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PREFACE 

 

"What I cannot create, I do not understand"  

~ Richard Feynman, 1965 Nobel Laureate 

 

The quest for understanding light-matter phenomena has accompanied the evolution of 

mankind from almost its origins. As a science, it can be traced as far as the Ancient Greek 

civilization, when during his studies on visual perception, Aristotle realized the importance 

of the medium in-between the eye and an object. At the core of our abilities for visual 

perception is the power of optics which is based on one simple fact ɀ light exhibits the right 

amount of interaction with matter. Put more scientifically, light quanta lies in the energy 

range of electronic and vibrational transitions in matter1. For this reason, experiments with 

light are intuitiv e and help us to consciously and rationally  connect abstract ideas. 

Nowadays, the detailed study of light-matter interaction has, as its ultimate goal, the spatial 

and temporal control of selected modes of electromagnetic radiation to particular material 

excitations. 

Over the last century, the ability to understand complex photon-atom interaction 

has been greatly challenged. However, thanks to the progress in nanotechnology, scientists 

are now able to routinely tailor, measure and manipulate the properties of nanostructures 

at the individual level, thus providing a deeper understanding of the coupling mechanism 

at play. More importantly, such studies have revealed that as we examine even smaller-

sized structures, new physical effects become prominent, implying their potential prospect 

in technological applications. Some of the recent achievements in the field of nano-optics 
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are highlighted in figure P.1, where nanostructures were tailored to provide unique optical 

phenomena such as lasing in a single living cell and cloaking, to name a few. 

 

 

Figure P.1. Potpourri of Tailored Light -Matter Interaction at the Nanoscale. (a)  

Quenching Brownian motion using plasmonic nanometric optical tweezing;2 (b)  Single 

tailored nanofocus for enhanced gas sensing;3 (c)  3D optical metamaterial for negative 

refractive index;4 (d)  Gold helix for broadband circular polarizer;5 (e)  Room-temperature 

sub-diffraction plasmonic laser;6 (f)  Single-cell biological laser;7 (g)  Nanoantenna coupled 

to a quantum dot for directional emission;8 (h)  3D plasmonic rulers to determine distances 

within chemical or biological species;9 (i)  Atomic graphene layer for optical broadband 

modulation;10 (j)  Optical monopole antenna for directing single-molecule emission;11 (k)  

Carpet cloak made of dielectrics.12 

 

The main motivation of this dissertation is to develop an understanding of 

reconfigurability in hybrid nanostructures whose optical properties can be uniquely 
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manipulated on an ultrafast timescale. Controlling the flow of light and charge carriers in 

plasmonics systems ɀ based on quanta of plasmon oscillations derived from coupled 

electron-photon modes ɀ is achieved by using the kinetics and dynamics of a phase-

transforming material. This work demonstrates precisely how functionality hinges on the 

expertise in tuning the spatial and temporal features of a quantum material vanadium 

dioxide (VO2). Since these quantum materials ÏÆÆÅÒ ÍÁÎÙ ȰËÎÏÂÓȱ to control macroscopic 

phenomena such as high-temperature superconductivity13, colossal magnetoresistance14, 

multiferroicity 15 or metal-insulator transition 16, this thesis could potentially be generalized 

to the study of other classes of hybrid nanomaterials. For example, one of such studies 

could be the coupling of magnetic responses of split-ring resonator metamaterial17 with 

manganites to enhance or control magnetic dipole transitions18. We devote this thesis to 

studying the insulator-to-metal transition in VO2 and its role in optimizing modulation of 

plasmonic functionality in confined nanoscale volumes and on an ultrafast timescales. 

Fundamental intrinsic properties such as electron-electron interaction, electron-phonon 

coupling and electron-grain-boundary scattering, intimately connected to phenomena such 

as defect-mediated nucleation, interfacial effects, electron injection or chemical interface 

damping will be discussed. 

Chapter 1 serves as an introduction to both the field of plasmonics and phase-

changing vanadium dioxide with a focus on the ultrafast manipulation of such systems. 

Since the ultimate goal is device-integration, we introduce in this chapter a novel and 

reliable deposition method for producing thin films and nanostructures of VO2 using 

electron-beam evaporation. Combined wit h the versatile hole-colloidal mask lithography 
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technique19 (Appendix A), cost-effective and large surface areas (cm2 compared to µm2) of 

active substrates could thereafter be implemented in on-chip sensors, catalytic 

nanodevices or for fundamental ultrafast studies of size-dependent switching in phase-

changing material. Since the primary goal of this thesis however is to understand the 

fundamental properties of such hybrid nanostructures, most structures presented in the 

subsequent chapters were fabricated by electron-beam lithography for precision.  

In Chapter 2, we demonstrate the proof-of-principle that modulation and 

consequently interrogation can be achieved even at the level of the single plasmonic 

nanoantenna. Incidentally, the sensitivity of our detection system hints towards potentially 

probing electron scattering mechanisms at grain boundaries of the VO2 domains and at the 

onset of the phase-transition, that is in the region of strong electron correlation. More 

importantly, this suggests that near-IR scattering spectroscopy of individuals vanadium 

dioxide domains could provide tremendous amount of information on the switching 

properties of other quantum materials. Chapter 3 illustrates this concept by demonstrating 

that plasmon resonance spectroscopy when combined with electron-beam lithography can 

be an exquisite method for probing the intrinsic properties of single pristine VO2 

nanostructures as a function of their shape, morphology or interfaces. This chapter is 

devoted to understanding the properties of the nanostructured VO2 only and at the single 

domain level. Effect of homointerfaces and defects will be discussed in relation to the novel 

size-dependent optical switching. Most importantly, domain-boundary engineering to 

tailor state-of-the-art phase-changing devices is highlighted. 
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Having gained insights into VO2 properties from previous chapters, Chapter 4 

provides a detailed description of various hybrid plasmonic/phase-change architectures 

that can provide greater modularity while displaying relatively high Q-factors. First, 

plasmonic nanodisks on active VO2 film exhibiting a single resonance are investigated, 

followed by stacked plasmonic/PCM nanodisks. Since VO2 films are highly absorptive, 

fabricating sandwiched nanoparticles is an ideal solution in achieving large modulation 

contrast ɀ as large as 230 nm between the two states ɀ while reducing absorption 

drawbacks. This is made possible due to the high change in dielectric contrast of VO2, even 

when used in rather small quantities. Thereafter, more complex geometries exhibiting 

anisotropic electron oscillations such as in a split-ring resonator (SRR) structure are 

studied. The SRR proves not only to be polarization selective but also whose spectral 

responses can be individually modulated thanks to the size-dependent switching of VO2. In 

order to emphasize the point that only a small amount of PCM is needed, we explore the 

effect of modulation at a distance by placing a phase-changing nanostructure near ɀ but not 

touching ɀ a plasmonic one. Using a three-stage lithographic procedure, we show exquisite 

control by placing this phase-changing nanostructure in each unit cell of a two-dimensional 

gold nanoparticle lattice. This can be extended to the study of plasmonic assisted switching 

of phase-changing material whereby the nanoparticle electromagnetic focus is tailored such 

that the high electromagnetic energy enhancement in the reactive near-field of the 

nanoantenna assists or interrogates the switching mechanism. Recently, an enhanced gas 

nanosensor based on similar principles has been demonstrated3. 
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Chapter 5 marks a change from studying the optical properties of hybrid 

nanostructures in equilibrium limit to develop an understanding of the physics at play 

when these hybrid nanostructures are driven out of equilibrium. Although ultrafast 

ÍÁÔÅÒÉÁÌÓȭ ÐÒÏÐÅÒÔÉÅÓ ÈÁÖe been investigated for many bulk single crystals and thin films, 

ÔÈÉÓ ÉÓ ÔÈÅ ÆÉÒÓÔ ÅØÐÅÒÉÍÅÎÔ ÔÏ ÔÈÅ ÂÅÓÔ ÏÆ ÔÈÅ ÁÕÔÈÏÒȭÓ ËÎÏ×ÌÅÄÇÅ ÔÈÁÔ ÄÅÓÃÒÉÂÅ ÔÈÅ 

interactions between a plasmonic material and a PCM simultaneously at nanometer length 

scales  and on a femtosecond timescale. In so doing, a novel mechanism involving plasmon-

induced hot-electron injection from the metallic nanostructure triggering the VO2 phase 

transition is reported. This all-optical ultrafast demonstration of switching in PCM via 

electron injection paves the way to optically induced electronics (OIE)20, with the potential 

of tailor ing nanostructures exhibiting strong plasmonic or Fano resonance for wavelength-

dependent and efficient dynamic charge doping. Although much of this study deals with the 

fundamental aspects of the switching mechanism, such an experiment has a broader impact 

with the potential  technological demonstration of an ultrafast broadband switch operating 

at THz speeds.  

 The Conclusion and Future  Directions  chapter discusses experiments 

targeted toward a deeper understanding of the fundamental mechanism at play between 

electrons in plasmonic elements and those in quantum materials. Probing those dynamics 

in time domain could be performed by implementing a novel technique: nano-

interferometric frequency resolved optical gating  (nano-iFROG) which analyses the 

spectrally resolved second harmonic from non-centrosymmetric nanoparticle as a function 

time delay. From those Ȱ×ÅÁË-ÐÒÏÂÅȱ measurements, coherence lifetime, T2, can be 
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extracted. Such experiments would be conducted near the threshold for switching in order 

to resolve the dynamics of enhanced scattering ɀ either in pristine VO2 nanoparticle arrays 

ÏÒ Á ÓÉÎÇÌÅ !Õ ÎÁÎÏÐÁÒÔÉÃÌÅ ȰÓÉÔÔÉÎÇȱ ÏÎ Á 6/2 substrate ɀ during the onsets of the transition. 

Furthermore, studies to elucidate the defect-mediated nucleation process and the intrinsic 

size limit for switching VO2 are natural follow-on of chapter 3. For example, high-resolution 

transmission electron microscopy of quantum-sized stoichiometric nanocrystals of VO2 

trapped between graphene layers while undergoing phase transformation could be 

performed, similar to experiments by Yuk et al. and Scholl et al. 21,22. Finally, plasmonically 

enhanced nanoscale energy transfer mechanisms as shown in chapter 5 provides food for 

thoughts about tailoring other hybrid nanomaterials that could lead to all-optical switching 

and control at optimal switching thresholds. Understanding each component, both 

separately and when strongly coupled is a crucial step toward achieving transistor-type 

optical nanodevices for manipulating the propagation, absorption and emission of light. 
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CHAPTER 1  

INTRODUCTION 

 

Ȱ4ÈÅ ÍÏÓÔ ÅØÃÉÔÉÎÇ ÐÈÒÁÓÅ ÔÏ ÈÅÁÒ ÉÎ ÓÃÉÅÎÃÅȟ the one that heralds new discoveries,  

is noÔ Ȱ%ÕÒÅËÁȱ ÂÕÔ Ȱ4ÈÁÔȭÓ ÆÕÎÎÙȢȢȢȱȱ 

~ Isaac Asimov 

 

1.1 ABSTRACT 

The miniaturization of photonic circuits lies at the founÄÁÔÉÏÎ ÏÆ ÔÏÄÁÙȭÓ ÍÏÓÔ ÉÍÐÏÒÔÁÎÔ 

data processing and telecommunication technologies. Plasmonics, the study of the optical 

properties of metallic nanostructures is an exciting new device technology and holds the 

promise of the next generation of circuits, which interfaces both electronic and photonic 

components in a single chip23. As shown in Figure 1.1, plasmonics naturally interfaces with 

similar size electronic components while enabling such devices to work at the operating 

speed of photonic networks. However, for plasmonics to be a viable technology, two major 

hurdles need to be overcome ɀ the ability to guide light in sharply curved waveguides and 

the need to modulate these signals in such spatially confined spaces. Although such signals 

can be successfully guided by using surface plasmons as information carriers, modulating 

these signals in highly confined nanoscale volumes remains a major barrier.  
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Figure 1.1: Role of 0ÌÁÓÍÏÎÉÃÓ ÉÎ 4ÏÄÁÙȭÓ $ÅÖÉÃÅ 4echnology. Plasmonics naturally 

interfaces both electronic and photonic components in a single chip, thus enabling such 

novel devices to work at the operating speed of photonic networks24. 

 

This chapter serves two purposes: it  highlights the fundamental concepts in 

plasmonics and more importantly , introduces quantum materials25 as the most promising 

medium for creating functionality in nanodevices. Here the focus is on prototypical, indeed 

canonical, vanadium dioxide (VO2) whose properties both in the equilibriu m and non-

equilibrium limit s can be tailored as a function of size, shape and morphology. Thus, VO2 

pÒÏÖÉÄÅÓ ÍÁÎÙ ȰËÎÏÂÓȱ ÆÏÒ reconfigurability. More broadly, this dissertation shows that a 

deeper understanding of the symbiosis of plasmonics and quantum materials ɀ both at the 

nanoscale and at ultrafast timescale ɀ is necessary for the integration of reconfigurable 

hybrid nanomaterial in modern data-storage and photonics technologies. With the advent 
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of the necessary fabrication and characterization tools, novel properties in both fields were 

discovered, giving birth to new fields such as metamaterials. This fact is illustrated in 

Figure 1.2 that shows exponential growth in the fields of plasmonics, metamaterials and 

PCM-VO2. The physics of such materials was discovered and described during the late 

1960s but their  properties were harnessed only in the early 2000s, coinciding with 

maturing nanofabrication and analysis technologies such as atomic force microscopy 

(AFM), scanning or transmission electron microscopy (SEM or TEM), focused ion beam 

(FIB) milling and electron-beam lithography (EBL). 
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Figure 1.2: Citations p er Year in Plasmonics, Metamaterials and Vanadium Dioxide. 

(a)  Surface plasmon first theoretically investigated in 195726 and first calculations of its 
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dispersion relation in 1966 by Ritchie et al.27 andȟ ÔÈÅ ÔÅÒÍ ȰÐÌÁÓÍÏÎÉÃÓȱ coined in 1999 by 

Brongersma et al.28 (b)  Metamaterials first described theoretically by Veselago in 196829 

and experimentally shown in 2001 by Shelby et al.30-33 (c)  Vanadium dioxide first 

discovered in 1959 by F. J. Morin34 and Goodenough et al. describing its optical properties 

in 1972. In 2001, while Cavalleri et al. discovered that this solid-solid phase transition 

could take place in 70 fs 35, Lopez et al. demonstrated that VO2 exhibited size-dependent 

switching properties as well36,37. Very recently, Eyert showed how to theoretically obtain 

the correct band structure for VO238. The data was extracted from Web of Knowledge. 

 

1.2 PLASMONICS 

1.2.1 An Overview  

From early artisan studies during pre-modern era symbolized by the 4th Century A.D. 

Roman Lycurgus Cup in Figure 1.3, plasmonics has evolved to become a respected branch 

of condensed matter physics, devoted to the study of photon-matter interaction in 

nanostructured systems. Although the description of the exact coupling mechanism can be 

traced back to Ritchie et al. in 195726, it is arguably Heinz Raether who fueled interest of 

the field when he published his book ȰSurface Plasmons on Smooth and Rough Surfaces and 

on Gratingsȱ in 198739, describing in great details the concept of surface plasmons and how 

to excite them. Ten years later with the first experimental observation of extraordinary 

transmission through metallic subwavelength hole arrays40 ÁÎÄ 0ÅÎÄÒÙȭ Ó first theoretical 

description of a superlens41, the scientific community showed renewed interest in 

plasmonics. 
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Figure 1.3: 4th  Century A.D. Roman Lycurgus Cup. The Lycurgus Cup (with modern 

metal mounts) in (a)  reflected and (b) transmitted light. (c)  TEM image of a silver-gold 

alloy nanoparticle within the glass of the Lycurgus Cup42. © The Trustees of the British 

Museum, Department of Prehistory and Europe, The British Museum. 

 

The coupling of the energy and propagating properties of photons with the high 

degree of localization of a free-electron gas in a nanostructure creates a hybrid oscillating 

electron-photon mode known as a plasmon. In this hybrid excitation, light is effectively 

squeezed in nanoscale subwavelength spaces that is beyond the diffraction limit (about half 

a wavelength), reaching recently record confinements ÏÆ ͯ ʇȾρφυ ÁÎÄ ͯ ʇȾςππ ÆÏÒ 

quantum metallic nanoparticle22 and defect in graphene43, respectively. Due to this extreme 

confinement and the efficient EM energy transfer between the near- and far-field regions, 

plasmonics has been proposed for use in diverse fields such as surface-enhanced 

microscopy44, photothermal tumor ablation45,46 and high-resolution lithography47,48, to 

name a few. Although such coupling phenomena can occur via bulk plasmon excitation, 
















































































































































































































































































































































































































































































