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ABSTRACT 

 

Proper embryonic development requires precise cell movements, which are coordinated 

by multiple signaling pathways. Formation of specific organs is initiated during 

gastrulation when organ precursors acquire their initial cell fates. Additionally, precursors 

move to specific locations where they engage in additional inductive interactions to 

continue their differentiation, and form the specialized tissues required for organ 

functions. Impaired cell movements can cause severe embryonic malformation, 

developmental arrest and also many related diseases. In this work, I used the zebrafish, 

Danio rerio, a well-established vertebrate model system to study the involvement of G-

protein coupled receptor (GPCR) signaling in cell movements.  

Apelin and its GPCR receptor Agtrl1 regulate adult physiology, in particular 

cardiovascular functions, and blood vessel development. Here we show that the zebrafish 

Apelin and Agtrl1b homologs control heart field formation during gastrulation. Cardiac 

precursors, specified in the lateral plate mesoderm territories, converge toward the 

embryonic midline during gastrulation and extend rostrally to form bilateral heart fields.  

We found that agtrl1b is expressed in the forming mesendoderm before gastrulation, and 

in the lateral plate mesoderm later, while apelin expression is confined to the midline. 

Suppressing the function of Agtrl1b or its ligand Apelin using morpholino antisense 

oligonucleotides resulted in a deficiency of cardiac precursors and a subsequent absence 

or reduction of heart. Embryos injected with apelin RNA formed no heart. Our cell 

tracing experiments demonstrated that in embryos with excess Apelin, cardiac precursors 

failed to move to the correct location and to express heart markers. Time-lapse analyses 
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of Apelin overexpressing gastrulae revealed reduced migration and defective morphology 

of mesodermal cells including cardiac precursors. Moreover, in Apelin deficient 

gastrulae, the cardiac precursors moved less efficiently to the correct location, and 

showed broadened and ectopic distribution. Our results demonstrate an essential 

developmental role for the Apelin-Agtrl1b GPCR signaling system in mesodermal cell 

movements and migration of cardiac precursors to form the heart field during vertebrate 

gastrulation.  

During our investigation, we found that Apelin also regulates the migration of 

zebrafish primordial germ cells (PGCs), a process previously shown to be regulated by 

Sdf1a/Cxcr4b GPCR signaling. During gastrulation and somitogenesis, apelin mRNA is 

expressed in the dorsal midline, while its receptor agtrl1b gene is broadly expressed in 

the mesendoderm, where PGCs are localized. Manipulating Apelin function by 

misexpression throughout the embryo or by overexpression specifically in primordial 

germ cells impaired movements of PGCs towards their target tissues. Suppressing Apelin 

function by injections of antisense morpholino oligonucleotides also resulted in a 

phenotype of mis-localized PGCs. The abnormal PGC movements in these loss and gain 

of function scenarios are not a consequence of altered sdf1a expression. Using 

transplantation experiments, we showed that the cells expressing Apelin in ectopic 

locations attracted PGCs. However, in these experiments the PGCs stopped short of 

Apelin overexpressing cells. Interaction between both Apelin and Sdf1a signaling was 

also investigated. In odysseus (ody) (-/-) mutants, which harbor a null mutation in cxcr4b 

gene, the majority of ectopic PGCs aggregate in the dorsal midline where apelin is 

expressed. Interference with both signaling pathways, by injecting apelin MO into ody (-
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/-) mutant embryos, significantly reduced the dorsal aggregation of PGCs. Based on the 

preliminary data, I hypothesize that Apelin provides an attractive cue for PGCs migration 

during gastrulation and segmentation stages, in addition to the previously discovered 

Sdf1a/Cxcr4b signaling pathway.  
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CHAPTER I 

 

INTRODUCTION 

 

Cell movement 

Cell movement is a critical process for every type of animal organism. 

Single-celled organisms use cell movement as a key survival strategy for seeking 

food, avoiding predators and mating (Manahan et al., 2004). In metazoans, cells 

will often move from one location to another to undergo differentiation, form 

specialized organs, or carry out functions. Tissue formation during embryonic 

development, wound healing and immune responses all require the accurately 

coordinated movement of cells in a particular direction and to a specific location 

(Ridley et al., 2003). Understanding cell movement is also an important part of 

cancer research. One of the key differences between a benign and malignant 

cancer is the ability to metastasize, in which malignant cells migrate from the 

original tumor toward many other tissues (Sahai, 2007). Therefore, a greater 

understanding of how cells migrate in normal development could result in new 

therapies for cancer. 

Cell movements occur at many levels of organization. Our current 

knowledge could divide directed cell movements into three main categories in 

terms of scale: movement of individual cells, such as in bacteria, Dictyostelllium 

amoebae, fibroblasts in culture and neuronal migration; movement of cell groups, 

such as border cells in D. melanogaster, primordial germ cells in zebrafish and 
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directed migration of mesodermal cell populations during zebrafish gastrulation; 

movements of cell sheets, such as dorsal closure in D. melanogaster, wound 

healing and involution during gastrulation in X. laevis. It is also worth to mention 

that movements of cell sheets often involve cell rearrangements that lead to 

tissue morphogenesis (e.g., mediolateral intercalation or radial intercalation). 

 During the work of this dissertation, I mainly focused on cell movements 

during vertebrate embryonic development. The establishment of the embryonic 

architecture, the patterning formation while involved cell fate specification, 

acquires a tremendous participation of cell movements.  

All vertebrate organisms began life as a single, genetically complete cell 

(the zygote, or fertilized egg), resulting from the union of a sperm and egg. After 

conception, the zygote divides rapidly to form a mass of cells. Large groups of 

these dividing cells subsequently engage in gastrulation, a morphogenetic 

process that generates and shapes the germ layers. During gastrulation, the 

presumptive mesoderm and endoderm move inside the ectoderm, to form 

multiple-germ layers consisting of ectoderm outside, endoderm inside, and 

mesoderm in between (and see below). Following gastrulation, cells within these 

layers continue to move to find their target destinations in the developing embryo 

and to differentiate into components of specialized organs. In the developing 

brain, for example, neuronal cells migrate within the neural tube, where they 

send projections (axons and dendrites) through the layers of developing cells to 

their final targets to form specific synaptic connections, which mediate complex 

functions such as learning and memory.  
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Within vertebrate embryos, there are two types of cell populations based 

on their different properties and organizations: epithelial and mesenchymal cells.  

First, epithelial cells are tightly packed together with little intercellular space, and 

various types of tight cell junctions present between the apical and basal 

domains to facilitate the formation of the continuous cell layer. Individual 

epithelial cells show a lack of mobility with respect to their local environment 

(Larue and Bellacosa, 2005). Epithelial cells connected via strong cell adhesion 

move as integrated tissue sheets in a coordinated manner. A good example 

could be the process of zebrafish ectodermal cell movements during gastrulation 

(Concha and Adams, 1998). However, epithelial cell movements do involve a 

dynamical breaking down and re-establishing of cell junctions, such as during 

epiboly movement of enveloping layer (and see below). Second, mesenchymal 

cells without clear apical and lateral membranes can migrate as individual or 

small groups using loose or no interaction among cells, as seen in the neural 

crest migration and primordial germ cell migration in all vertebrate animals (Larue 

and Bellacosa, 2005). My work described in this dissertation will focus on 

movements of mesenchymal cells. 

During the last several decades, scientists have been intensively studying 

cell movements in many different model systems, and trying to understand 

following important questions: which types of molecules are required in cell 

movements and what are their roles in signaling pathways? What is the 

mechanism of the cell motility? How is motility regulated? What is the mechanism 

of directed cell migration? 
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Our knowledge about the mechanism of cell migration is mostly based on 

a classical model of cell migration, an individual fibroblast-like cell migrating on a 

2D environment. A migrating cell is a polarized cell with distinct leading and 

trailing edges. The leading edge points in the direction of movement and is driven 

by actin-polymerization-mediated protrusion. During migration, cell adhesions 

assemble at the leading edge and disassemble at the trailing edge (Vicente-

Manzanares et al., 2005). There is a nascent but increasing literature on cells 

migrating in 3D environments or in vivo condition, but little is known about the 

molecular details (Beningo et al., 2004; Gunzer et al., 2000).  

Our group uses zebrafish as a model system to study vertebrate 

gastrulation process, especially mesodemal cell movements and also associated 

mechanisms.  

 

Zebrafish as a model system to study cell movement 

The zebrafish, Danio rerio, is a tropical fish belonging to the minnow family 

(Cyprinidae). The benefits of the zebrafish model system for genetic and 

developmental studies include a short reproductive cycle of 2-3 months, external 

fertilization, and a transparent embryo, affording detailed microscopic inspection 

of the embryo throughout all phases of development.  

The pioneering work of George Streisinger (University of Oregon) first 

introduced the zebrafish as a model organism. The milestone event consolidating 

its importance were two significant large-scale forward genetic screens for N-

ethyl-N-nitrosourea (ENU) induced embryonic lethal mutations. These screens 
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are commonly referred to as the Tübingen/Boston screens, in which researchers 

identified hundreds of zebrafish mutations affecting early development and 

organogenesis. The outcome of these screenings led to a special issue of journal 

Development (Zebrafish Issue, Development 123, 1996), introducing mutations 

affecting body patterning, cell movement, neurogenesis, and organ development. 

Also, construction of genetic maps and progress made in the zebrafish genome 

sequencing has made zebrafish study feasible at the molecular level. An online 

database of zebrafish genetic, genomic, and developmental information (ZFIN) 

has been established. More recently, methods for inactivation of a specific gene’s 

function in zebrafish system became feasible. Antisense Morpholino 

oligonucleotides (MOs) (reverse genetics) are synthetic molecules with a 

modified nucleic acid structure (Summerton and Weller, 1997). Their completely 

unnatural backbones protect MOs from recognition and degradation by cellular 

nucleases (Hudziak et al., 1996). One could inject MO into zebrafish embryo 

zygote to interfere with the RNA translation or splicing process of a specific gene, 

and consequently result in the loss of function in this protein (Nasevicius and 

Ekker, 2000). Originally applied in plant research, TILLING (Targeting Induced 

Local Lesions IN Genomes) (reverse genetics) is a new approach that allows one 

to identify ENU-induced mutations in known genes and has been successfully 

applied in zebrafish (Hurlstone et al., 2003; Wienholds et al., 2003). Another 

important advantage for the optically transparent zebrafish is the generation of 

transgenic zebrafish lines, which use regulatory DNA to drive expression of 

fluorescent proteins reporters in temporally and spatially regulated patterns allow 
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visualization of cells in developing embryos (Deiters, 2006). Application of this 

technology in zebrafish enables visual analysis of regulation of gene expression 

in a living organism easily, and it is highly valuable for achieving sophisticated 

cell fate-mapping and other associated analyses. For example, Tg(flk1:egfp)s843 

has been used broadly for studying the development of vascular system (Jin et 

al., 2005). Tg(olig2:egfp) (Shin et al., 2003) and Tg(nkx2.2a:megfp) (Ng et al., 

2005) have been used to investigate the dynamic oligodendrocyte progenitor 

behavior during zebrafish development (Kirby et al., 2006). All of these forward 

and reverse genetic analyses combined with embryological and molecular 

methods make the investigation of genetic mechanisms underlying cell 

specification and migration during gastrulation and organogenesis particularly 

effective in zebrafish. 

 

Zebrafish gastrulation movements and underlying signaling pathways 

Gastrulation is a crucial period early in the development of multi-cellular 

organisms during which the morphology of the embryo is dramatically 

restructured by cell movements and rearrangements. It involves the mass 

movement of cells to form complex structures from a simple starting form. These 

global changes in form are achieved by four morphogenetic movements during 

zebrafish gastrula period: epiboly, internalization, convergence and extension 

movements (Figure 1). Concurrent with all of these movements, cells within the 

embryo acquire different fates patterning anteroposterior and dorsoventral 

asymmetries into the body rudiment.  
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Figure 1. Gastrulation cell movements. 
Photographs of live zebrafish embryos at the indicated developmental stages. 
Green lines represent internalization; red lines represent epiboly; blue lines 
represent convergence; yellow lines represent extension. Star, animal pole; #, 
vegetal pole; V, ventral; D, dorsal. 
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At 4 hours post-fertilization (hpf), when the zygotic genome is activated 

(Kane and Kimmel, 1993), the zebrafish embryo exhibits a symmetrical 

morphology along the anteroposterior axis; it consists of around 1000 

blastomeres sitting on the top of a large yolk cell (Figure 1A).  At this stage three 

distinct cell layers can be visualized. The enveloping layer (EVL) has formed a 

thin superficial sheet on the outside of the blastomeres. The yolk syncytial layer 

(YSL) is formed from the fusion of cells (or blastomeres) adjacent to the yolk cell. 

The deep cells giving rise to all embryonic tissues are sandwiched between by 

EVL and YSL. Epiboly movement is the first morphogenetic movement during 

zebrafish gastrulation (Warga and Kimmel, 1990) (Figure 1B). Leading to vegetal 

expansion and thinning of the blastoderm, epiboly occurs in the deep cells over 

the YSL, and is driven by the migration of nuclei and cytoplasm in the YSL as 

well as attachments between the YSL and the EVL (Wilson et al., 1995). Epiboly 

ends when the blastoderm covers the entire yolk at the end of the gastrula period 

(Figure 1C).  

In zebrafish, endoderm precursors are derived from cells close to the yolk 

syncytial layer (YSL) at the blastoderm margin (40% epiboly stage) (Schier and 

Shen, 2000). At the beginning of gastrulation, ectoderm precursors in zebrafish 

blastula are localized at the animal pole that is the upper hemisphere consisting 

of rapidly dividing cells in the embryo, and they are above the prospective 

mesoderm (Shen and Schier, 2000) (Figure 1A). More specifically, neural 

ectodermal tissues and axial mesoderm are concentrated in the dorsal region, 

and non-neural ectoderm and other ventroposterior mesoderm are positioned at 
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the ventral side of the gastrula (Helde et al., 1994).  

At 5.5 hpf, when the gastrula period begins, zebrafish embryos acquire a 

sphere-like shape, still with a symmetric morphology as viewed from the animal 

pole. Prospective mesodemal and endodermal cells at the blastodermal margin 

start to undergo internalization. In this process the presumptive mesoderm or 

endoderm moves as individuals or cell groups from the outer layer of the gastrula 

into the inner and deeper layer to underlie the ectoderm (Solnica-Krezel, 2006) 

(Figure 1B). Less than 30 minutes later, the embryonic shield in the dorsal side 

starts to form by a larger thickening (Figure 1B). The zebrafish embryonic shield, 

equivalent to the Spemann-Mangold organizer in Xenopus, is the key embryonic 

signaling center to direct gastrulation movement, induce axis formation and 

specify tissue fate (Bouwmeester, 2001; Niehrs, 2005; Sander and Faessler, 

2001; Solnica-Krezel, 2006). 

During zebrafish gastrulation, Convergence and Extension (C&E) cell 

movements drive the overall process of mediolateral narrowing and 

anteroposterior elongation of embryonic tissues (Solnica-Krezel and Cooper, 

2002). All germ layers undergo C&E movements, and I will mainly focus on the 

mesoderm layer in this dissertation. During early gastrulation, upon 

internalization, mesendodermal cells migrate individually to contribute to the 

elongation of the mesoderm by moving toward the animal pole, without dorsal 

movement (Sepich et al., 2005). The developmental fate of mesoderm varies 

along the dorsal to ventral axis bilaterally, including the axial, paraxial, 

intermediate, and lateral mesoderm (Kimmel et al., 1990). Different types of 
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mesodermal cells use different cell behaviors during C&E movement at later 

stages of gastrulation (Keller et al., 2000; Sepich et al., 2005; Sepich and 

Solnica-Krezel, 2005; Solnica-Krezel and Cooper, 2002). I am going to focus on 

discussing lateral mesoderm during C&E. Lateral mesodermal cells start to 

convergence toward the dorsal side of the embryo starts at 70% epiboly stage 

(7.7 hpf), and exhibit directional preference, directionally-regulated speed and 

turn toward the dorsal side when off-course (Sepich et al., 2005). This interesting 

observation lead to a hypothesis that these lateral mesodermal cells moving 

toward dorsal region might migrate toward chemoattractants distributed along the 

dorsal midline via the mechanism of chemotaxis (and see below). 

The end result of gastrulation is a polarized three germ-layered embryo 

(Figure I-C): the ectoderm, the outer layer of the embryonic body plan, is the 

precursor to the epidermal layer and the nervous system. The mesoderm, the 

middle layer of the embryonic body plan, is the precursor to the skeleton, muscle, 

connective tissues, kidneys, circulatory, and reproductive systems. The 

endoderm eventually forms the inner, epithelial layer of the gut and its associated 

organs, including the liver and the pancreas. Gastrulation is followed by 

organogenesis, when individual organs develop within the newly formed germ 

layers and through their interactions.  
Several signaling pathways have been implicated in directing large-scale 

gastrulation movements in vertebrates, including Stat3, Gα12/13, Prostaglandin 

E2 - EP4, noncanonical Wnt, and FGF signaling (Keller, 2005; Leptin, 2005; 

Solnica-Krezel, 2005). Previous studies demonstrated that C&E movements of 
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lateral mesodermal cells in zebrafish embryos are depended on non-canonical 

Wnt and Stat3 (Jessen et al., 2002; Yamashita et al., 2002; Yamashita et al., 

2004). Hyaluronic acid synthesizing enzyme 2 (Has2) is required for 

convergence but not extension of lateral mesodermal cells in a cell-autonomous 

manner, and GTPase Rac1 is believed to be the downstream effector that 

promotes cell protrusions (Bakkers et al., 2004). Recently, it has been shown that 

Prostaglandin E2 acts through the EP4 receptor, a member in the G-protein 

coupled receptor (GPCR) superfamily, to activate Akt at least in part to regulate 

the motility of converging mesodermal cells (Cha et al., 2006). Zebrafish embryos 

lacking the function of Gα12 and Gα13 proteins, known regulators of Rho, exhibit 

rounder cell shapes and change movement direction more frequently than their 

wild-type siblings in the converging mesodermal cells (Lin et al., 2005). Based on 

above summarized data, in particularly the involvement of heterotrimeric G 

proteins and EP4 GPCR, we hypothesized that certain unknown G-protein 

coupled receptors, upstream regulators of heterotrimeric G-Proteins, regulate 

zebrafish gastrulation movements, especially the involvement in the convergence 

movements of these lateral mesodermal cells.  

 

Cell movements during zebrafish heart development 

In above paragraphs, I discussed briefly the cell behaviors and signaling 

pathways involved in migration of lateral mesodemal cells during zebrafish 

gastrulation. One important and interesting cell population, the cardiac precursor 

cells, resides within the region of embryonic lateral mesoderm. I will discuss their 
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movements during zebrafish gastrulation and signaling pathways involved in their 

regulation in following sections. 

During vertebrate organogenesis, the corresponding progenitor cells 

acquire initial cell fates through the influence of multiple inductive signals existing 

in the embryo (Auman and Yelon, 2004). They typically form organ primordia by 

moving toward a specific location, or condensing into an organ rudiment, and 

later continue differentiation to form the specialized cells or tissues required for 

organ function. In vertebrates, myocardial progenitor cells can first be 

distinguished by nkx2.5 expression in two bilateral stripes of cells in the anterior 

lateral plate mesoderm (ALPM) at early somitogenesis stages (Harvey, et al., 

1996). Fate-mapping studies in several vertebrates have shown that, prior to the 

onset of nkx2.5 expression, the heart anlage arises during gastrulation when 

prospective cardiac precursors, specified in the lateral plate mesoderm territories 

(Figure 2A), converge toward the embryonic midline and extend rostrally to form 

bilateral heart fields at late gastrulation (Figure 2B-E) (Keegan et al., 2004; 

Parameswaran and Tam, 1995; Schoenwolf and Garcia-Martinez, 1995; Stainier 

et al., 1993). Multiple signaling pathways, acting in both stimulatory and inhibitory 

fashions, act to restrict cardiomyogenesis to a defined domain in the ALPM. 

These signals include TGF-βs, Fgfs, Shh, Retinoic Acid, and Wnts/Wnt inhibitors 

(Keegan et al., 2005; Reifers et al., 2000; Schneider and Mercola, 2001; 

Schultheiss et al., 1997; Zhang et al., 2001). In zebrafish, lysosphingolipid 

signaling via the Miles apart GPCR is essential for movements and fusion of the 

bilateral heart primordia during segmentation (Kupperman et al., 2000). However, 
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relatively little is known regarding the mechanisms that specify myocardial 

progenitor and direct their migration to the ALPM prior to the onset of nkx2.5 

expression. Explant studies in chick have suggested that signals are required for 

cardiomyogenesis prior to gastrulation (Antin et al., 1994). As we introduced 

before, all of these signaling pathways that affect C&E movements of the three 

germ layers also consequently secondarily affect the movements of heart 

progenitors. We ask, during gastrulation before the onset of nkx2.5 activation, 

whether other pathways that could regulate movements of the defined cell 

populations, like the cardiac precursors, also operate during vertebrate 

gastrulation is an open question. 

 

Primordial germ cells (PGCs) 

In my work of this dissertation, we also investigated another type of 

interesting cell population  the zebrafish primordial germ cells (PGCs). 

Following sections will discuss their fate specification, migration process and 

signaling pathways that regulate their migration. 

All sexually reproducing organisms start their development from the fusion 

of sperm and eggs, the gametes that are responsible for transmitting genetic 

information from one generation to the next. All gametes arise from the PGCs. 

PGCs have emerged as an excellent model for studying directional cell 

migration. During development of zebrafish and many other organisms, the 

PGCs migrate a long distance from the regions where they are specified towards 

the developing gonad where they generate gametes (Antin et al., 1994; Wylie, 
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2000). Understanding the mechanisms that guide PGCs as they travel towards 

their destination concurrent with the morphogenetic gastrulation movements of 

somatic tissues along the migration path represents a particularly interesting 

problem of long-distance cell movement during embryogenesis.  

The specification of zebrafish PGCs was first documented by the 

germline-specific marker vasa (Olsen et al., 1997; Yoon et al., 1997). This gene 

was originally identified in Drosophila and encodes an ATP-dependent RNA 

helicase of the DAD BOX family (Hay et al., 1988).  As in several other 

organisms, the zebrafish vasa RNA is maternally supplied and expressed in the 

germline throughout the entire development. Hence, vasa RNA affords PGC 

recognition and examination from the earliest embryonic stages of development 

to the later gamete differentiation stages.  

In the zebrafish embryo at dome stage (4.3 hpf), the PGCs reside in four 

positions on the blastoderm margin, randomly located with respect to the 

prospective embryonic axis (Weidinger et al., 1999). Most migrate toward the 

dorsal midline, but often, one of the four clusters migrates away from the dorsal 

region if it is already located in that region at the beginning of migration (Figure 

3A). During gastrulation and early somitogenesis stages, the PGCs align along 

the lateral borders of the trunk mesoderm at the boundary between the head and 

trunk mesoderm (Figure 3B) (Weidinger et al., 1999). The PGCs then migrate 

toward two regions flanking the first three somites, and form two bilateral-cell 

clusters by the 6-to 8-somite stage (Weidinger et al., 1999). Subsequently, the 

PGCs leave the earlier-formed somites level and migrate to form bilateral 
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several cell types, such as lymphocytes (Bleul et al., 1996a; Bleul et al., 1996b), 

cerebellar and hippocampal neurons (Lu et al., 2002; Zou et al., 1998). It also 

plays a part in several pathological situations, for example, tumor metastasis 

(Muller et al., 2001) and joint infiltration (Buckley et al., 2000). Recent studies 

also showed that in mouse, germ cell migration and survival requires the 

SDF1/CXCR4 interaction (Molyneaux et al., 2003). The fact that germ cell 

development is affected in CXCR4 mutant mice and zebrafish further suggests 

that a conserved G-protein-coupled receptor-signaling mechanism regulates 

early germ cell development in vertebrates. 

 

G-Protein coupled receptors 

G-protein coupled receptors (GPCRs), also known as seven 

transmembrane receptors, 7TM receptors, heptahelical receptors, and G protein 

linked receptors (GPLR), constitute a large protein family of transmembrane 

receptors that sense molecules outside the cell and activate the internal signal 

transduction through heterotrimeric G protein-dependent and -independent 

pathways and, ultimately, cellular responses (Figure 4). The ligands that bind and 

activate these receptors include light-sensitive compounds, odorants, 

pheromones, hormones, and neuro-transmitters, and vary in size from small 

molecules to peptides to large proteins. These signaling pathways regulate key 

biological processes such as cell proliferation, cell survival and angiogenesis 

(Marinissen and Gutkind, 2001). According to the binding ligands, GPCRs are 

grouped into two classes (Vassilatis et al., 2003). One major group, referred to as 

17



 
 
 
 
 
 
 

 
 

Figure 4. Seven trans-membrane G-Protein Coupled Receptor (GPCR) and 
other components in the siganling pathway. 
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clusters at the level of the 10th somite. By the end of the first day of development, 

all PGCs are found at the positions where the future gonads develop during the 

following weeks (Figure 3C) (Weidinger et al., 1999). 

The signals directing movement of PGCs in vertebrate embryos are 

beginning to be elucidated. Recent work has identified the chemokine stromal-

cell-derived-factor (SDF)-1a as a pivotal secreted signal guiding PGC migration 

in zebrafish embryos (Doitsidou et al., 2002; Knaut et al., 2003). sdf1a is 

expressed in domains where PGCs are found and toward which they migrate in 

wild-type  (Figure IIIB, C) (Doitsidou et al., 2002); PGCs migrate towards regions 

of ectopic Sdf1a expression (Doitsidou et al., 2002; Weidinger et al., 1999). 

Inhibition of the translation of Sdf1a, or its GPCR Cxcr4b, or mutations in their 

genes, result in severe PGC migration defects (Doitsidou et al., 2002; Knaut et 

al., 2003). Taken together, these findings indicate that this ligand and receptor 

pair of molecules provides a key directional cue for the PGCs as they migrate 

towards the future gonad. More recent studies showed that G alpha proteins of 

the Gi family are essential for directional migration but not for PGC motility 

(Dumstrei et al., 2004). Inhibition of phosphoinositide-3-kinase (PI3K) signaling in 

PGCs slows down their migration and leads to abnormal cell morphology as well 

as to the reduced stability of filopodia (Dumstrei et al., 2004). This data indicated 

that PI3K pathway is important for the motility of PGCs.  

Besides the newly discovered roles of Sdf1a and its receptor Cxcr4b in the 

directed migration of zebrafish PGCs (Doitsidou et al., 2002; Knaut et al., 2003), 

the SDF1-CXCR4 interaction is also known to play roles in the chemotaxis of 
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chemosensory GPCRs (csGPCRs), serve as receptors for sensory signals of 

external origin, such as odorants, pheromones, and taste chemicals (Araneda et 

al., 2000; Buck and Axel, 1991; Mombaerts, 1999). Most other GPCRs respond 

to endogenous signals, such as peptides, lipids, neurotransmitters, and 

nucleotides (Howard et al., 2001). Hence they are referred to as endoGPCRs. 

GPCRs of this second-group are involved in numerous physiological processes, 

including the regulation of neuronal excitability, metabolism, reproduction, 

development, hormonal homeostasis, and behavior. In vertebrates, this 

superfamily contains 1000–2000 members (>1% of the genome) including >400 

coding for endoGPCRs, which are well conserved in amino acid sequences 

between species (Bockaert and Pin, 1999). G protein-coupled receptors are also 

involved in many diseases and thus are major targets for pharmaceutical drugs 

(Vassilatis et al., 2003). 

 

The roles of GPCRs in chemotaxis 

The roles of GPCR in chemotaxis-based cell movements are well 

established by previous studies (Iijima et al., 2002; Parent and Devreotes, 1999). 

Chemotaxis is the phenomenon in which cells, bacteria, and other single-cell or 

multicellular organisms direct their movements according to concentration of 

certain chemicals in their environment. This is important for bacteria to find food 

(for example, glucose) by swimming towards the highest concentration of food 

molecules, or to flee from poisons (for example, phenol). In multicellular 

organisms, chemotaxis is critical to development as well as normal homeostasis 
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in adult organisms. In addition, it has been recognized that studying the 

mechanisms that regulating chemotaxis in various model organisms can be help 

us to understand cancer metastasis. 

The molecular mechanisms of chemotaxis have been studied extensively 

in mammalian neutrophils and in the ameba Dictyostelium discoideum. G protein-

coupled signaling has been shown to polarize neutrophils in response to 

chemoattractants. Upon exposure of cells to chemoattractant, the pleckstrin 

homology domain of the AKT protein kinase, tagged with the green fluorescent 

protein (PHAKT-GFP) is recruited selectively to membrane at the cell's leading 

edge (Servant et al., 2000). The more detailed understanding of establishment of 

cell polarity in chemotaxis was obtained in Dictyostelium discoideum (Iijima et al., 

2002; Parent and Devreotes, 1999). In this model system, directional migration 

toward the chemoattractant is also controlled by asymmetric activation of a G 

protein-coupled receptor. Previous studies demonstrated mechanisms of 

navigation and signal amplification in chemotaxing Dictyostelium cells, in which 

phosphatidylinositol 3-kinase (PI3K) transiently translocates to the plasma 

membrane in response to chemoattractant stimulation and to the leading edge in 

chemotaxing cells. PTEN (phosphatase and tensin homolog), a negative 

regulator of PI3K pathways, exhibits a reciprocal pattern of localization. These 

findings revealed that differential subcellular localization and activation of PI3K 

and PTEN are required for proper chemotaxis (Funamoto et al., 2002; Iijima and 

Devreotes, 2002). The most important and interesting thing is that above 

discussed molecular cascades are presumably to be downstream of G-protein 
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coupled receptors. 

 

GPCRs and vertebrate development 

Whereas much is known about the roles of GPCRs in adult organisms, 

there is little existing knowledge about the involvement of GPCRs in vertebrate 

development. However, recent studies provide several potential links between 

GPCRs and coordinated cell migration during zebrafish embryogenesis. After 

gastrulation, the zebrafish miles-apart (mil) mutation specifically affects the 

migration of the heart precursors to the midline resulting in cardia bifida, such 

that two heart tubes form in mutants rather than one. Positional cloning showed 

that mil encodes a member of the lysosphingolipid GPCR family, revealing a new 

role for GPCRs in regulating cell migration during vertebrate development 

(Kupperman et al., 2000). Another example discussed previously involves the 

migration of PGCs. A pair of evolutionarily conserved molecules, the protein 

Sdf1a and its receptor Cxcr4b (a member of GPCRs), act to guide the migration 

of PGCs in zebrafish (Doitsidou et al., 2002). Also known as Odysseus, Cxcr4b 

was proven to be genetically required specifically in germ cells for their 

chemotaxis towards Sdf1a sources consistent with prediction of a receptor 

(Knaut et al., 2003). GPCRs have also been linked to chemotaxis in 

Dictyostellium discoideum and in the mammalian immune system (Devreotes 

and Janetopoulos, 2003). They have prominent roles in sensory organs and the 

central nervous system in adults. However, their roles in vertebrate gastrulation 

are not understood. Recent studies indicate that heterotrimeric G proteins, which 

22



transduce signals downstream of GPCRs to regulate cell migration, are also 

essential for the gastrulation movements of epiboly, convergence, and extension 

in zebrafish (Lin et al., 2005). However, the identity of the corresponding GPCRs 

remains to be determined. 

These interesting discoveries, along with similarities between the 

observations of the directed migration of mesodermal cells undergoing 

convergence movements (Jessen et al., 2002) and the established chemotaxis 

roles of GPCR in Dictyosteliia and immune cells, inspired us to investigate a 

subset of GPCRs from the hundreds of members in GPCR superfamily, and test 

their potential roles in vertebrate early development.  

In this dissertation, I describe our discoveries regarding a pair of proteins, 

the Apelin ligand and its GPCR receptor Agtrl1b, in regulating cell movements 

during zebrafish early development. In Chapter II, I will describe that Apelin 

signaling is essential for heart formation, and regulates the migration of cardiac 

precursor cells during gastrulation. In Chapter III, I describe our results that 

reveal the role of Apelin signaling in regulating the migration of zebrafish PGCs.
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CHAPTER II 

APELIN AND ITS RECEPTOR CONTROL HEART FIELD FORMATION 
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Summary 

 

The vertebrate heart arises during gastrulation as cardiac precursors 

converge from the lateral plate mesoderm territories toward the embryonic 

midline and extend rostrally to form bilateral heart fields. G-protein coupled 

receptors (GPCRs) mediate functions of the nervous and immune systems, 

however, their roles in gastrulation remain largely unexplored. Here we show that 

the zebrafish homologs of the Agtrl1b receptor and its ligand, Apelin, implicated 

in physiology and angiogenesis, control heart field formation. Zebrafish gastrulae 

express agtrl1b in the lateral plate mesoderm, while apelin expression is confined 

to the midline.  Reduced or excess Agtrl1b or Apelin function caused deficiency 

of cardiac precursors and subsequently heart. In Apelin deficient gastrulae, the 

cardiac precursors converged inefficiently to the heart fields and showed ectopic 

distribution, whereas cardiac precursors overexpressing Apelin exhibited 

abnormal morphology and rostral migration. Our results implicate GPCR 

signaling in movements of discrete cell populations that establish organ 

rudiments during vertebrate gastrulation.  

 

Introduction 

The vertebrate body plan, germ layers and organ rudiments are 

established during gastrulation via concurrent inductive and morphogenetic 

events. Internalization generates the three germ layers when endodermal and 
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mesodermal precursors move beneath the prospective ectodermal layer. The 

process of epiboly spreads and thins the germ layers. Convergence movements 

narrow the germ layers mediolaterally while extension movements elongate them 

anteroposteriorly. Several signaling pathways have been implicated in directing 

these large-scale gastrulation movements in vertebrates, including Stat3, non-

canonical Wnt and FGF signaling (Keller, 2005; Leptin, 2005; Solnica-Krezel, 

2005). G-protein coupled receptors (GPCRs) have been linked to chemotaxis in 

Dictyostellium discoideum and in the mammalian immune system (Devreotes 

and Janetopoulos, 2003). They have prominent roles in sensory organs and 

central nervous system in adults. However, their roles in vertebrate gastrulation 

are not understood. In fact little is known about the developmental expression 

and/or function of any of the close to 400 endoGPCRs encoded in the human 

genome (Vassilatis et al., 2003). Recent studies indicate that heterotrimeric G 

proteins, which transduce signals downstream of GPCRs to regulate cell 

migration, are also essential for the gastrulation movements of epiboly, 

convergence and extension in zebrafish (Lin et al., 2005). However, the identity 

of the corresponding GPCRs remains to be determined.  

Here we implicate a chemokine Apelin and its receptor Agltr1b in 

convergence and extension gastrulation movements of cardiac precursors in 

zebrafish. Agtrl1 (also named APJ), initially identified as an ‘‘orphan’’ receptor, 

was shown to be activated by a 36-amino-acid peptide from bovine stomach 

homogenates (Tatemoto et al., 1998). Subsequently, a 77-amino-acid 

prepropeptide of a novel ligand, called Apelin for Agtrl1 endogenous ligand, was 
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identified in human and bovine tissues. Peptides of varying size comprising C-

terminal fragments of the Apelin prepropeptide can activate the receptor (Habata 

et al., 1999; Kawamata et al., 2001; Lee et al., 2000). Several studies have 

reported cardiovascular actions of Apelin/Agtrl1 in humans, including regulation 

of blood pressure in vivo (Tatemoto et al., 2001), and exertion of positive 

inotropic effects in the heart (Berry et al., 2004; Szokodi et al., 2002). Reports of 

declining Apelin/Agtrl1 levels in patients with chronic heart failure imply this 

signaling system may have cardioprotective properties (Chen et al., 2003). More 

recently, apelin has been shown to be required for normal vascular development 

in frog embryos (Inui et al., 2006b).  

The heart anlage arises during gastrulation when prospective cardiac 

precursors, specified in the lateral plate mesoderm territories, converge toward 

the embryonic midline and extend rostrally to form bilateral heart fields at late 

gastrulation (Keegan et al., 2004). The two heart fields fuse during segmentation 

into a single heart tube (Auman and Yelon, 2004; Moorman and Christoffels, 

2003; Yelon and Stainier, 1999). In zebrafish, lysosphingolipid signaling via the 

Miles apart GPCR is essential for movements and fusion of the bilateral heart 

primordia during segmentation (Kupperman et al., 2000). Whether similar 

pathways that regulate movements of defined cell populations also operate 

during vertebrate gastrulation is an open question.  

 We provide several lines of evidence that Apelin and its Agtrl1b receptor 

regulate heart precursor cell movements during zebrafish gastrulation.  Whereas 

agtrl1b is expressed in the lateral plate mesoderm, apelin expression is confined 
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to the midline, where signals regulating convergence and extension movements 

are thought to reside (Solnica-Krezel, 2005). Reduction or excess Agtrl1b or 

Apelin expression impaired cardiac precursor and heart formation, whereas other 

embryonic tissues were only mildly affected. In gastrulae overexpressing or 

deficient in Apelin, the cardiac precursors moved inefficiently to the heart fields 

and exhibited abnormal morphology and protrusive activity. 

Our work uncovers a novel role of Apelin/Agtrl1b signaling in mediating 

heart field formation during zebrafish gastrulation. These findings implicate 

GPCR signaling in cell movements that establish organ rudiments during 

gastrulation and suggest that vertebrate gastrulation employs pathways that 

govern movements of all gastrula cells or entire germ layers, as well as pathways 

that regulate movements of discrete cell populations. 

 

Results 

 

Complementary expression of Agtrl1b receptor and its ligand Apelin in 

zebrafish gastrulae  

 In our efforts to identify GPCRs regulating vertebrate gastrulation we 

isolated zebrafish homologs of Angiotensin II receptor-like 1 (Agtrl1), agtrl1b and 

agtrl1a and its putative ligand Apelin (apln). agtrl1a is not described here, but its 

cloning and expression pattern has been recently reported (Tucker et al., 2007). 

Agtrlb and Apelin have been previously identified in human, mouse and Xenopus 

laevis  (Figure S1) (Devic et al., 1996; Devic et al., 1999; O'Dowd et al., 1993). 
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Figure S1. Sequence alignment of Agtrl1b (A) and Apelin proteins (B). Human 
(AGTRL1, APLN), mouse (Agtrl1, Apln), Xenopus laevis (Xagtrl-1/Xmsr-1) and 
zebrafish Agtrl1b/Agtrl1a and Apln. Identical sequences are boxed in grey. 
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Figure 1. Spatiotemporal expression of agtrl1b and apln during zebrafish 
embryogenesis.  
(A-K) agtrl1b expression profile. (L-Q) apln expression profile. (A) agtrl1b 
expression in deep cells at 4 hpf. (B) At 4.5 hpf agtrl1b expression appears at 
blastoderm margin. (C) At onset of gastrulation, agtrl1b expression is only 
maintained in the blastoderm margin. (D-F) agtrl1b expression during 
gastrulation in the anterior lateral plate mesoderm (alpm), and posterior and 
adaxial mesoderm. (G, H) New agtrl1b expression domains in the developing 
brain, adaxial cells (ac), intermediate mesoderm (imm) and heart field (hf) at 
early segmentation stages (8 somites); tailbud (tb); (G) lateral view; (H) flat 
mount, anterior to the left. (I) Boxed region in (H), by midsegmentation (14 
somites) agtrl1b expression in cardiac precursors overlaps with cmlc2 (red). (J, 
K) New agtrl1b expression in dorsal aorta (da), caudal vein (cv) and intersomitic 
blood vessels (isbv) at 24 hpf. (J) Cross section through trunk region marked by 
dashed line in (K); notochord, (nc).  
(l) RT-PCR of apln transcript at 7-48 hpf; β-actin (actb2) was used as a loading 
control. (M-O) apln expression in the axial mesoderm and its derivative, 
notochord. (N) Cross section through notochord. (P, Q) apln expression in 
posterior notochord, prospective heart (ht) and within the head at 24 hpf. Animal 
pole (✩,★). Vegetal pole (#). Dorsal (D). Scale bar represents 100 µm (A, I, J, N) 
and 200 µm (B, D, G, H, K, M, O, P, Q).   
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Our analysis of the spatiotemporal agtrl1b and apln expression suggested 

involvement of these molecules in gastrulation and heart development.  By whole 

mount in situ hybridization, agtrl1b expression was first detected after the onset 

of zygotic transcription in randomly positioned cells in the blastoderm (Figure 

1A). By 4.5 hours post fertilization (hpf), mesendodermal precursors at the 

blastoderm margin started to express agtrl1b (Figure 1B). At early gastrulation 

marginal agtrl1b expression was maintained ventrolaterally, while expression in 

dorsal and in random deep cells declined (Figures 1C, D). During gastrulation 

and segmentation, agtrl1b expression was maintained in adaxial, intermediate, 

and lateral plate mesoderm (LPM), including the anterior LPM where the heart 

precursors reside  (Figures 1E, F) (Keegan et al., 2004). During late 

segmentation, several agtrl1b expression domains were detected, including in 

the forming heart, as revealed by co-expression with the heart marker cardiac 

myosin light chain 2 (cmlc2) (Figures 1G - I). By 24 hpf, agtrl1b expression was 

detected in dorsal aorta, caudal vein, and intersomitic blood vessels (Figures 1J, 

K). Expression in blood vessels declined by 1.5 days post fertilization (dpf), and 

was undetectable at 2 dpf (not shown). 

Transcripts of the Agtrl1b ligand, Apelin, were first detected at 

midgastrulation by RT-PCR (Figure 1L). Interestingly, whole mount in situ 

hybridization revealed that apln expression complemented that of agtrl1b during 

gastrulation: apln transcripts were detected exclusively in the axial mesoderm 

and its later derivative, the notochord (Figures 1M-O). At late segmentation apln  
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expression was maintained posteriorly in the forming notochord (Figure 1P), and 

new expression was identified in the presumptive heart, coinciding with 

expression of its receptor (Figures 1P, I, K). By 24 hpf, discrete apln expression 

domains appeared in the head (Figure 1Q).  

 

Excess and deficit of Agtrl1b impair gastrulation and heart formation 

To investigate the role of Apelin and its receptor during zebrafish 

development we misexpressed the Agtrl1b receptor by microinjecting synthetic 

RNA into 1-cell stage embryos. The earliest effects were detected at 4 hpf, when 

the interface between the blastoderm and the yolk cell showed strong distortions 

(Figures 2A, B). As apelin is not expressed until 7 hpf and constitutive activity in 

a ligand independent manner was reported for G-protein-coupled receptors (Smit 

et al., 2006), we attribute these effects to excess receptor activity. Subsequently 

the progress of epiboly and other gastrulation movements were variably 

compromised (not shown). Nevertheless, by the end of the gastrula period, all 

injected embryos manifested normal AP axis extension, although 85% exhibited 

mediolateral broadening of neuroectodermal and mesodermal tissues compared 

to uninjected siblings (n=265, 400 pg; Figures 2C-F) and by 24 hpf injected 

embryos were of normal length or slightly shorter (not shown). Analyses of 

tissue-specific markers revealed that embryonic patterning and tissue 

specification were not compromised by the injection of agtrl1b RNA, except for a 

small reduction in myocardial marker expression (n=234, 400 pg; Figures 2E, F; 
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Figure 2. agtrl1b  and apelin can influence gastrulation movements.  
(A-F) agtrl1b gain-of-function and (G-L) loss-of-function. (A, B) Agtrl1b 
misexpression (B) causes distortion at the interface between blastoderm and yolk 
cell at early epiboly, in contrast to smooth yolk surface indicated by an arrowhead 
in uninjected control embryo (A). (C, D) By the end of gastrulation embryos 
overexpressing Agtrl1b (D) show normal anteroposterior extension; arrowheads 
indicate anterior and posterior limits of the nascent embryonic axis. (E, F) Tissue 
specification and patterning as revealed by krox20 (hindbrain rhombomeres 3 
and 5), deltaC (dlc, newly formed somites), dlx3b (neural-nonneural ectoderm 
boundary) and shh (notochord) expression. These markers reveal mediolateral 
expansion of tissues, consistent with reduced convergence gastrulation 
movements in Agrl1b misexpressing embryos (F). (G, H) Evaluation of MOagtrl1b 
effectiveness. Confocal microscopy image of cell membrane localized HA-tagged 
Agtrl1b in blastulae injected with its synthetic RNA. (H) Co-injection of MOagtrl1b 
suppresses ectopic HA-tagged Agtrl1b expression. (I-L) Embryos injected with 
MOagtrl1b manifest a mild reduction of anteroposterior embryonic axis and a 
normal mediolateral expansion at the end of gastrulation. Tissue specification 
and patterning, marked by krox20, dlc, dlx3b and shh expression, are not 
affected (K, L).  (M-R) Effect of Apelin misexpression on early gastrulation. (M, O, 
Q) Uninjected control embryos (ctrl). (N, P, R) Embryos injected with 10 pg apln 
RNA (Apln). (M, N) Dorsal views, 7 hpf, animal pole to the top. no tail (ntl) 
expression in mesoderm at the blastoderm margin/blastopore marks the 
progress of epibolic movements towards the vegetal pole (#); dorsal forerunner 
cells (df) are well separated in apln RNA-injected embryos, revealing impaired 
epiboly of the blastoderm margin (N). (O, P) Lateral view, 1-somite stage, 10.3 
hpf. The anteroposterior axis marked with arrowheads is reduced in apln RNA 
injected embryos. (Q, R) Dorsal view, 8-somite stage, animal pole (★) to the top. 
myod marks formed somites, which are expanded mediolaterally in apln RNA-
injected embryos (R). Dorsal (D). Scale bar represents 5 µm (H), and 200 µm (A, 
C, I, N, P). 
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3A, C; and not shown). These results suggest that correct expression level and 

spatial distribution of Agtrl1b are crucial for normal gastrulation movements.  

We assessed the requirement for Agtrl1b during gastrulation using 

antisense morpholino oligonucleotides (MOagtrl1b) designed to interfere with its 

translation (Nasevicius and Ekker, 2000). Whereas all embryos injected with 

synthetic RNA encoding carboxyl terminus HA-tagged Agtrl1b alone exhibited 

membrane-bound receptor (n=5), Agtrl1b-HA expression was downregulated in 

embryos co-injected with MOagtrl1b (n=10; Figures 2G, H), supporting the 

effectiveness of MOagtrl1b in inhibiting Agtrl1b translation. Embryos injected with 1 

or 2 ng of MOagtrl1b showed at late gastrulation an almost normal mediolateral 

axis with a dose-dependent reduction of AP axis (Figures 2I, J and not shown), 

but only minor changes in general tissue specification and patterning (Figures 

2K, L). Strikingly, at segmentation stages, the expression of cmlc2 in cardiac 

precursors was strongly reduced or missing (Figures 3A, B, G). At 2 dpf a 

functional heart was not detected in the vast majority of agtrl1b morphant 

embryos while the body length appeared normal (Figures 3D, E, H). To test the 

specificity of this phenotype, we co-injected sequence modified agtrl1b RNA 

(agtrl1bMO-mut) that should not bind MOagtrl1b.  Indeed, 54% of the embryos co-

injected with MOagtrl1b and the MO resistant RNA showed partial suppression of 

the MOagtrl1b – dependent phenotype, exhibiting a small beating heart (Figure 3F). 

By contrast, 93% percent of the embryos injected with MOagtrl1b alone failed to 

form a functional heart (Figure 3H). Consistently, 57% of these embryos co-

injected with MOagtrl1b and rescuing mRNA exhibited faint cmlc2 staining, 
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Figure 3. agtrl1b is essential for heart formation.  
(A-H) agtrl1b loss-of-function experiments. Downregulation of Agtrl1b expression 
causes deficiency of cardiac precursors marked by cmlc2 (B), compared to 
uninjected control embryo (A), without affecting somitic myod expression. (C) 
Ectopic Agtrl1b activity mildly impairs cardiac precursor development. (D, E) 
Functional heart (ht) does not form in agtrl1b morphant embryos, but residual 
heart is observed in embryos co-injected with MOagtrl1b and 200 or 100 pg of MO-
resistant synthetic agtrl1b RNA (F). (G-H) Evaluation of MOagtrl1b specificity 
scored by cmlc2 expression at midsegmentation (G) or morphology at 2 dpf (F, 
H). Dorsal (D). Scale bar represents 100 µm (D-F) and 200 µm (A-C).  
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compared to 36% of the embryos that were injected with MOagtrl1b alone (Figure 

3G). The incomplete suppression of this phenotype may be explained in part by 

the observation that both expression of high dose (400 pg, Figure 3C) and 

depletion of Agtrl1b caused cardiac deficiency. Taken together, these 

experiments revealed an essential role of Agtrl1b in heart formation. 

 

Excess and deficit of Apelin impair gastrulation and heart formation 

We next tested the involvement of the ligand, Apelin, in gastrulation and 

heart development. Excess Apelin impaired epiboly, a process that involves 

coordinated movements of the blastodermal layers towards the vegetal pole to 

enclose the yolk cell. In 73% (n=122) of the embryos injected with 10 pg of 

synthetic RNA encoding the Apelin prepropeptide (Lee et al., 2000), movement 

of the blastoderm towards the vegetal pole was delayed (Figures 2M, N). 

Moreover, dorsal forerunner cells, a small cell cluster that originates from the 

dorsal blastoderm margin and moves vegetally in front of the blastoderm, were 

well separated from the delayed blastoderm (Figures 2M, N). Hence, excess 

Apelin interferes with epibolic movements of most deep cells during gastrulation. 

During early segmentation 91% (n=221) of the embryos misexpressing Apelin 

showed reduction of the AP axis (Figures 2O, P) and mediolaterally expanded 

somites (Figures 2Q, R), suggesting that excess Apelin also impairs 

convergence and extension movements. However, tissue specification and 

patterning during gastrulation were not significantly altered (Figures 2Q, R and 
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not shown). At late segmentation, embryos misexpressing Apelin displayed a 

complete lack of the heart markers nkx2.5 (Figures 4A, B), cmlc2 (Figures 4C, D) 

and ventricle myosin heavy chain (vmhc) (Figures 4E, F) despite having relatively 

normal morphology and expression of vmhc in the somites (Figures 4E, F). 

Furthermore, these embryos did not exhibit a beating heart at 2 dpf (not shown). 

At 30 hpf embryos misexpressing Apelin also displayed reduced expression of 

several anterior LPM markers including hand2, gata5, tbx1 as well as nkx2.3 in 

pharyngeal pouch mesenchyme and of tbx5 in pectoral fin, indicating that other 

anterior LPM derivatives were affected (Figure S2 and not shown).  

 To determine which developmental processes require Apelin, we designed 

MOs to interfere with either protein translation (MOapln-atg) or RNA splicing 

(MOapln-spl). Binding of MOapln-spl should cause an insertion of intron1-derived 

sequences predicted to create a premature stop codon following the first 27 

amino acids of Apelin, which would therefore lack the carboxyl terminal sequence 

essential for receptor binding and activation (Hosoya et al., 2000; Kawamata et 

al., 2001; Lee et al., 2000). Injection of 10 ng of MOapln-spl was sufficient to 

suppress normal splicing of endogenous apln RNA as revealed by RT-PCR at 

12, 24 and 32 hpf (Figure 4G and not shown). Moreover, MOapln-atg suppressed 

the epiboly defects caused by injection of apln RNA, but did not affect the 

phenotype caused by a mutated form of the apln RNA that lacked sequences for 

MOapln-atg binding (not shown).  

Embryos injected with either 1 ng of MOapln-atg or 10 ng of MOapln-spl 

exhibited the same phenotype, characterized by reduced expression of  
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Figure 4. Excess and deficiency of Apelin impair heart formation.  
(A-F) apelin gain-of-function and (G-M) loss-of-function experiments. (A, C, E, H, 
J) control embryos (ctrl). (B, D, F) Embryos injected with 10 pg apln RNA (Apln). 
(I) Embryos injected with 1 ng MOapln-atg. (K) Embryos injected with 10 ng MOapln-

spl. (A, B) Dorsal view, nkx2.5 expression in cardiac precursors (arrows) is not 
detected in Apelin misexpressing embryos at midsegmentation.  (C-F) 
Expression of cmlc2 (C, arrow) and vmhc (E, arrow) in heart primordia of late 
segmentation control embryos is not detected in Apelin misexpressing siblings 
(D, F, arrows). (E, F) Normal vmhc expression in somites (sm) of control and 
Apelin misexpressing siblings. (G) RT-PCR amplified apln fragment from 
uninjected embryos (lane ctrl) at 32 hpf, and embryos injected with apln MOapln-spl 
at 5 ng and 10 ng doses. β-actin 2 (actb2), was used as a loading control. (H-K) 
Reduced expression of cardiac markers cmlc2 and vmhc (arrows), but not 
somitic vmhc expression (sm) in embryos depleted of Apelin by MOapln-atg or 
MOapln-spl. Dorsal (D). Scale bar represents 200 µm (A, I).  
Measurement of the anteroposterior dimension and the mediolateral distance 
between the two cmlc2 expression domains (L) in uninjected control embryos 
and aplnspl  morphants at three developmental stages before the fusion of cardiac 
primordia (13, 16 and 18 somite). AP: anteroposterior, ML: mediolateral. (M) 
After bilateral heart primordia fused together, the area of cmlc2 expression 
domain was measured at 20 somite and 24 hpf in control and aplnspl morphant 
embryos. Each point represents the average measurement of 10 embryos. Error 
bars depict standard deviation. 
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Figure S2. Excess Apelin inhibits heart cell fate in the anterior LPM. hand2 (A, 
B), gata5 (C, D) or tbx1 (E, F) are expressed in continuous bilateral stripes in the 
anterior LPM at 12hpf, coinciding with cardiac precursors in control embryos (A, 
C, E). These genes exhibited reduced and patchy expression in the anterior LPM 
when Apelin was ubiquitously expressed (B, D, F). Animal pole (★). Dorsal (D). 
Scale bar represents 200 µm (B). 
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myocardial markers including cmlc2 (84%, n=63, and 81%, n=62, respectively) 

and vmhc (83%, n=58, and 96%, n=45, respectively) (Figures 4H-M and not  

shown), despite normal vmhc expression in the somites (Figure 4J, K). However, 

the MOapln-spl embryos showed neither a delay in the fusion of bilateral heart 

primordia (Figures 4L, M) nor cardia bifida at 1 dpf (not shown). 

 

Apelin signals through Agtrl1b during gastrulation  

Since interference with Apelin or Agtr1b impaired cardiac precursor 

formation, we asked whether Apelin signals via the Agtrl1b receptor in zebrafish 

embryos, as reported for its mammalian homologs (Lee et al., 2000; Tatemoto et 

al., 1998). We reasoned that ligand and its receptor should have synergistic 

effects on development in co-injection experiments. Accordingly, embryos 

injected separately with low doses of synthetic RNAs encoding Agtrl1b or Apelin 

progressed through gastrulation, whereas embryos co-injected with the same 

doses of both RNAs underwent developmental arrest by late blastula stages and 

most died by 1 dpf (Figures 5A-E). We also expected that Agtrl1b function should 

be required for excess Apelin to impair gastrulation movements. Accordingly, 

injections of MOagtrl1b significantly suppressed the epiboly delay caused by Apelin 

misexpression (Figures 5F-J). Together, these results provide strong support for 

the notion that during zebrafish gastrulation Apelin functions upstream of Agtrl1b 

receptor, likely as its specific ligand. 

Excess or deficit of Apelin impair convergence and extension 

movements of anterior LPM and heart precursors 
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Figure 5. Functional interaction of Apelin and Agtrl1b during zebrafish 
gastrulation. 
(A-E) Co-injection of synthetic apln and agtrl1b RNAs leads to developmental 
arrest in a synergistic fashion. Injection of low doses of synthetic apln and agtrl1b 
RNAs alone rarely caused developmental arrest (B, C), as observed for 
uninjected wild-type embryos (A). Embryos co-injected with the same doses of 
synthetic apln and agtrl1b RNAs underwent developmental arrest by late blastula 
stages (D). Graph (E) shows the fraction of developmentally arrested embryos at 
different times after fertilization in the above experiments. Data is from three 
separate experiments: uninjected wild-type embryos (n=213), 10 pg apln RNA 
injected (n=199), 100 pg agtrl1b RNA injected (n=189), and embryos co-injected 
with 100 pg agtrl1b RNA and 10 pg apln RNA (n=194). Error bars depict standard 
deviation.  
(F-J) Injection of agtrl1b MO suppresses epiboly defects caused by ectopic 
Apelin expression. Top panel, no tail (ntl) expression marks mesendodermal 
margin and dorsal forerunner cells in uninjected control embryos (F), 2 ng 
MOagtrl1b injected (G), 10 pg apln RNA injected (H) and 2 ng MOagtrl1b and 10 pg 
apln RNA co-injected (I) embryos. Dorsal forerunner cells are tightly associated 
with the blastoderm margin in uninjected wild type (F) and MOagtrl1b injected (G) 
embryos, while embryos overexpressing Apelin (H) exhibit defective epiboly 
demonstrated by the separation of dorsal forerunner cells from the blastoderm 
margin and delayed movement of the margin towards the vegetal pole. Embryo 
co-injected with apln RNA and MOagtrl1b shows a significant suppression of the 
epiboly defect (I). Graph (J) depicts the percentage of embryos with epiboly 
defects assessed by ntl staining. Data is from three experiments: uninjected wild-
type embryos (n=83), 2 ng MOagtrl1b injected (n=59), 10 pg apln RNA injected 
(n=65), and the embryos co-injected with 2ng MOagtrl1b with 10 pg apln RNA 
(n=69). Error bars depict standard deviation. Vegetal pole (#). Scale bar 
represents 200 µm (F) and 600 µm (A). 
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The deficiency of cardiac gene expression in embryos with reduced or excess 

Apelin could result from loss of a localized source of Apelin signal to guide the 

cardiac precursors to the correct location. Indeed, guided cell migration can be 

compromised by both a deficit and an excess of cues (Doitsidou et al., 2002; 

Duchek and Rorth, 2001; Solnica-Krezel, 2005). Alternatively, loss of heart 

precursors could reflect defective cell fate specification or survival. To address 

these possibilities we performed cell tracing experiments (Figures 6A-J; S3A-D) 

(Sepich and Solnica-Krezel, 2005). Mesendodermal cell groups, positioned at the 

lateral blastoderm margin that give rise to the cardiac precursors (Keegan et al., 

2004), were labeled by photoactivation of caged fluorescein at the beginning of 

gastrulation (Figures 6A, B). The embryos were fixed during segmentation and 

the labeled cells were visualized with anti-fluorescein antibody, while somitic and 

heart precursors were detected using antisense RNA probes (myod, cmlc2, 

Figures 6C, D, F, G; deltaC, Figures S3A-D). In control embryos as previously 

described for convergence and extension movements of the lateral mesoderm 

(Myers et al., 2002), the labeled cell populations converged towards the midline 

and extended from the tail, through the heart field and to the most anterior part of 

the embryo, forming a fine stripe (n=37, Figures 6C, D; S3A, B). Measurements 

revealed that the labeled cell array extended 886.5 ± 54.3 µm from the 8th somite 

to the anterior end (n=19; Figures S3A). In contrast, in embryos injected with 10 

pg of synthetic apln RNA the labeled cell population converged to the dorsal 

midline and reached comparable position within the tail, but failed to extend 

anteriorly and to express cmlc2 (n=44, Figures 6F, G; S3C, D). The length of  
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Figure 6. Abnormal convergence and extension movements of lateral mesoderm 
cells in embryos with excess and deficit of Apelin.  
(A) The method for labeling cell populations by photo-activation of caged FITC-
dextran is illustrated. A prospective mesodermal cell population is labeled at the 
lateral blastoderm margin at the start of gastrulation (6 hpf). The labeled cell 
group is followed through gastrulation as it elongates and converges toward the 
dorsal midline and extends anteroposteriorly. (B) Image of an embryo with the 
animal pole to the top and dorsal to the right in which a group of labeled cells 
positioned 90° from the dorsal midline is visualized under the fluorescent channel 
and Nomarski optics. (C-H, I and J) Tracing fates and movements of lateral 
mesoderm cells in uninjected control embryos (C, D, E, I), embryos with excess 
(F, G) and deficit of Apelin (H, J). (C, F) Lateral views, (I, J) dorsal views and (D, 
G, E, H) dorso-anterior views at 2 somite (I, J), 8 somite (C, F), 13 somite (E, H) 
and 15 somite (D, G) stage. Photoactivated cells are revealed with an anti-
Fluorescein antibody (red). The somitic expression of myod, deltaC (dlc) and 
expression of shh in notochord visualized in blue provides landmarks and also 
staging information. The labeled cell population undergoes strong extension from 
head to tail in control embryos (C), while rostral extension of the labeled cell 
population is suppressed in Apln misexpressing embryos (F). In control embryos 
(D, E), the anterior labeled cell population overlaps with cmlc2 expressing 
cardiac precursors, whereas in Apelin misexpressing embryos (G) rostral 
extension of the labeled cell population is suppressed and cmlc2 experssion 
missing, and in Apelin morphants (H, 10ng MOapln-spl), labeled cells are 
distributed discontinuously in the heart field region and outside the stripe. (I-L) At 
2 somite stage in the Apelin morphants (J), labeled anterior mesoderm cells are 
positioned much further laterally and somites are broadened compared to control 
embryos (I). (K) Depicts the relative position within the somite of mesodermal cell 
populations labeled by photoactivation 95° from dorsal at the onset of 
gastrulation in Apelin morphant (red stripe) and uninjected control embryo (blue 
stripe). The somite width was normalized between the control and Apelin 
morphant embryos. (L) Quantification of the relative position of the labeled cell 
populations at the first somite, demonstrating the labeled cell array was 
positioned in more lateral somite region of Apelin morphants compared to control 
embryos. 5 uninjected control embryos (0.721 of the normalized somite, 
sd=±0.0464) and 9 morphants embryos (0.854 of the normalized somite, 
sd=±0.1029) were analyzed at 10.7 hpf. Error bars depict standard deviation. ∗, 
P<0.001. Scale bar represents 200 µm (B, C, I). Vegetal pole (#). Dorsal (D). 
Ventral (v). 
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Figure S3. Cell movement defects in Apelin overexpressing embryos.  
(A, C) Lateral views; (B, D) dorsal views show uninjected control embryos (A, B) 
and embryos ubiquitously expressing Apelin (C, D) at 8 somite stage. Cells with 
photoactivated Fluorescein are revealed with an anti-FITC antibody and Fast 
Red. The presomitic expression domains of deltaC (dlc) provide landmarks and 
also staging information. In control (A, B), the labeled cell population converged 
towards the midline and extended from the end of the tail to the most anterior 
part of the embryo forming a fine stripe (arrowhead). In contrast, labeled cells in 
embryos injected with 10 pg apln RNA (C, D) reached the same position within 
the tail but failed to extend anteriorly (arrowhead). Vegetal pole (#). Dorsal (D). 
Scale bar represents 200 µm (B). 
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stripes formed by the labeled cells extending anterior to the 8th somite was 

significantly shorter than in controls (Figure S3C, 310.2 ± 51.3 µm; n=15; 

p<0.0001), revealing an extension defect. We interpret these fate-mapping 

assays to indicate that in embryos misexpressing Apelin, anterior LPM cells 

including the cardiac precursors, failed to move to the correct location in the 

embryo and consequently failed to undergo proper cell fate specification, as 

demonstrated by the lack of heart marker expression.  

Next we asked whether heart field reduction in Apelin-deficient embryos 

was associated with defective cell movements. As above, in gastrulae depleted 

of Apelin by MOapln-spl, lateral mesodermal cell populations were labeled by 

photoactivation of caged fluorescein (Figures 6A, B). By early segmentation, 

these cells formed stripes that extended from the head to the tail as in control 

experiments (Figures 6I, J). Analysis of tissue specific markers (shh, deltaC) 

revealed mediolaterally broadened notochord and somites in Apelin morphants, 

consistent with mild convergence defects of all mesodermal tissues.  Strikingly, 

the anterior portion of the labeled cell arrays was positioned much further 

laterally from the midline in the Apelin morphants compared to control embryos 

(Figures 6I-L). This effect was quantified at the first somite, where the labeled cell 

array was positioned in a more lateral somite region than in control embryos 

(Figures 6K, L). This result indicates that convergence movements of the lateral 

mesoderm cells are more severely compromised than movements of other 

mesodermal tissues, revealing a specific requirement for Apelin in convergence 

movements of anterior LPM.   
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By midsegmentation the labeled cell arrays converged towards the midline 

in morphants (n=10/10, Figure 6H; and MOapln-atg not shown), similar to control 

embryos (n=8/8; Figure 6E). Notably, in the region of the heart field these cell 

arrays were discontinuous and broader in contrast to continuous and narrow 

stripes in the heart fields of control embryos (Figures 6E, H). Moreover, in Apelin 

morphants some labeled cells were found in ectopic positions on both sides of 

the array, even on the opposite side of the midline (n=9/10, Figure 6H), in 

contrast to control embryos (0/8). Together, these studies demonstrate that both 

excess and deficit of Apelin impairs migration of the anterior LPM cells during 

late gastrulation.  

 

Abnormal cell movement behaviors in gastrulae with excess and deficit of 

Apelin 

To determine whether the inhibited anterior movements of heart 

precursors in Apelin overexpressing embryos were associated with abnormal cell 

behaviors, we carried out time-lapse analyses at midgastrulation stages. 

Consistent with gene expression and cell tracing analyses (Figures 2M, N; 6C, D, 

F, G; S3), the width of the mesendoderm, from the anterior edge to margin, was 

reduced, confirming that both the epibolic and anterior mesendoderm 

movements were inhibited (Figures 7A, D and Movie S1). Cell tracking further 

demonstrated that the anteriorward migration of mesendodermal cells was 

impaired (Figures 7B, E and Movie S1) and revealed the associated cellular 

defects. In normally developing control embryos injected with synthetic RNA 
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Figure 7. Time-lapse data reveal abnormal cell behaviors of lateral mesoderm 
cells in embryos with excess and deficit of Apelin. Time-lapse data at midgastrula 
stages from control aplnΔ13 RNA injected (A, B, C) and apln RNA injected (D, E, 
F) embryos. (A, D) In lateral views, anterior and posterior edges of the lateral 
mesendoderm are marked with dotted lines. (B, E) Net paths of mesodermal 
cells over 36 minutes, from embryos depicted in (A) and (D) respectively.  (C, F) 
Mesodermal cells in control ApelinΔ13 expressing gastrulae exhibit an elongated 
pear-shape with one predominant lamellae (C), whereas Apelin overexpressing 
mesodermal cells are rounder and form blebs (F). Drawings show outlines of 
cells at 10 second intervals for 1 minute. (G, H) Labeled lateral mesodermal cells 
from control (G) and MOapln-spl injected siblings (H) at late gastrulation stages 
show disrupted cell movements when apln is depleted. Cell arrays are more 
dispersed (red arrowheads) in apln morphant embryos (n=2) than those in 
uninjected control embryos (blue arrowheads) (n=2). (I) Cell polarity defects in 
Apelin overexpressing embryos. Lateral mesodermal cells in Apelin 
overexpressing gastrulae exhibit rounder shapes as revealed by determining the 
length to width ratio (LWR) of mesodermal cells at several stages during 
gastrulation. Each point represents the average LWR of 20 cells from one 
embryo. Error bars depict standard deviation. Scale bar represents 50 µm (B), 
and 200 µm (A, G). Vegetal pole (#). Dorsal (D). 
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encoding a truncated form of Apelin (AplnΔ13) incapable of being secreted, 

mesendodermal cells were elongated and pear-shaped. This contrasted rounder 

cell shapes in Apelin-misexpressing gastrulae (Figures 7C, F, I). Mesodermal 

cells in the control gastrulae formed and maintained one predominant 

filolamellipodial protrusion at a time as expected for cells undergoing directed 

migration (Figure 7C; Movie S2). In contrast, cells in embryos with excess Apelin 

extended fewer filolamellipodia, and instead formed bleb-like protrusions 

(Figure7F; Movie S3). Overall, mesendodermal cells in Apelin misexpressing 

embryos were less able to maintain a polarized morphology typical of migrating 

cells (Vicente-Manzanares et al., 2005). 

To ask how the loss of Apelin function effect cell movements, we carried 

out similar time-lapse recordings of labeled anterior LPM cells in embryos 

depleted of Apelin by MOapln-spl at late gastrulation (Movie S4-7). Whereas in the 

control gastrulae labeled LPM cells formed stripes that narrowed over time, in 

morphants the stripes appeared to narrow less or/and to fragment (Figures 7G, 

H, and Movie S4-7, n=2 control, n=2 apln morphant). Together with our fate 

mapping experiments (Figures 6I, J, E, H) these time-lapse analyses reveal 

impaired migration of LPM cells in Apelin deficient embryos. 

 

Increased cell death does not account for heart deficiency in embryos with 

abnormal Apelin/Agtrl1b signaling 

To determine whether cell death could account for the loss of heart cells in 

Apelin/Agtrl1b-deficient embryos we first detected apoptotic cells using TUNEL 
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staining (Mizumatsu et al., 2003). We observed increased cell death in the animal 

half of the apelin and agtrl1b morphant embryos at the 8 somite stage, when heart 

field was reduced (Figures S4A, B, E, F and not shown). However, the amount of 

cell death did not correlate with the severity of heart loss: we observed a level of 

cell death in agtrl1b morphants (where heart was strongly reduced) that was 

comparable to apelin morphants (with much milder reduction of the heart field, 

Figure S4 and not shown). Second, we inhibited apoptosis by co-injecting a MO 

against p53 (Campbell et al., 2006) along with MOapln-spl. While this significantly 

reduced cell death in both control and apelin morphant embryos, it did not suppress 

deficiency of heart precursors, as assayed by cmlc2 expression at 15.5 hpf and 17 

hpf (Figures 4L, M; S4B, D, F, H, I). These results argue against the notion that the 

reduction of heart field in Apelin-Agtrl1b-deficient embryos is primarily due to 

increased cell death. However, we cannot exclude the possibility that effects on 

survival may also contribute to the phenotype observed in embryos with reduced 

Apelin/Agtrl1b signaling. 

 We addressed further cell fate specification, by monitoring the earliest 

cardiac fates in Apelin overexpressing embryos, using hand2, gata5 or tbx1. We 

found that these genes exhibited in the anterior LPM reduced and patchy 

expression, which correlated with non-cardiac cell fate populations (Figure S2 

and not shown). These results indicate that excess Apelin signaling inhibits heart 

fate, either by directly impairing fate specification of heart precursors or indirectly 

by strongly impairing their migration and disrupting inductive interactions along 

the normal route. 
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Figure S4. The reduction of heart field in Apelin-Agtrl1b-deficient embryos is not 
due to increased cell death. TUNEL staining assay shows an increased cell 
death in the animal half of the apelin morphant embryos (B and not shown) at the 
5 somite stage, compared with uninjected controls. Injection of p53 MO (4ng) 
alone strongly suppressed apoptosis in control embryos (C) and in apln 
morphants (D) as well. (E-F) Show higher magnification images from the animal 
pole view of individual representative embryos from (A-D). (I) Measurement of 
the anteroposterior length and the mediolateral distance of cmlc2 expression in 
control, apln morphant and MOapln-spl plus MOp53 coinjected embryos at 13 somite 
stage. Suppressing cell death by injecting P53 morpholino did not rescue the 
heart defects due to the loss of Apelin function. Animal pole (★). Dorsal (D). AP, 
anteroposterior. ML, mediolateral. Each point represents the average 
measurement of 10 embryos. Error bars depict standard deviation. Scale bar 
represents 200 µm (E) and 600 µm (A). 
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Discussion 

Here we provided several lines of evidence that gastrulation movements 

of anterior LPM and heart precursors in particular are highly sensitive to the level 

and distribution of Apelin and Agtrl1b expression.  Moreover, epistasis 

experiments and the observation that Apelin and Agtrl1b have synergistic effects 

on zebrafish development in co-expression experiments, provide strong support 

for the notion that during zebrafish gastrulation Apelin functions upstream of 

Agtrl1b receptor, likely as its specific ligand. 

How does Apelin-Agtrl1b signaling regulate movements of cardiac 

progenitors? Our analyses suggest that Apelin does not simply act as a 

chemoattractant or chemorepellant. Based on the following observations it is 

tempting to speculate that Apelin might have concentration dependent effects on 

cardiac precursor cell movements. First, cardiac precursors converge towards 

the apln-expressing midline during gastrulation, but stop short of reaching the 

midline to form bilateral fields at early segmentation (Keegan et al., 2004).  We 

observed a delayed convergence of the LPM during gastrulation in Apelin 

deficient embryos (Figures 6I-L), and more dispersed and ectopic distribution of 

anterior LPM cells, including heart precursors at mid-segmentation (Figures 6E, 

H), whereas global overexpression of Apelin, strongly inhibited some of the 

gastrulation movements of mesodermal cells. In this scenario Apelin emanating 

from the midline would initially attract heart precursors until they moved near the 

midline to experience higher and inhibitory concentration of Apelin. It is also 

possible that Apelin-Agtrl1b signalling has a permissive role in cardiac progenitor 
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migration during gastrulation, as suggested for S1P-Miles apart GPCR signaling 

that is essential for migration of bilateral heart primordia to the midline during 

segmentation (Kupperman et al., 2000). Other roles of Apelin such as promoting 

adhesion of cardiac precursors to each other or to substratum, as they coalesce 

into the bilateral heart primordia, are also possible (Hashimoto et al., 2005). 

That the convergence defect in apln morphants of the labeled anterior 

LPM cells, except the heart precursors, was corrected during segmentation 

(Figure 6J, K), is likely due to redundant signals guiding these cells. Indeed, 

silberblick (wnt11) mutants that manifest severe convergence and extension 

defects at late gastrulation, acquire a more normal body elongation by 

segmentation stages due to expression of pipetail/wnt5 gene with overlapping 

activity (Heisenberg et al., 1996; Kilian et al., 2003). The persistent movement 

defect of heart precursors in embryos with excess or deficit of Apelin suggests 

that these cells are particularly sensitive to the level and distribution of Apelin. 

This enhanced sensitivity of heart precursors to Apelin/Agtrl1b signalling is 

puzzling given that Agtrl1b is expressed broadly in the anterior LPM and 

ventroposterior mesoderm during late gastrulation (Figure 1). However, 

expression of a GPCR beyond its target tissue has been previously reported. The 

GPCR CXCR-4, which guides the migration of primordial germ cells, is 

expressed throughout the mesoderm at the onset of gastrulation, yet the loss of 

CXCR-4 function disrupts only the migration of germ cells without interfering with 

gastrulation movements of mesodermal cells (Doitsidou et al., 2002; Knaut et al., 

2003).   
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Together, our results reveal a requirement for G-protein coupled receptor 

Agtrl1b and its ligand Apelin in heart field formation, through regulation of 

convergence and extension gastrulation movements of cardiac precursors in 

zebrafish. Significantly and in contrast to global regulators of gastrulation 

movements, such as non-canonical Wnt signaling, prostaglandins, and Stat3 

(Keller, 2005; Solnica-Krezel, 2005), Apelin signaling has a more restricted role 

in regulating movements of the anterior LPM cells and heart precursors in 

particular. We speculate that the Apelin-Agtrl1b axis provides just the first 

example of GPCRs regulating gastrulation movements of defined cell populations 

to form organ rudiments during vertebrate embryogenesis. 

 

Experimental Procedures 

 

Zebrafish husbandry: Zebrafish (Danio rerio) were maintained as described 

previously (Solnica-Krezel et al., 1994). Embryos were staged according to 

(Kimmel et al., 1995).  

 

In situ hybridization, immunohistochemistry and histology: Single and 

double color whole mount in situ hybridization was performed essentially as 

described previously (Thisse et al., 1993); BM Purple (Roche) and INT/BCIP 

(175 µg/ml; Roche) were used as alkaline phosphatase substrates. The following 

molecular markers were used: nkx2.5, cmlc2, vmhc; for original references, see 
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(Yelon and Stainier, 1999), and krox20, shh, dlx3b, dlc, ntl, myod; for original 

references, see (Sepich and Solnica-Krezel, 2005). 

 

Lineage tracing: Embryos were microinjected at the 1-cell stage with agtrl1b or 

apln synthetic capped RNA (Marlow et al., 1998) or an agtrl1b, or apln-specific 

MOs (MOagtrl1b, 5’-CAGAGAAGTTGTTTGTCATGTGCTC-3’ (CV109234); MOapln-

spl, 5'- AACAGCCGTCACGCTCCCGACTTAC -3' (DQ062434); MOapln-atg, 5'- 

TTCTGCTCTCCCCTCCGTTTCCCTG -3' (DQ062434); Open Biosystems). A 

mutant form of agtrl1b (agtrl1bMO-mut), predicted to be unable to bind MOagtrl1b1 

was constructed using the following primers: 

forward (5' - GGAATGAATGCCATGGACAAC - 3');  

reverse (5' - CCAATTCTGCGTCACCCTTC - 3'). In co-injection experiments 

each reagent was microinjected independently at the 1-cell stage. Injection and 

photoactivation of anionic dextran DMNB caged fluorescein (Molecular Probes, 

D-3310) was performed as described (Sepich et al., 2000; Sepich and Solnica-

Krezel, 2005).  

 

Microscopy: Embryos stained by whole mount in situ hybridization were 

mounted in 80% glycerol/PBT and photographed using a Zeiss Axiophot 

microscope and an Axiocam digital camera. Live embryos were anesthetized if 

needed and mounted in 1.5% or 2.5% methylcellulose. Images were made using 

Photoshop and Illustrator software (Adobe). 
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Time-lapse analysis: Nomarski time-lapse images were collected as described 

(Myers et al., 2002). Multi-focal plane recordings of the lateral mesoderm (90° 

from the dorsal midline) were collected from 60% to 95% epiboly at 5- or 60-s 

intervals using a 40x or 20x objective respectively on an Axiovert200M 

microscope (Carl Zeiss MicroImaging) with a Retiga EXi camera (Q Imaging). 

Fluorescent time-lapse embryos were mounted in 3% agarose wells filled with 

2% methylcellulose (both in Danieau’s buffer). Image collection and analysis 

used OpenLab software (Improvision). Additional analysis used Object-Image 

software (Norbert Vischer, http://simon.bio.uva.nl/object-image.html ) and Excel 

(Microsoft).  

Statistical analysis: Calculations were made in Microsoft Excel. We report 

mean and standard deviation, and the probability associated with Student's T-

Test (with 2-tailed distribution) and two samples of unequal variance. 
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Cloning of agtrl1b, apelin and related constructs: An EST with sequence 

similarity to the reported Agtrl1b proteins (Devic et al., 1999; Lee et al., 2006; 

O'Dowd et al., 1993) was used to isolate a zebrafish homolog by 3’/5’ SMART 

RACE (BD Biosciences) from a 6.5 hours postfertilization (hpf) cDNA preparation 

using the following primers 5'-CCGCATCTCCACCTCTTGCGCCCC-3' (forward), 

5'-GGGTGGTGGGTGGTCCACGGAGGG-3' (forward nested), 5'- 

CCATCTGTCTGTCTGAGTTCACCCCCTCC-3' (reverse) and 5'- 

CCCTTAAAACACCCGCCGCCCCCCTCC-3' (reverse nested). Full-length 

agtrl1b was obtained by proof-reading PCR (PfuUltra, Stratagene), cloned into 

the EcoRV site of the pGEM-T Easy vector (Promega) by using the primers 5'-

GGATCCACGCGGGGACATTCTGACC-3' (forward, BamH I site) and 5'- 

CTCGAGATAATGCACATTTTATTCACAGAGTAC -3' (reverse, Xho I site) and 

used for anti-sense probe synthesis with SP6 RNA polymerase after Apa I 

linearization. For misexpression, the full-length cDNA (BamH I/Xho I fragment) 

was cloned oriented into the pCS2+ vector and linearized with Not I, and 

synthesized with SP6 RNA polymerase (mMESSAGE mMACHINE, Ambion). 

The NCBI accession number is EF079888. 

Given the conservation of the C-terminal Apelin sequence in mammals (Lee 

et al., 2000; Tatemoto et al., 1998), the last 12 amino acids were used for BLAST 

searches in the zebrafish protein and EST databases. Two ESTs were identified 

(CA472931 and CO924544), which differed at their 3’ ends. Based on the 

sequence in CA472931, two primers with restriction sites were designed: forward 

with BamH I site (5' - CGGGATCCGAGGGGAGAGCAGAAATGAA - 3'), and 
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reverse with EcoR I site (5' - GGAATTCTTTCAGGCTATTGTGCTGGA - 3').  A 

fragment was amplified from a stage 12 somite RNA preparation by RT-PCR  

(PfuUltra, Stratagene) and ligated into pCS2+. Capped RNA was synthesized 

from Not I linearized template using SP6 RNA polymerase (mMESSAGE 

mMACHINE, Ambion).  

We obtained upstream and downstream sequences of apelin by 3’/5’ 

SMART RACE (BD Biosciences) from a 2 days postfertilization (dpf) cDNA 

preparation.  One 5’-UTR sequence and two different 3’-UTR sequences were 

isolated, matching ESTs CA472931 and CO924544, and inserted into pGEM-T-

easy vector (Promega). The antisense probe matching EST CA472931 revealed 

the expression pattern reported in this article. RNA matching EST CO924544 

sequence was expressed only after 2 dpf, and is not described here. Based on 

SMART-RACE sequence information, we designed two primers: forward (5' - 

TAGCGACTGGCAGGGAAACG - 3'; reverse: 5' - 

TGGACCATCTTTGTTATAGGCAGATGA - 3') for cloning apln matching EST 

CA472931. RT-PCR  (PfuUltra polymerase, Stratagene) products from 12-somite 

stage total RNA preparation were ligated into pGEM-T-easy vector (Promega) 

and used for anti-sense probe synthesis with SP6 RNA polymerase after SacII 

linearization. The NCBI accession number is DQ062434. 

To generate a control construct lacking N-terminal signal domain for 

secretion but encoding the last 13 C-terminal amino acids of Apelin 

(PRPRLSHKGPMPF), two synthetic short complimentary oligonucleotides 

encoding the peptide sequences were obtained for apln full-length sequence. 
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The forward (5'- 

CATGGGACCTCGACCCCGCCTCTCCCATAAGGGGCCCATGCCATTCTAGA-

3') and reverse (5'-

GATCTCTAGAATGGCATGGGCCCCTTATGGGAGAGGCGGGGT 

CGAGGTCC-3') oligonucleotides were annealed, and subcloned into pCS2+ 

vector. All constructs were verified by DNA sequencing. 

 
RT-PCR: Primers used for amplifying apelin: forward  (5' - 

CTGGTCCAATGGCCTCCACCGAGCA - 3'); reverse (5' - 

TTGCCAACACGTAGCAATGGGACAAAGC - 3'); annealing temperature was 

64°C, 34 cycles, 100 ng total RNA was used as a template for each 

developmental stage. β-actin was used as a loading control, and primers were: 

forward (5’-GGATCAGCAAGCAGGAGTACGATGAGTCTGG-3’); 

reverse (5’-GGAGGGCAAAGTGGTAAACGCTTCTGG-3’). 
 
 

Supplemental Movie Legends 

 

Movie S1. Migration of mesendoderm is inhibited in apln RNA injected embryos. 

Same age (midgastrulation control zebrafish embryo and sibling injected with 10 

ng of apln RNA. Images were collected with 20x objective at 1-minute intervals. 

 

Movie S2. Cells in wild-type embryo form and maintain a single prominent 

filolamellopodia giving cells a pear-shaped morphology. The strong movement 
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toward lower right is drift of the embryo. Images were collected at 5-second 

intervals. 

 

Movie S3. Cells in sibling embryo injected with 10 ng apln RNA are unable to 

form and maintain a single prominent filolamellopodia. Instead they form multiple 

bleb-like protrusions. Images were collected at 5-second intervals. 

 

Movie S4-7: Convergence of lateral mesendoderm is disrupted by late 

gastrulation in Apelin depleted (MOapln-spl; and MOapln-atg not shown) embryos. 

Lateral mesoderm was labelled by photo-activation of caged Fluorescein at 95 

degrees from dorsal at the lateral margin. Images were collected with a 10x 

objective at 1 minute intervals.  

 

Movie S4. Convergence of labeled mesoderm in a wild-type embryo at starting at 

YPC stage for 20 minutes. In addition to converging toward the midline, the array 

of fluorescently labeled cells narrows. 

 

Movie S5. Convergence of labeled mesoderm in a wild-type embryo at starting at 

Tailbud stage and continuing for 20 minutes. 

 

Movie S6. Convergence of labeled mesoderm in an Apelin-depleted embryo at 

starting at YPC stage for 20 minutes, a short break and an additional 20 minutes. 
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Movie S7. Convergence of labeled mesoderm in an Apelin-depleted embryo at 

starting at YPC for 20 minutes. 
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CHAPTER III 

 

APELIN SIGNALING REGULATES ZEBRAFISH  

PRIMORDIAL GERM CELL MIGRATION 

 

Summary 

Zebrafish Apelin ligand and its G-protein coupled receptor Agtrl1b are 

required for heart field formation during gastrulation, when Apelin signaling 

regulates convergence and extension movements of cardiac precursors (Scott et 

al., 2007; Zeng et al., 2007). Our current analyses reveal an additional 

developmental role for Apelin in regulating migration of zebrafish primordial germ 

cells (PGCs).  

During development of zebrafish and many other organisms, the PGCs 

migrate a long distance from the regions where they are specified towards the 

developing gonad where they generate gametes. The SDF1a signaling via its G 

protein coupled receptor CXCR4b guides migration of PGCs: loss of function of 

SDF1a or its receptor CXCR4b results in severe defects in PGC migration in 

zebrafish and other vertebrates (Doitsidou et al., 2002; Knaut et al., 2003; 

Molyneaux et al., 2003). During gastrulation and somitogenesis stages apelin 

mRNA is expressed in the dorsal midline, while agtrl1b gene, encoding the 

Apelin receptor, is broadly expressed in the mesendoderm, where PGCs are 

localized. Manipulating Apelin expression by misexpression throughout the 

embryo or by overexpression specifically in primordial germ cells, impaired 
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movements of PGCs towards their target tissues. Suppressing Apelin expression 

by injections of antisense morpholino oligonucleotides also resulted in a similar 

phenotype of mis-localized PGCs. The abnormal PGC movements in these loss 

and gain of function scenarios are not a secondary defect resulting from altered 

sdf1a expression. Using transplantation experiments, we showed that the cells 

expressing Apelin in ectopic locations attracted PGCs. However, in these 

experiments the PGCs stopped short of Apelin overexpressing cells. Interaction 

between both Apelin and Sdf1a signaling was also investigated. In odysseus 

(ody) (-/-) mutants, which harbor a null mutation in cxcr4b gene (Knaut et al., 

2003), the majority of ectopic PGCs aggregate in the dorsal midline where apelin 

is expressed. Interference with both signaling pathways, by injecting apelin MO 

into ody (-/-) mutant embryos, significantly reduced the dorsal aggregation of 

PGCs. Based on the preliminary data, I hypothesize that Apelin provides an 

additional cue for PGCs migration during gastrulation and segmentation stages, 

in addition to the previously discovered SDF1/CXCR4 signaling pathway. Current 

experiments investigate the mechanisms via which Apelin/Agtrl1b signaling 

influences PGC migration.  

 

Introduction 

Migration of primordial germ cells (PGCs) is a useful model system for 

studying the process of directional cell movement. A common observation for 

many species is that the germ cells are derived from regions distinct from the site 

where the gonad will form. Therefore, the PGCs have to migrate travel long 
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distances within the embryo to arrive at the future gonad (Starz-Gaiano and 

Lehmann, 2001; Wylie, 1999; Wylie, 2000). This process has been studied in 

chick, mouse, Xenopus, Drosophila, and zebrafish where modern genetic 

approaches, molecular biology techniques and sophisticated imaging strategies 

have been applied (Howard, 1998; Rongo et al., 1997; Starz-Gaiano et al., 2001; 

Wylie, 1999). These studies drew a general conclusion that while the PGCs 

migrating towards the gonadal region, they interact with different somatic 

structures in the developing embryo. The somatic environment can physically 

carry the PGCs along as part of morphogenetic movements, meanwhile they also 

provide directional cues to repel them from certain regions of the embryo or 

attract them toward intermediate and final targets (Deshpande et al., 2001; Godin 

et al., 1990; Jaglarz and Howard, 1995; Kuwana and Rogulska, 1999; Matsui et 

al., 1990; Moore et al., 1998; Starz-Gaiano et al., 2001; Weidinger et al., 1999). 

However, although the descriptive migration process has been studied for 

several decades in various model organisms, the potential molecules functioning 

as signaling cues that direct PGCs toward their intermediate and final targets has 

remained unknown. 

Studying PGC migration in zebrafish offers the benefits of fast and 

external embryonic development, optical clarity, and availability of mutant strains 

and genomic tools. Also, PGC migration in zebrafish has been described in great 

detail from previous studies (Braat et al., 1999; Weidinger et al., 1999; Weidinger 

et al., 2002; Yoon et al., 1997). 

Previous work from both forward and reverse genetics approaches has 
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demonstrated that directional migration of PGCs in zebrafish requires the 

function of the chemokine Sdf1a (Doitsidou et al., 2002) and its seven-

transmembrane receptor Cxcr4b (Doitsidou et al., 2002; Knaut et al., 2003). 

Using antisense morpholino oligonucleotides (MOs) to inhibit the translation of 

RNAs encoding either the receptor or the ligand abrogates directional PGC 

migration and thus leads to ectopic localization of these cells (Doitsidou et al., 

2002). Also known as Odysseus, Cxcr4b was proven to be genetically required 

specifically in germ cells for their chemotaxis towards Sdf1a sources (Knaut et 

al., 2003). Any other signaling pathways, specifically GPCR signaling involved in 

directed guidance of PGC migration remain to be discovered. 

Apelin and its GPCR receptor Agtrl1 have been shown to regulate adult 

physiology, in particular cardiovascular functions, and blood vessel development 

(Chen et al., 2003; Ishida et al., 2004; Saint-Geniez et al., 2002; Szokodi et al., 

2002; Tatemoto et al., 2001). Our recent work reported that zebrafish Apelin 

ligand and its G-protein coupled receptor Agtrl1b are required for heart field 

formation during gastrulation, when Apelin signaling regulates convergence and 

extension movements of cardiac precursors (Scott et al., 2007; Zeng et al., 

2007). In this work, we have revealed the chemokine Apelin as a pivotal 

component guiding PGCs migration. We show that during gastrulation and 

somitogenesis stages, apelin mRNA is expressed in the dorsal midline, while its 

receptor agtrl1b gene is broadly expressed in the mesendoderm, where PGCs 

are localized. Alterations in its expression pattern lead to corresponding 

alterations in the migration route of the cells. Importantly, suppressing the 
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function of Apelin, or its seven transmembrane G protein-coupled receptor 

(GPCR) Agtrl1b, lead to misguided PGC migration. Taken together, these 

findings indicate that Apelin and its receptor Agtrl1b are important molecules 

directing the PGCs toward their correct location in addition to previous 

discovered Sdf1a/Cxcr4b signaling pathway. 

 

Materials and Methods 

 

Zebrafish husbandry: Zebrafish (Danio rerio) were maintained as described 

previously (Solnica-Krezel et al., 1994). Embryos were staged according to 

(Kimmel et al., 1995). Tg[askopos:EGFP] (Blaser et al., 2005) and Tg[gsc:Gal4-

VP16] (Inbal et al., 2006) zebrafish transgenic lines have been used. 

 

in situ hybridization: Whole mount in situ hybridization was performed 

essentially as described (Thisse et al., 1995); BM Purple (Roche) were used as 

blue phosphate (175 µg/ml in DMF; Fluka). The following molecular markers 

were used: nanos1 (Koprunner et al., 2001); cmlc2 (Yelon and Stainier, 1999); 

sdf1a (Doitsidou et al., 2002); apln (Zeng et al., 2007). 

 

Clone apelin-nos1-3’ UTR construct:  the apelin ORF was fused to the 3’-UTR 

of nanos-1 for the purpose of overexpressing the protein in PGCs. The coding 

region of Apelin was amplified by PCR using the primers 

5’-GGGGTACCGGAAACGGAGGGGAGAGCAGAA-3’ (forward) and 5’-
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GGGGTACCGCACTCTAAGCTGTGCCTTGCT-3’ (reverse). The Apelin coding 

region was cloned into the gfp-nanos-1 construct replacing the gfp ORF. 

 

Clone UAS-apelin construct:  the apelin ORF was fused to the vector with UAS 

sequences (Inbal et al., 2006). The coding region of Apelin was amplified by PCR 

using the primers 

5’- CGGGATCCCTAGCGACTGGCAGGGAAAAC -3’ (forward) and 5’- 

AGGGTTCGAATTTCAGGCTATTGTGCTGGAATGTC -3’ (reverse). The Apelin 

coding region was cloned into the UAS-gfp (Inbal et al., 2006) construct with a 

Kpn I restriction enzyme site replacing the gfp ORF. 

 

Transplantation experiments:  Genetic mosaic analyses were performed 

essentially as described (Yamashita et al., 2002). WT donor embryos were 

injected with 0.5% rhodamine-dextran (Molecular Probes) at the one-cell stage. 

Apelin overexpressing donor embryos were injected at the same stage with 0.5% 

rhodamine-dextran (Molecular Probes) and 200 pg of apln synthetic RNA (Zeng 

et al., 2007). WT host embryos were injected with 200 pg nos1:gfp synthetic RNA 

at the one-cell stage to label PGCs. Between 4 and 5 hpf, before the embryonic 

shield became morphologically distinct, 30–50 deep cells at the animal pole were 

aspirated from one WT or one Apelin expressing donor embryo using the 

transplantation needle. The group of donor cells was immediately transplanted 

into the animal pole of a host embryo to ensure that the initial positions of the WT 
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or Apelin expressing donor cells were similar. The host embryos were observed 

at 24 hpf. 

 

Microinjection: Embryos were microinjected at the 1-cell stage with apln 

synthetic capped RNA  or apln-specific MOs (MOapln-spl, 5'- 

AACAGCCGTCACGCTCCCGACTTAC -3', DQ062434, Open Biosystems) (Zeng 

et al., 2007). In co-injection experiments each reagent was microinjected 

independently at the 1-cell stage. Injection 0.5% rhodamine-dextran (Molecular 

Probes) was performed as described (Sepich et al., 2000; Sepich and Solnica-

Krezel, 2005).  

 
Microscopy: Embryos stained by whole mount in situ hybridization were 

mounted in 80% glycerol/PBT and photographed using a Zeiss Axiophot 

microscope and an Axiocam digital camera. Live embryos were anesthetized if 

needed and mounted in 1.5% or 2.5% methylcellulose. Images were made using 

Photoshop and Illustrator software (Adobe). 

 

Time-lapse analysis: Nomarski time-lapse images were collected as described 

(Myers et al., 2002). Zebrafish transgenic line Tg[askopos:EGFP] (Blaser et al., 

2005) has been used for recognizing the location of PGCs. Fluorescent time-

lapse recordings of the PGCs were collected from 70% to 90% epiboly at 1-min 

intervals using a 10x objective respectively on an Axiovert200M microscope (Carl 

Zeiss MicroImaging) with a Retiga EXi camera (Q Imaging). Embryos were 

mounted in 3% agarose wells filled with 0.8% agarose (both in Danieau’s buffer). 
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Image collection and analysis used OpenLab software (Improvision). Additional 

analysis used ImageJ software and Excel (Microsoft).  

 

Statistical analysis: Calculations were made in Microsoft Excel. We report 

mean and standard error of means, and the probability associated with Student's 

T-Test (with 2-tailed distribution) and two samples of unequal variance. 

 

Results 

 

Excess or deficit of Apelin signaling influence PGCs migration 

During our investigation of Apelin signaling in zebrafish gastrulation, we 

surveyed several cell types using cell-type specific markers, including cardiac 

precursor cells (nkx2.5, cmlc2, vmhc), somite tissues (myod, dlc), rhombomeres 

in the hindbrain (krox20), and primordial germ cells (nanos1, nos1). These 

studies revealed that Apelin signaling may regulate zebrafish primordial germ cell 

(PGC) migration in addition to the previously discovered Sdf1a/Cxcr4b GPCR 

signaling (Doitsidou et al., 2002). At 24 hpf, wild-type zebrafish PGCs, revealed 

by their expression of transcription factor gene nanos1 (refs), aggregate in the 

trunk region where the future gonad will develop (Fig. 1A, C, G, arrows). Very 

few PGCs were found in other parts of the embryonic body (Fig. 1A, arrowheads) 

as previously reported (Dumstrei et al., 2004; Weidinger et al., 1999). When we 

injected synthetic RNA encoding Apelin into zebrafish zygotes at 1-cell stage to 

produce ubiquitous misexpression of Apelin during gastrula stages, PGC  
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Figure 1. Excess or deficit of Apelin signaling affects the localization of zebrafish 
primordial germ cells. (A-D) Misexpression of Apelin ubiquitously (B) or only in 
PGCs (D, H) causes dramatically mis-localization of PGCs (arrowheads) at head, 
heart, yolk and posterior tail regions comparing to the normal distribution of 
PGCs at the future gonad in control uninjected embryos (A and C, arrows) at 24 
hpf. nos1 is used for labeling PGCs and cmlc2 is used for labeling the heart 
precursors by whole mount in situ hybridization. In wild-type embryos, ectopic 
localization of pGCs has been observed (A, arrowhead). The formation of heart 
in embryos misexpressing Apelin only PGCs is normal (D and H, star). (E, F, G, 
I) Loss of Apelin function by morpholino (MO) injection causes a similar 
phenotype with mis-localized PGCs (arrowheads) in the morphant embryos at 1 
somite (F) and 24 hpf (I) stages comparing to the normal distribution of PGCs in 
the control embryos (E and G, arrows). (E and F) The PGCs are recognized by 
the expression of injected nos1:GFP RNA. (G-I) The PGCs are labeled by in situ 
hybridization of nos1 expression. cmlc2 expression (I, star) is mildly reduced in 
apelin splicing MO injected embryos compared to control siblings (G).  (J-M) 
sdf1a expression is unchanged in embryos misexpresing Apelin only in PGCs (K, 
14 hpf) or in apelin morphants (M, 12 hpf) compared to control embryos (J and 
L). 
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localization was dramatically affected. Many ectopic PGCs were detected in the 

head, heart, yolk and posterior tail regions by nos1 staining in every injected 

embryo (100%, n=58, Fig. 1B, arrowheads). Previously, we and others showed 

that ubiquitously misexpressed Apelin caused migration defects in many tissues 

including the anterior lateral plate mesoderm (Scott et al., 2007; Zeng et al., 

2007). Therefore, the PGCs migration defects described above could be 

secondary due to the defects of specification, patterning or movements in other  

tissues. In order to test if Apelin could specifically influence the migration of 

PGCs, we aimed to misexpress Apelin only in the PGCs.  To achieve this, we 

took advantage of the fact that nos1 3’-UTR sequences are able to stabilize an 

upstream RNA only in PGCs (Doitsidou et al., 2002). nos1:gfp synthetic RNA, in 

which GFP coding sequence is placed upstream of nos1 3’-UTR, has been a 

useful tool for specific labeling of PGCs by GFP expression (Doitsidou et al., 

2002; Dumstrei et al., 2004; Weidinger et al., 2002). We replaced GFP coding 

sequence in the nos1:gfp construct with cDNA sequence encoding a functional 

Apelin peptide. The conjugated nos1:apelin construct, when injected into 1-cell 

zebrafish embryos, should be stabilized in PGCs, leading to specific 

misexpression of Apelin in these cells. When nos1:apelin synthetic RNA was 

injected into 1-cell stage zebrafish embryos, the migration of PGCs was impaired 

in these embryos misexpressing Apelin only in PGCs (Fig. 1D, H, arrowheads). 

Moreover, as predicted for localized Apelin expression and in contrast to global 

Apelin misexpression, the formation of heart in these embryos was normal based 

on the expression of cardiac precursor marker cmlc2 at 24 hpf (Fig. 1D, H, star). 
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We next asked whether overexpression of Apelin in PGCs had any affect on the 

expression of sdf1a/cxcr4b, which are known to specifically influence the 

migration PGCs. We found that the sdf1a expression pattern in these embryos 

was unchanged (Fig. 1J, K). These observations support the notion that the 

defects of PGCs migration in embryos misexpressing Apelin specifically in the 

PGCs, are not due to altered expression of Sdf1a signaling components.  

Using in situ hybridization, I observed mis-localized PGCs in embryos with 

altered Apelin signaling at 24 hpf, indicating an abnormal migration of these cells. 

However the migratory path and cell behaviors of PGCs during the 24-hour 

development remained unclear. In order to have a better understanding of the 

abnormal migration of PGCs, we performed time-lapse analyses to trace 

individual PGC in both control and Apelin misexpressing embryos. In our control 

Tg[askopos:GFP] transgenic embryos, in which the regulatory upstream region of 

the askopos gene (encoding a novel nuclear protein whose RNA is expressed in 

the germ plasma and the PGCs) and RNA elements of nanos1 drive GFP 

expression in PGCs (Dumstrei et al., 2004), PGCs are visualized by green 

fluorescence. Most of them were clustered at the same anteroposterior level as 

the first forming somite and showed a very directed migration paths toward the 

dorsal midline at 7-9 hpf (Fig. 2A). In embryos injected with nos1:apelin synthetic 

RNA, most PGCs were less clustered together and moved toward the dorsal 

midline in a much less directional fashion (Fig. 2B). Some PGCs did not move at 

all and wandered around the same spot. Both the total speed and the net speed 

of PGCs in the gain-of-function situation were significantly reduced compared to  
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Figure 2. Time-lapse analyses reveal undirected paths and deceased average 
speed of PGCs migration in embryos misexpresing Apelin only in PGCs 
compared to control embryos. (A and B) Each colored line represents the 
migratory path of an individual PGC in embryos misexpressing Apelin only in 
PGCs (B) and control siblings (A) during 7 hpf to 9 hpf. The blue dotted line (A 
and B) represents the relative position of the embryo dorsal midline. The 
anteroposterior axis is indicated by “anterior” and “posterior”. (C and D) Both the 
total speed (C) and the net speed (D) of PGCs in the gain-of-function situation 
are significantly reduced compared to control siblings. The total speed is defined 
as the total distance (the accumulated all traveling paths) divided by time. The 
net speed is defined as the net distance (the displacement between the start 
point and the end point) divided by time. *, P<0.05. 
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control siblings (Fig. 2C, D). Thus, misexpression of Apelin in PGCs disrupted 

the normal migration pattern/behaviors of PGCs suggesting that excess Apelin 

influences this process and an appropriate expression source of Apelin is 

required for maintaining the normal migration route of PGCs.  

Next we asked if endogenous apelin is necessary for normal PGCs 

migration. We injected embryos with antisense morpholino oligonucleotides 

(Hudziak et al., 1996; Nasevicius and Ekker, 2000; Summerton and Weller, 

1997) designed to interfere with splicing of apelin RNA and to downregulate 

Apelin expression level (Zeng et al., 2007). Similar to our gain-of-function study, 

embryos injected with MOapln-spl (Zeng et al., 2007) exhibited dispersed PGCs at 

the 1-somite stage (Fig. 1F, arrowheads) compared to control siblings, in which 

most of PGCs were clustered along the most anterior somites (Fig. 1E, arrows). 

At 24 hpf, the embryos exhibited ectopically located PGCs (Fig. 1I, arrowheads) 

as well as the previously described mild cardiac precursor deficit (Fig. 1I, star) 

(Zeng et al., 2007). The expression pattern of sdf1a in apelin morphants was 

examined as well, and was comparable to control siblings (Fig. 1L, M), indicating 

that the PGC migration defects in embryos depleted of Apelin function are not 

due to altered expression of Sdf1a signaling components.  

Taken together, these experiments show that Apelin activity in PGCs is 

important for their directional migration. This finding allows us now to follow 

whether Apelin acts as a chemokine-dependent mechanism to affect PGCs 

migration in live embryos. 

 

83



An ectopic source of Apelin attracts PGCs 

Our gain and loss-of-function analyses showed that altered Apelin 

signaling impairs PGCs migration. To understand the mechanism by which 

Apelin influences the migration process of PGCs, we wanted to provide a 

localized Apelin source at an ectopic position in the embryo, as a test of whether 

Apelin can serve as a chemoattractant for PGCs. To generate a localized Apelin 

source we transplanted labeled Apelin overexpressing cells into “host” embryos 

that had PGCs marked by green fluorescence. Specifically, we injected 

Tetramethyl-rhodamine Dextran lineage tracer alone or with and apelin synthetic 

RNA into donor embryos at the 1-cell stage. Host embryos were injected at the 1-

cell stage with nos1:gfp  synthetic RNA to label PGCs (Fig. 3A). By dome stage, 

blastomeres in “donor” embryos showed red fluorescence and PGCs showed 

green fluorescence in host embryos. We transplanted small groups of cells from 

the animal pole region of donors to a similar area in the host embryos (Fig. 3A). 

Cells were placed at the animal pole region where endogenous apelin is not 

expressed, because cells at the animal pole do not undergo C&E movements 

and will remain in the head region at later stages (Solnica-Krezel, 2005; Solnica-

Krezel and Cooper, 2002). In control transplantation experiments, fluorescently 

labeled blastomeres without exogenous apelin were transplanted to host 

embryos. Transplanted embryos were raised overnight and observed under a 

fluorescent microscope at 24 hpf for localization of transplanted cells and labeled 

PGCs.  
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Figure 3. Ectopic Apelin expressing cells attract PGCs. (A) The procedure of 
transplantation experiment. Red, represents Tetramethyl-rhodamine Dextran. 
Green, represent nos1:GFP RNA. (B), control embryos. (C and D) embryos are 
transplanted with ectopic Apelin expressing cells. Dotted white lines indicate the 
area (red) of control cells with Tetramethyl-rhodamine Dextran alone (B) or 
Apelin expressing cells (C and D). Normally distributed PGCs (green, arrows) in 
control (B) and Ectopic Apelin (D) embryos. Mis-localized PGCs (green, 
arrowheads) are attracted to the sources of ectopic Apelin (C and D). 
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At 24 hpf in our control embryos, most donor cells, recognized by their 

red-fluorescence, were located in the head region as predicted (Fig. 3B, circled). 

Also unsurprisingly, most PGCs recognized by green-fluorescence, aggregated 

normally in the future gonad region. Only a few control embryos exhibited ectopic 

PGCs (2/19 embryos showed ectopic PGCs and there were 2±1 ectopic PGCs in 

each embryo) (Fig. 3B, arrows), a phenotype similar to mis-localization of PGCs 

in unmanipulated embryos (Weidinger et al., 1999).  

When Apelin expressing cells were present at ectopic locations at 24 hpf 

(Fig. 3C, D, broken white line), ectopically located PGCs were observed in the 

vicinity of the apelin-positive transplanted cells (Fig. 3C, D, arrowheads). We also 

noticed that some PGCs were still localized correctly at the gonad region (Fig. 

3D, arrow in green). A majority (92%) of host embryos with apelin expressing 

transplanted cells showed mis-localized PGCs, and each embryo had a much 

larger average number of mis-localized PGCs than control embryos (36/39 

embryos showed ectopic PGCs and there were ectopic 8±4 PGCs in each 

embryo).   

Next, we used the UAS-Gal4 system to misexpress Apelin in a tissue-

specific, genetically controlled manner. The UAS-Gal4 system has been widely 

used in D. melanogaster (McGuire et al., 2004), and it consists of two transgenic 

lines: a Gal4 driver line and an UAS-gene line. The Gal4 transgene in the driver 

line produces the yeast transcription factor (Gal4) under the control of a tissue-

specific promoter, and the UAS line contains a gene of interest with an upstream 

UAS sequence that is recognized and bound by Gal4 protein. In the presence of 
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both transgenes, Gal4 binds to the UAS sequence and induces the expression of 

the gene of interest. We used Tg[gsc:Gal4-VP16] transgenic fish, in which Gal4-

VP16 fusion protein is expressed under the regulation of part of the goosecoid 

(gsc) gene promoter (Inbal et al., 2006). We chose to use Gal4-VP16, a chimera 

between the yeast Gal4 DNA-binding domain and the viral transactivation 

domain VP16 (Sadowski et al., 1988), because it is a more potent activator of 

transcription than Gal4 in zebrafish (Koster and Fraser, 2001). When this fish line 

was crossed with Tg[UAS-GFP] transgenic line, the next generation embryos 

have specifically expressed GFP in the axial mesoderm including anterior 

chordamesodem  the prechordal plate (Inbal et al., 2006). We generated an 

UAS-apelin construct, and we expect to see elevated apelin expression in the 

dorsal midline and the prechordal plate region in embryos that harbor both UAS-

apelin and gsc:Gal4-VP16 transgenes (Fig. 4A). 

Before generating a stable [UAS-apelin] transgenic fish, we performed 

pilot DNA injection experiments. We injected UAS-apelin DNA together with 

synthetic RNA encoding Sleeping Beauty Transposase (Davidson et al., 2003) 

into Tg[gsc:Gal4-VP16] transgenic fish embryos at the 1-cell stage. In control 

embryos, endogenous apelin was expressed in the dorsal midline and PGCs 

were detected laterally on both sides of the dorsal midline at 14 hpf (10-somite 

stage) (Fig. 4B). As expected, when UAS-apelin DNA was co-injected with 

synthetic RNA encoding Sleeping Beauty Transposase, we observed apelin 

transcripts were mosaically and ectopically expressed in the prechordal plate and 

the notochord (Fig. 4C, D, white circles). Moreover, in these embryos the PGCs  
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Figure 4. PGCs migrate toward the ectopic expression of apelin activated by 
gsc:Gal4-VP16 and UAS:apln. (A) The present of two transgenes gsc:GAL4-
VP16 and UAS:apln will produce ectopic apelin expression. (B) Control 
Tg[gsc:Gal4-VP16] embryos are expressing nos1 in PGCs (arrows) and apln in 
the dorsal midline. (C and D) Tg[gsc:Gal4-VP16] embryos injected with UAS-apln 
DNA with synthetic RNA encoding Sleeping Beauty Transpose show ectopic 
expression of apelin in the prechordal plate (dotted white lines), and  mis-located 
PGCs  (C and D, arrowheads) in these embryos are close to the ectopic sources 
of Apelin.  
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population had a tendency to be more anteriorly located toward the ectopic 

apelin sources (Fig. 4C, D, arrowheads). 

Taken together, these experiments showed that the cells expressing 

Apelin in ectopic locations attract PGCs. But interestingly the PGCs stopped 

short of Apelin misexpressing cells, suggesting that Apelin might provide a 

concentration-dependent cue for PGC migration.  

 

Apelin and Sdf1a signaling pathways work together to regulate PGCs 

migration 

One of the most important outstanding questions is whether Apelin 

signaling interacts with previously discovered Sdf1a/Cxcr4b signaling. During 

mid-somitogenesis stages, sdf1a is expressed in the somites and intermediate 

mesoderm (Doitsidou et al., 2002), where PGCs are located (Fig. 5A), and apelin 

is expressed in the dorsal midline (Zeng, et al., 2007). Given these expression 

domains of both signaling molecules, PGCs could be under the influence of both. 

In apelin MO injected embryos, we noticed that a portion of PGCs remained in 

the ventral or lateral regions (68%, n=47) (Fig. 5B), suggesting the endogenous 

apelin is required for PGCs to migrate toward the dorsal region of the embryo. In 

ody homozygous mutants that lack a functional Cxcr4b receptor, the Sdf1a ligand 

is unable to activate downstream signaling and regulate PGC migration (Knaut et 

al., 2003). Previous study illustrated that Sdf1a signaling influences PGC 

migration very effectively. Based on these observations we hypothesized that 

Apelin signaling could become dominant in the embryos when Sdf1a signaling is  
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Figure 5. Both Apelin and Sdf1a signaling pathways are required to regulate 
PGCs migration. (A) wild-type control embryos, (B) wild-type embryos injected 
with apelin splicing morpholino, (C) ody homozygous mutant embryos, and (D) 
ody homozygous mutant embryos injected with apelin splicing morpholino. nos1 
is used for labeling PGCs by whole mount in situ hybridization. V, ventral. D, 
dorsal. 
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impaired or absent. We observed that the majority of PGCs population was 

aggregated in the dorsal midline area where apelin is strongly expressed (100%, 

n=38) (Fig. 5C). This observation suggests Apelin attracts most of the PGCs 

towards the dorsal midline when Sdf1a is not present. We also injected apelin 

MO into the ody mutants to deplete both signaling systems. Interestingly, the 

aggregation of PGCs is significantly reduced comparing to apelin MO injected  

wild-type embryos (75%, n=12) (Fig. 5D). The above results suggest that Apelin 

and Sdf1a may regulate PGCs migration in a balanced system, and both of them 

work together to guide PGCs migrating correctly. 

 

Discussion 

During development of zebrafish, PGCs originate in four different positions 

of the blastoderm margin, randomly oriented with respect to the prospective 

embryonic axis (Weidinger et al., 1999), and they subsequently migrate a long 

distance from the regions where they are specified towards the developing gonad 

where they generate gametes (Starz-Gaiano and Lehmann, 2001; Wylie, 2000). 

During migration, zebrafish PGCs pass through somatic tissues on their way 

toward two clustering positions on either side of the body axis in the region where 

the gonad will be formed (Weidinger et al., 1999). In this study, we provide 

several lines of strong evidence for the involvement of the chemokine Apelin in 

providing directional information to the migrating cells. 

 First, during gastrulation and somitogenesis stages, apelin mRNA is 

expressed in the dorsal midline, while the agtrl1b gene, encoding the Apelin 

94



receptor, is broadly expressed in the mesendoderm, where PGCs are localized. 

Hence, the expression pattern of apelin resides in the positions toward which the 

PGCs migrate. Also, our gain and loss-of-function analyses illustrated that the 

PGCs migration is impaired in embryos with deficit or excess Apelin signaling. 

Notably, a portion of PGCs remained in the ventral or lateral part of the embryo 

with deficit Apelin signaling. Furthermore, we show that migration of the PGCs 

can be redirected toward sites of ectopically expressed Apelin. Last, we show 

that in ody (-/-) mutant embryos where Sdf1a signaling is reduced, the PGCs 

tend to aggregate toward the dorsal midline region where the endogenous apelin 

is expressed. Our interpretation of these findings is that Apelin acts as a natural 

chemoattractant expressing in the somatic tissues for zebrafish PGCs, directing 

migration toward bilateral clustering flanking the body axis in the region where 

the gonad will be formed during gastrulation and early somitogenesis stages. 

Furthermore, the attractive role of Apelin is balanced by Sdf1a signaling.  

We also argue that previously discovered Sdf1/Cxcr4b signaling could not 

be the only signaling pathway that regulates the migration of zebrafish PGCs. 

First, the dorsal midline expression of apelin probably provides a perfect signal 

cue to guide PGCs at least some of them to direct their dorsal-ward movement 

during gastrulation stages, and this job seems unlikely to be fulfilled by 

Sdf1a/Cxcr4b signaling considering their ubiquitous expression domains during 

gastrulation stages (Doitsidou et al., 2002). Second, consistent with our model, 

Apelin has been shown to act as the chemotactic factor per se, directing cells 

toward their target. Recent work from us and others reveal an essential 
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developmental role for the Apelin signaling in mesodermal cell movements and 

regulating the migration of cardiac precursors to form the heart field during 

vertebrate gastrulation (Zeng et al., 2007; Scott et al., 2007). Without the 

endogenous Apelin in the dorsal middle, cardiac precursor cells were positioned 

further laterally on both sides of the embryo injected with apelin MOs, suggesting 

the migration defects of these cardiac precursor cells and also a potential 

attractive role of Apelin in this process (Zeng et al., 2007). Third, our results show 

that Apelin misguide the PGCs by expressing the ligand within them, also germ 

cells were redirected toward ectopic positions by applying Apelin to these 

positions. These experiments provided strong evidence that Apelin is sufficient to 

influence the migration of zebrafish PGCs. However, the fact that we did not see 

a physical overlapping between mislocated PGCs and ectopic Apelin positions, 

which has been observed in an ectopic Sdf1a condition, could be explained as 

follows: within these host embryos, there are still endogenous Apelin and Sdf1a 

present. The competition between ectopic and endogenous attracting forces may 

result in the observation that the PGCs stopped short of Apelin misexpressing 

cells instead of physically attaching to each other. Future experiments of 

transplanting Apelin expressing cells into embryos depleted of either or both 

Apelin/Sdf1a signaling will give us a clearer results to finalize our current model. 

Based on these data, we propose a preliminary model for the migration 

process of zebrafish PGCs. During zebrafish gastrulation, the dorsal midline 

expressing Apelin functions as a chemoattractant to guide PGCs, which are 

randomly positioned in the blastoderm margin, toward the dorsal region in the 
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embryo. Meanwhile, even though sdf1a and cxcr4b are ubiquitously expressed in 

the gastrula, they don’t have a directional role in regulating PGCs migration. 

During early somitogenesis stages, sdf1a start to be expressed in a much more 

restricted manner, including in the forming somites, and apelin continues to be 

expressed in the dorsal midline and attracts PGCs. At this point, we hypothesize 

that Sdf1a starts to function as a strong chemoattractant opposing Apelin’s 

function, and attracts PGCs away from the dorsal region and prevents them 

migrate further towards the dorsal midline. Indeed, a ventral-ward migration 

process of PGCs at early somitogenesis has been previously reported, in which 

cells were away from the dorsal midline along the forming somites area during 

early somitogenesis stages (Weidinger et al., 1999). In summary, we propose 

that Apelin and Sdf1a regulate PGCs migration as a balanced system, and a 

precise coordination of both signaling pathways is needed to maintain PGCs in 

the correct migration route. 
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CHAPTER IV 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

My dissertation research explored the roles of a pair of proteins, the Apelin 

ligand and its receptor, Agtrl1b, during zebrafish embryogenesis. Our results 

revealed that they functioned in cell migration during zebrafish early 

development, more specifically, by regulating the migration of cardiac precursor 

cells and primordial germ cells. 

The vertebrate heart primordia arise during gastrulation, when the anterior 

lateral plate mesoderm undergoes convergence and extension movements to 

form bilateral heart fields flanking the embryo midline (Keegan et al., 2004). The 

mechanisms that regulate heart field formation remain largely unknown. The data 

described in Chapter II demonstrated that Apelin and its G-Protein Coupled 

Receptor, Agtrl1b, previously implicated in heart physiology, are essential for 

heart field formation during zebrafish gastrulation. Our data showed that the 

Agtrl1b receptor is expressed in the lateral plate mesoderm while the Apelin 

ligand is expressed in the embryo midline. Deficit and excess Apelin/Agtrl1b 

function, lead to reduction or complete absence of cardiac primordia. I provided 

several lines of evidence that Apelin-Agtrl1b controls heart field formation largely 

by influencing the movement of cardiac precursors during gastrulation. Based on 

the observations from our gain and loss-of-function studies, along with the fate-

mapping experiments, gastrulation movements of anterior LPM and heart 
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precursors in particular are highly sensitive to the level and distribution of Apelin 

and Agtrl1b expression. A manuscript by Ian Scott and collaborators (Scott et al., 

2007) (University of California San Francisco, USA), reporting an independent 

identification of Agtrl1b as an essential regulator of the formation of cardiac 

primordia during zebrafish gastrulation, was published in parallel with our 

publication (Zeng et al., 2007). Their studies arrived at very similar conclusions 

that Agtrl1b and Apelin regulate migration of mesodermal precursors of the 

myocardial lineage. Interestingly, in contrast to our reverse genetic studies they 

discovered a role of agtrl1b gene in cardiac field formation via a forward genetic 

approach. In a screen for mutations affecting heart formation, they identified and 

characterized the phenotype of embryos carrying a germline mutation in agtrl1b 

(grinch, grn) exhibited the defective cardiac phenotype. Also, they reported that 

embryos with this mutation show incomplete penetrance and variable 

expressivity. In addition, recent loss-of-function experiments in frog embryos 

have shown vascular developmental abnormalities, varying from perturbed 

intersomitic vessel branching to more fundamental developmental defects, 

including decreased numbers of endothelial cells (Cox et al., 2006; Inui et al., 

2006a). However, the described severe cardiac defects in frog embryos with 

depletion of agtrl1b were interpreted as secondary to the primary endothelial 

effects (Inui et al., 2006a).  While the studies in zebrafish documented 

expression of agtrl1b receptor in endothelial cells associated with the heart and 

major vessels (Scott et al., 2007; Zeng et al., 2007), they did not find evidence of 

disrupted vascular development in experiments where Agtrl1b or Apelin function 
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was inhibited. The different observations of Apelin signaling in vascular 

development between the frog and zebrafish may reflect diverse functions of this 

signaling pathway during vertebrate evolution or a fundamental difference in 

zebrafish adult physiology. Considering the existence of another agtrl1 gene, 

agtrl1a, in the zebrafish genome, a further examination of agtrl1a/b double 

mutants will be required to fully assess the role of Agtrl1 signaling in zebrafish 

angiogenesis. Finally, it is unclear why only cardiac development is severely 

affected, since the receptor transcripts of agtrl1b are found in most mesodermal 

precursors. Similar observations have been made in the case of Sdf1a/Cxcr4b 

ligand-receptor pair, which regulates the migration of zebrafish primordial germ 

cells (PGCs) (see below). The PGCs appear to be very sensitive to changes in 

the level of Sdf1a ligand, but both Sdf1a and its receptor Cxcr4b were found in a 

wide variety of cell types and tissues (Doitsidou et al., 2002). Furthermore, 

embryos in which either Sdf1a or Cxcr4b activity was impaired did not exhibit 

increased lethality or obvious somatic defects, despite the widespread 

expression of these genes (Doitsidou et al., 2002); (Knaut et al., 2003). One 

possible explanation is that the expression (either RNA or protein level) of a 

GPCR does not necessarily reflect a competence to respond to its ligand. 

Additional interactions, either intracellular or extracellular, with other molecules 

can suppress its function when necessary, or vice versa synergistically increase 

its function. Hence, the requirement for additional components of Apelin/Agtrl1b 

pathway or for action of mutiple signaling pathways might partially explain why 

cardiac precursors are particularly sensitive to Apelin/Agtrl1b while the receptor 
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is so broadly expressed. 

Apelin signaling via the Agtrl1 receptor to activate downstream 

components has been reported in mammalian systems (Lee et al., 2000; 

Tatemoto et al., 1998), and we investigated and validated this relationship in 

zebrafish as well. We reasoned that ligand and its receptor should have 

synergistic effects on development in coinjection experiments. Accordingly, 

embryos injected separately with low doses of synthetic RNAs encoding Agtrl1b 

or Apelin progressed through gastrulation, whereas embryos coinjected with the 

same doses of both RNAs underwent developmental arrest by late blastula 

stages, most dying by 1 dpf (Chapter II, Figures 5A-E). We also expected that 

Agtrl1b function should be required for excess Apelin to impair gastrulation 

movements. Accordingly, injections of MOagtrl1b significantly suppressed the 

epiboly delay caused by Apelin misexpression (Chapter II, Figures 5F-J). In 

agreement, data from the Stainier’s group showed that cells stably 

overexpressing zebrafish Agtrl1b are responsive to human Apelin peptides, 

resulting in adenylylcyclase inhibition and phosphorylation of ERK and p70S6 

kinase. In contrast to the wild-type gene, the grns608 allele of agtrl1b was reported 

to be completely unresponsive to stimulation by Apelin in these assays (Scott et 

al., 2007). Therefore, by biochemical criteria, these data validate the assignment 

of Agtrl1b as a zebrafish ortholog of the Apelin receptor. Together, these results 

provide strong support for the notion that during zebrafish gastrulation, Apelin 

functions upstream of the Agtrl1b receptor, likely as its specific ligand. However, 

the non-identical cardiac phenotypes between loss of Apelin and loss of Agtrl1b 
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function make us to consider other possibilities. Although there are two agtrl1 

genes in zebrafish, there is only one apelin gene, so loss of this gene should 

phenocopy the agtrl1b depletion/mutation phenotype. The difference in 

phenotypes might imply then that another Agtrl1b ligand can compensate for loss 

of Apelin, at least in heart development. 

How does Apelin-Agtrl1b signaling regulate movements of cardiac 

progenitors? Cardiac precursors converge towards the apelin-expressing midline 

during gastrulation, but stop short of reaching the midline to form bilateral fields 

flanking the midline at early segmentation (Keegan et al., 2004).  We observed a 

delayed convergence of the LPM during gastrulation in Apelin-deficient embryos, 

and more dispersed and ectopic distribution of anterior LPM cells, including heart 

precursors in Apelin-deficient embryos at mid-segmentation (Chapter II, Figures 

4E, H). It is tempting to speculate that Apelin might have concentration 

dependent effects on cardiac precursor cell movements. In particular, at lower 

concentration Apelin attracts the cardiac precursor cells and repels them at a 

higher concentration when they are physically closer to the source of the Apelin 

ligand. Hence, according to this model, Apelin emanating from the midline would 

initially attract heart precursors until they moved near the midline to experience 

higher and inhibitory concentration of Apelin. Another possibility is that there are 

other pathways, e.g. another GPCR signal, that regulate the migration of cardiac 

precursors in addition to Apelin/Agtrl1b. As I discussed before, studies from the 

Stainier group reported that grn mutant embryos show a variable penetrance of 

the cardiac deficiency phenotype. Similarly and interestingly, while targeted 
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deletion of the agtrl1b gene in mice produces marked cardiac defects, only half of 

mouse embryos homozygous for agtrl1b show the developmental cardiac 

phenotype. Preliminary analyses of mice lacking Apelin do not show these 

defects (Quertermous, 2007). These data are most consistent with the notion of 

signaling redundancy, in which an alternative pathway can functionally 

compensate for loss of the Apelin-Agtrl1b pathway. While this is likely another 

GPCR pathway, its identity remains unknown, and the subject for further study. 

In this case, these cardiac cells are exposed to multiple regulatory cues, and 

their behaviors should be considered as a reflection of accumulated inputs in the 

embryonic organism. In fact, as previously introduced in Chapter I, some 

signaling pathways that affect convergence & extension movements of the three 

germ layers, such as non-canonical Wnt, BMP signaling, also consequently 

secondarily affect the movements of heart progenitors (Schneider and Mercola, 

2001; Schultheiss et al., 1997). Therefore, I hypothesize that Apelin might only 

have a simple chemoattractive role in zebrafish cardiac cell movement and the 

repulsion influence on these cells could be from another interacting factor. What I 

would like to emphasize is that both hypotheses are not mutually exclusive. 

Other roles of Apelin such as promoting adhesion of cardiac precursors to each 

other or to substratum, as they coalesce into the bilateral heart primordia, are 

also possible. Studies from human embryonic kidney 293T cells stably 

expressing the mouse APJ, the homolog of Agtrl1b receptor, showed that Apelin 

induced Akt/PKB phosphorylation, enhanced focal adhesion kinase (FAK) 

phosphorylation and increased focal adhesion formation. Cell motility in 
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APJ/293T cells was strongly accelerated as well when Apelin was provided 

(Hashimoto et al., 2005).   

Together, our results reveal a requirement for G-protein coupled receptor 

Agtrl1b and its ligand Apelin in heart field formation, through regulation of 

convergence and extension movements of cardiac precursors in zebrafish 

gastrula. Significantly and in contrast to global regulators of gastrulation 

movements, such as non-canonical Wnt signaling, prostaglandins, and Stat3 

(Solnica-Krezel, 2005), Apelin signaling has a much more restricted role to 

regulating movements of the anterior LPM cells, the heart precursors in 

particular. Data from both groups illustrates that Agtrl1b is not required for the 

induction of cardiac precursors. Further, coinjection of a p53 MO, which inhibits 

apoptosis in zebrafish embryos (Langheinrich et al., 2002), did not alleviate either 

apelin or agtrl1b MO phenotypes. Hence, we concluded that Apelin-Agtrl1b 

signaling does not appear to be primarily required for the survival of these 

cardiac precursor cells. Transplantation experiments from the Stainier group also 

support this migration model: both agtrl1b morphants cells in a wild-type 

environment and wild-type cells in a ubiquitous apelin background appear to 

migrate toward the midline more slowly. We speculate that the Apelin-Agtrl1b 

axis provides just the first example of GPCRs regulating the movements of 

defined cell populations to form organ rudiments during vertebrate gastrulation. I 

anticipate this work to be of interest and significance for the field of cell 

movement, because it uncovers a pathway that regulates a fundamental but 

poorly understood process of cardiac progenitor migration to form the heart field 
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during gastrulation. Future studies of the intracellular events are needed to 

understand this process more completely. 

As I argued before, one cell population in the embryo may be regulated by 

multiple signals. And vice versa, a single signaling pathway can have pleiotropic 

effects on development. For example, besides the newly-discovered roles of 

Sdf1a and its receptor Cxcr4b in the directed migration of zebrafish PGCs 

(Doitsidou et al., 2002; Knaut et al., 2003), the SDF1-CXCR4 pathway is also 

known to play roles in the chemotaxis of several cell types, such as lymphocytes 

(Bleul et al., 1996a; Bleul et al., 1996b), and cerebellar and hippocampal neurons 

(Lu et al., 2002; Zou et al., 1998). It also plays a part in several pathological 

situations, for example, tumor metastasis (Muller et al., 2001), and joint infiltration 

(Buckley et al., 2000).  Consistent with this notion, our continued investigation of 

Apelin-Agtrl1b signaling in other cell populations yielded preliminary data 

suggesting that they also have an important role in regulating the migration of 

zebrafish primordial germ cells (PGCs). 

During zebrafish development, the PGCs are derived from regions distinct 

from the site where the gonad will form. Therefore, the PGCs have to migrate 

travel long distances within the embryo to arrive at the future gonad (Raz, 2004). 

Previous work from both forward and reverse genetics approaches has 

demonstrated that directional migration of PGCs in zebrafish requires the 

function of the chemokine Sdf1a (Doitsidou et al., 2002) and its seven-

transmembrane receptor Cxcr4b (Doitsidou et al., 2002; Knaut et al., 2003). In 

this study, we provide several lines of evidence for the involvement of the 
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chemokine Apelin in providing directional information to the migrating cells, in 

addition to the Sdf1a/Cxcr4b axis. 

First, the spatiotemporal expression pattern of genes encoding Apelin and 

Agtrl1b is consistent with a role in PGC migration. During gastrulation and 

somitogenesis stages, apelin mRNA is expressed in the dorsal midline, where a 

portion of four PGC clusters positioned at the blastoderm margin converge 

towards, beginning at the shield stage (Weidinger et. al., 199). The agtrl1b gene 

encoding the Apelin receptor is broadly expressed in the mesendoderm. 

Especially, at the beginning of gastrulation, agtrl1b transcripts are restricted to 

the mesendoderm precursors at the blastoderm margin, where four clusters of 

PGC are localized. Hence, apelin is expressed in the embryonic structure toward 

which the PGCs migrate. Second, our loss- and gain-of-function analyses 

illustrated that the PGC’s migration is impaired in embryos with deficient or 

excess Apelin signaling, respectively. Notably, a portion of PGCs remained in the 

ventral or lateral part of the embryos with deficient Apelin signalling, suggesting 

that the correct location and level of Apelin expression are critical for a subset of 

PGCs to migrate away from the ventral side of the embryo where they originate 

(Chapter I, Figure 3A). Furthermore, we provide two lines of evidence that 

migration of the PGCs can be redirected toward ectopic sites of Apelin 

expression, including our transplantation and genetically driving ectopic 

expression of Apelin under the control of a gsc promoter by using the UAS-Gal4 

system. Similar results of ectopic Sdf1a attracting PGCs have been reported 

(Doitsidou et al., 2002). However, PGCs migrate toward ectopic Apelin 
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expressing cells but little physical overlap with them has been found. Third, we 

observed that in ody (-/-) mutant embryos, where Sdf1a-Cxcr4b signaling is 

absent because the ody mutation results in a complete loss of Cxcr4b protein 

function (Knaut et al., 2003), the PGCs tend to aggregate toward the dorsal 

midline region, where apelin is endogenously expressed. One interpretation of 

these findings is that during gastrulation and early somitogenesis stages Apelin 

acts as an endogenous chemoattractant that directs PGC migration toward 

bilateral clusters flanking the embryo midline in the region where the gonad will 

be formed. A further comparison of the spatiotemporal expression pattern 

between apelin and sdf1a suggests that the attractive role of Apelin might be 

balanced by Sdf1a signalling. During gastrulation and early somitogenesis 

stages, apelin is continuously expressed in the dorsal midline, whereas sdf1a 

has a much more dynamic expression profile (Doitsidou et al., 2002). 

Specifically, at the onset of gastrulation, sdf1a is expressed around the 

blastoderm margin with the exception of the dorsal-most aspect of the embryo, 

coinciding with the position where PGCs are found at this stage. Later, sdf1a is 

strongly expressed in the lateral plate mesoderm of the trunk and at the border 

between the head and trunk mesoderm (Chapter I, Figure 3B), where the PGCs 

have been mainly found at this stage. This interesting correlation between the 

positions of PGCs, apelin and sdf1a suggests that Apelin may serve as a 

guidance cue for the dorsal-ward migration of PGCs, meanwhile Sdf1a functions 

as a tightly associated guardian that guides PGCs and also prevent them from 

migrating too closely to the dorsal region. 
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Consequently, we argue that previously discovered Sdf1/Cxcr4b signaling 

is not be the only signaling pathway that regulates the migration of zebrafish 

PGCs. First, the dorsal midline expression of apelin probably provides a localized 

signal cue to guide PGCs or a subpopulation in their dorsal-ward movement of 

PGCs during gastrulation stages, and this job is unlikely fulfilled by Sdf1a/Cxcr4b 

signaling considering their ubiquitous expression domains during gastrulation 

stages (Doitsidou et al., 2002). Also, our results show that Apelin misguide the 

PGCs when Apelin are only misexpressed in the PGCs, and also germ cells were 

redirected toward ectopic Apelin expressing positions. These experiments 

provide strong evidence that Apelin is sufficient to influence the migration of 

zebrafish PGCs. However, the fact that we did not see a physical overlapping of 

mislocated PGCs and ectopic Apelin sources contrasts what has been observed 

in experiments in which an ectopic Sdf1a source was generated in the fish 

embryo and ectopic PGCs colocalized with these ectopic Sdf1a expressing cells 

(Doitsidou et al., 2002). We explain the difference as follows: within these “host” 

embryos, in which we have created ectopic sources of Apelin, endogenous 

Apelin and Sdf1a are still expressed in their normal expression patterns. The 

competition between ectopic and endogenous attractive cues could result in the 

PGCs stopping short of Apelin misexpressing cells instead of physically 

contacting them. Future experiments of transplanting Apelin expressing cells into 

embryos depleted of either or both endogenous Apelin/Agtrl1b and Sdf1a/Cxcr4b 

expression will give us a more definitive test of our current model. 
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In order to support our conclusion, additional evidence that Agtrl1b 

receptor is involved in the migration of PGCs should be obtained. We observed 

the expression of agtrl1b in the blastoderm margin, where PGCs are found, at 

the onset of gastrulation (Zeng et al., 2007). The correlation between the 

positions of agtrl1b expression and location of PGCs should be analyzed at later 

stages, especially during late gastrulation and early somitogenesis. Also, the 

migration of PGCs should be investigated in grinch mutant embryos harbouring 

an agtrl1b mutation (Scott et al., 2007) to ask if Agtrl1b receptor is required in this 

process. Furthermore, we will perform experiments to restore the activity of 

Agtrl1b specifically in the PGCs in embryos globally depleted of the receptor 

(grinch mutant embryos (Scott et al., 2007) or MO injection(Zeng et al., 2007)). 

The ability of Agtrl1b to rescue the abnormal migration phenotype would provide 

further support for the notion that the activity of the Agtrl1b receptor is required in 

the migrating germ cells themselves. 

In conclusion, we propose the following working model for the migration 

process of zebrafish PGCs. During zebrafish gastrulation, the dorsal midline 

expressing Apelin functions as a chemoattractant to guide PGCs, which are 

randomly positioned in the blastoderm margin, toward the dorsal region in the 

embryo. Meanwhile, even though sdf1a and cxcr4b are broadly expressed in the 

gastrula, they do not have a directional role in regulating PGCs migration. During 

early somitogenesis stages, sdf1a starts to be expressed in a much more 

restricted manner, including in the forming somites, while apelin continues to be 

expressed in the dorsal midline, where it attracts PGCs. At this point, we 
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hypothesize that Sdf1a starts to function as a strong chemoattractant opposing 

Apelin’s function, and attracts PGCs away from the dorsal region and prevents 

them from migrating further towards the dorsal midline. Indeed, migration of 

PGCs laterally and away from the dorsal midline along the forming somites area 

during early somitogenesis stages has been previously reported (Weidinger et al., 

1999). In summary, we propose that Apelin and Sdf1a regulate PGCs migration 

as a balanced system, and a precise coordination of both signaling pathways is 

needed to maintain PGCs on the correct migration route. 

Upon the completion of my Ph.D. training, there are still several remaining 

important open questions in this project. What is the intracellular mechanism via 

which Apelin regulate the migration of cardiac precursor cells and primordial 

germ cells? Are they the same or different? We know Apelin signaling is involved 

in the migratory process of both cell populations, however, it is not clear what cell 

properties it affects in each cell type: is the general motility or the directed cell 

movement of these cells affected? Does the cell adhesion change when Apelin 

signaling is altered? What are the downstream components of the Apelin-Agtrl1b 

axis? Is the same G alpha subunit involved in both cases?  

Studies in cell culture and mammalian systems suggest that activation of 

the Apelin receptor elicits effects through multiple signaling pathways. Apelin-

stimulated augmentation of extracellular acidification rates in Chinese hamster 

ovary cells is sensitive to pertussis toxin, and Apelin inhibits forskolin-stimulated 

production of cAMP, which indicates the presence of a Gi signaling cascade 

(Habata et al., 1999; Hashimoto et al., 2005; Hosoya et al., 2000; Masri et al., 
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2006; Reaux et al., 2001). Apelin activates p70 S6 kinase, which is an important 

regulator of translation and cell-cycle progression, through both phosphoinositide 

3-kinase and extracellular-signal-regulated kinase (ERK) pathways (Masri et al., 

2002; Masri et al., 2004). In addition, the positive cardiac inotropic effects of 

Apelin are blocked by inhibiting phospholipase C and protein kinase C (Szokodi 

et al., 2002). Data from the Stainier group showed that stimulating zebrafish 

Agtrl1b receptor with human Apelin resulted in adenylylcyclase inhibition, which 

suggests that Gi subunit could be a downstream component of Agtrl1b in 

zebrafish.  Work from the Raz group has demonstrated that the involvement of Gi 

and PI3K downstream of Cxcr4b to regulate zebrafish PGCs migration (Dumstrei 

et al., 2004). Similar experiments could be performed in Apelin/Agtrl1b axis. 

Subcellular events in PGCs could also be investigated when Apelin signaling is 

altered. In many migratory cells, chemoattractants that are sensed by G-protein 

coupled receptors signal through phosphatidylinositol-3-OH kinase (PI3K) to 

recruit pleckstrin homology (PH) domain-containing proteins to the leading edge 

(Chung et al., 2001; Iijima et al., 2002). Therefore, we could aim to investigate 

the subcellular localization of a PH–GFP fusion protein (Meili et al., 1999) in 

PGCs in vivo. In wild-type PGCs, membrane recruitment of PH–GFP is locally 

restricted to the site of lamellipodium protrusion and remains relatively stably 

positioned over a longer period of time (Knaut et al., 2003). However, such 

polarized recruitment of PH-GFP in migrating PGCs has not been corroborated 

by other groups (Raz group studies). Changed chemotaxis in zebrafish PGCs 

could be examined by this method with excess of deficit Apelin signaling. 
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From a more general perspective, how GPCR signaling pathways are 

involved in vertebrate development is still a big open question to us.  A 

comprehensive study including a subset of > 400 endoGPCR members will 

increase our knowledge in this field.
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