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Chapter 1

Introduction

1.1 Ionization Induced by Intense Ultrashort Laser Fields

In 1905 Einstein began the quantum revolution with his famous paper on the photo-

electric effect [1]. The quantum revolution fundamentally changed our philosophical and

practical understandings of the physical universe. In 1917, Einstein expanded on his photo-

electric effect work and proposed the stimulated emission. This prediction eventually lead

to the invention of the laser in 1960 [2]. Since then the generation of laser fields has been

greatly refined. Today laser pulses with femtosecond (10−15 s) duration are ubiquitous. The

femtosecond is the time scale of motion for the molecular nuclei, and femtosecond pulses

are therefore very important in probing the quantum chemistry [3]. Due to their smaller

mass relative to the nuclei, electrons in small molecules move on an attosecond (10−18 s)

time scale. While our focus is on the femtosecond pulses, attosecond pulses are generated

more and more readily with each passing year [4].

Short pulses with intensities on the order of 1014 − 1015 W
cm2 may be readily generated

on a small optical bench. At an intensity of 1015 W
cm2 the peak electric field is ≈ 8.68 V/Å,

where Å = 10−10 m. The peak electric field may be compared to the electric field at a

distance of one Bohr radius (≈ 0.529 Å) from the nucleus of a hydrogen atom, which is

≈ 51.4 V/Å. The peak field of the laser pulse is a significant fraction of the electric field

experienced by an electron in the hydrogen atom. The high intensity and short duration of

these pulses ensure that their effect on molecules is strictly nonperturbative.

The most fundamental ionization process is single-electron ionization driven by a lin-

early polarized laser field. At low intensity an electron may be ionized by absorbing multi-

ple photons, as first predicted by Maria Göppert-Mayer [5]. An electron may even absorb

more than the minimum number of photons, leading to the so called above threshold ion-
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ization [6]. At higher intensity, the electric potential of the laser field will modulate the

Coulomb well(s) of the atom or molecule. By lowering the potential barrier, the electron

may tunnel into the continuum. The so called Keldysh parameter [7], which determines

which of these ionization regimes applies, is given by,

γ =

√
VIE

2Up
. (1.1)

In the above equation, VIE is the vertical ionization potential of the molecule or atom, which

is the minimum energy required to directly ionize one electron. Up is the ponderomotive

energy [8] of the laser field, which is the cycle averaged energy of a free electron driven by

the laser field. Up is given by,

Up =
e2〈E2〉
4meω2 , (1.2)

where e is the charge of the electron, me is the electron mass, ω is the angular frequency of

the laser field, and 〈E2〉 is the average of the electric field squared. If γ >> 1 then multipho-

ton ionization will dominate, and if γ << 1 then tunneling ionization will dominate. In this

thesis we consider wavelengths of 800 nm and small molecules with ionization potentials

of ≈ 10 eV. The lowest intensity we shall consider is 4 ·1014 W
cm2 . Given these parameters,

Up ≈ 23.9 eV and γ ≈ 0.457. This represents an upper bound on γ for the laser fields we

will consider since γ decreases with higher intensity. When γ < 0.5, the Keldysh theory

places the phenomena in the tunneling ionization regime. Hence tunneling ionization will

dominate for the laser fields and molecules considered in this thesis. The Keldysh param-

eter, while useful, does not provide an exact or complete picture of the strong field laser

phenomena. We will discuss the Keldysh parameter and its limitations in more detail in

Chapter II.

The complexity of the ionization phenomena is greatly increased once the ionization of

multiple electrons is considered since the correlation between electrons must be accounted

for [9]. Broadly speaking, there are two possibilities for the multiple ionization. The first
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is that the electrons are ionized one after another and their dynamics are independent of

one another. This is so called sequential ionization. The second case is the nonsequen-

tial multiple ionization, where the electron dynamics are highly correlated. Nonsequential

double ionization is observable, for instance, in the so called “knee” in the He2+ ion yield

of helium [10–12]. The nonsequential double ionization has also been observed in the ion

yields of molecules [13, 14].

An important and simple model of the ionization of two correlated electrons is the tun-

neling and recollision model proposed by Corkum [15] in 1993. In this model, an electron

is first ionized via tunneling ionization. Then upon the reversal of the laser field the elec-

tron is driven back to the parent ion and ionizes a second electron through collision. The

recolliding electron may instead recombine with the parent ion. The recombination con-

verts the electron’s kinetic energy into the generation of high harmonics of the fundamental

laser frequency [16].

1.2 Ionization and Fragmentation of Small Molecules

Our interest in this thesis is the dynamics of both the electrons and the nuclei in a

molecule driven by intense, ultrashort laser fields. The dynamics involves both the corre-

lation between electrons, and the correlation between the electrons and the nuclei. In this

section we consider some of the unique challenges posed by small molecules.

Small molecules have an orbital electronic structure. Each molecular orbital has a par-

ticular nodal symmetry, which may be calculated with electronic structure calculations

using ab initio theories such as Hartree Fock or density functional theory. We shall dis-

cuss these ab initio theories in Chapter II. Early attempts to understand the ionization of

molecules made use of the so-called molecular-orbital Ammosov, Delone, Krainov (MO-

ADK) model [17]. The original Ammosov, Delone, Krainov (ADK) model [18] gave the

tunneling ionization rates of an atom assuming a single, active electron interacting with a

quasi-static external laser field. The main feature of the MO-ADK model is the assump-
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tion that only the highest occupied molecular orbital (HOMO) interacts with the laser field.

More deeply bound orbitals are treated as a frozen core. On the other hand, ionization from

inner-valence molecular orbitals has been experimentally observed [19–21, 21–28]. Mul-

tiple ionization may occur from several orbitals either sequentially [25] or nonsequentially

[28].

Unlike atoms, molecules have a geometric structure defined by the positions of the

nuclei. Of particular importance is the alignment of the molecular geometry relative to

the polarization vector of the laser field. Typically an ensemble of molecules are inserted

into the experimental apparatus as a gas jet. These molecules, being in the gas phase, are

initially aligned randomly. Recently, the use of pump-probe techniques has allowed the

study of the ionization of aligned molecules [29–35]. In this experimental setup first a

nonionizing pump pulse aligns the molecular ensemble along a particular axis. With an

aligned system in hand, ionization and fragmentation may be induced by the probe pulse.

The fragmentation of molecules induced by strong laser fields involves the coupled

dynamics between the electrons and the nuclei. The laser field will induce several frag-

mentation and ionization channels. Each channel has an associated quantum mechanical

probability of occurring. Modern experimental tools such as the Cold Target Recoil Ion

Momentum Spectroscopy [36] (COLTRIMS) allow a complete coincidence mapping of

the final momentum of both the ionized electrons and the fragmented ions. From these

coincidence measurements the ionization and fragmentation channel of each event may be

determined.

Given that the probability of the various fragmentation channels of a molecule may be

determined for a given laser pulse, one asks if a particular set of laser pulse parameters may

be chosen which shall optimally drive the molecule along a desirable dissociation channel?

More generally, can sculpted laser pulses be used to drive chemical reactions? This is the

topic of the next section.
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1.3 Quantum Control of Chemistry

The advent of ultrashort laser pulse durations brings the promise of quantum control

of chemical reactions. Broadly speaking, the goal of chemistry is to drive a set of initial

reactants towards a set of products. An active control of chemical reactions using short

sculpted laser pulses is highly desirable as it would allow an enhancement of product yields

with a minimization of waste products, or even allow reaction pathways not accessible

in traditional chemistry. Quantum control has attracted considerable interest and many

reviews are available [37–39]. In this section we highlight the most important aspects.

Progress in sculpting laser fields permitted early attempts at quantum control using

open loop algorithms [40]. In such a scheme the known molecular properties are used to

construct the optimal sculpted laser pulse using optimal control theory. These algorithms

proved sensitive to disturbances and experimental uncertainties, leading to the develop-

ment of robust quantum control [41] to construct sculpted pulses which are insensitive to

disturbance.

Levis et al. [42, 43] introduced closed loop algorithms, which proved to be a signifi-

cant advancement in the study of quantum control. There are two flavors of closed loop

algorithms: machine learning and quantum feedback. In both cases the algorithm begins

with some initial test pulse. With the machine learning, the pulse drives the reactants com-

pletely to their products. The yield of desired products is used to derive the shape of a new

pulse. The experiment is repeated with identical initial reactants which are now driven by

the newly constructed pulse. Several iterations of this scheme allow the construction of an

optimal pulse. With quantum feedback, instantaneous feedback is obtained as the reactants

are driven towards the products and the pulse parameters are adjusted in real time.

The most significant limitation on quantum control is pulse duration [37], with shorter

pulses allowing for a more complete control over the dynamics. In recent years, laser

pulses with sub-5 fs duration have been used to induce selective bond cleavage [44], and the

steering of dissociation channels [45, 46]. Further advancements will be rapidly achieved
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as attosecond pulses become more readily implemented into quantum control experiments.

1.4 Thesis Outlook

In this chapter we have discussed the phenomenology of the ionization of small molecules

and atoms. We have also observed the long-standing desire for the quantum control of

chemical reactions. The purpose of this thesis is to theoretically investigate the ionization

and fragmentation of small molecules induced by intense, ultrashort laser fields. In partic-

ular we shall consider the coupling of electronic and nuclear dynamics, the dependence of

molecular alignment, and the dependence on pulse intensity and duration for both linearly

and circularly polarized femtosecond laser pulses. Our tool is ab initio time dependent

density functional theory (TDDFT) coupled with Ehrenfest dynamics. We also consider

algorithms to enhance the computational speed of the solution of the TDDFT equations.

In Chapter II we will review various ab initio theoretical approaches to the study of

molecular systems with a particular emphasis on the TDDFT. We will also provide the

computational details of our implementation. In Chapter III we shall investigate various

time propagation schemes for the solution of the TDDFT equations in the pursuit of prop-

agators which are both accurate and computationally efficient. In Chapter IV we shall use

the TDDFT coupled with the Ehrenfest dynamics to investigate the ionization and frag-

mentation of small molecules driven by linearly polarized laser pulses. We shall find that

the results are in agreement with an enhanced ionization (EI) model. In Chapter V we shall

further investigate the EI model by considering fixed ion TDDFT calculations. In chapter

VI we use the TDDFT coupled with the Ehrenfest dynamics to investigate the ionization

and fragmentation of small molecules driven by circularly polarized laser pulses, and com-

pare these results to the dynamics as driven by linearly polarized pulses. In Chapter VII we

shall summarize and conclude the thesis.
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Chapter 2

Theoretical Approaches

2.1 Many-Body Quantum Theory

Lying at the foundation of the non-relativistic many-body quantum theory is the time-

dependent Schrödinger equation (TDSE),

ih̄
∂Ψ(r1, ...,r2)

∂ t
= HΨ(r1, ...,rN). (2.1)

The two main ingredients of this equation are the Hamiltonian and the many-body wave-

function. As we are interested in the quantum chemistry of molecules, we shall restrict our

focus to systems containing only electrons. The dynamics of the nuclei are also important,

and we shall consider their treatment in section 2.6, Ab-initio Molecular Dynamics.

Since electrons are identical fermions, the many-body wavefunction must be antisym-

metric, Ψ(...,ri, ...,rj, ...)=−Ψ(...,rj, ...,ri, ...). The many-body wavefunction is extremely

complicated as it is a function of 3N coordinates, r1, ...,rN, where N is the number of parti-

cles. The computational expense of solving the many-body TDSE becomes intractable for

systems containing more than a few electrons. In this chapter we discuss the ab initio (first

principles) theoretical advancements which have made tractable the solution of many-body

quantum systems. In particular we consider the application of these ab initio theories to

small molecules driven by intense, ultrashort laser fields.

2.2 Ab Initio Theories

The most straightforward ab initio theory would be the solution of the TDSE itself.

However, as noted above, this remains intractable for more than a few electrons. The single-

active-electron (SAE) approximation, in which one electron interacts with the laser field
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and the others are frozen, has been successfully applied to atoms [47–50]. The application

of the SAE approximation in three dimensions has proven successful for the H2 molecule

[51]. The SAE approximation has also been applied to the intense laser field ionization in

three dimensions of other small molecules such as N2, O2, CO2, and H2O [52, 53]. Ef-

fects from multiple molecular orbitals have been considered within an independent-active-

electron (IAE) approach, where each molecular orbital independently interacts with the

laser field [52]. The SAE and IAE approaches do not account for either electron exchange

or correlation effects.

Another ab initio approach is the time-dependent Hartree-Fock (TDHF) [54] theory.

Hartree Fock makes the assumption that the many-body electron wavefunction may be

approximated by a single optimal Slater determinant of non-interacting orbitals. Using a

variational principle a set of Schrödinger-like equations for these non-interacting orbitals

may be derived. One of the advantages of the Hartree Fock theory is that it includes exactly

the effects of electron exchange. Pioneering efforts in the application of TDHF to the

ionization of atoms was made by Kulander [55] in 1987. The TDHF has been applied

to the study of the optical properties of molecules [56, 57], the strong field ionization of

acetylene [58–60], and the dissociation of ethylene [61].

Of particular relevance to this thesis is the density functional theory (DFT) [62] and

its extension into the time domain, the time-dependent density functional theory (TDDFT)

[63, 64]. TDDFT remains one of the most robust tools in the study of strong field phe-

nomena, and has become ubiquitous to the investigation of the strong field excitation and

ionization of atoms and small molecules. With coupling to a molecular dynamics scheme,

the TDDFT has also been applied to the dissociation of small molecules. Among the phe-

nomena investigated are the correlated double ionization of helium [65, 66], the high-order

harmonic generation [67–69], and the Coulomb explosion of various molecules [70–74].

In the next section we shall discuss the formalism of the DFT theory, which lies at the

foundation of TDDFT. In the subsequent section we shall discuss the formalism of the

8



TDDFT.

2.3 Density Functional Theory Formalism

DFT is one of the most powerful ab initio theories. From a formal mathematical point

of view, DFT is an exact reformulation of the time independent Schrödinger equation of

many-body quantum theory. DFT is strictly a ground state theory. The extension of DFT to

include excited states and time-dependence may be found in the TDDFT, which is discussed

in the next section. We shall begin with a sketch of the formal foundations of the DFT,

motivating and stating the relevant theorems without proof. More complete discussions

and formal proofs may be found in many textbooks, for instance in Ref. [75]. We shall

conclude with a discussion of the approximations required for practical use of the theory.

In the usual quantum theory all of the information about the ground state of a physical

system is contained within the ground state many-body wavefunction, Ψ0. DFT instead

takes the ground state one-body density ρ0(r) as the fundamental physical quantity. The

foundations of the DFT theory are the Hohenberg-Kohn (HK) theorems [76]. They estab-

lish that the density also contains all of the information about the physical system. The first

theorem is as follows:

Theorem 1: For every ground state density, ρ0, the external potential, Vexternal is uniquely

determined up to a choice of additive constant.

The external potential here may be, for instance, an applied electric field or the Coulomb

wells generated by atomic nuclei. As Hohenberg and Kohn [76] explain, through the

Schrödinger equation Vexternal uniquely determines the ground state wavefunction, Ψ0.

From Ψ0 any physical observable, and in particular the ground state energy, 〈Ψ0|H|Ψ0〉,

may be determined. Hence the ground state energy is uniquely determined once the exter-

nal potential is specified. Since Theorem 1 states that ρ0 determines the external potential,

9



and since the external potential uniquely determines the ground state energy, mathemati-

cally there must exist a functional which maps the ground state density to the ground state

energy. More formally, we have theorem 2:

Theorem 2: There exists a universal energy functional:

E[ρ(r)] = F [ρ(r)]+
∫

Vexternal(r) ·ρ(r)dr.

The minimum of this functional is the ground state energy, and is obtained when ρ(r) =

ρ0(r).

While Theorem 2 establishes the existence of the energy functional it does not tell us

how to construct it. In 1965, Kohn and Sham [77] partitioned the so called Hohenberg-

Kohn functional, F [ρ], into three parts,

F [ρ] = T [ρ]+
e2

2

∫ ∫ ρ(r)ρ(r′)
|r− r′|

+Exc[ρ]. (2.2)

The first term in the above equation is the total kinetic energy. The second is the Hartree

energy, which is simply the electrostatic Coulomb energy between the electrons. The third

is the so called exchange-correlation energy. Through a variational principle in which

one minimizes the energy functional, a Schrödinger-like equation for N fictitious non-

interacting electrons, known as the Kohn-Sham equation, can be obtained,

Ekφk(r) = HKS[ρ0]φk(r). (2.3)

The Kohn-Sham orbitals, φk, exactly reproduce the ground state electron density,

ρ0 =
N

∑
k=1

2 |φk|2 . (2.4)

The factor of 2 in the above equation represents spin degeneracy. We shall not concern
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ourselves with spin dependence in this thesis.

The careful reader observes that one needs ρ0 to solve Eq. (2.3) for φk, but simulta-

neously requires φk to calculate ρ0. In practice this complication is overcome by solving

eqs. 2.3 and 2.4 self consistently. We briefly sketch this algorithm. First choose an initial

guess for φk and use this guess to calculate ρ0. Compute HKS[ρ0] and solve Eq. (2.3) to ob-

tain an updated guess for φk. Repeat these steps until ρ0 converges. Now that we know how

to solve the DFT equations, let us turn to the construction of the Kohn-Sham Hamiltonian.

The Kohn-Sham Hamiltonian is given by,

HKS[ρ0] =− h̄2

2m
∇2 +Vexternal +VHartree[ρ0]+VXC[ρ0]. (2.5)

Observe that each term in the Hamiltonian corresponds to one of the terms in the Kohn-

Sham partitioning of the energy functional. The first term is the kinetic energy operator.

The second term is the external potential. The third term is the Hartree potential, given by

VHartree =
∫ ρ0(r′)

|r− r′|
dr′. (2.6)

The final term is the exchange-correlation (XC) potential.

Up until now the theorems and equations that we have written down have been for-

mally exact. Compared to the time independent Schrödinger equation, the DFT promises

a computationally tractable solution for the ground state of many-body quantum systems.

Unfortunately, the XC potential is unknown and will likely remain so for the foreseeable fu-

ture. The XC potential must therefore be approximated, and it is here that the practical DFT

theory diverges from the ground state many-body quantum theory. Many approximations

are currently in use [78], and we give a quick overview here. The simplest XC potential is

the the local density approximation (LDA) [79], where the XC potential is approximated

as the exact XC potential of a homogeneous degenerate electron gas. The generalized gra-

dient approximation (GGA) [79] class of XC potentials makes use of functionals of the
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gradient of the density in addition to the density itself. Other examples of XC potentials

in current use include the meta-GGA functionals [80] and Van der Waals functionals [81].

Despite the advancements in developing these XC potentials, a general XC potential which

has both broad applicability and accurate predictions remains elusive.

The DFT remains one of the robust and powerful ab initio theories. With the foundation

laid in this section we may now proceed into the time domain with TDDFT.

2.4 Time Dependent Density Functional Theory Formalism

In the year 1984, Runge and Gross extended the DFT to time-dependent systems [82].

The foundation of DFT was that the ground state density uniquely determined the external

potential. Similarly, Runge and Gross lay the foundation of TDDFT with the following

theorem:

Theorem 1: Given a known initial state, Ψ0, and a time-dependent single-particle po-

tential, v(r, t), there exists a unique density, ρ(r, t), obtained by solving the Schrödinger

equation. Similarly, for every time-dependent density, ρ(r, t), there exists a single-particle

potential, v(r, t), which is uniquely determined up to a choice of additive constant.

The proof may be found in the original paper by Runge and Gross [82]. Runge and

Gross proceeded to prove that there exists a time-dependent Kohn-Sham equation,

ih̄
∂φk(r, t)

∂ t
= HKS[ρ]φk(r, t). (2.7)

The solution of this equation gives the time-dependent Kohn-Sham orbitals, which may be

used to construct the true time-dependent density of the many-body quantum theory,

ρ(r, t) =
∞

∑
k=1

2|ψk(r, t)|2. (2.8)
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The time-dependent Kohn-Sham Hamiltonian is given by,

HKS[ρ] =− h̄2

2m
∇2

r +VH[ρ](r, t)+VXC[ρ](r, t)+Vext(r, t). (2.9)

Again we have the kinetic energy operator, the Hartree potential, an exchange-correlation

potential, and an external potential.

The benefits of the TDDFT are the same as the DFT, which is a much improved compu-

tational cost relative to the time-dependent many-body Schrödinger equation. The weak-

ness of the TDDFT is the also the same, which is that the exact time-dependent exchange-

correlation potential is unknown. One might expect that the exchange-correlation potential

is a functional of the density at a given time, t. However it is well known that VXC has a so

called memory effect where its functional form depends on the entire history of the density.

Nevertheless, one of the most common and well tested approaches to approximating the

exchange-correlation potential is the so called adiabatic approximation. Here the form of

the exchange-correlation potential is taken to be the ground state functional from DFT with

the density at time t inserted. That is,

vadiabatic
XC [ρ(r, t)] = vgs

XC[ρ(r, t)]. (2.10)

Any of the exchange-correlation potentials discussed in the previous section may be used as

vgs
XC. With the insertion of the LDA XC potential one obtains the adiabatic LDA (ALDA).

Optical properties, such as the absorption spectrum, may be determined through the

Linear Response TDDFT (LR-TDDFT), introduced by Casida [83] in 1995. The LR-

TDDFT equations are derived by inserting a first order perturbation for the external po-

tential into Eq. (2.7). The resulting equations are very cheap, computationally speaking.

In this thesis we consider the effects of strong fields and the LR-TDDFT does not apply.

Non-perturbative TDDFT may be obtained through the direct solution of the Kohn-Sham

equations. In practice, this is accomplished through the construction of a time propagator.
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In Chapter III we shall discuss the theory of the propagator and investigate various schemes

for its approximation.

2.5 Electrodynamics and Gauge Choice

In the previous section we laid out the formalism of the TDDFT theory. We are nearly

in a position to put this formalism to use for practical application to many-body electron

systems. First we must introduce the external potentials which will drive the electron dy-

namics, i.e. the applied laser field and the Coulomb potentials generated by the nuclei. In

this section we will discuss the laser fields. We begin with a discussion of the fundamen-

tal electrodynamics. We next discuss gauge choice, and in particular introduce the length

gauge. We shall also motivate the dipole approximation and demonstrate its applicability

to the laser fields considered in this thesis.

The application of the TDDFT to systems involving the interaction of molecules and

strong laser fields involves the coupling of the time-dependent Kohn-Sham equations with

the Maxwell’s equations of the electrodynamics. Strictly speaking, this coupling is not

theoretically rigorous unless a closed surface may be found on which the Kohn–Sham

orbitals are zero at all times. If such a surface cannot be found then the Runge-Gross

theorem is invalid and TDDFT does not apply. Maitra et al. [84] showed that the Runge-

Gross theorem is violated by a homogeneous field applied to a bulk material. The failure of

the Runge-Gross theorem in this case is nontrivial, and the resolution of this complication

requires the time-dependent current density functional theory (TDCDFT) of Ghosh-Dhara

[85]. In the TDCDFT the fundamental variable is the single-particle current density. Our

interest is in small molecules rather than bulk materials, and we shall work within the

adiabatic approximation where the Hamiltonian is only a functional of the density. With

these assumptions we may continue to use the TDDFT theory as developed thus far.

14



The Maxwell’s equations written in differential form are given by,

∇ ·E =
ρ
ε0

(2.11)

∇ ·B = 0 (2.12)

∇×E =−∂B
∂ t

(2.13)

∇×B = µ0

(
J+ ε0

∂E
∂ t

)
(2.14)

For the construction of a quantum mechanical Hamiltonian, potentials are required instead

of electric and magnetic fields. The scalar potential, U , and vector potential, A, are related

to the electric and magnetic fields by,

B = ∇×A (2.15)

E =−∇U − 1
c

∂A
∂ t

. (2.16)

Before moving forward to the integration of the Maxwell’s equations to the TDDFT

theory, we first ask if the non-relativistic many-body quantum theory formalism is applica-

ble to the laser fields under consideration. One such measure may be found [86, 87] in the

following unitless intensity parameter,

z f =
2Up

mec2 , (2.17)

where Up is the ponderomotive energy, and me is the electron rest mass. If z f << 1 then

the regime is non-relativistic. The largest intensity we shall consider in this thesis is 14 ·

1014 W
cm2 , for which the ponderomotive energy is Up = 83.66 eV. Since mec2 = 0.511 ·106

eV, one is well justified in using the non-relativistic theory.

The vector potential may be incorporated into the time-dependent Kohn-Sham equa-

tions by replacing the momentum operator, p̂ = ih̄∇, with p̂− e
c Â = ih̄∇− e

c Â. This re-
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placement yields Kohn-Sham equations of the form,

ih̄
∂φk(r, t)

∂ t
=

[
1

2me
(ih̄∇r −

e
c

A(r, t))2 +VH[ρ](r, t)+VXC[ρ](r, t)+Vions(r, t)+U(r, t)
]

φk.

(2.18)

Now let us turn to the question of whether the magnetic field is relevant to the dynamics

or may be safely neglected. In Chapter I, we introduced the concept of the Keldysh param-

eter, Eq. (1.1). It was observed that low intensities would give a large Keldysh parameter,

and that this implied that multi-photon ionization would dominate the physical phenomena.

At high intensities, the laser field could be considered a classical field which would modu-

late the Coulomb wells of the atom or molecule. This modulation would induce tunneling

ionization. Implicit to this discussion were the assumptions that the magnetic field of the

laser was negligibly small and that the laser fields are quasi-static. As Reiss [86, 87] points

out, the success of the Keldysh parameter has relied on the accident that wavelengths of

800 nm, the typical wavelength of Ti:Sapphire lasers, and 1 µm, the typical wavelength

of Nd lasers, are experimentally convenient and in wide use. Strictly speaking, one must

show that the magnetic field of the laser is negligible before applying the tunneling theory

of Keldysh. We shall now show that this is the case for wavelengths of 800 nm, which is

the regime we wish to consider.

In order to judge the importance of the magnetic field, Reiss [86] suggests that one

considers the classical motion of a free electron driven by a strong linearly polarized elec-

tromagnetic plane wave. For convenience, consider the frame of reference where the av-

erage motion of the electron is at rest. For a plane wave, the electric field will take the

form E = E0n̂cos(k · r−ωt + δ ), where E0 is the amplitude of the electric field, n̂ is the

polarization vector, k is the wave vector, ω is the angular frequency, δ is the phase. If the

magnetic field is negligibly small then the classical dynamical equation of motion for the

16



electron becomes

F =−eE− e(v×B) =−eE0n̂cos(k · r−ωt +δ ) = me
d2r
dt2 , (2.19)

where e is the elementary charge, and me is the mass of the electron. By solving this dif-

ferential equation, one finds that the electron will engage in a simple harmonic oscillatory

motion parallel to the electric field, with a given amplitude. As the magnetic field is ramped

up the motion will become a figure eight (see e.g. [88]) with an additional amplitude par-

allel to the propagation vector of the laser field, β0, given by

β0 =
Upλ

8π(1+ z f )mec2 ≈
Upλ

8πmec2 . (2.20)

In the above equation, Up is the ponderomotive energy of the laser field, c is the speed of

light, me is the mass of the electron, λ is the wavelength of the laser field, and z f is the

unitless parameter introduced in eq. (2.17). The amplitude of the figure eight parallel to

the electric field is longer than the amplitude of the figure eight parallel to the propagation

vector.

If β0
a0

<< 1, where a0 is the Bohr radius, then the magnetic field is negligible. Once

again, the maximum intensity we shall consider is about 1015 W
cm2 , and the wavelength is

800 nm. This gives an upper bound of β0
a0

≈ 0.0985, implying that magnetic fields may

safely be neglected.

2.5.1 Choice of Gauge

Classically, it is well known that only the electric and magnetic fields represent true

physical quantities and that the potentials are only defined up to a choice of gauge. The
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so-called gauge transformations are induced as follows,

A′(r, t) = A(r, t)+∇χ(r, t)

U ′(r, t) =U(r, t)− ∂
∂ t

χ(r, t). (2.21)

Since the gauge transformation does not effect a change in the electric and magnetic fields,

the classical electrodynamics is said to be gauge invariant.

In quantum mechanics, a gauge transformation will simply lead to a unitary transfor-

mation of the wavefunction. Since physical observables, which are the expectation values

of operators, are invariant under unitary transformation, gauge invariance is preserved in

the quantum mechanics.

The Kohn-Sham equations with the adiabatic approximation to the XC functional are

also gauge invariant. This may be formally proven by first turning to the TDCDFT, which

is formally gauge invariant. By showing that the TDCDFT reduces to the normal TDDFT

under adiabatic conditions, the TDDFT theory in the adiabatic approximation is also shown

to be gauge invariant [89]. In practice gauge invariance may be lost since one must choose

an incomplete basis on which to represent the KS orbitals and the Hamiltonian. The accu-

racy produced with a given truncated basis will vary with gauge choice [89], breaking the

gauge invariance. The gauge and basis in TDDFT must be chosen with some care if high

accuracy is desired.

One of the most useful gauges in the study of plane waves is the Coulomb gauge,

∇ ·A(r, t) = 0. (2.22)

This gauge is fully consistent with the complete Maxwell’s equations including both mag-

netic and electric fields.

As we have noted above, for the intensities and wavelengths which are considered in

this thesis the magnetic field is negligibly small. This is the origin of the so called dipole
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approximation. Within the dipole approximation, the Coulomb gauge reduces to the so

called velocity gauge,

A(t) =−c
∫ t

0
E(t

′
)dt

′
,

U(t) = 0. (2.23)

Now the scalar potential is 0 and the vector potential is a function only of the time-

dependent electric field. A derivation of Eq. (2.23) may be found in, for example, [90].

Still working within the dipole approximation, one may choose to instead eliminate the

vector potential in favor of the scalar potential. This leads to the so called length gauge,

which was first introduced by Göppert-Mayer [5]. The potentials in this gauge take the

form,

A(r, t) = 0,

U(r, t) =−r ·E(r, t). (2.24)

The length gauge is highly favorable for its simplicity of form and is therefore in wide use.

A derivation of the form of the scalar potential found in Eq. (2.24) starting with the plane

wave solution of the Maxwell’s equations in the position gauge may be found here [91].

As shown in this section, one may safely ignore the magnetic field for the laser field

parameters under consideration in this thesis. We are therefore justified in the use of the

length gauge and dipole approximation.

2.6 Ab Initio Molecular Dynamics

In this section we review a few of the common ab-initio molecular dynamics schemes.

In particular, we shall consider the Born-Oppenheimer and Ehrenfest molecular dynamics.

A more complete review of the ab-initio molecular dynamics may be found, for instance,
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in Ref. [92]. Our particular interest is the Ehrenfest dynamics.

Up until now we have considered the nuclei of molecules only as an external potential of

the many-body electron system. The full molecular wavefunction must involve coordinates

for both the electrons and the nuclei, giving Ψ(r1, ...,rNelectron,R1, ...,RNnuclei). The full

many-body molecular wavefunction may be made tractable by recalling that the electrons

and nuclei move on the attosecond and femtosecond time scales, respectively. This suggests

that the wavefunction may be approximated as a product of an electron wavefunction and

a nuclei wavefunction,

Ψ(r1, ...,rNelectron,R1, ...,RNnuclei) = ∑
λ

Ψλ
e (r1, ...,rNelectron) ·Ψ

λ
n (R1, ...,RNnuclei) (2.25)

= Ψe(r1, ...,rNelectron) ·Ψn(R1, ...,RNnuclei),

where λ is set equal to 1. This is the so-called Born-Oppenheimer approximation, first

proposed in 1927 [93].

Next one must decide how to approach the nuclear and electronic wavefunctions. We

shall work within either the DFT or the TDDFT to describe the electron system. To make

the nuclear dynamics tractable, we shall consider the nuclei as point particles which move

along classical trajectories. Born and Oppenheimer proposed a further approximation that

these classical trajectories move along a Potential Energy Surface (PES) which is derived

from the ground state electronic wavefunction [93]. This scheme is known as the Born-

Oppenheimer molecular dynamics (BOMD). Using the Ehrenfest theorem [94], the forces

which drive the motion of the nuclei are calculated by taking derivatives of the ground state

electronic energy with respect to the ionic positions. In the case of DFT this gives,

M j
d2R j

dt2 = ∇ jEKS[ρ0], (2.26)

where ρ0 is the ground state density. Hence in each molecular dynamics (MD) step, one
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first calculates the ground state electronic density using DFT for a given set of nuclear coor-

dinates. Then one updates the nuclear coordinates using Eq. (2.26) and repeats the process.

Since the BOMD deals only with the ground state electronic energy, it necessarily will not

produce the correct dynamics in cases where the electronic wavefunction significantly di-

verges from the ground state. For this reason the BOMD is often referred to as an adiabatic

molecular dynamics. We note that the term adiabatic here is used in a different sense than

in the adiabatic exchange-correlation potentials discussed in previous sections.

One non-adiabatic classical trajectory approach is the so-called Ehrenfest dynamics. In

this case one takes derivatives of the total electronic energy of TDDFT with respect to the

ionic positions,

M j
d2R j

dt2 = ∇ jEKS[ρ]. (2.27)

One solves Eq. (2.27) simultaneously with the equations of TDDFT. In adiabatic BOMD,

one solves for the electronic ground state and then calculates the forces on the ions. This

implies that the BOMD provides an incomplete picture in cases where the electronic ex-

cited states are significantly occupied. The nonadiabatic Ehrenfest approach is therefore

favorable in these cases, since the effects of excited states is accounted for.

The benefit of the ab-initio classical trajectory methods are their computational tractabil-

ity. Nonetheless any classical trajectory method, whether adiabatic or non-adiabatic, will

necessarily suffer from some drawbacks. For instance, in the case of molecular dissociation

multiple fragmentation channels are possible. The Ehrenfest dynamics give only one set of

nuclear trajectories and represent some averaging of the possible fragmentation channels.

A calculation of the nuclear wave function would allow access to all of these fragmentation

channels. We shall discuss these wave function approaches in Chapter VII, wherein we

consider the outlook for future research in the field of quantum chemistry.
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2.7 Our TDDFT Code Implementation

In this chapter we have discussed the formalism of TDDFT, described the ALDA[79]

exchange-correlation functional, specified the form of the electrodynamic potentials in the

length gauge, and described the nonadiabatic Ehrenfest dynamics. In this section put these

pieces together and introduce the additional details which fully specify the implementation

used in our research group. In particular we shall describe the implementation as used in

chapters IV, V, and VI. In Chapter III most of the details are the same, with the exception

of the different time propagation schemes implemented.

The first additional detail which must be specified is the basis on which the TDDFT

equations are solved. We make use of a real space basis, where the KS orbitals are repre-

sented at discrete points. The advantage of this method is its flexibility. In practice these

discrete points are organized in a uniform rectangular grid. The accuracy of the simulations

are controlled by adjusting a single parameter, the grid spacing.

At the walls of the simulation cell we enforce the boundary condition that the Kohn-

Sham orbitals are zero. When a strong laser field is applied, ionization may occur and the

zero-boundary condition can lead to an unphysical reflection of the wavefunction off the

walls of the simulation cell. To prevent this we implement a complex absorbing potential

(CAP) with the following form, given by Manolopoulos [95]:

−iw(x) =−i
h̄2

2m

(
2π
∆x

)2

f (y), (2.28)

where x1 is the start and x2 is the end of the absorbing region, ∆x = x2 − x1, c = 2.62 is a

numerical constant, m is the electron’s mass and

f (y) =
4
c2

(
1

(1+ y)2 +
1

(1− y)2 −2
)
, y =

(x− x1)

∆x
. (2.29)

An example of a complex absorbing potential using the above form is shown in Fig. 2.1.
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As the molecule is ionized by the laser field, electron density will travel to the edge of

the simulation box where it is absorbed by the CAP. The total electron number, The integral

of the electron density over the volume of the box,

N(t) =
∫

V
ρ(r, t)d3x, (2.30)

where V is the volume of the simulation box, will therefore diverge from the initial electron

number, N(0). Since, in general, N(t) is not an integer, we will refer to it henceforth as the

fractional electron number. We interpret N(0)−N(t) as the total ionization of the molecule.

23



-10 0 10
x Position (Å)

0

300

600
C

A
P 

(e
V

)

Figure 2.1: One dimensional representation of the magnitude of two complex absorbing
potentials (CAP). The first CAP has x1 = −12 Å and x2 = −17 Å. The second CAP has
x1 = 12 Å and x2 = 17 Å.
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In an atom, the electrons occupy atomic orbitals. Each atomic orbital has its own bind-

ing energy and some electrons are more deeply bound than others. Electrons that are very

deeply bound, the so called core electrons, do not participate in chemistry. Their ionization

probabilities in the strong fields we shall consider are also small. The wavefunctions of

these core electrons tend to oscillate rapidly, making them difficult to represent on a real

space grid. In practice one may take the approximation of simulating only the dynamics

of the valence electrons, which are not so deeply bound, and freeze the core electrons.

To represent the Coulomb well of the atomic nucleus and the frozen core electrons we

the use norm-conserving Troullier-Martins pseudopotentials [96]. These pseudopotentials

preserve the scattering properties of the nucleus+core electron system.

Before the TDDFT calculation begins, the ground state of the system is prepared by

performing a DFT calculation. Next, the time-dependent Kohn-Sham orbitals, ψk(r, t), are

determined by solving the time-dependent Kohn-Sham equation

ih̄
∂ψk(r, t)

∂ t
= Hψk(r, t), (2.31)

where k is a quantum number labelling the orbital. The Kohn-Sham Hamiltonian is given

by

H =− h̄2

2m
∇2

r +VH[ρ](r, t)+VXC[ρ](r, t)+Vext(r, t). (2.32)

Here ρ denotes the electron density, which is defined by a sum over all occupied orbitals:

ρ(r, t) =
∞

∑
k=1

2|ψk(r, t)|2, (2.33)

where the factor of 2 accounts for there being two electrons in each orbital (via spin degen-

eracy).
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VH in Eq. (2.32) is the Hartree potential, defined by

VH[ρ](r, t) =
∫

dr′
ρ(r′, t)
|r− r′|

, (2.34)

and accounts for the electrostatic Coulomb interactions between electrons. VXC is the

exchange-correlation potential, whose exact form is a complicated functional of the entire

history of the electron density. This functional is approximated using the adiabatic local-

density approximation (ALDA) with the parameterization of Perdew and Zunger [79]. The

last term in Eq. (2.32), Vext, is the external potential, which includes the implicitly time–

dependent potential due to the ions, Vion, and the explicitly time-dependent potential due to

the electric field of the laser Vlaser. Vion is a sum of norm-conserving pseudopotentials of

the form given by Troullier and Martins [96] centered at each ion.

We are interested in the dynamics driven by both linearly and circularly polarized fields.

Vlaser is given by the dipole approximation in the length gauge: Vlaser = r ·E(t). A linearly

polarized electric field has the form,

E(t) = Emax exp
[
−(t − t0)2

2a2

]
k̂sin(ωt). (2.35)

The parameters a, t0, and Emax define the width, initial position of the center, and the

maximum amplitude of the Gaussian envelope, respectively. ω describes the frequency of

the laser, and k̂ is a unit vector defining the polarization of the electric field.

A time-dependent circularly polarized electric field is given by,

E(t) = Emax exp
[
−(t − t0)2

2a2

](
k̂1 sin(ωt)

+ k̂2 sin(ωt +
π
2
)

)
. (2.36)

Here k̂1 and k̂2 are the orthogonal unit vectors defining the polarization of the circularly

polarized electric field.
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The time-dependent orbitals may be formally time-propagated from the initial state to

some time, t, by using the time-evolution operator,

U(0, t) = T exp
[
− i

h̄

∫ t

0
H(r, t ′)dt ′

]
, (2.37)

where T denotes time ordering. In practice, U(t,0) is split into a product of multiple

time-evolution operators, each corresponding to a short time step δ t,

U(0, t) = ∏
q

U(tq, tq +δ t), tq = qδ t. (2.38)

In Chapters IV, V, and VI, the time-dependent orbitals are propagated using a fourth-order

Taylor expansion of the propagator, so that the propagation of the Kohn-Sham orbitals over

a very short time step, δ t, is given by,

ψk(r, tq +δ t)≈
m

∑
n=0

1
n!

(
− iδ t

h̄
H(r, tq)

)n

ψk(r, tq), (2.39)

where m = 4. The operator is applied for N time steps until the final time, tfinal = N · δ t,

is obtained. While the Taylor-propagation is not unconditionally stable, for time steps

chosen to suitably small the propagation is numerically stable. The advantage of the Taylor-

propagation is that its simple form only requires the repeated action of the Hamiltonian on

the Kohn-Sham orbitals.

Motion of the ions in the simulations are treated classically. Using the Ehrenfest dy-

namics, the quantum forces on the ions due to the electrons are given by the derivatives

of the expectation value of the total electronic energy with respect to the ionic positions.

These forces are then fed into Newton’s Second Law, giving

Mi
d2Ri

dt2 = ZiElaser(t)+
Nions

∑
j 6=i

ZiZ j(Ri −R j)

|Ri −R j|3

−∇Ri

∫
Vion(r,Ri)ρ(r, t)dr, (2.40)
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where Mi and Zi are the mass and pseudocharge (valence) of the i-th ion, respectively, and

Nions is the total number of ions.
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Chapter 3

Time Propagation Algorithms for the Time Dependent Density Functional Theory

3.1 Introduction

Solving the equations of TDDFT in real-time requires the construction of a time prop-

agation operator. This construction tends to be very expensive, and the development of

new propagation schemes is highly desirable. In this chapter we consider two propaga-

tion schemes in which the propagator is constructed on a reduced basis, the Lanczos basis

and the eigenbasis of the Kohn-Sham Hamiltonian. We compare to the Taylor propagation

scheme, which is known to give very accurate results. We find that the Lanczos and spectral

schemes can yield computational speed ups of a factor of 3 relative to Taylor propagation,

with only a small loss in accuracy.

3.2 Time Propagator Formalism

In this chapter we discuss time propagation algorithms for the solution of the time-

dependent Kohn-Sham equations of the TDDFT,

ih̄
∂ψk(r, t)

∂ t
= HKSψk(r, t). (3.1)

One’s goal is to obtain ψk(r, t) for all times t.

Let us define an operator, U(t1, t2), known as the propagator, such that

ψk(r, t2) =U(t1, t2)ψk(r, t1). (3.2)

The propagator transforms a Kohn-Sham orbital from time t1 into time t2. Eq. (3.1) may be
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formally solved to obtain the propagator,

ψk(r, t2) =U(t1, t2)ψk(r, t1) = T exp
[
− i

h̄

∫ t2

t1
HKS(t ′)dt ′

]
ψk(r, t1), (3.3)

where T denotes time ordering. The time ordering operator is necessary since the Hamil-

tonians at different times, say HKS(t) and HKS(t ′), typically do not commute. That is,

HKS(t)HKS(t ′) 6= HKS(t ′)HKS(t). A formal proof of Eq. (3.3) may be found in Fetter and

Walecka [97].

In practice, one wishes to obtain the Kohn-Sham orbitals not only at the beginning and

the end of the simulation but also at all possible times in between. It is therefore convenient

to use the property U(t3, t1) = U(t3, t2)U(t2, t1) to split U(t,0) into a product of multiple

time-evolution operators, each corresponding to a short time step δ t,

U(0, t) = ∏
q

U(tq, tq +δ t), tq = qδ t. (3.4)

There is an additional benefit to the partitioning of the propagator into products which is

that for any time, t, and sufficiently small time step, δ t, HKS(t) and HKS(t + δ t) must

approximately commute. We therefore drop the time ordering operator and the time inte-

gration in Eq. (3.3) and obtain,

U(tq, tq +δ t) = exp
[
− i

h̄
HKS(tq)δ t

]
. (3.5)

For the remainder of the chapter we shall focus on the construction of approximations to

U(tq, tq +δ t).

The first question which must be answered is how to adequately select the time step,

δ t. The time-energy uncertainly relation, δEδ t ≤ h̄, gives an absolute upper bound: δ t ≤
h̄

δEmax
. Put simply, the more rapidly the total energy of the electronic system changes the

smaller the time step required to resolve it. The size of δ t is therefore dependent on the
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physics of the specific system and external potential we wish to consider. Below this phys-

ical limitation, the choice of propagator approximation scheme will further limit the choice

of δ t. In selecting a propagation scheme we should, as Castro et al. [98] notes, minimize

the computational cost of propagation per unit time. The remainder of this chapter will

detail three propagation schemes and analyze their computational cost and accuracy.

3.3 Taylor, Lanczos, and Spectral Propagator Approximation Schemes

3.3.1 Taylor Expansion of the Propagator

One of the most robust methods for approximating the time propagator is the polyno-

mial expansion using a Taylor series. While we do not consider other polynomial schemes

in this thesis, the choice to use a Taylor expansion is not unique. Another example would

be the Chebychev polynomial expansion [98, 99]. The advantage of the Taylor scheme

is that it only requires the repeated action of the Hamiltonian on the Kohn-Sham orbitals.

Taylor propagation has been successfully applied to many systems[72, 100–104], and we

shall use it as a benchmark by which the accuracy of other schemes are compared. In this

section we motivate and derive the Taylor propagation scheme, and give a discussion of its

limitations.

Recall that our goal is to approximate the exponential given in Eq. (3.5). If HKS(tq) were

a c-number (classical number), one would naturally turn to the usual Taylor expansion,

exp
[
− i

h̄
HKS(tq)

]
=

∞

∑
n=0

1
n!

(
− iδ t

h̄
HKS(tq)

)
, (3.6)

and simply truncate the series at order Ntaylor to achieve whatever accuracy is desired. How-

ever HKS(tq) is a matrix, not a c-number, and the Taylor expansion is not necessarily un-

conditionally stable. The nature of the stability depends on the order of truncation [98].

For the remainder of this chapter and in the calculations for all subsequent chapters, we
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consider the fourth-order Taylor expansion,

ψk(r, tq +δ t)≈
4

∑
n=0

1
n!

(
− iδ t

h̄
HKS(r, tq)

)n

ψk(r, tq). (3.7)

The critical computational operation in this algorithm is the application of HKS to the an

orbital ψk. The number of critical operations per time step of the fourth order Taylor

propagation is,
Ncritical

δ t
= 4 ·Norbitals, (3.8)

where Norbitals is the number of Kohn-Sham orbitals. The fourth-order Taylor-propagation,

though not unconditionally stable, gives a very stable propagation provided that the time

step is chosen to be suitably small. In practice, we have found that the convergence of the

Taylor expansion requires δ t ≤ 0.001 fs. This limitation holds regardless of the physical

system. For systems with h̄
δEmax

>> 0.001 fs one wishes to circumvent the restrictions

imposed by the Taylor-propagation.

3.3.2 Projection of the Propagator into the Lanczos Basis

In the previous section we considered the polynomial expansion of the time propagator

using a Taylor series. By definition, the polynomial terms involved are HKS, H2
KS,..., Hn

KS.

Can a method be found to use powers of the Hamiltonian to construct the propagator with-

out the convergence concerns typical of polynomial expansions? Consider the so called

Krylov subspace of order m,

Km
k (|ψk〉, ĤKS) = span{|ψk〉, ĤKS|ψk〉, Ĥ2

KS|ψk〉, · · · , Ĥm−1
KS |ψk〉} . (3.9)

In our definition each Kohn-Sham orbital, |ψk〉, has its own Krylov basis which must be

calculated separately.

The basis vectors used to span the Krylov subspace in Eq. (3.9) are inconvenient since
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they are, in general, neither orthogonal nor normalized. We therefore use the Gram-

Schmidt procedure to construct an orthonormal set of vectors which span the Krylov sub-

space,

|qk1〉=
1

βk1
|ψk〉

|qk2〉=
1

βk2

[
ĤKS|ψk〉−〈q1k|HKS|ψk〉|qk1〉

]
|qk3〉=

1
βk3

[
Ĥ2|ψk〉−〈qk1|Ĥ2

KS|ψk〉|qk1〉−〈qk2|Ĥ2|ψk〉|qk2〉
]

· · · (3.10)

The set of basis vectors, qki, are known as the Lanczos basis. Following the Lanczos al-

gorithm [105], we shall first tridiagonalize the Hamiltonian in the Lanczos basis. Then we

diagonalize the tridiagonal Hamiltonian to obtain the m eigenvalues, Ek j, and m eigenvec-

tors, |ak j〉. With Ek j, |ak j〉, and |qki〉 in hand we may construct an approximate form for the

propagator. First observe that since HKS|ak j〉= Ek j|ak j〉, it may be proven that

Û(tq, tq +δ t)|ak j〉= exp
[
− i

h̄
ĤKS(tq)δ t

]
|ak j〉 (3.11)

= exp
[
−iδ tEk j

h̄

]
|ak j〉. (3.12)

We now construct the propagator as,

Û(tq, tq +δ t) = ∑
i, j,n,l

|qki〉〈qki|ak j〉〈ak j|Û(tq, tq +δ t)|akn〉〈akn|qkl〉〈qkl| (3.13)

= ∑
i, j,n,l

|qki〉〈qki|ak j〉〈ak j|akn〉exp
[
−iδ tEkn

h̄

]
〈akn|qkl〉〈qkl|

= ∑
i, j,n,l

|qki〉〈qki|ak j〉δ jn exp
[
−iδ tEkn

h̄

]
〈akn|qkl〉〈qkl|

= ∑
i, j,l

|qki〉〈qki|ak j〉exp
[
−iδ tEk j

h̄

]
〈ak j|qkl〉〈qkl|
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This approximate form for the operator will only give accurate results when applied to

|ψk〉. In our scheme we construct a separate approximation to the propagator for each of

the Norbitals Kohn-Sham orbitals. Just as for the Taylor propagation, in this algorithm the

most expensive operation is the application of ĤKS to |ψk〉, which is necessary in this case

to construct the Krylov basis in Eq. (3.9). If there are m Lanczos basis vectors then the

number of critical steps per time step is m ·Norbitals.

In practice, greater than 4 Lanczos vectors are required for accurate propagation and the

computational scaling of the algorithm as described thus far is poor compared to Taylor.

To improve the computational scaling we make use of two observations: (1) The appli-

cation of the propagator to the Kohn-Sham orbitals on the Lanczos basis is inexpensive,

and (2) the accuracy provided by the approximate form for the propagator remains robust

even after multiple time steps. The first claim holds since the Lanczos basis is quite small

compared to, for instance, a real-space grid and hence the matrix multiplication required

is inexpensive. The veracity of the second claim will be shown in the results section later

in this chapter. These two observations suggest that one should update the propagator only

once every Nupdate time steps while applying the propagator to the Kohn-Sham orbitals on

every time step. The cost per time step of this algorithm then becomes,

Ncritical

δ t
=

m ·Norbitals

Nupdate
. (3.14)

3.3.3 Projection of the Propagator into the Spectral Basis

In the previous subsection we considered propagation on a Krylov subspace. In this

subsection we construct the propagator on a spectral subspace consisting of eigenvalues

and eigenvectors of the Hamiltonian, HKS(tq). As for propagation on the Lanczos basis, the

majority of the cost will be in the construction of the basis. In this case the construction of

the spectral basis will involve the diagonalization of the Hamiltonian. We use the conjugate

gradient algorithm to diagonalize the Hamiltonian and obtain Nspectral eigenvalues, E j, and
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eigenvectors, |p j〉. From these the components of the Hamiltonian on the spectral basis

may be constructed as,

H i j
spectral(tq) = 〈p j|HKS(tq)|pi〉 (3.15)

From this spectral basis Hamiltonian we construct the Crank-Nicholson [106] approxima-

tion to the propagator on the spectral basis,

Û(tq, tq +δ t) = (Ô+
iδ t
2h̄

Ĥspectral)
−1 · (Ô− iδ t

2h̄
Ĥspectral). (3.16)

Just as for the Lanczos basis in the previous section, we update the basis only every

Nupdate time steps. In order to improve accuracy we update the Hamiltonian each time

step. The Hamiltonian may be separated as a sum of a static matrix, Ĥ0
spectral, and a time-

dependent matrix, Ĥt
spectral. That is, Ĥspectral = Ĥ0

Spectral + Ĥt
spectral. The time-dependent

piece is given as,

Ĥt
spectral =Vxc +VHartree. (3.17)

The time-dependent part of the Hamiltonian is very easy to compute and therefore updating

the Hamiltonian each time step is very inexpensive in comparison to the update of the basis.

We prepare the initial basis at the start of the calculation with 160 conjugate-gradient iter-

ations. Subsequent updates to the basis are performed with 16 ·Nspectral conjugate-gradient

iterations. The initial upstart costs of the calculation are negligible for long computational

times. The initial preparation may also be combined into the cost of preparing the initial

ground state using DFT, which we do not consider here. We will therefore only consider

the cost of updating the basis in our algorithm analysis. In our implementation, updating

the basis with conjugate-gradient requires 22 ·Nspectral H|φ〉 matrix multiplications, and

20 ·Nspectral orthogonalizations of the basis for a total of 42 ·Nspectral critical computational

35



operations. The number of critical operations per time step is,

Ncritical

δ t
=

42 ·Nspectral

Nupdate
. (3.18)

3.4 Computational Details and Results

Figure 3.1: Geometry of the benzene molecule. In the simulations, the benzene molecule is
aligned with the plane of the molecular perpendicular to the x axis. The geometry is shown
for slices of the simulation box in the the (a) x-y plane and (b) y-z plane.

We compare the three time-propagation approximation schemes outlined in the pre-

vious section using two physical systems with complex electron dynamics or coupled

electron-ion dynamics. In the first subsection, we consider the optical absorption of the

benzene molecule. In the next subsection we consider a 200 eV proton which is fired

through the center ring of the benzene molecule, extending our benchmarks to the Ehren-

fest dynamics.

3.4.1 Optical Absorption of Benzene

The real–space grid has dimensions Lx = Ly = Lz = 9.8 Å and a grid spacing of dx =

dy = dz = 0.2 Å. This is represented by 50 grid points in each direction, for a total of

50 × 50 × 50 = 125000 grid points. We propagate the system for 10 fs. Benzene has
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30 valence electrons, which are represented by 15 Kohn-Sham orbitals. The plane of the

molecule lies along the y-z plane. These parameters are not fit for comparison of the optical

absorption spectrum to experiment. We only seek agreement relative to the benchmark

Taylor propagation scheme, which is sufficient to prove the viability of the Lanczos and

spectral propagation schemes.

At the start of the simulation a first order linear perturbation is induced by applying a

phase factor to the ground state Kohn-Sham orbitals,

φ ′
k(r,0) = exp(i · f · ri

δ ri
)φk(r,0), (3.19)

where f is the strength of the perturbation. We set f = 0.01. ri is the spatial direction

along which the perturbation is applied, with r1 = x, r2 = y, or r3 = z. The simulation

is repeated three times, once for each choice of the spatial direction, ri. δ ri is the grid

spacing along the ri direction, which has been set to 0.2 Å for all three spatial directions.

φ ′
k(r,0) is then propagated in real time using one of the three schemes outlined in the pre-

vious section, yielding the time-dependent Kohn-Sham orbitals, φk(r, t). After calculating

the time-dependent Kohn-Sham orbitals for a perturbation along the ri direction, we then

calculate the dipole moment along the same direction,

dri(t) =
∫

ri ·ρ(r, t)dr, (3.20)

where ρ(r, t) is the time-dependent electron density calculated from Kohn-Sham orbitals.

Fourier transforming the dipole moment yields the optical absorption spectrum along

the ri direction, Sri . The optical absorption spectrum, S, of the molecule is calculated by

averaging the three spatial directions,

S =
1
3
(Sx +Sy +Sz). (3.21)
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Figure 3.2: Dipole moment, along the x direction which is perpendicular to the plane of the
molecule, after a first order perturbation has been applied also along the x direction. The
dipole moment is obtained through time-propagation of the Kohn-Sham orbitals using the
(a) Lanczos and (b) spectral propagation schemes.
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Figure 3.3: Optical absorption spectrum of benzene. The spectrum shown is the average of
the optical absorption spectra obtained by Fourier transforming the time-dependent dipole
moment in each spatial dimension as generated by a first order perturbation in that direction.
The spectrum is obtained through time-propagation of the Kohn-Sham orbitals using the
(a) Lanczos and (b) spectral propagation schemes.
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In Fig. 3.2 we plot the dipole moment of benzene along the x axis for the Lanczos and

spectral propagation schemes. In both plots the result of the Taylor benchmark is shown

for comparison. In Fig. 3.3 we plot the total optical absorption of Eq. (3.21).

For the Lanczos scheme, we have found that a reasonable trade off between physical

accuracy and computational efficiency by updating the Lanczos basis once every 5 time

steps. The number of Lanczos basis vectors is 30. In Figs. 3.2.a and 3.3.a, we have shown

four time steps, 0.0035, 0.0042, 0.0049 and 0.0056 fs. We also show the benchmark Taylor

propagation with a time step of 0.001 fs. The frequency of the oscillations in the dipole mo-

ment tend to follow the Taylor benchmarks for all four time steps. However, the amplitude

diverges sharply as the time step increases. The physical quantity which is accessible by

experiment is the optical absorption. Up to a time step of 0.0049 fs, the optical absorption

is well produced by the Lanczos scheme. Using equations (3.8), (3.14), and (3.18) we have

calculated the theoretical computational cost of the various schemes for various time steps

and presented them in Table 3.1. The time step of 0.0049 fs gives a theoretical speedup of

3.27 relative to the Taylor propagation benchmark.

We now consider the spectral basis. We have found the calculation of the optical ab-

sorption spectrum required that the basis be updated very infrequently compared to the

Lanczos basis. We have therefore updated the spectral basis every 30 time steps. The num-

ber of basis vectors is 75. In Figs. 3.2.b and 3.3.b we have shown the dipole moment and

optical absorption spectrum for time steps of 0.0056 and 0.0063 fs. The optical absorption

spectrum is well reproduced for energies below ≈ 15 eV. Accuracy for higher energies may

be found by increasing the size of the basis. A time step of 0.0063 fs gives a speedup over

the Taylor benchmark of 3.04.

3.4.2 200 eV Proton Collisions with Benzene

We now consider a 200 eV proton fired through the center of a benzene ring. This

case allows the testing of the accuracy these propagation schemes when the TDDFT is
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Propagator Basis Update Freq. Time Step (fs) Num. Steps Critical Operations Speedup
Taylor X 0.001 10000 40000 1
Lanczos 5 0.0035 2856 17136 2.33
Lanczos 5 0.0042 2380 14280 2.80
Lanczos 5 0.0049 2041 12246 3.27
Lanczos 5 0.0056 1786 10716 3.73
spectral 30 0.0056 2041 14557 2.75
spectral 30 0.0063 1786 13171 3.04

Table 3.1: Number of critical operations required to propagate the Kohn-Sham orbitals of
benzene (C6H6) after a first order perturbation is applied. The propagation time is 10 fs.
The Taylor, Lanczos, and spectral propagation schemes for various time steps and basis
update frequencies are shown. The basis update frequency is the number of time steps
which are propagated before the basis is updated. An X is placed when there is no basis
updating, as is the case with the Taylor propagation. The final column shows the ratio of
the critical operations to that of the Taylor propagation benchmark.

coupled with the Ehrenfest dynamics. The real-space grid has dimensions Lx = 20 Å, and

Ly = Lz = 16.4 Å, with a grid spacing of dx = dy = dz = 0.2 Å. This is represented with

101×83×83 grid points, for a total of 695789 grid points. We propagate the system for 40

fs. Benzene has 30 valence electrons which are represented by 15 Kohn-Sham orbitals. The

plane of the molecule lies along the y-z plane. The projectile proton begins at a distance 11

Å from the benzene molecule, and is shot through the center ring of the molecule.

The proton is represented as a Coulomb potential which is moving with constant veloc-

ity. The Coulomb potential is given by,

Vpro j(r, t) =− q√
|r−Rproton(t)|2 + ε2

, (3.22)

where Rproton(t) is the position of the proton, q is the charge of the proton, and ε = 0.01 Å

is a softening parameter used to avoid the numerical instabilities which would be caused by

situations where |r−Rproton(t)| is very small. The kinetic energy of the proton is 200 eV.

We use the Ehrenfest dynamics to represent the dynamics of the benzene molecule’s

ions. In the Ehrenfest dynamics, the forces on the ions are given by derivatives of the

total electronic energy of the electrons with respect to the ion positions. We compare the
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ion positions obtained by solving the TDDFT equations using the Taylor, Lanczos, and

spectral propagation schemes.

The proton collision induces an oscillation in the benzene ions. In Fig. 3.4 the position

along the z axis of a hydrogen ion and a carbon ion are shown for the Lanczos propagation

scheme. The time steps are 0.003, 0.004, and 0.005 fs. The Lanczos basis is once again

updated every 5 time steps, and the number of Lanczos basis vectors is again 30. Over

the course of 40 fs, the Taylor propagation gives that the ions move away from and even-

tually return to their equilibrium position. The motion of the ions given by the Lanczos

propagation follows the Taylor benchmark fairly closely until ≈ 25 fs for each of the time

steps considered. With each time step error accrues in the electron density given by the

approximate Lanczos propagator. Eventually the error becomes sufficiently large that the

Ehrenfest dynamics diverge from that given by the Taylor propagation. The motion of the

ions not shown have similar features. A time step of 0.005 fs gives a speed up factor of

3.33 over the Taylor benchmark (Table 3.2).

Fig. 3.5 shows the position along the z axis of the hydrogen ion and the carbon ion for

the spectral propagation scheme. The time steps are 0.005 and 0.006 fs. The spectral basis

is updated every 20 time steps. The number of basis vectors is again 75. Just as for the

Lanczos propagator, the motion of the ions given by the spectral propagation follows the

Taylor benchmark fairly closely until ≈ 25 fs for each of the time steps considered. A time

step of 0.006 fs gives a speed up factor of 2.22 over the Taylor benchmark (see Table 3.2).

3.5 Conclusion

We have compared two propagation schemes, Lanczos and spectral, to the Taylor prop-

agation. We have tested these propagators for two physically relevant systems, the optical

absorption and the ion collision. It has been found that a computational speed up may be

obtained with only small losses in accuracy in certain energy and time regimes.
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Figure 3.4: Time-dependent positions of a (a) hydrogen and a (b) carbon ion during the
collision of a 200 eV proton with a benzene molecule. The calculation is performed by
solving the Ehrenfest dynamics equations coupled with TDDFT. Time propagation in the
TDDFT accomplished through the Lanczos propagator.
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Figure 3.5: Time-dependent positions of a (a) hydrogen and a (b) carbon ion during the col-
lision of a 200 eV proton with a benzene molecule. The calculation is performed by solving
Ehrenfest dynamics equations coupled with TDDFT. Time propagation in the TDDFT ac-
complished through the spectral propagator.
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Propagator Basis Update Freq. Time Step (fs) Num. Steps Critical Operations Speedup
Taylor X 0.001 40000 160000 1
Lanczos 5 0.003 13334 80004 2.00
Lanczos 5 0.004 10000 60000 2.67
Lanczos 5 0.005 8000 48000 3.33
spectral 20 0.005 8000 86055 1.86
spectral 20 0.006 6667 72059 2.22

Table 3.2: Number of critical operations required to propagate the Kohn-Sham orbitals of
benzene (C6H6) during a collision with a 200 eV proton. The propagation time is 40 fs. The
results using the Taylor, Lanczos, and spectral propagation schemes for the TDDFT with
various time steps and basis update frequencies are shown. The basis update frequency
is the number of time steps which are propagated before the basis is updated. An X is
placed when there is no basis updating, as is the case with the Taylor propagation. The
final column shows the ratio of the critical operations to that of the Taylor propagation
benchmark.
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Chapter 4

Fragmentation and Ionization of Acetylene and Ethylene Induced by Strong Short

Linearly Polarized Laser Fields

4.1 Introduction

The ionization of molecules with intense laser pulses is a complex process due to the

interplay of the time varying external potential introduced by the strong laser electric field

and the Coulomb interaction between the electrons [4, 107–111]. The final and seemingly

close aim is not only understanding but also controlling the ionization dynamics to in-

fluence chemical reactions at the femtosecond time scale [44–46, 112]. The interaction of

molecules with laser fields obviously depends on the laser parameters such as field strength,

frequency, pulse shape and carrier envelope phase. It also depends on the directionality of

the molecular frame relative to the laser field’s polarization axis, which will hereafter be

referred to simply as the alignment. Over the last decade experimental investigation of pho-

toelectron angular distributions from aligned molecules has become possible [30–34]. This

allows a clear comparison between experiment and theory without the obscuring effect of

averaging over alignments [72]. Experiments also reveal a difference in the ionization from

different molecular orbitals reflecting the nodal symmetry of the molecular wave functions

[19–28]. Beyond mere structural effects it is also found that the total ionization yield can

be increased by a coherent amplification of lower orbitals [21]. Finally, one of the most

important mechanisms in molecular ionization is enhanced ionization [113–115], where

highly efficient ionization occurs at critical nuclear separations. Recently, experimental

evidence has been found that this process may also take place at many bonds in parallel in

a polyatomic molecule [116, 117].

In this chapter the TDDFT [82] coupled with the Ehrenfest dynamics [94] will be used

to study the alignment dependence of ionization in short laser pulses. Two small molecules,
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acetylene and ethylene, exposed to laser pulses of various intensity and durations will be

used to analyze how the time-dependent Kohn-Sham orbitals’ ionization dynamics couple

with the ions’ dynamics. We will study (i) the enhanced ionization in a restricted fixed

ion model as well as in a fully dynamical simulation (ii) the alignment dependence of the

ionization, and (iii) the role of the molecular orbitals and their different symmetries in the

ionization and fragmentation dynamics.

From a numerical point of view these are difficult problems because the solution of

the time-dependent Schrödinger equation is very complicated beyond simple one- or two-

electron systems. Pioneering works aiming to set up a simple framework to understand

ionization include the model where the electrons and nuclei are treated classically [115],

and the single active electron model [18], originally formulated for atoms, which assumes

that the ionization of atoms can be described by an appropriately modified hydrogen-like

model. This model was later extended for molecules [17] and has been used to study

the ionization of diatomic molecules [118, 119]. Another theoretical approach, the Time-

Dependent Hartree Fock (TDHF) [58–60] method, was also used to study the physical

mechanisms behind the fragmentation of molecules in intense laser fields. These works

have focused on the total and orbital ionization efficiencies and the enhanced ionization

mechanism of acetylene (C2H2) by exploring the electron dynamics.

Enhanced ionization is described as a three step process [115]. First the C-H bonds

expand to a critical separation, Rc. Then, the increased C-H bond length leads to highly

efficient ionization of the molecule [116, 117]. After the enhanced ionization, the molecule

often undergoes fragmentation ejecting the hydrogen ions. Using the TDHF approach it

was shown that as the C-H bond lengths are symmetrically increased, the ionization effi-

ciency of each orbital also increases until the bond lengths reach a critical separation after

which the ionization efficiency plateaus, thus demonstrating the enhanced ionization mech-

anism. The TDHF approach is expected to capture the essence of the laser induced electron

dynamics. However, in these simulations the ion positions were fixed for the duration of
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the laser pulse.

A dynamically more complete picture of the electron-nuclear dynamics and ionization

can be given in the framework of TDDFT. TDDFT has been used to study the Coulomb ex-

plosion of deuterium [70, 71], biomolecules immersed in liquid water [120], water clusters

[121], and small hydrocarbon molecules [72]. TDDFT simulations have also been used to

describe the electron-ion dynamics of H2S [74] and to simulate the Coulomb imaging of

biphenyl [73].

4.2 Computational Method

We shall calculate the ionization of the molecule using Eq. 2.30, defined in chapter II.

Strictly speaking, the fractional electron number is related to the probability of ionization.

We shall simply refer to the quanity N(0)−N(t) as the ionization of the molecule.

The computational results presented in the next section have been calculated by using

the following parameters. The Lx×Ly×Lz box size is Lx = 40 Å, Ly = Lz= 34 Å, for C2H4

and Lx = Ly = Lz = 34 Å for C2H2. The C-C bond lies in the x direction. The grid spacing

is 0.25 Å in each direction. The CAP starts 5 Å from the boundary. The time step for

the propagation of the wave function is δ t = 0.0007 fs. The equation of the ionic motion

[Eq. (2.40)] is solved with the Verlet algorithm with time step 0.0028 fs. These parameters

lead to very well converged results. The calculated ionization potential is 11.0 eV for C2H4

and 11.8 eV for C2H2 (the experimental values are 10.5 eV for the C2H4 and and 11.4 eV

for C2H2 [122]).

4.3 Results and Analysis

Using the TDDFT [82] and Ehrenfest dynamics [94] as introduced in chapter II, we

have studied the ionization mechanism of acetylene and ethylene exposed to laser pulses

carried at a wavelength of 800 nm with a various peak intensities and durations. Our choice

of the two molecules is on the one hand motivated by previous experimental [116, 117]
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KE (eV) HOMO HOMO-1 HOMO-2 HOMO-3 HOMO-4 HOMO-5 Num. Electrons
C2H2, parallel

4×1014 W/cm2, 4.5 fs 0 1.7 1.7 1.9 1.9 2.0 X 9.1
7×1014 W/cm2, 4.5 fs 0 1.5 1.5 1.7 1.7 2.0 X 8.3

14×1014 W/cm2, 4.5 fs 11.7 1.2 1.2 1.1 1.2 1.9 X 6.6
4×1014 W/cm2, 15 fs 0 1.5 1.5 1.8 1.6 2.0 X 8.5
7×1014 W/cm2, 15 fs 14.9 1.3 1.3 0.3 0.5 1.9 X 5.3

14×1014 W/cm2, 15 fs 22.8 1.1 1.1 0.6 0.2 1.6 X 4.6
4×1014 W/cm2, 25 fs 0 1.5 1.5 1.7 1.5 2.0 X 8.1
7×1014 W/cm2, 25 fs 16.5 1.3 1.3 0.7 0.2 1.9 X 5.4

14×1014 W/cm2, 25 fs 22.5 0.9 0.9 0.5 0.1 1.4 X 3.6
C2H2, 22.5◦

4×1014 W/cm2, 4.5 fs 0 1.7 1.5 1.9 1.9 2.0 X 9.0
7×1014 W/cm2, 4.5 fs 0 1.6 1.3 1.8 1.8 2.0 X 8.4

14×1014 W/cm2, 4.5 fs 8.5 1.3 1.0 1.4 1.4 1.9 X 7.0
C2H2, 45◦

4×1014 W/cm2, 4.5 fs 0 1.8 1.3 2.0 2.0 2.0 X 9.0
7×1014 W/cm2, 4.5 fs 0 1.7 1.0 1.9 1.9 2.0 X 8.4

14×1014 W/cm2, 4.5 fs 4.9 1.5 0.7 1.7 1.5 2.0 X 7.3
C2H2, perpendicular

4×1014 W/cm2, 4.5 fs 0 1.9 1.1 2.0 2.0 2.0 X 9.0
7×1014 W/cm2, 4.5 fs 0 1.8 0.8 1.9 2.0 2.0 X 8.5

14×1014 W/cm2, 4.5 fs 0 1.6 0.4 1.7 1.9 2.0 X 7.6
4×1014 W/cm2, 15 fs 0 1.9 0.7 2.0 2.0 2.0 X 8.6
7×1014 W/cm2, 15 fs 0 1.7 0.3 1.9 2.0 2.0 X 8.0

14×1014 W/cm2, 15 fs 10.0 1.4 0.0 0.9 1.9 2.0 X 6.3
4×1014 W/cm2, 25 fs 0 1.9 0.6 2.0 2.0 2.0 X 8.4
7×1014 W/cm2, 25 fs 0 1.7 0.2 1.9 2.0 2.0 X 7.8

14×1014 W/cm2, 25 fs 13.7 1.4 0.0 0.4 1.9 2.0 X 5.7
C2H4, C-C parallel

8×1014 W/cm2, 9 fs 5.9 1.3 1.0 1.3 1.3 1.6 2.0 8.5
8×1014 W/cm2, 17 fs 18.8 1.2 0.4 0.4 0.3 1.1 1.8 5.1

C2H4, C-C perpendicular
8×1014 W/cm2, 9 fs 0.2 1.6 0.6 1.5 1.6 1.9 2.0 9.2

8×1014 W/cm2, 17 fs 9.6 1.5 0.1 0.6 1.0 1.5 2.0 6.8
C2H4, perpendicular

8×1014 W/cm2, 9 fs 0 0.2 2.0 1.7 2.0 2.0 2.0 9.8
8×1014 W/cm2, 17 fs 0 0.0 2.0 1.7 2.0 2.0 2.0 9.6

Table 4.1: Orbital ionization dynamics of C2H2 and C2H4 for various laser pulses and
molecular alignments. The first column gives the kinetic energy of the hydrogen ions (per
ion). The subsequent columns show the occupation number of each Kohn–Sham orbital
and the total electron number at the end of the simulation. C2H2 has only five occupied
orbitals (HOMO, HOMO-1, HOMO-2, HOMO-3, HOMO-4), and hence the column for the
occupation of the HOMO-5 has been marked with an X to indicate that it is not applicable
in this case.
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Figure 4.1: (Color online) (a)-(f) Selected snapshots of the total local potential (solid black
line) and the density (dashed red line) for C2H2 along the alignment axis of the molecule
(x axis), integrated out to 2 Å perpendicular to the x axis. The laser peak intensity is 14×
1014 W/cm2 and the pulse duration 4.5 fs. The total local potential consists of the Hartree
potential, the local part of the exchange correlation potential, the ionic pseudo-potential,
and the external potential of the laser field. The insets show the simulation time and the
laser pulse highlighted up to the current simulation time. Panel (a) shows the unperturbed
initial state. In (b) the density spreads towards one end of the simulation box due to the
external potential. In (c) the electric field has switched direction and the density spreads
towards the opposite end of the simulation box. In (d), the electric field has switched
direction again. In panels (e) and (f) the hydrogen atoms have been split off and are ejected
towards the ends of the simulation box. (g)-(j) Selected snapshots of the total local potential
(solid black line) and the density (dashed red line) along the alignment axis of C2H2 (y),
integrated out to 2 Å perpendicular to the y axis. The laser polarization direction is x, the
peak intensity is 14× 1014 W/cm2 and the pulse duration is 25 fs. Panel (g) shows the
unperturbed initial state at. In panel (h) the density has decreased as the laser ionizes the
molecule. In panel (i) the density has further decreased and the hydrogen ions have begun
to dissociate from the molecule. In panel (j) the hydrogen ions have dissociated and are
ejected towards the ends of the simulation box.
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Figure 4.2: (Color online) (a)-(c) Acetylene in a laser field with a polarization direction
parallel to the molecular axis, an intensity of 14× 1014 W/cm2 and a pulse duration of
4.5 fs. (a) The total force on the two hydrogen ions, which is the sum of the laser force,
the ion-ion forces, and the electron-ion force. The laser force (black line) is equal for
both hydrogen ions. (b) Fractional electron number,

∫
ρd3x, and the difference between

the fractional electron number in the left side of the box and the right side of the box,∫
x<0 ρ d3x−

∫
x>0 ρ d3x. (c) The Coulomb force and total force on the right hydrogen ion

calculated assuming a simple model where each atom loses one electron instantaneously.
The ion-ion distances used in this simple force calculation are taken from the TDDFT
simulation. The total force from the TDDFT simulation is shown for comparison. (d) The
total force along the y (molecular) axis on a hydrogen ion calculated by TDDFT for a laser
field polarized along x (perpendicular alignment) and a pulse peak intensity of 14× 1014

W/cm2 and pulse duration of 25 fs. A simple model calculation for the Coulomb force on a
hydrogen ion is also shown, with the same details as in plot (c). The ion moves essentially
along the y (molecular) axis for the duration of the simulation with only a small oscillation
(< 0.02 Å) along the x (polarization) axis.
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and theoretical [58–60] studies on these molecules and on the other hand by the different

complexity and structure of them. The acetylene molecule is one step from the diatomic

molecules towards more complicated structures. It is still a linear molecule, so the relative

direction of the laser field and the molecular frame is given by a single angle, but it has

two nonequivalent bonds: the strong threefold C-C bond in the middle and the two C-H

bonds at the ends. Ethylene is one step further toward the larger hydrocarbon molecules.

It has a coplanar geometry with a H-C-H angle close to the ideal 120◦ for sp2 hybridized

carbon. We will study the ionization from different orbitals, the dependence of ionization

on the alignment of the molecule, and the ionization from bond-stretched configurations.

The goal of this study is to understand the enhanced ionization mechanism beyond the

static TDHF picture and to investigate the role of the molecular alignment in the ionization

process.

4.3.1 Acetylene (C2H2)

The ionization and molecular dynamics of acetylene, C2H2, has been studied by varying

the intensity and duration of the laser field for parallel and perpendicular alignments of

the molecule relative to the laser polarization direction. We have studied the response to

nine different laser fields (see Table 4.1) with intensities and pulse durations typical in

experiments [117].

4.3.1.1 Acetylene in a laser field polarized parallel to the molecular axis

Before turning to the detailed results of the TDDFT simulations we show a simple

picture that captures the essence of the electron-nuclear dynamics in acetylene aligned

parallel to the laser field polarization direction. In this picture we investigate the separate

actions of the different potentials, i.e. the Hartree potential [Eq. (2.6)], the local part of the

exchange correlation potential, the ionic potential, and the external potential of the laser

field. Fig. 4.1 shows snapshots at different times during and after the laser pulse of the total

52



Figure 4.3: (Color online) (a)-(f) Total and orbital ionization as a function of laser intensity
for C2H2 for a pulse duration of 4.5 fs (a, d), 15 fs (b, e) and 25 fs (c, f) for alignments
of the molecule parallel (a)-(c) and perpendicular (d)-(f) to the laser polarization direction.
Additionally, in panels (a) and (d) the total ionization for fixed ions is shown. Panels (g)
and (h) show the total and orbital ionization as a function of laser intensity for angles of
22.5◦ and 45◦ between the molecular axis and laser polarization direction, respectively.
The laser pulse duration is 4.5 fs. Panel (i) shows the ionization as a function of C-H bond
length for a laser peak intensity of 14×1014 W/cm2 and a pulse duration of 4.5 fs.
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potential, i.e. the sum of all the potentials, and the electron density along the x axis , to

which both the molecule and laser field polarization are parallel.

The total potential shows two shallow and two deep wells corresponding to the positions

of the hydrogen and carbon nuclei. The acetylene molecule is subject to a few-cycle laser

pulse with a duration of 4.5 fs and a laser peak of 14×1014 W/cm2. Here and throughout

the manuscript the pulse duration is defined as full width at half maximum (FWHM) of

intensity. In the second snapshot, Fig. 4.1(b), the potential declines and the tail of the

density spreads out to the right. Next, Fig. 4.1(c), the laser field changes direction, the

potential inclines and the density tail spreads out more towards the left side. At this time

(15.75 fs) the laser has reached its peak amplitude and the hydrogen nuclei are already

moving outward, although the distance from the original position is only 0.3 Å. The next

snapshot, Fig. 4.1(d), illustrates the situation at the next peak of the laser. In these snapshots

one can also compare the laser potential to the potential of the atomic cores and one sees

that the ionization is more probable from and around the shallow hydrogen nuclei. The

snapshots also show the ionization by the visible decrease of the total density. The number

of valence electrons drops from 10 to 6 by the end of the laser pulse, see Fig. 4.3(a). The

last two snapshots depict the potential and the density after the laser pulse, showing the

motion of the emitted protons.

The motion of the nuclei and the eventual fragmentation is caused by the interplay of the

forces arising from the electron localization caused by the laser and the direct force that the

laser imposes on the charged nuclei. The latter force is given by the first term on the right-

hand side of Eq. (2.40). The resulting forces on the H+ ions are illustrated in Fig. 4.2(a).

Consider the peak of the laser field at 15.75 fs. The laser field’s polarization points to the

right and it applies a rightward force on the two hydrogen ions. However, the laser also

causes the fast moving electrons to move to the left, as shown in Fig. 4.2(b). For the left

hydrogen ion, the excess of electrons will induce additional Coulomb shielding between

the H+ and the other ions, which manifests as a leftward force. This force cancels with the
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laser force, and the total force is nearly zero. For the right hydrogen atom, the reduction of

electrons reduces the Coulomb shielding, which manifests itself as a rightward force. This

force will be additive with the laser force. Hence, the total force is much greater than the

laser force alone. This picture is reversed when the electric field’s polarization is reversed.

We have also compared the force acting on the protons to a model force [115], which is

calculated as the sum of the direct laser force and the Coulomb force between a proton and

a triply charged C2H3+ fragment. This quantity over time is depicted in Fig. 4.2(c). In the

model force calculation the trajectory of the TDDFT simulation is used for the position of

the particles and one electron is removed from each atom corresponding to the ionization of

roughly four electrons shown in Fig. 4.2(b). As shown in Fig. 4.2(c), the sudden ionization

leads to the removal of four electrons right after the peak of the laser field (around 17 fs)

and after that time the model and TDDFT force are similar. The Coulomb dissociation

starts at around the peak of the laser field and at 17 fs the protons have moved about 2 Å.

Hence, the bond is definitely broken and the simple Coulomb model captures the dynamics.

Now we turn to a more detailed analysis of the ionization mechanism using the full

TDDFT model and allowing the ions to move according to the Ehrenfest dynamics. Before

we begin this discussion we note that due to the Ehrenfest scheme each simulation repre-

sents only an averaging over all possible nuclear fragmentation channels. This is due to the

fact that the Ehrenfest dynamics give only a single classical trajectory for the ions, whereas

a fully quantum description would yield the nuclear wave function from which the proba-

bility of each fragmentation channel may be obtained. At low intensity and pulse width the

probability of fragmentation is small and the dissociation of the C-H bonds does not occur

in our simulations. Coulomb explosion is observed for higher intensities and longer pulses

(see Table 4.1).

We first consider the case of 4.5 fs laser pulses with three different peak intensities.

The total ionization is plotted in Fig. 4.3. As expected, the number of electrons removed

increases with the intensity of the laser. After the ionization exceeds a critical electron
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Figure 4.4: (Color online) Time evolution of the Kohn-Sham orbitals in acetylene subjected
to a 4.5 fs pulse with a peak intensity of 4×1014 W/cm2 and field polarization parallel to the
molecular axis. Here we show the absolute squares of the orbitals at t = 0 fs (left column)
and at an instant when the laser field magnitude is near its peak at t = 11.9 fs (right column).
The insets show the HOMO and HOMO-1 rotated by 90◦ about the molecular axis.
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number the molecule undergoes Coulomb explosion.

Fig. 4.4 shows the ground state Kohn–Sham orbitals of acetylene and snapshots of the

orbitals at the peak of the laser field. The HOMO and HOMO-1 are energy degenerate

and their shapes are exactly 90◦ rotations of one another. The HOMO-2, HOMO-3, and

HOMO-4 are all cylindrically symmetric, but each has its own nodal symmetry. Due to

their different symmetries, the orbitals each ionize with a different angular distribution

(right column of Fig. 4.4). Despite the orbitals’ different nodal symmetries, single parti-

cle energies, and angular distributions, the total ionization is very similar for the HOMO,

HOMO-1, HOMO-2, and HOMO-3, see Fig. 4.3(a). The HOMO-4 orbital is significantly

more deeply bound and the ionization is small. The ionization from the HOMO and the

HOMO-1 orbitals is nearly identical due to their energy degeneracy and similar symme-

try. At low intensity, the HOMO and HOMO-1 are the most ionized. As the intensity

of the laser is increased, the inner orbitals, HOMO-2 and HOMO-3, are increasingly ion-

ized. The most significant change is that in the strongest field the HOMO-2 orbital has the

largest ionization. This is partly due to its complicated nodal structure and to the fact that

the time–dependent Kohn–Sham binding energy (not shown) of this orbital decreases the

most in the laser field.

According to the enhanced ionization model, as the C-H bond length of the molecule

increases there is a corresponding increase in the ionization rate. To check this Ref. [60]

studied the ionization from bond stretched molecular states using the TDHF approach. This

model is an approximation since the laser pulse increases the bond length and ionizes the

molecule simultaneously. Hence in the stretched configurations the electron number is

decreased and these configurations are positively charged. For simplicity this effect was

neglected. While our TDDFT simulations with the Ehrenfest dynamics do not suffer from

this drawback, it is unclear how important the enhanced ionization effect is to the total ion-

ization. We have therefore repeated the TDDFT calculations without Ehrenfest dynamics,

i.e. with ions held fixed in the ground state geometry or in bond stretched geometries.
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Figure 4.5: (Color online) Panel (a) shows the ground state Kohn–Sham single particle
energies as a function of C-H bond length. Panel (b) shows the average density of the
ground state Kohn–Sham orbitals along the alignment axis of the molecule (x axis). Panel
(c) shows the average density of the ground state Kohn–Sham orbitals along an axis per-
pendicular to the alignment axis of the molecule (y axis). Panels (b) and (c) refer to C2H2
in its equilibrium geometry.
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Fig. 4.3(a) shows that for low fields the ionization from moving or fixed nuclei are

nearly the same. This is not surprising as the ions barely move in the low fields. At

14× 1014 W/cm2, the two C-H bond lengths increase (asymmetrically) from 1.076 Å to

3.744 Å and to 3.909 Å by the time the ionization completes. The bond stretching causes

an additional ionization of 0.9 electrons relative to the fixed ions case. This additional

ionization comes primarily from the increased ionization of the inner orbitals, HOMO-2

and HOMO-3. When the ion positions are fixed in the ground state geometry (RC−H =

1.076 Å), the ionization of the inner orbitals is suppressed, see Fig. 4.3(i).

To further investigate the effect of bond stretching on the ionization, we have repeated

the fixed ion calculations for several extended geometries. Fig. 4.3(i) shows that the total

ionization increases with the C-H bond lengths in qualitative agreement with Lötstedt et

al. [60]. If the ions are fixed in the ground state geometry, the HOMO and HOMO-1 are

ionized the most. As the C-H bond length is increased, the HOMO-2 and HOMO-3 become

more ionized. At a C-H bond length of R = 1.8 Å the ionization is dominated by the

inner orbitals, HOMO-2 and HOMO-3. At the same time the ionization of the HOMO and

HOMO-1 is slightly suppressed. The increased ionization of the HOMO-2 and HOMO-3 is

partially because they are less tightly bound in the stretched configurations, see Fig. 4.5(a).

The fixed ion model qualitatively matches the orbital dynamics seen with the Ehrenfest

dynamics, Fig. 4.3(a), where the ionization of the HOMO-2 and HOMO-3 overtakes the

HOMO and HOMO-1 at intensities high enough to cause bond stretching. Hence, the

enhanced ionization mechanism works primarily by ionizing the inner orbitals.

Finally, we have run calculations with longer pulses to see if Coulomb explosion ap-

pears within the Ehrenfest scheme at lower intensities. Table 4.1 shows the summary of

results for 15 fs and 25 fs pulses over three intensities. The longer pulses increase the ion-

ization, and Coulomb explosion appears at an intensity of 7× 1014 W/cm2. At 4× 1014

W/cm2 the probability of bond breaking remains too low for Coulomb explosion to appear

in the simulations. At 14×1014 W/cm2 the carbon ions also dissociate and mutually repel
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from one another. The kinetic energy of the emitted protons is two times larger for the 15

fs pulse than for the 4.5 fs pulse (see Table 4.1), but further increase of the pulse duration

does not increase the kinetic energy in this case.

Figs. 4.3(b) and (c) show the orbital and total ionization versus intensity for pulse dura-

tions 15 and 25 fs. At 4×1014 W/cm2, where bond stretching does not occur, the HOMO

and HOMO-1 remain the most ionized orbitals. At the higher intensities the enhanced ion-

ization due to bond stretching greatly increases the ionization of the HOMO-2 and HOMO-

3. Once again the ionization of the inner orbitals surpasses that of the HOMO and HOMO-1

and now the effect is much more pronounced.

Fig. 4.3(a)-(c) show that in our simulations the HOMO-2 and HOMO-3 dominate the

ionization in high intensity laser fields with long pulse widths. As we have noted previ-

ously, the HOMO-2 and HOMO-3 are less deeply bound in stretched configurations, see

Fig. 4.5(a), and this explains why the HOMO-2 and HOMO-3’s ionization increases dra-

matically with stronger pulses. However, the HOMO-2 and HOMO-3 remain more deeply

bound than the HOMO and HOMO-1 even in the stretched configurations. One wishes to

further explain why the ionization of the HOMO-2 and HOMO-3 exceeds the ionization

of the HOMO and HOMO-1. Several recent experiments [20, 21, 123–129] have also ob-

served greater ionization from the inner orbitals. The experiments attribute this finding to

(i) the different geometries of the corresponding orbitals with respect to the direction of the

laser field and (ii) an increased ionization coming from the tail of the wave function in the

direction of the ionization [129].

The energy ordering HOMO, HOMO-1, etc. refer to “global” properties of the orbitals

averaged over space. The above arguments suggest that local properties, i.e. how much

binding a certain part of the wave function feels, may play an important role. To illustrate

this, Fig. 4.5(b) shows the average density of the ground state orbitals along the alignment

axis of the molecule. Although the inner orbitals are more deeply bound, they have an

extended weakly bound tail which strongly contributes to the ionization.

60



This picture is only valid for the ground state–once the laser is turned on ionization

starts and the potential and densities change. Nevertheless this picture illustrates the origin

of the larger contribution of the inner orbitals.

Figure 4.6: (Color online) Ground state Kohn–Sham orbitals of ethylene, C2H4. (a) The
HOMO with an inset showing a top down view of the HOMO, (b) the HOMO-1, (c) the
HOMO-2, (d) the HOMO-3, (e) the HOMO-4, (f) the HOMO-5. Panels (g)-(i) show the
three molecular alignments relative to the electric field of the laser that are considered:
(g) C-C parallel, (h) C-C bond perpendicular, and (i) all bonds perpendicular to the laser
polarization.

4.3.1.2 Acetylene in a laser field polarized perpendicularly to the molecular axis

As the angle between the molecule and the laser field is increased to 22.5◦ and 45◦, the

kinetic energy of the protons and the total ionization decreases (see Table 4.1). Eventually,

the protons only oscillate in the perpendicular direction. With the molecular alignment axis

perpendicular to the laser polarization, 4.5 fs pulses did not produce Coulomb explosion

in our simulations. Stronger pulses with a duration of 15 fs and 25 fs proved sufficient,

though.

A one dimensional projection of the Coulomb explosion in the perpendicular case is

shown in Fig. 4.1(g)-(j). The pulse width is 25 fs and the intensity is 14× 1014 W/cm2.

Unlike the parallel case, where the Coulomb explosion was due to the interplay of the laser

61



Figure 4.7: (Color online) Total and orbital ionization as a function of laser pulse duration
for three alignments of C2H4. The laser intensity is fixed at 8× 1014 W/cm2. C-C bond
(a) parallel, (b) perpendicular to the laser polarization direction with the C-H bonds neither
parallel nor perpendicular to it. (c) all bonds are perpendicular to the laser polarization
direction.
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force on the nuclei, the laser induced oscillation of the electrons, and the ionization, here

the fragmentation is only the result of bonds weakened by the ionization. The force exerted

on the protons by the perpendicular laser field causes only a slight oscillation in the motion

of the protons perpendicular to the molecular axis. However, the main component of the

total force is due to the bond breaking and the protons leave in the up and down directions

symmetrically. Fig. 4.2(d) shows the force on the protons. For Coulomb explosion to

occur a stronger and longer pulse is required than in the parallel case, see Figs. 4.2(a)-(c).

However, as seen in the parallel case, the model and Ehrenfest forces are very similar after

the peak of the laser field.

We now turn to a more detailed analysis of the ionization dynamics using the the full

TDDFT model with Ehrenfest dynamics. Figs. 4.3(d)-(e) show the total and orbital ioniza-

tion dynamics. Due to the different symmetry, the ionization of the Kohn–Sham orbitals is

quite different in the perpendicular case compared to the parallel one. Consider the short

4.5 fs pulse, Fig. 4.3(d). The ionization hierarchy of the orbitals from least to greatest is

HOMO-4, HOMO-3, HOMO-2, HOMO, and HOMO-1. The two highest levels are no

longer degenerate since the symmetry of the orbitals about the polarization axis has been

broken. The tail of the HOMO-1 orbital in the direction of the laser polarization extends

much further than any of the other orbitals, see Fig. 4.5(b). Hence, the ionization over-

whelmingly comes from the HOMO-1 orbital and it loses more electrons than any of the

orbitals in the parallel case.

Even at 14× 1014 W/cm2 the 4.5 fs pulse does not induce Coulomb explosion. The

two C-H bonds stretch symmetrically from 1.076 Å to 1.553 Å by the time that ionization

completes. This moderate increase in the bond length leads to a moderate enhanced ion-

ization of 0.1 electrons relative to the case where the ions are fixed in the ground state, see

Fig. 4.3(d). Furthermore, the ionization from the HOMO-2 and HOMO-3 remains small

since there is no enhanced ionization.

Pulses with a duration of 15 and 25 fs and a peak intensity of 14× 1014 W/cm2 are
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now sufficient to cause Coulomb explosion in the simulations. However, the kinetic energy

of the emitted protons is about half that of the parallel case (see Table 4.1). The bond

stretching leads to an enhanced ionization effect not seen for the 4.5 fs pulses, and there is

a substantial increase in the ionization from the HOMO-2, see Figs. 4.3(e)-(f). While the

HOMO-2 surpasses the HOMO, the HOMO-1 remains the dominant source of ionization.

Unlike the parallel case, the HOMO-3 plays very little role in the total ionization.

4.3.2 Ethylene (C2H4)

The ionization and molecular dynamics of ethylene, C2H4, has been studied by varying

the duration of the laser pulses, see Table 4.1. The two laser pulses that we used exhibit

an intensity and duration typical in experiments [117]. Three simple geometric alignments

were considered, see Fig. 4.6(g)-(i).

We briefly describe the ions’ dynamics observed in our simulations, see Table 4.1. For

the geometry with all bonds perpendicular to the laser polarization [Fig. 4.6(i)], the C-H

bonds remain essentially unchanged and the C-C bond stretches but dissociation does not

occur. For the geometry with only the C-C bond perpendicular to the laser polarization

[Fig. 4.6(h)], the C-H bonds break slowly for the 9 fs pulse. At 17 fs the C-H bonds dis-

sociate much more quickly due to the increased ionization. The C-C bond remains nearly

unchanged for both pulses. For the geometry with the C-C bond parallel to the laser polar-

ization [Fig. 4.6(g)], all of the C-H bonds fragment via a Coulomb explosion for both pulse

durations. At the longer pulse duration of 17 fs the C-C bond also fragments.

We now turn to the orbital ionization dynamics. Fig. 4.7 shows the occupation num-

ber of the time–dependent Kohn–Sham orbitals for the three geometries and the two laser

pulses. When all bonds are oriented perpendicularly to the laser field [Fig. 4.6(i)], the

HOMO nearly completely ionizes. The HOMO-2 is the next most ionized, losing nearly

0.5 electrons. The other orbitals stay unionized. Increasing the duration of the laser pulse

has little effect on the orbital and total ionization.
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We next consider the geometry where only the C-C bond is oriented perpendicular to

the laser field [Fig. 4.6(h)]. The orbital ionization dynamics are dramatically different from

the previous case. The HOMO-1 is now the dominant source of ionization. At 9 fs the

HOMO, HOMO-2, and HOMO-3 each lose nearly 0.5 electrons while the HOMO-4 and

HOMO-5 are barely ionized. At 17 fs the C-H bonds stretch more quickly causing a more

pronounced enhanced ionization effect. Owing to both the direct effect of the increased

pulse width and the enhanced ionization effect, the total ionization in the 17 fs pulse is

increased by about 2 electrons. Furthermore, the inner orbitals HOMO-2, HOMO-3, and

HOMO-4 are much more ionized, losing about 1.5, 1, and 0.5 electrons, respectively. The

ionization dynamics from the HOMO and HOMO-1 remain essentially unchanged by the

increased pulse duration. The HOMO-5 is unionized in either pulse.

Finally, we consider the geometry in Fig. 4.6(g). At a pulse duration of 9 fs the HOMO-

1 is again the most ionized orbital, losing nearly one electron. The HOMO, HOMO-2,

and HOMO-4 lose nearly 0.75 electrons each. The HOMO-4 loses somewhat less than

0.5 electrons, and the HOMO-5 stays unionized. For the 17 fs pulse, the total ionization

is increased by both the direct effect of the longer pulse duration and a more prominent

enhanced ionization effect. The enhanced ionization effect is increased since the bonds

stretch at a much faster rate in the longer pulse. Hence, the molecule reaches a stretched

configuration (R ≥ Rc) earlier in the ionization process. Furthermore, the ionization of

all orbitals except for the HOMO has increased. The HOMO-1, HOMO-2, and HOMO-

3 are now nearly completely emptied. The ionization of the HOMO-4 has overtaken the

ionization from the HOMO. The ionization from the HOMO-5 increases to nearly 0.25

electrons.

4.4 Summary

In summary, we have studied the ionization dynamics of acetylene, C2H2, and ethylene,

C2H4, in strong laser pulses with various durations and peak intensities for different molec-
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ular alignments relative to the linear laser polarization direction using the TDDFT method.

It is found that the molecular alignment has a dramatic effect on the total ionization. We

have observed that bond stretching and bond breaking leads to an increase of the ionization

efficiency, i.e. enhanced ionization, in qualitative agreement with previous theoretical in-

vestigations [58–60]. We have also calculated the ionization from individual Kohn-Sham

orbitals. It was shown that the enhanced ionization mechanism primarily affects the inner

valence orbitals. That is, the inner orbitals are more ionized when bond stretching occurs

since they are more weakly bound in the stretched configurations. For some alignments and

laser pulse parameters the ionization of the inner orbitals is greater than the highest occu-

pied molecular orbital, owing to ionization from their extended weakly bound tails. Topics

for future work include an investigation of larger polyatomic molecules and the effects of

circular polarization. Future experiments planned on aligned molecules with short strong

laser pulses will be able to test the predictions of this chapter and will stimulate further

analysis.
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Chapter 5

The Enhanced Ionization Mechanism in Acetylene

5.1 Background

In the previous chapter it was shown that an enhanced ionization mechanism is fun-

damental to an understanding of the coupled electron and ion dynamics of acetylene and

ethylene. Recall that the enhanced ionization (EI) has traditionally been described as a three

step process where the C-H bonds first expand to a critical separation, Rc, then ionization

proceeds with increased efficiency, and finally H+ ions are ejected in a highly energetic

Coulomb explosion.

In Chapter IV we observed that the ionization efficiency of acetylene (C2H2) increases

as the C-H bond length is increased. We noted EI’s existence but provided no physical

explanation or model. We also did not investigate the possible role of a critical separa-

tion, Rc, where the enhanced ionization is maximized. In this chapter we shall propose a

physical model in which an increasing C-H bond length makes excited states more read-

ily accessible and population is driven efficiently into these excited states. Ionization then

proceeds much more efficiently from these excited states leading to the phenomenological

enhanced ionization. Most of the computational details are identical to that of Chapter IV,

with two exceptions. The first exception is that the molecular dynamics are turned off,

i.e. the ions are frozen. The other exception is that the linearly polarized laser pulse shall

have an intensity of 8×1014 W/cm2 and a FWHM pulse duration of 4.5 fs.

Our analysis in this chapter will involve the ground state properties of nonequilibrium

geometries. The energy ordering of the five Kohn-Sham orbitals changes as the geometry is

distorted from equilibrium. We shall therefore now label the Kohn-Sham orbitals by their

respective symmetries. In the equilibrium geometry the HOMO, HOMO-1, HOMO-2,

HOMO-3, and HOMO-4 orbitals have 1πu, 1πu, 3σg, 2σu, and 2σg symmetries, respec-
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tively.

5.2 Results

Fig. 5.1 shows the total ionization and the ionization of the Kohn-Sham orbitals as a

function of bond length. Fig. 5.1.a and 5.1.b refer to parallel and perpendicular alignment,

respectively. Each point in the plot represents a separate TDDFT simulation with an ex-

tended geometry created by symmetrically increasing the C-H bond length. These simula-

tions do not include the Ehrenfest dynamics and hence the ions are frozen in the extended

geometry. This gives a measure of the enhanced ionization effect without the complicating

effects of the specific trajectory that the H+ ions may follow. Note that at very high C-H

distances, the bond is completely broken and the approximation where the wavefunction

may be considered the direct product of molecular orbitals breaks down. The physical in-

terpretation of the Kohn-Sham orbitals as approximations for these molecular orbitals must

also break down. The adiabatic local density approximation to the exchange-correlation

potential is also known to give inaccurate binding energies at large ion-ion separations.

Having noted these caveats, our goal in this analysis is to observe only the qualitative be-

havior of the orbital ionization as we vary the bond length. In Chapter VI, we shall find

that the analysis of static ions given here will provide useful framework for the interpreta-

tion of simulations of acetylene driven by circularly polarized pulses which employ the full

Ehrenfest dynamics.

Consider first the parallel alignment, as shown in Fig. 5.1.a. Broadly, the total ioniza-

tion increases until the C-H bond length reaches approximately 2.5 Å, after which there

is a slight decrease and eventual plateau. The ionization of the 1πu orbitals, which in the

equilibrium geometry are the highest occupied molecular orbitals, decreases slightly with

C-H bond length. The ionization of the 2σu and 3σg orbitals increase in tandem until

RCH reaches approximately 2.5 Å. Subsequently the ionization of the 3σg orbital increases

while the ionization of the 2σu orbital decreases after a large spike. The 2σg orbital, which
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is much more deeply bound, remains essentially unionized for all bond lengths.

For the perpendicular alignment, shown in Fig. 5.1.a, the total ionization increases and

then plateaus. In the equilibrium geometry the 1πuy orbital dominates the ionization but

subsequently drops as the C-H bond is stretched. The ionization of the 4σg orbital rises

rapidly and then plateaus. It is the most ionized orbital at high bond lengths. The 2σu

orbital’s ionization increases moderately and then plateaus. The ionization of the 1πuz

orbital remains essentially flat at moderate ionization, and the 2σg orbital is essentially

unionized.

In each of the alignments the total ionization rises and then plateaus. This challenges

the notion of a critical separation, Rc, where the ionization is maximized and beyond which

the ionization rate should fall. The rise and plateau is consistent with the 3D Hartree Fock

calculations of Lötstedt et al. [60] However, it is also well known that the adiabatic local

density approximation to the exchange-correlation potential used in our simulations breaks

down for large separations between ions. The plateau found both in our calculations and in

the Hartree Fock may be an artifact of the lack of an accurate correlation. This remains an

open question, which may be investigated either in experiment or in simulations with more

accurate exchange-correlation functionals.

To delve more deeply into the dynamics, for the remainder of the chapter we narrow

our focus to three particular C-H bond lengths: 1.08 Å, 2.86 Å, and 5.09 Å. The equilib-

rium bond length is 1.08 Å. Each of these bond lengths provide prototypical examples of

three regimes: the equilibrium geometry, intermediate bond length, and large bond length.

Fig. 5.2 shows the average position of the total electron density and the individual Kohn-

Sham orbitals for the three bond lengths and two alignments. In most cases the electron

localization follows the laser pulse adiabatically. The phase of 180◦ is due to the negative

charge of the electron, so that the electron density moves in a direction antiparallel to the

electric field. When RC−H=2.86 Å and the alignment is parallel to the laser polarization the

dynamics do not proceed adiabatically (Fig. 5.2.b). In particular the 2σu orbital becomes
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Figure 5.1: (Color online) Panels (a) and (b) show the total ionization and orbital ionization
of Acetylene (C2H2) as a function bond length for (a) parallel and (b) perpendicular align-
ment of the molecular axis relative to the laser axis. The laser intensity is 8×1014 W/cm2,
the FWHM pulse duration is 4.5 fs, and linear polarization. Each point represents a sep-
arate TDDFT calculation with fixed ions. The ionization increases with the bond length
and then plateaus after the bond length has reached a critical separation. This result is con-
sistent with previous theoretical results using three-dimensional Time-Dependent Hartree
Fock [60]. A sharp decrease in the ionization after a critical separation, Rc, does not ap-
pear. Panel (c) shows the ground state single particle energies of the individual Kohn-Sham
orbitals as the bond length increases.
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localized to one side of the molecule and the ionization from this orbital is extremely effi-

cient. This accounts for the spike in the ionization of this orbital observed in Fig. 5.1.a.
We now consider an analysis of electronic population transfer into excited states. In the

TDDFT the time-dependent Kohn-Sham orbitals are, in principle, a superposition of the

ground state, excited states, and continuum states. However, the TDDFT does not provide

these excited states directly. In order to analyze the population transfer between the elec-

tronic ground and excited states we diagonalize the ground state Kohn-Sham Hamiltonian

from the DFT theory for each of the three geometries. We find that the nine eigenvectors

with lowest eigenvalue are well converged. The lowest five eigenvectors are simply the

usual Kohn-Sham orbitals whose sum squared give the ground state electron density. We

label the next four eigenvectors by their symmetry, the 1πgy, 1πgz, 3σu, and 4σg orbitals.

We shall henceforth refer to them as the excited states of the acetylene molecule.

In Fig. 5.3 we show the inner products between the time-dependent Kohn-Sham orbitals

from TDDFT and the four excited states derived from DFT. In Fig. 5.3 (a), (b), and (c) we

show the results for parallel alignment. The salient feature of these plots is that as the bond

length is increased electron population is ever more readily transferred into the excited

states. This population transfer may occur prior to or in tandem with the ionization.

This leads us to the following model of the enhanced ionization. The electron and

ion motions are highly coupled. As the ionization begins the C-H bond lengths begin to

increase. The increased bond lengths distort energy levels and nodal geometries of the ex-

cited states which allows an efficient population transfer of the remaining unionized elec-

trons from their ground state orbitals into the excited states. Ionization from these now

populated excited states is highly efficient, leading to an enhancement in the ionization.

In Fig. 5.3 (d), (e), and (f) we show the excitations for the perpendicular alignment.

In this case, the excitement of inner valence orbitals into excited states seems to peak

at intermediate bond lengths and decrease at large bond lengths. At large bond lengths,

the ionization of the 3σg orbital appears to undergo a vertical ionization from the orbital

without an intermediary excitation step. Despite the lack of excitation prior to ionization,
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the ionization efficiency of this orbital is larger than at the intermediate bond lengths (see

Fig. 5.1.b). Nevertheless at intermediate bond lengths, the excitation-ionization model

proposed above for the parallel alignment remains relevant.

5.3 Conclusions

We have investigated the enhanced ionization of acetylene using fixed ion calculations

with several extended geometries with increased C-H bond lengths. We observed that the

ionization efficiency increases and then plateaus. The core results found here is that the

population transfer into excited states becomes more efficient with increasing bond length.

We propose that at large bond lengths the electrons are first efficiently transferred into the

excited states, and then the ionization proceeds very efficiently from the excited states. This

model explains the enhanced ionization effects observed in both theory and experiment.

These calculations may be used to motivate future experimental work and simulations with

highly accurate exchange-correlation functionals.
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RC−H=1.08 Å RC−H=2.86 Å

RC−H=5.09 Å

RC−H=1.08 Å RC−H=2.86 Å

RC−H=5.09 Å

Figure 5.2: (Color online) The average position of the density, 〈x〉(t) =
∫

xρ(r, t) d3r, and
individual time-dependent Kohn-Sham orbitals 〈x〉(t) =

∫
x φ(r, t) d3r where x is the laser

polarization axis. The laser intensity is 8× 1014 W/cm2, the FWHM pulse duration is 4.5
fs, and linear polarization. Three bond lengths are shown: (a, d) 1.08 Å, (b, e) 2.86 Å, and
(c, f) 5.09 Å. Additionally, two alignments of the molecular axis relative to the laser axis
are shown: (a)-(c) parallel, and (d-f) perpendicular.
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RC−H=1.08 Å RC−H=2.86

RC−H=5.09 Å

RC−H=1.08 Å RC−H=2.86

RC−H=5.09 Å

Figure 5.3: (Color online) Inner products between the time-dependent Kohn-Sham orbitals,
calculated with TDDFT, and four LUMO states, calculated in ground-state DFT, during
ionization induced by a laser field. Only non-zero projections are shown. The laser inten-
sity is 8×1014 W/cm2, the FWHM pulse duration is 4.5 fs, and linear polarization. Three
bond lengths are shown: (a, d) 1.08 Å, (b, e) 2.86 Å, and (c, f) 5.09 Å. Additionally, two
alignments of the molecular axis relative to the laser axis are shown: (a)-(c) parallel, and
(d-f) perpendicular.

74



Chapter 6

Fragmentation and Ionization of Acetylene and the Hydrogen Molecule induced by Strong

Short Circularly Polarized Laser Fields

6.1 Introduction

In this chapter we shall investigate the multi-electron ionization and fragmentation of

small molecules driven by circularly polarized pulses. Recall from chapter I that multi-

electron ionization may be broadly divided into two categories: sequential [130, 131] and

nonsequential [10, 12, 132–134]. The double ionization of molecules has been an active

topic of recent research. For sequential double ionization (SDI) each electron is ejected one

at a time, a process well described by the single-active-electron model [17, 18, 118, 119]. In

nonsequential double ionization both electrons are ejected simultaneously, and the electron

dynamics are therefore highly correlated [9].

In chapter I the electron recollision model was introduced. This is typically considered

to be the dominant mechanism by which Non-Sequential Double Ionization (NSDI) occurs

for molecules driven by linearly polarized pulses. In the NSDI, first an electron is ionized

and then upon reversal of the field the electron is driven back to the parent molecule where

the recollision leads to excitation or ionization of a second electron [15, 135].

Previously it was expected that in a circularly polarized laser field the recollision pro-

cesses would be suppressed since there is no reversal of the laser field. Xie et al. [46]

experimentally observed the CH+
2 /H+ fragmentation channel of acetylene (C2H2) induced

by either a linearly or circularly polarized laser pulse pulses. It was found that H+ ion

kinetic energies greater than 4.5 eV were suppressed for the circularly polarized pulse, de-

spite its similar intensity and duration to the linearly polarized pulse. This was attributed

to the suppression of nonsequential double ionization events such as recollision.

On the other hand, NSDI events have been experimentally observed for the molecules

75



NO and O2 subjected to circularly polarized pulses [136]. Theoretically, Tong et al. [137]

used a classical ensemble approach to show that NSDI occurs for H2 driven by a circularly

polarized pulse. Furthermore, they showed that the NSDI is due to a recollision process

where an electron localized at one ion site is driven along an elliptical path to the other

ion site. The first electron then collides with and ionizes the second electron. This recolli-

sion process becomes more probable for extended molecular geometries. Yuan et al. [138]

solved the two-dimensional time-dependent Schrödinger equation for H+
2 and showed that

recollision electron dynamics with extended molecular geometries may also be used in

the generation of high-order elliptically polarized harmonics of the fundamental laser fre-

quency.

In addition to the dependence on bond length, the ionization of molecules is also de-

pendent on the alignment of the molecule relative to the polarization vector. For a lin-

ear molecule, the alignment is uniquely determined by the angle between the molecular

axis and the laser’s polarization vector. Ionization is maximized when this angle is zero

[104, 139]. In a circularly polarized laser field, angular streaking deflects the ionized elec-

tron. This angular streaking occurs since the Coulomb potential produced by the nuclei

of the molecule is not spherically symmetric [140]. If the tunneling ionization time is in-

stantaneous and the initial electron momentum is zero, then the circularly polarized field

deflects the ionized electron by 90◦. Hence for linear molecules, the peak of a measured

photoelectron spectrum is typically perpendicular to the molecular axis [141, 142]. How-

ever, measurements of the ionization H+
2 give peak ionization angles between 15◦ and 45◦

[143, 144], implying a more complex electron dynamics.

Bandrauk et al. [145] considered the effects of the enhanced ionization of H+
2 driven by

a circularly polarized pulse with polarization vector always perpendicular to the molecular

axis. By solving the 3D Schrödinger equation for various extended bond lengths, they

obtained ionization rates as a function of bond length. They found that the ionization rate

increases and then plateaus as the bond length is increased.
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In this manuscript we present an in depth investigation of the coupled ionization and

fragmentation dynamics of H2 and C2H2 driven by circularly polarized strong laser fields

by performing TDDFT calculations coupled with the Ehrenfest dynamics. We consider

various intensities and pulse durations typical in experiment [46, 111], two different align-

ments, and compare the dynamics driven by a circularly polarized pulse to linearly polar-

ized pulses of similar strength.

In section II we shall discuss the computational details of the TDDFT simulations, and

in section III we describe the results of the simulations, and in section IV we give a short

discussion comparing our results with previous theoretical and experimental investigations.

6.2 Computational Details

The computational results presented in the next section use the following parameters.

The rectangular box is given by Lx = Ly = Lz = 34 Å. The molecular axis lies in the x direc-

tion. The grid spacing is 0.25 Å in each direction. The CAP is nonzero in a region 5 Å from

the walls of the simulation cell. The time step for the propagation of the wave function

is δ t = 0.0007 fs. The equation of the ionic motion [Eq. (2.40)] is solved with the Verlet

algorithm with time step 0.0028 fs. These parameters lead to very well converged results.

The calculated ionization potential is 11.8 eV for C2H2, comparable with the experimental

value 11.4 eV [122].

As in chapter IV, we shall calculate the ionization of the molecule using Eq. 2.30, and

refer to the quanity N(0)−N(t) as the ionization of the molecule.

6.3 Results

6.3.1 Hydrogen Molecule (H2)

In this section we present the simulation results for the H2 molecule. In the first subsec-

tion the molecular axis is aligned parallel to one of the circularly polarized pulse’s polar-
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ization vectors, and in the following subsection the molecular axis is perpendicular to both

of the circularly polarized pulse’s polarization vectors.

6.3.1.1 Polarization vectors along the x and y axes

Columns (1-2) of Fig. 6.1 show the ionization and fragmentation of an H2 molecule

driven by circularly polarized laser pulse whose polarization vectors, k̂1 and k̂2, lie along

the x and y axes respectively [see Eq. (2.36)]. The linear molecule initially lies along the x

axis. Two laser intensities, and 4 ·1014 and 14 ·1014 W
cm2 , and two full width half maximum

(FWHM) pulse widths, 4.5 and 25 fs, were considered for a total of four laser pulses.

The wavelength of all considered pulses is 790 nm. We also compare these results to two

separate simulations where the dynamics are driven by linearly polarized pulses of the same

intensity and pulse width. We consider linear polarizations aligned along either the x or y

axis.

As shown in Fig. 6.1.a, a circularly polarized laser pulse of intensity 4 · 1014 W
cm2 and

pulse width 4.5 fs, ionizes the molecule by 0.63 electron. The pulse is too weak to break

the H-H bond, and only a small oscillation is observed (see Fig. 6.1.b). The Ehrenfest

dynamics represent an averaging of the possible fragmentation channels, and the lack of

bond breaking implies that the probability of fragmentation is small. A linearly polarized

pulse with polarization vector aligned along the x axis ionizes 0.38 electrons, and one

aligned along the y axis ionizes 0.32 electron. Since the circularly polarized pulse is simply

the sum of two orthogonal linearly polarized pulses with phase shift π
2 , one asks if the

ionization is simply the sum of ionization from the two separate linearly polarized pulses.

In this case, the ionization driven by the circularly polarized pulse is somewhat smaller

than the sum of the individual linear components.

At first glance, the simulations with linearly polarized pulses seem to imply that the

ionization rate induced by the circularly polarized pulse will be greater along the x axis

than along the y axis. While the strongest ionization does occur when the polarization
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vector of the pulse is aligned with the x axis, angular streaking will occur and the peak in

the photoelectron spectrum will be at some angle relative to the x axis [140–144].

In Fig. 6.1.e, the intensity is 4 ·1014 W
cm2 and pulse width is 25 fs. The circularly polarized

pulse induces an ionization of 1.90 electrons. This large ionization causes a Coulomb

explosion and the two H+ ions move apart with trajectories that lie essentially along the

x axis (see Fig. 6.1.f). The corresponding parallel and perpendicular linearly polarized

pulses induce an ionization of 0.90 and 0.68 electron, respectively. Unlike the previous

laser parameters, the sum of the ionization induced by the two separate linear pulses, 1.58

electrons, is smaller than the ionization induced by the circularly polarized pulse. The

key difference between the linearly and circularly polarized pulses here is that the linearly

polarized pulses do not induce a Coulomb explosion. As the H-H bond length increases

the ionization efficiency also increases, a mechanism known as enhanced ionization. Since

the enhanced ionization mechanism occurs for the circularly polarized pulse, its ionization

is much more efficient than either of its linear components alone.

At an intensity of 14 ·1014 W
cm2 and a pulse width of 4.5 fs, the circularly polarized pulse

and two linearly polarized pulses all induce Coulomb explosion (see Fig. 6.1.j). Enhanced

ionization occurs for all three pulses and the ionization induced by each of the two linearly

polarized pulses, 1.58 and 1.28 electrons for the x and y alignments respectively, sum to

greatly exceed the ionization of the circularly polarized pulse, which is 1.97 electrons (see

Fig. 6.1.i).

At an intensity of 14 ·1014 W
cm2 and pulse width of 25 fs, the linearly and the circularly

polarized pulses all have sufficient strength to ionize the molecule completely (Fig. 6.1.m).

The rate of ionization for the circularly polarized pulse is somewhat higher. All three pulses

induce Coulomb explosion (see Fig. 6.1.n). Typically, the fragmentation dynamics drive

H+ ions along the x axis. However, at this particular intensity and duration the circularly

polarized pulse induces a small but non-negligible motion in the y axis. This y axis motion

is not observed for the linearly polarized pulses even when the polarization vector lies along
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the y axis.

6.3.1.2 Polarization vectors along the y and z axes

Columns 3 and 4 of Fig. 6.1 show the ionization and fragmentation dynamics when

the laser pulse’s polarization vectors, k̂1 and k̂2, lie along the z and y axes respectively

[see Eq. (2.36)]. We only consider linear polarization aligned along the y axis since, by

symmetry, a linearly polarized pulse aligned along the z axis would produce the same

ionization and fragmentation as one along the y axis.

As shown in Fig. 6.1.c, a circularly polarized laser pulse of intensity 4 · 1014 W
cm2 and

pulse width 4.5 fs ionizes the molecule by 0.54 electron, which is smaller than the corre-

sponding ionization induced when the alignment of the polarization vectors lie along the

x and y axes. Since the ionization is even smaller at this alignment it is unsurprising that

the H-H bond remains unbroken and only a small oscillation is observed (see Fig. 6.1.d).

The corresponding linearly polarized pulse aligned along the y axis ionizes 0.32 electron,

and the ionization due to the circularly polarized pulse is smaller than the sum from two

corresponding linearly polarized pulses.

At an intensity of 4 ·1014 W
cm2 and a pulse width of 25 fs, the circularly polarized pulse

ionizes the molecule by 1.13 electrons (see Fig. 6.1.g). The linearly polarized pulse ionizes

0.68 electron. No bond breaking is observed for any of the pulses (see Fig. 6.1.h). Hence,

unlike the previous alignment, there is no enhanced ionization and the circularly polarized

pulse induces less ionization than the sum from two corresponding linear pulses.

The dynamics of the remaining two pulses (Fig. 6.1.k and 6.1.o) are qualitatively quite

similar for either alignment and we do not remark on them any further.

6.3.2 Acetylene (C2H2)

In this section we present the simulation results for the C2H2 molecule. We again break

down the results into two subsections according to alignment.
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Figure 6.1: (Color online) Ionization and H+ ion positions of H2 under the influence of
a circularly polarized laser pulse. The H2 molecule initially lies along the x axis. The
circularly polarized pulse consists of two orthogonal linearly polarized pulses with a phase
difference of π

2 between them. The polarization vectors of these composite linear pulses
lie along the x and y axes in columns (1-2) and along the y and z axes in columns (3-
4). Columns (1) and (3) show the total ionization of the molecule and columns (2) and
(4) show the position of the H+ ions. For comparison, in each panel the total ionization
and ion positions due to a single linearly polarized pulse is shown. The wavelength of all
considered pulses is 790 nm. For panels (a-h) the laser intensity is 4 ·1014 W

cm2 and in panels
(i-p) it is 14 ·1014 W

cm2 . For panels (a-d) and (i-m) the FWHM pulse width is 4.5 fs, and in
panels (e-h) and (m-p) the FWHM pulse width is 25 fs.
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Figure 6.2: (Color online) Ionization and H+ ion positions of C2H2 under the influence of a
circularly polarized laser pulses. The molecule initially lies along the x axis. The circularly
polarized pulse consists of two orthogonal linearly polarized pulses with a phase difference
of π

2 between them. The polarization vectors of these composite linear pulses lie along the
x and y axes in columns (1-2) and along the y and z axes in columns (3-4). Columns (1) and
(3) show the total ionization of the molecule, and columns (2) and (4) show the position
of the H+ ions. For comparison, in each panel the total ionization and ion positions due to
a single linearly polarized pulse is shown. The wavelength of all considered pulses is 790
nm. For panels (a-h) the laser intensity is 4 ·1014 W

cm2 and in panels (i-p) it is 14 ·1014 W
cm2 .

For panels (a-d) and (i-m) the FWHM pulse width is 4.5 fs, and in panels (e-h) and (m-p)
the FWHM pulse width is 25 fs.
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Figure 6.3: (Color online) Ionization of the time-dependent Kohn-Sham orbitals of C2H2
under the influence of a circularly or linearly polarized laser pulse. The linear molecule
initially lies along the x axis. Columns (1-2) show the orbital ionization due to a circularly
polarized laser pulse, which consists of two orthogonal linearly polarized fields, which lie
along the x and y axes in column (1) and along the y and z axes in column (2), with a phase
difference of π

2 between them. For comparison, columns (3-4) show the orbital ionization
due to a linear laser pulse whose polarization vector lies along the x axis in column (3) and
the y axis in column (4). The wavelength of all considered pulses is 790 nm. For panels
(a-h) the laser intensity is 4 ·1014 W

cm2 and in panels (i-p) 14 ·1014 W
cm2 . For panels (a-d) and

(i-m) the FWHM pulse width is 4.5 fs, and in panels (e-h) and (m-p) the FWHM pulse
width is 25 fs. For ease of comparison to the other panels, the plots in panels (c),(d),(k),
and (l) have been shifted such that the peak of the laser’s Gaussian envelope occurs at 50
fs.

83



6.3.2.1 Polarization vectors along the x and y axes

Columns (1-2) of Fig. 6.2 show the ionization and fragmentation dynamics of a C2H2

molecule driven by a circularly polarized laser pulse whose polarization vectors, k̂1 and

k̂2, lie along the x and y axes respectively [see Eq. (2.36)]. As with H2, the linear C2H2

molecule initially lies along the x axis.

As shown in Fig. 6.2.a, a circularly polarized pulse of intensity 4 · 1014 W
cm2 and pulse

width 4.5 fs ionizes the molecule by 1.41 electrons. This pulse is too weak to break the

C-H bond (see Fig. 6.2.b).A linearly polarized pulse aligned along the x axis ionizes 0.95

electron, and y axis alignment induces an ionization of 1.04 electrons, and the circularly

polarized pulse induces ionization smaller than the sum from two corresponding linear

pulses.

In Fig. 6.2.e, the intensity is 4 ·1014 W
cm2 and pulse width is 25 fs. The circularly polarized

pulse induces an ionization of 3.86 electrons. In this case the ionization is sufficient to cause

a Coulomb explosion, and the two H+ move apart essentially along the molecular axis (x

axis) with a very small separation along the y axis (see Fig. 6.2.f). The corresponding

linearly polarized pulses aligned along the x and y axes induce an ionization of 1.93 and

1.58 electrons, respectively, but do not induce Coulomb explosion. Just as for H2, at this

pulse strength the circularly polarized pulse benefits from enhanced ionization as the C-H

bonds increase, leading to a highly efficient ionization which surpasses the sum of the two

individual linearly polarized pulses.

In Fig. 6.2.i, where the intensity is 14 · 1014 W
cm2 and pulse width is 4.5 fs, a circularly

polarized pulse induces an ionization of 4.07 electrons, while the corresponding linearly

polarized pulses aligned along the x and y axes induce an ionization of 3.37 and 2.40 elec-

trons, respectively. The circularly polarized pulse and the linearly polarized pulse aligned

along the x axis are of sufficient strength to induce Coulomb explosion (see Fig. 6.2.j).

When the linearly polarized pulse is aligned along the y axis the C-H bond does not break.

While only the x aligned linear pulse experiences enhanced ionization, this is sufficient to
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insure that the ionization induced by the circularly polarized pulse is smaller than the sum

of the two linearly polarized pulses.

A circularly polarized pulse with intensity 14 · 1014 W
cm2 and pulse width 25 fs ionizes

6.90 electrons (see Fig. 6.2.m). Meanwhile corresponding linearly polarized pulses aligned

along the x or y axis ionize the molecule 6.38 and 4.37 electrons, respectively. The sum of

the two individual pulses would exceed 10 electrons, the total number of valence electrons,

but the circularly polarized pulse induces only somewhat more ionization than just the x

axis aligned linearly polarized pulse. All three pulses have sufficient strength to induce

Coulomb explosion (see Fig. 6.2.n). For the circularly polarized pulse there is a significant

amount of motion in the y direction.

The C2H2 molecule has five Kohn-Sham (KS) orbitals and hence the ionization dy-

namics are much more complex than that of H2, which only has one KS orbital. For the

remainder of this section we consider the ionization from individual KS orbitals induced

by the circularly and linearly polarized pulses.

Fig. 6.3.a shows the ionization of the KS orbitals induced by the circularly polarized

pulse of intensity 4 ·1014 W
cm2 and pulse width of 4.5 fs. The ionization due to linearly po-

larized pulses aligned along the x and y axes are shown in Fig. 6.3.c and 6.3.d, respectively.

The orbital ionization induced by the circularly polarized pulse shares many of the features

seen for the linearly polarized pulses. In particular, the ionization of most of the KS or-

bitals in Fig. 6.3.a qualitatively similar to the ionization observed in Fig. 6.3.c. However the

circularly polarized pulse induces a very large ionization of the 1πuy orbital, comparable to

the ionization observed in Fig. 6.3.d.

Fig. 6.3.e shows the orbital ionization due to a circularly polarized laser pulse with

intensity 4 · 1014 W
cm2 and pulse width 25 fs. Interestingly, the 2σu and 3σg orbitals show a

very large ionization which is not observed for either linearly polarized pulse (see Fig. 6.3.g

and 6.3.h). The ionization of these two orbitals exceeds the ionization of the 1πuz orbital.

The 1πuz orbital is one of the two highest occupied molecular orbitals (HOMO) prior to
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the application of the laser, which breaks the orbital’s symmetry with the 1πuy orbital.

The increased ionization of the inner σ orbitals is indicative of an enhanced ionization

mechanism, where the ionization of the inner orbitals becomes more efficient as the C-H

bond length is increased [104, 111]. Indeed, as was noted above the circularly polarized

pulse induces bond breaking while the individual linearly polarized pulses do not. This

explains the qualitative differences in the ionization of the 2σu and 3σg orbitals.

Fig. 6.3.i shows the orbital ionization due to a circularly laser pulse with intensity 14 ·

1014 W
cm2 and pulse width 4.5 fs. Since the bond breaking and enhanced ionization occur for

both the circularly polarized pulse and the linearly polarized pulse aligned along the x axis

(Fig. 6.3.k), the ionization induced by these two pulses of the inner 2σu and 3σg orbitals

are qualitatively similar.

At intensity 14 · 1014 W
cm2 and pulse width 25 fs, the circularly polarized pulse and the

linearly polarized pulses all induce bond breaking (see Fig. 6.2.m, 6.2.o, and 6.2.p). One

might expect that for the circularly polarized pulse the ionization of each of the KS orbitals

would be strictly greater than that of either linear pulse alone. However, the ionization of

the 2σu and 1πuz orbitals induced by the circularly polarized pulse (see Fig. 6.3.m) is signif-

icantly less than that of the linearly polarized pulse aligned along the x axis (see Fig. 6.3.o).

The orbital ionization dynamics here are very complex compared to the previous cases and

cannot be explained simply by either the presence or absence of enhanced ionization.

In the enhanced ionization model as is usually described [115], the C-H bond length

increases to a critical separation and then the ionization proceeds instantaneously at a fixed

C-H bond length. However, the ionization does not occur instantaneously and the bond

length changes even as the ionization proceeds. The ionization efficiency will therefore

depend on the exact trajectories of the H+ ions. As shown in Chapter V, the enhanced

ionization mechanism affects the KS orbitals of C2H2 differently if the ionization occurs in

a state of very large C-H bond lengths relative intermediate C-H bond lengths. For instance

it was shown that for a linearly polarized pulse with polarization along the x axis, as the C-
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H bond length is increased from equilibrium up to about 3 Å the ionization efficiency of the

3σg and 2σu orbitals both increase and are nearly identical. However, as the bond lengths

are increased further the ionization efficiency of the 3σg increases while the ionization

efficiency of the 2σu decreases. Fig. 6.2.n shows that for the circularly polarized pulse

the H+ ions move more quickly, and therefore some fraction of the ionization time occurs

while the C-H bond lengths are large. Meanwhile, for the linearly polarized pulse aligned

along the x axis the ionization occurs at intermediate bond lengths. Hence the ionization

of the 3σg is greater in Fig. 6.3.m than in Fig. 6.3.o, while the ionization of the 2σu is

smaller. Similarly, at very large C-H bond lengths the ionization efficiency of the 1πuz

orbital decreases explaining why the ionization of this orbital is smaller in in Fig. 6.3.m

than in Fig. 6.3.o.

6.3.2.2 Polarization vectors along the y and z axes

Columns (3-4) of Fig. 6.2 show the ionization and fragmentation of a C2H2 molecule

due to a circularly polarized laser pulse whose polarization vectors, k̂1 and k̂2, lie along the

z and y axes respectively [see Eq. (2.36)].

As shown in Fig. 6.2.c, a circularly polarized laser pulse of intensity 4 · 1014 W
cm2 and

pulse width 4.5 fs ionizes the molecule by 1.47 electrons The linearly polarized pulse pulse

ionizes 1.04 electrons. Neither pulse breaks C-H bond (see Fig. 6.2.d and 6.2.h), and since

enhanced ionization does not occur for either pulse the ionization of the circularly polarized

pulse is smaller than the sum induced by two linearly polarized pulses of the same intensity

and duration.

At an intensity of 14 · 1014 W
cm2 and a pulse width of 4.5 fs, the circularly polarized

pulse induces an ionization of 3.2 electrons, while the corresponding linearly polarized

pulse induces an ionization of 2.40 electrons (see Fig 6.2.k). Only the circularly polarized

pulse is sufficiently strong to induce Coulomb explosion (see Fig. 6.2.l). However, the bond

length only increases significantly after the ionization has already completed and very little
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Figure 6.4: (Color online) Time evolution of the electron density of H2 subjected to a 4.5
fs pulse with a peak intensity of 14 · 1014W/cm2 which is circularly polarized with linear
components along the x and y axes. The H2 molecule initially lies along the x axis. (a-g)
Snapshots of the electron density of H2 for various times (h) Plot of the electric field of
the two linear components of the circularly polarized laser pulse and of the total number
of electrons. Violet vertical lines indicate the times of the snapshots in panels (a-g). The
electric field of the circularly polarized pulse rotates clockwise in the x− y plane. As the
electric field increases the electron density develops an extended tail, indicating excitation
and ionization, which rotates clockwise, lagging somewhat behind the electric field. At 16
fs the ionization rate begins to slow and the Coulomb well of the H+ ion nearest to the tail
recaptures some of the electrons. By 19 fs the electron density localized to the right H+

ion is visibly greater than that of the left H+ ion. The molecule dissociates more quickly
than the electron density can equilibrate between the two ions, and this asymmetric charge
distribution persists until the end of the simulation.
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Figure 6.5: (Color online) Time evolution of the electron density of C2H2 subjected to
a 4.5 fs pulse with a peak intensity of 14 · 1014W/cm2 which is circularly polarized with
linear components along the x and y axes. The molecule initially lies along the x axis. (a-g)
Snapshots of the electron density of C2H2 for various times (h) Plot of the electric field of
the two linear components of the circularly polarized laser pulse and of the total number
of electrons. Violet vertical lines indicate the times of the snapshots in panels (a-g). The
electric field of the circularly polarized pulse rotates clockwise in the x− y plane. As the
electric field increases the electron density develops an extended tail, indicating excitation
and ionization, which rotates clockwise, lagging somewhat behind the electric field.

89



enhanced ionization occurs. Hence, the ionization of the circularly polarized pulse is much

smaller than the sum of the ionization from two individual linearly polarized pulses.

In Fig. 6.2.o, the intensity is 14 · 1014 W
cm2 and the pulse width is 25 fs. The circularly

polarized pulse induces an ionization of 5.43 electrons, and the linearly polarized pulse pro-

duces an ionization of 4.37 electrons. Both the linearly polarized and circularly polarized

pulses cause Coulomb explosion (see Fig. 6.2.p), and hence the ionization of the circularly

polarized pulse is much smaller than the sum of the ionization from two individual linearly

polarized pulses.

We now turn our attention to the ionization of the individual KS orbitals. Column 2

of Fig. 6.3 shows the ionization induced by the circularly polarized pulses and Column 4

shows the ionization due to the linearly polarized pulses with polarization aligned along the

y axis. Due to the symmetry about the molecular axis, the ionization induced by linearly

polarized pulses aligned along the z axis would look exactly the same except that the ion-

ization of the 1πuz and 1πuy orbitals would be exchanged. Unlike the alignment presented

in the previous subsection, the orbital ionization induced by the circularly polarized pulses

is qualitatively very similar to the ionization induced by linearly polarized pulses of the

same pulse strength. The only notable difference between the circularly and linearly po-

larized pulses is that the circularly polarized pulse nearly exactly preserves the symmetry

between the 1πuz and 1πuy orbitals. The time-dependent ionization of these orbitals would

be exactly identical if not for the π
2 phase difference between the two linearly polarized

laser pulses that compose the circularly polarized pulse [Eq. (2.36)]. The qualitative simi-

larity of the orbital ionization induced by the circularly and linearly polarized pulses may

be attributed to the fact that they do not induce different enhanced ionization dynamics for

any of the intensities or durations considered.
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6.4 Discussion and Summary

The usual mechanism for nonsequential ionization driven by a linearly polarized pulse

is the recollision of electrons with its parent molecule. In this model, the laser pulse first

ionizes the electron from the parent molecule and then when the electric field reverses

direction it drives the electron back towards its parent molecule. The recolliding electron

ionizes additional electrons bound to the parent molecule.

For a circularly polarized pulse there is no reversal of the field. However recollision

may occur when the electron is driven along an elliptical path which recollides with the

parent molecule [146]. In particular, for a diatomic molecule an electron bound to one

nucleus may be driven to the other nucleus where it collides with and ionizes an electron

localized at that site. This process is dependent on the internuclear distance, R [137].

Xie et al. [46] experimentally observed the C2H+/H+ fragmentation channel of C2H2

induced by a circularly polarized pulses with intensity 3 ·1014 W
cm2 and a linearly polarized

pulse with intensity 4 ·1014 W
cm2 . Both pulses had sub-5fs duration. They find that the yield

of high-energy fragments are suppressed for circular polarization, which is attributed to

suppression of nonsequential double ionization. At higher intensities (> 7 ·1014 W
cm2 and

pulse widths (> 10 fs), they find that the high energy fragments are suppressed already for

linear polarization. At intensities and pulse durations where sequential ionization is proba-

ble for a linearly polarized pulse one would expect to see a suppression of the ions’ kinetic

energy. At 4 · 1014 W
cm2 intensity and 4.5 fs pulse duration fragmentation does not occur in

our simulations for either H2 or C2H2 (see Fig. 6.1 and 6.2). We therefore cannot compare

the ion kinetic energy due to linear and circular polarizations in the regime where nonse-

quential ionization is probable. At higher intensities and pulse durations, the sequential

ionization regime, our simulations show that circular polarization leads to greater ion ki-

netic energies as compared to linear polarization (see Fig. 6.1 and 6.2). At low intensity and

pulse duration, our simulations do not show a fundamental difference in the the ionization

dynamics of C2H2 for either circularly and linearly polarized pulses.
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Wu et al. [147] employed a two-particle coincidence experiment to investigate the dy-

namics of the ions and electrons of H2 under the influence of a circularly polarized pulse

(35-fs, 790 nm, 1.2·1014 W
cm2 ). They found a moderate asymmetry in the angle-resolved H+

yield, indicating that electron localization is more probable on one nuclei than the other. In

our simulations we observe a small electron localization for H2 for the two medium strength

pulses when the polarization vectors lie on the x and y axes. Fig. 6.4 shows dynamics of

the electrons and ions for various times for the pulse with intensity 14·1014 W
cm2 and pulse

width 4.5 fs. By calculating the integrals
∫

x>0 ρ d3x and
∫

x<0 ρ d3x at t=35 fs, long after

the ionization has completed and the molecule has dissociated, we obtain a measure of the

number of electrons localized to each ion. For pulse intensity 14·1014 W
cm2 and pulse width

4.5 fs, after ionization there are 0.042 electrons remaining with 0.035 electrons localized

on the right H+ ion and 0.007 electrons localized on the left H+ ion. At intensity 4·1014 W
cm2

and pulse width 25 fs, there are 0.011 electrons remaining after ionization with 0.095 elec-

trons on the right ion and 0.011 electrons on the left ion. This moderate asymmetry is in

qualitative agreement with the results of Wu et al.

Fig. 6.5 shows snapshots of the ionization and fragmentation of C2H2 for the same pulse

and alignment considered in Fig. 6.4. The dynamics proceed similarly except in the final

few panels. While the asymmetry in the electron localization is not strictly zero, the effect

is much smaller compared to the H2 molecule and cannot be distinguished by sight.

In summary, using TDDFT simulations coupled with the Ehrenfest dynamics we have

presented an in depth investigation of the coupled ionization and fragmentation dynam-

ics of H2 and C2H2 for a variety of strong circularly and linearly polarized laser pulses and

considered two alignments of the molecular axis relative to the laser polarization. We found

that the coupled electron-ion dynamics driven by a circularly polarized pulse of sufficient

strength follow the Enhanced Ionization mechanism [113–117] where the pulse stretches

the molecule to extended geometries and then the ionization proceeds with greater effi-

ciency. Furthermore we found that the increased of the C-H bond lengths in acetylene
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leads to greater ionization efficiency of the inner 3σg and 2σu molecular orbitals, a sig-

nature of Enhanced Ionization, in qualitative agreement with the experimental findings of

Gong et al. [111]. We also found that the ionization dynamics of the Kohn-Sham orbitals

in C2H2 depend on the rate at which the C-H bond length increases. Finally, we found

that a circularly polarized pulse leads to moderate asymmetric electron localization in the

fragmented H2 molecule, in qualitative agreement with the results of Wu et al. [147]. The

present work investigated the interaction of small linear molecules and strong short laser

pulses and capture many of the features of interactions with more general molecules. Top-

ics for future work include an investigation of nonlinear or large molecules. The predictions

of the present work may be used to motivate future experiments which consider the effects

of aligned molecules interacting with strong fields.
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Chapter 7

Conclusion

In this thesis we have used ab initio simulations to investigate the coupled and highly

correlated dynamics of the electrons and nuclei of small molecules driven by strong short

laser fields. Our tool for simulation has been the ab initio time dependent density functional

theory coupled with the Ehrenfest dynamics.

In Chapter II we reviewed the density functional theory and time dependent density

functional theory formalisms, which are formally exact reformulations of the non-relativistic

many-body quantum theory up to the choice of approximation to the exchange-correlation

functional. We motivated the use of the non-relativistic time-dependent Kohn-Sham equa-

tions of time dependent density functional theory. We further motivated the applicability of

the dipole approximation to the description of laser fields at the intensities and wavelengths

under consideration. We also introduced the Ehrenfest dynamics to describe the classical

trajectories of the nuclei as driven by quantum forces.

In Chapter III we investigated various schemes for constructing the time propagator,

which solves the time-dependent Kohn-Sham equations. We found that the Lanczos and

spectral propagators promise a greatly reduced computational cost in exchange for a small

reduction in accuracy in certain regimes.

In Chapter IV we investigated the ionization and fragmentation of acetylene (C2H2)

and ethylene (C2H4) as driven by linearly polarized strong short laser pulses. An enhanced

ionization mechanism, where the ionization efficiency increases with C-H bond lengths,

was fully accounted for by the simulations in agreement with many recent experiments.

It was shown that the enhanced ionization comes from increased ionization efficiency of

inner valence molecular orbitals, and that for certain pulse parameters the ionization of the

inner valence orbitals may be greater than the ionization of the highest occupied molecular
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orbital. The highest occupied molecular orbital is, in principle, the least bound. The effects

of molecular alignment relative to the laser polarization field was also investigated.

In Chapter V we analyzed the origins of the enhanced ionization of acetylene. By

projecting the time–dependent Kohn–Sham orbitals of time dependent density functional

theory into the lowest unoccupied molecular orbitals (LUMO) calculated by diagonaliz-

ing the ground state Hamiltonian of density functional theory, we obtained an estimate of

the amount of excitation into excited states. It was found that increasing the C-H bond

length increases the probability that electron population will enter the excited states. In-

creased ionization efficiency from these excited states accounts for the observed enhanced

ionization.

The ionization and fragmentation driven by circularly polarized strong short laser fields

of acetylene and the hydrogen molecule (H2) was investigated in chapter VI. These effects

of the circularly polarized pulses were compared to the linearly polarized pulses of the

same intensity, duration, and wavelength. Just as for the linearly polarized pulses, the

enhanced ionization played a critical role in the coupled electron-ion dynamics. Alignment

effects were also considered. It was found that certain circularly polarized pulses induces

a significant asymmetry in the electron localization.

Time-dependent density functional theory coupled with Ehrenfest dynamics has proved

to be very successful in describing the interaction of small molecules with strong, short

laser pulses. Nevertheless not all aspects of the complete electron-nuclear dynamics has

been captured by this approach. Within the Ehrenfest dynamics the nuclei have well de-

fined positions, and move along classical trajectories which represent some averaging of

the available dissociation channels. In reality each dissociation channel has a quantum

mechanical probability of occuring. The ion yields of these dissociation channels are ob-

tainable by experiment [112, 116, 148–150]. Quantum interference between dissociation

channels has also been observed [151]. A full description of the dynamics requires both

the electronic and nuclear wave functions, and the nuclear wave function has been probed
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by recent experiments [152–156]. Efficient computational methods to simulate the nuclear

wave function is therefore highly desirable. We shall conclude this thesis with a discussion

of potential avenues of future research beyond the Ehrenfest dynamics.

The ultimate goal is a non-Born-Oppenheimer approach to calculating the complete

many-body wave function. Recall that the Born-Oppenheimer approximation splits the

molecular wave function into a direct product of a nuclear and an electronic wave function.

Often this partitioning is coupled with an adiabatic approximation where the dynamics of

the nuclei are confined to a potential energy surface obtained from ground state electronic

structure calculations. The adiabatic approximation may be applied to both wave packet

[157, 158] or classical trajectory [159, 160] approaches. This becomes problematic when

the potential energy surfaces are close enough in energy that transitions between surfaces

are physically permitted, or if there is a conic intersection connecting two surfaces [161,

162]. One solution is to permit surface hopping [163–166], an approach which may be

applied to either classical trajectories or nuclear wave packets. We note that the Ehrenfest

dynamics is nonadiabatic, and in principle accounts for all electronic excited states.

A non-Born-Oppenheimer approach to the calculation of the full many-body wave

function would give the most complete physical picture and the highest accuracy. This

approach is necessarily computationally expensive. Attempts to solve the time-dependent

Schrödinger equation have been restricted either to one dimension [167–169] or to three di-

mensions with a model Hamiltonian [170]. Recently a mean-field configuration-interaction

method has been developed [171] in which the electronic wave function is propagated in

a nuclear mean field, and the nuclear wave function is simulatneously propagated in an

electronic mean field. As these non-Born-Oppenheimer approaches become more refined

they will offer complete coupled electron-nuclear dynamics of molecules in real-time.

The future of quantum chemistry is immensely promising. Novel theoretical tools will

provide a complete quantum mechanical description of the molecular dynamics including

all dissociation channels. Attosecond laser pulses shall allow the exploration of a new
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frontier on the electronic time scale. These developments suggest that the long standing

goal for a quantum control of chemical reactions is swiftly approaching.
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H. Schmidt-Böcking. Cold target recoil ion momentum spectroscopy: a ‘momentum

microscope’ to view atomic collision dynamics. Physics Reports, 330:95 – 192,

2000.

[37] C. Brif, R. Chakrabarti, and H. Rabitz. Control of quantum phenomena: past, present

and future. New J. Phys., 12(7):075008, 2010.

[38] D. Dong and I. Petersen. Quantum control theory and applications: a survey. Control

Theory Applications, IET, 4(12):2651–2671, December 2010.

[39] C. Chen, L.-C. Wang, and Y. Wang. Closed-loop and robust control of quantum

systems. The scientific world journal, 2013, 2013.

[40] W. S. Warren, H. Rabitz, and M. Dahleh. Coherent control of quantum dynamics:

the dream is alive. Science, 259(5101):1581–1589, 1993.

[41] H. Zhang and H. Rabitz. Robust optimal control of quantum molecular systems in

the presence of disturbances and uncertainties. Phys. Rev. A, 49:2241–2254, Apr

1994.

[42] R. J. Levis, G. M. Menkir, and H. Rabitz. Selective bond dissociation and rearrange-

ment with optimally tailored, strong-field laser pulses. Science, 292(5517):709–713,

2001.

[43] R. J. Levis and H. A. Rabitz. Closing the loop on bond selective chemistry using

tailored strong field laser pulses. J. Phys. Chem. A, 106(27):6427–6444, 2002.

[44] Y. Liu, X. Liu, Y. Deng, C. Wu, H. Jiang, and Q. Gong. Selective steering of molec-

ular multiple dissociative channels with strong few-cycle laser pulses. Phys. Rev.

Lett., 106:073004, 2011.

102



[45] X. Xie, K. Doblhoff-Dier, S. Roither, M. S. Schöffler, D. Kartashov, H. Xu,
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M. Pitzer, M. Richter, S. Voss, H. Sann, H. Kim, J. Lower, T. Jahnke, A. Czasch,

U. Thumm, and R. Dörner. Understanding the role of phase in chemical bond break-

ing with coincidence angular streaking. Nat Commun, 4(2177), Jul 2013. Article.

[148] C. Cornaggia, D. Normand, and J. Morellec. Role of the molecular electronic con-

figuration in the Coulomb fragmentation of N2 , C2H2 and C2H4 in an intense laser

field. J. Phys. B, 25(17):L415–L422, 1992.

[149] C. Cornaggia, M. Schmidt, and D. Normand. Laser-induced nuclear motions in the

Coulomb explosion of C2H+
2 ions. Phys. Rev. A, 51(2):1431–1437, 1995.

114



[150] L. Zhang, S. Roither, X. Xie, D. Kartashov, M. Schöffler, H. Xu, A. Iwasaki,
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