heart failure 243 (39.5%) 
Left ventricular ejection fraction, % 60 (35, 60) 
Myocardial infarction 110 (17.9%) 
Prior cardiac surgery 110 (17.9%) 
Diabetes 202 (32.8%) 
Current smoking 88 (14.3%) 
Chronic obstructive pulmonary disease 64 (10.4%) 
Peripheral vascular disease 170 (27.6%) 

Preoperative medication use   
Statin 416 (67.6%) 
ACE inhibitor 192 (31.2%) 

Baseline laboratory data   
Creatinine, mg/dl 1.01 (0.74, 1.60) 
eGFR, ml/min/1.73 m2 72.8 (38.5 96.7) 
Hematocrit, % 

Perioperative atorvastatin treatment assignment 
34 (25, 43) 
308 (50%) 

Procedure characteristics   
CABG surgery 301 (48.9%) 
Valve surgery 397 (64.6%) 
Cardiopulmonary bypass use 435 (70.7%) 
Cardiopulmonary bypass time, min 110.0 (0, 211.6) 
Aortic cross clamp use 291 (47.3%) 
Aortic cross clamp time, min 0 (0, 139.6) 

Intraoperative fluids  
Intravenous crystalloid, mL 1600 (1000, 3000) 
Intravenous hydroxyethyl starch, mL 0 (0, 0)* 
Urine output, mL 430 (175, 946) 

Arterial lactate, maximum intraoperative, mmol/L 1.7 (0.9, 3.8) 
Length of surgery, hours 5.1 (3.6, 7.8) 

* Only 59 of 615 patients received intravenous hydroxyethyl starch during surgery 1	
accounting for the low 10th, 50th, and 90th percentile values. BP, blood pressure; ACE, 2	
angiotensin converting enzyme; eGFR, estimated glomerular filtration rate using CKD-3	
Epi formula; CABG, coronary artery bypass grafting.	4	

Table 2.8: Cohort characteristics. Binary characteristics are reported as n (%) and continuous characteristics
as median (10th percentile, 90th percentile).
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50% increase within 7-days criterion, and 60 both. Twenty-six patients (4.2% of the to-

tal cohort) developed KDIGO stage II or III AKI, 5 of whom required postoperative renal

replacement therapy.

The two-component latent variable mixture model identified two distinct subpopula-

tions of patients indicating the existence of a latent variable. At the completion of model

fitting, 13% of patients had >50% probability of being in subpopulation 1, and 87% of pa-

tients had <50% probability of being in subpopulation 1 (i.e., 87% of patients had >50%

probability of being in subpopulation 2 (Figure 1)). If patients with a >50% probabil-

ity of being in subpopulation 1 are assigned to subpopulation 1 and patients with >50%

probability of being in subpopulation 2 are assigned to subpopulation 2, then in general

subpopulation 1 tended to be older, with a greater prevalence of hypertension, diabetes,

and congestive heart failure, and a lower baseline eGFR (Supplemental Table).

Latent Variable Mixture Model Subpopulation Assignments The two-component latent

variable mixture model created two theoretical subpopulations based on the hypothesized

existence of a latent variable. At the completion of model fitting, 13% of patients had

>50% probability of being in theoretical subpopulation 1, and 87% of patients had <50%

probability of being in subpopulation 1 (i.e., 87% of patients had >50% probability of

being in subpopulation 2). Figure 1 shows the two distinct subpopulations of patients

identified by the mixture model.

Model fit The latent variable mixture model demonstrated superior goodness-of-fit

throughout the range of predicted SCr (Figure 2), resulting in a Bayesian Information Crite-

ria (BIC) value of 140 for the latent variable mixture model compared to 349 for the linear

model. These BIC values represent a 6.66x1071 times increased likelihood of the latent

variable mixture model providing superior fit compared to the linear model.

AKI risk factor identification and estimation accuracy The latent variable mixture model

identified a significant association between 14 of the 16 established AKI risk factors in-

cluded as covariates and maximum 48-hour SCr, while the linear model demonstrated a
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Risk Factor Linear Model Latent Variable Mixture Model 

  Subpopulation 1 Subpopulation 2 

Age (per 10 years) 0.037 (-0.044, 0.118) 0.040 (-0.021, 0.101) 0.042 (0.016, 0.068) † 

BMI (per 5 kg/m2) 0.040 (0.013, 0.068)† 0.107 (0.081, 0.132)‡ 0.012 (0.005, 0.019)‡ 

History of hypertension 0.005 (-0.046, 0.056) 0.080 (0.002, 0.158)* -0.017 (-0.031, -0.003)* 

History of diabetes  -0.024 (-0.082, 0.035) -0.123 (-0.177, -0.068)‡ -0.007 (-0.021, 0.008)  

Baseline pulse pressure (per 10 
mmHg) 

0.003 (-0.009, 0.015) -0.019 (-0.035, -0.003)* 0.004 (7.2e-5, 0.008)* 

Baseline SCr (per mg/dL) 0.203 (-0.309, 0.715) 0.054 (-0.217, 0.326) 0.158 (-0.023, 0.339) 

Baseline SCr:age interaction -0.001 (-0.008, 0.007) 0.002 (-0.003, 0.007) -0.001 (-0.003, 0.002) 

Baseline eGFR (per 30 
mL/min/1.73 m2) 

0.081 (-0.012, 0.174) 0.045 (-0.066, 0.156) 0.099 (0.051, 0.147)‡ 

Baseline hematocrit (per %) -0.010 (-0.016, -0.005)‡ -0.034 (-0.040, -0.028)‡ -0.003 (-0.005, -0.001)‡ 

Cardiopulmonary bypass time 
(per hour) 

0.006 (-0.018, 0.030) -0.072 (-0.108, -0.036)‡ 0.012 (2.0e-4, 0.024)† 

Aortic cross clamp time (per 
hour) 

0.036 (0.001, 0.072)* 0.156 (0.120, 0.192)‡ -0.006 (-0.018, 0.006) 

Intra-operative hydroxyethyl 
starch volume (per L) 

0.200 (0.000, 0.400) 0.300 (0.100, 0.500)† 0.000 (-0.056, 0.094) 

Intraoperative urine output (per 
L) 

-0.100 (-0.200, -0.048)† -0.300 (-0.400, -0.200)‡ -0.100 (-0.094, -0.016)‡ 

Mean intra-operative MAP 
adjusted for baseline MAP (per 
10 mmHg) 

0.023 (0.003, 0.042)* 0.064 (0.042, 0.086)‡ 0.005 (0.001, 0.009)* 

Maximum intra-operative 
lactate (per mmol/L) 

0.004 (-0.021, 0.028) -0.009 (-0.033, 0.016) 0.013 (0.007, 0.019)‡ 

Length of surgery (per hour) 0.034 (0.009, 0.059)† 0.113 (0.086, 0.140)‡ 0.027 (0.021, 0.034)‡ 

*p<0.05, †p<0.01, ‡p<0.001; BMI, body mass index; eGFR, estimated glomerular filtration rate 

using CKD-Epi formula, SCr, serum creatinine concentration; MAP, mean arterial blood pressure 

	
Table 2.9: Associations between established AKI risk factor covariates and maximum 48-hour serum creati-
nine change from baseline using a linear model and each subpopulation of a two-component latent variable
mixture model. For example, an increase of ten years in age is associated with a 0.037 increase in 48-hour
postoperative change in serum creatinine concentration ( SCr) in the linear model, and a past medical history
of hypertension was associated with a 0.080 increased in 48-hour SCr in the subpopulation 1 component
model. Ninety-five percent confidence intervals are listed after each covariate coefficient estimate.
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significant association between 6 of the 16 established AKI risk factors and maximum 48-

hour SCr (Table 2). Post hoc relative power calculations showed that the latent variable

mixture model had greater power to identify established risk factors as significant for 15

of the sixteen covariates considered compared to the linear model (sign test, p <0.001).

The latent variable mixture model exhibited 94% (-13% to 1132%) more power (median

[range]) to identify established risk factors as having a statistically significant association

with 48-hour SCr as the linear model.

A quantile-quantile (Q-Q) plot revealed that the latent variable mixture model deviated

less from the line of best fit than the linear model (Figure 3), demonstrating that the la-

tent variable mixture model better fulfilled the linear regression requirement of normally

distributed errors. This signifies that the latent variable mixture model has an improved

ability to accurately assess associations between patient characteristics and postoperative

SCr compared to the linear model.

Model Discrimination and Prediction of 48-hour postoperative SCr The latent variable

mixture model demonstrated superior discrimination for predicted SCr compared to the

linear model (Permutation test of Spearmans correlation coefficients, p <0.001). The rela-

tive mean squared error reduction for the latent variable mixture model comparative to the

linear model was 6.8%, meaning that the latent variable mixture model predicted 48-hour

postoperative SCr 6.8% more accurately.

2.7.4 Discussion

In this study of perioperative AKI, a latent variable mixture model had markedly more

power to identify established risk factors for AKI and improved ability to predict a pa-

tients postoperative SCr than a traditional linear model. These benefits were likely due

to superior goodness-of-fit, improved accuracy of covariate coefficient estimation, and en-

hanced discrimination of predicted postoperative SCr. Latent variable mixture modeling

may offer substantial benefits to the study of AKI, and future studies that seek to isolate
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risk factors for AKI, measure mechanisms of AKI, test therapies for AKI, or seek to pre-

dict AKI in clinical cohorts should consider using this methodology. The improvement of

AKI modeling with the latent variable mixture modeling technique indicates that substan-

tial heterogeneity exists within the perioperative AKI population that is not accounted for

by observed covariates, and that reliance on traditional linear modeling techniques which

inherently assume observed covariates are the only relevant covariates obscures this hetero-

geneity. This unaccounted for patient heterogeneity within the AKI population may explain

why numerous AKI prevention and intervention trials have failed to demonstrate efficacy

despite promising preclinical trials. While new to studies of AKI, latent variable mixture

modeling is an established statistical methodology to account for patient heterogeneity in

other clinical domains. It has long been used in psychology and genetics research,[10,11]

and more recently in oncology. For example, the use of latent variable mixture modeling

to model small cell lung cancer growth dynamics from serum biomarker data has improved

the prediction of treatment outcomes and decreased reliance on sequential imaging. [12]

In acute lung injury, a latent variable mixture modeling technique recently identified pa-

tient phenotypes associated with differential treatment effects of high versus low positive

end expiratory pressure where traditional modeling had failed[13]. Identification of latent

variable subpopulations in patients at risk for AKI may also lead to the identification of

subpopulation-specific treatment benefits, enhanced risk stratification, and improved pre-

diction of long-term outcomes. In the current study, the latent variable mixture model

displayed greater power to identify established risk factors for AKI. This improvement

results in increased power to identify and characterize novel candidate risk factors, includ-

ing baseline characteristics, intraoperative exposures, perioperative biomarkers, and patient

management techniques that could be modified to reduce AKI. A latent variable mixture

modeling assessment of candidate factors will increase discernment of their effects on AKI

and benefit the search for other non-latent, modifiable AKI risk factors, particularly in mod-

estly sized patient cohorts where power may be low. Development of the latent variable
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mixture model does not itself identify the latent variable or binomial pattern of variables,

but can suggest potential candidates including renal functional reserve, genetic polymor-

phisms, clusters of disease exposure, fluid management strategies, or surgical treatments.

For example, renal functional reserve is a potentially source of heterogeneity in suscepti-

bility that leads to variation in the manifestation of AKI across patients. [7,1419] In our

study, older age and higher comorbidity burden (e.g. diabetes, hypertension) is potentially

consistent with a population with less renal reserve compared to subpopulation 2 in whom

traditional risk modeling performed less well [7,20,21]. In the former, a potential lack of

renal reserve might explain the larger model coefficients associated with established AKI

risk factors such as history of hypertension and diabetes, BMI, baseline hematocrit, aortic

cross clamp duration, and length of surgery. In contrast, the potential presence of renal

functional reserve might contribute to smaller, and frequently statistically insignificant,

model coefficients for established AKI risk factors in subpopulation 2. The latter subpop-

ulation might represent patients in whom sensitive AKI biomarkers may better predict the

potential long-term impact of AKI than currently emphasized risk factors. Irrespective of

the identity of the latent variable, our results indicate that latent variable mixture modeling

can identify subpopulations of patients that may be used to enrich outcomes in clinical tri-

als, target monitoring and interventions, and shed novel insight into the pathophysiology

of AKI. Strengths of this study include the use of high-quality unbiased data collected as

part of a prospective clinical trial with little to no missing data. We also retained serum

creatinine as a continuous variable to enhance AKI discrimination and prediction [22,23].

At the same time we acknowledge potential limitations. We did not evaluate latent variable

mixture models with more than two subpopulations or perform latent class analysis to em-

pirically determine the number of subpopulations to model. Given the goal of comparing

latent variable mixture modeling to traditional linear modeling techniques, we selected the

simplest latent variable mixture model for this initial assessment. We observed dramatic

results, but increased latent variable flexibility could further improve AKI modeling. A
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second limitation was the small number of patients that developed moderate or severe AKI

(100% or 200% SCr KDIGO stage II/III), which limited our power to compare latent vari-

able mixture modeling to linear modeling techniques with high precision in patients with

moderate or severe AKI. A majority of patients that develop postoperative AKI, however,

develop mild AKI, and this outcome remains associated with major short and long-term

morbidity [2426]. In conclusion, a latent variable mixture model increased power to iden-

tify established AKI risk factors, more accurately ranked the severity of patients 48-hour

SCr, and more accurately predicted 48-hour postoperative SCr compared to a linear model.

Latent variable mixture modeling may improve clinicians ability to identify novel risk fac-

tors and advance the understanding of AKI pathophysiology. Employment of this technique

could also advance pre-operative AKI risk stratification and provide opportunities to further

phenotype and target higher risk patient subpopulations with specific monitoring, preven-

tative strategies, and treatments. Latent variable mixture modeling may provide a powerful

technique to advance the study of AKI.

2.7.5 Methods

Patient Sample After Institutional Review Board approval, we collected data from a

653-subject prospective clinical trial of perioperative statin use to prevent AKI follow-

ing cardiac surgery conducted at a large academic medical center from 2009-2014. The

study was conducted according to the Declaration of Helsinki. Patients were eligible to

participate in the trial if they were scheduled for elective coronary artery bypass grafting,

valve surgery, or ascending aortic surgery requiring thoracotomy or sternotomy. Patients

receiving preoperative renal replacement therapy, with liver dysfunction, acute coronary

syndrome, pregnancy, current CYP3A4 inhibitor use, and a history of kidney transplant or

statin intolerance were ineligible to participate. Six hundred fifty-three patients provided

written informed consent. Thirty-eight patients were excluded for failing inclusion criteria

or withdrew for personal reasons prior to study initiation, and one patient that completed
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the study received hemodialysis on postoperative day one and was excluded from 48-hour

SCr model development since this patients SCr no longer reflected renal injury or func-

tion. Thus 614 patients were included. No significant association between perioperative

statin use and postoperative AKI was demonstrated in the clinical trial [27]. Modeling

AKI We chose maximum SCr from baseline to postoperative day 2 to model AKI be-

cause serum creatinine is the most common and best characterized marker of renal injury,

a 48-hour interval is consistent with current consensus guidelines for AKI diagnosis, and

a continuous scale rather than a binomial threshold for AKI preserves the measurement

of AKI severity and provides the best opportunity to ascertain differences between linear

and latent variable mixture modeling techniques. Baseline serum creatinine concentration

was defined as the most recent preoperative creatinine measurement and was measured in

inpatients on the morning of surgery and within a week prior to surgery in outpatients.

Postoperative serum creatinine concentrations were measured at 2:00 am daily throughout

hospitalization. We selected model covariates a priori based on established predictors of

post-cardiac surgery AKI and factors known to affect serum creatinine production or di-

lution [6,9,2831]. Including well-established risk factors for AKI facilitates comparison

of each models ability to identify significant AKI risk factors for the prediction of SCr.

Selected covariates were identical for both the linear model and the latent variable mix-

ture model and included age, body mass index (BMI), baseline glomerular filtration rate

estimated using the CKD-EPI formula (eGFR),[32] baseline serum creatinine, agebaseline

serum creatinine interaction term, baseline hematocrit, presence of diabetes, presence of

hypertension, duration of surgery, baseline pulse pressure, volume of hydroxyethyl starch

administered during surgery, volume of urine output during surgery, duration of cardiopul-

monary bypass, duration of aortic cross clamp, maximum intraoperative arterial lactate

concentration, and average intraoperative mean blood pressure adjusted for baseline mean

blood pressure. Dataset completion was excellent (100% of all serum creatinine data were

complete; >99% of all covariate data were complete).
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Model development A linear model and a two-component latent variable mixture model

were each fit to the maximum SCr from baseline over the first 48 postoperative hours. The

latent variable mixture model is composed of two traditional linear models, known as com-

ponent models. Each component model represents a subpopulation of patients formed by

the latent variable. During fitting, the mixture model agnostically identifies two distinctive

subpopulations based on covariate patterns with respect to observed 48-hour postopera-

tive SCr. Given that there is uncertainty regarding individual patient subpopulation mem-

bership (i.e., subpopulation membership is determined by each patients unknown latent

variable status, 0 or 1), a probability of being in each subpopulation is initially randomly

assigned to each patient and then refined during the iterative model fitting process until

convergence criteria are met. Therefore at the conclusion of model fitting, a patient whose

covariate pattern is very consistent with subpopulation 1, for example, may be assigned a

90% probability of subpopulation 1 membership and a 10% probability of subpopulation

2 membership. In this way, each patients data may contribute to both component models,

improving overall model fit. Each component model represents a data-identified patient

subpopulation. If two distinct subpopulations are not identified during the fitting process,

the first component model would become identical to the traditional linear model and the

coefficients for all the covariates of the second component model would be assigned a value

of zero. After completion of model fitting, we developed a support vector machine algo-

rithm to predict patient subpopulation allocation probabilities based on covariate patterns

but independent of observed SCr. This enables prediction of SCr using the latent variable

mixture model and allows us to compare SCr prediction between latent variable mixture

and linear models.

Statistical analyses Patient characteristics were summarized with the 50th (10th, 90th)

percentiles for continuous variables and percentages for categorical variables. To evalu-

ate the latent variable mixture model relative to the linear model, we compared model:

1) goodness-of-fit, 2) average power to identify established risk factors for AKI, 3) dis-
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crimination (ability to rank subjects in order of predicted SCr), and 4) accuracy to predict

maximum 48-hour postoperative SCr. Goodness-of-fit was assessed with calibration plots

and R2 calculations of predicted SCr versus observed SCr for the latent variable mixture

and linear models. To account for the increased flexibility of the latent variable mixture

model with respect to differential model fit, BIC values were calculated for each model and

compared using a relative likelihood calculation. The ability to identify AKI risk factors

was assessed using a post hoc calculation of each models power to identify established

risk factors as significant. For this calculation, 5000 new datasets were generated from our

original dataset using standard parametric bootstrapping techniques, and both the latent

variable mixture model and the linear model were refit in each new dataset. This produced

a set of new risk factor coefficients and associated p-values for each model. Using these

sets of new model coefficients, individual risk factor identification power comparisons be-

tween the two models were performed, taking our original fitted model coefficients as the

power calculations alternative hypotheses. A sign test was used to determine the signif-

icance of the power comparison between the two models. Additionally, Q-Q plots were

used to assess the normalcy of each models errors in order to compare each models co-

variate coefficient accuracy. Model discrimination was evaluated with a permutation test of

each models Spearmans correlation coefficients between predicted and observed SCr. To

evaluate prediction of maximum 48-hour postoperative SCr, we compared the average of

the square of the difference between the predicted and true SCr (i.e., mean squared error

relative difference [(predicted SCr true SCr)2]) [33]. Models were bootstrapped with 200

replicates to assess for over-fitting and provide internal validation. Statistical analyses were

performed in R (version 3.2.0, R Foundation, http://www.r-project.org) and included pROC

and flexmix packages.

44



Characteristic Subpopulation 1 
(n=80) 

Subpopulation 2 
(n=532) 

Age, years 70 (53, 81) 66 (50, 81) 
Female 22 (27.5%) 164 (30.1%) 
Body mass index, kg/m2 29 (23, 40) 28 (22, 36) 
Medical history    

Hypertension 79 (98.8%) 462 (86.8%) 
Congestive heart failure 46 (57.5%) 195 (36.7%) 
Myocardial infarction 15 (18.8%) 95 (17.9%) 
Diabetes 35 (43.8%) 166 (31.2%) 
Current smoking 8 (10.0%) 79 (14.8%) 
Chronic obstructive pulmonary disease 13 (16.3%) 51 (9.6%) 

    Baseline laboratory data    
Creatinine, mg/dl 1.21 (0.80, 1.92) 1.00 (0.73, 1.51) 
eGFR, ml/min/1.73 m2 52.73 (33.2, 85.2) 74.6 (40.6, 98.0) 

  Procedure characteristics    
CABG surgery 43 (53.8%) 257 (48.3%) 
Valve surgery 50 (62.5%) 344 (64.7%) 
Cardiopulmonary bypass use  59 (73.8%) 373 (70.1%) 
Cardiopulmonary bypass time, min 114.5 (0.0, 214.9) 110.0 (0.0, 210.0) 
Aortic cross clamp use  43 (53.8%) 245 (46.1%) 
Aortic cross clamp time, min 58.0 (0.0, 153.2) 0.0 (0.0, 136.9) 

    Intraoperative fluids   
Intravenous crystalloid, mL 1550 (1000, 2605) 1600 (1000, 3000) 
Intravenous hydroxyethyl starch, mL 0 (0, 500) 0 (0, 0) 
Urine output, mL 350 (149, 876) 450 (186, 989) 

    Arterial lactate, max intraoperative, mmol/L 1.7 (0.7, 3.8) 1.7 (0.9, 3.7) 
Length of surgery, hours 5.4 (3.9, 7.8) 5.1 (3.6, 7.8) 

eGFR, estimated glomerular filtration rate using CKD-Epi formula; CABG, 

coronary artery bypass grafting, max, maximum 

	
Table 2.10: Latent variable mixture model subpopulation characteristics. Binary characteristics are reported
as n (%) and continuous characteristics as median (10th percentile, 90th percentile).
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2.8 Manuscript 2: Statistical Presentation of Partial Surrogates

2.8.1 Abstract

The use of surrogate outcomes for inference has been well-studied in medical literature

and remains controversial. On occasion however, it is necessary to develop models for pre-

diction for which the true outcome of interest is infeasible to measure. The clinical motiva-

tion is perioperative acute kidney injury where serum creatinine change in the perioperative

period is often used as a surrogate for kidney damage. This manuscript demonstrates the

deficiency of serum creatinine change as a surrogate, due to its thresholded nature. These

deficiencies provide the definition of a partial surrogate. Various statistical techniques for

dealing with partial surrogates are examined and characterized, and practical guidance is

provided for the analyst faced with using a partial surrogate outcome.

2.8.2 Introduction

Patient level clinical risk score development and associated decision support applica-

tions are vitally important to modern personalized medicine. For the majority of patholo-

gies this process is straightforward. First, the disease process of interest is defined and data

about relevant covariates are collected. This information is used to develop a statistical

model which meets desired performance measures. However, when the disease process is

difficult to directly measure, surrogate measurements are often used which prevent the use

of simple risk score modeling methodology.

In 1989, Prentice defined necessary surrogate outcome criteria to ensure valid hypoth-

esis testing [1]. Further work on surrogate outcome criteria has focused on the preserva-

tion of type I error rates for inference [2]. However, currently, surrogate outcome criteria

for the development of risk scores remain undefined. These criteria will be developed in

Section 2 of this work. After delineating criteria for the use of surrogate markers in risk

score development, Section 3 will examine the increased modeling complexity associated
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with partial surrogacy situations. Partial surrogates are a class of markers that behave dif-

ferently between patient subpopulations. In one subpopulation they may display a high

association with the outcome of interest while in others they may display no association.

This influences their ability to satisfy Prentices criteria for hypothesis testing. We will

demonstrate that partial surrogate outcomes also complicate our proposed surrogate crite-

ria for risk score prediction. Additionally, evaluating risk scores using a partial surrogate is

complicated by the observation that the model which provides optimum discrimination for

the surrogate outcome does not necessarily discriminate the true outcome well as will be

demonstrated here. The implications of this observation for model selection and evaluation

of likely clinical benefit will be described. Finally, section 4 of this manuscript will explore

analytical challenges introduced by partial surrogacy theoretically and computationally.

In the course of this work, an analysis of perioperative acute kidney injury (AKI) will

be performed to emphasize the clinical importance of our surrogate criteria for risk score

modeling and to demonstrate the limitations and special considerations associated with

partial surrogates in an applied analysis context.

2.8.3 Surrogate Outcomes in Risk Score Models

Clinical risk scores are commonly assessed in two ways. Firstly, by model discrimina-

tion, the degree to which a risk score is ordered similarly to the disease marker of interest.

Secondly, by model calibration, a comparison of the magnitude of the risk score and the

magnitude of the disease marker of interest. Risk scores that are well calibrated are simpler

to implement and are traditionally considered ideal due to the observation that good cali-

bration generally implies good discrimination. Unfortunately, risk scores built on surrogate

outcomes rarely have good calibration. Typically, extensive knowledge of the relationship

between the surrogate marker and the true outcome is necessary to facilitate post-hoc re-

calibration of the risk score in order to achieve acceptable calibration.

Now suppose that we are interested in developing a risk score, R, for a true clinical
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outcome, T, where R is any one-dimensional summary of a patients data that is intended to

help quantify a patients disease state disposition. Next suppose that we are unable to mea-

sure T itself in the timeframe necessary to develop a useful decision support tool. Finally,

suppose a surrogate outcome, S, is readily measurable and related to T either as a mediator

or a consequence. What properties must S possess in order for a model based on S to result

in a beneficial clinical risk score for T? While developing R, our goal will be to obtain a

one-dimensional summary of the data that discriminates well, has good calibration, and

maintaining some interpretability of the model coefficients as these are often used to gen-

erate hypotheses about potential mechanisms. A score, R, should provide higher scores for

higher risk or more severely diseased patients uniformly over the entire range of plausible

scores. We will refer to this last property as being clinically useful. Ideally, clinical utility

should be consistent over the entire range of potential risk scores. Otherwise, Rs discrim-

inatory ability might look favorable when examined over the entire population, despite R

preforming poorly for a particular subset of patients. This could result in a net-benefit to

the population at the expense of a particular group of individuals, raising questions about

the ethical implementation of R for generalized patient care.

What criteria of S make the resulting risk score clinically useful? Following the pattern

of Prentices first and second criteria for valid hypothesis testing [1], surrogate endpoints

must display a relationship between the suspected risk factors to be included in the model,

Z, and both the surrogate and true outcomes, S and T respectively. Stated more formally,

the conditional distributions of S and T on Z must not be equal to the marginal distributions

over Z.

P1. The proposed risk factor is related to the surrogate. f (S|Z) 6= f (S)

P2. The proposed risk factor is related to the true outcome. f (T |Z) 6= f (T )

The necessity of these two criteria, which when applied to risk score procedures will

be referred to as R1 and R2 respectively, is fairly evident. A failure of criterion R1 sug-

gests that the covariates included in the predictive model contain no information about the
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distribution of the surrogate. As such, models built on the surrogate would display little

variation in the risk score R—Z and any variation observed would be random. A failure

of criterion R2 suggests that the covariates are not related in any way to the distribution of

the true outcome, and although R|Z may display a rich variation, it would be expected that

f (T R,Z) = f (T ).

The third Prentice criterion, stating that the conditional distribution of T on S needs

to differ from the marginal distribution of T [1], is the basis for the development of our

surrogate based risk score model criterion, R3. Formally stated,

P3. The surrogate measure is related to the true outcome. f (T |S) 6= f (T ).

However, for risk score development a more restrictive relationship between variables

is necessary in order to obtain good discrimination and produce a clinically useful model.

It is desirable that the distribution of R|T be changing to favor more extreme values as T

increases. Therefore, for some T1 < T2 corresponding to risk scores R1|T1 and R2|T2, we

have that

R3. P(R1 < R2|T1,T 2)> 0.5.

The R3 criterion promotes variation in R over different values of T. This ensures that,

on average, the risk score is producing more extreme values when T is more extreme.

Ideally, the probability described in R3 would be large. Generally this occurs when

the locational shift in the distribution of R|T as T changes is large relative to its variance.

Although not a strict requirement, having a risk score that is precise will naturally enhance

its value. Another optional characteristic that enhances the utility of a model derives from

Prentices fourth criterion [1]. The function of Prentices fourth criterion for hypothesis

testing is to ensure that the surrogate captures the full effect of the covariate on the true

outcome.

P4. The risk factors are related to the true outcome only through the surrogate. f (T S,Z)=

f (T |S)

For risk score models this criterion is unnecessary as long as criterion R3 is satisfied.
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However, the more information about the true outcome that is represented by the surrogate,

the more likely it is that the surrogate will produce a risk score that is clinically useful.

In summary, our criteria for the development of a surrogate outcome based risk score

are:

R1. The proposed risk factor is related to the surrogate. f (S|Z) 6= f (S) R2. The pro-

posed risk factor is related to the true outcome. f (T |Z) 6= f (T ) R3. The distribution of the

risk score conditional on T needs to be shifting toward more extreme values amongst those

at highest risk for disease P(R1 < R2|T1,T 2)> 0.5,T1 < T2,

with P4 and the magnitude of the variance of R|T relative to its distributional shift

playing roles in determining the value of the resultant score.

These novel criteria encompass a surrogate outcomes minimum requirements to pro-

duce a valid risk score. In the next section we will begin to examine partial surrogates, and

how the failure of some of these criteria in patient subpopulations can negatively impact

risk score performance.

2.8.4 Theoretical Considerations Regarding Partial Surrogates

In the ideal situation, R1-R3 would hold in every subpopulation on which a risk score

model is to be trained. In other words, it is beneficial if the phenotype defined by the rela-

tionship between Z, S, and T is homogenous throughout a population, P. If however there

are subpopulations demonstrating differing phenotypes, extra care is required to maximize

the benefit of risk score models and provide valid estimation procedures. When these het-

erogeneous subpopulations exist, we will redefine S to be a partial surrogate.

As an example, suppose you have collected data from P which is composed of two

subpopulations V and I, defined by a latent indicator variable, l. In subpopulation V, R1-R3

hold, suggesting subpopulation V might produce a valuable risk score model. In subpopu-

lation I, however, only R2 holds. This suggests that in subpopulation I, S is not meaning-

fully related to Z or T, and is therefore unlikely to result in a profitable risk score in this
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subpopulation.

The ideal method for risk score development when faced with a partial surrogate is

not immediately apparent. One method is to use traditional modeling strategies in the full

training dataset. In cases where the full dataset satisfies R1-R3 this approach is likely to

result in valuable models. If l was known, an analyst might reasonably decide to use only

the data from subpopulation V for model development, and then generalize the model to

the entire population as appropriate. This second method relies on the relationship between

T and Z being homogeneous over P. Homogeneity will occur if the subpopulations were

defined completely at random. Alternatively, in cases where l is unknown, a latent variable

mixture model can be used to produce a similar result. For the duration of this manuscript,

l is assumed to be latent.

Given these two approaches, the analyst is forced to choose between the full-data ap-

proach and the mixture model approach. For inference and estimation, the choice is clear.

Since failing to account for the partial nature of the surrogate will likely result in a vio-

lation of P4, the mixture model is preferable. For example consider a very simple partial

surrogate where T = S|V + ε(T |S) and S|I = ε(S|I) ,

εi ∼ N(0,σi)

and also T |Z = β(T |Z)+β1Z + ε(T |Z) In this situation the surrogate is equal to truth plus

error when a patient belongs to subpopulation V, but it is a random deviate when the patient

is from subpopulation I. The relationship between T and Z is consistent across the entire
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population. Thus we have

E[T |S] = P(V )

S+P(I)

E[T ] = P(V )S+(1−P(V ))E[T ]

and also that E[T S,Z] = P(V )S+P(I)E[T Z] = P(V )S+(1−P(V ))(β(T |Z)+β1Z).

P4 requires that the distribution of T—S be the same as the distribution of T—S, Z, but

even this simple partial surrogate violates that criterion as evidenced by the differing ex-

pectations.

However, for risk score modeling the decision is less clear. Using the full dataset and

not accounting for the partial nature of the surrogate generally results in risk scores with

lower variance due to higher effective sample size but higher bias due to the inclusion

of training data from population I. The mixture model approach generally boasts reduced

bias by correctly accounting for heterogeneous subpopulations but suffers higher variance

due to diminished training set sample size. There are several aspects unique to a given

partial surrogate situation that should affect the analysts decision regarding these modeling

strategies.

When making the decision between using a traditional model or a mixture model, the

first consideration is whether the added complexity of the mixture model approach is likely

to be beneficial. The mixture models primary purpose is to estimate covariate/outcome re-

lationships in the subpopulations separately. In order for this to practically improve the risk

scores discrimination it needs to result in a different rank ordering of subjects compared

to the traditional approach. This is likely to occur whenever the phenotype expressed in

subpopulation I is substantively different than that in subpopulation V in terms of the rela-

tive magnitude of the associations between the covariates and outcome. This distinctness of

subpopulation phenotypes simultaneously allows the expectation maximization (EM) algo-
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rithm used for model fitting to achieve adequate subpopulation separation while achieving

a more appropriate ordering of predictions with respect to T.

The EM algorithm involves beginning with a prior probability of group assignment,

fitting a model that is weighted by the prior probability to assess the likelihood of subpop-

ulation membership, and calculating a posterior probability of subpopulation membership

based on the prior and the likelihood. This is repeated until convergence is achieved with

the posterior probabilities being used to generate the prior probabilities for the next itera-

tion [3]. Substantial separation between subgroup phenotypes results in the EM algorithm

calculating final posterior probabilities of subpopulation membership that are close to zero

and one, suggesting there is good evidence in the data to direct each patients subpopula-

tion assignment. When the subpopulations cannot be effectively separated, mixture model

variance will be magnified, detracting from its utility and favoring the traditional modeling

approach.

A second consideration affecting the development of partial surrogate based risk scores

is how generalizable a subpopulation model based on V will be to the entire population P. If

separation into subpopulations I and V is completely random, then any result obtained from

subpopulation V should be fully generalizable. If subpopulations I and V are generated by a

non-random process, however, neither modeling technique considered above is guaranteed

to result in a clinically beneficial risk score, and additional external verification would be

necessary to allow generalization.

The last major consideration that influences whether the mixture model approach is

viable for risk score development with partial surrogates is the mixing proportion of the

population. It is necessary to estimate what proportion of observations are from V versus

the proportion from I. If the training data are composed almost entirely of data from V, the

mixture model adds little benefit over the traditional model which ignores subpopulations.

In contrast, if the data are almost entirely from I, there may not be enough information in the

data to accurately fit a model for subpopulation V, which embodies the clinically relevant
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Figure 2.9: DAG displaying the proposed mechanism of partial surrogacy or serum creatinine as a marker of
renal injury.

covariate/outcome relationship. In both of the situations described here partial surrogate

based risk score models are unlikely to provide a benefit over the traditional modeling

approach, because the available dataset does not contain enough information regarding the

true relationship between covariates and the outcome of interest.

In summary there is no one-size-fits-all answer to dealing with partial surrogate out-

comes. At times using the mixture model approach will be of great benefit. At other times

the mixture approach is difficult or impossible to fit resulting in inferior performance when

compared with the more traditional, non-mixture approach.

2.8.5 AKI Example of Risk Criteria

Biological Background

The goal of perioperative AKI research is to accurately assess the degree of kidney

damage a patient suffers due to the physiologic stress of surgery. Perioperative AKI inci-

dence rates range from 10 to 40% for major inpatient surgical procedures [4]. Perioperative

AKI has been associated with increased short and long term mortality, increased hospital

length of stay, increased risk of developing chronic kidney disease (CKD), and increased
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risk of developing dialysis dependence [4, 5]. Unlike other perioperative injuries, there is

currently no direct biomarker of kidney injury or cell death. Therefore, perioperative acute

kidney injury is diagnosed by comparing postoperative serum creatinine concentration to

preoperative baseline serum creatinine concentration [4], figure 1. Despite repeated re-

cent revisions to the diagnostic criteria for AKI [6-8] to increase sensitivity, there remains

mounting evidence that patients sustain kidney damaged undetected by changes in serum

creatinine, referred to as subclinical AKI [9]. This situation is illustrated well by the fol-

lowing example: it is not uncommon for a living kidney donor to experience little to no

serum creatinine elevation despite removal of roughly 50% of their functional kidney mass

[10]. Recent AKI biomarker studies demonstrated that subclinical AKI is also associated

with an increased risk of dialysis and in-hospital mortality, suggesting it represents clini-

cally significant levels of renal injury [11]. Creating a risk score which identifies patients

suffering subclinical AKI in the immediate postoperative period would allow physicians to

adjust these patients treatments to avoid nephrotoxic medications and optimize fluid status

for kidney perfusion, possibly preventing morbidity and mortality.

The dramatic example of living donor kidney donation and minimal serum creatinine

change demonstrates that healthy kidneys have the capacity to temporarily increase their

filtration rate in times of physiologic stress, a characteristic known as renal functional re-

serve [12]. However, renal functional reserve is limited and can be exhausted [12]. In the

subpopulation of patients, V, who overcome their renal functional reserve during periopera-

tive episodes of kidney injury serum creatinine change would be detected, and associations

between relevant risk factors and serum creatinine change would be strong, assuming all

other serum creatinine modifying factors remain constant. In the subpopulation of patients,

I, who do not overcome their renal functional reserve during episodes of kidney damage,

only random or nonspecific changes in serum creatinine levels would be measured, and

the associations between relevant AKI risk factors and serum creatinine change would be

weak. With respect to the proposed risk score criteria outlined in section 2, this suggests
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that subpopulation V will largely satisfy P1-P4 and R1-R3, allowing for simultaneous es-

timation of associations and risk score generation. In contrast, subpopulation I will likely

violate P1, P3, P4, R1 and R3, resulting in poor performance of risk indices based exclu-

sively on this subgroup, biased coefficient estimates, and improper p-values from analyses

based on the entire population.

If subpopulations I and V are defined based on exhaustion of renal functional reserve

as we hypothesize, then it is important to recognize that likelihood of renal functional re-

serve exhaustion is not random. Young, healthy patients are less likely to overcome their

substantial renal reserve than older patients with underlying disease [12, 13]. Therefore

generalizing a risk score generated in subpopulation V to the entire population P requires

validation of that score in the entire population. This validation can be accomplished by

evaluating the partial surrogate based clinical risk scores discrimination of the true out-

come, T. Although there is no gold standard marker for clinically significant kidney dam-

age, one marker thought to be representative is the decline in kidney filtration rate at 90 days

(eGFR90) [14, 15]. The 90 days between surgery and the time this GFR is calculated allows

the kidneys to recover from acute injury if possible and reestablish an equilibrium serum

creatinine concentration. Indeed, current clinical guidelines recommend that patients who

experience AKI should routinely have 90 day eGFR evaluation to assess recovery verses

progression to permanent kidney damage [8]. Therefore, in this analysis eGFR90 will be

considered the true outcome, T.

Dataset Description Data and Models: The data used in this analysis are from 4737

patients who underwent cardiac surgery at a large academic medical center from November

2009 through June 2015. Institutional IRB approval was obtained prior to performance of

all analyses. In this dataset, 1268 patients had 90±15 day eGFR90 measurements available.

Ten preoperative and intraoperative traits were selected a priori for inclusion in the anal-

ysis including age, body mass index, a diagnosis of diabetes, baseline kidney (glomerular)

filtration rate, baseline hemoglobin concentration, volume of intraoperative urine output,
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Table 2.11: Coefficients resulting from the application of the mixture model to the perioperative AKI dataset.
The column on the right represents the coefficients from subgroup V and are noticeably larger in absolute
magnitude than those on the left.

volume of intraoperative intravenous fluid administered, maximum measured intraopera-

tive plasma lactate level, length of surgery, and an indicator for emergent surgery. These

variables were chosen as well-established predictors of AKI and therefore were considered

likely to be valuable predictors of serum creatinine change from baseline [16-20].

For the purposes of model comparisons, a linear model and a two-component mixture

of linear models were fit. The residual error of the two mixture components was not con-

strained. The linear model risk score is the models predictions. For the mixture model,

the risk score is the prediction from the single component of the mixture that is post-hoc

identified to be associated with subpopulation V. Each model was evaluated based on the

following metrics: the AUC for a true outcome greater than 20 and the Spearmans corre-

lation. These metrics represent frequently used methods for model assessment in clinical

literature. The first metric is a common method of risk score implementation and is based

on the presumtion that a change of 20 in eGFR90 is clinically meaningful. The second

metric measures discrimination without requiring an arbitrary cutoff.

The mixture model resulted in moderately well differentiated clusters, a relative en-

tropy=0.607, 728 patients being modally assigned to the V subpopulation and 4009 patients

being assigned to the I subpopulation. The linear model found all the factors to be signifi-
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cant except for history of diabetes and emergency surgery, which it found to be marginally

significant (p=0.085 and 0.063 respectively). The mixture component found all the risk

factors to be significant with the exception of emergency surgery (p=0.072). However, the

magnitude of the coefficients for the linear model were attenuated by an average of 42.8%

(range=[19.2%, 68.1%]), which is consistent with subpopulation Is phenotype being null

or attenuated relative to subpopulation V. The model coefficients are given in Table 1. In

addition, the mixture model represented a substantial improvement in fit over the linear

model with BICs of 2131.3 and 5034.3 respectively.

The area under the ROC curve was calculated for each of the candidate risk scores

and for the gold standard of the observed serum creatinine change for the prediction of an

eGFR90 decline greater than 20 mL/min/1.73 m2. The observed serum creatinine change

had the worst estimated AUC of 0.608 (0.572, 0.645), although not significantly worse

than that of the linear model 0.633 (0.595, 0.672), p=0.262. The mixture model compo-

nent yielded the best AUC of 0.678 (0.641, 0.715), which was a significant improvement

over both the observed creatinine change and the linear model, p=0.002 and p <0.001 re-

spectively. In addition, the ROCs were calculated for each candidate risk score for the

prediction of a serum creatinine increase greater than 0.3 mg/dL, a common clinical cutoff

for AKI [6, 8]. The result was an AUC of 0.602 (0.582, 0.623) for the mixture and 0.663

(0.644, 0.682) for the linear model, p <0.001. The ROCs for both endpoints are given in

Figure 2.

The improvement due to using the mixture components prediction as a risk score for

eGFR90 is further demonstrated by looking at Spearmans rank correlation. The correlation

between the observed serum creatinine change and the observed eGFR90 change was 0.231

(0.204, 0.258). For the linear model the correlation was 0.223 (0.196, 0.250). For the

mixture component the correlation was 0.305 (0.280, 0.331). These values were compared

via a permutation test showing a significant improvement by the mixture model over the

observed value and the linear models prediction, p=0.035 and 0.020 respectively. The low
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Figure 2.10: ROC curves for the linear and mixture model for the prediction of a perioperative change in
serum creatinine concentration >0.03 mg/dL and an eGFR decrease of greater than 20 mL/min/1.73m2 at
90 days postoperatively. Note how using the flawed, partial surrogate for validation would lead to improper
model choice.

values of these correlations is due to the fact that the majority of surgical patients sustain no

kidney injury and thus any change in their eGFR is truly random, i.e. only a small portion

of the populations eGFR changes are ordered by something other than random chance, so

despite the low correlation the improvement provided by utilizing the partial surrogate is

substantial.

This analysis demonstrates a major issue in the development of risk scores usingpartial

surrogate outcomes. If the partial surrogate nature of serum creatinine change had gone

unrecognized in this analysis, the analyst would likely look to how well various models

discriminate with respect to serum creatinine change as a preferred method for both model

selection and characterization. The ROC analysis demonstrates that the analyst would then

conclude that the linear model was clearly superior to the mixture model because its risk

score is ordered more similarly to the surrogate measure. However, the ROC of the true

outcome, eGFR90, shows the true relationship is reversed and that the mixture model pro-

duced a superior ordering. It is critical to identify partial surrogates and account for them

appropriately, since there would be no indication of this flaw in analysis if model per-

formance was judged solely on its ability to predict the surrogate outcome, postoperative

serum creatinine elevation.
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Simulation Studies

To further explore how the relationships between the covariates and the surrogate in-

fluence the benefit associated with a mixture modeling approach compared with traditional

linear modeling, the perioperative AKI clinical data previously described was used to gen-

erate two simulation studies. For each simulation, a two-component mixture of linear mod-

els and a traditional linear model were fit. As before, the residual error of the two mixture

components was not constrained. The linear model risk score was the models predictions.

The mixture models risk score was the prediction from the single component of the mixture

that was posthoc identified to be associated with subpopulation V. The partial surrogate,

maximum 48-hour postoperative change in serum creatinine concentration compared to

preoperative baseline serum creatinine concentration, was represented by S. Each simula-

tion used the fitted models on the perioperative AKI dataset as the data generating mech-

anism for simulation, figure 3. New outcomes were generated for each simulation using

standard errors and coefficient values estimated from the observed data. In each simulation,

each participants posterior probability of subgroup membership was taken from the fitted

clinical data and used to generate a new group assignment via a Bernoulli draw. Surrogate

outcomes for those assigned to group V were drawn from the normal distribution suggested

by the component of the fitted clinical mixture model representing group V. If assigned to

group I, the surrogate was drawn differently in each simulation. The true outcome was also

drawn from the fitted model representing group V and then normalized to have mean 0 and

standard deviation of 50 in order to make the values similar to what is seen with eGFR90.

These simulations are represented graphically in Figure 3. Each simulation was repeated

1000 times and the resultant linear and mixture models were compared using the metrics

discussed above: AUC of predicting a decrease in the true outcome > 20 units, Spear-

mans correlation between the risk score and the true outcome, and an additional metric,

percent mean square error(MSE) reduction of the coefficients from the model generating

coefficients.
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Figure 2.11: Simulation 1 mimics a situation where there are two mechanistic pathways between the covari-
ates and the outcome. Simulation 2 is a situation in which the surrogate is a resultant of the true outcome of
interest on one pathway and is unrelated to it in the other, similar to our proposed AKI mechanism.

Our first simulation exemplifies a scenario where there are substantial differences in the

coefficient magnitudes between the two subgroups. Covariate coefficients for the model

representing subpopulation I were randomly drawn from a normal distribution with mean

zero and standard deviation equal to of the range of coefficient values observed in the

clinical data (0.176). The intercept was fixed at the fitted value of the mixture component

representing group I.

βR,i ∼ N(0, .176), i = 1, ..,10

T |Z ∼ N(Zβ̂V , σ̂V )

S|Z,V ∼ N(Zβ̂V , σ̂V )

S|Z, I ∼ N(Z[βI,1,βR,1, . . . ,βR,10], σ̂I)

The results for each model in the simulation are given as mean (0.05 quantile, 0.95

quantile). The AUCs of the linear model for discriminating a true outcome greater than

20 encompassed almost the entire range of potential values (0.737 (0.518, 0.923)). For

the mixture approach, the AUCs were substantially more consistent (0.950 (0.908, 0.982)).

This result represents an AUC difference of 0.213 (0.034, 0.433). The Spearmans rank
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correlation for the linear model displayed a wide range of values from negative correlation

up to more reasonable values for the particular problem (0.152 (-0.091, 0.349)). Again

the mixture model approach yielded results that were more consistent and clinically useful

(0.501 (0.471, 0.526)). This represents a difference in rank correlation of 0.349 (0.146,

0.603). Lastly, with respect to the MSE of estimated coefficients, the linear and mixture

model results were 0.048 (0.024, 0.077) and 0.004 (0.002, 0.008) respectively. This repre-

sents a relative reduction in the MSE of the coefficient estimates of 89.1% (74.3%, 97.0%)

and an absolute reduction of 0.043 (0.019, 0.072).

The second simulation represents a scenario where no relationship between the covari-

ates and the surrogate outcome exists in subpopulation I. This scenario is analogous to

our clinical example when the body compensates for kidney damage using renal functional

reserve, producing a subpopulation of patients, I, that suffer kidney damage but have no

change in serum creatinine levels. Physiological compensatory mechanisms such as renal

functional reserve can result in no relationship between Z and S in subpopulation I. In these

situations, the surrogate outcomes in I are simply normal deviates about zero.

T |Z ∼ N(Zβ̂V , σ̂V )

S|Z,V ∼ N(Zβ̂V , σ̂V )

S|Z, I ∼ N(0, σ̂I)

For this simulation, the AUCs of the linear and mixture models were 0.928 (0.873,

0.972) and 0.949 (0.906, 0.982) respectively, resulting in a difference of 0.021 (0.002,

0.044) between the mixture and the linear models. The Spearmans rank correlations were

0.394 (0.333, 0.451) and 0.492 (0.454, 0.524) respectively, producing a difference of 0.099

(0.065, 0.133). The MSE of the coefficients were 0.031 (0.028, 0.034) and 0.005 (0.002,
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0.009) respectively. This represents a reduction in the relative MSE of the coefficients by

using the mixture model method of 83.0% (71.5%, 92.1%), and an absolute reduction of

0.026 (0.022, 0.029).

This second simulation demonstrates that the mixture models gain in discriminatory

ability is mildly decreased when the surrogate outcomes from group I are random with

respect to T. However, even in this scenario, the mixture model displays a substantial re-

duction in MSE of the coefficient estimates when compared to the linear model.

Discussion

Whether the goal of an analysis is inference or prediction of a risk model, the value

of recognizing partial surrogacy of an outcome marker is clear. In our clinical example of

perioperative acute kidney injury it was demonstrated that treating serum creatinine change

as a full surrogate rather than a partial one led to the erroneous conclusion that the linear

model approach was much better than a mixture model at measuring kidney injury, repre-

sented by eGFR90. Change in serum creatinine from baseline when used as a surrogate

for true kidney damage. Prior to this work, no account has been given to the partial surro-

gate nature of serum creatinine change, which has resulted in biased estimates of covariate

effects resulting from a serious failure of the Prentice criteria.

The simulation studies included here are meant to highlight the complexity of the deci-

sion on how to model a partial surrogate for the development of a risk score This decision

is heavily influenced by a mixture models ability to resolve subgroup V from subgroup I

and by the relationships between covariates and the surrogate outcome in subpopulation I.

In practice, the only way an analyst can quantify these issues is by fitting a mixture model

whenever partial surrogacy is suspected. By inspecting the fitted mixture model, the analyst

will then be able to assess the models entropy and the clinical significance of the difference

between the phenotypes estimated by the mixture model. This provides the analyst with a

better understanding of the effect partial surrogacy has on her potential risk score model.

Ultimately, the mixture model approach to a suspected partial surrogate provides valuable
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insight into whether Prentices criteria and the criteria proposed here are likely to be satis-

fied.
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Chapter 3

The evaluation of multiple therapies: Challenging the status quo in clinical trial design

3.1 Introduction to the Chapter

As the FDA broadens the classes of clinical trial design that it is willing to admit. A

lot of research is taking place into how to do clinical trials better in the world of drug

development. Unfortunately, even in the world of novel drug discovery these developments

have been slow to catch on. Outside of that high-dollar, research intensive arena the field of

clinical trials is largely still composed of tried and true frequentist, non-adaptive designs.

These trials largely focus on how best to apply existing therapies to optimize some clinical

outcome.

Tuning an intervention to achieve maximum benefit is not an easy task. If you consult

the experts on any given intervention, you will often find vast differences in opinions on

how it is best implemented. Despite differing opinions on how an intervention is best

applied, the standard trial designs rarely incorporate more than one or two intervention

groups. In this chapter we examine how the incorporation of many arms in a trial can

increase efficiency and give substantial amounts of additional information about what the

optimal intervention truly is. This approach is an extension of the platform-type trials

recently advocated by Berry etal.

In our application of platform type trials, a novel adaptive randomization scheme is

implemented. This method revolves around using the likelihood ratio from an empirically

estimated density of treatment effects to set the randomization probabilities. In addition,

recognition of the heterogenous nature of treatment effects when there are a variety of po-

tential implementation protocols requires revisitation of the traditional type I error rate and

power framework in which clinical trials are done since it is likely that any treatment effect

is completely null. As such we investigate the use of Type S error rate control suggested
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by Gelman et.al and a corresponding quantity we deem “fuzzy power.”

Lastly, The simulation studies justifying this work have been incorporated into a Shiny

app that allows the user to specify virtually every parameter of the simulation. This tool

could be used as a template for the clinical trial design phase allowing user-specified treat-

ment effect distributions, run-in period size, total sample size and others.

The primary clinical impetus for this work is the analysis of the efficacy of perioperative

beta blockade for the prevention of perioperative cardiac ischemia. In this work a historical

overview of the clinical development of the problem is undertaken. It is demonstrated how

the affinity for static, two-arm designs lead to evidence that is ultimately inconclusive as

to the intervention’s safety. Included in this work is a meta-analysis of RCTs that examine

perioperative beta blockade any demonstrate the effect of improper pooling over heteroge-

nous treatment effects ultimately leading to a conclusion that is entirely sensitive to the

chosen statistical model.

3.2 Analysis of Perioperative Beta Blockade

The following manuscript was written to illustrate the problems inherent with using

large two-arm studies as the final word in scientific evidence, especially in the face of

significant heterogeneity. For the reader unfimiliar with the history of perioperative beta

blockade, perioperative beta blockade is a proposed prophylactic treatment meant to reduce

the incidence and severity of perioperative cardiac ischemia. Cardiac ischemia occurs when

there is a supply and demand mismatch in the amount of oxygen delivered to the heart

muscle (i.e. the heart requires more oxygen than is being supplied by its blood supply).

The circumstances behind supply shortfalls are generally difficult to modify. For example,

if someone has excessive bleeding during surgery so that their blood pressure falls and

their heart muscle is not adequately profusing with blood, we do everything possible to

restore adequate oxygen supply however these incidental shortfalls are often unavoidable.

The promise of beta blockade is that it functions on the demand side of the equation. By
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slowing the patient’s heart rate, the cardiac muscle requires less oxygen to maintain normal

function.

Early observatinal studies and several small clinical trials showed promise. But a large

confirmatory study, POISE, called into question the treatment’s safety implying that it lead

to a higher rate of ischemic stroke related to decreased vascular pressure. Many practition-

ers dismissed the results of the POISE trial because they disagreed with the relatively large

amount of beta-blocker given as part of its protocol. Since POISE virtually no new studies

have been conducted on beta-blockade as IRB approvals are hard to get. Meta-analyses

disagree on what the current state of evidence is as the conclusion is based entirely on the

rigidity of the chosen statistical model as shown in the following.

3.3 Manuscript: Metoprolol versus other β -Blocking Agents in Perioperative

β -Blockade

3.3.1 Abstract

Background: Recent observational studies suggest that the association between peri-

operative β -blockade and increased risk of mortality and stroke varies based on β -blocker

utilized. Metoprolol, the β -blocker utilized in the POISE trial, is associated with the highest

risk of perioperative adverse events. No previously published meta-analysis has accounted

for this heterogeneity of treatment effect.

Methods: Two meta-analyses of randomized controlled trials were performed examin-

ing initiation of perioperative β -blockade stratified by medication. Outcomes of interest

included non-fatal stroke, non-fatal myocardial infarction, short term ( 30 days) and long

term (> 6 months) mortality.

Results: When short term outcomes are examined, metoprolol, but not other β -blockers,

is associated with a statistically significantly decreased risk of myocardial infarct (p =

0.001), and increased risk of non-fatal stroke (p = 0.037) and short term mortality (p =
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0.036). Support for these associations is almost completely derived from POISE trial data.

Long term outcomes demonstrate a statistically significant difference in the effect of meto-

prolol versus that of other β -blockers (p = 0.049). A protective effect in long term mortality

(p = 0.034) was found for β -blockers other than metoprolol.

Conclusions: The effect of perioperative β -blockade initiation varies by medication,

restricting the generalizability of previous meta-analyses. In addition, previously utilized

30 day endpoints may fail to capture the complexity of postoperative mortality. The current

state of evidence suggests that treatment with β -blockers other than metoprolol may have

a protective effect on long term mortality.

3.3.2 Introduction

For years there has been a controversy surrounding initiation of β -blockade prior to

non-cardiac surgery. Multiple randomized controlled trials have found a decreased risk

of myocardial infarction (MI) with perioperative β -blocker initiation.[1, 2] However, the

POISE trial also found an increased risk of perioperative stroke and 30 day mortality with

treatment. Recently, the discovery of apparent scientific misconduct has resulted in nul-

lification of DECREASE trial data, increasing the controversy and confusion regarding

possible risks and benefits of perioperative β -blockade initiation. Additionally, since the

publication of POISE, three large observational studies involving more than 140,000 pa-

tients have suggested that the association between perioperative β -blockade and increased

adverse event rates varies based on β -blocker utilized.[3-5] These studies consistently find

metoprolol more strongly associated with adverse events than other β -blockers. Given

these new findings, reanalysis of the remaining randomized controlled trial evidence, strat-

ified by medication, is needed.

Patients who develop perioperative ischemia may be at increased mortality risk for

years.[6, 7] If perioperative β -blocker treatment is protective with respect to myocardial

ischemia, as some studies have suggested,[1, 8] then a 30 day follow up period is unlikely
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to capture the entire association of β -blocker treatment on mortality. It is possible that

initiation of perioperative β -blockade results in increased short term mortality secondary

to perioperative stroke but provides decreased long term mortality secondary to protec-

tion from myocardial ischemia. Failing to examine long term mortality endpoints prevents

detection of such a crossing-hazards phenomenon.

A recent meta-analysis by Bouri et al.[9] examining initiation of perioperative β -blockade

and the risk of adverse events after non-cardiac surgery has generated significant discus-

sion, including a front page report in Anesthesiology News, as well as articles in the British

Medical Journal and Heartwire.[10-12] There are three major limitations of the Bouri et al.

study. First, the study is not stratified by medication. It therefore assumes all β -blockers

have similar risk profiles, which is contradictory to available observational data.[3-5] Sec-

ondly, its mortality evaluation is limited to the 30 day post-operative period, preventing the

detection of any long term mortality effects associated with treatment.[9] Finally, 92% of

the weight in the Bouri et al. analysis was from studies utilizing metoprolol (calculation

not shown), but the conclusions drawn are generalized to all β -blockers.

In this work we present meta-analyses examining the effect of perioperative initiation

of metoprolol versus that of other β -blockers on perioperative non-fatal MI, perioperative

non-fatal stroke, short term ( 30 days) and long term (> 6 months) mortality. These results

have a more clinically meaningful interpretation than previous unstratified analyses given

the mounting evidence that metoprolol has an especially poor risk profile when compared

to other β -blockers. They also provide a more complete picture of the association between

perioperative β -blockade and long term mortality than previous analyses.

3.3.3 Materials and Methods

Literature searches were performed on PubMed and Google Scholar to identify all trials

comparing β -blocker treatment to no treatment or placebo. Hand searches of previous

meta-analyses were also performed. Trials were excluded from the short term endpoint
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Table 3.1: Studies Included in Meta-Analyses and their endpoints

Table 3.2: Comparison of POISE versus Bouri et al. results
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analysis if:

• β -blocker treatment did not begin preoperatively or did not extend into postoperative

period

• The study examined patients receiving high-risk cardiac procedures

• The publication was not available in English

All included studies were randomized, blinded, and based on intention-to-treat analysis.

Additional data was obtained directly from authors of several studies. Table 1 summarizes

identified studies.[1, 7, 13-19] To capture additional data on long term mortality, a sec-

ond literature review was conducted to identify studies that reported mortality outcomes

6 months post-surgery. The search was performed in a fashion similar to that previously

described. The previously outlined exclusion criteria were used. Identified long term mor-

tality studies are also presented in Table 1.[7, 14, 16, 18, 19] Since these studies do not have

equal follow-up periods, mortality data were taken from each studys endpoint to maximize

power and minimize the risk of missing crossing-hazards. Results from this part of the

analysis can thus be interpreted as mortality at some average follow-up time ¿ 6 months.

Due to the binary nature of each outcome considered, we were able to reconstruct indi-

vidual patient level predictor data to use in our analyses as compared to traditional meta-

analyses which rely on published summary statistics. Both meta-analyses were completed

using stratified mixed-effects logistic regression modeling with random intercepts to ac-

count for differing baseline event rates among studies. The advantage of reconstructing

individual patient data and utilizing a stratified mixed-effects model is that this method

prevents the averaging of effect sizes across groups known to be different, which occurs in

a traditional meta-analysis, while providing a better estimate of between-subject variabil-

ity. In addition, it removes heterogeneity of treatment effect due to metoprolols potentially

unfavorable risk profile and allows for partial sharing of control data across study groups.

Although a model that included random intercepts was considered, there was not sufficient
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Figure 3.1: Bouri et al. analysis grouped by trial medication. Note the high weight ascribed to metoprolol
studies along with the similarity of the metoprolol and overall intervals.

data to warrant the additional increase in model complexity. The results of these analyses

are odds ratios but, owing to the rarity of the conditions under study, they are excellent

approximations to the relative risk.[20]

The inter-study variation (ρ) estimated for the short term outcomes regression models

were 28.1%, 9.3%, and 29.9% for mortality, stroke, and MI respectively. These values are

considered mild.[21] for the long term mortality regression model was estimated to be

44.3%. Using as a measure of heterogeneity is preferable to the usual I2 statistic in this

case due to the low event rates in these studies.[22] All statistical analyses were performed

in Stata version 12.1 (StataCorp, College Station, TX).
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Table 3.3: Results of stratified meta-regression analysis for 30 day endpoints. Note the similarity of meto-
prolol group to POISE results as well as the complete lack of evidence when POISE is excluded. Also note
there is virtually no evidence in the Other beta-blocker group.

3.3.4 Results

To assess the current state of evidence regarding benefits and harm of perioperative

initiation of β -blockade, a stratified meta-analysis of randomized controlled trial data was

performed. The short term outcome results are presented in Figure 1A-C. The metoprolol

outcomes show a statistically significant decrease in perioperative MI (p = 0.001), and a

significant increase in perioperative stroke (p = 0.037) and short term mortality (p = 0.036)

with treatment. These results bear a striking similarity to the following outcomes reported

by POISE: relative risk of non-fatal MI of 0.71 (95% CI, 0.58 - 0.87), non-fatal stroke of

1.93 (95% CI, 1.01 - 3.68), and 30 day mortality of 1.33 (95% CI, 1.03 - 1.73).[1] This is

not surprising given the large sample size of POISE relative to the other metoprolol studies

included in the analysis. A sensitivity analysis was performed to assess the influence of

POISE data on the metoprolol outcomes. With POISE data excluded, the odds ratio for

non-fatal MI with metoprolol treatment was 0.91 (95% CI, 0.52 - 1.60) p = 0.747, for non-

fatal stroke was 2.23 (95% CI, 0.66 - 7.54) p = 0.196, and for short term mortality was 1.11

(95% CI, 0.61 - 2.03) p = 0.340. For all short term outcomes, metoprolol data outside the

POISE trial are completely inconclusive. Similarly, no significant evidence of protection

from perioperative MI or increased risk of short term adverse events is seen in the other

β -blocker group.

To examine the association of perioperative β -blocker initiation and long term mor-
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Figure 3.2: Results of meta-regression analysis of long term (> 6 month) mortality with Eurocare accounting
for drug.

tality risk (> 6 months), a second analysis was performed. Figure 2 presents the odds

ratios associated with this analysis, both by medication and all β -blockers combined. No

increase in mortality is seen with metoprolol treatment when long term outcomes are mea-

sured, however, this conclusion is only based on the results of one trial, the DIPOM study.

Interestingly, in the stratified analysis, a statistically significant protective effect, odds ratio

of 0.50 (95% CI, 0.26 - 0.95) p = 0.034, is seen among β -blockers other than metoprolol.

This suggests perioperative β -blockade with agents other than metoprolol is of long term

benefit to the patient. Which β -blockers provide this benefit to patients remains unclear.

A likelihood ratio test was performed to test the hypothesis that the relative risk of long

term mortality was the same in the metoprolol group versus the other β -blocker group,

resulting in χ2(1) = 3.875 (p = 0.049). Since this test assesses possible heterogeneity due

to the effect of medication, it is recommended by the Cochrane Handbook for Systematic

Reviews of Interventions that this p-value be compared to a cutoff of 0.10 instead of the

traditional 0.05.[21] This indicates evidence of a statistically and clinically significant dif-

ference in the effect of metoprolol versus that of other β -blockers on long term mortality.

3.3.5 Discussion

Previously published observational data have suggested that the risk profile associated

with perioperative initiation of metoprolol is significantly different from that of other β -
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blockers.[3-5] The likelihood ratio test for the equality of the odds ratio of long term mortal-

ity for metoprolol versus other β -blockers presented here provides randomized controlled

trial evidence of these differences. The statistical significance of this test combined with

the clinically meaningful difference in the estimated effects of the respective medications

(OR = 1.03 for metoprolol and OR = 0.50 for other β -blockers for long term mortality)

suggests that the results of any mortality analysis that relies on data from patients receiving

metoprolol are not likely to be generalizable to patients receiving other β -blockers. Virtu-

ally all randomized controlled trial evidence for an increased risk of stroke and short term

mortality with metoprolol treatment is derived from POISE trial data. Given these results,

there is limited statistical justification for generalizing these outcomes to dosing schemes

or protocols other than those employed by POISE. Although only one study of metoprolol

had the requisite follow-up time for inclusion in our long term mortality meta-analysis,

no association between metoprolol and increased mortality is evident in these data. This

suggests a possible crossing-hazards phenomenon.

Randomized controlled trial data on β -blockers other than metoprolol are sparse but

do not currently support the hypothesis that these other β -blockers are associated with de-

creased incidence of perioperative MI or with increased perioperative stroke or short term

mortality. The results of the long term mortality meta-analysis presented here demonstrate

that as a group, other β -blockers may show a long term protective effect with regard to mor-

tality. Similarly, a recent large observational study found that perioperative use of atenolol

was associated with decreased risk of one year mortality compared to metoprolol.[5] Ad-

ditional randomized controlled trials utilizing β -blockers other than metoprolol focused on

both perioperative adverse events and a more comprehensive mortality endpoint need to

be performed to assess this effect fully. Ideally these trials would include a full survival

analysis, providing estimations of Kaplan-Meier survival curves.

A possible challenge in designing future trials in this field is evident in a statement made

by Dr. P.J. Devereaux suggesting that groups at high risk for perioperative adverse cardiac
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events may receive less benefit from perioperative β -blockade than low-risk groups. Per

Dr. Devereaux, this trend was seen in the POISE data but did not reach statistical signifi-

cance.[23] If this suggested trend represents a difference in the effect of β -blockers among

different risk groups, this might imply that previously utilized statistical models, including

those presented in this work, are over-simplified. It is possible that perioperative β -blocker

initiation provides benefits to one population risk stratum and harm to others. More com-

plicated statistical models accounting for effect modification by baseline risk would need to

be employed, and much larger sample sizes than those previously outlined would likely be

needed. The current study is limited by the small number of published trials that sufficiently

characterize long term outcomes, making it difficult to adequately model time dependent

effects of treatment on mortality. It is also limited by the paucity of randomized controlled

data pertaining to β -blockers other than metoprolol. Due to this limitation, it was reason-

able to analyze these β -blockers as one group. However, this prevents us from drawing

conclusions about any individual medications risk profile or mortality effect. Additionally,

in our long term mortality analysis we included the EUROCARE[14] study, which utilized

carvedilol. It is possible that the effect of carvedilol may be somewhat different from that

of selective β -blockers with respect to perioperative risk modification secondary to its mild

1 effects. The authors are unaware of any evidence that this is the case. It should be noted

however, that no deaths were observed in the treatment arm of the EUROCARE study.

Therefore, statistically this studys influence on the long term mortality analysis was primar-

ily by increasing the precision of the control/placebo groups risk estimate. The controversy

surrounding initiation of perioperative β -blockers is far from settled. The POISE trial is

currently the primary source of randomized controlled trial data on this subject. It provides

the only significant evidence that treatment may be harmful; however, support for the no-

tion that these results may not be generalizable to other β -blockers and dosing schemes is

mounting. Recently made claims that 10,000 iatrogenic deaths per year would be prevented

by abstaining from initiation of perioperative β -blockade are premature.[9] Results of the
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analysis presented here demonstrate that perioperative initiation of β -blockers other than

metoprolol may actually save patient lives when a more comprehensive mortality endpoint

is employed, in addition to any potentially favorable effects on non-fatal perioperative MI

rates. Additional randomized controlled trial data are greatly needed to adequately address

treatment efficacy and safety of perioperative initiation of β -blockers other than metopro-

lol.
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3.4 Trial Designs for Fuzzy Interventions

This manuscript examines aspects of clinical trial design more generally. In particular

it focuses on the fact that large single protocol trials of potentially heterogeneous treatment

effects are often justified by power calculations done conditional on an assumed alternative

hypothesis. By ignoring the probability of a selected treatment actually achieving that alter-

native based on the assumed distribution of potential treatment effects, the single protocol

design vastly overestestimates its frequency characteristics. By choosing a multiprotocol

design the probability of selecting a protocol that meets or exceeds said alternative is im-

proved resulting in more reliable frequency properties.
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3.4.1 Likelihood Based Randomization

This work involved the creation of a shiny app which allows investigators to experiment

with multiprotocol designs. The most obvious drawback to a fixed randomization, multi-

protocol design is that the sample size is split among the various protocols contributing to

a lack of precision in the estimated effect of the eventual winning protocol. The simulation

allows for two methods to combat this effect both of which rely on an empirical estimate

of the likelihood.

In general we know that given data that are distributed fX , we know that the distribution

of the minimum of a sample of size k is given by:

fX(1)(x) = k fX(x)[1−FX(x)]n−1.

In the simulation built into the shiny app for this project, the log(RR) associated with

potential treatments is assumed to be normal and its mean and variance are estimated from

the current estimates, log(R̂R), from each arm of the study. Given this estimate F̂X we

can calculate a new estimate of f̂X(1) after each study participant. After an initial run-in

period during which the randomization is fixed, have a low likelihood of being x(1) are

eliminated. Here “low” is a user-defined likelihood ratio compared to the most likely arm.

After the run-in period the simulation adopts adaptive randomization in each experimental

arm with the randomization probability to a given arm being decided by its likelihood ratio.

It has been demonstrated using the app that this method is much more efficient than fixed

randomization. The app allows the user to specify the size of the run-in period without

constraint. Thus the user may choose to set the run-in size to n corresponding to fixed

randomization or to 0 corresponding to fully adaptive randomization. Similarly by setting

the threshold likeliood value for elimination after the run-in period to be large, the user can

prevent any arms from being discarded.
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3.5 Manuscript: Clinical Trial Design for Fuzzy Interventions

3.5.1 Introduction

In clinical trials it is common practice to attempt to reduce extraneous sources of varia-

tion in order to achieve the scientific ideal, the realization of a treatment and control group

that are balanced except for the administration of a well-defined intervention. Designing

studies according to this principle gives increased credibility to a trials conclusions, and

provides the foundation for making claims that an intervention results in causal benefit.

When several trials are performed to evaluate a common intervention in a fixed popula-

tion it is reasonable to combine their results via meta-analysis to arrive at an estimate of

the common effect associated with that intervention, which is a weighted average of the

effects observed across the studies. However, it is often the case that there is an idea for

an intervention that could provide clinical benefit for patients, but there are many possibil-

ities for how the intervention could be implemented. For example, interventions involv-

ing the administration of medication require the investigator to apriori select a particular

medication from a drug class, identify the population likely to derive benefit from the in-

tervention, decide on an optimal dosage and specify a time frame over which the drug is

to be administered. All of these study parameters impact the efficacy and safety of the

intervention potentially resulting in a distribution of treatment effects that could possibly

be observed based on how these study parameters are specified. A situation where there is

uncertainty about the optimal intervention is henceforth referred to as a fuzzy intervention.

The variability induced by the selection of these parameters is most often ignored outside

of investigations of novel drugs.

Throughout this manuscript the example of the safety of perioperative beta blockade

for the prevention of myocardial ischemia (MI) will be used as an example. This example

was chosen because the issue of this treatments safety is still undecided despite multiple

clinical trials involving a large number of participants. The idea behind this intervention is
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that administering a beta-blocker prior to a surgical procedure might reduce the incidence

of MI by causing a reduction in the patients heart rate, and consequently reducing the

amount of oxygen required in the heart tissue. A well-defined scientific inquiry regarding

safety that one could study might be: Does the administration of 100mg of extended-release

metoprolol administered beginning one day prior to surgery and continuing for up to 8 days

after surgery increase mortality in patients over 39 years of age, with diabetes, who are

undergoing major non-cardiac surgery?[1] However, it is not at all clear that data collected

from a study using this protocol speaks directly to the fuzzy intervention question: Can

beta-blockers be safely used in the perioperative period in a way that reduces the incidence

of MI?

When the range of potential effects from a fuzzy intervention extends from clinically

meaningful benefit to clinical deficit based on the choice of protocol, the usual synthesis of

data providing a single estimate of a pooled treatment effect is unsatisfying. The average

treatment effect is not of any particular interest when it is not the optimal treatment. The

scientific question of interest often revolves around the most efficacious treatment that does

not compromise safety, which could be far from the average treatment effect.

The marked difference in the clinical questions being asked in the well-defined inter-

vention versus the fuzzy intervention underscores the need to approach these problems in

different ways. This manuscript seeks to expose the danger of analyzing trials involving a

fuzzy protocol using traditional techniques. A series of simulation studies then assess how

embracing a variety of protocols in the administration of fuzzy intervention trials leads to

more precise effect estimates and allows the investigator to more thoroughly address the

true object of their inquiry, characterization of the optimal treatment protocols.

3.5.2 Motivating Example

The safety of administering a beta-blocker before surgery in an attempt to reduce car-

diac oxygen demand in order to prevent cardiac ischemia has been an ongoing controversy
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in the medical literature for many years. The intervention involves the administration of

medication, often orally, before and after non-cardiac surgery. In each trial investigating

the safety and efficacy of this intervention the investigators chose a particular beta-blocker

to study, a surgical population, a dosing scheme, and a timeframe over which the drug was

to be administered.

At the heart of the controversy is the POISE trial.[2] The POISE trial is by far the

largest study of perioperative beta-blockade to date (n=8351). The POISE trial utilized

extended-release metoprolol. The chosen dosing scheme began with 100mg 2-4 hours

prior to surgery followed by up to 300mg in the first 18 hours postoperatively. Study

medication was continued for 30 days postoperatively. The trial concluded that while the

treatment appeared to be efficacious for the prevention of myocardial infarction it was also

associated with an increase in risk of stroke and mortality.

Many clinicians were unconvinced by the POISE results due to the large dosage em-

ployed.[3] In addition, several large observational studies have since suggested that meto-

prolol has a significantly worse safety profile when compared to other beta-blockers admin-

istered in a similar fashion perioperatively.[4-6] Many meta-analyses were published to try

to ascertain the strength of evidence for the safety of the intervention, but due to POISEs

disproportionate size any analysis that included POISE would essentially be reporting its

result. The analysis by Bouri et.al.[7] is an example. In their analysis 77.8% of the weight

was placed on POISE with 92% of the weight coming from studies involving metoprolol.

It is easy to see how the resulting estimate could be interpreted as largely representing the

average effect of high-dosage metoprolol treatment rather than deciding the safety of the

optimal protocol. Here despite the large number of patients exposed to the treatment over

the included studies (n=5264 exposed to some perioperative beta blocker) the true safety

of the optimal protocol for beta-blockade remains undecided[8] with the only potentially

undisputed evidence being against the use of metoprolol.
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3.5.3 Proposed Method

In situations where an investigator is faced with a fuzzy intervention it can be advan-

tageous to examine a number of different protocols as opposed to conducting one large

trial according to a single protocol. Fuzzy scientific questions dictate that it is necessary

to estimate the distribution of possible treatment effects rather than just the average of the

distribution. Each protocol considered adds an estimate of a single data point drawn from

the distribution of possible treatment effects measured with some error that depends on the

number of patients assigned to that protocol. Increasing the number of patients studied un-

der a given protocol improves the precision with which the single data point is estimated.

The estimates from these protocols can then be used for estimation of the distribution of

possible effects. When trying to decide if a treatment provides a substantial clinical ben-

efit there is a tradeoff to be made between the precision with which you measure a given

protocols efficacy and including additional protocols, which may have superior efficacy or

safety.

The remainder of this manuscript details how investigators that intend to conduct large

studies should choose the number of protocols to examine. By optimizing the number of

protocols under examination relative to the number of subjects exposed to each protocol

it will be shown that the probability of identifying a more optimal treatment protocol will

increase.

3.5.4 Fuzzy Interventions

When conducting a clinical trial of a fuzzy intervention it is necessary to reexamine

the ordinary metrics associated with clinical trial design. For example, what is the null

hypothesis when a treatment effect is heterogeneous and therefore unlikely to truly have

absolute zero effect? Because type I errors are defined by falsely claiming efficacy when

the null hypothesis is true, being in a situation where the null is unlikely to ever be true
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necessitates a redefinition. Defining properties that are desirable for a trial to have will

enable the investigator to optimize the number of protocols to consider in a given study.

Type I Errors: Type I errors are poorly defined when the treatment under consideration

is heterogeneous. However, it is still desirable to make certain that a multiple-protocol

trial investigating a fuzzy intervention will not declare a treatment efficacious if the effect

is either of insignificant magnitude or worse, deleterious. This deviation from the tradi-

tional setting where type I errors are well-defined requires a different approach to what is

considered a null effect.

Perhaps the most straightforward quantity related to type 1 error rate in a multi-arm trial

of a fuzzy intervention is the probability that a protocol deemed optimal by the trial actually

has a deleterious effect. A related quantity that is perhaps less objective is the probability

that a protocol, which is deemed optimal by the trial actually has a clinically insignificant

benefit or worse. As the latter of these quantities is both situation specific and subject

to personal opinion, for the duration of the manuscript we will restrict discussions to the

former. This idea has been previously introduced in social science where it is described as

type S error [9].

Unlike traditional type I errors that are conditional on the null hypothesis of no effect,

the type S error rate depends on the true distribution of heterogeneous treatment effects. In

order for the error to be made, a deleterious effect must be chosen during the initial protocol

selection. The arm of the study corresponding to the deleterious effect must then outper-

form all the other arms. Finally, that same arms estimate of treatment effect must have

sufficient precision such that its corresponding uncertainty interval does not contain null or

deleterious values after an appropriate analysis has been conducted. This error rate can be

estimated via simulation under a variety of foreseeable distributions of potential treatment

effects. When the study is completed the investigator can then estimate a distribution of

potential treatment effects to be used in simulation to estimate the post-hoc type S error

rate of the study in a way that naturally accounts for multiple comparisons.
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Power: Like type I errors, power also experiences a minor change in the fuzzy interven-

tion setting. In the classical framework the power of a trial is the probability that the study

is able to reject the null hypothesis given that the alternative is true. When dealing with

heterogeneous treatment effects, however, it can become either unlikely or impossible that

a treatment has an absolutely null effect depending on the distribution of potential effects.

For example, one might think that giving someone an analgesic for a headache would have

no effect on 30-day mortality. However, there is always a very small chance the patient will

have an anaphylactic reaction. In reality there are few, if any, interventions with absolutely

no risk. It does not therefore seem inappropriate to assume that every selected protocol will

have some non-null, if potentially infinitesimal, effect on the outcome of interest.

As a result of the assumption of non-nullity among the protocols, the usual definition of

power reduces to simply the probability that the investigator is able to estimate the optimal

protocol with sufficient precision such that its uncertainty interval limit excludes the null.

This definition can be further restricted for the purposes of trial design to exclude cases

when the optimal protocol is estimated to be detrimental, a quantity we will refer to as

fuzzy power.

Again with power we see that the fuzzy power is dependent on the true distribution of

treatment effects. In order to be declared likely to be beneficial at a given level of precision,

the estimate of the protocol deemed optimals effect must be sufficiently small. The proba-

bility with which this happens depends on the probability of selecting protocols with large

benefits as well as the number of independent protocols selected for examination. This

probability can also be simulated under a variety of potential treatment effect distributions

during study design to ensure a cost-efficient design is selected.

3.5.5 Simulations

Several simulations were conducted to illustrate the benefits of large clinical trials using

multiple protocols. These simulations are similar to those that would be done during the
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Mean	RR	
Estimate	

Variance	RR	
Estimate	

(2.5,	97.5)	
Quantile	

Single	Protocol		 0.873	 0.051	 (0.536,	1.351)	
Multiple	
Protocol	 0.873	 0.033	 (0.569,	1.280)	

	
Table 3.4: Results from mean estimation from a single treatment protocol randomized trial vs. a multiple
protocol approach demonstrating increased precision of mean RR using the multiple protocol approach.

trial design phase. For practical purposes each simulation must assume a distribution of

potential treatment effects for the intervention being considered. The SHINY app accom-

panying this paper can be used to conduct additional simulations, and allows the user to

specify many aspects of trial design. The following simulations can be reproduced using

the app under a variety of different conditions. Simulation studies were conducted using R

version 3.2.0. The accompanying web tool was developed using Shiny 0.12.

Example 1: Evaluating Estimates of the Mean Treatment Effect In the classical ap-

proach to large trials it is assumed that there is either a single effect of treatment, or if treat-

ments are believed heterogeneous, that interest lies with the average effect. The purpose

of this example is to compare the accuracy and efficiency of estimating the mean treatment

effect when using a large study with one treatment protocol versus a study of identical size

that utilizes multiple protocols. In the case of the multiple-protocol design, a random study

size between 40 and 200 was generated for each of the five random protocols. The size of

the large, single-protocol study was equal to the size of the five small studies combined.

This simulation takes a given average risk ratio for the treatment effect, a standard error

of the observed baseline rate that might be observed among sites participating in the study,

and a standard error representing the degree of heterogeneity in treatment effect. Baseline

Event Rate N(µ = 0.15,σ = 0.05)

Protocol Specific Risk Ratio ∼ logN(log(µ) = log(0.85), log(σ) = 0.025)
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Having specified these study parameters, data was generated for the trials and a risk

ratio is calculated directly for the large study and by way of a DerSimonian-Laird random

effects model for the multi-protocol study. The simulation was completed 10,000 times

and the operating characteristics of the two approaches were compared. The results of the

simulation are given in Table 1. The simulation shows that in addition to providing an

estimate of the variance in treatment effect among various possible treatment protocols,

the mean RR estimate derived from the multiple protocol approach is substantially more

precise than the single protocol approach with similar accuracy. This demonstrates that

the multiprotocol approach can be used to estimate the mean of the distribution of potential

treatment effects in an efficient manner. This simulation was included for those who may be

reluctant to abandon the traditional inference on the mean approach. The main result of the

simulation is that the additional information provided from the multiple protocol approach

will often produce a superior result even using the traditional techniques of inference.

The difference in the efficiency of the estimate varied with the magnitude of hetero-

geneity of the treatment effect. This experiment was completed at a variety of different

potential dispersions ranging from 0 to 0.4. The resulting differences in the variance are

reported in figure 1.

Example 2: The next simulation will mimic the proposed design of a large clinical

study with potentially heterogeneous treatment effects between a myriad of protocols that

are clinically reasonable. For reasons of convenience, this simulation will be modeled after

POISE and explore how a multiple protocol approach would have potentially provided a

more robust body of evidence on the safety of perioperative beta blockade with respect to

patient mortality.

The first step in designing our hypothetical trial will be to decide on what feasible dis-

tributions of potential outcomes might look like. Several distributions could be chosen

and tested, however, often times there have been many other smaller trials or observational

studies that can be utilized to give the investigators a good initial guess at the distribution.
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Figure 3.3: Difference in variance of the mean treatment effect for single protocol vs multiprotocol design as
a function of the SD of the log risk ratio of potential treatments.
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The investigator could then conduct simulation studies to assess the operating character-

istics of the trial with a variety of numbers of protocols being tested. For this simulation

a normal distribution with a mean of zero and standard deviation of 0.05 was chosen as

the distribution of potential relative risks corresponding to the effects of treatment. This

corresponds to the treatment having a RR between 0.9 and 1.1 depending on the particular

chosen protocol.

Since one of the goals of the trial is to identify beneficial protocols, the first metric we

consider is the mean relative risk of the protocol that the study identifies as optimal. In other

words, given a distribution of treatment effects it is desirable to select the design, which on

average, results in a protocol with the most beneficial relative risk. After conducting many

simulations with 1, 2, 3, etc. protocols, one can simply construct a scree plot to decide

how many protocols to investigate at a given sample size and design. The sample size and

design have to be considered simultaneously because they will both influence the studys

fuzzy power.

In order to enhance the probability of identifying and rejecting a beneficial treatment

when one exists, it may be desirable to use an adaptive randomization scheme. For the

purposes of this example, once the number of protocols for the trial has been selected an

initial run-in trial is performed in which each experimental arm of the study has an equal

chance of being randomized to. After the initial run in period, arms that had a low relative

probability of being best were discarded. The study is completed using the remaining arms

for which the probability of being randomized to a given arm is proportional to the relative

likelihood of that arm being best, which is updated after each patient finishes the study.

Throughout the study, patients are twice as likely to be randomized to control as they are

to be randomized to a given experimental arm. In this simulation we used a run-in of 2000

patients, and a relative probability of 1/10 for arms being discontinued after the run-in.

This design selection process can be iterated over at a variety of different sample sizes

to determine the sample size required in order for the type S error rate and fuzzy power
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Figure 3.4: Mean true RR of the protocol identified as best as a function of the number of protocols being
examined.

to meet the investigators needs. For the purpose of this simulation, the sample size was

considered fixed at the sample size used in the POISE trial, 8351.

The scree plot and characteristics of the resulting study termed best for this simulation

are given in Figure 2 and 3. As evidenced by the scree plot, under the distributional assump-

tion for potential treatment effects on average better treatments are found as more protocols

are considered considered. The error rate plot demonstrates that increasing the number of

protocols concurrently drives the probability of the best protocol being detrimental down.

Correspondingly the fuzzy power of the study is increasing as selecting more sets of pa-

rameters to investigate results in a higher probability of a more beneficial one. In fact, if a

beneficial protocol exists, it is nearly 10 times as probable to be discovered in study with

twelve experimental arms as in a study with just a single experimental arm.

3.5.6 Discussion

The primary purpose of this manuscript is to emphasize the importance of designing a

trial in order to answer a specific scientific question. In medicine, the scientific questions

we face are often multifaceted, i.e. What treatment is best, and how well can I expect it to

perform? However, altogether too often when faced with a variety of potential interventions
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Figure 3.5: Red Probability that the best performing protocol is detrimental regardless of whether it was
rejected or not. Black- Probability the best performing protocol is deemed beneficial.

investigators often lose sight of the first question in favor of the second.

The current mindset in clinical trial design is to attempt to reduce variation in the ad-

ministration of an intervention as much as is possible. However, this goal while laudable

in some cases where the protocol is well agreed upon is rarely achieved in practice as most

trials can be critiqued on some point where bias could enter the estimation process. By re-

laxing the restrictions on the trial and embracing multiple protocols, embracing structured

variation, and adopting appropriate multi-level modeling [10] or empirical Bayes estima-

tion a trial has the opportunity to improve its operating characteristics while also addressing

the scientific question that is most clearly relevant, Can this intervention benefit patients

and if so how should it be implemented? Whether and to what degree this improvement is

achievable depends on the specifics of potential interventions and the size of the trial.

The results of the first simulation demonstrate that the classical approach to evaluat-

ing complex, multifactorial clinical interventions, namely the large single protocol clinical

trial, can be substantially improved upon by designing multi-protocol studies that collect

more diverse information. It shows that even when an analyst restricts themselves to a tradi-

tional inference on the mean approach, the mean estimate is often improved by examining

multiple protocols.
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The second simulation and the accompanying app demonstrate how a multiple protocol

clinical trial might be designed, and is meant to highlight the advantages of this approach.

In general, the probability of identifying a deleterious protocol is non-increasing as the

number of arms under investigation increases and the fuzzy power is non-decreasing. Al-

though these properties hold generally, depending on the assumed distribution of treatment

effects, substantial benefits may be seen from increasing the number of protocols.

The last consideration with regard to designing clinical trials of fuzzy interventions is

an ethical one. In the classical approach of a single protocol design, millions of dollars are

often spent and thousands of patients put at risk to estimate the effect of what is essentially

a random draw from the distribution of potential treatment effects. Although one might

argue that the subject matter experts conducting the trial are more likely than not to select a

good protocol, one does not have to look far in the medical literature to identify a proposed

treatment in which many trials looked at a myriad of protocols, each of which was selected

by an expert in the field. Indeed as we have mentioned the evidence that the medication

selected for use in the POISE trial, metoprolol, is significantly less safe than other beta

blockers when employed for perioperative beta-blockade is mounting. Despite having some

of the worlds foremost experts on the intervention deciding on the protocol, they still chose

one that seems to have the highest associated stroke and mortality rates. The risk to human

life as well as the expense obligates investigators to design a trial that is most probable

to identify a protocol from which society will derive some benefit, if one exists. In many

cases, that ethical obligation mandates a multiple protocol approach.

When the uncertainty associated with the selection of a trial protocol from a family of

potential protocols is included in the simulation the advantage to multiprotocol approaches

becomes apparent. Single protocol designs are often justified by power calculation in which

an alternative assumption is made that may only have a small probability of being true.

Improving this probability of achieving the alternative assumption results in improved fre-

quency characteristics.
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Chapter 4

Probabilistically Calibrated Support Intervals

4.1 Introduction to the R Package

Previous to the release of supportInt, there was no package in R focused on the cal-

culation of likelihood support intervals. supportInt works for a wide range of common

data types including binomial, poisson, normal, linear models and generalized linear mod-

els. Using only its basic functionality, it provides a much needed tool for likelihood based

inference.

The package also supports additional functionality that allows bootstrap estimation of

the frequency properties of support intervals for the three basic data types. It uses a novel,

sophisticated bootstrap scheme described in the following manuscript to overcome insta-

bilities in the coverage probability for binomial confidence intervals of small n samples.

It also provides the calibSI() function, which will estimate the minimum support level re-

quired to acheive the desired frequency properties.

The support intervals generated by supportInt address a major concern that many philoso-

phers and statisticians have with likelihood based inference, that it is not probabilistic.

Many consider probability based inference a stronger form than purely likelihood based

inference, although the strongest argument for this position appears to be an obscure quote

from R. A. Fisher giving his personal opinion on the matter. Even still, this position has

been a major obstacle to the use of likelihood methods. Through bootstrap probabilistic

calibration, these likelihood methods achieve a probabilistic interpretation which invali-

date this common objection.
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4.2 Manuscript: Probabilistically Calibrated Support Intervals with supportInt

4.2.1 Abstract

The supportInt package calculates likelihood support intervals in a variety of model

contexts. The package calculates support intervals for outcomes from binomial, poisson,

and normal distributions as well as for regression coefficients from lm() and glm() mod-

els. The binomial, poisson, and normal functions also support the use of a novel bootstrap

technique to estimate frequentist coverage rates for these support intervals allowing a prob-

abilistic interpretation.

4.2.2 Background

One of the undertakings in statistics is the estimation of sets of plausible values for

model parameters. Regardless of what these parameters represent, much of statistical prac-

tice revolves around the derivation of sets of potential values based on the evidence con-

tained in the data. In the case of likelihood-based statistical inference, the preferred sets

are referred to as support sets, or when composed of contiguous values, support intervals.

Other types of uncertainty intervals (confidence and credible intervals) define a set of

potential parameter values that will contain the true parameter with some frequency or

probability without specifying any particular requirement that a potential parameter value

must satisfy for inclusion in the interval. Because these intervals are defined by a prop-

erty of the set of values rather than a property of the individual values within the set, it

is not uncommon for confidence and credible intervals to include values with relatively

poor evidential support. Unlike other probabilistically-based intervals, support intervals

are composed of potential parameter values that achieve some specified level of eviden-

tial support from the data, however the resulting set lacks any probabilistic interpretation.

This deficiency has lead many analysts to prefer confidence type procedures, because they

view probabilistic inference as being stonger than pure likelihood inference. The proba-
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bilistic calibration of support intervals proposed here and implemented in the supportInt

package adjusts the level of evidential support so that the resulting support interval has the

probabilistic interpretation that has been historically lacking.

At present there are no R packages that calculate likelihood support intervals for basic

types of data. Two packages for the analysis of genetic data calculate support intervals qtl

(17) and mpMap (18), but only for a very specific statistic used in genetics. supportInt fills

this key gap for likelihoodists who use R.

4.2.3 The Likelihood Function

The likelihood function is the primary data summary that underlies a large portion

of statistical theory. Given independent and identically distributed observations x1, . . . ,xn

from a probability distribution f (X |θ0) where θ0 is unknown by the observer, the likelihood

function is given by:

L(θ |x1, . . . ,xn) =
n

∏
i=1

f (xi|θ).

The likelihood is a function defined over the potential parameter values. At each pa-

rameter value the likelihood is equal to the joint density evaluated at the observed data

values. The meaning of the likelihood is more apparent when f happens to be a discrete

distribution. In this case, the likelihood at a given parameter value, θ , is simply the proba-

bility of observing the data when θ0 = θ . The potential parameter value that results in the

highest likelihood of having observed x1, . . . ,xn is called the maximum likelihood estimator

(MLE), θ̂ . When evaluating the evidential support for a potential parameter value its likeli-

hood is often compared to this maximum value, (19). In this way the most well-supported

potential parameter value becomes the benchmark against which all other potential values

are judged. Therefore we often deal with the normalized likelihood function:

L(θ |x1, . . . ,xn)

L(θ̂ |x1, . . . ,xn)
=

∏
n
i=1 f (xi|θ)

∏
n
i=1 f (xi|θ̂)

.
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The normalized likelihood function is the likelihood ratio between a given value in

the parameter space, and the maximum likelihood over the parameter space. Its values

represent the multiplicative change in the evidential support between the evaluated value

and the MLE. For example, a normalized likelihood value of 1/8 at θ ′ would mean that

seeing the observed data if the θ0 = θ̂ is eight times better supported than seeing it if

θ0 = θ ′. Given a model, the normalized likelihood is a completely data-based summary of

the degree to which various potential values for a parameter are supported by the data.

4.2.4 Support Intervals

In the likelihood paradigm, inferences are based solely on the data without regard to

the sample space or any prior information not contained with the observed data, and the

normalized likelihood is the primary tool of inference. A 1/k support set is defined to be

the set of all potential parameter values in the parameter space of θ ,Θ, for which:

{
θ ∈Θ :

L(θ |x1, . . . ,xn)

L(θ̂ |x1, . . . ,xn)
>

1
k

}

The support set is the set of all potential values of θ under which the data would not have

been more than k times better supported by any other value of θ in Θ. When these values are

contiguous, as is usually the case when dealing with well-behaved, unimodal likelihoods,

the support set is called a support interval and will be referred to as such for the duration

of this discussion. Support intervals can be interpreted as the values best supported by the

data at the specified level, k.
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4.2.5 Properties of Support Intervals

4.2.6 Invariance

Invariance to transformation is a very important property enjoyed by support intervals.

Support intervals inherit their invariance from the likelihood function where it can be shown

very generally that

L(θ |x1, . . . ,xn)

L(θ̂ |x1, . . . ,xn)
= c⇒ L(g(θ)|x1, . . . ,xn)

L( ˆg(θ)|x1, . . . ,xn)
= c.

This means that a support interval can be calculated on any scale and subsequently trans-

formed to any other new scale, and the result will be the same as if the interval had been

calculated on the new scale. To fully appreciate the magnitude of the benefit of invariance,

compare this result to frequentist confidence intervals.

The cases in which an exact 95% confidence interval is available are limited. For cases

where an exact interval is not available the nearly universal technique involves invoking

some Normal approximation either by appealing the central limit theorem or by finding a

transformation, which would make the sampling distribution approximately normal. How-

ever, the convergence provided by the central limit theorem can be slow. Some statistics

take many thousands of observations before their sampling distributions are an acceptable

approximation to normality, if they converge at all. The transformation approach is equally

problematic as it supposes that an invertible transformation exists that would make the

sampling distribution approximately normal. Presuming such a transformation exists, the

analyst then has the unenviable task of figuring out what the proper transformation is. In

contrast, due to the invariance property inherited from the likelihood function, deriving a

support interval is as simple as calculating the interval on the most convenient scale and

transforming it to the desired scale with no approximation required.
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4.2.7 Non-exclusivity

Non-exclusivity in this context means that support intervals are by definition related to

the level of support a potential value for θ receives from the observed data. Consequently,

it is impossible for a support interval to include one value in the support interval while

excluding another value with the same or greater evidential support, i.e. normalized likeli-

hood value. The support interval’s relationship with the level of evidence observed ensures

that any value with the given support is included.

To see that other intervals may fail this criterion, consider a confidence or credible in-

terval constructed for a discrete valued parameter. To maximize the evidential support, the

interval is constructed by adding the parameter value with the highest likelihood and eval-

uating the frequency or posterior probability as appropriate. Values are then added in order

of decreasing likelihood until the nominal 1−α level coverage is achieved. Now presume

this process has been carried out and we currently have an 1−α − ε level interval, but

the next two potential parameter values in the sequence have exactly the same likelihood.

Adding either of them will give the interval 1−α level coverage, but adding both will re-

sult in over-coverage. Confidence and credible intervals are defined by a property of the

interval rather than individual values. In both cases one value is added to the interval and

the other is not. This arbitrary exclusion is forbidden by support intervals.

4.2.8 Nuisance Parameters

Nuisance parameters are parameters of the specified model other than the parameter

currently under examination. Likelihood methods are easiest to interpret when the like-

lihood function depends on a single parameter. This allows the likelihood function to be

visualized and it is straightforward to calculate a support interval for a single parameter.

When more than one parameter exists, the two most common ways to deal with nuisance

parameters are to estimate them or to profile them out. Estimating nuisance parameters
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results in a likelihood function called an estimated likelihood. Although this method works

well in some situations it can misrepresent the likelihood when there is a strong joint re-

lationship between the parameter of interest and the nuisance parameters. Profiling out a

nuisance parameter simply means that for each value of θ the nuisance parameter is re-

placed with its MLE conditional on the value of θ . This more conservatively accounts for

any relationships between the nuisance parameters and the parameter of interest and tends

to behave well in a wide variety of situations.

4.2.9 Support Intervals in the supportInt Package

The supportInt package for R (20) allows calculation of support intervals at the user

specified level for binomial, poisson, or normal data directly from their likelihood func-

tions with the binLikSI(), poisLikSI(), and normLikSI() functions. These functions utilize

a root finding algorithm to return support intervals at the user specified level. supportInt

also utilizes the ProfileLikelihood package (21) to provide profile likelihood intervals for

coefficients of both lm and glm models with the lmLikSI() and glmLikSI() functions.

library(supportInt)

binLikSI(dat=8, n=10, level=8)

[1] 0.4877142 0.9667507

poisLikSI(dat=c(4, 4, 3, 5), level=8)

[1] 2.291555 6.399550

normLikSI(c(4, 3.2, 5.1, 6.8), level=8)

[1] 2.949658 6.600198

set.seed(10)
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x <- rnorm(50, 0 , 5)

y <- sapply(1:length(x), function(z) 3+.5*x[z]+rnorm(1, 0, 5))

lm.obj <- lm(y˜x)

lmLikSI(lm.obj, 8)

low 1/8 upp 1/8

x 0.2187735 0.8818569

set.seed(10)

x <- rnorm(50, 0 , 5)

x2 <- rbinom(50, 1, .2)

expit <- function(z) exp(z)/(1+exp(z))

p <- expit(.1+ .4*x+.3*x2)

y <- sapply(1:length(p), function(z) rbinom(1,1, p[z]))

glm.obj <- glm(y˜x+x2, family="binomial")

glmLikSI(glm.obj, 8)

low 1/8 upp 1/8

x 0.3022526 1.000502

4.2.10 Probabilistically Calibrated Support Intervals

Despite having some attractive properties to their credit, support intervals have yet to

gain widespread application in statistical practice. Perhaps the single biggest objection

to the use of support intervals is that they lack a probabilistic calibration, and whether

probabilistic inference is more or less persuasive than likelihood-based inference is hotly

debated. The bootstrap makes it possible to have report the evidential support of a proba-

bilistic interval in a wide variety of cases.
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Probabilistically calibrating a support interval may require some compromise on the

part of both the frequentist and the likelihoodist. To probabilistically calibrate a support

interval, the analyst needs to specify the desired frequency properties and then report what-

ever level of statistical evidence is required to achieve the specified frequency characteris-

tics. In contrast, in traditional likelihood inference, one would choose the level of statistical

evidence that was meaningful to them and report the corresponding 1/k support interval/s.

In the normal case, a 1/6.83 SI is an exact 95% confidence interval. Royall (19) recom-

mends 1/8 and 1/32 for levels that have some interpretability with respect to how they

relate to seeing strings of consecutive heads in coin flips, but the numeric values are admit-

tedly arbitrary. Given the somewhat arbitrary nature of the numerical values this may be

less of a sacrifice, but since different models and sample sizes will return different levels

of likelihood-based support associated with their (1−α)% CIs, the support levels may not

be reported in a consistent way across manuscripts and therefore may be somewhat harder

to compare. Similarly, the frequentist will be unable to attain the exact coverage level in

some cases due to the definitional constraints imposed by the support interval and is will

be forced to settle for a slightly higher or lower coverage.

The aformentioned functions in the supportInt package binLikSI(), poisLikSI(), and

normLikSI() will all provide an estimate of the confidence level of the support interval they

return if the user specifies the conf=TRUE argument. The precision of this estimate can

be controlled by increasing or decreasing the number of bootstrap simulations through the

B argument. In addition, the calibSI() function allows the user to specify a desired confi-

dence level for binomial, poisson, or normal observations and will return an approximate

confidence interval with the corresponding support level needed to obtain that confidence.

binLikSI(dat=8, n=10, level=8, conf=TRUE, B=3000)

$si

[1] 0.4877142 0.9667507
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$conf.equiv

[1] 0.948

poisLikSI(dat=c(4, 4, 3, 5), level=8, conf=TRUE, B=3000)

$si

[1] 2.291555 6.399550

$conf.equiv

[1] 0.9546667

normLikSI(c(4, 3.2, 5.1, 6.8), level=8, conf=TRUE)

$si

[1] 2.949658 6.600198

$conf.equiv

[1] 0.9585833

calibSI(dat=8, n=10, family="binomial", conf.level=.95, B=3000)

$si

[1] 0.4846169 0.9674700

$support.level

[1] 8.318107

$init.grid

st.levels cov.st.levels

[1,] 4 0.8784
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[2,] 6 0.9260

[3,] 8 0.9490

[4,] 10 0.9622

[5,] 12 0.9696

[6,] 14 0.9712

[7,] 16 0.9766

[8,] 18 0.9846

[9,] 20 0.9828

4.2.11 Probability Calibrated Gaussian known σ2

As is often the case when it comes to uncertainty intervals, Gaussian data with known

variance is the least troublesome. It can be shown that

2 log
(

L(θ |x)
L(θ̂ |x)

)
∼ χ

2
1 .

This result, known as Wilk’s statistic, provides the basis for the likelihood ratio test, which

can be inverted to give a proper (1−α)%CI that is also a SI with

1
k
= e−1/2χ2

1,(1−α)

level of support, where χ2
1,(1−α) is the (1−α) quantile of the χ2

1 distribution. This simple

probability calibration holds exactly in this special case, but becomes more general for

MLE associated uncertainty intervals under some fairly permissive regularity conditions.

As an example, a 95% CI for the Normal mean with known variance is also a 1/e−1/2χ2
1,.95 ≈

1/6.826 level SI.
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4.2.12 Bootstrap Calibrated Non-Gaussian

In the absence of an exact relationship between confidence level and support level en-

joyed in the normal case, extra steps will be required to perform probabilistic calibration.

It is still possible to calculate inverted likelihood ratio test intervals by either 1) taking a

large enough sample to invoke the asymptotic approximation to Wilk’s Statistic or 2) by

bootstrapping the distribution of the likelihood ratio at the given sample size. However,

since statisticians can rarely command a larger sample size based purely on distributional

convergence rates, this work focuses on the latter. This technique, performed by Owen (22)

using empirical likelihoods is equivalent to inverting a bootstrap corrected likelihood ratio

test. The technique involves bootstrapping the distribution of the likelihood ratio by taking

bootstrap samples and calculating

R∗ =
L(x∗|θ̂ ∗)
L(x|θ̂)

.

R∗ is the likelihood ratio of the bootstrap data when theta is taken to be the MLE derived

from the bootstrap sample vs. when theta is taken to be the MLE of the actual observed

sample. Taking the appropriate quantiles of the resulting bootstrap distribution of R∗ will

provide a more robust 1−α CI. This procedure performs well in many cases, but in non-

Gaussian cases if the sample size is so small that appealing to the Wilk’s theorem is im-

practical it may also be small enough that bootstrapping a non-smooth statistic (quantile)

in the tail of a distribution will also perform poorly.

An alternative method employed by supportInt is to bootstrap the coverage probability

as opposed to bootstrapping the distribution of R∗ (9). This is similar to Efron’s studen-

tized bootstrap t-interval (24) in which the quantile of the t distribution is adjusted until

the bootstrap estimate of coverage is nominal. One can similarly use the bootstrap to es-

timate the coverage probability of a 1/k SI and adjust the level, k, until (1−α) coverage

is achieved. Since this procedure involves bootstrapping a mean rather than a quantile, it
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performs better in small samples.

As an example, consider if the data (5,4,4,2,4) are taken to be from a Poisson distri-

bution. Then θ̂ = x = 3.8. Parametric bootstrap draws are then done from:

x∗ ∼ f (x|θ = θ̂) =
eθ̂ θ̂ x

x!
.

Next, 1/k support intervals are calculated from the bootstrap sample x∗1, . . . ,x
∗
5, and counted

via an indicator variable for whether the calculated support interval contained θ̂ . The cov-

erage probability over B bootstrap repetitions is then calculated as

P(SIlower < θ < SIupper)≈
∑

B
i=1 I

θ̂∈SIi

B

where [SIlower,SIupper] are random variables representing the random endpoints of the 1/k

support interval. This process can be repeated at different k until nominal coverage is

reached. One sample of B=10,000 bootstrap samples suggested a 1/7.245 SI would be an

approximate 95% CI for this data.

4.2.13 Smooth Bootstrap Calibrated Binomial

The binomial case merits special attention. As described in Brown, Kai, and Das-

Gupta (25), the coverage probability of confidence procedures for binomial proportions

demonstrates highly erratic behavior. The inherent problem is that the bootstrap procedure

assumes that coverage probability at the true value, θ0, is similar to the coverage probabil-

ity at θ̂ . However, this can hardly be expected from the coverage probabilities of CIs for

binomial proportions. Given that values of θ which differ by miniscule amounts can have

several percentage points difference in their actual coverage probability, doing a parametric

bootstrap using θ̂ might lead to very poor estimate of the true coverage depending on the

difference in coverage at θ versus θ̂ , Figure 4.1.

If we were to attempt to probabilistically calibrate a support interval to demonstrate
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Figure 4.1: Coverage rates of Wilson Interval and 1/8 support intervals for a given true proportion and n=20.

the proper coverage rate using the previously described technique of treating k as a tuning

parameter until nominal coverage is observed, the resulting relationship between k and

coverage probability is a step function, Figure 4.2.

As such, it is not necessarily possible to find a value of k which gives exactly 1−α

coverage for a given sample size and true proportion, θ0. A reasonable alternative would

be to find the shortest interval, and therefore lowest k, that has at least 1−α coverage. This

is equivalent to finding the step in the k versus coverage function that steps over the 1−α

value.

For a fixed sample size we can numerically determine the proper k value given the

value of the true proportion, Figure 4.3. The resulting function relating θ0 to k95 is the key

to probabilistic calibration. However, the resulting calibration will suffer from the same

affliction that plagues all of the other confidence intervals for the binomial proportion.
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Figure 4.2: Coverage rate as a function of k with θ0 = .2,n = 20.

Specifically, proper calibration requires knowledge of the true value of θ0 prior to estimat-

ing θ0. For example, if an analyst wanted to estimate a support interval for θ0 = 0.1, then

the appropriate choice of k95 is approximately 8.23. However if they attempt to estimate

the interval from data x = 3, θ̂ = 0.15, they would perform a standard parametric bootstrap

procedure and incorrectly conclude that the appropriate value of k95 necessary to achieve

95% coverage was approximately 11.49, i.e. they would evaluate the θ vs k95 function

at the wrong location resulting in a longer than necessary interval that may or may not

overcover.

Choosing the wrong k with which to calibrate the support interval can have a variety

of consequences. In examining Figure 4.3, there is a notable discontinuity between θ0 ∈

[0.31,0.32]. This region is a direct result of the step function relationship between k and the

coverage probability demonstrated in Figure 4.2. This region of the θ space occurs when
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Figure 4.3: Value of k which results in 95% coverage given the true proportion, θ0 for a sample of size 20.

one of the steps in the coverage function happens to coincide with the nominal coverage

(the function suggests (1−α) ∗ 100% coverage over a wide variety of k). Choosing the

wrong k when θ0 is truly in this range will likely maintain the nominal coverage. At other

values of θ0 the step function is significantly more volatile which can result in over/under

coverage in addition to the consequences on interval length.

The proposed solution to this difficulty in selecting an appropriate k is to take a weighted

average of k values over the range of plausible proportions. This is accomplished via a mul-

tilevel parametric bootstrap. At the first level, values for θ are chosen to be used in a second

parametric bootstrap. They are chosen at random with a probability that is proportional to

their likelihood, i.e. values are sampled from the posterior distribution of θ resulting from

employing a uniform prior on θ . The second parametric bootstrap is then performed as

before for successive levels, k, until nominal coverage is attained. As evident in Figure
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Figure 4.4: Estimated coverage given a particular observed value of θ̂ simulated from a uniform distribution
of θ values.
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4.4, the proposed method of smoothing demonstrates operating characteristics which are

fairly consistent over the entire range of observable values of θ̂ . In other words, an analyst

who does not wish to leverage any prior knowledge about θ would expect more consistent

performance of confidence intervals regardless of the observed data value. For the sake of

comparison, the figure also shows the result of using the single level bootstrap that simply

estimates the value of k at θ̂ . The smoothed version shows particular promise in the upper

and lower extremes of the θ scale.

4.2.14 Conclusion

The supportInt package provides tools for calculating likelihood based support inter-

vals in R, which have been extremely limited at this point. The package utilizes a novel

bootstrap technique to achieve probabilistic calibration of support intervals which narrows

the gap between probability based and likelihood based inference. Although the ideological

differences remain vast, it is now possible for the devout frequentist to enjoy (1−α) con-

fidence intervals that maintain the favorable properties of support intervals. Similarly, the

devout likelihoodist may report 1/k support intervals as 95% confidence intervals without

fear of reprisal from reviewers bent on probability based inference.

118



REFERENCES

[1] Herbert Robbins. An Empirical Bayes Approach to Statistics. Proceedings of the

Third Berkeley Symp. on Math. Statist. and Prob., 1956.

[2] Charles Stein. Inadmissibility of the Usual Estimator for the Mean of a Multivariate

Normal Distribution. Proceedings of the Third Berkeley Symp. on Math. Statist. and

Prob., 1956.

[3] Willard James and Charles Stein. Estimation with Quadratic Loss. Proceedings of

the Fourth Berkeley Symp. on Math. Statist. and Prob., 1963.

[4] Bradley Efron and Carl Morris. Stein’s Estimation Rule and Its Competitors- An

Empirical Bayes Approach. J. Amer. Statist. Assoc., (341), 1973.

[5] Bradley Efron and Carl Morris. Data Analysis Using Stein’s Estimator and its Gen-

eralizations. J. Amer. Statist. Assoc., (350), 1975.

[6] Geert Verbeke and Geert Molenberghs. Linear Mixed Models for Longitudinal Data.

Springer, 2000.

[7] Nan Laird and James Ware. Random-Effects Models for Longitudinal Data. Biomet-

rics, (4), 1982.

[8] Art Owen. Empirical Likelihood. CRC Press, 2001.

[9] B. Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist., 1979.

[10] C. V. Thakar. Perioperative acute kidney injury. Advances in Chronic Kidney Disease,

20:1, 2013.

[11] S. Calvert and A. Shaw. Perioperative acute kidney injury. Perioperative Medicine,

1:6, 2012.

119



[12] R. Bellomo, Ronco C., Kellum J.A., and Palevsky P. Mehta R.L. Acute renal failure-

definition, outcome measures, animal models, fluid therapy and information technol-

ogy needs: the second international consensus conference of the acute dialysis quality

initiative (adqi) group. Crit Care, 2004.

[13] R. L. Mehta, J. A. Kellum, A.V. Shah, B. A. Molitoris, C. Ronco, D. G. Warnock, and

A. Levin. Acute kidney injury network: report of an initiative to improve outcome in

acute kidney injury. Crit Care Med, 11, 2007.

[14] Acute Kidney Injury Work Group. Kidney disease: Improving global outcomes

(kdigo)- clinical practice guideline for acute kidney injury. Kidney Inter, 2012.

[15] R.L. Prentice. Surrogate endpoints in clinical trials: definition and operational criteria.

Stat Med, 1989.

[16] A.P. Dempster and D.B. Rubin. Maximum likelihood from incomplete data via the

em algorithm. J Royal Statist Soc B, 1977.

[17] Karl W. Broman, Hao Wu, Saunak Sen, and Gary A. Churchill. R/qtl: QTL mapping

in experimental crosses. Bioinformatics, 19:889–890, 2003.

[18] B. Emma Huang and Andrew W. George. R/mpmap: a computational platform for

the genetic analysis of recombinant inbred lines. Bioinformatics, 27:727–729, 2011.

[19] Richard Royall. Statistical Evidence. Chapman and Hall/CRC, 1997.

[20] R Development Core Team. R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-

07-0.

[21] Leena Choi. ProfileLikelihood: Profile Likelihood for a Parameter in Commonly Used

Statistical Models, 2011. R package version 1.1.

120



[22] Brad Owen. Empirical likelihood ratio confidence intervals for a single functional.

Biometrika, (2), 1988.

[23] Bradley Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist., (1),

1979.

[24] Thomas J DiCiccio and Bradley Efron. Bootstrap confidence intervals. Statist. Sci.,

(3), 1996.

[25] Lawrence D. Brown, Tony Cai, and Anirban DasGupta. Interval estimation for a

binomial proportion. Statist. Sci., (2), 2001.

121


	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Introduction to Empirical Bayes Methods
	Robbins and Early Empirical Bayes Methods
	The James-Stein Estimator
	Latent Class Models as Empirical Bayes Methods


	Modeling Partial Surrogate Outcomes: applications to acute kidney injury
	Introduction to the Chapter
	Acute Kidney Injury
	Statistical Issues with Modeling AKI
	Partial Surrogates
	Ignoring the Partial Surrogate
	Latent Variable (Mixture) Models for Partial Surrogates

	Simulated Examples
	Example 1
	Example 2

	Clinical Example
	Linear Model Analysis of Perioperative AKI
	Mixture Model Analysis of Perioperative AKI
	Comparing the Linear vs. Mixture Model Approach
	Prediction of Short Term Outcomes
	Predicting Long-Term Outcomes

	Manuscript 1: Clinical Presentation of AKI results
	Abstract
	Introduction
	Results
	Discussion
	Methods

	Manuscript 2: Statistical Presentation of Partial Surrogates
	Abstract
	Introduction
	Surrogate Outcomes in Risk Score Models
	Theoretical Considerations Regarding Partial Surrogates
	AKI Example of Risk Criteria


	The evaluation of multiple therapies: Challenging the status quo in clinical trial design
	Introduction to the Chapter
	Analysis of Perioperative Beta Blockade
	Manuscript: Metoprolol versus other -Blocking Agents in Perioperative -Blockade
	Abstract
	Introduction
	Materials and Methods
	Results
	Discussion

	Trial Designs for Fuzzy Interventions
	Likelihood Based Randomization

	Manuscript: Clinical Trial Design for Fuzzy Interventions
	Introduction
	Motivating Example
	Proposed Method
	Fuzzy Interventions
	Simulations
	Discussion


	Probabilistically Calibrated Support Intervals
	Introduction to the R Package
	Manuscript: Probabilistically Calibrated Support Intervals with supportInt
	Abstract
	Background
	The Likelihood Function
	Support Intervals
	Properties of Support Intervals
	Invariance
	Non-exclusivity
	Nuisance Parameters
	Support Intervals in the supportInt Package
	Probabilistically Calibrated Support Intervals
	Probability Calibrated Gaussian known 2
	Bootstrap Calibrated Non-Gaussian
	Smooth Bootstrap Calibrated Binomial
	Conclusion


	 REFERENCES 

