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CHAPTER I 

 

BIARYL AND RELATED SYMMETRICAL DIMERS IN NATURE 

 

Structure and Nomenclature 

 The number of natural products and biologically significant molecules identified 

that contain an axis of chirality has grown rapidly in recent history.  The utility of axially 

chiral compounds range from medicinal uses like the antibiotic vancomycin1 to 

asymmetric transformations using BINOL derivatives.  Axially chiral compounds were 

first termed atropisomers in 1933 by Kuhn for the Greek words representing ―knot‖ and 

―turn.‖  Atropisomers have piqued the interest of many in the scientific community since 

1922 when Christie and Kenner2 isolated the first stable biaryl atropisomer with the 

crystallization of 6,6’-dinitrobiphenyl-2,2’-dicarboxylic acid.   

The ability to separate and isolate atropisomers depends on the rate of their 

interconversion.  Atropisomers are observed on the  nuclear magnetic resonance (NMR) 

time scale at room temperature if the half life exceed 10-2 seconds; while they are 

isolable at room temperature if the half life is above 1000 seconds.3  The nature, 

position, and number of substituents all affect the rate of interconversion of 

atropisomers.  In general, biaryls that have tetra-ortho-substituents are stable at room 

temperature while biaryls with tri-ortho-substitution typically racemize just above room 

temperature.   

 There are two different sets of nomenclature commonly employed to assign the 

absolute configuration of a chiral biaryl compound4.  The most common convention is the 

R/S nomenclature, denoted as aR and aS in axially chiral compounds.  In this system 

the configuration is determined by first viewing a Newman projection down the biaryl 

bond as indicated in Figure 1.  The front biaryl is vertical and assigned Conn-Ingold-
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Prelog (CIP) priorities one and two, while the biaryl in the back is given CIP priorities 

three and four.  Drawing an arc from the substituent with first priority to the substituent 

with the third priority, while passing through the second in a clockwise direction would be 

assigned aR configuration while, if the arc is in a counter clockwise direction, the 

configuration is assigned as aS.  A second set of nomenclature is derived from protein 

nomenclature and designates an atropisomer as M (minus) or P (positive).  The model 

for this system also looks down a Newman projection of the biaryl bond; however, 

moving from the highest priority on the front aryl ring directly to the highest priority on the 

back aryl ring in a 90° arc assigns M or P configuration.5  If the arc’s movement is in a 

clockwise motion, the configuration is defined as P (positive) and, if it is a 

counterclockwise motion, the configuration is defined as M (minus).  Relating the two 

assignments, the aR designation corresponds to M and the aS to the P configuration.   

 

 

Figure 1: Nomenclature for aR/aS and M/P Determination of Atropisomers. 
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Atropisomerism within Dimeric Natural Products 

 Atropisomers in nature are seen in many different forms of chirality (eg. carbon-

heteroatom, carbon-carbon bond).  Two of the most common functionalities that show 

hindered bond rotation are biaryls and tri-substituted amide bonds.  Nature continues to 

be a rich source for many different biaryl compounds that have significant uses either in 

their biological properities or structural novelty.  Many examples of atropisomers in 

nature have been identified over the years (Figure 2).  These examples vary from the 

hindered rotation of the ether linked chlorobenzene in the antibiotic vancomycin (1.1) to 

the nitrogen carbon bond in murrastifoline F (1.2).  Other examples have varied from the 

simple biaryl linkage of gossypol (1.3) to that of the antiviral sanguiin H-5 (1.4).  For the 

purpose of this dissertation we limit the discussion to natural products that are 

hypothetically derived in nature by the dimerization of monomers leading to symmetric 

dimers.  

 

 

Figure 2.  Examples of Atropisomers Found in Nature. 
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 Torosachrysone (1.5) has been isolated from several different natural sources.  

This molecule is interesting in that its dimer has also been isolated from a variety of 

natural sources, and the site of carbon-carbon bond formation leading to dimerization 

varies based on the source (Figure 3).  When isolated from the Australian toadstool 

Dermocybe sp. WAT 24272,6 flavomannin (1.6) is symmetrically coupled at the C7 

position.  The toadstool Dermocybe icterinoides produces the symmetrically coupled 

atrovirin (1.7)7 via connection at the C5 position.  The unsymmetrical phlegmacin B (1.8), 

produced through a coupling at the C5 and C7 positions, was first observed in the 

Cortinarius (Phlegmacium) odorifer Britz,8 and was later isolated from the seeds of the 

Cassia torosa Cavanilles plant.9  Each of these natural products is produced as racemic 

mixtures of atropisomers.  Following resolution of each natural product, the individual 

enantiomers were assigned by analysis of their circular dichroism (CD) spectra.10 

 

 

Figure 3.  Torosachrysone Dimers in Nature. 
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 In screening for toxins isolated from Aspergillus Viridi-nutans, Lillehoj isolated a 

compound toxic to mice termed viriditoxin (1.10).11  The structure was assigned based 

on NMR analysis, elemental analysis and infrared spectroscopy (Figure 4).  In 1990, the 

structure was revised, moving the binaphthyl linkage from a 8,8’ linkage to that of a 6,6’ 

linkage based on observed NOE correlations between the proton at the 8 position and 

the two methyl ethers.12  During the correction of the structure, viriditoxin was shown to 

be a single atropisomer and assigned the aR configuration.  Viriditoxin was shown to 

inhibit FtsZ polymerization with an IC50 of 8.2 g/mL.13  Inhibition of FtsZ polymerization 

can lead to cell death, by inhibiting cell from division.  Viriditoxin was also shown to 

exhibit broad-spectrum antibacterial activities against methicillin-resistant and 

vancomycin-resistant strains.   

 

 

Figure 4.  Proposed and Revised Structure of Viriditoxin. 

 

 The turrianes were isolated from the stem wood of the Australian tree Grevillea 

striata R. Br14 and were shown to be potent DNA cleaving agents in the presence of 

CuII.15  This family of natural products, although not chiral due to the symmetry of the bis-

phenol, remains a synthetic challenge due to the tetra ortho substituted biaryls.  This 

problem was solved by Fürstner with the aryl Grignard derived from 1.12 coupling with 

oxazoline 1.11 (Scheme 1).  The coupling provided the biaryl 1.13 that was elaborated in 
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several steps to the bis-alkene 1.14.  Turriane 1.16 was then completed by ring closing 

metathesis, followed by concurrent reduction of the alkene and benzyl ethers. 

 

 

Scheme 1.  Biaryl Coupling Leading to the Turriane. 

 

 The biaryls mastigophorene A and B were isolated from the liverwort 

Mastigohora diclados.16  These compounds were found to have neurotrophic properties 

at 10-5 – 10-7 M.  Mastigophorene A and B were determined to differ in configuration 

about the central biaryl bond.  The mastigophorenes have been proposed to be derived 

from a one electron oxidative coupling of the natural product herbertenediol (1.20).  

Bringmann’s17 first synthesis of the mastigophorene began with an intramolecular Heck 

reaction followed by reduction of the alkene and the lactone to provide the primary 

alcohol 1.18 (Scheme 2).  The phenol was methylated, and the primary alcohol was 

reduced via the derived aldehyde under Wolff-Kishner conditions.  Herbertenediol (1.20) 

was then completed by cleavage of the methyl ethers.  The oxidative coupling substrate 

was then prepared by selective benzylation of a phenol to avoid quinone formation 

(1.21).  The oxidative coupling was then accomplished with di-t-butyl peroxide, followed 
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by BBr3 mediated removal of the alkyl ethers.  This sequence led to a mixture of 

mastigophorene A (1.22) and B (1.23).    

 

 

Scheme 2. Bringmann’s First Synthesis of Mastigophorenes A and B. 

 

 In a second approach to the mastigophorenes, Bringmann18 used a dynamic 

kinetic resolution to arrive at each individual atropo-diastereomer.  The formation of the 

biaryl lactone 1.27 by a Pd-catalyzed intramolecular biaryl coupling furnished rapidly 

inter-converting atropisomers (Scheme 3).  The rapidly converting atropisomers allow for 

the resolution of atropisomers through a stereoselective reduction using the Corey-

Bakshi-Shibata (CBS) catalyst.  The CBS reduction with S-oxaborolidine led to (P)-1.28 

with a dr of 97:3.  Reduction of lactone 1.27 with R- oxaborolidine led to (aR)-1.28 with a 
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dr of 92:8.  Then, as before, the atropisomer was taken forward to mastigophorene A 

(1.22) and B (1.23).   

 

 

Scheme 3.  Bringmann’s Dynamic Kinetic Resolution Approach to the Mastigophorenes. 

 

Following the Bringmann syntheses of the mastigophorenes, Meyers19 applied 

his oxazoline chemistry to the synthesis of the mastigophorenes (Scheme 4).  A series 

of chiral oxazolines were prepared starting from the corresponding acid (Scheme 4).  An 

Ullmann coupling was performed on a variety of oxazolines (1.29-1.33) to arrive at the 
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biaryl precursor to the mastigophorenes (1.34-1.38).  One of the interesting aspects of 

this work was that the smaller the auxiliary, the greater the level of selectivity in the biaryl 

formation. This phenomenon had not been previously observed. As in other approaches, 

the oxazoline could be cleaved to the acid and reduced to the methyl group as reported 

earlier.20  This furnished a direct synthesis of mastigophorene A (1.22) in an 

atropselective manner. 

 

 

R % aS aR

1.29 t -Bu 85 3 1

1.30 Phenyl 4 1

1.31 i -Pr 85 6.4 1

1.32 Et 7.1 1

1.33 Me 75 7.2 1  

Scheme 4. Meyers Oxazoline Approach to the Mastigophorenes. 

 

 Of all the biaryl natural products known, gossypol (1.3) has garnered much 

attention from the scientific community since its isolation in the late 19th century.  

Gossypol (1.3) was first isolated by Longmore and Marchlewski21 from cotton seed oil, 

but it was not identified as the toxic substance until 1915.22  The absolute configuration 

of gossypol was not elucidated until 1938 by Adams.23  While both enantiomers were 

found in nature, each had a different biological effect.  The aR antipode is used in China 

as an oral contraceptive24, while theaSantipode has been used as a treatment for 
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herpes,25 among other activities.  The structure of gossypol was not confirmed until 

Edwards 26 27 completed the total synthesis in 1958 (Scheme 5).  This synthesis started 

with the condensation of diethyl succinate and benzaldehyde 1.39.  This product was 

then treated with acetic anhydride and saponified to afford naphthyl derivative 1.40.  

Reduction of carboxylic acid 1.40 to a methyl group was followed by a phenolic coupling 

to arrive at  binaphthyl 1.42 as a racemate.  Cleavage of the methyl ethers and 

installation of the aldehyde completed the first total synthesis of (±)-gossypol (1.3). 

 

 

Scheme 5.  Edward’s Synthesis of Gossypol. 

 

The first enantioselective synthesis of gossypol was accomplished by Meyers28 

using a chiral oxazoline auxiliary.  (S)-(+)-tert-leucinol (1.45) was condensed with the 

acid chloride derived from 1.44.  The derived amide was dehydrated to form the 

oxazoline (1.46) (Scheme 6).  Selective bromination was followed by an Ullmann 

coupling to arrive at the aS-1.47 with a 11:1 atropo-diastereoselectivity.29  The selectivity 

observed in this coupling results from the steric hindrance of the t-butyl group moving 

away from the aromatic ring in the bond forming step.  The synthesis of gossypol was 
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then completed by hydrolysis of the oxazoline to the carboxylic acid followed by its 

reduction to a methyl group.  The methyl ethers were then removed, and the primary 

alcohol was oxidized to arrive at the aS antipode of gossypol (1.3). 

 

 

Scheme 6.  Meyer’s Synthesis of Gossypol. 

 

 In the course of screening natural products for antibiotic activity, Schaffner30 

isolated a novel compound from the bacteria MIcromonospora purpureochromogenes 

subsp. halotolerans, named crisamicin A (1.58), that showed minimal inhibitory 

concentration of 0.2 to 10. g/mL for several strains of gram positive bacteria.  

Crisamicin A also showed activity against B16 Murine melanoma and herpes simplex.31.  

With only two ortho substituents, crisamicin does not exhibit atropisomerism.  A single 

total synthesis has been completed by  Yang32 starting with palladium catalyzed 

alkoxycarbonylative annulations to form the cis-pyran lactone 1.52 (Scheme 7).  This 

transformation can be explained by the formation of the palladium complex 1.49 followed 
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by a nucleophilic attack of the free alcohol arising to the alkylpalladium 1.50.  Carbon 

monoxide insertion into 1.50 followed by reductive elimination forms the lactone 1.52. 

 

 

Scheme 7.  Mechanism for Palladium Catalyzed Alkoxycarbonylative Annulations. 

 

The lactone 1.52 was then oxidized to the quinone 1.53 (Scheme 8).  The 

quinone then undergoes a Diels-Alder reaction with diene 1.54 regioselectively.  After 

oxidation, the phenol was converted to the boronate ester 1.55.  Homocoupling of 1.55 

was attempted with various palladium, nickel, and copper catalysts with no success.  

The robust catalyst 1.56 was found to be active enough to provide the cross coupling 

product 1.57.  The protected hydroquinone was then liberated and oxidized to the 

quinone.  The total synthesis of crisamicin A (1.58) was completed by removal of the 

methyl ether.     
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Scheme 8.  Yang’s Synthesis of Crisamicin A. 

 

 Bianthraquinones have been isolated from several different sources.  Biphyscion 

is one of these anthraquinones.  An interesting aspect is that both the C7,C7’ and 

C5,C7’ linkage of the anthraquinone have been isolated.  The C5,C7’ isomer has been 

isolated from the roots of Senna lindheimeriana.33  A glycosylated variant of this isomer 

was also isolated from the plant Cassia torosa Cav.  The C7,C7’ isomer has been 

isolated from the extracts of a toadstool34 in Europe.  All three possible isomers (C7,C7’, 

C5,C7’, and C5,C5’) were isolated from volcanic ash soil.35  These bisanthraquinones 

were isolated as a single atropisomer.  The only synthesis of a molecule in this family 

was accomplished by Hauser.36  The biaryl was formed through an Ullmann coupling of 

iodotoluene 1.59 (Scheme 9).  Utilizing a two directional apporach, biaryl 1.60 was then 

converted to the sulfone 1.61.  The bis-anion derived from 1.61 was reacted with 5-
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methyl cyclohexenone 1.62.  The bis-annulation product was then oxidized to bis-

anthraquinone 1.63.  Finally, racemic biphyscion 1.64 was furnished by selective 

removal of the C8 and C8’ methyl ether.   

  

 

Scheme 9. Hauser’s Synthesis of Biphyscion. 

 

 The New Zealand toadstool Dermocybe cardinalis was found to be the source of 

a family of pyranonaphthoquinones termed the cardinalins.  Cardinalin 4 and 5 were 

shown to inhibit the growth of P388 murine leukemia cell with an IC50 values of 0.28 and 

0.40 g/mL respectively.37  Several approaches towards the total synthesis of the 

cardinalin family of natural products have been reported.  Brimble’s38, 39 approach led to 

the core of the cardinalins without the central phenols to encumber the dimerization 

(Scheme 10).  This approach entailed a Hauser-Kraus annulation between the cyano-

phthalide 1.65 and the Michael acceptor 1.66 to arrive at the naphthyl core 1.67.  The 

benzyl phenol was then converted to the activated naphthyl triflate 1.68.  A Suzuki-

Miyaura cross coupling provided the binaphthyl 1.69.  Formation of the dihydropyran ring 
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and oxidation to the naphthylquinone completed the dimeric pyranonaphthoquinone core 

1.70 of the cardinalins.   

 

 

Scheme 10.  Brimble’s Approach to the Cardinalins. 

 

In 2007, the total synthesis of cardinalin 3 was reported by de Koning.40  In his 

first approach to cardinalin 3, de Koning reported the late stage dimerization of the 

monomer, ventiloquinone L.  The choice was then made to form the biaryl bond early in 

the synthesis.  The biaryl coupling was accomplished by an Ullmann type coupling to 

arrive at 1.74.  With the biaryl core in place, a two directional approach was used to 

complete the synthesis.  The biaryl was elaborated in very much the same manner as 

Edward’s synthesis of gossypol with a Stobbe condensation and Claisen rearrangement 

to arrive at 1.75.  The palladium mediated dihydropyran formation was followed by the 

reduction of the resulting alkene to arrive at 1.75 exclusively as a cis-1,3-dimethylpyran.  

Oxidation to the naphthylquinone and selective removal of the methyl ether provided an 

atropo-diastereoisomeric mixture of cardinalin 3 (1.76) plus less than 5% of leakage to 

the trans-1,3-dimethylpyran.   
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Scheme 11.  De Koning’s Total Synthesis of Cardinalin 3. 

 

 Eight bioxanthracene ES-242 natural products were isolated in 1992 by 

Matsuda41 from a fungus, Vertucillium sp. SPC-15898.  A group of eleven 

bioxanthracenes were later isolated from the insect pathogenic fungus Cordyceps 

pseudomilitaris BCC1620.42  An interesting observation was that not all of the 

bioxanthracenes had the same connectivity.  Of the eleven compounds, eight were 

dimeric; and of the eight, six are symmetrical while the other two were unsymmetrical 

isomers.  ES 242-1 and ES 242-2 were shown to bind to the N-methyl-D-aspartate 

(NMDA) receptor inhibiting [3H] TCP binding.  The activity was shown to inhibit [3H] TCP 

binding in the M concentration range in a competitive manner.  Bioxanthracene ES-242 

was ineffective on binding to [3H] kainite, another subtype of the excitatory amino acid 

receptor.  Tatsuta43 accomplished the first racemic synthesis of bioxanthracene (Scheme 

12).  The synthesis started with a Stauton-Weinreb annulation was accomplished 

between the toluate anion of methyl ester 1.77 and lactone 1.78 to furnish the tricycle 

1.79.  Oxidation and complete reduction of the lactone produces naphthyl ether 1.81.   
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The biaryl was formed through oxidative coupling using CuCl(OH) resulting in a 1:1 

mixture of atropo-diastereomers.  The synthesis was then completed following 

aromatization and hydrolysis of the MOM group.   

Bioxanthracene ES-242-4 was isolated as a single atropisomer but the absolute 

stereochemistry about the biaryl bond was unknown.  Assignment of the absolute 

stereochemistry was later reported based on single crystal x-ray analysis of the bis-

benzyl ether derived from the phenol in ES-242-444.  From the crystal structure, the 

natural product ES-242-4 was assigned the aS configuration.  The absolute 

configuration of all the bioxanthracenes45 were determined by relating the optical rotation 

and the crystal structure of ES 242-4 with the known optical rotations of the other 

molecules in the family of bioxanthracenes.   

 

 

Scheme 12.  Tatsuta’s Synthesis of Bioxanthracene ES-242-4. 

 

 Nigerone46 (1.88) was isolated as the major toxic pigment from the fungus 

Aspergillus niger V. Tiegh taken off a Mozambican ground nut.  The observed optical 
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rotation of nigerone was attributed to atropisomerism of the central biaryl bond.  The 

barrier of rotation was found to be high enough that heating at reflux in acetic acid for 

four hours only caused minor change in optical rotation.  The absolute configuration of 

nigerone was later assigned by a total synthesis completed by Kozlowski.47  The 

bisnaphthylpyrone moiety was prepared from the keto-sulfoxide 1.85 (Scheme 13).  The 

sulfoxide was condensed with acetaldehyde following Kozlowski’s elimination of the 

sulfenic acid to afford pyrone 1.86.  An oxidative coupling using 1,5 diazo-cis-decalin 

copper catalyst formed binaphthyl 1.87 in 80% ee.  The ambiguity of the binaphthyl bond 

configuration was resolved when the calculated CD spectra of the aR and aS 

atropisomers were compared to the natural product.48  This comparison allowed for the 

assignment of the binaphthyl bond to be of the aR configuration.  The synthesis of 

nigerone was completed by a base mediated isomerization from binaphthyl 1.87.   

 

 

Scheme 13. Asymmetric Synthesis of Nigerone by Kozlowski. 
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 The identification of small molecules that inhibit protein kinase C without 

inhibition of protein kinase A has been a goal of many groups.  Protein kinase C has 

been considered a good molecular target for cancer therapy.  The calphostins were 

reported to be selective PKC inhibitors.  The calphostins were isolated from a fungi 

Cladosporium cladosporioides.49  The four compounds showed IC50 values ranging from 

0.05-0.25 M without inhibition of the protein kinase A at two hundred times 

concentration.  This family was also found to act as a photosensitizer and produce 

singlet oxygen.  The chiral axis was assigned as aS based on the comparison of the CD 

spectra with that of the known cercosporin.50  The first total synthesis was performed by 

Broka’s group at Syntex .51  The naphthyl quinone was formed by the iron oxidation of 

the lithium naphthyl 1.89 (Scheme 14), arriving at both atropisomers 1.90 and 1.91, that 

were separable.  After removal of the TBDPS and benzyl groups, the core of the 

calphostins was completed by a second iron oxidation to arrive at calphostin D (1.93).     

 

 

Scheme 14.  Broka’s Approach to Calphostin D. 
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A second approach to calphostion D was reported by Hauser52.  The key step of 

this approach was dimerization of o-naphthoquinine 1.94 with TFA followed by the slow 

addition of the titanium reagent to re-oxidize the hydroquinone resulting from the o-

naphthoquinine (Scheme 15).  The ability to couple without an oxidizing agent shows 

that this coupling proceeds through an ionic mechanism and not a one election transfer 

mechanism.  An ionic mechanism was supported by the observation that o-

naphthoquinone 1.94 in the absence of oxidant gave a 1:1 mixture of the coupled 

product 1.102 and the hydroquinone 1.101.  With a Lewis acid coordination to an o-

naphthoquinone, a conjugate addition from a second o-naphthoquinone followed by 

aromatization will afford the first binaphthyl linkage.  This process is then repeated to 

give the bis-fused binaphthyl ring system.  Oxidation of the hydroquinone can then be 

envisioned by the reduction of a third molecule of o-naphthoquinone 1.94 to provide the 

hydroquinone 1.101.   
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Scheme 15. Proposed Lewis Acid Catalysed Dimerization. 

 

 During the course of screening for novel HIV drugs, the National Cancer institute 

isolated a novel pair of atropisomers termed the michellamines53 from the tropical vine 

Ancistrocladus abbreviates collected in Cameroon.  Both michellamines showed anti-

HIV activity against several HIV cell lines.  One novel observation was that both type I 

and type II HIV cell lines were affected by the michellamines while most compounds to 

date only affect one.  Michellamine B showed greater effectiveness with EC50 values 

ranging from 1 to 88 M.54  During structure elucidation, the michellamines revealed 

three biaryl bonds with two points of axial chirality with no hindered rotation about the 
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central binaphthyl bond.  Proven to be a dimer of korupensamine, michellamine A was 

shown to have both atropisomers of the aS configuration while michellamine B was 

shown to have one aR antipode and one aS antipode.  Lipshutz55 synthesized the 

monomeric unit korupensamine in an stereoselective manner (Scheme 16).  The key 

coupling proceeded through Suzuki coupling of 1.103 and 1.104.  The coupling 

proceeded in a very stereoselective manner due to proposed pi stacking of the naphthyl 

ring effectively blocking one face of the biaryl bond.  The biaryl was then converted to 

korupensamine A (1.108) by liberation of the two primary alcohols and reduction to the 

methyl group.   

 

 

Scheme 16. Lipshutz Synthesis of Korupensamine A. 

 



23 
 

 In a convergent total synthesis of the michellamines, Bringmann began with a 

Diels-Alder reaction between bromoquinone 1.110 and diene 1.111 (Scheme 17).  

Aromatization and methyl ether formation led to naphthoquinone 1.112.  The 

naphthoquinone was then homocoupled by means of an Ullmann coupling and reductive 

acetylation afforded 1.113.  Selective acetate removal and activation of the phenol as a 

triflate led to the bis-triflate 1.114.  Suzuki coupling of 1.114 and 1.115, global 

deprotection and chiral separation of the three possible pairs of atropisomers completed 

the total synthesis of natural michellamine A (1.108) and B (1.109), plus the unnatural 

michellamine C. 

 

 

Scheme 17.  Convergent Total Synthesis of the Michellamines. 

 

 Rugulosin A is an interesting dimeric natural product, isolated from the fungus P. 

rugulosum Thom56 and has been found to have anti-influenza and anti-HIV properties.  
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The cage like core, termed skyrin, made the determination of the structure difficult until 

the X-ray structure of a heavy atom derivative was solved.57  The structure was then 

confirmed by total synthesis concurrently by the Nicolaou group and the Snider group.  

The Nicolaou58 approach was based on a novel multistep ―cytoskryin cascade‖ reaction 

to form the skyrin core (Scheme 18).  The monomer unit was dimerized through a 

double Michael type addition.  This reaction in most cases stalled at the ether 1.118.   

Further oxidation to the bis-quinone followed by treatment with triethyl amine provided a 

further two Michael type additions arriving at the skyrin core.   Removal of the protecting 

groups led to the natural product (+)-rugulosin.  This procedure was later optimized to 

arrive at a one pot procedure with subsequent addition of oxidant and triethyl amine.59   
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Scheme 18.  The Multistep ―Cytoskryin Cascade.‖ 

 

 An explanation offered for the observed diastereoselectivity of the dimerization 

suggests spatial arrangements the monomer could orientate itself in the dimerization.  

The two endo arrangements are equivalent but unfavorable due to the sterics of a 

hydroxyl group positioned between the two ring systems.  Of the two exo approaches 

the syn arrangement would be more sterically congested with two hydroxyl groups 
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positioned between the two rings where the anti arrangement would position these two 

hydroxyl groups far away from each other.   

Snider’s60 approach to a rubulosin analog was much along the same strategic 

vein but more of a stepwise approach (Scheme 19).  A Hauser annulation with 

cyclohexenone 1.123 and the anion of 1.124 provided the tricycle 1.125.  The 

dimerization and ether formation in 1.126 was accomplished with the use of lead acetate 

as an oxidant.  The double Michael addition was then accomplished by heating in 

pyridine.  

 

 

Scheme 19.  Snider’s Approach to Rugulosin Analogs. 
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Isolation, Structure and Biological Activity of Hibarimicins 

Angelmicin B  

In 1993, Uehara and coworkers reported the isolation of two novel inhibitor of 

oncogenic signal transduction.61  These compounds, termed the angelmicins, were 

isolated from a rare actinomycete Microbispora sp. AA9966 collected at Mt. Tennyo, 

Japan.  Angelmicin B showed selective growth inhibition against abl as well as src 

transformed cells in the range of 0.3 M to 3.0 M.  The inhibitory effects on ras 

transformed cells were not significant, while doxorubicin treated cells displayed no shift 

in IC50.  This information suggests that angelmicin B selectively inhibits tyrosine kinase 

activity.  Honma62 later reported that angelmicin B inhibited 50% cell growth (IC50) at 

0.06 M in leukemia HL-60 cells.  Angelmicin B was also shown to promote the 

differentiation of HL-60 cells into mature cells.  The differentiation was demonstrated by 

the induction of NBT reduction and morphological changes in the cells.  The 

concentration needed to induce this maturation by most other anticancer drugs is near 

the level of cytotoxicity for the cell.  In the case of the angelmicins, the main observation 

in the treated cells was differentiation without apoptosis.  This study also showed that 

the growth inhibition and the tyrosine kinase inhibition do not correlate with each other. 

 

Isolation and Biological Activity of the Hibarimicins  

In 1998, Hori and coworkers63 described another novel tyrosine-kinase inhibitor, 

isolated from a soil sample collected at Hibari, Toyama Prefecture, Japan.  This sample 

contained 10 different compounds collectively called the hibarimicins (Figure 5).  The 

bacteria strain that produced these compounds was identified as Microbispora rosea 

subspecies Hibaria TP A0121.  Biological activity of the hibarimicins was evaluated in an 

assay that allowed detection of the inhibition of four different protein kinases during a 
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single assay.  Hibarimicin A (1.128), B (1.129), C (1.130) and D (1.131) inhibited the 

activity of protein tyrosine kinase (PTK) without significant effect on protein kinase A 

(PTA) or C (PTC).  Hibarimicin A (1.128) showed the most potent inhibition of PTK.  All 

four hibarmicins displayed some inhibition of calmodulin-dependant protein kinase III 

(CAMKIII) as is seen in other PTK inhibitors.  The in vitro studies showed modest activity 

against gram positive bacteria, and cytotoxicity towards cell lines B16-F10 (Murine 

melanoma) and HCT-116 (Human colon carcinoma) showed IC50 of 0.7 to 2.0 g/mL 

and 1.9 to 3.6 g/mL, respectively.  This study also demonstrated the inhibition of 

several different leukemia cell lines with IC50 values between 1.79 g/mL and 0.5 g/mL.  

 

Structure Elucidation 

The hibarimicins were shown to have identical UV-visible spectra and similar IR 

spectra.64  The similar spectra suggested that all the hibarimicins share a common 

chromophore and, thus, a common aglycone.  In neutral or acidic conditions, the 

solutions were red in color with an absorption band at 511 nm.  In basic conditions, the 

solution turned green and the absorption band at 511 nm disappeared while bands at 

614 and 647 nm appeared.  The structure of hibarimicin B (1.129) was elucidated first 

and structural assignment of other hibiramicines were based on comparison to 

hibarimicin B (1.129).  Through extensive spectroscopic analysis, the structure of 

hibarimicin B (1.129) was determined to be the structure in Figure 5.  Due to the 

complexity of the NMR spectra, several ambiguities were left unresolved.  Coupling 

constants combined with NOE correlations confirmed the relative stereochemistry of the 

A and H rings but the absolute configuration remains unsolved.  The absolute and 

relative stereochemistry of C13 on the A ring was left unassigned, but if we assume that 

the hibarimicins are made through a dimerization, the stereochemistry should match C13 
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of the H ring.  The absolute configuration of the sugars has also been left unassigned.  A 

topic that was not addressed was whether the hibarimicins exist as a single atropisomer 

or if there is free rotation about the central aryl-quinone bond.  Once the structure was 

elucidated, hibarimicin B (1.129) was shown to be the same compound as angelmicin 

B.65  

 

 

Figure 5: Structures of the Hibarimicins. 

 

Biosynthesis  

In an attempt to determine the biosynthesis of the hibarimicins, Microbispora 

rosea was fed with 1-13C, 2-13C, and 1,2-13C labeled acetates.66  All carbons in the 

hibarimicins were shown to be derived from these acetates except the methoxy carbon 

suggesting that the hibarimicins are arrived at through a polyketide pathway.  The 13C 

incorporation of the different feeding experiments suggested that the aglycone is 
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produced by a decarboxylation (at C-14) and skeletal rearrangement of an undecaketide 

chain (Scheme 20).  Following the rearrangement, an oxidative dimerization of the two 

subunits 1.138 arrives at the symmetric core of the hibarimicins.  The hibarimicins are 

then completed by post-polyketide glycosylation of the aglycone.   

 

 

Scheme 20:  The Proposed Biosynthesis of the Hibarimicins. 
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 The proposed biosynthesis of the hibarimicins incorporates a unique skeletal 

rearrangement.  Very little is understood about the actual rearrangement, except for the 

13C labeled acetate incorporation pattern.  The 13C labeling pattern shows an intact 

acetate unit is incorporated for all the carbons in the aglycone except that of C-10, C-14, 

and C-15.  A plausible explanation for this incorporation pattern could involve two 

successive aldol condensations from the undecaketide chain (Scheme 21) which would 

provide a naphthalene core (1.142).  An aldol reaction would form the C-14-C-15 bond to 

afford compound 1.143, while a second aldol reaction forms the carbon-carbon bond 

between carbon 9 and 10.  The second aldol creates a [3.1.1] bicyclic system (1.144) 

with a highly strained four-member ring that may undergo a retro-aldol, cleaving the C-

11-C-15 bond.  The tetracycle can then be completed with a final aldol reaction, forming 

the C-13-C-14 bond.  That is followed by a decarboxylation at the C-14 position to form 

the core of the tetracycle.  This proposed pathway would correlate to the correct 

incorporation pattern of 13C acetates shown in Hori’s work.   
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Scheme 21.  Plausible Pathway for Skeletal Rearrangement in the Hibarimicins. 

 

This proposed biosynthesis was supported by mutating TP-A0121 with N-Methyl-

N′-nitro-N-nitrosoguanidine (NTG).67  This random mutation method allowed for isolation 

of biosynthetic precursors, providing an insight into the details of the biosynthesis of the 

hibarimicins. From this study, formation of the tetracyclic core as the first step was 

confirmed by the isolation of a tetracycle that did not incorporate the skeletal 

rearrangement.  The next important compound that was isolated was a glycosylated 

symmetric dimer of the tetracyclic core, HMP-Y6 (1.147) (Scheme 22).  This dimer was 

then fed to a mutant strain that was a non-producer of hibarimicin and was not converted 

to hibarimicin B (1.129).  HMP-Y6 (1.147) was deglycosylated to arrive at the symmetric 

dimer HMP-Y1 (1.139).  A knockout strain of the bacteria that could not produce the 
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hibarimicins was then fed HMP-Y1 (1.139), which was converted to the fully glycosylated 

hibarimicins.  The conversion of HMP-Y1 (1.139) was confirmed by repeating the 

feeding study with 13C labeled HMP-Y1 (1.139) through acidic methanolysis of the 

labeled HMP-Y6 (1.147).  These block mutants provide a timeline for the biosynthesis of 

the hibarimicins.  The oxidative dimerization to a symmetric dimer is followed by 

selective oxidation and ether formation to arrive at the core of the hibarimicins.  This 

core is glycosylated in a final step to arrive at the individual hibarimicins.    

 

 

Scheme 22. Block Mutants that Describe the Biosynthetic Timeline of Hibarimicins. 

 

Models that demonstrate Hibiramicin Atropisomers 

 Hibarimicins present a seemingly unique aryl-quinone linkage at the biaryl bond.  

Only one other natural product has been show to have this motif.  8’-

Hydroxyisodiospryrin (1.151) has shown to be stable atropisomers as shown by the 

isolation of both racemic68 and enantiomericly69 pure forms from different natural 

sources.  Synthesis of the (+) isomer was provided by the H2O2 oxidation of (+)-
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isodiospyrin in poor yields.69  Sargent70 determined the absolute stereochemistry by 

means of Meyers oxazoline 1.149 (Scheme 23).  This coupling proceeded in a 7:1 

selectivity for the aR atropisomer.  The 7:1 ratio of atropisomers remained consistent 

until the final product showing no rotation about the biaryl axis.   

 

 

Scheme 23.  Sargent’s Synthesis of Aryl Quinone by a Meyers Oxazoline. 

 

Roush’s Model of the Angelmicin Core 

One topic that was left uninvestigated in the structural elucidation of the 

hibarimicins is the possibility of atropisomers.  Roush’s group71 synthesized a model 

system to examine if there is a chiral axis (Scheme 24).  Roush attempted the formation 

of the naphthyl-naphthylquinone core through both cross coupling and an Ullmann 

coupling with no success. Suzuki coupling of the arylboronic acid (1.152) and the 

bromonaphthylquinine (1.153) eventually provided the desired biaryl (1.154).  The 

methylene protons on the benzyl ether appeared as an AB quartet in 1H NMR indicating 

the presence of chirality, thus atropisomers.  In an effort to determine the barrier of 

rotation, variable temperature NMR experiments were performed.  The rotational barrier 

of this model was determined to be greater than 22 kcal/mol.  With this barrier, 

calculation for the trimethoxy biaryl (1.155) was then estimated to be 25 kcal/mol.   
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Scheme 24.  Roush’s Model of Atropisomerism in Angelmicin. 

 

Sulikowski Model of the Hibarimicin Core 

 Another model was provided by our group.72  This model was initiated with the 

biaryl bond already in place with dibenzofuran.  This furan was elaborated to the 

monoketal quinone 1.157 (Scheme 25).  The quinone was a very reactive dienophile in a 

Diels-Alder reaction with cyclopentadiene.  Hydrolysis and dehydrobromination lead to 

the biaryl phenol 1.158.  The rotational barrier was so small for the free hydroxyl at room 

temperature that 1.158 appeared as a single isomer.  The free hydroxyl was protected 

as a methoxymethyl ether 1.159, and the methylene protons appeared as an AB quartet 

indicating the presence of approximately 1:1 mixture of atropisomers.  The rotation 

barrier was again probed by variable temperature NMR and found not to coalesce at 

148°C.  This failure to coalesce at 148°C would correspond to a minimum barrier of 

rotation being between 20 and 25 kcal/mol.  The low barrier to rotation for the free 

hydroxyl 1.158 was speculated to be a result of the lower energy state produced by 

tautorimization of the phenol through the quinone 1.160.   
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Scheme 25.  Sulikowski Model of Atropisomerism in Hibarimicins. 

 

 Comparison of HMP-Y1 (1.139) to other natural products suggests that HMP-Y1 

(1.139) exists as a stable atropo-diastereomer, with unassigned configuration.  Oxidation 

of HMP-Y1 (1.139) to hibarimicinone (1.140) would be expected to occur with retention 

of configuration of the biaryl bond (Scheme 26).  One of the major goals of this research 

is the assignment of absolute configuration about the biaryl bond in this family of natural 

products.  This goal will be addressed in Chapter II.      
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Scheme 26.  Absolute Configuration of HMP-Y1 is Retained in Hibarimicinone. 
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CHAPTER II 

 

SYNTHETIC METHODS DIRECTED TOWARD DIMERIC BIARYL NATURAL 

PRODUCTS 

 

Synthetic Methods for Formation of Biaryl Carbon-Carbon Bonds 

 The formation of biaryl bonds has long been a challenge in synthetic chemistry.  

At the turn of the century, Ullmann discovered a synthetically useful transformation in the 

coupling of bromo-benzene (2.1).73  The mechanism of this reaction begins with 

oxidative insertion of copper into the carbon-bromine bond.  This copper(II) intermediate 

2.2 is then reduced by a second equivalent of copper to arrive at the aryl copper 2.3 

(Scheme 27).  This copper(I) species then undergoes a second oxidative insertion 

leading to 2.4.  Once at the copper(III) intermediate (2.4), the copper reductively 

eliminates to arrive at the biaryl product and a second equivalent of copper(I) bromide.  

The Ullmann coupling has shown to be effective with a wide scope of substrates 

especially sterically encumbered biaryls.74   

 

Scheme 27.  A Mechanistic View of the Ullmann Coupling 
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An early method to form a biaryl carbon-carbon bond is oxidative phenol 

coupling.  This coupling reaction is promoted using molecular oxygen75 or iron 

trichloride76 as an oxidant.  Mechanistically, the removal of one electron from naphthol 

2.6 by an oxidant provides radical cation 2.8 (Scheme 28).  Dimerization of 2.8 followed 

by loss of a proton and tautomerization provides BINOL (2.7).  Interest in biaryl 

atropisomers was modest until the sevelopment of BINAP77 (derived from BINOL) as a 

ligand in asymmetric synthesis.  Since that time, several metals including gold78, 

manganese79, ruthenium80 and vanadium81 have been shown to facilitate oxidative 

dimerization of of -naphthol (2.6).   

 

 

Scheme 28.   Proposed Mechanism for the One Electron Oxidation of -Naphthol (2.6). 

 

 Hypervalent iodine reagents such as bis(trifluoroacetate)iodo-benzene (PIFA)82 

have the ability to oxidize electron rich aromatic rings leading to radical cation 

intermediates 2.12 (Scheme 29).  The latter can then be trapped by a variety of 

nucleophiles including a second benzene ring to form a biaryl carbon-carbon bond.      
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Scheme 29.  Mechanism of PIFA Oxidative Coupling. 

 

 Oxidative coupling of copper complexes (cuprates) was described by 

Whitesides83 in the late 1960’s.  In this coupling, two equivalents of the aryl lithium 2.14 

are added to a copper(I) salt to form the copper ate species 2.15 (Scheme 30).  This 

copper species is then oxidized by molecular oxygen to arrive at biaryl 2.16.  Typically 

the required aryl lithium is produced from an aryl halide through a lithium halogen 

exchange.  Lipshutz84 expanded on this chemistry by employing higher order cuprates to 

form unsymmetrical biaryls85 and demonstrating intramolecular biaryl couplings.86 

 

 

Scheme 30.  Oxidative Coupling of Cuperates. 

 

 One drawback to the oxidation of organocuprates with molecular oxygen is 

frequently observed oxidative by-products resulting in low yields.  To solve this problem 

other organic oxidants have been examined.  For example, benzoquinone87 has been 

used as the oxidant leading to hydroquinone as a by-product.  In 2005, Spring88 reported 

dinitrobenzamide 2.18 as an oxidant that produced by-products easily removed by 

filtration and only required sub-stoichiometric amounts of 2.18. (Scheme 31).  Spring 
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later showed that the initial use of an aryl halide was not necessary as a starting 

material, but demonstrated directed ortho lithiation of an aromatic ring could lead to the 

copper ate complex.   

 

 

Scheme 31.  Spring’s Direct Lithiation and Cuprate Oxidation. 

 

Finally, the widely utilized Suzuki and Stille couplings are limited to the 

preparation of sterically less encumbered biaryls.89   

 

Methods to Arrive at a Single Atropisomer 

 The ability to derive a single atropisomer has become important since the utility 

of BINAP in asymmetric synthesis has been demonstrated.  Further, many complex 

natural products incorporate atropisomers within their structure.  There are three general 

methods to produce a single atropisomer.  First, resolution has been employed, typically 

requiring the formation of the biaryl as a racemate followed by classical formation of 

diastereomeric salts or esters.  A more efficient method is to employ a dynamic kinetic 

resolution.  Dynamic resolution is accomplished by changing the nature of the biaryl 

bond so that the barrier of rotation is lowered and the atropisomer easily interconverts at 

room temperature.  Once an equilibrium is established a single atropisomer can be 
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derived from the interconverting pair of atropisomers by a chemical reaction under 

kinetic control.  The third and most effective method is direct asymmetric coupling.  

Resolution of atropisomers has a high dependence on structure and/or functional 

group requirements.  Advances in chromatography occasionally allow direct separation 

of atropo-diastereomers or atropo-enantiomers.  Direct separation by chromatography 

was employed in the isolation of atropo-diastereomeric natural products mastigophorene 

A (1.22) and B (1.23).  Atropo-enantiomers have been separated by chiral 

chromatography.  A classical method for resolution of BINOL (2.7) atropisomers is 

crystallization of diastereomeric salts.  For example, BINOL (2.7) have been separated 

by selective crystallization of copper(I) salts of cinchonine alkaloid complexs.90, 91 

Other methods of resolution use temporary covalent modification of a chiral 

atropisomer using a chiral auxiliary resulting in atropo-diastereomers separable by 

chromatography.  This requires a method for reversal of the covalent bond and recovery 

of single atropo-enatiomers.  An early example of this approach is the resolution of 

gossypol (1.3) by formation of diastereomeric Schiff bases (2.21)92 (Scheme 32).  Other 

biaryls have used free phenols or amines to create diastereomeric esters and amides, 

respectively.  Three chiral auxiliaries that are most often used are: menthol 

chloroformate (2.22),93 camphorsulfonyl chloride (2.23),94 and Mosher’s acid (2.24).95  All 

of these compounds allow for the resolution of atropisomers through chromatography of 

diastereomeric ethers/amides.   
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Scheme 32.  Example of Auxiliaries used in the Resolution of Atropisomers. 

 

Enzymes have been used in the desymmetrization of meso isomers and kinetic 

resolution of racemic mixtures. Typically lipases are employed in these 

transformations.96  For example, the hydrolysis of a single enantiotopic acetate of meso 

biaryl 2.25 allowed for the desymmetrization of the molecule and production of a single 

atropisomer (Scheme 33).97  If porcine pancreatic lipase (PPL) is used as the enzyme 

then phenol 2.26 with the aS configuration predominates.  If rhizopus oryzae lipase 

(ROL) is used in the hydrolysis of 2.25 then phenol aR-2.26 predominates.  The chiral 

recognition of the active site of an enzyme has been mimicked using a chiral diamine in 

the kinetic resolution of BINOL (2.7).  In this kinetic resolution, the vinyl ether derivative 

of BINOL (2.27) was subjected to palladium mediated methanolysis with bulky diamine 
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2.28.  The (aR)-2.27 was then recovered in 96% ee while the aS isomer was converted 

to the naphthol (aS)-2.29 in a modest 69% ee.   

 

 

Scheme 33.  Desymmetrization and Kinetic Resolution Using Enzymatic and Non-

Enzymatic methods. 

 

Resolution can provide optically pure atropisomers but a disadvantage is half of 

the material is lost as the undesired atropisomer.  Dynamic resolution addresses this 

problem as all the material is converted to a single atropisomer.  Dynamic kinetic 

resolution in biaryl systems has been championed by Bringmann. A common molecular 

structure for the identification of dynamic kinetic resolution is the formation of a biaryl 
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lactone such as 2.31.  The biaryl lactone 2.31 was shown to be configurationally labile 

(Scheme 34).  The lactone bridge lowers the barrier of rotation such that the 

atropisomers interconvert readily at room temperature.  This interconversion allows for 

an enantioselective ring opening with many different chiral nucleophiles. The use of 

oxygen99 and nitrogen100 nucleophiles have been shown.  While Bringmann first 

demonstrated a hydride addition with a chiral aluminum hydride,101 the use of chiral 

borane reductions has been more effective98. 

Molecular modeling102 of the chiral borane reduction reaction showed that the 

initial hydride attack was not the critical stereochemical step as was shown earlier with 

chiral nucleophiles.  The coordination of the oxaborolidine to the lactone is followed by 

the first addition of hydride.  The axial addition of hydride was shown to add 

preferentially to the Re face of the lactone carbonyl.  The resulting diboroheterocycle 

2.34, although energetically more stable, expanded to the six-membered 2.35 and then 

ring opening to aldehyde 2.36.  Interconversion of atropisomers is still possible at this 

point because of the relative low difference in barrier of rotation when compared to the 

energy barrier of the second hydride addition. Although in the second hydride delivery 

the energy difference between Re and Si faces is very low (0.3 kcal/mol) the difference 

in the aR vs. aS interconversion was significant at 3.5 kcal/mol. The difference in 

calculated energy predicted a mixture of isomers in a 99.8:0.2 ratio with a predominance 

of the aR isomer.  When 2.31 was reduced, there was a high correlation with this 

calculated energy difference as the selectivity gave a 98.5:1.5 ratio of the aR isomer 

2.32.  This selective reduction has been demonstrated with the R or S oxaborolidine to 

afford the aS or aR isomer.103  

 



46 
 

 

Scheme 34.  Mechanistic Analysis of Dynamic Kinetic Resolution 

 

 Very few examples of dynamic thermodynamic resolution (DTR) of atropisomers 

have been reported in the literature.104  The  use of biaryls in DTR began with  

Kocovsky’s105 discovery that a secondary asymmetric transformation controlled the 

enantioselection of self coupled 2-naphthols in Cu(II) diamine coupling.  This secondary 

asymmetric transformation was found to be one of three possible processes for directing  

the stereochemistry shown.106  The other two processes described were a 

diastereoselective crystallization and direct enantioselective coupling.  It was found that 

the substrate dictated which mechanism was followed.  Expanding on this methodology, 
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oligonaphthalenes107 were later synthesized and asymmetrized through this secondary 

transformation.  Wulff then used this methodology to deracemize vaulted biaryl 2.38 

(Scheme 35).108 With little mechanistic details known, Wulff109 proposed two pathways 

for this deracemization.  The first pathway follows an unusual copper C,O binding that 

was supported by some biaryl platinum complexes.110  The matched mode displays the 

O-Cu-O binding dominant while the mismatched mode breaks aromaticity to provide the 

copper bonding to oxygen and carbon of the biaryl bond in (aR)-2.41.  This mismatched 

binding motif allows for rotation about the biaryl bond, then relax to the matched pair in 

(aS)-2.41.  The matched (aS)-2.41 will then prefer the O-Cu-O bonding in (aS)-2.40.  

The second plausible path would include a tuatormerizism to the ketone, providing a SP3 

hybridized center in 2.42 allowing for the free rotation about the biaryl core.  This rotation 

allows for the matching for the diamine with the axis of symmetry.  The matched pair will 

then be rearomatized and cleavage of the copper complex provides the atropo-

enantioner enriched biaryl. 
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Scheme 35. Proposal for the Mechanism of Dynamic Thermodynamic Resolution. 

 

 The last method to arrive at a single atropisomer is that of direct asymmetric 

coupling reactions.  Coupling in this manner has been demonstrated using substrate and 

reagent control.  In the former method, substrate stereochemistry influences the biaryl 

bond stereoselectivity either under kinetic or thermodynamic control.  An example of 

undesired kinetic product converting to the thermodynamic, Evans111, 112 showed that the 

AB ring of vancomycin (1.1) could be formed initially in the undesired atropisomer (2.43) 

but when more of the global structure was in place, gentle heating resulted in adapting 

the correct biaryl stereochemistry (2.44) (Scheme 36).  Spring113 showed that the 

structural restraints in sanguiin H-5 (1.4) imparted complete selectivity in formation of the 

aS atropisomer.  
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Scheme 36.  Atropo-diastereoselectivity under substrate control  

 

 In 1988 Miyano114 demostrated BINOL as a chiral auxiliary in biaryl asymmetric 

synthesis.  Following esterification of BINOL, bis-benzoate 2.48 was subjected to an 

Ullmann coupling to provide 2.49 in good yield and greater than 99% de (Scheme 37).  

The ester was then cleaved to provide 2.50 as a single atropisomer.115  Lipshutz86 later 

elaborated on this method of asymmetric biaryl synthesis by using a C-2 symmetric diol 

auxiliary.  Mitsunubo reaction of -naphthol BINOL with trans-hex-3-ene-1,6-diol, 

followed by a Sharpless asymmetric dihydroxylation, and protection led to acetonide 

2.51.  Copper coupling then provided a 12:1 mixture of bi-naphthol 2.52 favoring the aR 

isomer.   
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Scheme 37.  Chiral Tethers of Miyano and Lipshutz. 

 

 Meyers116 used a chiral oxazoline auxiliary to effect an asymmetric aromatic 

substitution resulting in biaryl bond formation.  Meyers proposed the formation of 

complex 2.53 (Scheme 38).  The aryl prefers complexation on the beta face of 2.53  

based on minimized steric interaction.  The addition of the aryl group follows the 

complexation where the aryl group may turn, providing room for loss of stereochemistry.  

This explains the loss of selectivity when the R1 group is an electron donating group, as 

it will compete with the methoxy in coordination to the magnesium.  The loss of 

BrMgOMe then completes the formation of the biaryl (aS)-2.55.  This provides 

stereoselectivity for the aR atropisomer in a ratio of 9:1.  The first stereoselective total 

synthesis of gossypol (1.3)117 and a diastereroselective total synthesis of 

mastigophorene A (1.22) and B (1.23)118 was later reported by Meyers using this 

methodology.  The synthesis of mastigophorene A (1.22) and B (1.23) proved to be 

interesting as each atropisomer was prepared by uses of the aR and aS chiral 

oxazolidines.   
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Scheme 38.  Mechanism of Selectivity in the Meyers Chiral Oxazolidine Coupling. 

 

Direct (catalytic) coupling of biaryls to arrive at a single atropisomer without use 

of a chiral auxiliary has been studied with minimal success.  Brussee119 first coupled 2-

naphthol in the presence of CuCl and four equivalents of amphetamine (2.56) to provide 

(aS)-BINOL in 95% ee (Scheme 39).  The mechanism was later investigated and 

proposed to involve a square planar copper complex.120  Also shown in this study was 

the observed enantioselectivity resulted from dynamic thermodynamic resolution of the 

coupled products.   

 

 

Scheme 39.  Brussee’s First Observed Enantioenriched Coupling of BINOL. 
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 The first to have success in kinetic biaryl carbon-carbon bond formation using a 

copper diamine complex was Kozlowski.121  Although several metals worked in this 

system, copper was the only metal to turn over in the catalytic cycle.  The proposed 

catalytic cycle starts with copper diamine 2.57 complexation to methyl 3-hydroxy-2-

naphthoate (2.58) (Scheme 40).  Oxidation then leads to the radical 2.60.  Differing from 

Brussee’s, the copper species was shown in this mechanism to be tetrahedral and not 

square planar and the atropisomeric products were a result of kinetic coupling.122  The 

selectivity is proposed to be derived from the coupling of radical 2.60 to naphthol 2.58.  

The diamine blocks the  face from attack so the coupling proceeds from the  face.  

The sp3 hybridized carbon relays the stereochemistry to the biaryl through 

tautomerization and the chiral catalyst turns over during the catalytic cycle to arrive at 

the (aR)-2.62.  Unfortunately, the scope of this coupling is limited to binaphthyl 

atropisomers.    
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Scheme 40.  Proposed Catalytic Cycle of Kozlowski Coupling. 

 

 Suzuki couplings have been demonstrated to provide an asymmetric biaryl.  An 

early report of this type of coupling was demonstrated by Buchwald.123  Initial reports 

coupled naphthyl halide 2.63 to boronic acid 2.64 in good to excellent enantiomeric 

excess with binaphthyl phosphine 2.65 as the chiral ligand (Scheme 41).  This 

methodology has only recently been expanded to coupling of functionalized biaryls.124  

Aryl bromide 2.67 was coupled with boronic acid 2.64 to provide the biaryl 2.68 with an 

80% ee.  Unfortunately, this method is doomed for failure when using electron rich 

biaryls common to many natural products due to the required oxidative insertion of Pd(0) 

into the aryl-halide bond.    
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Scheme 41.  Buchwald’s Asymmetric Suzuki Coupling. 

 

Synthetic Analysis of HMP-Y1 / Hibarimicins and Preliminary Studies 

 During the course of biosynthetic studies on the hibarimicins Kajiura125, 126 

showed 13C Labeled HMP-Y1 fed to a mutated strain of the hibarimicin producer 

provided 13C labeled hibarimicin B, while HMP-Y6 fed to the same mutated strain 

produced no hibarmicin B.  This result supports the biosynthetic pathway leading to the 

hibarimicins proceeds by oxidation of HMP-Y1 (1.139) to hibarimicinone followed by 

glycosylation to afford hibarimicin B (1.140).  We propose to employ a biomimetic 

oxidation of HMP-Y1 (1.139) to quinone 2.69 as a key step in the total synthesis of 

hibarimicione (Scheme 42).  We anticipate tautomerization of quinone 2.69 to o-

quinomethide 2.70 will set the stage for the addition of C13 tertiary alcohol to C8 to give 

furan 2.71.  Oxidation of hydroquinone 2.71 will then deliver hibarimicinone (1.140). Our 

immediate objective is to develop a synthesis of HMP-Y1 (1.139), a C-2 symmetric 

natural product.  Significantly, HMP-Y1 and hibarimicinone exist as atropo-

diastereomers of unassigned configuration, a structural feature not discussed in the 
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original isolation or subsequent biosynthesis studies.  One objective of our synthetic 

program is the assignment of configuration about the biaryl bond of HMP-Y1 (1.139) and 

hibarimicinone (1.140). 

 

 

Scheme 42.  Proposed Oxidative Conversion of HMP-Y1 to Hibarimicinone B. 

 

 As symmetrical dimers occur frequently in nature and several have been the 

subject of total synthesis.  In general, two approaches to dimeric natural products such 

as HMP-Y1 have been employed, biomimetic dimerization and two-directional 

assembly.127  Biomimetic dimerizations are perhaps most effective, in the case of HMP-
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Y1, this requires synthesis of aromatic polyketide 1.138 (Scheme 43).  A second 

approach starts from formation of biaryl 2.75 early in the synthesis and elaborate in a 

two directional manner.  For HMP-Y1 (1.139), we considered two bi-directional 

strategies.  The first entailed two consecutive annulations with the second annulation 

involving binaphthyl 2.73 and cyclohexenone 2.72.  The second two-directional 

approach involved annulation between cis-decalin 2.74 and biaryl 2.75. In either 

synthetic approach establishment of a single atropisomer of known configuation is a key 

issue to be addressed. 

 

 

Scheme 43.  Strategic Analysis of HMP-Y1. 

 

 Our initial strategy directed toward HMP-Y1 was to effect a double Staunton-

Weinreb annulation using two equivalents of cis-decalin 2.74 and bis-toluate anion 
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derived from biaryl ester 2.75 (Scheme 44).  We initially planned to assemble cis-decalin 

2.75 by way of an intramolecular Diels-Alder using triene 2.76 as a substrate.  Triene 

2.76 was proposed to be derived from D-methyl glucose (2.77).  We required biaryl ester 

2.75 to be prepared as a single atropisomer of known configuration by way of biaryl 

2.78, The latter ultimately derived from the oxidative coupling of toluene 2.79 available 

from inexpensive vanillin (2.80).128, 129 

 

 

Scheme 44.  Single Bis-Annulation Approach to HMP-Y1. 

 

 Three synthetic approaches to the hibarimicin cis-decalin have been described in 

the literature by the research groups of Roush, Mootoo and Sulikowski.   Roush and 

Mootoo prepared the cis-decalin common to hibarimicinone that incorporates a bridging 
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furan heterocycle in the G/H ring system.  Roush’s130 route began with the hydroboration 

of allene 2.80 and addition of the derived allyl borane to aldehyde 2.81 to provide -

hydroxysilane 2.82 (Scheme 45).  Following silylation of the secondary alcohol, a tin (II) 

mediated [3+2] annulations proceeded with modest stereoselectivity to provide furan 

2.84.  A Tamao-Fleming oxidation of 2.84 led to triol 2.85.  A series of protecting group 

manipulations then provided diol 2.86.  A double Swern oxidation provided an 

intermediate keto-aldehyde that was subjected to an intramolecular aldol reaction to 

provide beta-hydroxy ketone 2.81 as a nearly 1:1 mixture of alcohols 2.87 (equatorial 

alcohol).  The axial alcohol could be re-equilibrated to a 1.3:1 mixture of alcohols 

resulting in recycling of the axial alcohol.  The equatorial alcohol was then protected and 

the primary benzyl group removed.  A one-carbon homologation and reduction provided 

the new keto-aldehyde 2.88.  Pinacol cyclization afforded a 5:1 mixture of diastereomers 

in favor of the cis-decalin 2.89.  Swern oxidation was followed by installation of 

unsaturation to complete cis-decalin 2.90. 

 



59 
 

 

Scheme 45.  Roush’s Route to the cis-Decalin of the Hibarimicins. 

 

 The Mootoo131 synthesis of the hibarimicinone GH cis-decalin began from known 

lactone 2.91 available from D-glucose (2.76) (Scheme 46).  Propyl Grignard addition to 

2.91 provided an intermediate hemiketal which on treatment with lithium 

trimethylsilylacetylide provided tertiary alcohol 2.92 (5:1 mixture of C13 epimers).  The 

major product was subjected to a ring closing enyne metathesis under an atmosphere of 

ethylene to provide diene 2.93.  Esterification of the secondary alcohol with acryloyl 

chloride provided a triene that on heating in xylene led to the desired Diels-Alder adduct 
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2.94.  Diels Alder adduct 2.94 was then subjected to a dihydroxylation which occurred 

from the convex face of the decalin ring system. The secondary alcohol was protected 

and the lactone reduced to provide lactol 2.95  Iodination of lactol 2.95 proceeded with 

3:1 selectivity although none of the -iodide was isolated as this isomeric iodide was 

intercepted by a displacement reaction of the C13 hydroxyl leading to formation of the 

bridging furan ring. Hydrolysls of the formate group, protection of the secondary alcohol 

and removal of the TES group provided diol 2.97.  The synthesis was then completed by 

oxidation and installation of the unsaturation.  Notably the Roush and Mootoo 

approaches provide access to only the GH and not the AB ring system of the 

hibarimicins.   

 

 

Scheme 46.  Mootoo’s Route to the cis-Decalin of the Hibarimicins. 
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The Sulikowski group has published on three approaches to cis-decalin ring 

system, each employing a Diels-Alder reaction.  Two of the three approaches used 

tartaric acid as starting material, which can be converted to known aldehyde 2.99 in four 

steps.  Addition of butadienyllithium to aldehyde 2.99 led to a 70:30 mixture of separable 

epimers of the allylic alcohol with 2.101 as the major132 (Scheme 47) (note: incorrect C10 

configuration for hibarimicins).  Protection of the secondary alcohol, removal of the silyl 

protecting group and oxidation provided aldehyde 2.102.  In an attempt to obtain 

asymmetric induction from the Diels-Alder reaction and set the cis-decalin 

stereochemistry, trimethylsilylethynyl p-tolylsulfone was added to the aldehyde 2.102.  

The alkyne produced was oxidized to ketone 2.103 and spontaneously underwent a 

Diels-Alder cycloaddition to afford decalin 2.104.  Unfortunately, the incorrect 

configuration at C9 (ring fusion) was confirmed by a single X-ray crystal analysis.  The 

reaction sequence was repeated with the C10 epimer but unfortunately the same 

incorrect C9 configuration was observed  A second Diels-Alder adduct 2.106 was 

prepared starting from the Grignard addition of vinyl magnesium bromide to the 

aldehyde 2.105 and oxidation.  This adduct was then heated to form the Diels-Alder 

product 2.107.  When the -epimer of the allylic alcohol was the staring material, the 

correct cis-decalin 2.107 was produced and confirmed again by an X-ray crystal 

structure.  The cis-decalin 2.107 was judged to be under functionalized and not a good 

intermediate to proceed with a synthesis of the hibarimicins 
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Scheme 47.  First Attempt of an Intramolecular Diels-Alder Reaction to Form the cis-

Decalin. 

 

 In an effort to achieve better stereocontrol, an intermolecular Diels Alder was 

examined. In this approach demonstrated the importance of the diol protecting group in 

controlling stereochemistry (Scheme 48).  Diethyl tartrate 2.108 was reduced to the 

dialdehyde then alkylated with vinyl Grignard to provide the diene 2.109. Ring closing 

metathesis with Grubbs’ second generation catalyst afforded cyclohexene 2.110.  

Oxidation with the Dess-Martin periodinane provided a dienophile to be employed in the 

proposed intermolecular Diels-Alder reaction.  The acetonide 2.111 was allowed to react 

with diene 2.112 to form a single cycloadduct 2.113 that was assigned by X-ray crystal 

analysis.  The incorrect facial selectivity led to the examination of different diol protecting 

groups.  Protecting the diol as a bis-TBS in 2.114 led to a mixture of diasteromers in a 

71:29 ratio of the undesired stereochemistry.  The diol was then protected as a pivaloate 
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in 2.117 and subjected to the Diels-Alder reaction to provide a 33:67 mixture of the 

desired stereochemistry at the ring fusion.   

 

 

Scheme 48.  Intermolecular Diels-Alder Route to cis-Decalin. 

 

 In unpublished results from our lab, acetonide 2.113 was subjected to inversion 

of the stereochemistry at the C9 position through a kinetic deprotonation followed by an 

acid quench (Scheme 49).  The product was immediately reduced to provide alcohol 

2.120, which was also confirmed by a single X-ray crystal analysis.  The stereochemistry 

of the free alcohol was then inverted through a Mitsunobu esterification with p-

nitrobenzoate133 to set four of the six required stereocenters.  The strain imposed by the 

acetonide on the system was the thought to be the reason that attempts to remove the 

TBS led to -elimination.  The acetonide was then removed to provide diol 2.121.  With 

the diol protected as the bis-pivolate, the TBS was cleanly removed and oxidized to 
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provide the bis ketone 2.122.  As shown in previous work by our lab134 the tertiary 

alcohol could be installed by DMDO oxidation of the bis ketone 2.122 to arrive at the cis-

decalin 2.123 with five of the six stereocenters in place.  The stereochemistry was 

assigned based on NOE correlation of the tertiary alcohol and the C9 proton.  Further 

elaboration of this route was unsuccessful as treatment of 2.123 with mild base or the 

toluate anion directly led to -elimination product 2.124. As both approaches failed to 

control the C9 stereochemistry with acceptable selectivity we chose to examine an 

intramolecular Diels-Alder approach that would assure control of the C9 stereochemistry.   

 

 

Scheme 49.  Kim’s Progress Toward the cis-Decalin Ring System. 

 

 The third route to the hibarimicin cis-decalin common to hibarimcinone began 

with the formation benzylidene acetal from methyl glucose 2.125 and protection of the 

remaining alcohols as benzyl ethers to provide 2.126 (Scheme 50).  A Hannesian135 ring 

opening was initially performed but optimization showed that removal of the acetal with I2 

and iodination of the primary alcohol followed by benzoylation produced 2.127 better 

results.  A Vasella fragmentation136, 137 followed in a second step with vinyl Grignard 
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addition yielded an inconsequential mixture of diastereomeric alcohols 2.128.  Diene 

2.128 was then subjected to ring closing metathesis with Grubbs’ second generation 

catalyst.  Oxidation and iodination produces iodo-enone 2.129.  Suzuki cross coupling 

with vinyl boranate anhydride provided diene 2.130.  Allyl Grignard addition provided the 

desired asymmetric induction with the allyl group adding to C13 from the equatorial face 

with an 2:1 selectivity.  Excess Grignard simultaneously removes the benzoate.  

Esterification of the secondary alcohol with a variety of acrylates led to the ability to 

separate the previous mixture diastereomers.  Heating of the desired diastereomer 

provided the Diels-Alder adducts, while selective hydrogenation with Pd/C for five 

minutes yielded decalin ring systems 2.135 - 2.136.  In-situ generation of ruthenium 

tetroxide138 provided the hydroxyl-ketone 2.137 – 2.138.  Setting all six of the contiguous 

stereocenters left only the installation of the -unsaturation to complete the AB ring of 

the hibarimicins.  Unfortunately, all attempts to install the C7-C16 double bond were 

unsuccessful.    
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Scheme 50.  Engers/Hempel Approach to the cis-Decalin. 

 

Two Directional Approach 

 A two-directional or biomimetic coupling synthetic strategy toward HMP-Y1 

(1.139) require an efficient annulation method to access the common tetracyclic 

structure.  The synthesis of linear aromatic polyketide related to HMP-Y1 was addressed 

in 1978 by Hauser and Kraus by development of anion-based annulation reactions.  

Hauser139 initially used the phenyl sulfone phthalide 2.140 and Kraus140 cyano-phthalide 

2.141 that on deprotonation and reaction with unsaturated carbonyls afforded 

naphthylene 2.143 in the hydroquinone oxidation state (Scheme 51).  This methodology 

was later expanded to access lower oxidation states of the annulation product.  For 

example, Staunton141 and Weinreb142 developed methods to generate toluate anion of 
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2.144 that on reaction with an -unsaturated ketone afforded naphthylene 2.146 and 

2.148 respectively. 

 

  

Scheme 51.  Original Annulations Preformed by Hauser, Kraus, Staunton, and Weinreb.  

 

 In 2005, Andy Myers143 conducted a study to optimize the Staunton Weinreb 

annulation in connection with his work on the tetracycline antibiotics and determined 

phenyl benzoates to be optimal annulation reagents.  With this in mind, we undertook 

the synthesis of ester 2.154 (Scheme 52).  This work began with the known 

regioselective bromination of vanillin144 (2.80) followed by phenol methylation128 to 

provide aldehyde 2.149.  Aldehyde 2.149 was then converted to phenol 2.150 by a 
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Baeyer-Villiger145 oxidation.  In an attempt to differentiatially protect the C1 phenol 

common to HMP-Y1 (1.139), phenol 2.150 was protected as a benzyl ether and the aryl 

bromide was converted to toluene 2.151 by way of a lithium halogen exchange followed 

by a methyl iodide quench.  The regioselective bromination146 was achieved by 

treatment with copper(II) bromide to provide bromide 2.152.  The latter was subjected to 

a second lithium-halogen exchange this time followed by a carbon dioxide quench and 

the resulting carboxylic acid 2.153 was converted to phenyl ester 2.154 using a standard 

two-step process.   

 

 

Scheme 52.  Synthesis of Staunton-Weinreb Annulation Precursor 

 

 We next evaluated phenyl ester 2.154 as an annulating reagent using 

cyclohexenone as the coupling partner (Scheme 53).  Initial annulation attempts using 

benzyl ether 2.154 provided 2.155 in poor yield with the major product recovered phenol, 

as a result of loss of benzyl group.  To identify a superior annulation partner other 

protecting groups were examined.  The benzyl protecting group was removed by 

hydrogenolysis, and the phenol protected using a variety of alkyl, silyl and Boc groups.  

Each of these protected phenols was then subjected to the annulation conditions 

(Scheme 51).  MOM ether 2.156 provided negligible product 2.157 and the optimal 
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protecting group proved to be methyl ether 2.158, providing the annulation product 2.159 

in 82% yield.  The BOC and TBS protected benzoates provided poor results.   

 

 

Scheme 53.  Effect of Protecting Group on the Staunton-Weinreb Annulation. 

 

The cleavage of a methyl ether located in a peri position relative to an oxygen is 

precedented in the literature147, 148  The use of BBr3 provided decomposition, while the 

use of cerium trichloride heptahydrate149 and sodium iodide provided the desired 

deprotection (Scheme 54).  This selectivity is likely the result of formation of cerium(III) 

chelate to the peri carbonyl.  The selective removal of the C1 methyl ether was 

supported by NOE experiments.  However, oxidation of 2.160 to naphthylene 2.161 

proved problematic.  Attempts to provide a phenyl selenide in order to effect a 

selenoxide elimination provided interesting results.  Instead of formation of the selenide, 

all attempts resulted in -halogenation.  The halogen incorporation was confirmed by low 
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resolution mass spectrometry analysis.  This was possibly due to the formation of the 

selenonium ion 2.162 (Scheme 55), followed by opening by halogen at the tertiary 

carbon to provide 2.163.  Loss of phenyl selenide provides 2.164 or 2.165. 

 

 

Scheme 54.  Selective Demethylation Followed by Oxidation to Naphthyl Ring System. 

 

 

Scheme 55.  Possible Mechanism for the Alpha Halogenations of Phenol 2.157. 

 

In contrast to the failed oxidation of phenol 2.160, oxidation of methyl ether 2.159 

proceeded smoothly with DDQ150 to afford naphthyl 2.166 in 70% yield (Scheme 56).  

Unfortunately attempted removal of the C1 methyl ether using previously successful 

CeCl3-NaI combination now failed.  Based on literature precedent we returned to BBr3 as 

a demethylating reagent. 
148  Optimal conditions were observed a combination of NaI and 
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BBr3 was added to afford demethylated 2.161 with minimal formation of the 

hydroquinone.  

 

 

Scheme 56. Oxidation and Demethylation to Naphthol Ring system 2.164. 

 

 Having developed a viable annulation, oxidation and demethylation sequence in 

the context of a monomeric tricycle, we next turned our attention to applying this 

approach in the context of a two-directional strategy starting from bis-phenyl benzoate 

(2.75, Scheme 43). As presented in Chapter 1 a variety of biaryl couplings are available 

but highly substrate dependant.  In the case of electron rich bis-phenyl ester (2.75) an 

oxidative coupling seemed most appropriate.  Unfortunately no asymmetric oxidative 

couplings are available and we would need to later address how to generate 2.75 as a 

single atropo-enantiomer.  The oxidative coupling recently described by Spring and co-

workders151 drew our attention as it employed a direct resorcinol lithiation and oxidation.  

Trimethoxyltoluene (2.169) was selected as the substrate for the oxidative homocoupling 

and was prepared from aldehyde 2.149 starting with a Baeyer-Villiger oxidation to afford 

hydroquinone 2.167 (Scheme 57).  Not surprisingly, this hydroquinone was found to be 

very susceptible to air oxidation to provide the corresponding quinone.  Immediate 

methylation of 2.167 followed by a lithium halogen exchange and methyl iodide quench 

provided trimethoxy toluene 2.169.  The Spring homodimerization proceeded smoothly 

on deprotonation of 2.169 with n-BuLi-TMEDA complex, cuprate formation and oxidation 
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to give biaryl 2.170 in yields ranging from 40 to 60%.  Finally, bromination with NBS152 

afforded dibromide 2.171. 

 

 

Scheme 57.  Biaryl Formation 

 

 Initial attempts at converting the dibromide 2.171 to the bis-phenyl ester 2.172 

employing the previously described three step reaction proceeded in poor yields 

(Scheme 58).  A variety of methods to convert dibromide 2.171 to 2.172 were examined 

including DMF quench of the derived dianion and palladium mediated 

carbophenoxylation, all failed to yield positive results. Gratifyingly and somewhat 

surprising phenyl chloroformate reacted with the dianion derived from 2.171 to afford bis-

phenyl ester 2.172 in 88% yield. 
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Scheme 58.  Methods to Form the bis-Phenyl Eester 2.170. 

 

 As an alternative two-directional annulation we considered was a sequential two 

annulation process to form HMP-Y1 (1.139, Scheme 59).  We envisioned a primary 

annulation of bis phenyl ester 2.75 with a crotonate followed by aromatization to provide 

intermediate bi-naphthyl 2.73.  A second and final annulation of bis-naphthyl 2.73 with 

enone 2.72 would then lead to HMP-Y1 (1.139).  As we had prepared enone 2.72 from 

D-glucose (2.77) our attention turned to the examination of bis-phenyl ester 2.75 as an 

annulation partner.   
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Scheme 59.  Two bis-Annulation Approaches to HMP-Y1 

 

 Key to a successful double annulation leading to bi-naphthyl 2.73 was efficient 

double deprotonation of 2.172 which was optimized using a deuterium incorporation 

study.  An interesting result from this study was that no deprotonation was observed 

when one or two equivalents of LDA-TMEDA complex were added.  Double 

deprotonation was not observed until four equivalents of base were added.  There was 

also no improvement in the deprotonation between four and six equivalents. 

 Once we optimized conditions for the formation of the bis-toluate anion we turned 

our attention to effecting a two-directional annulation.  A two-directional synthetic 

strategy had earlier been applied by Hauser153 in the synthesis (+)- biphyscion,  We first 

examined phenyl crotonate 2.175 as the annulation substrate.  In the event, we obtained 
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a modest yield of the bis-annulation product 2.176 and a small amount of the mono-

annulation product (Scheme 60).  Attempts to directly oxidize 2.176 with DDQ failed, but 

a two-step bromination-dehydrobronination sequence provided naphthylene 2.178.  

Naphthylene 2.178 was then methylated to give 2.179 in preparation for a second 

annulation.   Unfortunately a second bis annulation failed due to difficulty in generating 

the required toluate anion.  The reaction sequence was repeated to give the thiophenyl 

dimer 2.184 but this did not improve the efficiency of the second annuation  

 

 

Scheme 60.  Attempts at a Two-Annulation Approach. 
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 A second model system was examined based on a two directional annulation 

with the anticipated completion of the required cis-decalin leading to HMP-Y1 (Scheme 

60).  In this case, the bis-phenyl ester 2.174 was condensed with cyclohexenone to 

provide a modest yield of the bis-annulated product 2.186 (Scheme 61).  Oxidation of 

2.186 with DDQ in refluxing benzene gave 2.187 in 59% yield.154   

 

Scheme 61.  Synthesis of BCD-EFG Rings Model of HMP-Y1. 

 

Resolution of Atropisomers and Assignment of Absolute Stereochemistry 

 We next turned our attention to the synthesis of a single atropo-enantiomer and 

determination of the absolute stereochemistry about the biaryl bond.  With this goal in 

mind, we returned to the benzyl ether 2.151 as a homocoupling substrate.  Spring 

coupling of 2.151 proceeded in 47% yield to give (Scheme 62).  The benzyl protons of 

biaryl 2.189 appeared in 1H NMR in chloroform as an AB quartet with v = 22 Hz and 

JAB= 12.6 Hz, suggesting inhibited rotation about the central carbon-carbon bond.  When 

the solvent was changed to DMSO the diastereotopic benzyl methylene group appeared 

as a singlet (Figure 6).  Resolution of related bis-phenols have been reported by 

Bringmann155 by formation of atropo-diastereomeric Mosher esters.  With this form of 
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resolution in mind, the benzyl groups were removed by hydrogenolysis and the resulting 

bis-phenol condensed with Mosher’s acid to initially provide a mixture of diastereomeric 

mono-Mosher esters 2.191. The bis-Mosher ester was obtained when an excess of 

Mosher acid was used.  The diastereomeric bis-Mosher esters were readily separated 

by semi-preparative HPLC.  The faster eluting diastereomer proved to be crystalline and 

submitted to a single X-ray crystal analysis allowing assigment of the chiral axis as (aS)-

2.192 (Figure 7).     

 

 

Scheme 62.  Synthesis of the Mono-Mosher’s Ester. 
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CDCl3     d6-DMSO 

Figure 6. Benzyl Protons of 2.189 in CDCl3 and D6-DMSO. 

 

 

Figure 7.  X-ray Crystal Structure of the Faster Eluting bis-Mosher Ester. 

 

 (aR)- and (aS)- bis-Mosher esters were then converted to (aR)- and (aS)- phenyl 

ester 2.170.  Reduction of Mosher esters using LiAlH4 provided (aS)-2.184 and (aR)-

2.184 (Scheme 63).  The bis-ester is configurationally stable but the removal of the steric 

bulk does not ensure that the bis-phenol will still be configurationally stable.  The 

phenols were proven to be configurationally stable by the examination of their CD 

spectra (Figure 8). 
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Scheme 63.  Separation of Bis-Mosher Ester and Retention of Optical Activity 

 

 

Figure 8.  ECD Spectra of Phenol (aS)-2.190 and (aR)-2.190. 

 

 The aS and aR atropisomers were individually converted to the corresponding 

aS-(+)-2.170 and aR -(-)-2.170 phenyl esters following the same reaction sequence used 

in the racemic synthesis of 2.170 (Scheme 64).  With preparative chiral LC available we 

examined the separation of atropisomers (+)-2.190, (+)-2.168 amd (+)-2.170 in order to 

find a more practical resolution method to replace the cumbersome Mosher ester 
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resolution method.  Of the three biaryls examined only the bis-phenyl ester 2.164 

provided sufficient separation.  Separation of the atropisomers was accomplished with 

the chiral AD stationary phase, but better resolution was observed with the chiral OD 

stationary phase.  A representative chiral HPLC trace is presented in Figure 9. The 

separation of the bis-phenyl ester 2.168 allows for material to be brought through a 

racemic synthesis and then be purified into atropisomer of now known configuration.   

 

 

Scheme 64.  Synthesis of Enantiopure bis-Phenyl Ester. 

 

 

Figure 9.  Trace of Chiral Separation of bis-Phenyl Ester 2.172 on OD Chiral Column 
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 Since the central biaryl axis of hibarimicin B was of unknown configuration, we 

deemed it important to initially have access to both atropisomers.  With a viable route to 

enantiopure bis-phenyl ester, our attention turned to the formation of a single 

atropisomer selectively.  One of the advantages of the Spring coupling was the ability to 

substitute a chiral diamine in the place of TMEDA to achieve a chiral biaryl bond 

formation.  Use of (-)-sparteine 2.193 in place of TMEDA did provide biaryl coupling but 

in a much lower yield (Scheme 65).  The diamine cinchonine 2.194 and its pseudo-

enantiomer cinchonidine 2.195 were also attempted with no resulting biaryl coupling.  

This pair of pseudo-enantiomers is best known for the selective crystallization of BINOL 

atropisomers.  If the anime was changed to a Box ligand like t-BuBox 2.196 a small 

amount of biaryl was formed.  The lower efficiency of the reaction is probably due to the 

increase of sterics of the copper-diamine complex in formation of the cuprate complex.    

The enantiomeric excess (% ee) was not measured in any of the biaryl products as 

yields were lower and no method for the rapid determination of ee was available. 

 

 

Scheme 65.  Spring Coupling with Chiral Diamines  
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 With limited success using a chiral diamine in the Spring coupling, the next 

approach was the catalytic biaryl coupling described by Kozlowski.121  The first substrate 

screened in this reaction was the phenol 2.150.  It was determined that the phenyl ester 

was too labile for the reaction conditions.  Once the ester was unintentionally converted 

to the acid, the reaction halted.  In examining Kozlowski’s156 work, the typical ester is the 

methyl ester.  To arrive at the methyl ester, benzyl bromide 2.146 was converted to the 

methyl ester by a lithium-halogen exchange and quench with methyl chloroformate to 

provide methyl ester 2.197 (Scheme 66).  The benzyl was then removed by 

hydrogenolysis and the phenol 2.198 was subjected to the Kozlowski coupling conditions 

with (-)-sparteine 2.193 in place of the synthetic (+)-sparteine equivalent Kozlowski157 

synthesizes.  Phenol methyl ester 2.198 coupled in low yields with catalytic amounts of a 

copper-sparteine complex.  An interesting aspect of this reaction was the lack of 

stereoselectivity.  To date, no report of an enantioselective biphenyl coupling using 

Kozlowski method has appeared. 

 

 

Scheme 66.  Biaryl Kozlowski Coupling. 
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 Without a viable route to produce a single atropisomer, we then turned to the 

work of Wulff in dynamic kinetic resolution.  The biaryl phenol became important.  The 

biaryl coupling was shown to proceed with a better yield with the MOM toluene 2.202 

(Scheme 67).  Toluene 2.202 was synthesized in the same manner as before by 

protecting the phenol 2.143 with MOMCl.  Biaryl phenol 2.190 was synthesized from the 

biaryl MOM 2.203 by simple acid hydrolysis.   

 

 

Scheme 67.  Improved Route to Biaryl Phenol. 

 

 The phenol 2.190 was then subjected to dynamic thermodynamic resolution.  A 

complex of copper and (-)-sparteine 2.193 was added to racemic phenol 2.190 and 

allowed to stir for a variable amount of time.  It was found that with the sparteine 

complex at room temperature, the racemic phenol was converted to (aS)-2.190 (Scheme 

68).  Without a method for determination of the %ee, the phenol was then converted to 

the menthol carbonate 2.204.  The atropo-diastereomeric ratio was then easily 

determined by proton NMR (Figure 10).  The best induction was seen with the sparteine 

complex stirring at room temperature for forty-eight hours.  It is also important to notice 
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that when the reaction was heated to reflux that no asymmetric induction was seen.  To 

support the validity of this method and provide access to both enantiomers, an 

enantiomer of (-)-sparteine 2.193 is needed to provide (aR)-2.190.  To this end, 

O’Brien’s (+)-sparteine surrogate diamine 2.205 was utilized with copper bromide and 

the racemic phenol 2.190 to provide (aR)-2.190 with 80% de.   

 

 

Scheme 68.  Dynamic Thermodynamic Resolution Conditions 
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(aS)-2.204                                                 (aR)-2.204 

Figure 10. 1H NMR Analysis of an Isomeric Mixture of (aS)-2.204 and (aR)-2.204. 

 

Having access to either enatiomer of the biaryl core, our attention turned to the 

assignment of absolute stereochemistry of HMP-Y6.  In 1963, Mislow158 demonstrated 

that circular dichrosim (CD) curves of biaryl and binaphthyls correspond to the 

configuration of the biaryl axis.  The absolute stereochemistry of several biaryl natural 

products like biphyscion,159 have been assigned based on comparison of CD spectra to 

that of a similar known natural product.  Correlation of the stereochemistry about the 

biaryl axis can be accomplished by comparing HMP-Y6 to naphthyl 2.187.  Atropisomers 

of naphthyl 2.187 are separable by chiral chromatrography.  To arrive at the known 

configuration about the biaryl 2.187 the aS isomer of 2.174 was subjected to the 

annulation and oxidation conditions to provide (aS)-2.187 (Scheme 69) to arrive at the 

faster eluting atropo-enatiomer.  Overlaying the CD of (aS)-2.187 and HMP-Y6 (1.147), 

provided by Professor Igarashi, allows for assigning the absolute stereochemistry about 

the biaryl core in to be tentatively assigned as aS in the natural products   
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Scheme 69.  Synthesis of (aS)-2.187 with Known Configuration about the Biaryl Axis. 

 

  

Figure 11. CD Spectra of (aR)-2.187  (aS)-2.187 . 
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Figure 12.  CD Spectra of (aS)-2.187 and Crude HMP-Y6 (1.147) in MeOH 

 

 The binaphthyl 2.187 provides a method to tentatively assign absolute 

configuration about the biaryl bond of HMP-Y6 as aS.  This completes one of the major 

goals in assigning absolute stereochemistry of the hibarimicin family of natural porducts.  

Experimentation has shown that a racemic biaryl coupling can converted to a single 

atropo-diastereomer of known configuration through dynamic kinetic resolution.  
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Scheme 70.  Conversion of HMP-Y1 to a Single Atropo-diastereomer through Dynamic 

Thermodynamic Resolution 
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CHAPTER III 

 

A BIOMIMETIC APPROACH TO HMP-Y1 

 

 In considering a biomimetic oxidative homodimerization strategy toward HMP-Y1 

we identified three major issues to be addressed.  First, and perhaps foremost, we 

required an atropo-diastereoselective formation of the aryl-aryl carbon-carbon bond in a 

configurationally defined manner as the configuration of HMP-Y1 is unknown.  Based on 

the studies described in Chapter II we anticipated the dynamic thermodynamic resolution 

described in Chapter II would fulfill this requirement.  The second issue to be addressed 

is regioselectivity.  This problem is illustrated by examination of Brimble’s160 approach 

toward a biomimitic synthesis of cardinalin 3 (1.71) shown in Scheme 71.  The Brimble 

group determined oxidative dimerization of ventiloquinone (3.1) did not afford any 

dimeric products.  However dimerization of the protected hydroquinone 3.2 did yielded 

the C6/C6’ dimer 3.3, none of the desired C8/C8’ coupling was observed illustrating the 

problem of regiocontrol.   
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Scheme 71.  Brimble’s Studies Directed Toward Cardinalin 3 

 

 An example of an advantageous nonselective phenolic oxidative coupling was 

reported by Müller161 that led to the synthesis of kotanin (3.8), isokatanin A (3.9), and 

desertorin C (3.10), three isomeric natural dimers (Scheme 72).  Coupling phenol 3.4 

with iron trichloride absorbed on silica gel, provided all three isomeric dimers (3.5-3.7) 

when separated by flash chromatography.  Each isomer was advanced to a natural 

product by the addition of the anion of acetonitrile to the carbonyl, hydrolysis of the 

cyano, and methylation of the free hydroxyl.  Notably, racemic biaryl phenol 3.5 was 

resolved by chromatographic separation of diastereomeric esters derived from (-)-

camphanic acid. 
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Scheme 72.  Müller’s Advantageous Unselective Phenolic Coupling 

 

 One approach to solve the regioselectivity issue reported by Kita162 is the use of 

a temporary silicon tether.  In this approach condensation of a phenol with either dialkyl 

silyldichloride or triflate afforded silylketal 3.11 (Scheme 73).  Oxidative coupling of 3.11 

then selectively proceeds at the position ortho to the silylated phenol due to restrictions 

enforced by the silicon tether.  We anticipated taking advantage of the C1 phenol HMP-

Y1 we could incorpore a silicon tether at this position leading to a regiocontrolled 

dimerization and ultimately HMP-Y1 (1.139) (Figure 13).   

 

 

Scheme 73.  Silcon Tether to Direct Regioselectivity in Oxidative Coupling. \ 
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Figure 13.  Proposed Silicon Tether to Direct Coupling in HMP-Y1 

 

 With a silicon tether strategy in mind we considered options to effect an oxidative 

coupling. Sequential substitution of chloride by a different phenol groups can be 

employed in hetero couplings leading to unsymmetrical biaryls.  Gevorgyan163 developed 

a semi-one-pot procedure using different phenols leading to, for example, unsymmetrical 

silylketal 3.13 (Scheme 74). A palladium mediated coupling was then used to provide a 

9:1 mixture 0f 3.14 and 3.15.  The scope of the coupling was shown to be good allowing 

electron donating or releasing in the para position.  However, electron rich and sterically 

hindered (ortho/ortho’) couplings as needed for HMP-Y1 were not shown and would 

likely fail due to limitations associated with the required palladium(0) oxidative insertion 

step. 

 

 

Scheme 74.  Unsymmetrical Biaryl Coupling Though a Silicon Tether. 

 

 The most direct method to address regio- and stereoselectivity of biomimetic 

couplings is to employ an enzymatic oxidation.  Several examples of selective enzymatic 
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oxidative aryl couplings have been described following enzyme expression, purification 

and characterization.  Plant derived cytochrome P-450s164 have been identified that 

effect the oxidative coupling leading to the alkaloid salutaridine (3.18).  In this enzyme 

mediated transformation phenol 3.16 is oxidized to radical 3.17 leading to carbon-carbon 

bond formation and salutaridine following loss of a second proton and electron (Scheme 

75).   

 

 

Scheme 75.  Cytochrome p-450 Oxidation to Provide Salutaridine 3.18 

 

 A well studied oxidative dimerization is the phenolic oxidative coupling cinnamyl 

alcohols mediated by laccase165.  For example, oxidation of substituted cinnamyl alcohol 

3.19 occured in with high enantioselectivity to give (+)-pinoresinol 3.20 (Scheme 76).  

This enzyme has shown to be one of the few enzymes that demonstrates high substrate 

scope leading to a variety of pheonolic coupling.  Mikolasch166 determined that laccase is 

a copper(I) and oxygen dependent enzyme.  The promiscuity of this enzyme leads to a 

loss of selectivity, for example oxidation of phenol 3.21 produced both C-arylation 3.22 

and O-arylation 3.23 products.  The enzyme was also shown to couple hydroquinone 

3.24 to the naphthylene ring system 3.25.   
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Scheme 76.  Laccase Enzymatic Dimerization of Phenols. 

 

 A third problem encountered in oxidative biomimetic couplings of electron rich 

phenols is over oxidation.  The issue of over oxidation is illustrated by several examples 

from the literature (Scheme 77).  Nishiyama167 showed that the anodic oxidative coupling 

of naphthol 3.27 yielded a mixture of three products, quinone 3.28, desired binaphthyl 

3.29 and bis-quinone 3.30.  Takeya168 showed that silver oxide oxidation of phenol 3.31 

provided a 1:1 mixture of bi-naphthyl 3.32 and bis-quinone 3.33.  Over oxidation could 

be avoided by using tin(II) chloride as an oxidant that provided only bi-naphthyl 3.32.  

Takeya169 also showed that in the absence of over-oxidation, side reactions were 

observed leading to undesired by-products depending on the reactivity of the 

intermediate coupling partners.  In the oxidation of phenol 3.34, the coupling product 

3.35 in addition to dinaphthofuran 3.36 were isolated.  The ability to overcome the 
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production of this side product is dependent upon adjusting the oxidant to the nature of 

the specific substrate.      

 

 

Scheme 77.  Over Oxidation and Side Products in Oxidative Coupling. 

 

Preliminary Studies Directed Toward HMP-YI 

 The biomimetic approach to HMP-Y1 (1.139) requires a late stage oxidative 

homo coupling of tetracycle 1.138.  As discussed earlier, oxidative coupling of 1.138 

would likely lead to mixture of atropo-diastereomers which hypothetically could be 

resolved to a single either atropo-diastereomer employing dynamic thermodynamic 

resolution (Scheme 78).  In regard to the regioselectivity of the homocoupling, three 
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isomeric products could be produced (C2-C2’, C6-C6’ and C2-C6’).  In preparation of the 

proposed dimerization of 1.138 we examined model substrates to address the issues of 

choice of oxidant and regioselectivity of the coupling. 

 

 

Scheme 78.  Biomimetic Approach to HMP-Y1 

 

 Readily available phenol 3.38 was subjected to a variety of oxidizing agents in an 

effort to identify optimal reaction conditions.  First, vanadium oxychloride170 provided a 

unproductive mixture of quinone 3.39 (44%) and  bis- quinone 3.40 (11%) (Scheme 79).  

Oxidative coupling by the use of copper(II) chloride-TMEDA171 complex or hypervalent 

iodine162, provided primarily the over oxidized product bis-quinone 3.40.  The Sartori172 

method uses a mixture of aluminum trichloride and ferric chloride, the latter Lewis acid is 

added to the pre-complexed aluminum bis-phenolate contributing to regiocontrolled 

coupling.  Oxidation of phenol 3.38 under these conditions led to biaryl 3.41 in 61% 

yield.  The latter results were considered optimal as no over oxidation was observed and 

regioselectivity would not be problematic in the tetracyclic phenol 1.138.   
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Scheme 79.  Oxidative Coupling of the Phenol 3.19. 

 

Sartori173 has proposed the following mechanism of the oxidative coupling using 

the AlCl3-FeCl3 complex, starting from aluminum phenolate 3.42.  One electron oxidation 

of 3.42 then affords aryloxy radical cation 3.43 (Scheme 80) that couples with phenolate 

3.42 to provide the radical cation radical 3.45.  Loss of an electron and two protons from 

3.45 then provides the biaryl product 3.46.  This two-step oxidation was supported by 

cyclic voltamatry, with the observation of two irreversible oxidation steps.  Sartori’s 

reaction was shown to be under kinetic control, and larger substituents hindered the 

reaction progress.  The regioselectivity observed in the coupling of 3.46 would then be 

explained as a kinetic coupling at the least hindered site.    

 

 

Scheme 80.  Mechanistic Understanding of the Aluminum Phenolate Coupling 

 

 As a second approach we examined the effect of a silicon tether on the oxidation 

process (Scheme 81).  To this end, phenol 3.38 was reacted with di-

isopropyldichlorosilane to provide the silylketal 3.47.  Oxidation of 3.47 using ferric 
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chloride unexpectedly provided furan 3.48.  This result can be explained by the removal 

of an electron from silylketal 3.47 to give aryl radical cation 3.49.  Following coupling, 

aromatization and loss of a second electron, radical 3.49 is converted to form cation 

3.51.  Capture of the intermediate cation by the free phenol followed by loss of a proton 

leads to 3.52.  Iron trichloride can also act as a Lewis acid, catalyzing demethylation to 

furnish the observed furan 3.48. 

 

 

 

Scheme 81.  Unexpected Furan Formation and Possible Mechanism 

 

 Having collected sufficient information on the proposed biaryl coupling we turned 

our attention to tricyclic ketone 2.158 as a model substrate for HMP-Y1.  Attempts to 

directly oxidize trimethoxy naphthyl 2.158 using Satori’s or Brimble’s160 coupling 



99 
 

conditions afforded no identifiable products.  Coupling of the free naphthol 2.157 with 

Sartori’s conditions lead to oxidation to the naphthylquinone 3.49 (Scheme 82). Phenol 

2.157 was then reacted with diisopropylsilyl ditriflate to give silylene 3.51.  A single 

attempt was made at the oxidation of the silylketal 3.51 using four equivalents of ferric 

chloride to provide the red bisnaphthylquinone 3.52, an over oxidation product.  This 

preliminary result provides promising precedent for a biomimetic coupling route to HMP-

Y1 with the issue of over oxidation requiring further refinement.    

 

 

 

Scheme 82.  Oxidative Coupling of Naphthyl Ring Systems 

 

 The biomimetic route to HMP-Y1 requires a homodimerization to form the biaryl 

linkage (Scheme 83).  Phenolic biaryl coupling will provide the racemic HMP-Y1 (1.139) 
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when the proper oxidant is found to provide coupling and not oxidation.  With the 

racemic coupling, either atropo-diastereomer can be obtained from the dynamic 

thermodynamic resolution described in chapter II.    

 

 

Scheme 83.  Biomimetic Oxidative Coupling Followed by Deracemization.  
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CHAPTER IV 

  

ANALYSIS AND PROGRESS TOWARD ABCD RING SYSTEM 

 

Our long-term goal is to prepare hibarimicin B by total synthesis. We plan to 

approach this by first preparing HMP-Y1 and by a biomimetic oxidation convert HMP-Y1 

to hirbarimicinone.  In order to proceed with a total synthesis of HMP-Y1 we required a 

method to address control of atropo diastereomers and assign the configuration of the 

chiral axis.  Based on the work presented in this thesis we have tentatively assigned the 

configuration of the natural HMP-Y1 atropisomer and presumably hibarimicin assuming 

HMP-Y1 to hibarimicinone oxidation proceed with retention of configuration.  

Comparison of the two-directional and biomimetic coupling strategy investigated in 

chapters III and IV favor the latter approach as the efficiency of the two-directional 

approach is poor.  In addition our groups experience, as well as the Mootoo and Roush 

groups suggests a synthesis of the AB/GH cis-decalin rings followed by annulation is a 

less then optimal approach to ring construction either using the two-directional or 

monomeric annulation.  Briefly described in this chapter is progress toward the synthesis 

of the HMP-Y1 monomer (a.k.a. ABCD ring of hibarimicinone).  

 In considering a synthetic strategy toward the HMP-Y1 monomer 4.1 we note low 

yields observed in the Hauser-Staunton annulation using cyclohexenone and difficulty in 

controlling the C9 ring fusion stereochemistry.  With these considerations in mind we 

conceived a transannular Diels-Alder reaction employing macrocycle 4.2 (Scheme 84).  

The Diels-Alder precursor 4.2 can be formed by closing the C17 / C18 bond first then 

formation of the macrocycle.  This analysis identifies iodide 4.3, aryl bromide 4.6 and a 

three carbon linker 4.4 as three components to form the Diels Alder Precursor.  Iodide 

4.3 can be produced in six steps from quinic acid (4.8).  Aryl bromide 4.6 can be 
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generated in five steps from the aldehyde 4.7.  Note, the absolute stereochemistry of the 

Hibarimicins is unknown and the choice of (-)-quinic acid as starting material.  

 

 

Scheme 84.  Biomimetic Approach to HMP-Y1 

 

 The synthesis of bromide 4.6 started with alkylation of trimethoxy bromide 2.166 

with allyl bromide to form the allyl benzene 4.8 (Scheme 85).  The allyl 4.8 was 

selectively brominated with copper(II) bromide170 to provide the aryl bromide 4.9.  The 

selectivity was confirmed by NOE correlation of the aromatic proton to the two methoxy 

groups.  A second approach to the aryl bromide was accomplished by a known Baeyer-

Villiger oxidation of dimethoxy benzaldehyde 4.10 to give phenol 4.11, which was 

alkylated with allyl bromide to yield allyl 4.12.171  Optimization of the Claisen 

rearrangement produced phenol 4.13 in near quantitative yield.  The phenol 4.13 was 

then alkylated with methyl iodide to afford the allyl benzaldehyde 4.14.   
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Scheme 85.  Two Routes to the Allyl Bromide 4.18 

 

 Jonathan Hempel, a graduate student in our lab, has shown an effective route to 

the formation of the C17 / C18 bond.  Iodide 4.3 can be arrived at in six steps from quinic 

acid (4.8).  A Suzuki coupling with boronic acid 4.18 afforded the diol 4.19 (Scheme 86).  

Oxidation of the primary alcohol yields aldehyde 4.20.  Aryl bromide 4.6 was converted 

to the aryl lithium and addition of the lithium produced the C17/ C18 bond in 4.21.   
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Scheme 86.  Hempel’s Work Toward the Formation of the C17/C18 Bond 

 

 An important outcome is to set the stereochemistry of the C9 bridge head.  We 

have demonstrated that this stereochemistry can be set by an intramolecular type II 

Diels Alder.  The stereocontrol of the intramolecular Diels Alder of 4.19 might provide the 

syn stereochemistry to the alcohol (Scheme 87).  If this does not occur, a tethered 

approach as in 4.21 to provide a trans annular Diels Alder should provide the desired 

stereochemistry. 
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Scheme 87.  Future approaches to the Diels Alder.  
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CHAPTER V 

 

EXPERIMENTAL 

 

General procedure:  All non-aqueous reactions were performed in flame-dried or oven 

dried round-bottomed flasks under an atmosphere of argon.  Stainless steel syringes or 

cannulae were used to transfer air- and moisture-sensitive liquids. Reaction 

temperatures were controlled using a thermocouple thermometer and analog hotplate 

stirrer. Reactions were conducted at room temperature (rt, approximately 23 °C) unless 

otherwise noted. Flash column chromatography was conducted as described Still et. al. 

using silica gel 230-400 mesh.174  Where necessary, silica gel was neutralized by 

treatment of the silica gel prior to chromatography with the eluent containing 1% 

triethylamine.  Analytical thin-layer chromatography (TLC) was performed on E. Merck 

silica gel 60 F254 plates and visualized using UV, ceric ammonium molybdate, 

potassium permanganate, and anisaldehyde stains. Yields were reported as isolated, 

spectroscopically pure compounds. 

 

Materials. Solvents were obtained from either an MBraun MB-SPS solvent system or 

freshly distilled (tetrahydrofuran was distilled from sodium-benzophenone; Diethyl Ether 

was distilled from sodium-benzophenone and used immediately; Commercial reagents 

were used as received.  The molarity of n-butyllithium solutions was determined by 

titration using diphenylacetic acid as an indicator (average of three determinations).   

 

Instrumentation. HPLC was conducted on a Varian ProStar 210 HPLC system using a 

Dynamax 21.4 x 250 mm column.  Infrared spectra were obtained as thin films on NaCl 

plates using a Thermo Electron IR100 series instrument and are reported in terms of 
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frequency of absorption (cm-1).  1H NMR spectra were recorded on Bruker 300, 400, 500, 

or 600 MHz spectrometers and are reported relative to deuterated solvent signals.  Data 

for 1H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity (s = 

singlet, d = doublet, t = triplet, dt = doublet of triplets, q = quartet, m = multiplet, br = 

broad, app = apparent), coupling constants (Hz), and integration. 13C NMR spectra were 

recorded on Bruker 75, 100, 125, or 150 MHz spectrometers and are reported relative to 

deuterated solvent signals or 40F is relative to triflouroacetic acid.  LC/MS was conducted 

and recorded on an Agilent Technologies 6130 Quadrupole instrument.  High-resolution 

mass spectra were obtained from the Department of Chemistry and Biochemistry, 

University of Notre Dame using either a JEOL AX505HA or JEOL LMS-GCmate mass 

spectrometer or from Vanderbilt Institute of Chemical Biology Drug Discovery Program 

laboratory using a Waters Acquity UPLC and Micromass Q-Tof Ultima API.  The 

structure of bis mosher ester 11 was obtained by Dr. Joseph Reibenspies at the X-ray 

diffraction facility of Department of Chemistry, Texas A&M University.  Optical rotations 

were measured with and are reported as follows [α]T
λ, (c g/100 mL, solvent).  ECD were 

obtained by a Jasco 720 polarimerater.   
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3-Bromo-4-hydroxy-5-methoxybenzaldehyde. - To a solution of vanillin (16.0 g, 105 

mmol) in glacial acetic acid (175 mL) was added Br2 reagent (11.0 mL, 210 mmol).  After 

2 h, the solution was diluted with a water/ice mixture (200 mL) to produce a white 

precipitate.  The solid was filtered off and dissolved in CH2Cl2: acetone mixture (1:4, 400 

mL).  The combined organic extracts were dried (MgSO4) and concentrated to give 22.5 

g (93%) of bromide as a white solid.  IR (neat) 3345, 1673, 1425, 1290, 1156, 1047, 793  

1H NMR (CDCl3) δ 9.76 (s, 1H), 7.62 (d, J = 1.8 Hz, 1H), 7.34 (d, J = 1.5Hz, 1H), 6.52 (s, 

1H), 3.96 (s, 3H).  13C NMR (CDCl3) δ 221.8, 189.7, 148.8, 147.6, 130.1, 129.9, 108.1, 

107.9, 56.6.  LRMS calculated for C8H8BrO3 (M+H)+ m/z: 231.0 Measured 231.0 m/z. 

 

 

3-Bromo-4,5-dimethoxybenzaldehyde (2.149). - To a suspension of bromide 3-Bromo-

4-hydroxy-5-methoxybenzaldehyde (22.5 g, 97.4 mmol) and K2CO3 (40.0 g, 292 mmol) 

in DMF (150 mL) was added MeI (18 mL, 292 mmol).  After 16 h, the reaction was 

diluted with H2O (200 mL), and extracted with EtOAc (3 x 75 mL).  The combined 

organic extracts were washed with brine (200 mL), dried (MgSO4) and concentrated to 

afford an oil.  The residue was purified by column chromatography with EtOAc/Hexane 

(1:2) to afford 21.4 g (90%) of methyl ether 2.149.  IR (neat) 2945, 2851, 2360, 1586, 
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1566, 1486, 1393, 1281, 1132, 1047, 991 1H NMR (CDCl3) δ 9.85 (s, 1H), 7.65 (d, J = 

1.5Hz, 1H), 7.39 (d, J = 1.5Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H);  13C NMR (CDCl3) δ 189.8, 

154.0, 151.6, 132.9, 128.5, 117.8, 110.0, 60.69, 56.1.  LRMS calculated for C9H10BrO3 

(M+H)+ m/z: 244.97 Measured 245.0 m/z. 

 

 

3-Bromo-4,5-dimethoxyphenol (2.150). – To a solution of methyl ether 2.149 (19.0 g, 

77.5 mmol) in CH2Cl2  (250 mL) was added m-CPBA (27.0 g, 155 mmol).  After 4.5 h of 

heating at reflux, saturated NaHCO3 (250 mL) was added and the resulting solution 

stirred for 45 min.  The aqueous layer was extracted with CH2Cl2 (2 x 150 mL).  The 

combined organic layers were dried (MgSO4), and concentrated to yield an orange 

residue.  This residue was dissolved in MeOH/conc HCl/H2O (2:1:1, 150mL) and the 

resulting solution was allowed to stir for 45 min.  MeOH was removed and extracted with 

EtOAc (3 x 75 mL).  The combined organic extracts were dried (MgSO4), and 

concentrated.  The residue was purified by column chromatography with EtOAc/Hexane 

(1:4) to afford 10.7 g (59%) of phenol 2.150.  1H NMR (CDCl3)  6.60 (d, J = 2.7 Hz, 1H), 

6.40 (d, J = 3.0 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H);  13C NMR (CDCl3)  154.0, 152.6, 

117.4, 110.6, 100.1, 60.7, 56.0;  LRMS calculated for C8H10BrO3 (M+H)+ m/z: 232.97 

Measured 233.0 m/z. 
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5-(Benzyloxy)-1-bromo-2,3-dimethoxybenzene. - To a suspension of phenol 2.150 

(4.6 g, 20 mmol) and K2CO3 (8.2 g, 59 mmol) in DMF (60 mL) was added benzyl 

bromide (4.5 mL, 59 mmol). After 20 h, the reaction mixture was diluted by H2O (100 mL) 

and extracted with EtOAc (3 x 100 mL).  The combined organic extracts were washed 

with brine (100 mL), dried (MgSO4) and concentrated.  The residue was purified by 

column chromatography with EtOAc/Hexane (1:6) to afford 5.6 g (89%) of benzyl ether.  

IR (neat) 1598, 1570, 1452, 1427, 1232, 1207, 1177, 1144, 1047, 1025, 1003, 819, 697;  

1H NMR (CDCl3)  7.36 (m, 5H), 6.75 (d, J = 2.7 Hz, 1H), 6.53 (d, J = 2.7 Hz, 1H), 4.94 

(s, 2H), 3.82 (s, 3H), 3.77 (s, 3H); 13C NMR (CDCl3)  155.5, 154.0, 140.8, 136.3, 128.5, 

128.1, 127.5, 117.3, 108.7, 100.6, 70.5, 60.6, 55.9;  LRMS calculated for C15H16BrO3 

(M+H)+ m/z: 323.02 Measured 323.0 m/z. 

 

 

5-(Benzyloxy)-1,2-dimethoxy-3-methylbenzene (2.151).  To a solution of 5-

(benzyloxy)-1-bromo-2,3-dimethoxybenzene (2.8 g, 8.5 mmol) in diethyl ether (30 mL) at 

-78 °C was added 2.2 M n-BuLi (6.8 mL, 17 mmol).  After 1 h at -78 °C, neat methyl 

iodide (1.6 mL, 26 mmol) was added.  After 16 h, the reaction mixture was diluted with 

H2O (50 mL) and extracted with ethyl acetate (3 x 30 mL).  The combined organic 
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extracts were dried (MgSO4) and concentrated to afford a yellow oil. The residue was 

purified by column chromatography with EtOAc/Hexane (1:4) to afford 1.7 g (79%) of 

toluene 2.151.  IR (neat) 1599, 1498, 1464, 1454, 1224, 1191, 1176, 1096, 1046, 1010, 

735, 698;  1H NMR (CDCl3)  7.35 (m, 5H), 6.46 (d, J = 3.0 Hz, 1H), 6.39 (d, J = 2.7 Hz, 

1H), 5.02 (s, 2H), 3.83 (s, 3H), 3.76 (s, 3H), 2.28 (s, 3H);  13C NMR (CDCl3)  155.0, 

153.2, 141.5, 137.0, 132.0, 128.5, 127.9, 127.5, 106.8, 98.6, 70.3, 60.2, 55.6, 16.1;  

LRMS calculated for C16H19O3 (M+H)+ m/z: 259.13 Measured 259.2 m/z. 

 

 

1-(Benzyloxy)-2-bromo-4,5-dimethoxy-3-methylbenzene (2.152).  To a solution of 

toluene 2.151 (1.7 g, 6.5 mmol) in dimethoxy ethane (22 mL) was added CuBr2 (2.2 g, 

9.9 mmol).  After 4 h, the reaction mixture was filtered, washed with EtOAc (3 x 30 mL) 

and concentrated.  The residue was purified by column chromatography with 

EtOAc/Hexane (1:4) to afford 1.4 g (62%) of bromo 2.152.  Mp 72-74oC  IR (neat) 1579, 

1484, 1448, 1390, 1337, 1241, 1203, 1074, 1011, 800, 751, 700 1H NMR (CDCl3)  7.39 

(m, 5H), 6.48 (s, 1H), 5.12 (s, 2H), 3.82 (s, 3H), 3.75 (s, 3H), 2.40 (s, 3H); 13C NMR 

(CDCl3)  152.0, 151.5, 142.1, 136.7, 133.1, 128.5, 127.9, 127.1, 106.2, 98.0, 71.7, 60.6, 

55.9, 16.3;  LRMS calculated for C16H18BrO3 (M+H)+ m/z: 337.0.  Measured 337.1 m/z 
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6-(Benzyloxy)-3,4-dimethoxy-2-methylbenzoic acid (2.153).  To a solution of bromide 

2.152 (2.7 g, 8.0 mmol) in Et2O/THF (7:1, 40 mL) at -78oC was added n-BuLi (6.4 mL, 16 

mmol) turning the solution an orange color.  After 1 h at -78oC, CO2 was bubbled through 

the solution for 10 minutes, followed by the addition of crushed dry ice (50 mL).  The 

reaction was then diluted with H2O (50 mL).  The organic layer was washed with H2O, 

and the combined aqueous layers were treated with conc. HCl, to produce a white 

precipitate.  The reaction mixture was filtered, to afford 1.70 g (70%) of acid 2.153.  1H 

NMR (CDCl3)  7.35 (m, 5H), 6.42 (s, 1H), 5.14 (s, 2H), 3.81 (s, 3H), 3.71 (s, 3H), 2.40 

(s, 3H). 

 

 

Phenyl 6-(benzyloxy)-3,4-dimethoxy-2-methylbenzoate (2.154).  To a solution of acid 

2.153 (1.7 g, 5.6 mmol) in CH2Cl2 (30 mL) was added SOCl2 (1.3 mL, 17 mmol).  After 5 

h of heating at reflux, the excess SOCl2, along with the solvent, was removed.  The 

residue was dissolved in CH2Cl2 (30 mL) and phenol (1.1 g, 11 mmol) was added.  At 

0ºC, Et3N (2.0 mL, 14 mmol) was added, producing HCl gas.  After 16 h, the reaction 

mixture was washed with 1N HCl (2 x 25 mL) and brine (1 x 25 mL).  The organic layer 

was dried (MgSO4), and concentrated to provide a yellow solid.  The residue was 
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purified by column chromatography with EtOAc/Hexane (1:4) to afford 1.6 g (75%) of 

ester 2.154.  1H NMR (CDCl3)  7.64 (m, 10H), 6.47 (s, 1H), 5.12 (s, 2H), 3.84 (s, 3H), 

3.75 (s, 3H) , 2.38 (s, 3H); 13C NMR (CDCl3)  166.4, 154.5, 12.8, 150.9, 141.4, 136.5, 

130.9, 129.4, 128.5, 128.0, 127.5, 125.8, 121.8, 96.5, 71.3, 60.5, 55.8, 12.9;  LRMS 

calculated for C23H23O5 (M+H)+ m/z: 379.2 Measured 379.2 m/z. 

 

 

8-(benzyloxy)-9-hydroxy-5,6-dimethoxy-3,4,4a,10-tetrahydroanthracen-1(2H)-one 

(2.155).  To a solution of diisopropyl amine (0.15 mL, 1.0 mmol) in THF (3 mL) at 0oC 

was added 2.0 M n-BuLi (0.53 mL).  After 30 min, TMEDA (0.10 mL, 0.14 mmol) was 

added and then cooled to -78oC.  Then a solution of 2.154 (0.18 g, 0.51 mmol) in THF (2 

mL) was added, forming a blood red color.  After 1 h at -78oC a solution of 

cyclohexenone (0.60 g. 1.9 mmol) in THF was added resulting in a yellow color.  This 

solution was then allowed to warm up to 0oC, over the next 2 h.  The reaction mixture 

was diluted with 0.2M KH2PO4 (5 mL) and extracted with EtOAc (3 x 10 mL).  The 

combined organic layers were dried (MgSO4), and concentrated.  The residue was 

purified by column chromatography with EtOAc/Hexane (1:2) to afford 17 mg (12%) of 

annulation product 2.155.  1H NMR (CDCl3)  16.51 (s, 1H), 7.38 (m, 2H), 7.19 (m, 3H) 

6.43 (s, 1H), 5.11 (s, 2H), 3.92 (s, 3H), 3.87 (s, 3H), 3.20 (dd, J = 15.2, 4.0 Hz, 1H), 2.51 

(m, 1H), 2.40 (m, 2H), 2.14 (m, 2H), 1.89 (m, 1H), 1.59 (m, 2H)  
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Phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate.  To a solution of ester 2.154 (1.6 

g, 4.6 mmol) in MeOH (20 mL) was added 5% Pd/C (0.3 g).  This solution was placed in 

a hydrogen atmosphere, and allowed to stir for 16 h.  The reaction was filtered over a 

celite 454 / silica plug (1:1) and washed with MeOH (3 x 20 mL).  The combined organic 

extracts were dried (MgSO4) and concentrated to afford 1.0 g (85%) of phenyl 6-

hydroxy-3,4-dimethoxy-2-methylbenzoate.  IR (neat) 2932, 1650, 1614, 1589, 1490, 

1444, 1324, 11251, 1219, 1161, 1054, 1034, 1004, 956, 847, 829, 788, 733, 686  1H 

NMR (CDCl3)  7.31 (m, 5H), 6.41 (s, 1H), 3.89 (s, 3H), 3.71 (s, 3H), 2.61 (s, 3H);  13C 

NMR (CDCl3)  170.2, 161.8, 158.8, 149.7, 140.6, 133.9, 129.5, 126.0, 121.7, 103.6, 

98.3, 60.4, 55.5, 30.8, 14.7. 

 

 

Phenyl 3,4,6-trimethoxy-2-methylbenzoate (2.158).  To a suspension of phenyl 6-

hydroxy-3,4-dimethoxy-2-methylbenzoate (0.50 g, 1.7 mmol) and K2CO3 (0.73 g, 5.2 

mmol) in DMF (5.8 mL) was added MeI (0.32 mL, 5.2 mmol).  After 16 h, the reaction 

was diluted H2O (10 mL) and extracted with EtOAc (3 x 10 mL).  The combined organic 

layers were washed with Brine (20 mL), dried (MgSO4), and concentrated.  The residue 
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was purified by column chromatography with EtOAc/Hexane (1:2) to afford 0.42 g (77%) 

of ester 2.158 as a white solid.  mp 74-77 °C;  IR (neat)  2926, 1731, 1593, 1492, 1462, 

1338, 1257, 1191, 1085, 1037, 750;  1H NMR (CDCl3)  7.4 (m, 5H), 6.71 (s, 1H), 4.19 

(s, 3H), 4.16 (s, 3H), 4.04 (s, 3H), 2.65 (s, 3H);  13C NMR (CDCl3)  166.0, 154.4, 153.5, 

150.7, 140.8, 130.3, 129.2, 125.6, 121.4, 115.1, 94.7, 60.1, 56.1, 55.5, 12.6;  LRMS 

calculated for C17H18O5 (M+H)+ 303.1 m/z:  Measured 303.2 m/z   

 

 

9-hydroxy-5,6,8-trimethoxy-3,4,4a,10-tetrahydroanthracen-1(2H)-one (2.159).  To a 

solution of diisopropyl amine (0.070 mL, 0.50 mmol) in THF (1 mL) at 0oC was added 2.1 

M n-BuLi (0.2 mL).  After 30 min, TMEDA (0.085 mL, 0.56 mmol) was added, then 

cooled to -78oC.  A solution of ester 2.158 (0.10 g, 0.33 mmol) in THF (2 mL) was added, 

forming a blood red color.  After 1 h at -78oC a solution of cyclohexenone (0.10 g. 0.33 

mmol) in THF was added resulting in a yellow color.  This solution was then allowed to 

warm up to 0oC, over the next 2 h.  The reaction mixture was diluted with 0.2M KH2PO4 

(5 mL).  The aqueous layers were extracted with EtOAc (3 x 10 mL).  The combined 

organic layers were dried (MgSO4), and concentrated.  The crude product was purified 

by flash chromatography with EtOAc/Hexane (1:2) to afford 57 mg (56%) of the 

annulation product 2.159.  IR (neat)  2939, 1702, 1593, 1460, 1335, 1257, 1088, 1068, 

1043, 812;  1H NMR (CDCl3)  16.51 (s, 1H) 6.43 (s, 1H), 4.77 (s, 1H) 3.90 (s, 3H), 3.89 

(s, 3H), 3.21 (dd, J = 15.2, 4.0 Hz, 1H), 2.50 (m, 1H), 2.40 (m, 2H), 2.12 (m, 2H), 1.90 
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(m, 1H), 1.61 (m, 2H);  13C NMR (CDCl3)  186.9, 181.5, 158.1, 156.8, 138.6, 137.7, 

113.9, 108.7, 95.2, 60.7, 56.4, 55.7, 32.6, 31.2, 30.2, 29.9, 20.9;  LRMS calculated for 

C17H20O5 (M+H)+ m/z: 305.1, Measured 305.1 m/z  

 

 

Phenyl 3,4-dimethoxy-6-(methoxymethoxy)-2-methylbenzoate (2.156).  To a solution 

of phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate (0.10 g, 0.35 mmol) in CH2Cl2 (1.2 

mL) was added diisopropyl ethyl amine (0.13 mL, 0.70 mmol) followed by MOMCl (0.040 

mL. 0.52 mmol).  After 16 h., the solution was then diluted with CH2Cl2 (2 mL), and 

washed with H2O (5 mL), 1N HCl (5 mL), NaHCO3 (saturated, 5 mL), and Brine (5 mL).  

Each aqueous layer was washed with CH2Cl2 (10 mL).  The combined organic layers 

were dried (MgSO4) and concentrated.  The residue was purified by column 

chromatography with EtOAc/Hexane (1:4) to afford 74.6 mg (65%) of 2.156.  1H NMR 

(CDCl3)  7.32 (m, 5H), 6.66 (s, 1H), 5.19 (s, 2H), 3.87 (s, 3H), 3.75 (s, 3H), 3.50 (s, 3H), 

2.36 (s, 3H).   
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5,6-Dimethoxy-8-(methoxymethoxy)-3,4,4a,10-tetrahydroanthracene-1,9(2H,9aH)-

dione (2.157).  To a solution of diisopropyl amine (0.032 mL, 0.23 mmol) in THF (0.5 

mL) at 0oC was added 2.5 M n-BuLi (0.1 mL).  After 30 min, TMEDA (0.038 mL, 0.28 

mmol) and the solution was then cooled to -78oC.  To this was added a solution of MOM 

ether 2.156 (50 mg, 0.15 mmol) in THF (2 mL), forming a blood red color.  After 1 h at     

-78oC a solution of 0.5 M cyclohexenone (0.30 mL, 0.15 mmol) in THF was added 

resulting in a yellow color.  This solution was then allowed to warm up to 0oC, over the 

next 2 h.  The reaction mixture was diluted with 0.2M KH2PO4 (5 mL) and extracted with 

EtOAc (3 x 10 mL).  The combined organic layers were dried (MgSO4), and 

concentrated.  The residue was purified by column chromatography with EtOAc/Hexane 

(1:2) to afford 1.2 mg (9%) of 2.157 a yellow oil.  1H NMR (CDCl3) δ 6.72 (s, 1H), 5.26 

(dd, J = 18.5, 7.0 Hz, 2H), 3.92 (s, 3H), 3.75 (s, 3H), 3.57 (s, 3H), 3.25 (dd, J = 15.2, 

4.1Hz, 1H), 2.54 (m, 1H), 2.44 (m, 2H), 2.15 (m, 2H), 2.07 (m, 2H), 1.94 (m, 1H).   

 

 

Phenyl 6-(tert-butoxycarbonyloxy)-3,4-dimethoxy-2-methylbenzoate.  To a solution 

of phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate (50 mg, 0.17 mmol) in CH2Cl2 (0.6 

mL) was added BOC anhydride (45 mg, 0.21 mmol), and DMAP (1 mg, 0.008 mmol).  
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After 1 h, the reaction mixture was washed with brine (2 mL), 1N HCl (2 mL), and 

NaHCO3 (2 mL). The organic layer was dried (MgSO4), and concentrated.  The residue 

was purified by column chromatography with EtOAc/Hexane (1:4) to afford 57 mg (85%) 

of phenyl 6-(tert-butoxycarbonyloxy)-3,4-dimethoxy-2-methylbenzoate.  1H NMR (CDCl3) 

 7.31 (m, 5H), 6.66 (s, 1H), 3.86 (s, 3H), 3.76 (s, 3H), 2.42 (s, 3H), 1.41 (s, 9H).  

  

 

Phenyl 6-(tert-butyldimethylsilyloxy)-3,4-dimethoxy-2-methylbenzoate (2.155).  To 

a solution of phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate (0.15 g, 0.52 mmol) in 

DMF (1 mL) was added imidazole (0.090 g, 1.3 mmol) and TBSCl (0.095 g, 0.62 mmol).  

After 16 h, the reaction mixture was diluted with NaHCO3 (3 mL) and extracted with 

EtOAc (3 x 10 mL).  The combined organic layers were dried (MgSO4), and 

concentrated.  The residue was purified by column chromatography with EtOAc/Hexane 

(1:10) to afford 0.097 g (63%) of phenyl 6-(tert-butyldimethylsilyloxy)-3,4-dimethoxy-2-

methylbenzoate.   1H NMR (CDCl3)  7.32 (m, 5H), 6.32 (s, 1H), 3.82 (s, 3H), 3.74 (s, 

3H), 2.36 (s, 3H), 0.98 (s, 9H), 0.25 (s, 6H).  
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8,9-dihydroxy-5,6-dimethoxy-3,4,4a,10-tetrahydroanthracen-1(2H)-one (2.160).  To 

a solution of 2.159 (40 mg, 0.13 mmol) in acetonitrile (1.4 mL) was added CeCl3
.7H2O 

(73 mg, 0.20 mmol) and sodium iodide (0.29 g, 0.20 mmol).  After 3.5 h of heating to 

reflux, the reaction was diluted with H2O (5 mL) and extracted with EtOAc (3 x 10 mL).  

The combined organic layers were dried (MgSO4), and concentrated to a yellow solid.  

The crude product was purified by flash chromatography with EtOAc/Hexane (1:4) to 

afford 19.6 mg (59%) of phenol 2.160.  1H NMR (CDCl3)  14.58, (s, 1H), 12.22(s, 1H), 

6.32 (s, 1H), 3.88 (s, 3H), 3.71 (s, 3H), 3.23 (dd, J = 11.6, 4.6 Hz, 1H), 2.62-.5 (m, 1H), 

2.48-2.43 (m, 1H), 2.37-2.35 (m, 1H), 2.25-2.15 (m, 1H), 2.06-2.01 (m, 1H), 1.98-1.93 

(m, 1H), 1.71-1.60 (m, 1H), 1.45-1.32 (m, 1H);  13C NMR (CDCl3)  191.9, 177.3, 160.9, 

159.3, 138.0, 134.9, 109.2, 107.3, 98.5, 60.8, 55.8, 32.7, 30.3, 30.0, 29.0, 20.8;  

Selected NOSEY 14.58, 6.32, 3.88; LRMS calculated for C16H18O5 (M+H)+ m/z: 291.1, 

Measured 291.1 m/z. 

 

 

9a-bromo-8-hydroxy-5,6-dimethoxy-3,4,4a,10-tetrahydroanthracene-1,9(2H,9aH)-

dione (2.164).  To a solution of diphenyl diselonide (163 mg, 0.517 mmol) in THF at 0°C 

was added two drops of bromine and the resulting solution was allowed to stir for 30 min 
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at 0°C.  A solution of phenol 2.160 (20 mg, 0.069 mmol) in 1 ml of THF was added.  

After 1 h, the solution was diluted with sat. NH4Cl and extracted with EtOAc (3 x 5 mL).  

The combined organic extracts dried (MgSO4), and concentrated to afford an oil.  The 

residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 8 mg 

(37%) of bromide 2.164 and 7 mg (41%) of phenol 2.160.  1H NMR (CDCl3) , 6.45 (s, 

1H), 3.96 (s, 3H), 3.79 (s, 3H), 3.23 (dd, J = 18, 4.5 Hz, 1H), 2.83 (m, 1H), 2.67 (m, 1H), 

1.27 (d, J = 6.0 Hz, 3H)  LRMS calculated for C16H19BrO5 (M+H)+ m/z: 369.0, Measured 

369.0 m/z. 

 

 

9a-chloro-8-hydroxy-5,6-dimethoxy-3,4,4a,10-tetrahydroanthracene-1,9(2H,9aH)-

dione (2.165)  To a solution of phenol 2.160 (24 mg, 0.086 mmol) in 2 mL of EtOAc was 

added phenyl selenium chloride (28 mg, 0.14 mmol).  After 16 h, the reaction was 

concentrated to an oil.  The residue was purified by column chromatography with 

EtOAc/Hexane (1:4) to afford 16 mg (58) %) of chloride 2.165.  1H NMR (CDCl3) , 6.45 

(s, 1H), 3.96 (s, 3H), 3.79 (s, 3H), 3.23 (dd, J = 18, 4.5 Hz, 1H), 2.83 (m, 1H), 2.67 (m, 

1H), 1.27 (d, J = 6.0 Hz, 3H)  13C NMR (CDCl3  202.0, 191.1, 163.7, 160.6, 138.2, 133.6, 

108.3, 98.9, 70.4, 60.7, 56.0, 45.8, 37.4, 27.1, 27.0, 24.3 ; LRMS calculated for 

C16H18ClO5 (M+H)+ m/z: 325.1, Measured 325.2 m/z. 
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9-hydroxy-5,6,8-trimethoxy-3,4-dihydroanthracen-1(2H)-one (2.166).  To a solution 

of 2.159 (0.45 g, 1.5 mmol) in benzene (15.0 mL) was added DDQ (0.42 mg, 1.77mmol).  

After 1 h at R.T. the reaction mixture was concentrated.  The residue was purified by 

column chromatography with EtOAc/Hexane (1:1) to afford 306 mg (70%) of the 

naphthyl 2.163.   IR (neat) 3246, 2935, 1621, 1595, 143, 1344, 1326, 1187, 1114; 1H 

NMR (CDCl3)  15.35 (s, 1H) 7.19 (s, 1H), 6.52 (s, 1H), 3.99 (s, 1H) 3.98 (s, 3H), 3.83 (s, 

3H), 2.96 (t, J = 6.0 Hz, 2H), 2.70 (t, J = 6.4 Hz, 2H), 2.06 (m, 2H),  13C NMR (CDCl3)  

204.0, 166.4, 157.5, ,152.8, 139.4, 135.6, 134.5, 110.4, 109.9, 109.1, 94.4, 60.9, 56.5, 

56.2, 38.7, 30.4, 22.7;  LRMS calculated for C17H19O5 (M+H)+ m/z: 303.1, Measured 

303.1 m/z.   

 

 

8,9-dihydroxy-5,6-dimethoxy-3,4-dihydroanthracen-1(2H)-one (2.161).  To solution 

of 2.166 (0.10 g, 0.33 mmol) in DCM (3.5 mL) was added sodium iodide (74 mg , 0.50 

mmol).  This solution was cooled to 0oC, where 1.0 M BBr3 in DCM (0.40 ml) was added.  

The resulting solution was then allowed to warm to R.T. and stir for 16 h.  At this time the 

solution was diluted w/ sat NaHCO3 and extracted with DCM (3x).  The combined 

organics were then concentrated.  The residue was purified by Gilson chromatography 
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with CH3CN/H2O 1% TFA to afford 17 mg (18%, BRSM 40%) of the demethylated 2.161 

and 33 mg  (39%) of 5,8,9-trihydroxy-6-methoxy-3,4-dihydroanthracen-1(2H)-one. 1H 

NMR (CDCl3)  15.25 (s, 1H) 7.29 (s, 1H), 6.60 (s, 1H), 5.50 (s, 1H), 4.02 (s, 3H), 3.99 

(s, 3H), 3.00 (t, J = 6.0 Hz, 2H), 2.73 (t, J = 6.4 Hz, 2H), 2.09 (m, 2H),  13C NMR (CDCl3) 

 204.5, 166.5, 154.7, 145.7, 139.0, 138.3, 133.1, 128.8, 109.2, 109.9, 94.3, 57.2, 56.5, 

38.9, 30.4, 22.8;  LRMS calculated for C16H17O5 (M+H)+ m/z: 289.1, Measured 289.2 

m/z. 

5,8,9-trihydroxy-6-methoxy-3,4-dihydroanthracen-1(2H)-one.  1H NMR (CDCl3)  

13.74 (s, 1H) 7.56 (s, 1H), 6.17 (s, 1H), 3.92 (s, 3H), 3.09 (t, J = 6.1 Hz, 2H), 2.78 (t, J = 

6.45 Hz, 2H), 2.18 (m, 2H), LRMS calculated for C16H17O5 (M+H)+ m/z: 273.2, Measured 

273.2 m/z. 

 

 

2-Bromo-6-methoxybenzene-1,4-diol (2.167).  To a solution of aldehyde 2.149 (14.8 g, 

64.0 mmol) in CH2Cl2 (160 mL) was added m-CPBA (22.1 g, 128 mmol).  After 3.5 h of 

heating at reflux, saturated NaHCO3 (200 mL) was added and allowed to stir for 45 min.  

The aqueous layer was extracted with CH2Cl2 (3 x 100 mL).  The combined organic 

layers were dried (MgSO4), and concentrated.  This residue was dissolved in MeOH / 

conc HCl / H2O (2:1:1, 200 mL).  After 30 min, the MeOH was removed and extracted 

with EtOAc (3 x 100 mL).  The combined organic layers were dried (MgSO4), and 

concentrated.  The residue was purified by column chromatography with EtOAc/Hexane 
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(1:4) to afford 10.7 g (77%) of the bis-phenol 2.167.  1H NMR (CDCl3)  6.58 (d, J = 2.7 

Hz, 1H), 6.42 (d, J = 2.7 Hz, 1H), 5.49 (bs, 1H), 3.87 (s, 3H).  LRMS calculated for 

C7H8BrO3 (M+H)+ m/z: 219.0 Measured 219.0 m/z.  

 

 

1-Bromo-2,3,5-trimethoxybenzene (2.168).  To a solution of hydroquinone 2.167 (10.3 

g, 49.0 mmol) in DMF (200 mL) was added K2CO3 (20.3 g, 147 mmol) and MeI (9.15 mL, 

147 mmol).  After 16 h, the reaction was diluted with H2O (200 mL) and extracted with 

EtOAc (3 x 75 mL).  The combined organic layers were washed with brine (100 mL), 

dried (MgSO4), and concentrated.  The residue was purified by column chromatography 

with EtOAc/Hexane (1:3) to afford 11.2 g (92%) of the trimethoxy bromide 2.168.  IR 

(neat) 1599, 1571, 1489, 1464, 1425, 1235, 1212, 1174, 1147, 1053, 1037, 1002 cm-1  

1H NMR (CDCl3)  6.59 (d, J = 2.8 Hz, 1H), 6.40 (d, J = 2.8 Hz, 1H), 3.79 (s, 3H), 3.76 

(s, 3H), 3.71 (s, 3H);  13C NMR (CDCl3)  156.3, 153.9, 140.5, 117.3, 107.7, 99.7, 60.4, 

55.8, 55.5;  LRMS calculated for C9H12BrO3 (M+H)+ m/z: 247.0, Measured 247.0 m/z. 
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1,2,5-Trimethoxy-3-methylbenzene (2.169).  To a solution of bromide 2.168 (1.0 g, 4.2 

mmol) in Et2O (150 mL) at -78oC was added n-BuLi (3.4 mL, 8.2 mmol).  After 1 h,  MeI 

(0.80 mL, 13 mmol) was added, and the solution was allowed to warm to room over the 

next 4 h..  The reaction mixture was diluted by H2O (100 mL), and extracted  with EtOAc 

(3 x 75 mL).  The residue was purified by column chromatography with EtOAc/Hexane 

(1:3) to afford 560 mg (73%) of toluene 2.169 as a yellow oil.  1H NMR (CDCl3)  6.34 (d, 

J = 2.7 Hz, 1H), 6.27 (d, J = 2.7 Hz, 1H), 3.81 (s, 3H), 3.74 (s, 3H), 3.73 (s, 3H) 2.25 (s, 

3H).  13C NMR (CDCl3) δ 153.1, 151.7, 145.7, 131.3, 115.3, 107.9, 60.2, 60.1, 56.9, 

15.7.  LRMS calculated for C10H14O3 (M+H)+ m/z: 183.2, Measured 183.2 m/z. 

 

 

(3,5-dinitrophenyl)(4-methylpiperazin-1-yl)methanone (2.18).  A solution of 3,5 

dinitrobenzochloride (10.0 g, 43 mmol) in CHCl3 (80 mL) was slowly added to a solution 

of 1 methylpiparazine (6.0 mL, 52 mmol) and K2CO3 (6.0 g, 43 mmol) in CHCl3 (80 mL) 

at 0oC.  After 1.5 h, the reaction mixture was then washed with H2O (3 x 40 mL).  The 

organic layer was dried (MgSO4) and concentrated. The product was then re-crystallized 

from Hexane and CH2Cl2 to afford a tan solid (8.6 g, 68%).  Yields range (85%)  1H NMR 
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(CDCl3) δ 8.96 (d, J = 1.3 Hz, 1H), 8.50 (t, J = 1.0 Hz, 2H), 3.74 (bs, 2H), 3.38 (bs, 2H), 

2.46 (bs, 2H), 2.35 (bs, 2H), 2.27 (s, 3H)  

 

 

2,2',3,3',6,6'-hexamethoxy-4,4'-dimethylbiphenyl (2.170).  To a solution of toluene 

2.169 (1.4 g, 7.6 mmol) in diethyl ether (38 mL) at 0 °C was added 2.2 M n-BuLi (4.2 mL, 

9.2 mmol) and the resulting solution stirred for 5 h at 0 °C.  To the reaction mixture was 

added a solution of CuBr•SMe2 (0.79 g, 3.8 mmol) and LiBr (0.67 g, 7.6 mmol) in THF (3 

mL) via canula.  After the mixture was stirred for 30 min, (3,5-dinitrophenyl)(4-

methylpiperazin-1-yl)methanone (3.4 g, 11.5 mmol) was added by a solid addition 

adaptor.  After 1.5 h, the reaction mixture was passed over a silica plug and the filtrate 

concentrated in vacuo.  The residue was purified by column chromatography with 

EtOAc/Hexane (1:4) to afford 0.79 g (57%) biaryl 2.170 as a white solid: mp 114-117 °C;  

IR (neat) 2937, 1464, 1393, 1232, 1101, 1033 cm-1;  1H NMR (CDCl3) δ 6.54 (s, 1H), 

3.80 (s, 3H), 3.69 (s, 3H), 3.67 (s, 3H), 2.33 (s, 3H)175;  13C NMR (CDCl3) δ 153.4, 151.8, 

145.3, 131.1, 115.8, 108.2, 60.2, 60.2, 56.0, 16.4; HRMS calculated for C20H26O6Li 

(M+Li)+ m/z: 369.1889, Measured 369.1907 m/z.   
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Method 2.   To a solution of (+)-(P)-2.190 (23 mg, 0.069 mmol) in THF (2.0 mL) was 

added NaH (21 mg, 0.46 mmol) followed by MeI (0.20 mL, 0.27 mmol).  After 16 h the 

solution was diluted with H2O (5 mL), extracted with CH2Cl2 (3 x 5 mL) and the combined 

organic extracts were dried (MgSO4) and concentrated.  The residue was purified by 

column chromatography with EtOAc/Hexane (1:4) to afford 17 mg (68%) of (-)-(P)-2.170 

as a white solid: [ ]22
589 -4.7 (c 0.41, CHCl3).  Bis-phenol (-)-(M)-2.190 was methylated 

using the same procedure to afford (+)-(M)-2.170 isomer as a colorless oil: [ ]22
589 +6.8 

(c 0.30, CHCl3). 

 

 

3,3'-dibromo-2,2',5,5',6,6'-hexamethoxy-4,4'-dimethylbiphenyl (2.171). To a solution 

of biaryl 2.170 (1.2 g, 3.2 mmol) in DMF (160 mL) at room temperature was added N-

bromosuccinimide (2.9 g, 13 mmol).  After 16 h, the solution was diluted with 0.2 M 

sodium bisulfite (200 mL).  The mixture was then extracted with EtOAc (3 x 100 mL).  

The combined organic extracts were washed with brine (150 mL), dried (MgSO4), and 

concentrated to afford a yellow oil.  The residue was purified by column chromatography 

on silica gel with EtOAc/Hexane (1:4) to afford 1.3 g (78%) of bis-bromide 2.171 as a 
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white solid: mp 139-142 °C; IR (neat) 2941, 1458, 1391, 1084, 1009, 939;  1H NMR 

(CDCl3)  3.80 (s, 3H), 3.70 (s, 3H), 3.58 (s, 3H), 2.43 (s, 3H);  13C NMR (CDCl3)  

151.3, 150.6, 148.2, 132.9, 121.7, 114.7, 60.5, 60.4, 16.6;  LRMS calculated for 

C20H25Br2O6 (M+H)+ m/z: 521.2, Measured 521.0 m/z. 

 

 

Diphenyl 2,2',5,5',6,6'-hexamethoxy-4,4'-dimethylbiphenyl-3,3'-dicarboxylate 

(2.172).  To a solution of bromide 2.170 (250 mg, 0.48 mmol) in diethyl ether (50 mL) at -

78 °C was added 2.5 M n-BuLi (0.85 mL, 1.9 mmol).  After 1 h at -78 °C, neat phenyl 

chloroformate (0.14 mL, 1.9 mmol) was added.  The reaction mixture was allowed to 

warm to room temperature and after 16 h, diluted with H2O (15 mL) and extracted with 

ethyl acetate (3 x 15 mL).  The combined organic extracts were dried (MgSO4) and 

concentrated to afford a red/orange oil. The residue was purified by column 

chromatography with EtOAc/Hexane (1:4) to afford 230 mg (80%) of bis-phenyl ester 

2.170 as a white solid and 34 mg (9%) of 2.172: mp 102-105 °C;  IR (neat)  1747, 1460, 

1397, 1303,1259, 1187, 1090, 1039, 1010, 953;  1H NMR (CDCl3)  7.35 (m, 5H), 3.84 

(s, 3H), 3.81 (s, 3H), 3.66 (s, 3H), 2.42 (s, 3H);  13C NMR (CDCl3)  166.2, 155.5, 152.9, 

151.7, 150.5, 147.3, 130.4, 129.3, 125.8, 123.7, 121.3, 120.2, 115.0, 61.7, 60.2, 59.9, 

12.8; LRMS calculated for C34H34O10 (M+Na)+ m/z: 625.2, Measured 626.2 m/z. 

Resolution of bis-phenyl ester 2.170 by Preparative HPLC.  A Varian Prostar system 

was used for HPLC separation of bis-phenyl ester 2.172.  The HPLC column used was a 
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Chiralpak OD column (5 × 50 cm, 20 μm). The LC flow rate was 75 mL/min. The mobile 

phase consisted of an isocratic mixture of 1% isoproponal/hexane. (+)-(M)-2.172, tr = 13 

min; [ ]22
589 +6.8 (c 0.30, CHCl3); (-)-(P)-2.172, tr = 16 min; [ ]22

589 -4.7 (c 0.41, CHCl3). 

Analytical (Chiralpak OD, (4.6 × 250 mm) 1.0 mL/min, 1% isopropanol/hexane) (+)-(M)-

2.172, tr=6.4 min, (-)-(P)-2.172, tr= 8.3 min.] 

 

 

Diphenyl 1,1', 3,3', 4,4'- hexamethoxy- 6,6' -dimethyl- 8,8' –dioxo -5,5', 6,6', 7,7', 

8,8'-octahydro-2,2'-binaphthyl-7,7'-dicarboxylate (2.176).  To a solution of diisopropyl 

amine (0.30 mL, 2.0 mmol) in THF (1 mL) was added 2.5 M n-BuLi (0.80 mL, 2.0 mmol) 

at 0oC.  After 30 min, TMEDA (0.35 mL, 2.1 mmol) was added.  At -78oC, a solution of 

ester 2.172 (0.20 g, 0.34 mmol) in THF (1.0 mL) was added, forming a blood red color.  

After 1 h at -78oC a solution of crotonate 2.175 (0.20 g, 1.3 mmol) in THF (1.0 mL) was 

added resulting in a yellow color.  After 16 h, reaction mixture was diluted with saturated 

NH4Cl (5 mL).  The aqueous layers were extracted with EtOAc (3 x 10 mL).  The 

combined organic layers were dried (MgSO4), and concentrated.  The residue was 

purified by column chromatography with EtOAc/Hexane (1:2) to afford 59 mg (24%) of 

bis annulation product 2.176 and 54 mg (16%) of the mono annulation product.   1H NMR 

(CDCl3)  7.41 (m, 2H), 7.26 (m, 3H), 3.86 (s, 3H), 3.82 (d, J = 2.8 Hz, 3H), 3.63 (bs, 

3H), 3.43 (m, 1H), 2.82 (m, 1H), 2.62 (m, 1H), 1.36 (d, J = 6.4 Hz, 3H). 
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Diphenyl 7,7'-dibromo-1,1',3,3',4,4'-hexamethoxy-6,6'-dimethyl-8,8'-dioxo-

5,5',6,6',7,7',8,8'-octahydro-2,2'-binaphthyl-7,7'-dicarboxylate (2.177).  To a solution 

of bis annulation product 2.176 (59 mg, 0.080 mmol) in CHCl3 (1.5 mL) and EtOAc (1.5 

mL) was added CuBr2 (71 mg, 0.30 mmol).  After 16 h, the reaction was concentrated to 

a solid.  The residue was purified by column chromatography with EtOAc/Hexane (1:2) 

to afford 38 mg (47%) of bromide 2.177.  1H NMR (CDCl3)  7.38 (m, 2H), 7.21 (m, 3H), 

3.86 (s, 1.5H), 3.84 (s, 1.5H), 3.82 (.s, 1.5H), 3.80 (s, 1.5H), 3.61 (s, 1.5H), 3.58 (d, J = 

3.6 Hz, 1.5H), 3.31 (m, 1H), 2.96 (m, 1H), 2.75 (m, 1H), 1.33 (d, J = 6 Hz, 3H);  13C NMR 

(CDCl3)  186.2, 165.8, 158.0, 151.0, 1453, 137.6, 129.9, 126.1, 121.4, 117.9, 61.4, 

60.4, 60.1, 36.54, 29.2, 17.7.   

 

 

Diphenyl 8,8'-dihydroxy-1,1',3,3',4,4'-hexamethoxy-6,6'-dimethyl-2,2'-binaphthyl-

7,7'-dicarboxylate (2.178).  A solution of bromide 2.177 (34 mg, 0.038 mmol) in CH2Cl2 

(4 mL) at 0oC was added DBU (0.010 mL, 0.070 mmol).  After 16 h, the reaction was 

diluted with saturated NH4Cl (8 mL) and extracted with EtOAc (3 x 10 mL).  The 

combined organic layers were dried (MgSO4) and concentrated.  The residue was 

purified by column chromatography with EtOAc/Hexane (1:2) to afford 6.3 mg (23%) of 
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2.178.  1H NMR (CDCl3)  11.21 (s, 1H), 7.54 (s, 1H), 7.46 (m, 2H), 7.30 (m, 3H), 3.96 

(s, 3H), 3.90 (s, 3H), 3.66 (s, 3H), 2.72 (s, 3H).   

 

 

Diphenyl 1,1',3,3',4,4',8,8'-octamethoxy-6,6'-dimethyl-2,2'-binaphthyl-7,7'-

dicarboxylate (2.179).  To a suspension of 2.178 (6.3 mg, 0.0086 mmol) and K2CO3 (7 

mg, 0.050 mmol) in DMF (0.9 mL) was added MeI (40 L, 0.050 mmol).  After 16 h, the 

reaction was diluted with H2O (2 mL) and extracted with EtOAc (3 x 2 mL).  The 

combined organic layers were dried (MgSO4), and concentrated.  The residue was 

purified by column chromatography with EtOAc/Hexane (1:2) to afford 3.9 mg (60%) of 

methyl ether 2.179.  1H NMR (CDCl3)  7.90 (s, 1H), 7.47 (m, 2H), 7.31 (m, 3H), 4.01 (s, 

3H), 3.98 (s, 3H), 3.82 (s, 3H), 3.69 (s, 3H), 2.64 (s, 3H);  13C NMR (CDCl3)  167.0, 

153.7, 150.8, 149.0, 132.7, 132.4, 129.5, 126.0, 125.7, 122.9, 121.6, 118.3, 117.7, 64.0, 

62.0, 60.9, 60.4, 19.8. 
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Diphenyl 1,1',3,3',4,4'- hexamethoxy-8,8'-dioxo- 6,6'- bis(phenylthiomethyl)- 5,5' 

,6,6' ,7,7', 8,8' -octahydro-2,2'-binaphthyl-7,7'-dicarboxylate (2.181).  To a solution of 

diisopropyl amine (0.15 mL, 1.0 mmol) in THF (0.5 mL) was added 2.5 M n-BuLi (0.40 

mL, 1.0 mmol) at 0oC.  After 30 min, TMEDA (0.18 mL, 1.5 mmol) was added.  At -78oC, 

a solution of ester 2.172 (0.2 g, 0.336 mmol) in THF (1.0 mL) was added, forming a 

blood red color.  After 1 h at -78oC a solution of thiophenyl crotonate 2.180 (0.16 g, 1.33 

mmol) in THF (0.5 mL) was added resulting in a yellow color.  After 16 h, reaction 

mixture was diluted with saturated NH4Cl (5 mL).  The aqueous layers were extracted 

with EtOAc (3 x 10 mL).  The combined organic layers were dried (MgSO4), and 

concentrated.  The residue was purified by column chromatography with EtOAc/Hexane 

(1:2) to afford 44 mg (26%) of 2.181 and 21 mg (13%) of the mono annulation product.  

1H NMR (CDCl3)  7.33 (m, 5H), 3.80 (m, 9H), 3.54 (s, 3H), 3.47 (s, 0.5H), 3.28 (m, 

0.5H), 3.10 (m, 1H), 2.96 (m, 0.5H), 2.65 (m, 1.5H), 2.33 (d, J = 5.2 Hz, 0.5H). 
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Diphenyl 7,7'- dibromo- 1,1', 3,3', 4,4' -hexamethoxy- 8,8' -dioxo- 6,6'-

bis(phenylthiomethyl)- 5,5', 6,6', 7,7', 8,8' -octahydro- 2,2' -binaphthyl-7,7'-

dicarboxylate (2.182).  To a solution of bis annulation product 2.181 (36 mg, 0.044 

mmol) in CHCl3 (0.75 mL) and EtOAc (0.75 mL) was added CuBr2 (42 mg, 0.15 mmol).  

After 16 h, the reaction was concentrated to a solid.  The residue was purified by column 

chromatography with EtOAc/Hexane (1:2) to afford 26 mg (60%) of bromide 2.182.  1H 

NMR (CDCl3)  7.21 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.24 (d, J = 7.2Hz, 1H), 

3.80 (m, 9H), 3.73 (m, 1H), 3.51 (d, J = 2.4 Hz, 3H), 3.13 (d, J = 13.6 Hz, 1H), 2.98 (m, 

1H), 2.85 (m, 1H), 2.65 (m, 1H).  

 

 

Diphenyl 8,8'-dihydroxy-1,1',3,3',4,4'-hexamethoxy-6,6'-bis(phenylthiomethyl)-2,2'-

binaphthyl-7,7'-dicarboxylate (2.183).  A solution of bromide 2.182 (26 mg, 0.026 

mmol) in CH2Cl2 (0.3 mL) at 0oC was added DBU (20 L, 0.11 mmol).  After 16 h, the 

reaction was diluted with saturated NH4Cl (8 mL) and extracted with EtOAc (3 x 10 mL).  

The combined organic layers were dried (MgSO4) and concentrated.  The residue was 

purified by column chromatography with EtOAc/Hexane (1:2) to afford 15 mg (70%) of 
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bi-naphthyl 2.183.  1H NMR (CDCl3)  7.39 (m, 4H), 7.24 (s, 1H), 7.19 (m, 1H), 4.46 (s, 

2H), 3.98 (s, 3H), 3.84 (s, 3H), 3.76 (s, 3H), 3.62 (s, 3H), 

 

 

9,9'-dihydroxy-1,1',3,3',4,4'-hexamethoxy-6,6',7,7',10,10a,10',10'a-octahydro-2,2'-

bianthracene-8,8'(5H,5'H)-dione (2.186).  A solution of diisopropyl amine (50 mL, 0.33 

mmol) in THF (1 mL) was cooled to 0 °C and a solution of 2.1 M n-BuLi (0.15 mL, 0.33 

mmol) was added.  After 30 min, TMEDA (50 mL, 0.33 mmol) was added (neat) and the 

LDA solution was added via canula to a pre-cooled solution of 2.172 (50 mg, 0.083 

mmol) in THF (1 mL) at -78 °C resulting in a deep-red colored solution.  After 30 min at -

78 °C, cyclohexenone (62 mg, 0.66 mmol) was added resulting in a yellow color solution.  

The reaction mixture was allowed to warm up to 0 °C and stir for two hours.  The 

reaction was diluted with saturated NH4Cl (5 mL) and extracted with EtOAc (3 x 5 mL).  

The combined organic layers were dried (MgSO4), and concentrated.  The residue was 

purified by column chromatography with EtOAc/Hexane (1:4) to afford 15 mg (32%) of 

bis-annulated product 2.186:  1H NMR (CDCl3)  16.57 (s, 1H), 3.80 (s, 3H), 3.27 (dd, J = 

7.8, 2.8 Hz, 1H), 2.72-2.68 (m, 1H), 2.48-2.43 (m, 2H) 2.27-2.20 (m, 1H), 2.10-2.08 (m, 

1H), 1.95-1.93 (m, 1H), 1.72-1.66 (m, 1H), 1.56 (bs, 2H), 1.41-1.35 (m, 1H), 1.27-1.25 

(m, 1H);  13C NMR (CDCl3) δ 185.4, 184.2, 155.9, 155.3, 145.1, 137.4, 122.3, 120.8, 

109.1, 61.9, 60.5, 32.5, 31.8, 30.3, 30.1, 21.0.  LRMS calculated for C16H15O6 (M+H)+ 

303.1 m/z:  Measured 303.1 m/z 
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9,9'-dihydroxy-1,1',3,3',4,4'-hexamethoxy-6,6',7,7'-tetrahydro-2,2'-bianthracene-

8,8'(5H,5'H)-dione (2.187).  To a solution of 2.186 (31 mg, 0.051 mmol) in benzene (0.5 

mL) was added DDQ (26 mg, 0.12 mmol).  After refluxing for 5 h, the reaction mixture 

was concentrated and purified by column chromatography with EtOAc/Hexane (1:2) to 

afford 19 mg (62%) of the 2.187. 1H NMR (CDCl3)  15.09 (s, 1H), 7.41 (s, 1H), 3.95 (s, 

3H), 3.83 (s, 3H), 3.70 (s, 3H), 3.07 (t, J = 5.6 Hz, 2H), 2.78 (t, J = 6.4 Hz, 2H), 2.19-2.14 

(m, 2H);  13C NMR (CDCl3)  204.3, 165.7, 156.7, ,152.8, 139.4, 135.6, 134.7, 111.3, 

110.7, 110.0, 94.7, 60.2, 56.4, 56.2, 39.0, 30.4, 23.6  LRMS calculated for C34H34O10 

(M+H)+ m/z: 603.2, Measured 603.2 m/z. 

 

 

6,6'-Bis(benzyloxy)-2,2',3,3'-tetramethoxy-4,4'-dimethylbiphenyl (2.189).  To a 

solution of benzyl toluene 2.151 (0.10 g, 0.39 mmol) in diethyl ether (2.0 mL) at 0 °C was 

added 2.5 M n-BuLi (0.20 mL, 0.47mmol).  After 5 h at 0 °C, a solution of CuBr•SMe2 (40 

mg, 0.19 mmol) and LiBr (34 mg, 0.39 mmol) in THF (1 mL) was added via canula.  After 

the mixture was stirred for 30 min, (3,5-dinitrophenyl)(4-methylpiperazin-1-yl)methanone 
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(2.18) (0.19 g, 0.58 mmol) was added by a solid addition adaptor.  After 1 h, the reaction 

mixture was passed over a silica plug and the filtrate concentrated in vacuo.  The 

residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 47 

mg (47%) of biaryl 2.189 as a solid: mp 126-128 °C;  1H NMR (CDCl3)  7.17 (m, 5H), 

6.58 (s, 1H), 4.95 (dd, J = 9.9, 12.6 Hz, 2H), 3.81 (s, 3H), 3.71 (s, 3H), 2.28 (s, 3H);  13C 

NMR (CDCl3)  152.4, 151.6, 145.2, 137.5, 130.8, 128.3, 127.8, 127.3, 126.9, 126.2, 

116.7, 110.1, 70.4, 60.1, 60.0, 16.1; LRMS calculated for C32H35O6 (M+H)+ m/z: 515.24, 

Measured 515.2 m/z. 

 

 

5,5',6,6'-tetramethoxy-4,4'-dimethylbiphenyl-2,2'-diol (2.190) - To a solution of bis-

benzyl ether 2.189 (80 mg, 0.16 mmol) in anhydrous MeOH (3.0 mL) was added 5% 

Pd/C (30 mg).  This solution was placed under one atmosphere of hydrogen and allowed 

to stir at room temperature for 16 h.  The reaction was filtered through a plug of Celite 

454 and silica gel (1:1).  The filtrate was concentrated and the residue was purified by 

column chromatography with EtOAc/Hexane (1:4) to afford 47 mg (90%) of bis-phenol 

2.190.  1H NMR (CDCl3) δ 6.67 (s, 1H), 5.41 (s, 1H), 3.81 (s, 3H), 3.69 (s, 3H), 2.29 (s, 

3H); 13C NMR (CDCl3) δ 150.5, 149.5, 145.1, 133.4, 114.0, 111.7, 60.7, 60.3, 15.7.  

LRMS calculated for C18H22O6 (M+H)+ m/z: 334.9, Measured 334.9 m/z. 
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Method 2 - A solution of (aS)-2.192 (17 mg, 0.022 mmol) in CH2Cl2 (0.5 mL) and Et2O 

(1.8 mL) was cooled to 0 °C and LiAlH4 (6.2 mg, 0.16 mmol) was added.  The reaction 

mixture was allowed to warm to room temperature over 2.5 h and carefully quenched 

with saturated NH4Cl (3 mL), extracted with CH2Cl2 (3 x 3 mL) and the combined organic 

extracts dried (MgSO4) and concentrated.  The residue was purified by column 

chromatography with EtOAc/Hexane (1:4) to afford 6 mg (82%) of (-)-(aS)-2.190 

identical to (+)-9 except optical rotation: [ ]22
589 -8.3 (c 0.14, CHCl3).  Mosher ester (aR)-

2.192 was reduced under identical conditions to afford (+)-(aR)-2.190: [ ]22
589 +3.6 (c 

0.22, CHCl3) using an identical procedure. 

 

 

Method 3 - To a solution of bis-MOM ether 2.203 (0.41 g, 0.97 mmole) in MeOH (10 mL) 

was added 12 drops of conc. HCl.  This solution was allowed to stir at room temperature 

for 2.5 h, MeOH was removed in vacuo and the residue was purified by column 

chromatography with EtOAc/Hexane (1:4) to afford 0.24 g (74%) of bis-phenol 2.190 as 

a colorless oil: 
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(2R,2'R)-(5,5',6,6'-tetramethoxy-4,4'-dimethylbiphenyl-2,2'-diyl) bis(3,3,3-trifluoro-2-

methoxy-2-phenylpropanoate) ((aR)-2.192 / (aS)-2.192) - To a solution of bis-phenol 

2.190 (47 mg, 0.14 mmol) in CH2Cl2 (5.5 mL) at 0 °C was added Mosher’s acid (87 mg, 

0.35 mmol), DCC (82 mg, 0.36 mmol), and several crystals of DMAP.  After 16 h, 

additional Mosher’s acid (67 mg, 0.28 mmol) and DCC (58 mg, 0.28 mmol) were added 

along with several crystals of DMAP.  After 24 h, the reaction was judged complete by 

TLC and concentrated. The residue was purified by flash chromatography on silica gel 

with EtOAc/Hexane (1:4) to afford a mixture of diastereomers (aR)-2.192 and (aS)-2.192 

(65 mg, 84%).  The diastereomers were separated by HPLC using a Dynamax column 

(21.4 × 250 mm, 60 A).  The mobile phase consisted of a gradient mixture of 

EtOAc/hexane (10%-60%) over 45 min. 

 (aS)-2.191 - IR (neat) 3351, 2921, 1759, 1457, 1401, 1269, 1238, 1218, 1182, 1167, 

1122, 1080, 1015, 1002, 733, 699.  1H NMR (CDCl3)  7.26 (m, 5H), 6.71 (s, 1H), 6.58 

(s, 1H), 4.83 (s, 1H), 3.87 (s, 3H), 3.71 (s, 6H), 3.57 (s, 3H), 3.27 (s, 3H), 2.33 (s, 3H), 
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2.30 (s, 3H); 19F NMR (CDCl3)  -69.7  LRMS calculated for C28H30F3O8 (M+H)+ 551.2 

m/z:  Measured  551.0 m/z 

(aR)-2.191 - 1H NMR (CDCl3)  7.25 (m, 5H), 6.80 (s, 1H), 6.61 (s, 1H), 4.81 (s, 1H), 

3.88 (s, 3H), 3.71 (s, 3H), 3.61 (s, 3H), 3.49 (s, 3H), 3.48 (s, 3H), 2.36 (s, 3H), 2.29 (s, 

3H); 19F NMR (CDCl3)  -70.2  LRMS calculated for C28H30F3O8 (M+H)+ 551.2 m/z:  

Measured  551.0 m/z 

(aS)-2.192: tr = 29 min; [ ]22oC
589 -44 (c 0.56, CHCl3); mp 126-128 °C; IR (neat) 1762, 

1455, 1400, 1240, 1221, 1191, 1170, 1070, 1011 cm-1;  1H NMR (CDCl3)  7.31 (m, 6H), 

6.65 (s, 1H), 3.71 (s, 3H), 3.56 (s, 3H), 3.28 (s, 3H); 2.32 (s, 3H),  13C NMR (CDCl3)  

165.2, 151.8, 149.5, 143.5, 133.0, 131.3, 129.3, 129.2, 128.3, 128.2, 127.4, 127.1, 

124.6, 121.7, 118.4, 118.2, 60.3, 58.8, 55.0, 16.1;  40F NMR (CDCl3)  -71.6; LRMS 

calculated for C38H36F6NaO10 (M+Na)+ 789.2 m/z:  Measured  788.9 m/z 

(aR)-2.192: tr = 31 min; [ ]22oC
589 +0.65 (c 0.40, CHCl3);  IR  (neat) 2930, 1761, 1467, 

1225, 1174, 1073, 1006 cm-1;  1H NMR (CDCl3)   7.28 (m, 6H), 6.69 (s, 1H), 3.68 (s, 

3H), 3.59 (s, 3H), 3.39 (s, 3H); 2.30 (s, 3H),  13C NMR (CDCl3)  164.9, 151.8, 149.4, 

143.4, 132.9, 131.7, 129.5, 129.1, 128.2, 127.1, 126.0, 124.4, 121.6, 118.3, 118.2, 60.3, 

59.8, 55.3, 16.1  40F NMR (CDCl3) δ -72.0;  LRMS calculated for C38H36F6NaO10 (M+Na)+ 

789.2 m/z:  Measured  788.9 m/z  
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Methyl 6-(benzyloxy)-3,4-dimethoxy-2-methylbenzoate (2.197) -  To a solution of 

2.152 (478 mg, 1.42 mmol) in THF (15 mL) at -78 °C was added 2.5 M n-BuLi (1.1 mL, 

2.8 mmol).  After 1 h at -78 °C, neat methyl chloroformate (0.20 mL, 2.8 mmol) was 

added.  The reaction mixture was allowed to warm to room temperature.  After 16 h, H2O 

(15 mL) was added and extracted with ethyl acetate (3 x 15 mL).  The combined organic 

extracts were dried (MgSO4) and concentrated to afford a red/orange oil. The residue 

was purified by column chromatography with EtOAc/Hexane (1:4) to afford 392 mg 

(85%) of 2.197.  1H NMR (CDCl3)  7.39 – 7.37 (m, 5H), 6.40 (s, 1H), 5.08 (s, 2H), 3.87 

(s, 3H), 3.81 (s, 3H), 3.72 (s, 3H), 2.23 (s, 3H)  13C NMR (CDCl3)  168.3, 154.1, 152.4, 

141.5, 136.9, 130.5, 128.5, 127.8, 127.0, 117.2, 97.0, 71.4, 60.4, 55.8, 52.1, 12.9. 

 

 

Methyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate (2.198) - To a solution of 2.197 

(270 mg, 0.86 mmol) in anhydrous MeOH (4.5 mL) was added 5% Pd/C (20 mg).  This 

solution was placed under one atmosphere of hydrogen and allowed to stir at room 

temperature for 16 h.  The reaction was filtered through a plug of Celite 454 and silica 

gel (1:1).  The filtrate was concentrated and the residue was purified by column 

chromatography with EtOAc/Hexane (1:4) to afford 80 mg (84%) of 2.198.  IR  (neat) 
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2955, 1648, 1606, 1443, 1325, 1243, 1216, 1199, 1161, 1063, 1040, 1008 cm-1;  1H 

NMR (CDCl3)   6.30 (s, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.62 (s, 3H), 2.38 (s, 3H);  13C 

NMR (CDCl3)  171.9, 161.0, 158.0, 140.3, 133.6, 104.3, 98.1, 60.2, 55.4, 51.6, 14.4; 

LRMS calculated for C10H15O5 (M+H)+ 227.2 m/z:  Measured  227.2 m/z     

 

 

Dimethyl 2,2' -dihydroxy- 5,5', 6,6' -tetramethoxy- 4,4' -dimethylbiphenyl- 3,3'-

dicarboxylate (2.199) – To a solution of copper(I) bromide (19 mg, 0.13mmol) in CH3CN 

(1 mL) was added sparteine (25 L, 0.013 mmol).  After 15 min of sonication open to the 

air, 30 mg (0.13 mmol) of phenol 2.198 in CH3CN (0.5 mL) was added.  This solution 

was placed under one atmosphere of oxygen and allowed to stir at room temperature for 

4 d.  At this time the reaction mixture was diluted with 10% NaOH (2 mL) and extracted 

with CH2Cl2 (3 x 5 mL).  The combined organic extracts were dried (MgSO4) and 

concentrated to afford an oil. The residue was purified by column chromatography with 

EtOAc/Hexane (1:4) to afford 11 mg (23%) of 2.199.  IR (neat) 2928, 1655, 1957, 1444, 

1399, 1320, 1240, 1211, 1165, 1097, 1059, 1009, 809; 1H NMR (CDCl3)  11.48 (s, 1H), 

3.94 (s, 3H), 3.78  (s, 3H), 3.75 (s, 3H), 2.52  (s, 3H); 13C NMR (CDCl3)  172.1, 157.7, 

157.0, 144.3, 134.5, 114.0,  108.1, 60.5, 52.0, 29.6, 14.8; LRMS calculated for 

C22H26NaO10 (M+H)+ m/z: 473.1, Measured 473.2 m/z 
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1-bromo-2,3-dimethoxy-5-(methoxymethoxy)benzene (2.201) -  To a solution of 

2.150 (0.12 g, 0.72 mmol) in 2.5 mL of CH2Cl2 was added diisopropyl ethyl amine (0.26 

mL, 1.4 mmol) and MOMCl (0.081 mL. 1.1 mmol).  After 16 h., the solution was diluted 

with CH2Cl2 (4 mL), and successively washed with H2O (5 mL), 1N HCl (5 mL), NaHCO3 

(saturated, 5 mL), and Brine (5 mL).  Each aqueous layer was washed with CH2Cl2 (10 

mL).  The combined organic layers were dried (MgSO4) and concentrated.  The residue 

was purified by column chromatography with EtOAc/Hexane (1:4) to afford 135 mg 

(89%) of 2.201.  1H NMR (CDCl3)  6.72 (d, J = 2.4 Hz, 1H), 6.48 (d, J = 2.4 Hz, 1H), 

5.00 (s, 2H), 3.71 (s, 3H), 3.67 (s, 3H), 3.34 (s, 3H);  13C NMR (CDCl3) 151.6, 150.0, 

144.2, 111.7, 106.7, 101.9, 95,2, 56.3, 55.8, 55.8.   

 

 

1,2-dimethoxy-5-(methoxymethoxy)-3-methylbenzene (2.202) - To a solution of 2.201 

(2.2 g, 8.0 mmol) in diethyl ether (30 mL) at -78 °C was added 2.2 M n-BuLi (7.5 mL, 16 

mmol).  After 1 h at -78 °C, neat methyl iodide (1.5 mL, 24 mmol) was added.  After 16 h,  

the reaction was diluted with H2O (45 mL) and extracted with ethyl acetate (3 x 15 mL).  

The combined organic extracts were dried (MgSO4) and concentrated to afford a 

red/orange oil. The residue was purified by column chromatography with EtOAc/Hexane 
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(1:4) to afford 1.1 g (65%) of 2.202 as a yellow oil.  IR (neat) 1600, 1494, 1224, 1146, 

1096, 1029, 754 cm-1;  1H NMR (CDCl3)  6.47 (d, J = 2.8 Hz, 1H), 6.45 (d, J = 2.8 Hz, 

1H), 5.11 (s, 2H), 3.82 (s, 3H), 3.74 (s, 3H), 3.48 (s, 3H), 2.24 (s, 3H);  13C NMR (CDCl3) 

  151.6, 151.2, 146.3, 131.4, 117.3, 112.4, 95.3, 60.1, 60.0, 55.6, 16.2  LRMS 

calculated for C11H17O4 (M+H)+ m/z: 213.1, Measured 213.2 m/z 

 

 

2,2',3,3'-tetramethoxy-6,6'-bis(methoxymethoxy)-4,4'-dimethylbiphenyl (2.203). – 

To a solution of MOM 2.202 (0.50 g, 2.4 mmol) in diethyl ether (12.0 mL) at 0 °C was 

added 2.0 M n-BuLi (1.7 mL, 3.4 mmol).  After 5 h at 0 °C, a solution of CuBr•SMe2 (24 

mg, 0.192 mmol) and LiBr (20 mg, 2.4 mmol) in THF (2 mL) was added via canula.  After 

the mixture was stirred for 30 min, (3,5-dinitrophenyl)(4-methylpiperazin-1-yl)methanone 

(2.18) (1.0 g, 3.5 mmol) was added by a solid addition adaptor.  After 1 h, the reaction 

mixture was passed over a silica plug and the filtrate concentrated in vacuo.  The 

residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 200 

mg (39%) of biaryl 2.203 as a white solid: mp 134-137 °C; IR (neat) 1475, 1393, 1235, 

1150, 1091, 1068 cm-1;  1H NMR (CDCl3)  6.77 (s, 1H), 4.98 (s, 2H), 3.80 (s, 3H), 3.68 

(s, 3H), 3.33 (s, 3H), 2.30 (s, 3H);  13C NMR (CDCl3)  151.6, 151.2, 146.3, 131.4, 117.3, 

112.4, 65.2, 60.1, 60.0, 55.6, 16.2;  HRMS calculated for C22H31O8 (M+H)+ m/z: 

423.2019, Measured 423.2025 m/z. 
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Deracemization of Bis-Phenol (±)-2.190. A mixture of CuCl (15 mg, 0.14 mmol) and (-) 

sparteine (2.193) (50 L, 0.27 mmol) in MeOH (2.0 mL) was sonicated open to the air for 

ca. 30 min. The resulting green solution was then transferred via cannula to a solution of 

-2.190 (24 mg, 0.072 mmol) in CH2Cl2 (5 mL).  This solution was allowed to stir for 48 

h at room temperature and a concentrated solution of HCl (2 mL) was added.  After 

stirring for 15 min, the mixture was extracted with CH2Cl2 (3 x 10 mL).  The combined 

organic extracts were then dried (MgSO4) and concentrated to give 19 mg (77%) of (-)-

2.190 as determined by optical -rotation: [ ]22
589 -18 (c 0.354, CHCl3).  (+)-2.190 is 

arrived at in a like manner except the use of (+)-O’Brian’s Diamine (2.205) in place of 

sparteine (2.193)  

 

 

Bis ( (1S,2R,5S) -2-isopropyl -5- methylcyclohexyl) 5,5', 6,6' -tetramethoxy- 4,4'-

dimethylbiphenyl-2,2'-diyl dicarbonate -  Determination of Enantiomeric Excess. To a 

solution of resolved (-)-2.190 in THF (1.0 mL) was added Et3N (0.10 mL, 0.72 mmol) 
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followed by (S)-menthyl chloroformate (0.15 mL, 0.72 mmol).  After 2 h, the reaction 

mixture was diluted with H2O (3 mL) and extracted with CH2Cl2 (3 x 5 mL).  The 

combined organics were then dried (MgSO4) and concentrated.  The residue was 

purified by column chromatography with EtOAc/Hexane (1:10) to afford a mixture of 

diastereomeric bis-menthylcarbonates (aS)-2.204 and (aR)-2.204 (26 mg, 67%).  The 

mixture was analyzed by 1H NMR (400 MHz, CDCl3) to determine the ratio of 

diastereomers (dr) by integration of the well differentiated doublets due to C5′ methyl 

groups:  1H NMR (CDCl3)  (aS)-2.204 = 0.58 (d, J = 6.8 Hz, 1H), (aR)-2.204 = 0.68 (d, J 

= 7.2 Hz, 1H) giving 93% de by 1H NMR.  The ratio of diastereomers (dr) when the use 

of (+)-O’Brian’s Diamine (2.205) provides a 80% de by 1H NMR. 

(aS)-2.204 -   IR (neat)  2954, 2932, 2870, 1698, 1474, 1457, 1423, 1282, 1248, 1223, 

1172, 993;  1H NMR (CDCl3)  6.82 (s, 1H), 4.36 (dt, J = 10.8, 4.4 Hz, 1H), 3.83 (s, 3H), 

3.68 (s, 3H), 2.30 (s, 3H). 1.90 (d, J = 11.6, 1H), 1.66-1.59 (m, 3H), 1.57 (s, 2H), 1.28 (d, 

J = 11.6 Hz, 1H), 0.96 (s, 1H), 0.93 (s, 1H), 0.88 (d, J = 6.4 Hz, 3H), 0.77 (d, J = 7.2 Hz, 

3H), 0.58 (d, J = 6.8 Hz, 3H);  13C NMR (CDCl3)  153.0, 151.6, 149.1, 144.4, 132.3, 

118.6, 118.5, 78.6, 60.4, 60.0, 46.6, 40.4, 33.9, 31.2, 25.8, 23.2, 22.0, 20.5, 16.1  ; 

HRMS calculated for C40H58NaO10 (M+H)+ m/z: 721.3922, Measured 721.3952 m/z. 

(aR)-2.204 -  IR (neat)  2954, 2932, 2870, 1698, 1474, 1457, 1423, 1282, 1248, 1223, 

1172, 993;  1H NMR (CDCl3)  6.82 (s, 1H), 4.38 (dt, J = 10.8, 4.4 Hz, 1H), 3.83 (s, 3H), 

3.70 (s, 3H), 2.30 (s, 3H). 1.84 (m, 1H), 1.64-1.60 (m, 3H), 1.56 (s, 2H), 1.28 (d, J = 11.6 

Hz, 1H), 0.96 (s, 1H), 0.93 (s, 1H), 0.87 (d, J = 6.5 Hz, 3H), 0.83 (d, J = 7.0 Hz, 3H), 

0.69 (d, J = 7.0 Hz, 3H);   13C NMR (CDCl3)   152.9, 151.5, 149.0, 144.5, 118.8, 118.2, 

78.7, 60.4, 60.1, 46.7, 40.4, 34.1, 31.2, 25.9, 23.2, 22.0, 20.7, 16.1,   HRMS calculated 

for C40H58NaO10 (M+H)+ m/z: 721.3922, Measured 721.3952 m/z. 
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3,4-Dimethoxy-5-methylphenol (3.38) - To a solution of 2.151 (0.5 g, 1.9 mmol) in 

anhydrous MeOH (65 mL) was added 5% Pd/C (160 mg).  This solution was placed 

under one atmosphere of hydrogen and allowed to stir at room temperature for 16 h.  

The reaction was filtered through a plug of Celite 454 and silica gel (1:1).  The filtrate 

was concentrated and the residue was purified by column chromatography with 

EtOAc/Hexane (1:4) to afford 232 mg (72%) of 3.38.  1H NMR (CDCl3) δ 6.32 (d, J = 2.7 

Hz, 1H), 6.23 (d, J = 2.7 Hz, 1H), 4.85 (s, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 2.24 (s, 3H).  

13C NMR (CDCl3)  154.2, 150.7, 141.6, 132.6, 110.7, 97.7, 60.5, 55.7, 12.8.  LRMS 

calculated for C9H13O3 (M+H)+ m/z: 169.1, Measured 169.1 m/z 

 

 

2-methoxy-6-methylcyclohexa-2,5-diene-1,4-dione (3.39).  A solution of 3.38 (40 mg, 

0.24 mmol) in CH2Cl2 (5.0 mL) was cooled to -78 °C.  At this temperature VOCl3 (30 L, 

0.25 mmol) was added.  After 1 h at -78 °C, the solution was diluted with 5% aq NH4OH 

(5 ml), then extracted with CH2Cl2 (3 x 5 ml).  The combined organics were then dried 

(MgSO4) and concentrated.  The residue was purified by column chromatography with 

EtOAc/Hexane (1:2) to afford 16 mg (44%) of benzoquinone 3.39 and 8 mg (11%) of bis-
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quinone 3.40.  1H NMR (CDCl3)  6.53 (d, J = 2.4 Hz, 1H), 5.88 (d, J = 2.4 Hz, 1H), 3.81 

(s, 3H), 2.07 (d, J = 1.6 Hz, 3H).  13C NMR (CDCl3)  187.4, 182.4, 158.8, 143.6, 133.8, 

107.3, 56.3, 15.5.  LRMS calculated for C8H8O3 (M+H)+ m/z: 153.1, Measured 153.1 m/z 

 

 

6,6'-dimethoxy-4,4'-dimethyl-1,1'-bi(cyclohexa-3,6-diene)-2,2',5,5'-tetraone (3.40).  

To a solution of 3.38 (74 mg, 0.45 mmol) in CH2Cl2 (7.0 mL) cooled to -20 °C was added 

a solution of PIFA (227 mg, 0.54 mmol) and BF3 OEt2 (130 L, 1.1 mmol) in CH2Cl2 (4.0 

mL).  After 30 min at -20 °C, the reaction mixture was concentrated in vacuo.  The 

residue was purified by flash chromatography with EtOAc/Hexane (1:2) to afford 42 mg, 

(62%) of bis-quinone 3.40 and 6 mg (9%) of benzoquionone 3.39.  1H NMR (CDCl3)  

5.96 (s, 1H), 3.84 (s, 3H), 1.89 (s, 3H).  13C NMR (CDCl3)  184.7, 181.4, 158.7, 141.4, 

137.9, 107.3, 56.3, 13.4.  LRMS calculated for C16H15O6 (M+H)+ m/z: 303.1, Measured 

303.0 m/z 
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4,4',5,5'-tetramethoxy-6,6'-dimethylbiphenyl-2,2'-diol (3.41) - To a solution of 3.38 

(31 mg, 0.18 mmol) in CH3NO2 (1.0 mL) was added AlCl3 (28 mg, 0.18 mmol).  After 1 h, 

a solution of FeCl3 (54 mg, 0.36 mmol) in CH3NO2 (2.0 mL) was added.  This was 

allowed to stir for 3 h when 1N HCl (5 mL) was added and extracted with CH2Cl2 (3 x 10 

mL).  The combined organic extracts were dried (MgSO4) and concentrated. The residue 

was purified by column chromatography with EtOAc/Hexane (1:2) to afford 18 mg (60%) 

of 3.41.  1H NMR (CDCl3)  6.52 (s, 1H), 4.64 (s, 1H), 3.88 (s, 3H), 3.77 (s, 3H), 1.92 (s, 

3H).  13C NMR (CDCl3) 154.2, 150.7, 141.6, 132.6. 11.8, 97.7, 60.5, 55.7, 12.8.   LRMS 

calculated for C18H22O6 (M+H)+ m/z: 335.1, Measured 335.1 m/z 

 

 

bis(3,4-dimethoxy-5-methylphenoxy)diisopropylsilane (3.47) – To a solution of 

phenol 3.38 in CH2Cl2 (8.0 mL) was added Et3N (0.35 mL, 0.26 mmol) and a few crystals 

of DMAP.  At -78°C, diisopropyl silyl dichloride (0.1 mL, 0.54 mmol) was added.  The 

reaction mixture was allowed to warm to room temperature and after 3 h, diluted with sat 

NH4Cl (10 mL) and extracted with CH2Cl2 (3 x 10 mL).  The combined organic extracts 

were dried (MgSO4) and concentrated. The residue was purified by column 
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chromatography with EtOAc/Hexane (1:4) to afford 204 mg (76%) of 3.47.  IR (neat) 

2948, 2869, 1594, 1493, 1464, 1421, 1341, 1224, 1192, 1157, 1097, 1029, 859, 827, 

758;  1H NMR (CDCl3) δ 6.34 (s, 2H), 3.72 (s, 6H), 3.71 (s, 6H), 2.19 (s, 6H), 1.12 (s, 

6H), 1.10 (s, 6H) 1.07 (s, 2H);  13C NMR (CDCl3) δ 152.9, 150.5, 141.9, 132.0, 113.0, 

102.3, 60.1, 55.5, 17.1, 15.8, 12.5.  LRMS calculated for C24H37O6Si (M+H)+ m/z: 449.2 

Measured 449.3 m/z 

 

 

3,7,8-trimethoxy-1,9-dimethyldibenzo[b,d]furan-2-ol (3.48) - To a solution of 3.47 (48 

mg, 0.11 mmol) in CH3NO2 (2.0 mL) was added FeCl3 (63 mg, 0.44 mmol) in CH3NO2 

(2.0 mL) was added.  After 3 h, 1N HCl (5 mL) was added and extracted with CH2Cl2 (3 x 

10 mL).  The combined organic extracts were dried (MgSO4) and concentrated. The 

residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 18 

mg (53%) of 3.48.  1H NMR (CDCl3)  6.93 (s, 1H), 6.92 (s, 1H), 5.64 (s, 1H), 3.97 (s, 

3H), 3.93 (s, 3H), 3.81 (s, 3H), 2.82 (s, 3H), 2.79 (s, 3H); 13C NMR (CDCl3)  152.9, 

151.6, 150.2, 145.2, 143.5, 139.9, 124.8, 117.7, 117.5, 115.9, 93.2, 92.0, 60.7, 56.2, 

55.9, 31.5, 16.6, 16.0   LRMS calculated for C17H19O5 (M+H)+ m/z: 303.1 Measured 

303.1 m/z 
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10-hydroxy-2-methoxy-7,8-dihydroanthracene-1,4,5(6H)-trione (3.49) - To a solution 

of 2.161 (24 mg, 0.08 mmol) in CH3NO2 (0.5 mL) was added AlCl3 (11 mg, 0.08 mmol).  

After 1 h, a solution of FeCl3 (23 mg, 0.17 mmol) in CH3NO2 (1.0 mL) was added.  This 

was allowed to stir for 3 h when 1N HCl (5 mL) was added and extracted with CH2Cl2 (3 

x 5 mL).  The combined organic extracts were dried (MgSO4) and concentrated. The 

residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford 13 

mg (57%) of 3.49.  1H NMR (CDCl3) . 13.63 (s, 1H), 7.45 (s, 1H), 6.06 (s, 1H), 3.81, (s, 

3H), 2.97 (t, J = 4.5 Hz, 2H), 2.67 (t, J = 4.8 Hz, 2H), 2.07 (m, 2H).   13C NMR (CDCl3) .  

182.1, 179.7, 162.9, 159.4, 152.7, 118.1, 111.6, 56.5, 39.7, 30.91, 29.7, 22.2.  LRMS 

calculated for C18H22O6 (M+H)+ m/z: 273.2, Measured 273.1  m/z. 

 

 

8,8'- (diisopropylsilanediyl) bis(oxy) bis (9- hydroxy- 5,6- dimethoxy- 3,4-

dihydroanthracen-1(2H)-one) (3.51) - To a solution of phenol 2.161 (30 mg, 0.1 mmol) 

in CHCl3 (0.7 mL) at 0°C was added 2,6 lutadine (24 L, 0.21 mmol), and diisopropyl 

silyl ditriflate (15 L, 0.052 mmol).  The reaction mixture was allowed to warm to room 
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temperature and after 3 h, diluted with sat NH4Cl (5 mL) and extracted with CH2Cl2 (3 x 5 

mL).  The combined organic extracts were dried (MgSO4) and concentrated. The residue 

was purified by column chromatography with EtOAc/Hexane (1:2) to afford 24 mg (62%) 

of 3.51.  1H NMR (CDCl3) . 15.23 (s, 1H), 7.22 (s, 1H), 6.49 (s, 1H), 3.92 (s, 3H), 3.91 

(s, 3H), 2.90 (t, J = 4.5 Hz, 2H), 2.65 (t, J = 4.9 Hz, 2H), 2.02 (m, 2H), 1.17 (m, 1H), 0.98 

(d, J = 4.8 Hz, 6H) LRMS calculated for C18H22O6 (M+H)+ m/z:689.2, Measured 689.2 

m/z. 

 

 

9,9'- dihydroxy- 3,3'- dimethoxy- 6,6', 7,7'- tetrahydro- 2,2'- bianthracene-

1,1',4,4',8,8'(5H,5'H)-hexaone (3.52) - To a solution of 3.51 (20 mg, 0.029 mmol) in 

CH3NO2 (3.0 mL) was added FeCl3 (63 mg, 0.44 mmol).  After 5 h, 1N HCl (5 mL) was 

added and extracted with CH2Cl2 (3 x 10 mL).  The combined organic extracts were dried 

(MgSO4) and concentrated. The residue was purified by column chromatography with 

EtOAc/Hexane (1:4) to afford 6 mg (41%) of 3.52.  1H NMR (CDCl3) . 13.73 (s, 1H), 

7.55 (s, 1H), 3.915 (s, 3H), 3.08 (t, J = 4.5 Hz, 2H), 2.77 (t, J = 4.8 Hz, 2H), 2.17 (m, 2H).  

13C NMR (CDCl3) . 199.1, 182.4, 179.7, 162.9, 159.4, 152.7, 127.5, 124.9, 118.1, 

111.6, 56.5, 39.7, 29.7, 22.2. LRMS calculated for C18H22O6 (M+H)+ m/z:543.2, 

Measured 543.1 m/z. 
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1-allyl-2,3,5-trimethoxybenzene (4.8) - To a solution of 2.168 (1.0 g, 4.0 mmol) in 

diethyl ether (40 mL) at -78 °C was added 2.0 M n-BuLi (6.0 mL, 12 mmol).  After 1 h at  

-78 °C, allyl bromide (3.5 mL, 40 mmol) was added.  After 7 h, the reaction was diluted 

with H2O (45 mL) and extracted with ethyl acetate (3 x 15 mL).  The combined organic 

extracts were dried (MgSO4) and concentrated to afford a red/orange oil. The residue 

was purified by column chromatography with EtOAc/Hexane (1:4) to afford 520 mg 

(61%) of 4.8  1H NMR (CDCl3)  6.38 (d, J = 2.8 Hz, 1H), 6.29 (d, J = 2.8 Hz, 1H), 6.00-

5.92 (m, 1H), 5.11-5.05 (m, 2H), 3.84 (s, 3H). 3.77 (s, 3H), 3.75 (s, 3H), 3.40 (d, J = 6.8 

Hz, 1H)  13C NMR (CDCl3) )   155.9, 153.3, 141.0, 137.0, 134.0, 115.6, 105.0, 98.2, 

60.8, 55.6, 55.4, 34.1 

 

 

Method 2 - To a solution of 4.13 (0.94 g, 4.8 mmol) in acetone (100 mL) was added 

K2CO3 (6.8 g, 48.4 mmol) and methyl iodide (3.0 mL, 48.4 mmol).  This solution was 

then allowed to reflux overnight.  At this time the solution was cooled to R.T.  The 

reaction mixture was filtered over a fritted filter and the filtrate concentrated in vacuo.  

The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 

0.91 g (90%) of 4.8.    
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3-allyl-2-bromo-1,4,5-trimethoxybenzene (4.9) - To a solution of 4.8 ( 0.91 g, 4.4 

mmol) in 1,2 - dimethoxyethane (15 mL) was added copper(II) bromide (1.6 g, 6.6 

mmol).  This was then allowed to stir at R.T. overnight.  The mixture was passed over a 

silica plug and the filtrate concentrated in vacuo.  The residue was purified by column 

chromatography with EtOAc/Hexane (1:4) to afford 0.82 g (70%) of 4.9;  1H NMR 

(CDCl3)  6.47 (s, 1H), 6.00 – 5.91 (m, 1H), 5.05 (t, J = 1.2 Hz, 1H), 5.02 (dd, J = 4.2, 1.6 

HZ, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.77 (s, 3H), 3.62 (dt, J = 6.0, 1.2 Hz, 2H);  13C NMR 

(CDCl3) )  152.6, 152.4, 141.8,  135.4, 134.5, 115.7, 104.7, 96.4, 61.1, 56.7, 56.0, 34.3. 

select HMBC 6.47 (152.6, 141.8, 104.7)   

 

 

2,4-dimethoxyphenol (4.11) - To a solution of 4.10 (10 g, 60mmol) in CH2Cl2 (200 mL) 

was added m-CPBA (6.320 g, 120 mmol).  This solution was allowed to reflux for 16 h.  

At this time the solution was concentrated and re-dissolved in EtOAc (100 mL).  The 

organic layer was washed with sat NaHCO3 (150 mL) followed by brine (150 mL), and 

concentrated to afford a yellow oil.  To this residue was added aq KOH and MeOH (2:1) 
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(200 mL).  After 1 h the solution was acidified with 1 N HCl and extracted with EtOAc (3 

x 100 mL).  The combined organic extracts was dried (MgSO4), and concentrated to 

afford a yellow oil.  The residue was purified by column chromatography on silica gel 

with EtOAc/Hexane (1:4) to afford 7.13 g (76%) of 4.11 as a solid:   1H NMR (CDCl3)  

6.82 (d, J = 8.6 Hz, 1H), 6.49 (d, J = 2.6 Hz, 1H), 6.39 (dd, J = 8.6, 2.6 Hz, 1H), 5.22 (s, 

1H), 3.87 (s, 3H). 3.76 (s, 3H)  13C NMR (CDCl3)   153.5, 147.0, 139.8, 114.0, 104.2, 

99.4. 55.9, 55.8 

 

 

1-(allyloxy)-2,4-dimethoxybenzene (4.12). - To a solution of 4.11 (7.1 g, 45 mmol) in 

acetone (0.24 L) was added K2CO3 (16 g, 120 mmol) and allyl bromine (10 mL, 120 

mmol).  This was then allowed to reflux for 16 h.  At this time the solution was filtered 

over a fritted filter and concentrated.  The residue was purified by column 

chromatography on silica gel with EtOAc/Hexane (1:4) to afford 7.7 g (86%) of 4.12 as a 

solid: 1H NMR (CDCl3)  6.79 (d, J = 8.6 Hz, 1H), 6.50 (d, J = 2.8 Hz, 1H), 6.35 (dd, J = 

8.6, 2.8 Hz, 1H), 6.11-6.01 (m, 1H), 5.36 (dd, J = 17.2, 1.6 Hz, 1H), 5.24 (dd, J =  10.5, 

1.2 Hz, 1H ), 4.52 (d, J = 5.5 Hz, 1H), 3.83 (s, 3H). 3.74 (s, 3H)  13C NMR (CDCl3) )   

154.5, 150.4, 142.0, 133.6, 117.4, 114.8, 102.8, 100.3, 70.7, 55.6, 55.3. 
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2-allyl-4,6-dimethoxyphenol (4.13).  To a solution of 4.12 (1.0 g, 5.14 mmol) was 

placed in a sealed tube and heated at 220oC for 3 days.  The residue the provided 0.94 

g (94%) of allyl phenol;  1H NMR (CDCl3)  6.38 (d, J = 2.8 Hz, 1H), 6.29 (d, J = 2.8 Hz, 

1H), 6.05-5.95 (m, 1H), 5.31 (s, 1H), 5.12-5.05 (m, 2H ), 3.86 (s, 3H). 3.76 (s, 3H), 3.40 

(d, J = 6.4 Hz, 1H)  13C NMR (CDCl3)  152.8, 146.8, 137.4, 136.5, 125.7, 115.5, 105.5, 

97.2, 55.9, 55.6, 34.0 
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APPENDIX 

 

Figure A1.  300 MHz 1H NMR of 3-Bromo-4-hydroxy-5-methoxybenzaldehyde in CDCl3.   



171 
 

 

 

Figure A2.   75 MHz 13C NMR of 3-Bromo-4-hydroxy-5-methoxybenzaldehyde in CDCl3.   
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4 

Figure A3.   300 MHz 1H NMR of 2.149 in CDCl3. 
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 Figure A4.    75 MHz 13C NMR of 2.149 in CDCl3. 
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Figure A5.  300 MHz 1H NMR of 2.150 in CDCl3. 
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Figure A6.  75 MHz 13C NMR of 2.150 in CDCl3. 
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Figure A7.  300 MHz 1H NMR of 5-(Benzyloxy)-1-bromo-2,3-dimethoxybenzene in 

CDCl3. 
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Figure A8.     75 MHz 13C NMR of 5-(Benzyloxy)-1-bromo-2,3-dimethoxybenzene in 

CDCl3. 
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Figure A9.  300 MHz 1H NMR of 2.151 in CDCl3. 
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Figure A10.  75 MHz 13C NMR of 2.151 in CDCl3. 
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Figure A11. 300 MHz 1H NMR of 2.152 in CDCl3. 
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Figure A12.  75 MHz 13C NMR of 2.152 in CDCl3. 
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Figure A13.  300 MHz 1H NMR of 2.153 in CDCl3. 
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Figure A14.  300 MHz 1H NMR of 2.154 in CDCl3. 
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Figure A15.    75 MHz 13C NMR of 2.154 in CDCl3. 
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Figure A16.  300 MHz 1H NMR of Phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate in 

CDCl3 
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Figure A17.  75 MHz 13C NMR of Phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate in 

CDCl3 
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Figure A18.  300 MHz 1H NMR of 2.158 in CDCl3.  
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Figure A19.  75 MHz 13C NMR of 2.158 in CDCl3. 
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Figure A20.  300 MHz 1H NMR of 2.159 in CDCl3. 
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Figure A21.  75 MHz 13C NMR of 2.159 in CDCl3. 
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Figure A22.  300 MHz 1H NMR of 2.156 in CDCl3. 
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Figure A23.  300 MHz 1H NMR of 2.157 in CDCl3.   
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Figure A24.  300 MHz 1H NMR of Phenyl 6-(tert-butoxycarbonyloxy)-3,4-dimethoxy-2-

methylbenzoate in CDCl3.   
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Figure A25.  300 MHz 1H NMR of Phenyl 6-(tert-butyldimethylsilyloxy)-3,4-dimethoxy-2-

methylbenzoate in CDCl3.  . 
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Figure A26. 400 MHz 1H NMR of 2.160 in CDCl3.  . 
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Figure A27.  100 MHz 13C NMR of 2.160 in CDCl3.  . 
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Figure A28. 400 MHz 1H NMR of 2.161 in CDCl3.   
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Figure A29. 100 MHz 13C of 2.161 in CDCl3.   
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Figure A30. 400 MHz 1H NMR of 2.164 in CDCl3.   
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Figure A31. 400 MHz 1H NMR of 2.160 in CDCl3.   
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Figure A32.  100 MHz 13C of 2.165 in CDCl3.   
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Figure A33.  400 MHz 1H NMR of 2.166 in CDCl3.   
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Figure A34.  100 MHz 13C NMR of 2.166 in CDCl3.   
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Figure A35.  400 MHz 1H NMR of 5,8,9-trihydroxy-6-methoxy-3,4-dihydroanthracen-

1(2H)-one in CDCl3.   
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Figure A36.  400 MHz 1H NMR of 2.167 in CDCl3.   
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Figure A37.  400 MHz 1H NMR of 2.168. in CDCl3.   
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Figure A38.  100 MHz 13C NMR of 2.168 in CDCl3.  .  
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Figure A39.  400 MHz 1H NMR of 2.169. in CDCl3 

 

 

 



209 
 

 

Figure A40.  100 MHz 13C NMR of 2.169 in CDCl3. 
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Figure A41.  400 MHz 1H NMR of 2.170 in CDCl3.   
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Figure A42.  100 MHz 13C NMR of 2.170 in CDCl3. 
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Figure A43.  400 MHz 1H NMR of 2.171 in CDCl3.  . 
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Figure A44.  100 MHz 13C NMR of 2.171 in CDCl3.  . 
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Figure A45.   400 MHz 1H NMR of 2.172 in CDCl3.  . 
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Figure A46.  100 MHz 13C NMR of 2.172 in CDCl3.  . 
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Figure A47.  400 MHz 1H NMR of 2.176 in CDCl3.   
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Figure A48.  400 MHz 1H NMR of 2.177 in CDCl3.   
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Figure A49. 75 MHz 13C NMR of 2.177 in CDCl3.   

 



219 
 

 

Figure A50.  400 MHz 1H NMR of 2.178 in CDCl3.   
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Figure A51.  400 MHz 1H NMR of 2.179 in CDCl3.   
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Figure A52. 75 MHz 13C NMR of 2.179 in CDCl3.   
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Figure A53.  400 MHz 1H NMR of 2.181 in CDCl3. 
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Figure A54.  400 MHz 1H NMR of 2.182 in CDCl3. 
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Figure A55.  400 MHz 1H NMR of 2.183 in CDCl3. 
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Figure A56.  600 MHz 1H NMR of 2.186 in CDCl3. 
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Figure A57.  150 MHz 13C NMR of 2.186 in CDCl3. 

 

 



227 
 

Figure A58.  400 MHz 1H NMR of 2.187 in CDCl3. 

 

 



228 
 

 

 

Figure A59.  100 MHz 13C NMR of 2.187 in CDCl3. 
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Figure A60.  400 MHz 1H NMR of 2.189 in CDCl3. 
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Figure A61.  100 MHz 13C NMR of 2.189 in CDCl3. 
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Figure A62.  400 MHz 1H NMR of 2.190 in CDCl3. 



232 
 

 

Figure A63.  100 MHz 13C NMR of 2.190 in CDCl3. 
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Figure A64.  400 MHz 1H NMR of Faster Eluting 2.191 in CDCl3. 
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Figure A65.  282 MHz 19FF NMR of Faster Eluting 2.191 in CDCl3. 
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Figure A66.  300 MHz 1H NMR of Slower Eluting 2.191 in CDCl3. 
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Figure A67.  282 MHz 19FF NMR of Slower Eluting 2.191 in CDCl3. 
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Figure A68.  300 MHz 1H NMR of (aS)-2.192 in CDCl3. 
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Figure A69.  100 MHz 13C NMR of (aS)-2.192 in CDCl3. 
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Figure A70.  282 MHz 19F NMR of (aS)-2.192 in CDCl3. 
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Figure A71.  400 MHz 1H NMR of (aR)-2.192 in CDCl3. 
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Figure A72.  100 MHz 13C NMR of (aR)-2.192 in CDCl3.  
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Figure A73.  282 MHz 19F NMR of (aR)-2.192 in CDCl3. 
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Figure A74.  400 MHz 1H NMR of 2.197 in CDCl3. 
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Figure A75.  100 MHz 13C NMR of 2.197 in CDCl3. 
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Figure A76.  400 MHz 1H NMR of 2.198 in CDCl3. 
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Figure A77.  100 MHz 13C NMR of 2.198 in CDCl3. 
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Figure A78.  400 MHz 1H NMR of 2.199 in CDCl3. 
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Figure A79.  100 MHz 13C NMR of 2.199 in CDCl3. 
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Figure A80.  300 MHz 1H NMR of 2.201 in CDCl3. 
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Figure A81.  100 MHz 13C NMR of 2.201 in CDCl3. 
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Figure A82.  400 MHz 1H NMR of 2.202 in CDCl3. 
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Figure A83.  100 MHz 13C NMR of 2.202 in CDCl3. 
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Figure A84.  400 MHz 1H NMR of 2.203 in CDCl3. 
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Figure A85.  400 MHz 1H NMR of 2.203 in d6-Benzene. 
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Figure A86.  100 MHz 13C NMR of 2.203 in CDCl3. 

 

 



256 
 

 

Figure A87.  400 MHz 1H NMR of (aS)-2.204 in CDCl3. 

 

 



257 
 

 

Figure A88.  100 MHz 13C NMR of (aS)-2.204 in CDCl3. 
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Figure A89.  400 MHz 1H NMR of (aR)-2.204 in CDCl3. 
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Figure A90.  100 MHz 13C NMR of (aR)-2.204 in CDCl3. 
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Figure A91.  400 MHz 1H NMR of 3.38 in CDCl3. 
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Figure A92.  100 MHz 13C NMR of 3.38 in CDCl3. 

 

 



262 
 

 

Figure A93.  400 MHz 1H NMR of 3.39 in CDCl3. 
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Figure A94.  100 MHz 13C NMR of 3.39 in CDCl3. 
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Figure A95.  400 MHz 1H NMR of 3.40 in CDCl3. 
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Figure A96.  100 MHz 13C NMR of 3.40 in CDCl3. 
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Figure A97.  400 MHz 1H NMR of 3.41 in CDCl3. 
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Figure A98.  100 MHz 13C NMR of 3.41 in CDCl3. 
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Figure A99.  400 MHz 1H NMR of 3.47 in CDCl3. 
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Figure A100.  100 MHz 13C NMR of 3.47 in CDCl3. 
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Figure A101.  400 MHz 1H NMR of 3.48 in CDCl3. 
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Figure A102.  100 MHz 13C NMR of 3.48 in CDCl3. 
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Figure A103.  400 MHz 1H NMR of 3.49 in CDCl3. 
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Figure A104.  100 MHz 13C NMR of 3.49 in CDCl3. 
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Figure A105.  400 MHz 1H NMR of 3.51 in CDCl3. 
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Figure A106.  400 MHz 1H NMR of 3.52 in CDCl3. 
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Figure A107.  100 MHz 13C NMR of 3.52 in CDCl3. 

 

 



277 
 

 

Figure A108.  400 MHz 1H NMR of 4.8 in CDCl3. 
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Figure A109.  100 MHz 13C NMR of 4.8 in CDCl3. 
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Figure A110.  400 MHz 1H NMR of 4.9 in CDCl3. 
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Figure A111.  100 MHz 13C NMR of 4.9 in CDCl3. 
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Figure A112.  400 MHz 1H NMR of 4.11 in CDCl3. 

 

 



282 
 

 

Figure A113.  100 MHz 13C NMR of 4.11 in CDCl3. 
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Figure A114.  400 MHz 1H NMR of 4.12 in CDCl3. 
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Figure A115.  100 MHz 13C NMR of 4.12 in CDCl3. 
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Figure A116.  400 MHz 1H NMR of 4.13 in CDCl3. 
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Figure A117.  100 MHz 13C NMR of 4.13 in CDCl3. 




