By

Ian M. Romaine

Dissertation

Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY
in
Chemistry
May, 2011
Nashville, Tennessee

Approved:
Professor Gary A. Sulikowski

Professor Michael P. Stone
Professor Piotr Kaszynski
Professor Brian O. Bachmann

For Amber and J.R.

ACKNOWLEDGEMENTS

Many people have aided and lifted me up along my graduate career. So much so, I cannot possibly thank everyone; but there are several people that I need to thank. First and foremost is Professor Gary Sulikowski. You have always pushed me to become a better chemist and provided me with a pathway to achieve that goal. I am truly grateful for the members of my committee, Brian Bachmann, Petro Kaszynski, and Michael Stone. Each have always had an open door policy and have been great resources for information and advice. I am also truly grateful to Craig Lindsley for open access to instrumentation. I owe many thanks to Prasad Polavarapu for conversations on atropisomers and the assignment of absolute stereochemistry about the biaryl bond.

There have been several that have helped me greatly throughout this process. Don Stec has always been ready and willing to assist in any and all needs concerning NMR. Chris Denicola and Nathan Kett have been invaluable with support in chiral chromatography. Electronic Circular Dichroism (ECD) and Vibrational Circular Dichroism (VCD) would not have been possible without Ana Petrovic and Ganesh Shanmugam. You (Sonny) Du has spent many hours teaching me the skill set of fermentation.

I have had a great cast of group members working along beside me on the hibiramicin project, Daren Engers, Jonathon Hempel, and Kwango Kim. I would like to single out Kim as he started me in the right direction and taught me a great many things about chemistry. I would also like to thank the entire Sulikowski group, who have made a truly unique and enjoyable work environment. Among other I would like to thank Brian Smith, Jingqi Wang, Steve Townsend, Brandon Dorah, Qingsong Liu, Aleksandra Baranczak, Stephen Chau, Shawn Deguire, Hiroki Tanimoto. Jesse Teske, Bruce Melancon, Victor Ghidu, and Weidong Zang. All have played a great role in helping me along the path to becoming a better scientist.

I would not have made it though any of this process with out the love and support of my family. Thank you for always giving me the strength to venture out by knowing you will always be there to help pick me up. Lastly I want to thank Amber Romaine for riding the rollercoaster that is research with me and for providing me perspective on what is our life together.

TABLE OF CONTENTS

Page

DEDICATION ii
ACKNOWLEDGEMENTS iii
LIST OF FIGURES viii
LIST OF SCHEMES xiii
Chapter
I. BIARYL AND RELATED SYMMETRICAL DIMERS IN NATURE 1
Structure and Nomenclature 1
Atropisomerism within Dimeric Natural Products 3
Related aromatic dimers that have not been synthesized 4
Totosachrysone Dimers in Nature 4
Viriditoxin 5
Related aromatic dimers that have been synthesized 5
Turriane. 5
Masticgophorenes A and B 6
Gossypol 9
Crisamicin A 11
Biphyscion 13
Cardinalin 3 14
Bioxanthracene ES 242 16
Nigerone 17
Calphostin D 19
Michellamine A and B 21
Rugulosin A 23
Isolation, Structure and Biological Activity of Hibarimicins. 27
Angelmicin B 27
Isolation and Biological Activity of the Hibarimicins 27
Structure Elucidation 28
Biosynthesis 29
Models that demonstrate Hibiramicin Atropisomers 33
Hydroxyisodiospryrin 33
Roush's Model of the Angelmicin Core 34
Sulikowski Model of the Hibarimicin Core 35
II. SYNTHETIC METHODS DIRECTED TOWARD DIMERIC BIARYL NATURAL PRODUCTS 38
Synthetic Methods for Formation of Biaryl Carbon-Carbon Bonds 38
Ullmann Coupling 38
Other Oxidative Coupling 39
Methods to Arrive at a Single Atropisomer 41
Resolution 41
Auxiliary Assisted Resolution 41
Desymmetrization 43
Dynamic Resolution 44
Dynamic Kinetic Resolution 44
Dynamic Thermodynamic Resolution 46
Direct Asymmetric coupling 48
Structural Restraints 48
Chiral Tethers 49
Oxazolidine Coupling 50
Copper / Diamine Complex 51
Asymmetric Suzuki Coupling 53
Synthetic Analysis of HMP-Y1 / Hibarimicins and Precursors Studies. 54
Conversion of HMP-Y1 to Hibarimicinone 54
Synthetic Approaches to Dimeric Natural Products 55
Analysis of Two Directional Approach 56
Previous Work on Decalin 57
Roush 57
Mootoo 59
Sulikowski/Lee 61
Sulikowski/Kim 62
Sulikowski/Engers/Hempel 64
Two Directional Approach 66
Annulation Approach 66
Annulation Studies 67
Racemic Biaryl Formation 71
Sequential Two Annulation Approach 73
Sequential Two Annulation Studies 74
Resolution of Atropisomers and Assignment of Absolute Stereochemistry 76
Mosher Ester Formation 76
Separation of Atropo-enantiomers 79
Approaches to a Single Atropisomer 81
Copper diamine 81
Kozlowski Coupling 82
Dynamic Thermodynamic Resolution 83
Tentative Assigning the Absolute Stereochemistry of HMP-Y6 85
III. A BIOMIMETIC APPROACH TO HMP-Y1 89
Problems in Oxidative Coupling 89
Regioselectivity in Oxidative Coupling 89
Enzymatic solution to Stereochemistry in Biaryl Coupling 92
Over Oxidation in Coupling 94
Preliminary Studies Directed Toward HMP-Y1 95
Approaches to Oxidative coupling of Phenol 95
Silicon Tether 97
Attempts at Naphthol Coupling 98
IV. ANALYSIS AND PROGRESS TOWARD ABCD RING SYSTEM 101
Summary and proposed future directions 101
Diels-Alder Route to Tetracycle 102
Approach to Aryl Bromide 102
V. EXPERIMENTAL 106
REFERENCES 155
APPENDIX 170

LIST OF FIGURES

Figure
Page

1. Nomenclature for $a R / a S$ and M / P Determination of Atropisomers. 2
2. Examples of Atropisomers Found in Nature.. 3
3. Torosachrysone Dimers in Nature... 4
4. Proposed and Revised Structure of Viriditoxin. ... 5
5. Structures of the Hibarimicins. ... 29
6. Benzyl Protons of 2.189 in CDCl_{3} and D_{6}-DMSO... 78
7. X-ray Crystal Structure of the Faster Eluting bis-Mosher Ester........................ 78
8. ECD Spectra of Phenol (aS)-2.190 and (aR)-2.190.. 79
9. Trace of Chiral Separation of bis-Phenyl Ester $\mathbf{2 . 1 7 2}$ on OD Chiral Column ... 80
10. ${ }^{1} \mathrm{H}$ NMR Analysis of an Isomeric Mixture of $(a S)-2.204$ and $(a R)-2.20485$
11. CD Spectra of (aR)-2.187 (aS)-2.187 .. 86
12. CD Spectra of (aS)-2.187 and Crude HMP-Y6 (1.147) in MeOH..................... 87
13. Proposed Silicon Tether to Direct Coupling in HMP-Y1 92

A1 $\quad 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3-Bromo-4-hydroxy-5-methoxybenzaldehyde in CDCl_{3} 170

A2 $\quad 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3-Bromo-4-hydroxy-5-methoxybenzaldehyde in $\mathrm{CDCl}_{3} .171$
A3 $\quad 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.149 in CDCl_{3}. ... 172
A4 $\quad 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.149 in CDCl_{3}. ... 173
A5 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.150 in $\mathrm{CDCl}_{3} . \ldots . ~ 174 ~$
A6 $\quad 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 5 0}$ in CDCl_{3}. ... 175
A7 $\quad 300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 5-(Benzyloxy)-1-bromo-2,3-dimethoxybenzene in CDCl_{3}

A8 $\quad 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 5-(Benzyloxy)-1-bromo-2,3-dimethoxybenzene in $\mathrm{CDCl}_{3} .177$

A10 $\quad 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 5 1}$ in CDCl_{3}
A11 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.152 in CDCl_{3} 180

A12 $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.152 in CDCl_{3}... 181
A13 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 5 3}$ in CDCl_{3} 182
A14 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.154 in CDCl_{3}. 183
A15 $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 5 4}$ in CDCl_{3}. 184
A16 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of Phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate in CDCl_{3} 185
A17 $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of Phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate in CDCl_{3} 186
A18 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.158 in CDCl_{3}. 187
A19 $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.158 in CDCl_{3}. 188
A20 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.159 in CDCl_{3} 189
A21 $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.159 in CDCl_{3}. 190
A22 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 5 6}$ in CDCl_{3} 191
A23 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.157 in CDCl_{3}. 192
A24 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of Phenyl 6-(tert-butoxycarbonyloxy)-3,4-dimethoxy-2- methylbenzoate in CDCl_{3}. 193
A25 25. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of Phenyl 6-(tert-butyldimethylsilyloxy)-3,4-dimethoxy-2-methylbenzoate in CDCl_{3}.194
A26 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 6 0}$ in CDCl_{3}. 195
A27 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 6 0}$ in CDCl_{3}. 196
A28 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 6 1}$ in CDCl_{3}. 197
A29 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ of $\mathbf{2 . 1 6 1}$ in CDCl_{3}. 198
A30 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 6 4}$ in CDCl_{3}. 199
A31 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.160 in CDCl_{3}. 200
A32 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ of 2.165 in CDCl_{3}. 201
A33 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.166 in CDCl_{3}. 202
A34 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 6 6}$ in CDCl_{3}. 203
A35 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 5,8,9-trihydroxy-6-methoxy-3,4-dihydroanthracen-1(2H)- one in CDCl_{3}. 204
A36 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.167 in CDCl_{3}. 205
A37 400 MHz H NMR of 2.168. in CDCl_{3}. 206
A38 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.168 in CDCl_{3}. 207
A39 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.169. in CDCl_{3} 208
A40 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 6 9}$ in CDCl_{3}. 209
A41 $\quad 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.170 in CDCl_{3}. 210
A42 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 7 0}$ in CDCl_{3} 211
A43 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 7 1}$ in CDCl_{3}. 212
A44 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 7 1}$ in CDCl_{3}. 213
A45 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 7 2}$ in CDCl_{3}. 214
A46 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 7 2}$ in CDCl_{3}. 215
A47 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 7 6}$ in CDCl_{3}. 216
A48 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.177 in CDCl_{3}. 217
A49 $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 7 7}$ in CDCl_{3}. 218
A50 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.178 in CDCl_{3}. 219
A51 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.179 in CDCl_{3}. 220
A52 $75 \mathrm{MHz}^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 7 9}$ in CDCl_{3}. 221
A53 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 8 1}$ in CDCl_{3} 222
A54 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 8 2}$ in CDCl_{3} 223
A55 400 MHz H NMR of $\mathbf{2 . 1 8 3}$ in CDCl_{3}. 224
A56 $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.186 in CDCl_{3} 225
A57 $150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 8 6}$ in CDCl_{3} 226
A58 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.187 in CDCl_{3} 227
A59 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.187 in CDCl_{3} 228
A60 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.189 in CDCl_{3} 229
A61 $100 \mathrm{MHz}^{13} \mathrm{C}$ NMR of 2.189 in CDCl_{3} 230
A62 400 MHz H NMR of $\mathbf{2 . 1 9 0}$ in CDCl_{3} 231
A63 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 9 0}$ in CDCl_{3}. 232
A64 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of Faster Eluting 2.191 in CDCl_{3} 233
A65 $282 \mathrm{MHz}{ }^{19 \mathrm{~F}} \mathrm{~F}$ NMR of Faster Eluting 2.191 in CDCl_{3} 234
A66 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of Slower Eluting 2.191 in CDCl_{3} 235
A67 $282 \mathrm{MHz}{ }^{19 \mathrm{~F}} \mathrm{~F}$ NMR of Slower Eluting 2.191 in CDCl_{3} 236
A68 $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $(\mathrm{aS})-2.192$ in CDCl_{3} 237
A69 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of (aS)-2.192 in CDCl_{3} 238
A70 $282 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR of $(\mathrm{aS})-\mathbf{2 . 1 9 2}$ in CDCl_{3} 239
A7 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $(a R)-2.192$ in CDCl_{3} 240
A72 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $(a R)$-2.192 in CDCl_{3}. 241
A7 $282 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR of $(a R)-2.192$ in CDCl_{3} 242
A74 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.197 in CDCl_{3} 243
A75 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.197 in CDCl_{3} 244
A76 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.198 in CDCl_{3} 245
A77 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 9 8}$ in CDCl_{3} 246
A78 $400 \mathrm{MHz}{ }^{\mathrm{H}} \mathrm{NMR}$ of 2.199 in CDCl_{3} 247
A79 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.199 in CDCl_{3}. 248
A80 $300 \mathrm{MHz} \mathrm{H}^{2}$ NMR of 2.201 in CDCl_{3} 249
A81 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 2 0 1}$ in CDCl_{3} 250
A82 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.202 in CDCl_{3} 251
A83 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 2 0 2}$ in CDCl_{3}. 252
A84 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 2 0 3}$ in CDCl_{3} 253
A85 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.203 in d_{6}-Benzene 254
A86 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 2 0 3}$ in CDCl_{3}. 255
A87 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of (aS)-2.204 in CDCl_{3} 256
A88 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of (aS)-2.204 in CDCl_{3} 257
A89 400 MHz H NMR of $(a R)$-2.204 in CDCl_{3}. 258
A90 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $(a R)$-2.204 in CDCl_{3}. 259
A91 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $3.38 \mathrm{in} \mathrm{CDCl}_{3}$. 260
A92 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3.38 in CDCl_{3}. 261
A93 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.39 in CDCl_{3} 262
A94 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3.39 in CDCl_{3} 263
A95 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 . 4 0}$ in CDCl_{3}. 264
A96 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 . 4 0}$ in CDCl_{3} 265
A97 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 . 4 1}$ in CDCl_{3}. 266
A98 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 . 4 1}$ in CDCl_{3}. 267
A99 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 . 4 7}$ in CDCl_{3}. 268
A100 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3.47 in CDCl_{3}. 269
A101 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 . 4 8}$ in CDCl_{3}. 270
A102 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3.48 in CDCl_{3}. 271
A103 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.49 in CDCl_{3} 272
A104 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3.49 in CDCl_{3}. 273
A105 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.51 in CDCl_{3}. 274
A106 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 . 5 2}$ in CDCl_{3}. 275
A107 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 . 5 2}$ in CDCl_{3}. 276
A108 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.8 in CDCl_{3}. 277
A109 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 4.8 in CDCl_{3}. 278
A110 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.9 in CDCl_{3}. 279
A111 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 4.9 in CDCl_{3}. 280
A112 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.11 in CDCl_{3}. 281
A113 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 4.11 in CDCl_{3}. 282
A114 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.12 in CDCl_{3}. 283
A115 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 4.12 in CDCl_{3}. 284
A116 $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.13 in CDCl_{3}. 285
A117 $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 4.13 in CDCl_{3}. 286

LIST OF SCHEMES

Schemes Page

1. Biaryl Coupling Leading to the Turriane. 6
2. Bringmann's First Synthesis of Mastigophorenes A and B 7
3. Bringmann's Dynamic Kinetic Resolution Approach to the Mastigophorenes. 8
4. Meyers Oxazoline Approach to the Mastigophorenes. 9
5. Edward's Synthesis of Gossypol. 10
6. Meyer's Synthesis of Gossypol. 11
7. Mechanism for Palladium Catalyzed Alkoxycarbonylative Annulations 12
8. Yang's Synthesis of Crisamicin A 13
9. Hauser's Synthesis of Biphyscion. 14
10. Brimble's Approach to the Cardinalins. 15
11. De Koning's Total Synthesis of Cardinalin 3 16
12. Tatsuta's Synthesis of Bioxanthracene ES-242-4 17
13. Asymmetric Synthesis of Nigerone by Kozlowski. 18
14. Broka's Approach to Calphostin D 19
15. Proposed Lewis Acid Catalysed Dimerization. 21
16. Lipshutz Synthesis of Korupensamine A. 22
17. Convergent Total Synthesis of the Michellamines. 23
18. The Multistep "Cytoskryin Cascade.". 25
19. Snider's Approach to Rugulosin Analogs. 26
20. The Proposed Biosynthesis of the Hibarimicins. 30
21. Plausible Pathway for Skeletal Rearrangement in the Hibarimicins. 32
22. Block Mutants that Describe the Biosynthetic Timeline of Hibarimicins. 33
23. Sargent's Synthesis of Aryl Quinone by a Meyers Oxazoline 34
24. Roush's Model of Atropisomerism in Angelmicin. 35
25. Sulikowski Model of Atropisomerism in Hibarimicins. 36
26. Absolute Configuration of HMP-Y1 is Retained in Hibarimicinone. 37
27. A Mechanistic View of the Ullmann Coupling 38
28. Proposed Mechanism for the One Electron Oxidation of β-Naphthol (2.6) 39
29. Mechanism of PIFA Oxidative Coupling 40
30. Oxidative Coupling of Cuperates 40
31. Spring's Direct Lithiation and Cuprate Oxidation. 41
32. Example of Auxiliaries used in the Resolution of Atropisomers. 43
33. Desymmetrization and Kinetic Resolution Using Enzymatic and Non-Enzymatic methods. 44
34. Mechanistic Analysis of Dynamic Kinetic Resolution 46
35. Proposal for the Mechanism of Dynamic Thermodynamic Resolution. 48
36. Atropo-diastereoselectivity under substrate control 49
37. Chiral Tethers of Miyano and Lipshutz. 50
38. Mechanism of Selectivity in the Meyers Chiral Oxazolidine Coupling. 51
39. Brussee's First Observed Enantioenriched Coupling of BINOL. 51
40. Proposed Catalytic Cycle of Kozlowski Coupling. 53
41. Buchwald's Asymmetric Suzuki Coupling 54
42. Proposed Oxidative Conversion of HMP-Y1 to Hibarimicinone B 55
43. Strategic Analysis of HMP-Y1. 56
44. Single Bis-Annulation Approach to HMP-Y1 57
45. Roush's Route to the cis-Decalin of the Hibarimicins. 59
46. Mootoo's Route to the cis-Decalin of the Hibarimicins. 60
47. First Attempt of an Intramolecular Diels-Alder Reaction to Form the cis-Decalin 62
48. Intermolecular Diels-Alder Route to cis-Decalin. 63
49. Kim's Progress Toward the cis-Decalin Ring System 64
50. Engers/Hempel Approach to the cis-Decalin 66
51. Original Annulations Preformed by Hauser, Kraus, Staunton, and Weinreb. 67
52. Synthesis of Staunton-Weinreb Annulation Precursor 68
53. Effect of Protecting Group on the Staunton-Weinreb Annulation. 69
54. Selective Demethylation Followed by Oxidation to Naphthyl Ring System. 70
55. Possible Mechanism for the Alpha Halogenations of Phenol 2.157 70
56. Oxidation and Demethylation to Naphthol Ring system 2.164 71
57. Biaryl Formation 72
58. Methods to Form the bis-Phenyl Eester 2.170. 73
59. Two bis-Annulation Approaches to HMP-Y1 74
60. Attempts at a Two-Annulation Approach. 75
61. Synthesis of BCD-EFG Rings Model of HMP-Y1 76
62. Synthesis of the Mono-Mosher's Ester 77
63. Separation of Bis-Mosher Ester and Retention of Optical Activity 79
64. Synthesis of Enantiopure bis-Phenyl Ester 80
65. Spring Coupling with Chiral Diamines 81
66. Biaryl Kozlowski Coupling 82
67. Improved Route to Biaryl Phenol. 83
68. Dynamic Thermodynamic Resolution Conditions 84
69. Synthesis of $(a S)-2.187$ with Known Configuration about the Biaryl Axis. 86
70. Conversion of HMP-Y1 to a Single Atropo-diastereomer through Dynamic Thermodynamic Resolution 88
71. Brimble's Studies Directed Toward Cardinalin 3 90
72. Müller's Advantageous Unselective Phenolic Coupling 91
73. Silcon Tether to Direct Regioselectivity in Oxidative Coupling. 91
74. Unsymmetrical Biaryl Coupling Though a Silicon Tether, 92
75. Cytochrome p-450 Oxidation to Provide Salutaridine 3.18 93
76. Laccase Enzymatic Dimerization of Phenols. 94
77. Over Oxidation and Side Products in Oxidative Coupling. 95
78. Biomimetic Approach to HMP-Y1 96
79. Oxidative Coupling of the Phenol 3.19. 97
80. Mechanistic Understanding of the Aluminum Phenolate Coupling 97
81. Unexpected Furan Formation and Possible Mechanism 98
82. Oxidative Coupling of Naphthyl Ring Systems 99
83. Biomimetic Oxidative Coupling Followed by Deracemization. 100
84. Biomimetic Approach to HMP-Y1 102
85. Two Routes to the Allyl Bromide 4.18 103
86. Hempel's Work Toward the Formation of the C17/C18 Bond 104
87. Future approaches to the Diels Alder. 105

CHAPTER I

BIARYL AND RELATED SYMMETRICAL DIMERS IN NATURE

Structure and Nomenclature

The number of natural products and biologically significant molecules identified that contain an axis of chirality has grown rapidly in recent history. The utility of axially chiral compounds range from medicinal uses like the antibiotic vancomycin ${ }^{1}$ to asymmetric transformations using BINOL derivatives. Axially chiral compounds were first termed atropisomers in 1933 by Kuhn for the Greek words representing "knot" and "turn." Atropisomers have piqued the interest of many in the scientific community since 1922 when Christie and Kenner ${ }^{2}$ isolated the first stable biaryl atropisomer with the crystallization of 6,6'-dinitrobiphenyl-2,2'-dicarboxylic acid.

The ability to separate and isolate atropisomers depends on the rate of their interconversion. Atropisomers are observed on the nuclear magnetic resonance (NMR) time scale at room temperature if the half life exceed 10^{-2} seconds; while they are isolable at room temperature if the half life is above 1000 seconds. ${ }^{3}$ The nature, position, and number of substituents all affect the rate of interconversion of atropisomers. In general, biaryls that have tetra-ortho-substituents are stable at room temperature while biaryls with tri-ortho-substitution typically racemize just above room temperature.

There are two different sets of nomenclature commonly employed to assign the absolute configuration of a chiral biaryl compound ${ }^{4}$. The most common convention is the R / S nomenclature, denoted as $a R$ and $a S$ in axially chiral compounds. In this system the configuration is determined by first viewing a Newman projection down the biaryl bond as indicated in Figure 1. The front biaryl is vertical and assigned Conn-Ingold-

Prelog (CIP) priorities one and two, while the biaryl in the back is given CIP priorities three and four. Drawing an arc from the substituent with first priority to the substituent with the third priority, while passing through the second in a clockwise direction would be assigned aR configuration while, if the arc is in a counter clockwise direction, the configuration is assigned as aS . A second set of nomenclature is derived from protein nomenclature and designates an atropisomer as M (minus) or P (positive). The model for this system also looks down a Newman projection of the biaryl bond; however, moving from the highest priority on the front aryl ring directly to the highest priority on the back aryl ring in a 90° arc assigns M or P configuration. ${ }^{5}$ If the arc's movement is in a clockwise motion, the configuration is defined as P (positive) and, if it is a counterclockwise motion, the configuration is defined as M (minus). Relating the two assignments, the $a R$ designation corresponds to M and the $a S$ to the P configuration.

Figure 1: Nomenclature for $a R / a S$ and M / P Determination of Atropisomers.

Atropisomerism within Dimeric Natural Products

Atropisomers in nature are seen in many different forms of chirality (eg. carbonheteroatom, carbon-carbon bond). Two of the most common functionalities that show hindered bond rotation are biaryls and tri-substituted amide bonds. Nature continues to be a rich source for many different biaryl compounds that have significant uses either in their biological properities or structural novelty. Many examples of atropisomers in nature have been identified over the years (Figure 2). These examples vary from the hindered rotation of the ether linked chlorobenzene in the antibiotic vancomycin (1.1) to the nitrogen carbon bond in murrastifoline F (1.2). Other examples have varied from the simple biaryl linkage of gossypol (1.3) to that of the antiviral sanguiin $\mathrm{H}-5$ (1.4). For the purpose of this dissertation we limit the discussion to natural products that are hypothetically derived in nature by the dimerization of monomers leading to symmetric dimers.

(-)-gossypol 1.3

sanguiin H-5 1.4

Figure 2. Examples of Atropisomers Found in Nature.

Torosachrysone (1.5) has been isolated from several different natural sources. This molecule is interesting in that its dimer has also been isolated from a variety of natural sources, and the site of carbon-carbon bond formation leading to dimerization varies based on the source (Figure 3). When isolated from the Australian toadstool Dermocybe sp. WAT $24272,{ }^{6}$ flavomannin (1.6) is symmetrically coupled at the C7 position. The toadstool Dermocybe icterinoides produces the symmetrically coupled atrovirin (1.7) ${ }^{7}$ via connection at the $C 5$ position. The unsymmetrical phlegmacin $B(1.8)$, produced through a coupling at the C5 and C7 positions, was first observed in the Cortinarius (Phlegmacium) odorifer Britz, ${ }^{8}$ and was later isolated from the seeds of the Cassia torosa Cavanilles plant. ${ }^{9}$ Each of these natural products is produced as racemic mixtures of atropisomers. Following resolution of each natural product, the individual enantiomers were assigned by analysis of their circular dichroism (CD) spectra. ${ }^{10}$

Figure 3. Torosachrysone Dimers in Nature.

In screening for toxins isolated from Aspergillus Viridi-nutans, Lillehoj isolated a compound toxic to mice termed viriditoxin (1.10). ${ }^{11}$ The structure was assigned based on NMR analysis, elemental analysis and infrared spectroscopy (Figure 4). In 1990, the structure was revised, moving the binaphthyl linkage from a 8,8' linkage to that of a 6,6' linkage based on observed NOE correlations between the proton at the 8 position and the two methyl ethers. ${ }^{12}$ During the correction of the structure, viriditoxin was shown to be a single atropisomer and assigned the aR configuration. Viriditoxin was shown to inhibit FtsZ polymerization with an IC_{50} of $8.2 \mu \mathrm{~g} / \mathrm{mL} .{ }^{13}$ Inhibition of FtsZ polymerization can lead to cell death, by inhibiting cell from division. Viriditoxin was also shown to exhibit broad-spectrum antibacterial activities against methicillin-resistant and vancomycin-resistant strains.

Figure 4. Proposed and Revised Structure of Viriditoxin.

The turrianes were isolated from the stem wood of the Australian tree Grevillea striata R . Br^{14} and were shown to be potent DNA cleaving agents in the presence of Cu". ${ }^{15}$ This family of natural products, although not chiral due to the symmetry of the bisphenol, remains a synthetic challenge due to the tetra ortho substituted biaryls. This problem was solved by Fürstner with the aryl Grignard derived from 1.12 coupling with oxazoline 1.11 (Scheme 1). The coupling provided the biaryl 1.13 that was elaborated in
several steps to the bis-alkene 1.14. Turriane 1.16 was then completed by ring closing metathesis, followed by concurrent reduction of the alkene and benzyl ethers.

1.14

1.15

turriane (1.16)

Scheme 1. Biaryl Coupling Leading to the Turriane.

The biaryls mastigophorene A and B were isolated from the liverwort Mastigohora diclados. ${ }^{16}$ These compounds were found to have neurotrophic properties at $10^{-5}-10^{-7} \mathrm{M}$. Mastigophorene A and B were determined to differ in configuration about the central biaryl bond. The mastigophorenes have been proposed to be derived from a one electron oxidative coupling of the natural product herbertenediol (1.20). Bringmann's ${ }^{17}$ first synthesis of the mastigophorene began with an intramolecular Heck reaction followed by reduction of the alkene and the lactone to provide the primary alcohol 1.18 (Scheme 2). The phenol was methylated, and the primary alcohol was reduced via the derived aldehyde under Wolff-Kishner conditions. Herbertenediol (1.20) was then completed by cleavage of the methyl ethers. The oxidative coupling substrate was then prepared by selective benzylation of a phenol to avoid quinone formation (1.21). The oxidative coupling was then accomplished with di-t-butyl peroxide, followed
by BBr_{3} mediated removal of the alkyl ethers. This sequence led to a mixture of mastigophorene $A(1.22)$ and $B(1.23)$.

 Herbertenediol (1.20)

1.21
mastigophorene A (1.22)

mastigophorene $B(1.23)$

Scheme 2. Bringmann's First Synthesis of Mastigophorenes A and B.

In a second approach to the mastigophorenes, Bringmann ${ }^{18}$ used a dynamic kinetic resolution to arrive at each individual atropo-diastereomer. The formation of the biaryl lactone 1.27 by a Pd-catalyzed intramolecular biaryl coupling furnished rapidly inter-converting atropisomers (Scheme 3). The rapidly converting atropisomers allow for the resolution of atropisomers through a stereoselective reduction using the Corey-Bakshi-Shibata (CBS) catalyst. The CBS reduction with S-oxaborolidine led to (P)-1.28 with a dr of 97:3. Reduction of lactone 1.27 with R - oxaborolidine led to $(a R)-1.28$ with a
dr of 92:8. Then, as before, the atropisomer was taken forward to mastigophorene A (1.22) and $B(1.23)$.

(aS)-1.28
mastigophorene $A(1.22)$

(aR)-1.28

mastigophorene B (1.23)

Scheme 3. Bringmann's Dynamic Kinetic Resolution Approach to the Mastigophorenes.

Following the Bringmann syntheses of the mastigophorenes, Meyers ${ }^{19}$ applied his oxazoline chemistry to the synthesis of the mastigophorenes (Scheme 4). A series of chiral oxazolines were prepared starting from the corresponding acid (Scheme 4). An Ullmann coupling was performed on a variety of oxazolines (1.29-1.33) to arrive at the
biaryl precursor to the mastigophorenes (1.34-1.38). One of the interesting aspects of this work was that the smaller the auxiliary, the greater the level of selectivity in the biaryl formation. This phenomenon had not been previously observed. As in other approaches, the oxazoline could be cleaved to the acid and reduced to the methyl group as reported earlier. ${ }^{20}$ This furnished a direct synthesis of mastigophorene $A(1.22)$ in an atropselective manner.

Scheme 4. Meyers Oxazoline Approach to the Mastigophorenes.

Of all the biaryl natural products known, gossypol (1.3) has garnered much attention from the scientific community since its isolation in the late $19^{\text {th }}$ century. Gossypol (1.3) was first isolated by Longmore and Marchlewski ${ }^{21}$ from cotton seed oil, but it was not identified as the toxic substance until 1915. ${ }^{22}$ The absolute configuration of gossypol was not elucidated until 1938 by Adams. ${ }^{23}$ While both enantiomers were found in nature, each had a different biological effect. The $a R$ antipode is used in China as an oral contraceptive ${ }^{24}$, while theaSantipode has been used as a treatment for
herpes, ${ }^{25}$ among other activities. The structure of gossypol was not confirmed until Edwards ${ }^{26}{ }^{27}$ completed the total synthesis in 1958 (Scheme 5). This synthesis started with the condensation of diethyl succinate and benzaldehyde 1.39. This product was then treated with acetic anhydride and saponified to afford naphthyl derivative 1.40. Reduction of carboxylic acid $\mathbf{1 . 4 0}$ to a methyl group was followed by a phenolic coupling to arrive at binaphthyl 1.42 as a racemate. Cleavage of the methyl ethers and installation of the aldehyde completed the first total synthesis of (\pm)-gossypol (1.3).

Scheme 5. Edward's Synthesis of Gossypol.

The first enantioselective synthesis of gossypol was accomplished by Meyers ${ }^{28}$ using a chiral oxazoline auxiliary. (S)-(+)-tert-leucinol (1.45) was condensed with the acid chloride derived from 1.44. The derived amide was dehydrated to form the oxazoline (1.46) (Scheme 6). Selective bromination was followed by an Ullmann coupling to arrive at the aS-1.47 with a 11:1 atropo-diastereoselectivity. ${ }^{29}$ The selectivity observed in this coupling results from the steric hindrance of the t-butyl group moving away from the aromatic ring in the bond forming step. The synthesis of gossypol was
then completed by hydrolysis of the oxazoline to the carboxylic acid followed by its reduction to a methyl group. The methyl ethers were then removed, and the primary alcohol was oxidized to arrive at the aS antipode of gossypol (1.3).

Scheme 6. Meyer's Synthesis of Gossypol.

In the course of screening natural products for antibiotic activity, Schaffner ${ }^{30}$ isolated a novel compound from the bacteria Mlcromonospora purpureochromogenes subsp. halotolerans, named crisamicin A (1.58), that showed minimal inhibitory concentration of 0.2 to $10 . \mu \mathrm{g} / \mathrm{mL}$ for several strains of gram positive bacteria. Crisamicin A also showed activity against B16 Murine melanoma and herpes simplex. ${ }^{31}$. With only two ortho substituents, crisamicin does not exhibit atropisomerism. A single total synthesis has been completed by Yang^{32} starting with palladium catalyzed alkoxycarbonylative annulations to form the cis-pyran lactone 1.52 (Scheme 7). This transformation can be explained by the formation of the palladium complex 1.49 followed
by a nucleophilic attack of the free alcohol arising to the alkylpalladium 1.50. Carbon monoxide insertion into 1.50 followed by reductive elimination forms the lactone $\mathbf{1 . 5 2}$.

Scheme 7. Mechanism for Palladium Catalyzed Alkoxycarbonylative Annulations.

The lactone 1.52 was then oxidized to the quinone 1.53 (Scheme 8). The quinone then undergoes a Diels-Alder reaction with diene 1.54 regioselectively. After oxidation, the phenol was converted to the boronate ester 1.55. Homocoupling of $\mathbf{1 . 5 5}$ was attempted with various palladium, nickel, and copper catalysts with no success. The robust catalyst 1.56 was found to be active enough to provide the cross coupling product 1.57. The protected hydroquinone was then liberated and oxidized to the quinone. The total synthesis of crisamicin $A(1.58)$ was completed by removal of the methyl ether.

1.48

78\%

1.53

1.54

1.56

Scheme 8. Yang's Synthesis of Crisamicin A.

Bianthraquinones have been isolated from several different sources. Biphyscion is one of these anthraquinones. An interesting aspect is that both the $C 7, C 7^{\prime}$ and $C 5, C 7$ ' linkage of the anthraquinone have been isolated. The $C 5, C 7$ ' isomer has been isolated from the roots of Senna lindheimeriana. ${ }^{33}$ A glycosylated variant of this isomer was also isolated from the plant Cassia torosa Cav. The C7,C7' isomer has been isolated from the extracts of a toadstool ${ }^{34}$ in Europe. All three possible isomers (C7,C7', C5, C7', and C5,C5') were isolated from volcanic ash soil. ${ }^{35}$ These bisanthraquinones were isolated as a single atropisomer. The only synthesis of a molecule in this family was accomplished by Hauser. ${ }^{36}$ The biaryl was formed through an Ullmann coupling of iodotoluene 1.59 (Scheme 9). Utilizing a two directional apporach, biaryl 1.60 was then converted to the sulfone 1.61 . The bis-anion derived from 1.61 was reacted with 5 -
methyl cyclohexenone 1.62. The bis-annulation product was then oxidized to bisanthraquinone 1.63. Finally, racemic biphyscion 1.64 was furnished by selective removal of the C8 and C8' methyl ether.

1.59

1.60

1.61

Scheme 9. Hauser's Synthesis of Biphyscion.

The New Zealand toadstool Dermocybe cardinalis was found to be the source of a family of pyranonaphthoquinones termed the cardinalins. Cardinalin 4 and 5 were shown to inhibit the growth of P388 murine leukemia cell with an IC_{50} values of 0.28 and $0.40 \mu \mathrm{~g} / \mathrm{mL}$ respectively. ${ }^{37}$ Several approaches towards the total synthesis of the cardinalin family of natural products have been reported. Brimble's ${ }^{38,39}$ approach led to the core of the cardinalins without the central phenols to encumber the dimerization (Scheme 10). This approach entailed a Hauser-Kraus annulation between the cyanophthalide 1.65 and the Michael acceptor 1.66 to arrive at the naphthyl core 1.67. The benzyl phenol was then converted to the activated naphthyl triflate 1.68. A SuzukiMiyaura cross coupling provided the binaphthyl 1.69. Formation of the dihydropyran ring
and oxidation to the naphthylquinone completed the dimeric pyranonaphthoquinone core 1.70 of the cardinalins.

Scheme 10. Brimble's Approach to the Cardinalins.

In 2007, the total synthesis of cardinalin 3 was reported by de Koning. ${ }^{40}$ In his first approach to cardinalin 3, de Koning reported the late stage dimerization of the monomer, ventiloquinone L. The choice was then made to form the biaryl bond early in the synthesis. The biaryl coupling was accomplished by an Ullmann type coupling to arrive at 1.74. With the biaryl core in place, a two directional approach was used to complete the synthesis. The biaryl was elaborated in very much the same manner as Edward's synthesis of gossypol with a Stobbe condensation and Claisen rearrangement to arrive at 1.75. The palladium mediated dihydropyran formation was followed by the reduction of the resulting alkene to arrive at $\mathbf{1 . 7 5}$ exclusively as a cis-1,3-dimethylpyran. Oxidation to the naphthylquinone and selective removal of the methyl ether provided an atropo-diastereoisomeric mixture of cardinalin 3 (1.76) plus less than 5% of leakage to the trans-1,3-dimethylpyran.

Scheme 11. De Koning's Total Synthesis of Cardinalin 3.

Eight bioxanthracene ES-242 natural products were isolated in 1992 by Matsuda ${ }^{41}$ from a fungus, Vertucillium $s p$. SPC-15898. A group of eleven bioxanthracenes were later isolated from the insect pathogenic fungus Cordyceps pseudomilitaris BCC1620. ${ }^{42}$ An interesting observation was that not all of the bioxanthracenes had the same connectivity. Of the eleven compounds, eight were dimeric; and of the eight, six are symmetrical while the other two were unsymmetrical isomers. ES 242-1 and ES 242-2 were shown to bind to the N-methyl-D-aspartate (NMDA) receptor inhibiting [$\left.{ }^{3} \mathrm{H}\right]$ TCP binding. The activity was shown to inhibit $\left[{ }^{3} \mathrm{H}\right]$ TCP binding in the $\mu \mathrm{M}$ concentration range in a competitive manner. Bioxanthracene ES-242 was ineffective on binding to $[3 \mathrm{H}]$ kainite, another subtype of the excitatory amino acid receptor. Tatsuta ${ }^{43}$ accomplished the first racemic synthesis of bioxanthracene (Scheme 12). The synthesis started with a Stauton-Weinreb annulation was accomplished between the toluate anion of methyl ester 1.77 and lactone 1.78 to furnish the tricycle 1.79. Oxidation and complete reduction of the lactone produces naphthyl ether $\mathbf{1 . 8 1}$.

The biaryl was formed through oxidative coupling using $\mathrm{CuCl}(\mathrm{OH})$ resulting in a 1:1 mixture of atropo-diastereomers. The synthesis was then completed following aromatization and hydrolysis of the MOM group.

Bioxanthracene ES-242-4 was isolated as a single atropisomer but the absolute stereochemistry about the biaryl bond was unknown. Assignment of the absolute stereochemistry was later reported based on single crystal x-ray analysis of the bisbenzyl ether derived from the phenol in ES-242-4 ${ }^{44}$. From the crystal structure, the natural product ES-242-4 was assigned the aS configuration. The absolute configuration of all the bioxanthracenes ${ }^{45}$ were determined by relating the optical rotation and the crystal structure of ES 242-4 with the known optical rotations of the other molecules in the family of bioxanthracenes.

Scheme 12. Tatsuta's Synthesis of Bioxanthracene ES-242-4.

Nigerone ${ }^{46}$ (1.88) was isolated as the major toxic pigment from the fungus Aspergillus niger V. Tiegh taken off a Mozambican ground nut. The observed optical
rotation of nigerone was attributed to atropisomerism of the central biaryl bond. The barrier of rotation was found to be high enough that heating at reflux in acetic acid for four hours only caused minor change in optical rotation. The absolute configuration of nigerone was later assigned by a total synthesis completed by Kozlowski. ${ }^{47}$ The bisnaphthylpyrone moiety was prepared from the keto-sulfoxide 1.85 (Scheme 13). The sulfoxide was condensed with acetaldehyde following Kozlowski's elimination of the sulfenic acid to afford pyrone 1.86. An oxidative coupling using 1,5 diazo-cis-decalin copper catalyst formed binaphthyl 1.87 in 80% ee. The ambiguity of the binaphthyl bond configuration was resolved when the calculated $C D$ spectra of the $a R$ and $a S$ atropisomers were compared to the natural product. ${ }^{48}$ This comparison allowed for the assignment of the binaphthyl bond to be of the $a R$ configuration. The synthesis of nigerone was completed by a base mediated isomerization from binaphthyl 1.87.

Scheme 13. Asymmetric Synthesis of Nigerone by Kozlowski.

The identification of small molecules that inhibit protein kinase C without inhibition of protein kinase A has been a goal of many groups. Protein kinase C has been considered a good molecular target for cancer therapy. The calphostins were reported to be selective PKC inhibitors. The calphostins were isolated from a fungi Cladosporium cladosporioides. ${ }^{49}$ The four compounds showed IC_{50} values ranging from $0.05-0.25 \mu \mathrm{M}$ without inhibition of the protein kinase A at two hundred times concentration. This family was also found to act as a photosensitizer and produce singlet oxygen. The chiral axis was assigned as aS based on the comparison of the CD spectra with that of the known cercosporin. ${ }^{50}$ The first total synthesis was performed by Broka's group at Syntex . ${ }^{51}$ The naphthyl quinone was formed by the iron oxidation of the lithium naphthyl 1.89 (Scheme 14), arriving at both atropisomers 1.90 and 1.91, that were separable. After removal of the TBDPS and benzyl groups, the core of the calphostins was completed by a second iron oxidation to arrive at calphostin $D(1.93)$.

calphostin D (1.93)

Scheme 14. Broka's Approach to Calphostin D.

A second approach to calphostion D was reported by Hauser ${ }^{52}$. The key step of this approach was dimerization of o-naphthoquinine 1.94 with TFA followed by the slow addition of the titanium reagent to re-oxidize the hydroquinone resulting from the onaphthoquinine (Scheme 15). The ability to couple without an oxidizing agent shows that this coupling proceeds through an ionic mechanism and not a one election transfer mechanism. An ionic mechanism was supported by the observation that onaphthoquinone 1.94 in the absence of oxidant gave a $1: 1$ mixture of the coupled product 1.102 and the hydroquinone $\mathbf{1 . 1 0 1}$. With a Lewis acid coordination to an onaphthoquinone, a conjugate addition from a second o-naphthoquinone followed by aromatization will afford the first binaphthyl linkage. This process is then repeated to give the bis-fused binaphthyl ring system. Oxidation of the hydroquinone can then be envisioned by the reduction of a third molecule of o-naphthoquinone 1.94 to provide the hydroquinone 1.101.

1.95

Scheme 15. Proposed Lewis Acid Catalysed Dimerization.

During the course of screening for novel HIV drugs, the National Cancer institute isolated a novel pair of atropisomers termed the michellamines ${ }^{53}$ from the tropical vine Ancistrocladus abbreviates collected in Cameroon. Both michellamines showed antiHIV activity against several HIV cell lines. One novel observation was that both type I and type II HIV cell lines were affected by the michellamines while most compounds to date only affect one. Michellamine B showed greater effectiveness with EC_{50} values ranging from 1 to $88 \mu \mathrm{M} .{ }^{54}$ During structure elucidation, the michellamines revealed three biaryl bonds with two points of axial chirality with no hindered rotation about the
central binaphthyl bond. Proven to be a dimer of korupensamine, michellamine A was shown to have both atropisomers of the aS configuration while michellamine B was shown to have one $a R$ antipode and one $a S$ antipode. Lipshutz ${ }^{55}$ synthesized the monomeric unit korupensamine in an stereoselective manner (Scheme 16). The key coupling proceeded through Suzuki coupling of 1.103 and 1.104. The coupling proceeded in a very stereoselective manner due to proposed pi stacking of the naphthyl ring effectively blocking one face of the biaryl bond. The biaryl was then converted to korupensamine $\mathrm{A}(1.108)$ by liberation of the two primary alcohols and reduction to the methyl group.

1.103

1.104

1.107

korupensamine $A(1.108)$

Scheme 16. Lipshutz Synthesis of Korupensamine A.

In a convergent total synthesis of the michellamines, Bringmann began with a Diels-Alder reaction between bromoquinone 1.110 and diene 1.111 (Scheme 17). Aromatization and methyl ether formation led to naphthoquinone 1.112. The naphthoquinone was then homocoupled by means of an Ullmann coupling and reductive acetylation afforded 1.113. Selective acetate removal and activation of the phenol as a triflate led to the bis-triflate 1.114. Suzuki coupling of 1.114 and 1.115, global deprotection and chiral separation of the three possible pairs of atropisomers completed the total synthesis of natural michellamine $A(1.108)$ and B (1.109), plus the unnatural michellamine C .

Scheme 17. Convergent Total Synthesis of the Michellamines.

Rugulosin A is an interesting dimeric natural product, isolated from the fungus P. rugulosum Thom ${ }^{56}$ and has been found to have anti-influenza and anti-HIV properties.

The cage like core, termed skyrin, made the determination of the structure difficult until the X-ray structure of a heavy atom derivative was solved. ${ }^{57}$ The structure was then confirmed by total synthesis concurrently by the Nicolaou group and the Snider group. The Nicolaou ${ }^{58}$ approach was based on a novel multistep "cytoskryin cascade" reaction to form the skyrin core (Scheme 18). The monomer unit was dimerized through a double Michael type addition. This reaction in most cases stalled at the ether 1.118. Further oxidation to the bis-quinone followed by treatment with triethyl amine provided a further two Michael type additions arriving at the skyrin core. Removal of the protecting groups led to the natural product (+)-rugulosin. This procedure was later optimized to arrive at a one pot procedure with subsequent addition of oxidant and triethyl amine. ${ }^{59}$

Scheme 18. The Multistep "Cytoskryin Cascade."

An explanation offered for the observed diastereoselectivity of the dimerization suggests spatial arrangements the monomer could orientate itself in the dimerization. The two endo arrangements are equivalent but unfavorable due to the sterics of a hydroxyl group positioned between the two ring systems. Of the two exo approaches the syn arrangement would be more sterically congested with two hydroxyl groups
positioned between the two rings where the anti arrangement would position these two hydroxyl groups far away from each other.

Snider's ${ }^{60}$ approach to a rubulosin analog was much along the same strategic vein but more of a stepwise approach (Scheme 19). A Hauser annulation with cyclohexenone 1.123 and the anion of $\mathbf{1 . 1 2 4}$ provided the tricycle 1.125. The dimerization and ether formation in $\mathbf{1 . 1 2 6}$ was accomplished with the use of lead acetate as an oxidant. The double Michael addition was then accomplished by heating in pyridine.

Scheme 19. Snider's Approach to Rugulosin Analogs.

Isolation, Structure and Biological Activity of Hibarimicins

Angelmicin B

In 1993, Uehara and coworkers reported the isolation of two novel inhibitor of oncogenic signal transduction. ${ }^{61}$ These compounds, termed the angelmicins, were isolated from a rare actinomycete Microbispora sp. AA9966 collected at Mt. Tennyo, Japan. Angelmicin B showed selective growth inhibition against abl as well as src transformed cells in the range of $0.3 \mu \mathrm{M}$ to $3.0 \mu \mathrm{M}$. The inhibitory effects on ras transformed cells were not significant, while doxorubicin treated cells displayed no shift in IC_{50}. This information suggests that angelmicin B selectively inhibits tyrosine kinase activity. Honma ${ }^{62}$ later reported that angelmicin B inhibited 50% cell growth (IC_{50}) at $0.06 \mu \mathrm{M}$ in leukemia $\mathrm{HL}-60$ cells. Angelmicin B was also shown to promote the differentiation of HL-60 cells into mature cells. The differentiation was demonstrated by the induction of NBT reduction and morphological changes in the cells. The concentration needed to induce this maturation by most other anticancer drugs is near the level of cytotoxicity for the cell. In the case of the angelmicins, the main observation in the treated cells was differentiation without apoptosis. This study also showed that the growth inhibition and the tyrosine kinase inhibition do not correlate with each other.

Isolation and Biological Activity of the Hibarimicins
In 1998, Hori and coworkers ${ }^{63}$ described another novel tyrosine-kinase inhibitor, isolated from a soil sample collected at Hibari, Toyama Prefecture, Japan. This sample contained 10 different compounds collectively called the hibarimicins (Figure 5). The bacteria strain that produced these compounds was identified as Microbispora rosea subspecies Hibaria TP A0121. Biological activity of the hibarimicins was evaluated in an assay that allowed detection of the inhibition of four different protein kinases during a
single assay. Hibarimicin A (1.128), B (1.129), C (1.130) and $D(1.131)$ inhibited the activity of protein tyrosine kinase (PTK) without significant effect on protein kinase A (PTA) or C (PTC). Hibarimicin A (1.128) showed the most potent inhibition of PTK. All four hibarmicins displayed some inhibition of calmodulin-dependant protein kinase III (CAMKIII) as is seen in other PTK inhibitors. The in vitro studies showed modest activity against gram positive bacteria, and cytotoxicity towards cell lines B16-F10 (Murine melanoma) and HCT-116 (Human colon carcinoma) showed IC_{50} of 0.7 to $2.0 \mu \mathrm{~g} / \mathrm{mL}$ and 1.9 to $3.6 \mu \mathrm{~g} / \mathrm{mL}$, respectively. This study also demonstrated the inhibition of several different leukemia cell lines with IC_{50} values between $1.79 \mu \mathrm{~g} / \mathrm{mL}$ and $0.5 \mu \mathrm{~g} / \mathrm{mL}$.

Structure Elucidation

The hibarimicins were shown to have identical UV-visible spectra and similar IR spectra. ${ }^{64}$ The similar spectra suggested that all the hibarimicins share a common chromophore and, thus, a common aglycone. In neutral or acidic conditions, the solutions were red in color with an absorption band at 511 nm . In basic conditions, the solution turned green and the absorption band at 511 nm disappeared while bands at 614 and 647 nm appeared. The structure of hibarimicin B (1.129) was elucidated first and structural assignment of other hibiramicines were based on comparison to hibarimicin B (1.129). Through extensive spectroscopic analysis, the structure of hibarimicin B (1.129) was determined to be the structure in Figure 5. Due to the complexity of the NMR spectra, several ambiguities were left unresolved. Coupling constants combined with NOE correlations confirmed the relative stereochemistry of the A and H rings but the absolute configuration remains unsolved. The absolute and relative stereochemistry of C13 on the A ring was left unassigned, but if we assume that the hibarimicins are made through a dimerization, the stereochemistry should match C13
of the H ring. The absolute configuration of the sugars has also been left unassigned. A topic that was not addressed was whether the hibarimicins exist as a single atropisomer or if there is free rotation about the central aryl-quinone bond. Once the structure was elucidated, hibarimicin B (1.129) was shown to be the same compound as angelmicin B. ${ }^{65}$

> hibarimicin $A(1.128): X=A T ; Y=\beta-A T$
> hibarimicin $B(1.129): X=Y=A T$
> hibarimicin $C(1.130): X=A T ; Y=\beta-A M$
> hibarimicin $D(1.131): X=A T ; Y=A X$
hibarimicin E (1.132): $X=A T ; Y=H$ hibarimicin G (1.133): $X=Y=A X$ hibarimicin H (1.134): $X=H ; Y=\beta-A M$ hibarimicin I (1.135): $X=H ; Y=A X$

Figure 5: Structures of the Hibarimicins.

Biosynthesis

In an attempt to determine the biosynthesis of the hibarimicins, Microbispora rosea was fed with $1-{ }^{13} \mathrm{C}, 2-{ }^{13} \mathrm{C}$, and $1,2-{ }^{13} \mathrm{C}$ labeled acetates. ${ }^{66}$ All carbons in the hibarimicins were shown to be derived from these acetates except the methoxy carbon suggesting that the hibarimicins are arrived at through a polyketide pathway. The ${ }^{13} \mathrm{C}$ incorporation of the different feeding experiments suggested that the aglycone is
produced by a decarboxylation (at C-14) and skeletal rearrangement of an undecaketide chain (Scheme 20). Following the rearrangement, an oxidative dimerization of the two subunits 1.138 arrives at the symmetric core of the hibarimicins. The hibarimicins are then completed by post-polyketide glycosylation of the aglycone.

Scheme 20: The Proposed Biosynthesis of the Hibarimicins.

The proposed biosynthesis of the hibarimicins incorporates a unique skeletal rearrangement. Very little is understood about the actual rearrangement, except for the ${ }^{13} \mathrm{C}$ labeled acetate incorporation pattern. The ${ }^{13} \mathrm{C}$ labeling pattern shows an intact acetate unit is incorporated for all the carbons in the aglycone except that of $\mathrm{C}-10, \mathrm{C}-14$, and C-15. A plausible explanation for this incorporation pattern could involve two successive aldol condensations from the undecaketide chain (Scheme 21) which would provide a naphthalene core (1.142). An aldol reaction would form the $\mathrm{C}-14-\mathrm{C}-15$ bond to afford compound 1.143, while a second aldol reaction forms the carbon-carbon bond between carbon 9 and 10. The second aldol creates a [3.1.1] bicyclic system (1.144) with a highly strained four-member ring that may undergo a retro-aldol, cleaving the C-11-C-15 bond. The tetracycle can then be completed with a final aldol reaction, forming the $\mathrm{C}-13-\mathrm{C}-14$ bond. That is followed by a decarboxylation at the $\mathrm{C}-14$ position to form the core of the tetracycle. This proposed pathway would correlate to the correct incorporation pattern of ${ }^{13} \mathrm{C}$ acetates shown in Hori's work.

Scheme 21. Plausible Pathway for Skeletal Rearrangement in the Hibarimicins.

This proposed biosynthesis was supported by mutating TP-A0121 with N-Methyl-N^{\prime}-nitro- N-nitrosoguanidine (NTG). ${ }^{67}$ This random mutation method allowed for isolation of biosynthetic precursors, providing an insight into the details of the biosynthesis of the hibarimicins. From this study, formation of the tetracyclic core as the first step was confirmed by the isolation of a tetracycle that did not incorporate the skeletal rearrangement. The next important compound that was isolated was a glycosylated symmetric dimer of the tetracyclic core, HMP-Y6 (1.147) (Scheme 22). This dimer was then fed to a mutant strain that was a non-producer of hibarimicin and was not converted to hibarimicin B (1.129). HMP-Y6 (1.147) was deglycosylated to arrive at the symmetric dimer HMP-Y1 (1.139). A knockout strain of the bacteria that could not produce the
hibarimicins was then fed HMP-Y1 (1.139), which was converted to the fully glycosylated hibarimicins. The conversion of HMP-Y1 (1.139) was confirmed by repeating the feeding study with ${ }^{13} \mathrm{C}$ labeled HMP-Y1 (1.139) through acidic methanolysis of the labeled HMP-Y6 (1.147). These block mutants provide a timeline for the biosynthesis of the hibarimicins. The oxidative dimerization to a symmetric dimer is followed by selective oxidation and ether formation to arrive at the core of the hibarimicins. This core is glycosylated in a final step to arrive at the individual hibarimicins.

Scheme 22. Block Mutants that Describe the Biosynthetic Timeline of Hibarimicins.

Models that demonstrate Hibiramicin Atropisomers

Hibarimicins present a seemingly unique aryl-quinone linkage at the biaryl bond. Only one other natural product has been show to have this motif. 8'Hydroxyisodiospryrin (1.151) has shown to be stable atropisomers as shown by the isolation of both racemic ${ }^{68}$ and enantiomericly ${ }^{69}$ pure forms from different natural sources. Synthesis of the (+) isomer was provided by the $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidation of (+)-
isodiospyrin in poor yields. ${ }^{69}$ Sargent ${ }^{70}$ determined the absolute stereochemistry by means of Meyers oxazoline 1.149 (Scheme 23). This coupling proceeded in a 7:1 selectivity for the $a R$ atropisomer. The 7:1 ratio of atropisomers remained consistent until the final product showing no rotation about the biaryl axis.

Scheme 23. Sargent's Synthesis of Aryl Quinone by a Meyers Oxazoline.

Roush's Model of the Angelmicin Core

One topic that was left uninvestigated in the structural elucidation of the hibarimicins is the possibility of atropisomers. Roush's group ${ }^{71}$ synthesized a model system to examine if there is a chiral axis (Scheme 24). Roush attempted the formation of the naphthyl-naphthylquinone core through both cross coupling and an Ullmann coupling with no success. Suzuki coupling of the arylboronic acid (1.152) and the bromonaphthylquinine (1.153) eventually provided the desired biaryl (1.154). The methylene protons on the benzyl ether appeared as an $A B$ quartet in ${ }^{1} \mathrm{H}$ NMR indicating the presence of chirality, thus atropisomers. In an effort to determine the barrier of rotation, variable temperature NMR experiments were performed. The rotational barrier of this model was determined to be greater than $22 \mathrm{kcal} / \mathrm{mol}$. With this barrier, calculation for the trimethoxy biaryl (1.155) was then estimated to be $25 \mathrm{kcal} / \mathrm{mol}$.

Scheme 24. Roush's Model of Atropisomerism in Angelmicin.

Sulikowski Model of the Hibarimicin Core

Another model was provided by our group. ${ }^{72}$ This model was initiated with the biaryl bond already in place with dibenzofuran. This furan was elaborated to the monoketal quinone 1.157 (Scheme 25). The quinone was a very reactive dienophile in a Diels-Alder reaction with cyclopentadiene. Hydrolysis and dehydrobromination lead to the biaryl phenol 1.158. The rotational barrier was so small for the free hydroxyl at room temperature that $\mathbf{1 . 1 5 8}$ appeared as a single isomer. The free hydroxyl was protected as a methoxymethyl ether 1.159, and the methylene protons appeared as an AB quartet indicating the presence of approximately 1:1 mixture of atropisomers. The rotation barrier was again probed by variable temperature NMR and found not to coalesce at $148^{\circ} \mathrm{C}$. This failure to coalesce at $148^{\circ} \mathrm{C}$ would correspond to a minimum barrier of rotation being between 20 and $25 \mathrm{kcal} / \mathrm{mol}$. The low barrier to rotation for the free hydroxyl 1.158 was speculated to be a result of the lower energy state produced by tautorimization of the phenol through the quinone 1.160.

Scheme 25. Sulikowski Model of Atropisomerism in Hibarimicins.

Comparison of HMP-Y1 (1.139) to other natural products suggests that HMP-Y1 (1.139) exists as a stable atropo-diastereomer, with unassigned configuration. Oxidation of HMP-Y1 (1.139) to hibarimicinone (1.140) would be expected to occur with retention of configuration of the biaryl bond (Scheme 26). One of the major goals of this research is the assignment of absolute configuration about the biaryl bond in this family of natural products. This goal will be addressed in Chapter II.

Scheme 26. Absolute Configuration of HMP-Y1 is Retained in Hibarimicinone.

CHAPTER II

SYNTHETIC METHODS DIRECTED TOWARD DIMERIC BIARYL NATURAL PRODUCTS

Synthetic Methods for Formation of Biaryl Carbon-Carbon Bonds

The formation of biaryl bonds has long been a challenge in synthetic chemistry. At the turn of the century, Ullmann discovered a synthetically useful transformation in the coupling of bromo-benzene (2.1). ${ }^{73}$ The mechanism of this reaction begins with oxidative insertion of copper into the carbon-bromine bond. This copper(II) intermediate 2.2 is then reduced by a second equivalent of copper to arrive at the aryl copper 2.3 (Scheme 27). This copper(I) species then undergoes a second oxidative insertion leading to 2.4. Once at the copper(III) intermediate (2.4), the copper reductively eliminates to arrive at the biaryl product and a second equivalent of copper(I) bromide. The Ullmann coupling has shown to be effective with a wide scope of substrates especially sterically encumbered biaryls. ${ }^{74}$

Scheme 27. A Mechanistic View of the Ullmann Coupling

An early method to form a biaryl carbon-carbon bond is oxidative phenol coupling. This coupling reaction is promoted using molecular oxygen ${ }^{75}$ or iron trichloride ${ }^{76}$ as an oxidant. Mechanistically, the removal of one electron from naphthol 2.6 by an oxidant provides radical cation 2.8 (Scheme 28). Dimerization of 2.8 followed by loss of a proton and tautomerization provides BINOL (2.7). Interest in biaryl atropisomers was modest until the sevelopment of BINAP ${ }^{77}$ (derived from BINOL) as a ligand in asymmetric synthesis. Since that time, several metals including gold ${ }^{78}$, manganese ${ }^{79}$, ruthenium ${ }^{80}$ and vanadium ${ }^{81}$ have been shown to facilitate oxidative dimerization of of β-naphthol (2.6).

Scheme 28. Proposed Mechanism for the One Electron Oxidation of β-Naphthol (2.6).

Hypervalent iodine reagents such as bis(trifluoroacetate)iodo-benzene (PIFA) ${ }^{82}$ have the ability to oxidize electron rich aromatic rings leading to radical cation intermediates 2.12 (Scheme 29). The latter can then be trapped by a variety of nucleophiles including a second benzene ring to form a biaryl carbon-carbon bond.

Scheme 29. Mechanism of PIFA Oxidative Coupling.

Oxidative coupling of copper complexes (cuprates) was described by Whitesides ${ }^{83}$ in the late 1960's. In this coupling, two equivalents of the aryl lithium 2.14 are added to a copper (I) salt to form the copper ate species 2.15 (Scheme 30). This copper species is then oxidized by molecular oxygen to arrive at biaryl 2.16. Typically the required aryl lithium is produced from an aryl halide through a lithium halogen exchange. Lipshutz ${ }^{84}$ expanded on this chemistry by employing higher order cuprates to form unsymmetrical biaryls ${ }^{85}$ and demonstrating intramolecular biaryl couplings. ${ }^{86}$

Scheme 30. Oxidative Coupling of Cuperates.

One drawback to the oxidation of organocuprates with molecular oxygen is frequently observed oxidative by-products resulting in low yields. To solve this problem other organic oxidants have been examined. For example, benzoquinone ${ }^{87}$ has been used as the oxidant leading to hydroquinone as a by-product. In 2005, Spring ${ }^{88}$ reported dinitrobenzamide 2.18 as an oxidant that produced by-products easily removed by filtration and only required sub-stoichiometric amounts of 2.18. (Scheme 31). Spring
later showed that the initial use of an aryl halide was not necessary as a starting material, but demonstrated directed ortho lithiation of an aromatic ring could lead to the copper ate complex.

Scheme 31. Spring's Direct Lithiation and Cuprate Oxidation.

Finally, the widely utilized Suzuki and Stille couplings are limited to the preparation of sterically less encumbered biaryls. ${ }^{89}$

Methods to Arrive at a Single Atropisomer

The ability to derive a single atropisomer has become important since the utility of BINAP in asymmetric synthesis has been demonstrated. Further, many complex natural products incorporate atropisomers within their structure. There are three general methods to produce a single atropisomer. First, resolution has been employed, typically requiring the formation of the biaryl as a racemate followed by classical formation of diastereomeric salts or esters. A more efficient method is to employ a dynamic kinetic resolution. Dynamic resolution is accomplished by changing the nature of the biaryl bond so that the barrier of rotation is lowered and the atropisomer easily interconverts at room temperature. Once an equilibrium is established a single atropisomer can be
derived from the interconverting pair of atropisomers by a chemical reaction under kinetic control. The third and most effective method is direct asymmetric coupling.

Resolution of atropisomers has a high dependence on structure and/or functional group requirements. Advances in chromatography occasionally allow direct separation of atropo-diastereomers or atropo-enantiomers. Direct separation by chromatography was employed in the isolation of atropo-diastereomeric natural products mastigophorene A (1.22) and B (1.23). Atropo-enantiomers have been separated by chiral chromatography. A classical method for resolution of BINOL (2.7) atropisomers is crystallization of diastereomeric salts. For example, BINOL (2.7) have been separated by selective crystallization of copper(I) salts of cinchonine alkaloid complexs. ${ }^{90,91}$

Other methods of resolution use temporary covalent modification of a chiral atropisomer using a chiral auxiliary resulting in atropo-diastereomers separable by chromatography. This requires a method for reversal of the covalent bond and recovery of single atropo-enatiomers. An early example of this approach is the resolution of gossypol (1.3) by formation of diastereomeric Schiff bases (2.21) ${ }^{92}$ (Scheme 32). Other biaryls have used free phenols or amines to create diastereomeric esters and amides, respectively. Three chiral auxiliaries that are most often used are: menthol chloroformate (2.22), ${ }^{93}$ camphorsulfonyl chloride (2.23), ${ }^{94}$ and Mosher's acid (2.24). ${ }^{95}$ All of these compounds allow for the resolution of atropisomers through chromatography of diastereomeric ethers/amides.

Gossypol (1.3)

(aR)-2.21

(aS)-2.21

2.22

S-2.24

Scheme 32. Example of Auxiliaries used in the Resolution of Atropisomers.

Enzymes have been used in the desymmetrization of meso isomers and kinetic resolution of racemic mixtures. Typically lipases are employed in these transformations. ${ }^{96}$ For example, the hydrolysis of a single enantiotopic acetate of meso biaryl $\mathbf{2 . 2 5}$ allowed for the desymmetrization of the molecule and production of a single atropisomer (Scheme 33). ${ }^{97}$ If porcine pancreatic lipase (PPL) is used as the enzyme then phenol 2.26 with the aS configuration predominates. If rhizopus oryzae lipase (ROL) is used in the hydrolysis of $\mathbf{2 . 2 5}$ then phenol $a R$ - 2.26 predominates. The chiral recognition of the active site of an enzyme has been mimicked using a chiral diamine in the kinetic resolution of BINOL (2.7). In this kinetic resolution, the vinyl ether derivative of BINOL (2.27) was subjected to palladium mediated methanolysis with bulky diamine
2.28. The $(a R)-2.27$ was then recovered in 96% ee while the $a S$ isomer was converted to the naphthol (aS)-2.29 in a modest 69\% ee.

Scheme 33. Desymmetrization and Kinetic Resolution Using Enzymatic and NonEnzymatic methods.

Resolution can provide optically pure atropisomers but a disadvantage is half of the material is lost as the undesired atropisomer. Dynamic resolution addresses this problem as all the material is converted to a single atropisomer. Dynamic kinetic resolution in biaryl systems has been championed by Bringmann. A common molecular structure for the identification of dynamic kinetic resolution is the formation of a biaryl
lactone such as $\mathbf{2 . 3 1}$. The biaryl lactone $\mathbf{2 . 3 1}$ was shown to be configurationally labile (Scheme 34). The lactone bridge lowers the barrier of rotation such that the atropisomers interconvert readily at room temperature. This interconversion allows for an enantioselective ring opening with many different chiral nucleophiles. The use of oxygen 99 and nitrogen ${ }^{100}$ nucleophiles have been shown. While Bringmann first demonstrated a hydride addition with a chiral aluminum hydride, ${ }^{101}$ the use of chiral borane reductions has been more effective ${ }^{98}$.

Molecular modeling ${ }^{102}$ of the chiral borane reduction reaction showed that the initial hydride attack was not the critical stereochemical step as was shown earlier with chiral nucleophiles. The coordination of the oxaborolidine to the lactone is followed by the first addition of hydride. The axial addition of hydride was shown to add preferentially to the Re face of the lactone carbonyl. The resulting diboroheterocycle 2.34, although energetically more stable, expanded to the six-membered 2.35 and then ring opening to aldehyde 2.36. Interconversion of atropisomers is still possible at this point because of the relative low difference in barrier of rotation when compared to the energy barrier of the second hydride addition. Although in the second hydride delivery the energy difference between Re and Si faces is very low ($0.3 \mathrm{kcal} / \mathrm{mol}$) the difference in the $a R$ vs. aS interconversion was significant at $3.5 \mathrm{kcal} / \mathrm{mol}$. The difference in calculated energy predicted a mixture of isomers in a 99.8:0.2 ratio with a predominance of the $a R$ isomer. When 2.31 was reduced, there was a high correlation with this calculated energy difference as the selectivity gave a 98.5:1.5 ratio of the $a R$ isomer 2.32. This selective reduction has been demonstrated with the R or S oxaborolidine to afford the $a S$ or $a R$ isomer. ${ }^{103}$

2.30

2.31

2.32

97\% ee

2.31

2.33

2.34

Scheme 34. Mechanistic Analysis of Dynamic Kinetic Resolution

Very few examples of dynamic thermodynamic resolution (DTR) of atropisomers have been reported in the literature. ${ }^{104}$ The use of biaryls in DTR began with Kocovsky's ${ }^{105}$ discovery that a secondary asymmetric transformation controlled the enantioselection of self coupled 2-naphthols in $\mathrm{Cu}(\mathrm{II})$ diamine coupling. This secondary asymmetric transformation was found to be one of three possible processes for directing the stereochemistry shown. ${ }^{106}$ The other two processes described were a diastereoselective crystallization and direct enantioselective coupling. It was found that the substrate dictated which mechanism was followed. Expanding on this methodology,
oligonaphthalenes ${ }^{107}$ were later synthesized and asymmetrized through this secondary transformation. Wulff then used this methodology to deracemize vaulted biaryl 2.38 (Scheme 35). ${ }^{108}$ With little mechanistic details known, Wulff ${ }^{109}$ proposed two pathways for this deracemization. The first pathway follows an unusual copper C, O binding that was supported by some biaryl platinum complexes. ${ }^{110}$ The matched mode displays the O-Cu-O binding dominant while the mismatched mode breaks aromaticity to provide the copper bonding to oxygen and carbon of the biaryl bond in $(a R)-2.41$. This mismatched binding motif allows for rotation about the biaryl bond, then relax to the matched pair in $(a S)-2.41$. The matched $(a S)-2.41$ will then prefer the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ bonding in $(a S)-2.40$. The second plausible path would include a tuatormerizism to the ketone, providing a SP_{3} hybridized center in $\mathbf{2 . 4 2}$ allowing for the free rotation about the biaryl core. This rotation allows for the matching for the diamine with the axis of symmetry. The matched pair will then be rearomatized and cleavage of the copper complex provides the atropoenantioner enriched biaryl.

Scheme 35. Proposal for the Mechanism of Dynamic Thermodynamic Resolution.

The last method to arrive at a single atropisomer is that of direct asymmetric coupling reactions. Coupling in this manner has been demonstrated using substrate and reagent control. In the former method, substrate stereochemistry influences the biaryl bond stereoselectivity either under kinetic or thermodynamic control. An example of undesired kinetic product converting to the thermodynamic, Evans ${ }^{111,112}$ showed that the $A B$ ring of vancomycin (1.1) could be formed initially in the undesired atropisomer (2.43) but when more of the global structure was in place, gentle heating resulted in adapting the correct biaryl stereochemistry (2.44) (Scheme 36). Spring ${ }^{113}$ showed that the structural restraints in sanguiin $\mathrm{H}-5$ (1.4) imparted complete selectivity in formation of the $a S$ atropisomer.

Scheme 36. Atropo-diastereoselectivity under substrate control

In 1988 Miyano ${ }^{114}$ demostrated BINOL as a chiral auxiliary in biaryl asymmetric synthesis. Following esterification of BINOL, bis-benzoate 2.48 was subjected to an Ullmann coupling to provide 2.49 in good yield and greater than 99\% de (Scheme 37). The ester was then cleaved to provide 2.50 as a single atropisomer. ${ }^{115}$ Lipshutz ${ }^{86}$ later elaborated on this method of asymmetric biaryl synthesis by using a C-2 symmetric diol auxiliary. Mitsunubo reaction of β-naphthol BINOL with trans-hex-3-ene-1,6-diol, followed by a Sharpless asymmetric dihydroxylation, and protection led to acetonide 2.51. Copper coupling then provided a $12: 1$ mixture of bi-naphthol 2.52 favoring the $a R$ isomer.

Scheme 37. Chiral Tethers of Miyano and Lipshutz.

Meyers ${ }^{116}$ used a chiral oxazoline auxiliary to effect an asymmetric aromatic substitution resulting in biaryl bond formation. Meyers proposed the formation of complex 2.53 (Scheme 38). The aryl prefers complexation on the beta face of 2.53β based on minimized steric interaction. The addition of the aryl group follows the complexation where the aryl group may turn, providing room for loss of stereochemistry. This explains the loss of selectivity when the R_{1} group is an electron donating group, as it will compete with the methoxy in coordination to the magnesium. The loss of BrMgOMe then completes the formation of the biaryl $(a S)-2.55$. This provides stereoselectivity for the $a R$ atropisomer in a ratio of $9: 1$. The first stereoselective total synthesis of gossypol (1.3) ${ }^{117}$ and a diastereroselective total synthesis of mastigophorene $A(1.22)$ and $B(1.23)^{118}$ was later reported by Meyers using this methodology. The synthesis of mastigophorene $A(1.22)$ and B (1.23) proved to be interesting as each atropisomer was prepared by uses of the $a R$ and $a S$ chiral oxazolidines.

(aS)-2.55

2.54β

Scheme 38. Mechanism of Selectivity in the Meyers Chiral Oxazolidine Coupling.

Direct (catalytic) coupling of biaryls to arrive at a single atropisomer without use of a chiral auxiliary has been studied with minimal success. Brussee ${ }^{119}$ first coupled 2naphthol in the presence of CuCl and four equivalents of amphetamine (2.56) to provide (aS)-BINOL in 95% ee (Scheme 39). The mechanism was later investigated and proposed to involve a square planar copper complex. ${ }^{120}$ Also shown in this study was the observed enantioselectivity resulted from dynamic thermodynamic resolution of the coupled products.

Scheme 39. Brussee's First Observed Enantioenriched Coupling of BINOL.

The first to have success in kinetic biaryl carbon-carbon bond formation using a copper diamine complex was Kozlowski. ${ }^{121}$ Although several metals worked in this system, copper was the only metal to turn over in the catalytic cycle. The proposed catalytic cycle starts with copper diamine 2.57 complexation to methyl 3-hydroxy-2naphthoate (2.58) (Scheme 40). Oxidation then leads to the radical 2.60. Differing from Brussee's, the copper species was shown in this mechanism to be tetrahedral and not square planar and the atropisomeric products were a result of kinetic coupling. ${ }^{122}$ The selectivity is proposed to be derived from the coupling of radical $\mathbf{2 . 6 0}$ to naphthol $\mathbf{2 . 5 8}$. The diamine blocks the α face from attack so the coupling proceeds from the β face. The $s p^{3}$ hybridized carbon relays the stereochemistry to the biaryl through tautomerization and the chiral catalyst turns over during the catalytic cycle to arrive at the $(a R)-2.62$. Unfortunately, the scope of this coupling is limited to binaphthyl atropisomers.

Scheme 40. Proposed Catalytic Cycle of Kozlowski Coupling.

Suzuki couplings have been demonstrated to provide an asymmetric biaryl. An early report of this type of coupling was demonstrated by Buchwald. ${ }^{123}$ Initial reports coupled naphthyl halide 2.63 to boronic acid $\mathbf{2 . 6 4}$ in good to excellent enantiomeric excess with binaphthyl phosphine 2.65 as the chiral ligand (Scheme 41). This methodology has only recently been expanded to coupling of functionalized biaryls. ${ }^{124}$ Aryl bromide 2.67 was coupled with boronic acid 2.64 to provide the biaryl 2.68 with an 80% ee. Unfortunately, this method is doomed for failure when using electron rich biaryls common to many natural products due to the required oxidative insertion of $\operatorname{Pd}(0)$ into the aryl-halide bond.

Scheme 41. Buchwald's Asymmetric Suzuki Coupling.

Synthetic Analysis of HMP-Y1 / Hibarimicins and Preliminary Studies

During the course of biosynthetic studies on the hibarimicins Kajiura ${ }^{125,126}$ showed ${ }^{13} \mathrm{C}$ Labeled HMP-Y1 fed to a mutated strain of the hibarimicin producer provided ${ }^{13} \mathrm{C}$ labeled hibarimicin B , while HMP-Y6 fed to the same mutated strain produced no hibarmicin B. This result supports the biosynthetic pathway leading to the hibarimicins proceeds by oxidation of HMP-Y1 (1.139) to hibarimicinone followed by glycosylation to afford hibarimicin B (1.140). We propose to employ a biomimetic oxidation of HMP-Y1 (1.139) to quinone 2.69 as a key step in the total synthesis of hibarimicione (Scheme 42). We anticipate tautomerization of quinone 2.69 to 0 quinomethide 2.70 will set the stage for the addition of C 13 tertiary alcohol to C 8 to give furan 2.71. Oxidation of hydroquinone 2.71 will then deliver hibarimicinone (1.140). Our immediate objective is to develop a synthesis of HMP-Y1 (1.139), a C-2 symmetric natural product. Significantly, HMP-Y1 and hibarimicinone exist as atropodiastereomers of unassigned configuration, a structural feature not discussed in the
original isolation or subsequent biosynthesis studies. One objective of our synthetic program is the assignment of configuration about the biaryl bond of HMP-Y1 (1.139) and hibarimicinone (1.140).

Scheme 42. Proposed Oxidative Conversion of HMP-Y1 to Hibarimicinone B.

As symmetrical dimers occur frequently in nature and several have been the subject of total synthesis. In general, two approaches to dimeric natural products such as HMP-Y1 have been employed, biomimetic dimerization and two-directional assembly. ${ }^{127}$ Biomimetic dimerizations are perhaps most effective, in the case of HMP-

Y1, this requires synthesis of aromatic polyketide 1.138 (Scheme 43). A second approach starts from formation of biaryl $\mathbf{2 . 7 5}$ early in the synthesis and elaborate in a two directional manner. For HMP-Y1 (1.139), we considered two bi-directional strategies. The first entailed two consecutive annulations with the second annulation involving binaphthyl 2.73 and cyclohexenone 2.72. The second two-directional approach involved annulation between cis-decalin 2.74 and biaryl 2.75. In either synthetic approach establishment of a single atropisomer of known configuation is a key issue to be addressed.

Scheme 43. Strategic Analysis of HMP-Y1.

Our initial strategy directed toward HMP-Y1 was to effect a double StauntonWeinreb annulation using two equivalents of cis-decalin 2.74 and bis-toluate anion
derived from biaryl ester 2.75 (Scheme 44). We initially planned to assemble cis-decalin 2.75 by way of an intramolecular Diels-Alder using triene 2.76 as a substrate. Triene 2.76 was proposed to be derived from D-methyl glucose (2.77). We required biaryl ester 2.75 to be prepared as a single atropisomer of known configuration by way of biaryl 2.78, The latter ultimately derived from the oxidative coupling of toluene $\mathbf{2 . 7 9}$ available from inexpensive vanillin (2.80). ${ }^{128,129}$

Scheme 44. Single Bis-Annulation Approach to HMP-Y1.

Three synthetic approaches to the hibarimicin cis-decalin have been described in the literature by the research groups of Roush, Mootoo and Sulikowski. Roush and Mootoo prepared the cis-decalin common to hibarimicinone that incorporates a bridging
furan heterocycle in the G/H ring system. Roush's ${ }^{130}$ route began with the hydroboration of allene 2.80 and addition of the derived allyl borane to aldehyde 2.81 to provide β hydroxysilane 2.82 (Scheme 45). Following silylation of the secondary alcohol, a tin (II) mediated [3+2] annulations proceeded with modest stereoselectivity to provide furan 2.84. A Tamao-Fleming oxidation of $\mathbf{2 . 8 4}$ led to triol 2.85. A series of protecting group manipulations then provided diol 2.86. A double Swern oxidation provided an intermediate keto-aldehyde that was subjected to an intramolecular aldol reaction to provide beta-hydroxy ketone 2.81 as a nearly $1: 1$ mixture of alcohols 2.87 (equatorial alcohol). The axial alcohol could be re-equilibrated to a $1.3: 1$ mixture of alcohols resulting in recycling of the axial alcohol. The equatorial alcohol was then protected and the primary benzyl group removed. A one-carbon homologation and reduction provided the new keto-aldehyde 2.88. Pinacol cyclization afforded a 5:1 mixture of diastereomers in favor of the cis-decalin 2.89. Swern oxidation was followed by installation of unsaturation to complete cis-decalin 2.90.

Scheme 45. Roush's Route to the cis-Decalin of the Hibarimicins.

The Mootoo ${ }^{131}$ synthesis of the hibarimicinone GH cis-decalin began from known lactone 2.91 available from D-glucose (2.76) (Scheme 46). Propyl Grignard addition to 2.91 provided an intermediate hemiketal which on treatment with lithium trimethylsilylacetylide provided tertiary alcohol 2.92 (5:1 mixture of C13 epimers). The major product was subjected to a ring closing enyne metathesis under an atmosphere of ethylene to provide diene 2.93. Esterification of the secondary alcohol with acryloyl chloride provided a triene that on heating in xylene led to the desired Diels-Alder adduct
2.94. Diels Alder adduct 2.94 was then subjected to a dihydroxylation which occurred from the convex face of the decalin ring system. The secondary alcohol was protected and the lactone reduced to provide lactol 2.95 lodination of lactol 2.95 proceeded with 3:1 selectivity although none of the β-iodide was isolated as this isomeric iodide was intercepted by a displacement reaction of the C13 hydroxyl leading to formation of the bridging furan ring. Hydrolysis of the formate group, protection of the secondary alcohol and removal of the TES group provided diol 2.97. The synthesis was then completed by oxidation and installation of the unsaturation. Notably the Roush and Mootoo approaches provide access to only the GH and not the AB ring system of the hibarimicins.

Scheme 46. Mootoo's Route to the cis-Decalin of the Hibarimicins.

The Sulikowski group has published on three approaches to cis-decalin ring system, each employing a Diels-Alder reaction. Two of the three approaches used tartaric acid as starting material, which can be converted to known aldehyde 2.99 in four steps. Addition of butadienyllithium to aldehyde $\mathbf{2 . 9 9}$ led to a $70: 30$ mixture of separable epimers of the allylic alcohol with $\mathbf{2 . 1 0 1}$ as the major ${ }^{132}$ (Scheme 47) (note: incorrect C10 configuration for hibarimicins). Protection of the secondary alcohol, removal of the silyl protecting group and oxidation provided aldehyde 2.102. In an attempt to obtain asymmetric induction from the Diels-Alder reaction and set the cis-decalin stereochemistry, trimethylsilylethynyl p-tolylsulfone was added to the aldehyde 2.102. The alkyne produced was oxidized to ketone 2.103 and spontaneously underwent a Diels-Alder cycloaddition to afford decalin 2.104. Unfortunately, the incorrect configuration at C9 (ring fusion) was confirmed by a single X-ray crystal analysis. The reaction sequence was repeated with the C10 epimer but unfortunately the same incorrect C9 configuration was observed A second Diels-Alder adduct 2.106 was prepared starting from the Grignard addition of vinyl magnesium bromide to the aldehyde 2.105 and oxidation. This adduct was then heated to form the Diels-Alder product 2.107. When the α-epimer of the allylic alcohol was the staring material, the correct cis-decalin 2.107 was produced and confirmed again by an X-ray crystal structure. The cis-decalin 2.107 was judged to be under functionalized and not a good intermediate to proceed with a synthesis of the hibarimicins

Scheme 47. First Attempt of an Intramolecular Diels-Alder Reaction to Form the cisDecalin.

In an effort to achieve better stereocontrol, an intermolecular Diels Alder was examined. In this approach demonstrated the importance of the diol protecting group in controlling stereochemistry (Scheme 48). Diethyl tartrate 2.108 was reduced to the dialdehyde then alkylated with vinyl Grignard to provide the diene 2.109. Ring closing metathesis with Grubbs' second generation catalyst afforded cyclohexene 2.110. Oxidation with the Dess-Martin periodinane provided a dienophile to be employed in the proposed intermolecular Diels-Alder reaction. The acetonide 2.111 was allowed to react with diene 2.112 to form a single cycloadduct 2.113 that was assigned by X-ray crystal analysis. The incorrect facial selectivity led to the examination of different diol protecting groups. Protecting the diol as a bis-TBS in $\mathbf{2 . 1 1 4}$ led to a mixture of diasteromers in a 71:29 ratio of the undesired stereochemistry. The diol was then protected as a pivaloate
in 2.117 and subjected to the Diels-Alder reaction to provide a $33: 67$ mixture of the desired stereochemistry at the ring fusion.

Scheme 48. Intermolecular Diels-Alder Route to cis-Decalin.

In unpublished results from our lab, acetonide 2.113 was subjected to inversion of the stereochemistry at the C9 position through a kinetic deprotonation followed by an acid quench (Scheme 49). The product was immediately reduced to provide alcohol 2.120, which was also confirmed by a single X-ray crystal analysis. The stereochemistry of the free alcohol was then inverted through a Mitsunobu esterification with p nitrobenzoate ${ }^{133}$ to set four of the six required stereocenters. The strain imposed by the acetonide on the system was the thought to be the reason that attempts to remove the TBS led to β-elimination. The acetonide was then removed to provide diol 2.121. With the diol protected as the bis-pivolate, the TBS was cleanly removed and oxidized to
provide the bis ketone 2.122. As shown in previous work by our lab ${ }^{134}$ the tertiary alcohol could be installed by DMDO oxidation of the bis ketone 2.122 to arrive at the cisdecalin 2.123 with five of the six stereocenters in place. The stereochemistry was assigned based on NOE correlation of the tertiary alcohol and the C9 proton. Further elaboration of this route was unsuccessful as treatment of $\mathbf{2 . 1 2 3}$ with mild base or the toluate anion directly led to β-elimination product $\mathbf{2 . 1 2 4}$. As both approaches failed to control the C9 stereochemistry with acceptable selectivity we chose to examine an intramolecular Diels-Alder approach that would assure control of the C9 stereochemistry.

Scheme 49. Kim's Progress Toward the cis-Decalin Ring System.

The third route to the hibarimicin cis-decalin common to hibarimcinone began with the formation benzylidene acetal from methyl glucose 2.125 and protection of the remaining alcohols as benzyl ethers to provide 2.126 (Scheme 50). A Hannesian ${ }^{135}$ ring opening was initially performed but optimization showed that removal of the acetal with I_{2} and iodination of the primary alcohol followed by benzoylation produced 2.127 better results. A Vasella fragmentation ${ }^{136,137}$ followed in a second step with vinyl Grignard
addition yielded an inconsequential mixture of diastereomeric alcohols 2.128. Diene 2.128 was then subjected to ring closing metathesis with Grubbs' second generation catalyst. Oxidation and iodination produces iodo-enone 2.129. Suzuki cross coupling with vinyl boranate anhydride provided diene 2.130. Allyl Grignard addition provided the desired asymmetric induction with the allyl group adding to C 13 from the equatorial face with an 2:1 selectivity. Excess Grignard simultaneously removes the benzoate. Esterification of the secondary alcohol with a variety of acrylates led to the ability to separate the previous mixture diastereomers. Heating of the desired diastereomer provided the Diels-Alder adducts, while selective hydrogenation with Pd / C for five minutes yielded decalin ring systems 2.135-2.136. In-situ generation of ruthenium tetroxide ${ }^{138}$ provided the hydroxyl-ketone 2.137-2.138. Setting all six of the contiguous stereocenters left only the installation of the α, β-unsaturation to complete the AB ring of the hibarimicins. Unfortunately, all attempts to install the C7-C16 double bond were unsuccessful.

Scheme 50. Engers/Hempel Approach to the cis-Decalin.

Two Directional Approach

A two-directional or biomimetic coupling synthetic strategy toward HMP-Y1 (1.139) require an efficient annulation method to access the common tetracyclic structure. The synthesis of linear aromatic polyketide related to HMP-Y1 was addressed in 1978 by Hauser and Kraus by development of anion-based annulation reactions. Hauser ${ }^{139}$ initially used the phenyl sulfone phthalide 2.140 and Kraus ${ }^{140}$ cyano-phthalide 2.141 that on deprotonation and reaction with unsaturated carbonyls afforded naphthylene 2.143 in the hydroquinone oxidation state (Scheme 51). This methodology was later expanded to access lower oxidation states of the annulation product. For example, Staunton ${ }^{141}$ and Weinreb ${ }^{142}$ developed methods to generate toluate anion of
2.144 that on reaction with an α, β-unsaturated ketone afforded naphthylene 2.146 and 2.148 respectively.

Scheme 51. Original Annulations Preformed by Hauser, Kraus, Staunton, and Weinreb.

In 2005, Andy Myers ${ }^{143}$ conducted a study to optimize the Staunton Weinreb annulation in connection with his work on the tetracycline antibiotics and determined phenyl benzoates to be optimal annulation reagents. With this in mind, we undertook the synthesis of ester 2.154 (Scheme 52). This work began with the known regioselective bromination of vanillin ${ }^{144}(\mathbf{2} \mathbf{8 0})$ followed by phenol methylation ${ }^{128}$ to provide aldehyde 2.149. Aldehyde 2.149 was then converted to phenol 2.150 by a

Baeyer-Villiger ${ }^{145}$ oxidation. In an attempt to differentiatially protect the C1 phenol common to HMP-Y1 (1.139), phenol 2.150 was protected as a benzyl ether and the aryl bromide was converted to toluene 2.151 by way of a lithium halogen exchange followed by a methyl iodide quench. The regioselective bromination ${ }^{146}$ was achieved by treatment with copper(II) bromide to provide bromide 2.152. The latter was subjected to a second lithium-halogen exchange this time followed by a carbon dioxide quench and the resulting carboxylic acid 2.153 was converted to phenyl ester 2.154 using a standard two-step process.

Scheme 52. Synthesis of Staunton-Weinreb Annulation Precursor

We next evaluated phenyl ester 2.154 as an annulating reagent using cyclohexenone as the coupling partner (Scheme 53). Initial annulation attempts using benzyl ether $\mathbf{2 . 1 5 4}$ provided $\mathbf{2 . 1 5 5}$ in poor yield with the major product recovered phenol, as a result of loss of benzyl group. To identify a superior annulation partner other protecting groups were examined. The benzyl protecting group was removed by hydrogenolysis, and the phenol protected using a variety of alkyl, silyl and Boc groups. Each of these protected phenols was then subjected to the annulation conditions (Scheme 51). MOM ether 2.156 provided negligible product 2.157 and the optimal
protecting group proved to be methyl ether 2.158, providing the annulation product $\mathbf{2 . 1 5 9}$ in 82\% yield. The BOC and TBS protected benzoates provided poor results.

Scheme 53. Effect of Protecting Group on the Staunton-Weinreb Annulation.

The cleavage of a methyl ether located in a peri position relative to an oxygen is precedented in the literature ${ }^{147,148}$ The use of BBr_{3} provided decomposition, while the use of cerium trichloride heptahydrate ${ }^{149}$ and sodium iodide provided the desired deprotection (Scheme 54). This selectivity is likely the result of formation of cerium(III) chelate to the peri carbonyl. The selective removal of the C 1 methyl ether was supported by NOE experiments. However, oxidation of $\mathbf{2 . 1 6 0}$ to naphthylene $\mathbf{2 . 1 6 1}$ proved problematic. Attempts to provide a phenyl selenide in order to effect a selenoxide elimination provided interesting results. Instead of formation of the selenide, all attempts resulted in α-halogenation. The halogen incorporation was confirmed by low
resolution mass spectrometry analysis. This was possibly due to the formation of the selenonium ion 2.162 (Scheme 55), followed by opening by halogen at the tertiary carbon to provide 2.163. Loss of phenyl selenide provides $\mathbf{2 . 1 6 4}$ or $\mathbf{2 . 1 6 5}$.

Scheme 54. Selective Demethylation Followed by Oxidation to Naphthyl Ring System.

Scheme 55. Possible Mechanism for the Alpha Halogenations of Phenol 2.157.

In contrast to the failed oxidation of phenol 2.160, oxidation of methyl ether $\mathbf{2 . 1 5 9}$ proceeded smoothly with DDQ ${ }^{150}$ to afford naphthyl 2.166 in 70% yield (Scheme 56). Unfortunately attempted removal of the C1 methyl ether using previously successful $\mathrm{CeCl}_{3}-\mathrm{Nal}$ combination now failed. Based on literature precedent we returned to BBr_{3} as a demethylating reagent. ${ }^{148}$ Optimal conditions were observed a combination of Nal and
BBr_{3} was added to afford demethylated 2.161 with minimal formation of the hydroquinone.

Scheme 56. Oxidation and Demethylation to Naphthol Ring system 2.164.

Having developed a viable annulation, oxidation and demethylation sequence in the context of a monomeric tricycle, we next turned our attention to applying this approach in the context of a two-directional strategy starting from bis-phenyl benzoate (2.75, Scheme 43). As presented in Chapter 1 a variety of biaryl couplings are available but highly substrate dependant. In the case of electron rich bis-phenyl ester (2.75) an oxidative coupling seemed most appropriate. Unfortunately no asymmetric oxidative couplings are available and we would need to later address how to generate 2.75 as a single atropo-enantiomer. The oxidative coupling recently described by Spring and coworkders ${ }^{151}$ drew our attention as it employed a direct resorcinol lithiation and oxidation. Trimethoxyltoluene (2.169) was selected as the substrate for the oxidative homocoupling and was prepared from aldehyde 2.149 starting with a Baeyer-Villiger oxidation to afford hydroquinone 2.167 (Scheme 57). Not surprisingly, this hydroquinone was found to be very susceptible to air oxidation to provide the corresponding quinone. Immediate methylation of $\mathbf{2 . 1 6 7}$ followed by a lithium halogen exchange and methyl iodide quench provided trimethoxy toluene 2.169. The Spring homodimerization proceeded smoothly on deprotonation of $\mathbf{2 . 1 6 9}$ with n -BuLi-TMEDA complex, cuprate formation and oxidation
to give biaryl 2.170 in yields ranging from 40 to 60%. Finally, bromination with NBS ${ }^{152}$ afforded dibromide 2.171.

Scheme 57. Biaryl Formation

Initial attempts at converting the dibromide 2.171 to the bis-phenyl ester $\mathbf{2 . 1 7 2}$ employing the previously described three step reaction proceeded in poor yields (Scheme 58). A variety of methods to convert dibromide 2.171 to $\mathbf{2 . 1 7 2}$ were examined including DMF quench of the derived dianion and palladium mediated carbophenoxylation, all failed to yield positive results. Gratifyingly and somewhat surprising phenyl chloroformate reacted with the dianion derived from 2.171 to afford bisphenyl ester 2.172 in 88\% yield.

2.171

2.172

Scheme 58. Methods to Form the bis-Phenyl Eester 2.170.

As an alternative two-directional annulation we considered was a sequential two annulation process to form HMP-Y1 (1.139, Scheme 59). We envisioned a primary annulation of bis phenyl ester 2.75 with a crotonate followed by aromatization to provide intermediate bi-naphthyl 2.73. A second and final annulation of bis-naphthyl 2.73 with enone 2.72 would then lead to HMP-Y1 (1.139). As we had prepared enone 2.72 from D-glucose (2.77) our attention turned to the examination of bis-phenyl ester 2.75 as an annulation partner.

2.72

Annulation

2.73

(D)-glucose (2.78)

Scheme 59. Two bis-Annulation Approaches to HMP-Y1

Key to a successful double annulation leading to bi-naphthyl 2.73 was efficient double deprotonation of $\mathbf{2 . 1 7 2}$ which was optimized using a deuterium incorporation study. An interesting result from this study was that no deprotonation was observed when one or two equivalents of LDA-TMEDA complex were added. Double deprotonation was not observed until four equivalents of base were added. There was also no improvement in the deprotonation between four and six equivalents.

Once we optimized conditions for the formation of the bis-toluate anion we turned our attention to effecting a two-directional annulation. A two-directional synthetic strategy had earlier been applied by Hauser ${ }^{153}$ in the synthesis (+)- biphyscion, We first examined phenyl crotonate $\mathbf{2 . 1 7 5}$ as the annulation substrate. In the event, we obtained
a modest yield of the bis-annulation product 2.176 and a small amount of the monoannulation product (Scheme 60). Attempts to directly oxidize 2.176 with DDQ failed, but a two-step bromination-dehydrobronination sequence provided naphthylene 2.178. Naphthylene 2.178 was then methylated to give 2.179 in preparation for a second annulation. Unfortunately a second bis annulation failed due to difficulty in generating the required toluate anion. The reaction sequence was repeated to give the thiophenyl dimer 2.184 but this did not improve the efficiency of the second annuation

Scheme 60. Attempts at a Two-Annulation Approach.

A second model system was examined based on a two directional annulation with the anticipated completion of the required cis-decalin leading to HMP-Y1 (Scheme 60). In this case, the bis-phenyl ester 2.174 was condensed with cyclohexenone to provide a modest yield of the bis-annulated product 2.186 (Scheme 61). Oxidation of 2.186 with $D D Q$ in refluxing benzene gave 2.187 in 59% yield. ${ }^{154}$

Scheme 61. Synthesis of BCD-EFG Rings Model of HMP-Y1.

Resolution of Atropisomers and Assignment of Absolute Stereochemistry

We next turned our attention to the synthesis of a single atropo-enantiomer and determination of the absolute stereochemistry about the biaryl bond. With this goal in mind, we returned to the benzyl ether 2.151 as a homocoupling substrate. Spring coupling of 2.151 proceeded in 47% yield to give (Scheme 62). The benzyl protons of biaryl 2.189 appeared in ${ }^{1} \mathrm{H}$ NMR in chloroform as an AB quartet with $\Delta v=22 \mathrm{~Hz}$ and $J_{A B}=12.6 \mathrm{~Hz}$, suggesting inhibited rotation about the central carbon-carbon bond. When the solvent was changed to DMSO the diastereotopic benzyl methylene group appeared as a singlet (Figure 6). Resolution of related bis-phenols have been reported by Bringmann ${ }^{155}$ by formation of atropo-diastereomeric Mosher esters. With this form of
resolution in mind, the benzyl groups were removed by hydrogenolysis and the resulting bis-phenol condensed with Mosher's acid to initially provide a mixture of diastereomeric mono-Mosher esters 2.191. The bis-Mosher ester was obtained when an excess of Mosher acid was used. The diastereomeric bis-Mosher esters were readily separated by semi-preparative HPLC. The faster eluting diastereomer proved to be crystalline and submitted to a single X-ray crystal analysis allowing assigment of the chiral axis as (aS)-
2.192 (Figure 7).

Scheme 62. Synthesis of the Mono-Mosher's Ester.

Figure 6. Benzyl Protons of 2.189 in CDCl_{3} and D_{6}-DMSO.

Figure 7. X-ray Crystal Structure of the Faster Eluting bis-Mosher Ester.
$(a R)$ - and (aS)- bis-Mosher esters were then converted to $(a R)$ - and (aS)- phenyl ester 2.170. Reduction of Mosher esters using LiAlH_{4} provided $(a S)-2.184$ and $(a R)$ 2.184 (Scheme 63). The bis-ester is configurationally stable but the removal of the steric bulk does not ensure that the bis-phenol will still be configurationally stable. The phenols were proven to be configurationally stable by the examination of their $C D$ spectra (Figure 8).

Scheme 63. Separation of Bis-Mosher Ester and Retention of Optical Activity

Figure 8. ECD Spectra of Phenol $(a S)-2.190$ and $(a R)-2.190$.

The $a S$ and $a R$ atropisomers were individually converted to the corresponding $a S-(+)-\mathbf{2 . 1 7 0}$ and $a R-(-)-\mathbf{2 . 1 7 0}$ phenyl esters following the same reaction sequence used in the racemic synthesis of $\mathbf{2 . 1 7 0}$ (Scheme 64). With preparative chiral LC available we examined the separation of atropisomers $(\pm)-\mathbf{2 . 1 9 0},(\pm)-\mathbf{2 . 1 6 8}$ amd $(\pm)-\mathbf{2 . 1 7 0}$ in order to find a more practical resolution method to replace the cumbersome Mosher ester
resolution method. Of the three biaryls examined only the bis-phenyl ester 2.164 provided sufficient separation. Separation of the atropisomers was accomplished with the chiral AD stationary phase, but better resolution was observed with the chiral OD stationary phase. A representative chiral HPLC trace is presented in Figure 9. The separation of the bis-phenyl ester 2.168 allows for material to be brought through a racemic synthesis and then be purified into atropisomer of now known configuration.

Scheme 64. Synthesis of Enantiopure bis-Phenyl Ester.

Figure 9. Trace of Chiral Separation of bis-Phenyl Ester 2.172 on OD Chiral Column

Since the central biaryl axis of hibarimicin B was of unknown configuration, we deemed it important to initially have access to both atropisomers. With a viable route to enantiopure bis-phenyl ester, our attention turned to the formation of a single atropisomer selectively. One of the advantages of the Spring coupling was the ability to substitute a chiral diamine in the place of TMEDA to achieve a chiral biaryl bond formation. Use of (-)-sparteine 2.193 in place of TMEDA did provide biaryl coupling but in a much lower yield (Scheme 65). The diamine cinchonine 2.194 and its pseudoenantiomer cinchonidine 2.195 were also attempted with no resulting biaryl coupling. This pair of pseudo-enantiomers is best known for the selective crystallization of BINOL atropisomers. If the anime was changed to a Box ligand like t-BuBox 2.196 a small amount of biaryl was formed. The lower efficiency of the reaction is probably due to the increase of sterics of the copper-diamine complex in formation of the cuprate complex. The enantiomeric excess (\% ee) was not measured in any of the biaryl products as yields were lower and no method for the rapid determination of ee was available.

2.169

sparteine (2.193)

Cinchonine (2.194)

Cinchonidine (2.195)

t-BuBox (2.196)
13%

Scheme 65. Spring Coupling with Chiral Diamines

With limited success using a chiral diamine in the Spring coupling, the next approach was the catalytic biaryl coupling described by Kozlowski. ${ }^{121}$ The first substrate screened in this reaction was the phenol 2.150. It was determined that the phenyl ester was too labile for the reaction conditions. Once the ester was unintentionally converted to the acid, the reaction halted. In examining Kozlowski's ${ }^{156}$ work, the typical ester is the methyl ester. To arrive at the methyl ester, benzyl bromide 2.146 was converted to the methyl ester by a lithium-halogen exchange and quench with methyl chloroformate to provide methyl ester 2.197 (Scheme 66). The benzyl was then removed by hydrogenolysis and the phenol 2.198 was subjected to the Kozlowski coupling conditions with (-)-sparteine 2.193 in place of the synthetic (+)-sparteine equivalent Kozlowski ${ }^{157}$ synthesizes. Phenol methyl ester 2.198 coupled in low yields with catalytic amounts of a copper-sparteine complex. An interesting aspect of this reaction was the lack of stereoselectivity. To date, no report of an enantioselective biphenyl coupling using Kozlowski method has appeared.

Scheme 66. Biaryl Kozlowski Coupling.

Without a viable route to produce a single atropisomer, we then turned to the work of Wulff in dynamic kinetic resolution. The biaryl phenol became important. The biaryl coupling was shown to proceed with a better yield with the MOM toluene $\mathbf{2 . 2 0 2}$ (Scheme 67). Toluene 2.202 was synthesized in the same manner as before by protecting the phenol 2.143 with MOMCI. Biaryl phenol 2.190 was synthesized from the biaryl MOM 2.203 by simple acid hydrolysis.

Scheme 67. Improved Route to Biaryl Phenol.

The phenol 2.190 was then subjected to dynamic thermodynamic resolution. A complex of copper and (-)-sparteine 2.193 was added to racemic phenol 2.190 and allowed to stir for a variable amount of time. It was found that with the sparteine complex at room temperature, the racemic phenol was converted to (aS)-2.190 (Scheme 68). Without a method for determination of the \%ee, the phenol was then converted to the menthol carbonate 2.204. The atropo-diastereomeric ratio was then easily determined by proton NMR (Figure 10). The best induction was seen with the sparteine complex stirring at room temperature for forty-eight hours. It is also important to notice
that when the reaction was heated to reflux that no asymmetric induction was seen. To support the validity of this method and provide access to both enantiomers, an enantiomer of $(-)$-sparteine 2.193 is needed to provide $(a R)-\mathbf{2 . 1 9 0}$. To this end, O'Brien's (+)-sparteine surrogate diamine 2.205 was utilized with copper bromide and the racemic phenol 2.190 to provide $(a R)-\mathbf{2 . 1 9 0}$ with 80% de.

Scheme 68. Dynamic Thermodynamic Resolution Conditions

Figure 10. ${ }^{1} \mathrm{H}$ NMR Analysis of an Isomeric Mixture of $(a S)-\mathbf{2 . 2 0 4}$ and $(a R)-\mathbf{2 . 2 0 4}$.

Having access to either enatiomer of the biaryl core, our attention turned to the assignment of absolute stereochemistry of HMP-Y6. In 1963, Mislow ${ }^{158}$ demonstrated that circular dichrosim (CD) curves of biaryl and binaphthyls correspond to the configuration of the biaryl axis. The absolute stereochemistry of several biaryl natural products like biphyscion, ${ }^{159}$ have been assigned based on comparison of CD spectra to that of a similar known natural product. Correlation of the stereochemistry about the biaryl axis can be accomplished by comparing HMP-Y6 to naphthyl 2.187. Atropisomers of naphthyl 2.187 are separable by chiral chromatrography. To arrive at the known configuration about the biaryl 2.187 the $a S$ isomer of 2.174 was subjected to the annulation and oxidation conditions to provide $(a S)-2.187$ (Scheme 69) to arrive at the faster eluting atropo-enatiomer. Overlaying the CD of $(a S)-2.187$ and HMP-Y6 (1.147), provided by Professor Igarashi, allows for assigning the absolute stereochemistry about the biaryl core in to be tentatively assigned as aS in the natural products

Scheme 69. Synthesis of (aS)-2.187 with Known Configuration about the Biaryl Axis.

Figure 11. CD Spectra of (aR)-2.187 (aS)-2.187.

Figure 12. CD Spectra of (aS)-2.187 and Crude HMP-Y6 (1.147) in MeOH

The binaphthyl 2.187 provides a method to tentatively assign absolute configuration about the biaryl bond of HMP-Y6 as aS. This completes one of the major goals in assigning absolute stereochemistry of the hibarimicin family of natural porducts. Experimentation has shown that a racemic biaryl coupling can converted to a single atropo-diastereomer of known configuration through dynamic kinetic resolution.

Scheme 70. Conversion of HMP-Y1 to a Single Atropo-diastereomer through Dynamic Thermodynamic Resolution

CHAPTER III

A BIOMIMETIC APPROACH TO HMP-Y1

In considering a biomimetic oxidative homodimerization strategy toward HMP-Y1 we identified three major issues to be addressed. First, and perhaps foremost, we required an atropo-diastereoselective formation of the aryl-aryl carbon-carbon bond in a configurationally defined manner as the configuration of HMP-Y1 is unknown. Based on the studies described in Chapter II we anticipated the dynamic thermodynamic resolution described in Chapter II would fulfill this requirement. The second issue to be addressed is regioselectivity. This problem is illustrated by examination of Brimble's ${ }^{160}$ approach toward a biomimitic synthesis of cardinalin 3 (1.71) shown in Scheme 71. The Brimble group determined oxidative dimerization of ventiloquinone (3.1) did not afford any dimeric products. However dimerization of the protected hydroquinone $\mathbf{3 . 2}$ did yielded the C6/C6' dimer 3.3, none of the desired C8/C8' coupling was observed illustrating the problem of regiocontrol.

Scheme 71. Brimble's Studies Directed Toward Cardinalin 3

An example of an advantageous nonselective phenolic oxidative coupling was reported by Müller ${ }^{161}$ that led to the synthesis of kotanin (3.8), isokatanin A (3.9), and desertorin C (3.10), three isomeric natural dimers (Scheme 72). Coupling phenol 3.4 with iron trichloride absorbed on silica gel, provided all three isomeric dimers (3.5-3.7) when separated by flash chromatography. Each isomer was advanced to a natural product by the addition of the anion of acetonitrile to the carbonyl, hydrolysis of the cyano, and methylation of the free hydroxyl. Notably, racemic biaryl phenol 3.5 was resolved by chromatographic separation of diastereomeric esters derived from (-)camphanic acid.

kotanin (3.8)

isokotatin A (3.9)

desertorin C (3.10)

Scheme 72. Müller's Advantageous Unselective Phenolic Coupling

One approach to solve the regioselectivity issue reported by Kita ${ }^{162}$ is the use of a temporary silicon tether. In this approach condensation of a phenol with either dialkyl silyldichloride or triflate afforded silylketal 3.11 (Scheme 73). Oxidative coupling of $\mathbf{3 . 1 1}$ then selectively proceeds at the position ortho to the silylated phenol due to restrictions enforced by the silicon tether. We anticipated taking advantage of the C 1 phenol HMPY1 we could incorpore a silicon tether at this position leading to a regiocontrolled dimerization and ultimately HMP-Y1 (1.139) (Figure 13).

Scheme 73. Silcon Tether to Direct Regioselectivity in Oxidative Coupling. \backslash

Figure 13. Proposed Silicon Tether to Direct Coupling in HMP-Y1

With a silicon tether strategy in mind we considered options to effect an oxidative coupling. Sequential substitution of chloride by a different phenol groups can be employed in hetero couplings leading to unsymmetrical biaryls. Gevorgyan ${ }^{163}$ developed a semi-one-pot procedure using different phenols leading to, for example, unsymmetrical silylketal 3.13 (Scheme 74). A palladium mediated coupling was then used to provide a 9:1 mixture Of 3.14 and 3.15. The scope of the coupling was shown to be good allowing electron donating or releasing in the para position. However, electron rich and sterically hindered (ortho/ortho') couplings as needed for HMP-Y1 were not shown and would likely fail due to limitations associated with the required palladium(0) oxidative insertion step.

Scheme 74. Unsymmetrical Biaryl Coupling Though a Silicon Tether.

The most direct method to address regio- and stereoselectivity of biomimetic couplings is to employ an enzymatic oxidation. Several examples of selective enzymatic
oxidative aryl couplings have been described following enzyme expression, purification and characterization. Plant derived cytochrome P-450s ${ }^{164}$ have been identified that effect the oxidative coupling leading to the alkaloid salutaridine (3.18). In this enzyme mediated transformation phenol 3.16 is oxidized to radical 3.17 leading to carbon-carbon bond formation and salutaridine following loss of a second proton and electron (Scheme 75).

Scheme 75. Cytochrome p-450 Oxidation to Provide Salutaridine 3.18

A well studied oxidative dimerization is the phenolic oxidative coupling cinnamyl alcohols mediated by laccase ${ }^{165}$. For example, oxidation of substituted cinnamyl alcohol 3.19 occured in with high enantioselectivity to give (+)-pinoresinol 3.20 (Scheme 76). This enzyme has shown to be one of the few enzymes that demonstrates high substrate scope leading to a variety of pheonolic coupling. Mikolasch ${ }^{166}$ determined that laccase is a copper(I) and oxygen dependent enzyme. The promiscuity of this enzyme leads to a loss of selectivity, for example oxidation of phenol $\mathbf{3 . 2 1}$ produced both C-arylation $\mathbf{3 . 2 2}$ and O-arylation 3.23 products. The enzyme was also shown to couple hydroquinone 3.24 to the naphthylene ring system $\mathbf{3 . 2 5}$.

3.21

Scheme 76. Laccase Enzymatic Dimerization of Phenols.

A third problem encountered in oxidative biomimetic couplings of electron rich phenols is over oxidation. The issue of over oxidation is illustrated by several examples from the literature (Scheme 77). Nishiyama ${ }^{167}$ showed that the anodic oxidative coupling of naphthol 3.27 yielded a mixture of three products, quinone 3.28 , desired binaphthyl 3.29 and bis-quinone 3.30. Takeya 168 showed that silver oxide oxidation of phenol 3.31 provided a 1:1 mixture of bi-naphthyl 3.32 and bis-quinone 3.33. Over oxidation could be avoided by using tin(II) chloride as an oxidant that provided only bi-naphthyl 3.32. Takeya ${ }^{169}$ also showed that in the absence of over-oxidation, side reactions were observed leading to undesired by-products depending on the reactivity of the intermediate coupling partners. In the oxidation of phenol 3.34, the coupling product 3.35 in addition to dinaphthofuran 3.36 were isolated. The ability to overcome the
production of this side product is dependent upon adjusting the oxidant to the nature of the specific substrate.

3.27

El-seedi

3.28 (11\%)

Kotani

Takeya

3.35 (38\%)

Scheme 77. Over Oxidation and Side Products in Oxidative Coupling.

Preliminary Studies Directed Toward HMP-YI

The biomimetic approach to HMP-Y1 (1.139) requires a late stage oxidative homo coupling of tetracycle 1.138 . As discussed earlier, oxidative coupling of 1.138 would likely lead to mixture of atropo-diastereomers which hypothetically could be resolved to a single either atropo-diastereomer employing dynamic thermodynamic resolution (Scheme 78). In regard to the regioselectivity of the homocoupling, three
isomeric products could be produced (C2-C2', C6-C6' and C2-C6'). In preparation of the proposed dimerization of 1.138 we examined model substrates to address the issues of choice of oxidant and regioselectivity of the coupling.

Scheme 78. Biomimetic Approach to HMP-Y1

Readily available phenol 3.38 was subjected to a variety of oxidizing agents in an effort to identify optimal reaction conditions. First, vanadium oxychloride ${ }^{170}$ provided a unproductive mixture of quinone 3.39 (44%) and bis- quinone 3.40 (11%) (Scheme 79). Oxidative coupling by the use of copper(II) chloride-TMEDA ${ }^{171}$ complex or hypervalent iodine 162, provided primarily the over oxidized product bis-quinone $\mathbf{3 . 4 0}$. The Sartori ${ }^{172}$ method uses a mixture of aluminum trichloride and ferric chloride, the latter Lewis acid is added to the pre-complexed aluminum bis-phenolate contributing to regiocontrolled coupling. Oxidation of phenol 3.38 under these conditions led to biaryl 3.41 in 61% yield. The latter results were considered optimal as no over oxidation was observed and regioselectivity would not be problematic in the tetracyclic phenol 1.138.

Scheme 79. Oxidative Coupling of the Phenol 3.19.

Sartori ${ }^{173}$ has proposed the following mechanism of the oxidative coupling using the $\mathrm{AlCl}_{3}-\mathrm{FeCl}_{3}$ complex, starting from aluminum phenolate 3.42. One electron oxidation of $\mathbf{3 . 4 2}$ then affords aryloxy radical cation $\mathbf{3 . 4 3}$ (Scheme 80) that couples with phenolate 3.42 to provide the radical cation radical 3.45. Loss of an electron and two protons from 3.45 then provides the biaryl product $\mathbf{3 . 4 6}$. This two-step oxidation was supported by cyclic voltamatry, with the observation of two irreversible oxidation steps. Sartori's reaction was shown to be under kinetic control, and larger substituents hindered the reaction progress. The regioselectivity observed in the coupling of 3.46 would then be explained as a kinetic coupling at the least hindered site.

Scheme 80. Mechanistic Understanding of the Aluminum Phenolate Coupling

As a second approach we examined the effect of a silicon tether on the oxidation process (Scheme 81). To this end, phenol 3.38 was reacted with diisopropyldichlorosilane to provide the silylketal 3.47. Oxidation of 3.47 using ferric
chloride unexpectedly provided furan 3.48. This result can be explained by the removal of an electron from silylketal 3.47 to give aryl radical cation 3.49. Following coupling, aromatization and loss of a second electron, radical 3.49 is converted to form cation 3.51. Capture of the intermediate cation by the free phenol followed by loss of a proton leads to 3.52. Iron trichloride can also act as a Lewis acid, catalyzing demethylation to furnish the observed furan 3.48.

Scheme 81. Unexpected Furan Formation and Possible Mechanism

Having collected sufficient information on the proposed biaryl coupling we turned our attention to tricyclic ketone 2.158 as a model substrate for HMP-Y1. Attempts to directly oxidize trimethoxy naphthyl 2.158 using Satori's or Brimble's ${ }^{160}$ coupling
conditions afforded no identifiable products. Coupling of the free naphthol 2.157 with Sartori's conditions lead to oxidation to the naphthylquinone 3.49 (Scheme 82). Phenol 2.157 was then reacted with diisopropylsilyl ditriflate to give silylene 3.51. A single attempt was made at the oxidation of the silylketal 3.51 using four equivalents of ferric chloride to provide the red bisnaphthylquinone 3.52, an over oxidation product. This preliminary result provides promising precedent for a biomimetic coupling route to HMPY1 with the issue of over oxidation requiring further refinement.

Scheme 82. Oxidative Coupling of Naphthyl Ring Systems

The biomimetic route to HMP-Y1 requires a homodimerization to form the biaryl linkage (Scheme 83). Phenolic biaryl coupling will provide the racemic HMP-Y1 (1.139)
when the proper oxidant is found to provide coupling and not oxidation. With the racemic coupling, either atropo-diastereomer can be obtained from the dynamic thermodynamic resolution described in chapter II.

Scheme 83. Biomimetic Oxidative Coupling Followed by Deracemization.

CHAPTER IV

ANALYSIS AND PROGRESS TOWARD ABCD RING SYSTEM

Our long-term goal is to prepare hibarimicin B by total synthesis. We plan to approach this by first preparing HMP-Y1 and by a biomimetic oxidation convert HMP-Y1 to hirbarimicinone. In order to proceed with a total synthesis of HMP-Y1 we required a method to address control of atropo diastereomers and assign the configuration of the chiral axis. Based on the work presented in this thesis we have tentatively assigned the configuration of the natural HMP-Y1 atropisomer and presumably hibarimicin assuming HMP-Y1 to hibarimicinone oxidation proceed with retention of configuration. Comparison of the two-directional and biomimetic coupling strategy investigated in chapters III and IV favor the latter approach as the efficiency of the two-directional approach is poor. In addition our groups experience, as well as the Mootoo and Roush groups suggests a synthesis of the $A B / G H$ cis-decalin rings followed by annulation is a less then optimal approach to ring construction either using the two-directional or monomeric annulation. Briefly described in this chapter is progress toward the synthesis of the HMP-Y1 monomer (a.k.a. ABCD ring of hibarimicinone).

In considering a synthetic strategy toward the HMP-Y1 monomer 4.1 we note low yields observed in the Hauser-Staunton annulation using cyclohexenone and difficulty in controlling the C9 ring fusion stereochemistry. With these considerations in mind we conceived a transannular Diels-Alder reaction employing macrocycle 4.2 (Scheme 84). The Diels-Alder precursor 4.2 can be formed by closing the C17 / C18 bond first then formation of the macrocycle. This analysis identifies iodide 4.3, aryl bromide 4.6 and a three carbon linker 4.4 as three components to form the Diels Alder Precursor. lodide 4.3 can be produced in six steps from quinic acid (4.8). Aryl bromide 4.6 can be
generated in five steps from the aldehyde 4.7. Note, the absolute stereochemistry of the Hibarimicins is unknown and the choice of (-)-quinic acid as starting material.

Scheme 84. Biomimetic Approach to HMP-Y1

The synthesis of bromide 4.6 started with alkylation of trimethoxy bromide 2.166 with allyl bromide to form the allyl benzene 4.8 (Scheme 85). The allyl 4.8 was selectively brominated with copper(II) bromide ${ }^{170}$ to provide the aryl bromide 4.9. The selectivity was confirmed by NOE correlation of the aromatic proton to the two methoxy groups. A second approach to the aryl bromide was accomplished by a known BaeyerVilliger oxidation of dimethoxy benzaldehyde 4.10 to give phenol 4.11, which was alkylated with allyl bromide to yield allyl 4.12. ${ }^{171}$ Optimization of the Claisen rearrangement produced phenol 4.13 in near quantitative yield. The phenol 4.13 was then alkylated with methyl iodide to afford the allyl benzaldehyde 4.14.

Scheme 85. Two Routes to the Allyl Bromide 4.18

Jonathan Hempel, a graduate student in our lab, has shown an effective route to the formation of the C17 / C18 bond. Iodide 4.3 can be arrived at in six steps from quinic acid (4.8). A Suzuki coupling with boronic acid 4.18 afforded the diol 4.19 (Scheme 86). Oxidation of the primary alcohol yields aldehyde 4.20. Aryl bromide 4.6 was converted to the aryl lithium and addition of the lithium produced the $\mathrm{C} 17 / \mathrm{C} 18$ bond in $\mathbf{4 . 2 1}$.

Scheme 86. Hempel's Work Toward the Formation of the C17/C18 Bond

An important outcome is to set the stereochemistry of the C9 bridge head. We have demonstrated that this stereochemistry can be set by an intramolecular type II Diels Alder. The stereocontrol of the intramolecular Diels Alder of 4.19 might provide the syn stereochemistry to the alcohol (Scheme 87). If this does not occur, a tethered approach as in 4.21 to provide a trans annular Diels Alder should provide the desired stereochemistry.

4.19

4.20

4.19
$\downarrow \downarrow$

Scheme 87. Future approaches to the Diels Alder.

CHAPTER V

EXPERIMENTAL

General procedure: All non-aqueous reactions were performed in flame-dried or oven dried round-bottomed flasks under an atmosphere of argon. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Reaction temperatures were controlled using a thermocouple thermometer and analog hotplate stirrer. Reactions were conducted at room temperature (rt, approximately $23^{\circ} \mathrm{C}$) unless otherwise noted. Flash column chromatography was conducted as described Still et. al. using silica gel 230-400 mesh. ${ }^{174}$ Where necessary, silica gel was neutralized by treatment of the silica gel prior to chromatography with the eluent containing 1% triethylamine. Analytical thin-layer chromatography (TLC) was performed on E. Merck silica gel 60 F254 plates and visualized using UV, ceric ammonium molybdate, potassium permanganate, and anisaldehyde stains. Yields were reported as isolated, spectroscopically pure compounds.

Materials. Solvents were obtained from either an MBraun MB-SPS solvent system or freshly distilled (tetrahydrofuran was distilled from sodium-benzophenone; Diethyl Ether was distilled from sodium-benzophenone and used immediately; Commercial reagents were used as received. The molarity of n-butyllithium solutions was determined by titration using diphenylacetic acid as an indicator (average of three determinations).

Instrumentation. HPLC was conducted on a Varian ProStar 210 HPLC system using a Dynamax $21.4 \times 250 \mathrm{~mm}$ column. Infrared spectra were obtained as thin films on NaCl plates using a Thermo Electron IR100 series instrument and are reported in terms of
frequency of absorption $\left(\mathrm{cm}^{-1}\right) .{ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker 300, 400, 500, or 600 MHz spectrometers and are reported relative to deuterated solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dt}=$ doublet of triplets, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, app = apparent), coupling constants (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 75, 100, 125, or 150 MHz spectrometers and are reported relative to deuterated solvent signals or ${ }^{40} \mathrm{~F}$ is relative to triflouroacetic acid. LC/MS was conducted and recorded on an Agilent Technologies 6130 Quadrupole instrument. High-resolution mass spectra were obtained from the Department of Chemistry and Biochemistry, University of Notre Dame using either a JEOL AX505HA or JEOL LMS-GCmate mass spectrometer or from Vanderbilt Institute of Chemical Biology Drug Discovery Program laboratory using a Waters Acquity UPLC and Micromass Q-Tof Ultima API. The structure of bis mosher ester 11 was obtained by Dr. Joseph Reibenspies at the X-ray diffraction facility of Department of Chemistry, Texas A\&M University. Optical rotations were measured with and are reported as follows $[\alpha]^{\top}{ }_{\lambda}$, (c g/100 mL, solvent). ECD were obtained by a Jasco 720 polarimerater.

3-Bromo-4-hydroxy-5-methoxybenzaldehyde. - To a solution of vanillin (16.0 g, 105 mmol) in glacial acetic acid (175 mL) was added Br_{2} reagent ($11.0 \mathrm{~mL}, 210 \mathrm{mmol}$). After 2 h , the solution was diluted with a water/ice mixture (200 mL) to produce a white precipitate. The solid was filtered off and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: acetone mixture (1:4, 400 $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 22.5 $g(93 \%)$ of bromide as a white solid. IR (neat) $3345,1673,1425,1290,1156,1047,793$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}$, $1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 221.8,189.7,148.8,147.6,130.1,129.9,108.1$, 107.9, 56.6. LRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 231.0 Measured $231.0 \mathrm{~m} / \mathrm{z}$.

3-Bromo-4,5-dimethoxybenzaldehyde (2.149). - To a suspension of bromide 3-Bromo-4-hydroxy-5-methoxybenzaldehyde ($22.5 \mathrm{~g}, 97.4 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(40.0 \mathrm{~g}, 292 \mathrm{mmol})$ in DMF (150 mL) was added $\mathrm{Mel}(18 \mathrm{~mL}, 292 \mathrm{mmol})$. After 16 h , the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, and extracted with EtOAc ($3 \times 75 \mathrm{~mL}$). The combined organic extracts were washed with brine $(200 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford an oil. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford $21.4 \mathrm{~g}(90 \%)$ of methyl ether 2.149. IR (neat) 2945, 2851, 2360, 1586,

1566, 1486, 1393, 1281, 1132, 1047, $991{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 189.8$, 154.0, 151.6, 132.9, 128.5, 117.8, 110.0, 60.69, 56.1. LRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrO}_{3}$ $(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 244.97 Measured $245.0 \mathrm{~m} / \mathrm{z}$.

3-Bromo-4,5-dimethoxyphenol (2.150). - To a solution of methyl ether 2.149 (19.0 g, $77.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (250 mL) was added m-CPBA ($27.0 \mathrm{~g}, 155 \mathrm{mmol}$). After 4.5 h of heating at reflux, saturated $\mathrm{NaHCO}_{3}(250 \mathrm{~mL})$ was added and the resulting solution stirred for 45 min . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 150 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to yield an orange residue. This residue was dissolved in $\mathrm{MeOH} /$ conc $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}(2: 1: 1,150 \mathrm{~mL})$ and the resulting solution was allowed to stir for 45 min . MeOH was removed and extracted with EtOAc ($3 \times 75 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $10.7 \mathrm{~g}(59 \%)$ of phenol 2.150. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.60(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 154.0,152.6$, 117.4, 110.6, 100.1, 60.7, 56.0; LRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 232.97$ Measured $233.0 \mathrm{~m} / \mathrm{z}$.

5-(Benzyloxy)-1-bromo-2,3-dimethoxybenzene. - To a suspension of phenol 2.150 $(4.6 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(8.2 \mathrm{~g}, 59 \mathrm{mmol})$ in $\mathrm{DMF}(60 \mathrm{~mL})$ was added benzyl bromide (4.5 mL , 59 mmol). After 20 h , the reaction mixture was diluted by $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:6) to afford 5.6 g (89\%) of benzyl ether. IR (neat) 1598, 1570, 1452, 1427, 1232, 1207, 1177, 1144, 1047, 1025, 1003, 819, 697; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (s, 2H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.5,154.0,140.8,136.3,128.5$, 128.1, 127.5, 117.3, 108.7, 100.6, 70.5, 60.6, 55.9; LRMS calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrO}_{3}$ $(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 323.02 Measured $323.0 \mathrm{~m} / \mathrm{z}$.

5-(Benzyloxy)-1,2-dimethoxy-3-methylbenzene (2.151). To a solution of 5-(benzyloxy)-1-bromo-2,3-dimethoxybenzene ($2.8 \mathrm{~g}, 8.5 \mathrm{mmol}$) in diethyl ether (30 mL) at $-78{ }^{\circ} \mathrm{C}$ was added 2.2 M n-BuLi (6.8 mL , 17 mmol). After 1 h at $-78^{\circ} \mathrm{C}$, neat methyl iodide ($1.6 \mathrm{~mL}, 26 \mathrm{mmol}$) was added. After 16 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$. The combined organic
extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a yellow oil. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $1.7 \mathrm{~g}(79 \%)$ of toluene 2.151. IR (neat) 1599, 1498, 1464, 1454, 1224, 1191, 1176, 1096, 1046, 1010, 735,$698 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 6.46(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 155.0, $153.2,141.5,137.0,132.0,128.5,127.9,127.5,106.8,98.6,70.3,60.2,55.6,16.1$; LRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 259.13 Measured $259.2 \mathrm{~m} / \mathrm{z}$.

1-(Benzyloxy)-2-bromo-4,5-dimethoxy-3-methylbenzene (2.152). To a solution of toluene 2.151 ($1.7 \mathrm{~g}, 6.5 \mathrm{mmol}$) in dimethoxy ethane (22 mL) was added $\mathrm{CuBr}_{2}(2.2 \mathrm{~g}$, $9.9 \mathrm{mmol})$. After 4 h , the reaction mixture was filtered, washed with EtOAc ($3 \times 30 \mathrm{~mL}$) and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 1.4 g (62\%) of bromo 2.152. Mp 72-74으 IR (neat) 1579, 1484, 1448, 1390, 1337, 1241, 1203, 1074, 1011, 800, $751,700{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.39$ $(\mathrm{m}, 5 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.0,151.5,142.1,136.7,133.1,128.5,127.9,127.1,106.2,98.0,71.7,60.6$, 55.9, 16.3; LRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 337.0. Measured $337.1 \mathrm{~m} / \mathrm{z}$

6-(Benzyloxy)-3,4-dimethoxy-2-methylbenzoic acid (2.153). To a solution of bromide $2.152(2.7 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(7: 1,40 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(6.4 \mathrm{~mL}, 16$ mmol) turning the solution an orange color. After 1 h at $-78^{\circ} \mathrm{C}, \mathrm{CO}_{2}$ was bubbled through the solution for 10 minutes, followed by the addition of crushed dry ice (50 mL). The reaction was then diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, and the combined aqueous layers were treated with conc. HCl , to produce a white precipitate. The reaction mixture was filtered, to afford $1.70 \mathrm{~g}(70 \%)$ of acid $2.153 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.40$ (s, 3H).

Phenyl 6-(benzyloxy)-3,4-dimethoxy-2-methylbenzoate (2.154). To a solution of acid 2.153 ($1.7 \mathrm{~g}, 5.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added SOCl_{2} (1.3 mL , 17 mmol). After 5 h of heating at reflux, the excess SOCl_{2}, along with the solvent, was removed. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and phenol ($1.1 \mathrm{~g}, 11 \mathrm{mmol}$) was added. At $0^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 14 \mathrm{mmol})$ was added, producing HCl gas. After 16 h , the reaction mixture was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 25 \mathrm{~mL})$ and brine ($1 \times 25 \mathrm{~mL}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to provide a yellow solid. The residue was
purified by column chromatography with EtOAc/Hexane (1:4) to afford $1.6 \mathrm{~g}(75 \%)$ of ester 2.154. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~m}, 10 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, 3.75 (s, 3H) , 2.38 (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.4,154.5,12.8,150.9,141.4,136.5$, $130.9,129.4,128.5,128.0,127.5,125.8,121.8,96.5,71.3,60.5,55.8,12.9 ;$ LRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 379.2 Measured $379.2 \mathrm{~m} / \mathrm{z}$.

8-(benzyloxy)-9-hydroxy-5,6-dimethoxy-3,4,4a,10-tetrahydroanthracen-1(2H)-one

(2.155). To a solution of diisopropyl amine ($0.15 \mathrm{~mL}, 1.0 \mathrm{mmol}$) in THF (3 mL) at $0^{\circ} \mathrm{C}$ was added 2.0 M n -BuLi (0.53 mL). After 30 min , TMEDA ($0.10 \mathrm{~mL}, 0.14 \mathrm{mmol}$) was added and then cooled to $-78^{\circ} \mathrm{C}$. Then a solution of $2.154(0.18 \mathrm{~g}, 0.51 \mathrm{mmol})$ in THF (2 mL) was added, forming a blood red color. After 1 h at $-78^{\circ} \mathrm{C}$ a solution of cyclohexenone (0.60 g. 1.9 mmol) in THF was added resulting in a yellow color. This solution was then allowed to warm up to $0^{\circ} \mathrm{C}$, over the next 2 h . The reaction mixture was diluted with $0.2 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford $17 \mathrm{mg}(12 \%)$ of annulation product 2.155. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 16.51(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H})$ 6.43 (s, 1H), 5.11 (s, 2H), $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=15.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ $(m, 1 H), 2.40(m, 2 H), 2.14(m, 2 H), 1.89(m, 1 H), 1.59(m, 2 H)$

Phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate. To a solution of ester 2.154 (1.6 $\mathrm{g}, 4.6 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added $5 \% \mathrm{Pd} / \mathrm{C}(0.3 \mathrm{~g})$. This solution was placed in a hydrogen atmosphere, and allowed to stir for 16 h . The reaction was filtered over a celite 454 / silica plug (1:1) and washed with $\mathrm{MeOH}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford 1.0 g (85\%) of phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate. IR (neat) 2932, 1650, 1614, 1589, 1490, 1444, 1324, 11251, 1219, 1161, 1054, 1034, 1004, 956, 847, 829, 788, 733, $686{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.2,161.8,158.8,149.7,140.6,133.9,129.5,126.0,121.7,103.6$, 98.3, 60.4, 55.5, 30.8, 14.7.

Phenyl 3,4,6-trimethoxy-2-methylbenzoate (2.158). To a suspension of phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate ($0.50 \mathrm{~g}, 1.7 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.73 \mathrm{~g}, 5.2$ $\mathrm{mmol})$ in DMF (5.8 mL) was added $\mathrm{Mel}(0.32 \mathrm{~mL}, 5.2 \mathrm{mmol})$. After 16 h , the reaction was diluted $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with Brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue
was purified by column chromatography with EtOAc/Hexane (1:2) to afford $0.42 \mathrm{~g}(77 \%)$ of ester 2.158 as a white solid. mp $74-77^{\circ} \mathrm{C}$; IR (neat) 2926, 1731, 1593, 1492, 1462, 1338, 1257, 1191, 1085, 1037, 750; ${ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NRR}\left(\mathrm{CDCl}_{3}\right) \delta 7.4(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.19$ (s, 3H), $4.16(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 166.0,154.4,153.5$, $150.7,140.8,130.3,129.2,125.6,121.4,115.1,94.7,60.1,56.1,55.5,12.6 ;$ LRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 303.1 \mathrm{~m} / \mathrm{z}$: Measured $303.2 \mathrm{~m} / \mathrm{z}$

9-hydroxy-5,6,8-trimethoxy-3,4,4a,10-tetrahydroanthracen-1(2H)-one (2.159). To a solution of diisopropyl amine ($0.070 \mathrm{~mL}, 0.50 \mathrm{mmol}$) in THF (1 mL) at $0^{\circ} \mathrm{C}$ was added 2.1 M n-BuLi (0.2 mL). After 30 min , TMEDA ($0.085 \mathrm{~mL}, 0.56 \mathrm{mmol}$) was added, then cooled to $-78^{\circ} \mathrm{C}$. A solution of ester $2.158(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ in THF (2 mL) was added, forming a blood red color. After 1 h at $-78^{\circ} \mathrm{C}$ a solution of cyclohexenone $(0.10 \mathrm{~g} .0 .33$ mmol) in THF was added resulting in a yellow color. This solution was then allowed to warm up to $0^{\circ} \mathrm{C}$, over the next 2 h . The reaction mixture was diluted with $0.2 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ $(5 \mathrm{~mL})$. The aqueous layers were extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude product was purified by flash chromatography with EtOAc/Hexane (1:2) to afford 57 mg (56\%) of the annulation product 2.159. IR (neat) 2939, 1702, 1593, 1460, 1335, 1257, 1088, 1068, 1043, 812; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 16.51(\mathrm{~s}, 1 \mathrm{H}) 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}) 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.89$ (s, 3H), $3.21(\mathrm{dd}, J=15.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.90$
$(\mathrm{m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 186.9,181.5,158.1,156.8,138.6,137.7$, 113.9, 108.7, 95.2, 60.7, 56.4, 55.7, 32.6, 31.2, 30.2, 29.9, 20.9; LRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 305.1, Measured $305.1 \mathrm{~m} / \mathrm{z}$

Phenyl 3,4-dimethoxy-6-(methoxymethoxy)-2-methylbenzoate (2.156). To a solution of phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate ($0.10 \mathrm{~g}, 0.35 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2$ mL) was added diisopropyl ethyl amine ($0.13 \mathrm{~mL}, 0.70 \mathrm{mmol}$) followed by MOMCI (0.040 $\mathrm{mL} .0 .52 \mathrm{mmol})$. After 16 h ., the solution was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ (saturated, 5 mL), and Brine (5 mL). Each aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $74.6 \mathrm{mg}(65 \%)$ of $\mathbf{2 . 1 5 6} .^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~m}, 5 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H})$.

5,6-Dimethoxy-8-(methoxymethoxy)-3,4,4a,10-tetrahydroanthracene-1,9(2H,9aH)dione (2.157). To a solution of diisopropyl amine ($0.032 \mathrm{~mL}, 0.23 \mathrm{mmol}$) in THF (0.5 mL) at $0^{\circ} \mathrm{C}$ was added 2.5 M n -BuLi (0.1 mL). After 30 min , TMEDA ($0.038 \mathrm{~mL}, 0.28$ mmol) and the solution was then cooled to $-78^{\circ} \mathrm{C}$. To this was added a solution of MOM ether 2.156 ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (2 mL), forming a blood red color. After 1 h at $-78^{\circ} \mathrm{C}$ a solution of 0.5 M cyclohexenone ($0.30 \mathrm{~mL}, 0.15 \mathrm{mmol}$) in THF was added resulting in a yellow color. This solution was then allowed to warm up to $0^{\circ} \mathrm{C}$, over the next 2 h . The reaction mixture was diluted with $0.2 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}(5 \mathrm{~mL})$ and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford $1.2 \mathrm{mg}(9 \%)$ of 2.157 a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.26$ (dd, $J=18.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.92 (s, 3H), 3.75 (s, 3H), 3.57 (s, 3H), 3.25 (dd, $J=15.2$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H})$.

Phenyl 6-(tert-butoxycarbonyloxy)-3,4-dimethoxy-2-methylbenzoate. To a solution of phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6$ mL) was added BOC anhydride ($45 \mathrm{mg}, 0.21 \mathrm{mmol}$), and DMAP ($1 \mathrm{mg}, 0.008 \mathrm{mmol}$).

After 1 h , the reaction mixture was washed with brine $(2 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$, and $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 57 mg (85%) of phenyl 6-(tert-butoxycarbonyloxy)-3,4-dimethoxy-2-methylbenzoate. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$.

Phenyl 6-(tert-butyIdimethylsilyloxy)-3,4-dimethoxy-2-methylbenzoate (2.155). To a solution of phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate ($0.15 \mathrm{~g}, 0.52 \mathrm{mmol}$) in DMF (1 mL) was added imidazole ($0.090 \mathrm{~g}, 1.3 \mathrm{mmol}$) and TBSCI $(0.095 \mathrm{~g}, 0.62 \mathrm{mmol})$. After 16 h , the reaction mixture was diluted with $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and extracted with EtOAc (3 x 10 mL). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:10) to afford 0.097 g (63\%) of phenyl 6-(tert-butyldimethylsilyloxy)-3,4-dimethoxy-2methylbenzoate. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~m}, 5 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 6 \mathrm{H})$.

8,9-dihydroxy-5,6-dimethoxy-3,4,4a,10-tetrahydroanthracen-1(2H)-one (2.160). To a solution of $2.159(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ in acetonitrile (1.4 mL) was added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ ($73 \mathrm{mg}, 0.20 \mathrm{mmol}$) and sodium iodide ($0.29 \mathrm{~g}, 0.20 \mathrm{mmol}$). After 3.5 h of heating to reflux, the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to a yellow solid. The crude product was purified by flash chromatography with EtOAc/Hexane (1:4) to afford $19.6 \mathrm{mg}(59 \%)$ of phenol 2.160. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.58$, (s, 1H), 12.22(s, 1H), $6.32(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=11.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-.5(\mathrm{~m}, 1 \mathrm{H})$, 2.48-2.43 (m, 1H), 2.37-2.35 (m, 1H), 2.25-2.15 (m, 1H), 2.06-2.01 (m, 1H), 1.98-1.93 $(\mathrm{m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 191.9,177.3,160.9$, $159.3,138.0,134.9,109.2,107.3,98.5,60.8,55.8,32.7,30.3,30.0,29.0,20.8 ;$ Selected NOSEY 14.58, 6.32, 3.88; LRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 291.1, Measured $291.1 \mathrm{~m} / \mathrm{z}$.

9a-bromo-8-hydroxy-5,6-dimethoxy-3,4,4a,10-tetrahydroanthracene-1,9(2H,9aH)dione (2.164). To a solution of diphenyl diselonide ($163 \mathrm{mg}, 0.517 \mathrm{mmol}$) in THF at $0^{\circ} \mathrm{C}$ was added two drops of bromine and the resulting solution was allowed to stir for 30 min
at $0^{\circ} \mathrm{C}$. A solution of phenol $2.160(20 \mathrm{mg}, 0.069 \mathrm{mmol})$ in 1 ml of THF was added. After 1 h , the solution was diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$. The combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to afford an oil. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 8 mg (37\%) of bromide 2.164 and $7 \mathrm{mg}(41 \%)$ of phenol 2.160. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta, 6.45$ (s, $1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=18,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H})$, $1.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$ LRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrO}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 369.0$, Measured $369.0 \mathrm{~m} / \mathrm{z}$.

9a-chloro-8-hydroxy-5,6-dimethoxy-3,4,4a,10-tetrahydroanthracene-1,9(2H,9aH)-

dione (2.165) To a solution of phenol 2.160 ($24 \mathrm{mg}, 0.086 \mathrm{mmol}$) in 2 mL of EtOAc was added phenyl selenium chloride ($28 \mathrm{mg}, 0.14 \mathrm{mmol}$). After 16 h , the reaction was concentrated to an oil. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $16 \mathrm{mg}(58) \%$) of chloride 2.165. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta, 6.45$ (s, 1H), $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, \mathrm{J}=18,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H})$, $2.67(\mathrm{~m}$, $1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3} \delta 202.0,191.1,163.7,160.6,138.2,133.6\right.$, 108.3, 98.9, 70.4, 60.7, 56.0, 45.8, 37.4, 27.1, 27.0, 24.3 ; LRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClO}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 325.1, Measured $325.2 \mathrm{~m} / \mathrm{z}$.

2.159

2.166

9-hydroxy-5,6,8-trimethoxy-3,4-dihydroanthracen-1(2H)-one (2.166). To a solution of $2.159(0.45 \mathrm{~g}, 1.5 \mathrm{mmol})$ in benzene $(15.0 \mathrm{~mL})$ was added DDQ ($0.42 \mathrm{mg}, 1.77 \mathrm{mmol})$. After 1 h at R.T. the reaction mixture was concentrated. The residue was purified by column chromatography with $\mathrm{EtOAc} / \mathrm{Hexane}(1: 1)$ to afford 306 mg (70\%) of the naphthyl 2.163. IR (neat) 3246, 2935, 1621, 1595, 143, 1344, 1326, 1187, 1114; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.35(\mathrm{~s}, 1 \mathrm{H}) 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}) 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 2.96(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 204.0, 166.4, 157.5, ,152.8, 139.4, 135.6, 134.5, 110.4, 109.9, 109.1, 94.4, 60.9, 56.5, 56.2, 38.7, 30.4, 22.7; LRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 303.1, Measured 303.1 m/z.

8,9-dihydroxy-5,6-dimethoxy-3,4-dihydroanthracen-1(2H)-one (2.161). To solution of $2.166(0.10 \mathrm{~g}, 0.33 \mathrm{mmol})$ in DCM $(3.5 \mathrm{~mL})$ was added sodium iodide $(74 \mathrm{mg}, 0.50$ $\mathrm{mmol})$. This solution was cooled to $0^{\circ} \mathrm{C}$, where $1.0 \mathrm{M} \mathrm{BBr}_{3}$ in $\mathrm{DCM}(0.40 \mathrm{ml})$ was added. The resulting solution was then allowed to warm to R.T. and stir for 16 h . At this time the solution was diluted $w /$ sat NaHCO_{3} and extracted with DCM (3x). The combined organics were then concentrated. The residue was purified by Gilson chromatography
with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ 1\% TFA to afford 17 mg (18%, BRSM 40%) of the demethylated $\mathbf{2 . 1 6 1}$ and 33 mg (39\%) of 5,8,9-trihydroxy-6-methoxy-3,4-dihydroanthracen-1(2H)-one. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.25(\mathrm{~s}, 1 \mathrm{H}) 7.29(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.99$ $(\mathrm{s}, 3 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 204.5,166.5,154.7,145.7,139.0,138.3,133.1,128.8,109.2,109.9,94.3,57.2,56.5$, 38.9, 30.4, 22.8; LRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 289.1, Measured 289.2 m / z.

5,8,9-trihydroxy-6-methoxy-3,4-dihydroanthracen-1(2H)-one. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta$ $13.74(\mathrm{~s}, 1 \mathrm{H}) 7.56(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=$ $6.45 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H})$, LRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 273.2, Measured $273.2 \mathrm{~m} / \mathrm{z}$.

2-Bromo-6-methoxybenzene-1,4-diol (2.167). To a solution of aldehyde 2.149 (14.8 g, 64.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (160 mL) was added m-CPBA ($22.1 \mathrm{~g}, 128 \mathrm{mmol}$). After 3.5 h of heating at reflux, saturated $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ was added and allowed to stir for 45 min . The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. This residue was dissolved in $\mathrm{MeOH} /$ conc $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}(2: 1: 1,200 \mathrm{~mL})$. After 30 min , the MeOH was removed and extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane
(1:4) to afford $10.7 \mathrm{~g}(77 \%)$ of the bis-phenol 2.167. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.58(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{bs}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$. LRMS calculated for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 219.0 Measured $219.0 \mathrm{~m} / \mathrm{z}$.

1-Bromo-2,3,5-trimethoxybenzene (2.168). To a solution of hydroquinone 2.167 (10.3 $\mathrm{g}, 49.0 \mathrm{mmol})$ in DMF $(200 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(20.3 \mathrm{~g}, 147 \mathrm{mmol})$ and $\mathrm{Mel}(9.15 \mathrm{~mL}$, $147 \mathrm{mmol})$. After 16 h , the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 75 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with $\mathrm{EtOAc} /$ Hexane ($1: 3$) to afford $11.2 \mathrm{~g}(92 \%)$ of the trimethoxy bromide 2.168. IR (neat) 1599, 1571, 1489, 1464, 1425, 1235, 1212, 1174, 1147, 1053, 1037, $1002 \mathrm{~cm}^{-1}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.59(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76$ (s, 3H), $3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 156.3,153.9,140.5,117.3,107.7,99.7,60.4$, 55.8, 55.5; LRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 247.0 , Measured $247.0 \mathrm{~m} / \mathrm{z}$.

1,2,5-Trimethoxy-3-methylbenzene (2.169). To a solution of bromide 2.168 (1.0 g, 4.2 $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added n-BuLi ($3.4 \mathrm{~mL}, 8.2 \mathrm{mmol}$). After 1 h , Mel ($0.80 \mathrm{~mL}, 13 \mathrm{mmol}$) was added, and the solution was allowed to warm to room over the next 4 h .. The reaction mixture was diluted by $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and extracted with EtOAc $(3 \times 75 \mathrm{~mL})$. The residue was purified by column chromatography with EtOAc/Hexane (1:3) to afford $560 \mathrm{mg}(73 \%)$ of toluene 2.169 as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.34$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) 2.25(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.1,151.7,145.7,131.3,115.3,107.9,60.2,60.1,56.9$, 15.7. LRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 183.2 , Measured $183.2 \mathrm{~m} / \mathrm{z}$.

(3,5-dinitrophenyl)(4-methylpiperazin-1-yl)methanone (2.18). A solution of 3,5 dinitrobenzochloride ($10.0 \mathrm{~g}, 43 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$ was slowly added to a solution of 1 methylpiparazine ($6.0 \mathrm{~mL}, 52 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.0 \mathrm{~g}, 43 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 1.5 h , the reaction mixture was then washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The product was then re-crystallized from Hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a tan solid ($8.6 \mathrm{~g}, 68 \%$). Yields range (85%) ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{t}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{bs}, 2 \mathrm{H}), 3.38(\mathrm{bs}, 2 \mathrm{H})$, 2.46 (bs, 2H), 2.35 (bs, 2H), 2.27 (s, 3H)

2,2',3,3',6,6'-hexamethoxy-4,4'-dimethylbiphenyl (2.170). To a solution of toluene $2.169(1.4 \mathrm{~g}, 7.6 \mathrm{mmol})$ in diethyl ether $(38 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added 2.2 M n -BuLi (4.2 mL , 9.2 mmol) and the resulting solution stirred for 5 h at $0^{\circ} \mathrm{C}$. To the reaction mixture was added a solution of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(0.79 \mathrm{~g}, 3.8 \mathrm{mmol})$ and $\mathrm{LiBr}(0.67 \mathrm{~g}, 7.6 \mathrm{mmol})$ in THF (3 mL) via canula. After the mixture was stirred for 30 min , (3,5-dinitrophenyl)(4-methylpiperazin-1-yl)methanone ($3.4 \mathrm{~g}, 11.5 \mathrm{mmol}$) was added by a solid addition adaptor. After 1.5 h , the reaction mixture was passed over a silica plug and the filtrate concentrated in vacuo. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $0.79 \mathrm{~g}(57 \%)$ biaryl 2.170 as a white solid: $\mathrm{mp} 114-117{ }^{\circ} \mathrm{C}$; IR (neat) 2937, 1464, 1393, 1232, 1101, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.54(\mathrm{~s}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}){ }^{175} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 153.4, 151.8, 145.3, 131.1, 115.8, 108.2, 60.2, 60.2, 56.0, 16.4; HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Li}$ $(\mathrm{M}+\mathrm{Li})^{+} \mathrm{m} / \mathrm{z}: 369.1889$, Measured $369.1907 \mathrm{~m} / \mathrm{z}$.

Method 2. To a solution of $(+)-(P)-\mathbf{2 . 1 9 0}(23 \mathrm{mg}, 0.069 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was added $\mathrm{NaH}(21 \mathrm{mg}, 0.46 \mathrm{mmol})$ followed by $\mathrm{Mel}(0.20 \mathrm{~mL}, 0.27 \mathrm{mmol})$. After 16 h the solution was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $17 \mathrm{mg}(68 \%)$ of $(-)-(P)-\mathbf{2 . 1 7 0}$ as a white solid: $[\alpha]^{22} 589-4.7$ (c $0.41, \mathrm{CHCl}_{3}$). Bis-phenol (-)-(M)-2.190 was methylated using the same procedure to afford $(+)-(M)-\mathbf{2 . 1 7 0}$ isomer as a colorless oil: $[\alpha]^{22}{ }_{589}+6.8$ (c $0.30, \mathrm{CHCl}_{3}$).

3,3'-dibromo-2,2',5,5',6,6'-hexamethoxy-4,4'-dimethylbiphenyl (2.171). To a solution of biaryl 2.170 ($1.2 \mathrm{~g}, 3.2 \mathrm{mmol}$) in DMF (160 mL) at room temperature was added N bromosuccinimide ($2.9 \mathrm{~g}, 13 \mathrm{mmol}$). After 16 h , the solution was diluted with 0.2 M sodium bisulfite (200 mL). The mixture was then extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine (150 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to afford a yellow oil. The residue was purified by column chromatography on silica gel with EtOAc/Hexane (1:4) to afford 1.3 g (78\%) of bis-bromide 2.171 as a
white solid: mp $139-142{ }^{\circ} \mathrm{C}$; IR (neat) 2941, 1458, 1391, 1084, 1009, 939; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 151.3, 150.6, 148.2, 132.9, 121.7, 114.7, 60.5, 60.4, 16.6; LRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{Br}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 521.2 , Measured $521.0 \mathrm{~m} / \mathrm{z}$.

Diphenyl 2,2',5,5',6,6'-hexamethoxy-4,4'-dimethylbiphenyl-3,3'-dicarboxylate

(2.172). To a solution of bromide $2.170(250 \mathrm{mg}, 0.48 \mathrm{mmol})$ in diethyl ether $(50 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$ was added 2.5 M n -BuLi (0.85 mL , 1.9 mmol). After 1 h at $-78^{\circ} \mathrm{C}$, neat phenyl chloroformate ($0.14 \mathrm{~mL}, 1.9 \mathrm{mmol}$) was added. The reaction mixture was allowed to warm to room temperature and after 16 h , diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a red/orange oil. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 230 mg (80%) of bis-phenyl ester 2.170 as a white solid and $34 \mathrm{mg}(9 \%)$ of 2.172: mp $102-105^{\circ} \mathrm{C}$; IR (neat) 1747,1460 , 1397, 1303,1259, 1187, 1090, 1039, 1010, 953; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 3.84$ (s, 3H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ § 166.2, 155.5, 152.9, 151.7, 150.5, 147.3, 130.4, 129.3, 125.8, 123.7, 121.3, 120.2, 115.0, 61.7, 60.2, 59.9, 12.8; LRMS calculated for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{10}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z}$: 625.2, Measured $626.2 \mathrm{~m} / \mathrm{z}$.

Resolution of bis-phenyl ester 2.170 by Preparative HPLC. A Varian Prostar system was used for HPLC separation of bis-phenyl ester 2.172. The HPLC column used was a

Chiralpak OD column ($5 \times 50 \mathrm{~cm}, 20 \mu \mathrm{~m}$). The LC flow rate was $75 \mathrm{~mL} / \mathrm{min}$. The mobile phase consisted of an isocratic mixture of 1% isoproponal/hexane. $(+)-(M)-\mathbf{2 . 1 7 2}, \mathrm{t}_{\mathrm{r}}=13$ $\min ;[\alpha]^{22}{ }_{589}+6.8\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right) ;(-)-(P)-\mathbf{2 . 1 7 2}, \mathrm{t}_{\mathrm{r}}=16 \mathrm{~min} ;[\alpha]^{22}{ }_{589}-4.7\left(\mathrm{c} 0.41, \mathrm{CHCl}_{3}\right)$. Analytical (Chiralpak OD, $(4.6 \times 250 \mathrm{~mm}) 1.0 \mathrm{~mL} / \mathrm{min}, 1 \%$ isopropanol/hexane) (+)-(M)2.172, $\left.\mathrm{t}_{\mathrm{r}}=6.4 \mathrm{~min},(-)-(\mathrm{P})-\mathbf{2 . 1 7 2}, \mathrm{t}_{\mathrm{r}}=8.3 \mathrm{~min}.\right]$

Diphenyl 1,1', 3,3', 4,4'- hexamethoxy- 6,6' -dimethyl- 8,8' -dioxo -5,5', 6,6', 7,7', 8,8'-octahydro-2,2'-binaphthyl-7,7'-dicarboxylate (2.176). To a solution of diisopropyl amine ($0.30 \mathrm{~mL}, 2.0 \mathrm{mmol}$) in THF (1 mL) was added $2.5 \mathrm{M} \mathrm{n-BuLi}(0.80 \mathrm{~mL}, 2.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 30 min , TMEDA ($0.35 \mathrm{~mL}, 2.1 \mathrm{mmol}$) was added. At $-78^{\circ} \mathrm{C}$, a solution of ester $2.172(0.20 \mathrm{~g}, 0.34 \mathrm{mmol})$ in THF (1.0 mL) was added, forming a blood red color. After 1 h at $-78^{\circ} \mathrm{C}$ a solution of crotonate $2.175(0.20 \mathrm{~g}, 1.3 \mathrm{mmol})$ in THF (1.0 mL) was added resulting in a yellow color. After 16 h , reaction mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous layers were extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford $59 \mathrm{mg}(24 \%)$ of bis annulation product 2.176 and 54 mg (16\%) of the mono annulation product. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.63(\mathrm{bs}$, $3 H), 3.43(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

Diphenyl
7,7'-dibromo-1,1',3,3',4,4'-hexamethoxy-6,6'-dimethyl-8,8'-dioxo$5,5^{\prime}, 6,6^{\prime}, 7,7,8,88^{\prime}$-octahydro-2,2'-binaphthyl-7,7'-dicarboxylate (2.177). To a solution of bis annulation product $2.176(59 \mathrm{mg}, 0.080 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ and $\mathrm{EtOAc}(1.5$ mL) was added $\mathrm{CuBr}_{2}(71 \mathrm{mg}, 0.30 \mathrm{mmol})$. After 16 h , the reaction was concentrated to a solid. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford $38 \mathrm{mg}(47 \%)$ of bromide 2.177. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 3 \mathrm{H})$, 3.86 (s, 1.5H), 3.84 (s, 1.5H), 3.82 (.s, 1.5H), 3.80 (s, 1.5H), 3.61 (s, 1.5H), 3.58 (d, J= $3.6 \mathrm{~Hz}, 1.5 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 186.2,165.8,158.0,151.0,1453,137.6,129.9,126.1,121.4,117.9,61.4$, 60.4, 60.1, 36.54, 29.2, 17.7.

Diphenyl 8,8'-dihydroxy-1,1',3,3',4,4'-hexamethoxy-6,6'-dimethyl-2,2'-binaphthyl-

 7,7'-dicarboxylate (2.178). A solution of bromide 2.177 ($34 \mathrm{mg}, 0.038 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{DBU}(0.010 \mathrm{~mL}, 0.070 \mathrm{mmol})$. After 16 h , the reaction was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}(8 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford 6.3 mg (23\%) of2.178. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.21(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H}), 3.96$ (s, 3H), 3.90 (s, 3H), 3.66 (s, 3H), 2.72 (s, 3H).

Diphenyl
1,1',3,3',4,4',8,8'-octamethoxy-6,6'-dimethyl-2,2'-binaphthyl-7,7'dicarboxylate (2.179). To a suspension of 2.178 ($6.3 \mathrm{mg}, 0.0086 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(7$ $\mathrm{mg}, 0.050 \mathrm{mmol})$ in DMF (0.9 mL) was added Mel ($40 \mu \mathrm{~L}, 0.050 \mathrm{mmol}$). After 16 h , the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and extracted with EtOAc (3 x 2 mL). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford 3.9 mg (60\%) of methyl ether 2.179. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 4.01(\mathrm{~s}$, $3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 167.0$, 153.7, 150.8, 149.0, 132.7, 132.4, 129.5, 126.0, 125.7, 122.9, 121.6, 118.3, 117.7, 64.0, 62.0, 60.9, 60.4, 19.8.

Diphenyl 1,1',3,3',4,4'- hexamethoxy-8,8'-dioxo- 6,6'- bis(phenylthiomethyl)- 5,5'

 ,6,6' ,7,7', 8,8' -octahydro-2,2'-binaphthyl-7,7'-dicarboxylate (2.181). To a solution of diisopropyl amine ($0.15 \mathrm{~mL}, 1.0 \mathrm{mmol}$) in THF (0.5 mL) was added 2.5 M n -BuLi (0.40 $\mathrm{mL}, 1.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 30 min , TMEDA ($0.18 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added. At $-78^{\circ} \mathrm{C}$, a solution of ester $2.172(0.2 \mathrm{~g}, 0.336 \mathrm{mmol})$ in THF (1.0 mL) was added, forming a blood red color. After 1 h at $-78^{\circ} \mathrm{C}$ a solution of thiophenyl crotonate $2.180(0.16 \mathrm{~g}, 1.33$ mmol) in THF (0.5 mL) was added resulting in a yellow color. After 16 h , reaction mixture was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous layers were extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford $44 \mathrm{mg}(26 \%)$ of $\mathbf{2 . 1 8 1}$ and $21 \mathrm{mg}(13 \%)$ of the mono annulation product. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~m}, 5 \mathrm{H}), 3.80(\mathrm{~m}, 9 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 0.5 \mathrm{H}), 3.28(\mathrm{~m}$, $0.5 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 0.5 \mathrm{H}), 2.65(\mathrm{~m}, 1.5 \mathrm{H}), 2.33(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 0.5 \mathrm{H})$.

Diphenyl 7,7'- dibromo- 1,1', 3,3', 4,4' -hexamethoxy- 8,8' -dioxo- 6,6'-bis(phenylthiomethyl)- 5,5', 6,6', 7,7', 8,8' -octahydro- 2,2' -binaphthyl-7,7'dicarboxylate (2.182). To a solution of bis annulation product $2.181(36 \mathrm{mg}, 0.044$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.75 \mathrm{~mL})$ and $\mathrm{EtOAc}(0.75 \mathrm{~mL})$ was added $\mathrm{CuBr}_{2}(42 \mathrm{mg}, 0.15 \mathrm{mmol})$. After 16 h , the reaction was concentrated to a solid. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford $26 \mathrm{mg}(60 \%)$ of bromide 2.182. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~m}, 9 \mathrm{H}), 3.73(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.13(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~m}$, 1H), $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H})$.

Diphenyl 8,8'-dihydroxy-1,1',3,3',4,4'-hexamethoxy-6,6'-bis(phenylthiomethyl)-2,2'-

 binaphthyl-7,7'-dicarboxylate (2.183). A solution of bromide $2.182(26 \mathrm{mg}, 0.026$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added DBU ($20 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$). After 16 h , the reaction was diluted with saturated $\mathrm{NH}_{4} \mathrm{CI}(8 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford 15 mg (70\%) ofbi-naphthyl 2.183. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~s}$, 2H), 3.98 (s, 3H), 3.84 (s, 3H), 3.76 (s, 3H), 3.62 (s, 3H),

9,9'-dihydroxy-1,1',3,3',4,4'-hexamethoxy-6,6',7,7',10,10a,10',10'a-octahydro-2,2'-

 bianthracene-8,8'(5H,5'H)-dione (2.186). A solution of diisopropyl amine ($50 \mathrm{~mL}, 0.33$ $\mathrm{mmol})$ in THF (1 mL) was cooled to $0^{\circ} \mathrm{C}$ and a solution of $2.1 \mathrm{M} \mathrm{n-BuLi}(0.15 \mathrm{~mL}, 0.33$ mmol) was added. After 30 min, TMEDA ($50 \mathrm{~mL}, 0.33 \mathrm{mmol}$) was added (neat) and the LDA solution was added via canula to a pre-cooled solution of 2.172 ($50 \mathrm{mg}, 0.083$ mmol) in THF (1 mL) at $-78^{\circ} \mathrm{C}$ resulting in a deep-red colored solution. After 30 min at $78^{\circ} \mathrm{C}$, cyclohexenone ($62 \mathrm{mg}, 0.66 \mathrm{mmol}$) was added resulting in a yellow color solution. The reaction mixture was allowed to warm up to $0{ }^{\circ} \mathrm{C}$ and stir for two hours. The reaction was diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $15 \mathrm{mg}(32 \%)$ of bis-annulated product 2.186: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 16.57(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, \mathrm{J}=$ 7.8, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72-2.68 (m, 1H), 2.48-2.43 (m, 2H) 2.27-2.20 (m, 1H), 2.10-2.08 (m, $1 \mathrm{H})$, 1.95-1.93 (m, 1H), 1.72-1.66 (m, 1H), $1.56(\mathrm{bs}, 2 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.25$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 185.4,184.2,155.9,155.3,145.1,137.4,122.3,120.8$, 109.1, 61.9, 60.5, 32.5, 31.8, 30.3, 30.1, 21.0. LRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$ 303.1 m/z: Measured 303.1 m/z

9,9'-dihydroxy-1, $1^{\prime}, 3,3^{\prime}, 4,4$ '-hexamethoxy-6,6',7,7'-tetrahydro-2,2'-bianthracene-
8,8'(5H,5'H)-dione (2.187). To a solution of 2.186 ($31 \mathrm{mg}, 0.051 \mathrm{mmol}$) in benzene (0.5 mL) was added DDQ ($26 \mathrm{mg}, 0.12 \mathrm{mmol}$). After refluxing for 5 h , the reaction mixture was concentrated and purified by column chromatography with EtOAc/Hexane (1:2) to afford 19 mg (62\%) of the 2.187. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.09(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.19-2.14 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 204.3,165.7,156.7$, , 152.8, 139.4, 135.6, 134.7, 111.3, 110.7, 110.0, 94.7, 60.2, 56.4, 56.2, 39.0, 30.4, 23.6 LRMS calculated for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{10}$ $(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$. 603.2, Measured $603.2 \mathrm{~m} / \mathrm{z}$.

6,6'-Bis(benzyloxy)-2,2',3,3'-tetramethoxy-4,4'-dimethylbiphenyl (2.189). To a solution of benzyl toluene 2.151 ($0.10 \mathrm{~g}, 0.39 \mathrm{mmol}$) in diethyl ether $(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added 2.5 M n -BuLi ($0.20 \mathrm{~mL}, 0.47 \mathrm{mmol}$). After 5 h at $0^{\circ} \mathrm{C}$, a solution of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(40$ $\mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{LiBr}(34 \mathrm{mg}, 0.39 \mathrm{mmol})$ in THF (1 mL) was added via canula. After the mixture was stirred for 30 min , (3,5-dinitrophenyl)(4-methylpiperazin-1-yl)methanone
(2.18) ($0.19 \mathrm{~g}, 0.58 \mathrm{mmol}$) was added by a solid addition adaptor. After 1 h , the reaction mixture was passed over a silica plug and the filtrate concentrated in vacuo. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 47 $\mathrm{mg}(47 \%)$ of biaryl 2.189 as a solid: $\mathrm{mp} 126-128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{~m}, 5 \mathrm{H})$, $6.58(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=9.9,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.4,151.6,145.2,137.5,130.8,128.3,127.8,127.3,126.9,126.2$, 116.7, 110.1, $70.4,60.1,60.0,16.1$; LRMS calculated for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 515.24$, Measured $515.2 \mathrm{~m} / \mathrm{z}$.

2.189

2.190

5,5',6,6'-tetramethoxy-4,4'-dimethylbiphenyl-2,2'-diol (2.190) - To a solution of bisbenzyl ether 2.189 ($80 \mathrm{mg}, 0.16 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added 5% $\mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$. This solution was placed under one atmosphere of hydrogen and allowed to stir at room temperature for 16 h . The reaction was filtered through a plug of Celite 454 and silica gel (1:1). The filtrate was concentrated and the residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 47 mg (90\%) of bis-phenol 2.190. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 150.5,149.5,145.1,133.4,114.0,111.7,60.7,60.3,15.7$. LRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 334.9$, Measured $334.9 \mathrm{~m} / \mathrm{z}$.

Method 2 - A solution of (aS)-2.192 (17 mg, 0.022 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ (1.8 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{LiAlH}_{4}(6.2 \mathrm{mg}, 0.16 \mathrm{mmol})$ was added. The reaction mixture was allowed to warm to room temperature over 2.5 h and carefully quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$ and the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 6 mg (82\%) of (-)-(aS)-2.190 identical to (\pm)-9 except optical rotation: $[\alpha]^{22}{ }_{589}-8.3\left(\mathrm{c} 0.14, \mathrm{CHCl}_{3}\right.$). Mosher ester (aR)2.192 was reduced under identical conditions to afford $(+)-(\mathrm{aR})-2.190:[\alpha]^{22}{ }_{589}+3.6$ (c $0.22, \mathrm{CHCl}_{3}$) using an identical procedure.

Method 3 - To a solution of bis-MOM ether 2.203 ($0.41 \mathrm{~g}, 0.97 \mathrm{mmole}$) in MeOH (10 mL) was added 12 drops of conc. HCl . This solution was allowed to stir at room temperature for 2.5 h , MeOH was removed in vacuo and the residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 0.24 g (74\%) of bis-phenol 2.190 as a colorless oil:

2.190

(aS)-2.191

(aS)-2.192

$(a R)-2.191$

(aR)-2.192
(2R,2'R)-(5,5',6,6'-tetramethoxy-4,4'-dimethylbiphenyl-2,2'-diyl) bis(3,3,3-trifluoro-2-methoxy-2-phenylpropanoate) ((aR)-2.192 / (aS)-2.192) - To a solution of bis-phenol 2.190 ($47 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added Mosher's acid (87 mg , $0.35 \mathrm{mmol})$, DCC ($82 \mathrm{mg}, 0.36 \mathrm{mmol}$), and several crystals of DMAP. After 16 h , additional Mosher's acid ($67 \mathrm{mg}, 0.28 \mathrm{mmol}$) and DCC ($58 \mathrm{mg}, 0.28 \mathrm{mmol}$) were added along with several crystals of DMAP. After 24 h , the reaction was judged complete by TLC and concentrated. The residue was purified by flash chromatography on silica gel with EtOAc/Hexane (1:4) to afford a mixture of diastereomers $(a R)-\mathbf{2 . 1 9 2}$ and (aS)-2.192 (65 mg, 84\%). The diastereomers were separated by HPLC using a Dynamax column $(21.4 \times 250 \mathrm{~mm}, 60 \mathrm{~A})$. The mobile phase consisted of a gradient mixture of EtOAc/hexane (10\%-60\%) over 45 min.
(aS)-2.191 - IR (neat) 3351, 2921, 1759, 1457, 1401, 1269, 1238, 1218, 1182, 1167, 1122, 1080, 1015, 1002, 733, 699. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.58$ (s, 1H), $4.83(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$,
2.30 (s, 3H); ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-69.7$ LRMS calculated for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})^{+} 551.2$ m / z : Measured $551.0 \mathrm{~m} / \mathrm{z}$
$(a R)-\mathbf{2 . 1 9 1}-{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~m}, 5 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H})$, 3.88 (s, 3H), 3.71 (s, 3H), 3.61 (s, 3H), 3.49 (s, 3H), 3.48 (s, 3H), 2.36 (s, 3H), 2.29 (s, $3 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-70.2$ LRMS calculated for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})^{+} 551.2 \mathrm{~m} / \mathrm{z}$: Measured $551.0 \mathrm{~m} / \mathrm{z}$
(aS)-2.192: $\mathrm{t}_{\mathrm{r}}=29 \mathrm{~min} ;[\alpha]^{22^{\circ} \mathrm{C}}{ }_{589}-44\left(\mathrm{c} 0.56, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 126-128{ }^{\circ} \mathrm{C}$; IR (neat) 1762 , 1455, 1400, 1240, 1221, 1191, 1170, 1070, $1011 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 6 \mathrm{H})$, $6.65(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}) ; 2.32(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 165.2, 151.8, 149.5, 143.5, 133.0, 131.3, 129.3, 129.2, 128.3, 128.2, 127.4, 127.1, 124.6, 121.7, 118.4, 118.2, 60.3, 58.8, 55.0, 16.1; ${ }^{40} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-71.6 ;$ LRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{NaO}_{10}(\mathrm{M}+\mathrm{Na})^{+} 789.2 \mathrm{~m} / \mathrm{z}$: Measured $788.9 \mathrm{~m} / \mathrm{z}$
(aR)-2.192: $\mathrm{t}_{\mathrm{r}}=31 \mathrm{~min} ;[\alpha]^{22^{\circ} \mathrm{C}}{ }_{589}+0.65\left(\mathrm{c} 0.40, \mathrm{CHCl}_{3}\right) ;$ IR (neat) 2930, 1761, 1467, 1225, 1174, 1073, $1006 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~m}, 6 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}) ; 2.30(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 164.9,151.8,149.4$, 143.4, 132.9, 131.7, 129.5, 129.1, 128.2, 127.1, 126.0, 124.4, 121.6, 118.3, 118.2, 60.3 , 59.8, 55.3, $16.1{ }^{40} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-72.0 ;$ LRMS calculated for $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{NaO}_{10}(\mathrm{M}+\mathrm{Na})^{+}$ $789.2 \mathrm{~m} / \mathrm{z}$: Measured $788.9 \mathrm{~m} / \mathrm{z}$

Methyl 6-(benzyloxy)-3,4-dimethoxy-2-methylbenzoate (2.197) - To a solution of 2.152 ($478 \mathrm{mg}, 1.42 \mathrm{mmol}$) in THF (15 mL) at $-78^{\circ} \mathrm{C}$ was added $2.5 \mathrm{M} \mathrm{n-BuLi}(1.1 \mathrm{~mL}$, $2.8 \mathrm{mmol})$. After 1 h at $-78^{\circ} \mathrm{C}$, neat methyl chloroformate ($0.20 \mathrm{~mL}, 2.8 \mathrm{mmol}$) was added. The reaction mixture was allowed to warm to room temperature. After $16 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ was added and extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a red/orange oil. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 392 mg (85\%) of 2.197. ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.39-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 168.3,154.1,152.4$, $141.5,136.9,130.5,128.5,127.8,127.0,117.2,97.0,71.4,60.4,55.8,52.1,12.9$.

Methyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate (2.198) - To a solution of 2.197 ($270 \mathrm{mg}, 0.86 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(4.5 \mathrm{~mL})$ was added $5 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$. This solution was placed under one atmosphere of hydrogen and allowed to stir at room temperature for 16 h . The reaction was filtered through a plug of Celite 454 and silica gel (1:1). The filtrate was concentrated and the residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 80 mg (84\%) of 2.198. IR (neat)
$2955,1648,1606,1443,1325,1243,1216,1199,1161,1063,1040,1008 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 171.9,161.0,158.0,140.3,133.6,104.3,98.1,60.2,55.4,51.6,14.4 ;$ LRMS calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 227.2 \mathrm{~m} / \mathrm{z}$: Measured $227.2 \mathrm{~m} / \mathrm{z}$

Dimethyl 2,2' -dihydroxy- 5,5', 6,6' -tetramethoxy- 4,4' -dimethylbiphenyl- 3,3'dicarboxylate (2.199) - To a solution of copper(I) bromide (19 mg, 0.13 mmol) in $\mathrm{CH}_{3} \mathrm{CN}$ (1 mL) was added sparteine ($25 \mu \mathrm{~L}, 0.013 \mathrm{mmol}$). After 15 min of sonication open to the air, 30 mg (0.13 mmol) of phenol 2.198 in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added. This solution was placed under one atmosphere of oxygen and allowed to stir at room temperature for 4 d . At this time the reaction mixture was diluted with $10 \% \mathrm{NaOH}(2 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford an oil. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $11 \mathrm{mg}(23 \%)$ of 2.199. IR (neat) 2928, 1655, 1957, 1444, 1399, 1320, 1240, 1211, 1165, 1097, 1059, 1009, 809; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.48(\mathrm{~s}, 1 \mathrm{H})$, 3.94 (s, 3H), 3.78 (s, 3H), 3.75 (s, 3H), 2.52 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ 172.1, 157.7, 157.0, 144.3, 134.5, 114.0, 108.1, 60.5, 52.0, 29.6, 14.8; LRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{10}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 473.1$, Measured $473.2 \mathrm{~m} / \mathrm{z}$

1-bromo-2,3-dimethoxy-5-(methoxymethoxy)benzene (2.201) - To a solution of $2.150(0.12 \mathrm{~g}, 0.72 \mathrm{mmol})$ in 2.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added diisopropyl ethyl amine (0.26 $\mathrm{mL}, 1.4 \mathrm{mmol})$ and $\mathrm{MOMCI}(0.081 \mathrm{~mL} .1 .1 \mathrm{mmol})$. After 16 h. , the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, and successively washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}), 1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ (saturated, 5 mL), and Brine (5 mL). Each aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 135 mg (89\%) of 2.201. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.72(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 151.6,150.0$, 144.2, 111.7, 106.7, 101.9, 95,2, 56.3, 55.8, 55.8.

1,2-dimethoxy-5-(methoxymethoxy)-3-methylbenzene (2.202) - To a solution of 2.201 $(2.2 \mathrm{~g}, 8.0 \mathrm{mmol})$ in diethyl ether $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added 2.2 M n-BuLi $(7.5 \mathrm{~mL}, 16$ $\mathrm{mmol})$. After 1 h at $-78^{\circ} \mathrm{C}$, neat methyl iodide ($1.5 \mathrm{~mL}, 24 \mathrm{mmol}$) was added. After 16 h , the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$ and extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a red/orange oil. The residue was purified by column chromatography with EtOAc/Hexane
(1:4) to afford $1.1 \mathrm{~g}(65 \%)$ of $\mathbf{2 . 2 0 2}$ as a yellow oil. IR (neat) 1600, 1494, 1224, 1146, 1096, 1029, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.47(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta \quad 151.6,151.2,146.3,131.4,117.3,112.4,95.3,60.1,60.0,55.6,16.2$ LRMS calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 213.1, Measured $213.2 \mathrm{~m} / \mathrm{z}$

2,2',3,3'-tetramethoxy-6,6'-bis(methoxymethoxy)-4,4'-dimethylbiphenyl (2.203). To a solution of MOM 2.202 ($0.50 \mathrm{~g}, 2.4 \mathrm{mmol}$) in diethyl ether (12.0 mL) at $0^{\circ} \mathrm{C}$ was added 2.0 M n -BuLi ($1.7 \mathrm{~mL}, 3.4 \mathrm{mmol}$). After 5 h at $0{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(24$ $\mathrm{mg}, 0.192 \mathrm{mmol}$) and $\mathrm{LiBr}(20 \mathrm{mg}, 2.4 \mathrm{mmol})$ in THF (2 mL) was added via canula. After the mixture was stirred for 30 min , (3,5-dinitrophenyl)(4-methylpiperazin-1-yl)methanone (2.18) ($1.0 \mathrm{~g}, 3.5 \mathrm{mmol})$ was added by a solid addition adaptor. After 1 h , the reaction mixture was passed over a silica plug and the filtrate concentrated in vacuo. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 200 $\mathrm{mg}(39 \%)$ of biaryl 2.203 as a white solid: mp 134-137 ${ }^{\circ} \mathrm{C}$; IR (neat) $1475,1393,1235$, 1150, 1091, $1068 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68$ $(\mathrm{s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 151.6,151.2,146.3,131.4,117.3$, 112.4, 65.2, 60.1, 60.0, 55.6, 16.2; HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 423.2019, Measured $423.2025 \mathrm{~m} / \mathrm{z}$.

Deracemization of Bis-Phenol (\pm)-2.190. A mixture of $\mathrm{CuCl}(15 \mathrm{mg}, 0.14 \mathrm{mmol})$ and (-) sparteine (2.193) ($50 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was sonicated open to the air for ca. 30 min . The resulting green solution was then transferred via cannula to a solution of ($\pm-2.190(24 \mathrm{mg}, 0.072 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. This solution was allowed to stir for 48 h at room temperature and a concentrated solution of $\mathrm{HCl}(2 \mathrm{~mL})$ was added. After stirring for 15 min , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give $19 \mathrm{mg}(77 \%)$ of (-)2.190 as determined by optical -rotation: $[\alpha]^{22}{ }_{589}-18$ (c $0.354, \mathrm{CHCl}_{3}$). (+)-2.190 is arrived at in a like manner except the use of (+)-O'Brian's Diamine (2.205) in place of sparteine (2.193)

Bis ((1S,2R,5S) -2-isopropyl -5- methylcyclohexyl) 5,5', 6,6' -tetramethoxy- 4,4'-dimethylbiphenyl-2,2'-diyl dicarbonate - Determination of Enantiomeric Excess. To a solution of resolved (-)-2.190 in THF (1.0 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(0.10 \mathrm{~mL}, 0.72 \mathrm{mmol})$
followed by (S)-menthyl chloroformate ($0.15 \mathrm{~mL}, 0.72 \mathrm{mmol})$. After 2 h , the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organics were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:10) to afford a mixture of diastereomeric bis-menthylcarbonates (aS)-2.204 and (aR)-2.204 (26 mg, 67\%). The mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) to determine the ratio of diastereomers (dr) by integration of the well differentiated doublets due to C5' methyl groups: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(a S)-2.204=0.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}),(a R)-2.204=0.68(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}$) giving 93% de by ${ }^{1} \mathrm{H}$ NMR. The ratio of diastereomers (dr) when the use of $(+)$-O'Brian's Diamine (2.205) provides a 80% de by ${ }^{1} \mathrm{H}$ NMR.
(aS)-2.204 - IR (neat) 2954, 2932, 2870, 1698, 1474, 1457, 1423, 1282, 1248, 1223, 1172, 993; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.82(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{dt}, \mathrm{J}=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .1 .90(\mathrm{~d}, \mathrm{~J}=11.6,1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 1 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.58(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 153.0,151.6,149.1,144.4,132.3$, 118.6, 118.5, 78.6, 60.4, 60.0, 46.6, 40.4, 33.9, 31.2, 25.8, 23.2, 22.0, 20.5, 16.1 ; HRMS calculated for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{NaO}_{10}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 721.3922$, Measured $721.3952 \mathrm{~m} / \mathrm{z}$. (aR)-2.204 - IR (neat) 2954, 2932, 2870, 1698, 1474, 1457, 1423, 1282, 1248, 1223, 1172, 993; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.82(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{dt}, \mathrm{J}=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .1 .84(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 1 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.69(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 152.9, 151.5, 149.0, 144.5, 118.8, 118.2, 78.7, 60.4, 60.1, 46.7, 40.4, 34.1, 31.2, 25.9, 23.2, 22.0, 20.7, 16.1, HRMS calculated for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{NaO}_{10}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 721.3922 , Measured $721.3952 \mathrm{~m} / \mathrm{z}$.

3,4-Dimethoxy-5-methylphenol (3.38) - To a solution of 2.151 ($0.5 \mathrm{~g}, 1.9 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(65 \mathrm{~mL}$) was added $5 \% \mathrm{Pd} / \mathrm{C}(160 \mathrm{mg})$. This solution was placed under one atmosphere of hydrogen and allowed to stir at room temperature for 16 h . The reaction was filtered through a plug of Celite 454 and silica gel (1:1). The filtrate was concentrated and the residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $232 \mathrm{mg}(72 \%)$ of $3.38 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{~d}, \mathrm{~J}=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 154.2,150.7,141.6,132.6,110.7,97.7,60.5,55.7,12.8$. LRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 169.1, Measured $169.1 \mathrm{~m} / \mathrm{z}$

2-methoxy-6-methylcyclohexa-2,5-diene-1,4-dione (3.39). A solution of 3.38 (40 mg, $0.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$. At this temperature $\mathrm{VOCl}_{3}(30 \mu \mathrm{~L}$, 0.25 mmol) was added. After 1 h at $-78^{\circ} \mathrm{C}$, the solution was diluted with 5% aq $\mathrm{NH}_{4} \mathrm{OH}$ (5 ml), then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organics were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford 16 mg (44\%) of benzoquinone 3.39 and 8 mg (11\%) of bis-
quinone 3.40. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.53(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3H), $2.07(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 187.4,182.4,158.8,143.6,133.8$, 107.3, 56.3, 15.5. LRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 153.1$, Measured $153.1 \mathrm{~m} / \mathrm{z}$

6,6'-dimethoxy-4,4'-dimethyl-1,1'-bi(cyclohexa-3,6-diene)-2,2',5,5'-tetraone
To a solution of $3.38(74 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ cooled to $-20^{\circ} \mathrm{C}$ was added a solution of PIFA (227 mg, 0.54 mmol$)$ and $\mathrm{BF}_{3} \mathrm{OEt}_{2}(130 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0$ mL). After 30 min at $-20^{\circ} \mathrm{C}$, the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography with EtOAc/Hexane (1:2) to afford 42 mg , (62\%) of bis-quinone 3.40 and 6 mg (9\%) of benzoquionone 3.39. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $5.96(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 184.7,181.4,158.7$, 141.4, 137.9, 107.3, 56.3, 13.4. LRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 303.1$, Measured 303.0 m/z

4,4',5,5'-tetramethoxy-6,6'-dimethylbiphenyl-2,2'-diol (3.41) - To a solution of 3.38 ($31 \mathrm{mg}, 0.18 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (1.0 mL) was added AlCl_{3} ($28 \mathrm{mg}, 0.18 \mathrm{mmol}$). After 1 h , a solution of $\mathrm{FeCl}_{3}(54 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.0 \mathrm{~mL})$ was added. This was allowed to stir for 3 h when $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford 18 mg (60\%) of 3.41. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}$, $3 H) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 154.2,150.7,141.6,132.6 .11 .8,97.7,60.5,55.7,12.8$. LRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 335.1, Measured $335.1 \mathrm{~m} / \mathrm{z}$

bis(3,4-dimethoxy-5-methylphenoxy)diisopropylsilane (3.47) - To a solution of phenol 3.38 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{~mL}, 0.26 \mathrm{mmol})$ and a few crystals of DMAP. At $-78^{\circ} \mathrm{C}$, diiisopropyl silyl dichloride ($0.1 \mathrm{~mL}, 0.54 \mathrm{mmol}$) was added. The reaction mixture was allowed to warm to room temperature and after 3 h , diluted with sat $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column
chromatography with EtOAc/Hexane (1:4) to afford 204 mg (76%) of 3.47. IR (neat) 2948, 2869, 1594, 1493, 1464, 1421, 1341, 1224, 1192, 1157, 1097, 1029, 859, 827, 758; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.34(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.12(\mathrm{~s}$, $6 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}) 1.07(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.9,150.5,141.9,132.0,113.0$, 102.3, 60.1, 55.5, 17.1, 15.8, 12.5. LRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 449.2$ Measured $449.3 \mathrm{~m} / \mathrm{z}$

3,7,8-trimethoxy-1,9-dimethyldibenzo[b,d]furan-2-ol (3.48) - To a solution of 3.47 (48 $\mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.0 \mathrm{~mL})$ was added $\mathrm{FeCl}_{3}(63 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ $(2.0 \mathrm{~mL})$ was added. After $3 \mathrm{~h}, 1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ $10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 18 $\mathrm{mg}(53 \%)$ of 3.48. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}$, $3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.9$, $151.6,150.2,145.2,143.5,139.9,124.8,117.7,117.5,115.9,93.2,92.0,60.7,56.2$, 55.9, 31.5, 16.6, 16.0 LRMS calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 303.1 Measured 303.1 m/z

10-hydroxy-2-methoxy-7,8-dihydroanthracene-1,4,5(6H)-trione (3.49) - To a solution of 2.161 ($24 \mathrm{mg}, 0.08 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{NO}_{2}(0.5 \mathrm{~mL})$ was added AlCl_{3} ($11 \mathrm{mg}, 0.08 \mathrm{mmol}$). After 1 h , a solution of $\mathrm{FeCl}_{3}(23 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1.0 \mathrm{~mL})$ was added. This was allowed to stir for 3 h when $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 5 mL$)$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford 13 $\mathrm{mg}(57 \%)$ of 3.49. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta .13 .63(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 3.81$, (s, $3 \mathrm{H}), 2.97(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$. 182.1, 179.7, 162.9, 159.4, 152.7, 118.1, 111.6, 56.5, 39.7, 30.91, 29.7, 22.2. LRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}$: 273.2, Measured $273.1 \mathrm{~m} / \mathrm{z}$.

8,8'- (diisopropylsilanediyl) bis(oxy) bis (9- hydroxy- 5,6- dimethoxy- 3,4-dihydroanthracen-1(2H)-one) (3.51) - To a solution of phenol 2.161 ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(0.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added 2,6 lutadine ($24 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$), and diisopropyl silyl ditriflate ($15 \mu \mathrm{~L}, 0.052 \mathrm{mmol}$). The reaction mixture was allowed to warm to room
temperature and after 3 h , diluted with sat $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:2) to afford 24 mg (62\%) of 3.51. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta .15 .23(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.91$ (s, 3H), $2.90(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}), 0.98$ (d, $J=4.8 \mathrm{~Hz}, 6 \mathrm{H})$ LRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 689.2$, Measured 689.2 m / z.

9,9'- dihydroxy- 3,3'- dimethoxy- 6,6', 7,7'- tetrahydro- 2,2'- bianthracene-1,1',4,4',8,8'(5H,5'H)-hexaone (3.52) - To a solution of $3.51(20 \mathrm{mg}, 0.029 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(3.0 \mathrm{~mL})$ was added $\mathrm{FeCl}_{3}(63 \mathrm{mg}, 0.44 \mathrm{mmol})$. After $5 \mathrm{~h}, 1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford $6 \mathrm{mg}(41 \%)$ of $3.52 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta .13 .73(\mathrm{~s}, 1 \mathrm{H})$, $7.55(\mathrm{~s}, 1 \mathrm{H}), 3.915(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta .199 .1,182.4,179.7,162.9,159.4,152.7,127.5,124.9,118.1$, 111.6, 56.5, 39.7, 29.7, 22.2. LRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z}: 543.2$, Measured $543.1 \mathrm{~m} / \mathrm{z}$.

1-allyl-2,3,5-trimethoxybenzene (4.8) - To a solution of 2.168 ($1.0 \mathrm{~g}, 4.0 \mathrm{mmol}$) in diethyl ether (40 mL) at $-78^{\circ} \mathrm{C}$ was added $2.0 \mathrm{M} n$-BuLi ($6.0 \mathrm{~mL}, 12 \mathrm{mmol}$). After 1 h at $-78^{\circ} \mathrm{C}$, allyl bromide ($3.5 \mathrm{~mL}, 40 \mathrm{mmol}$) was added. After 7 h , the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a red/orange oil. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 520 mg (61\%) of $4.8{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.38(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-$ $5.92(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .3 .77(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$) δ 155.9, 153.3, 141.0, 137.0, 134.0, 115.6, 105.0, 98.2, $60.8,55.6,55.4,34.1$

Method 2 - To a solution of $4.13(0.94 \mathrm{~g}, 4.8 \mathrm{mmol})$ in acetone $(100 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(6.8 \mathrm{~g}, 48.4 \mathrm{mmol})$ and methyl iodide ($3.0 \mathrm{~mL}, 48.4 \mathrm{mmol}$). This solution was then allowed to reflux overnight. At this time the solution was cooled to R.T. The reaction mixture was filtered over a fritted filter and the filtrate concentrated in vacuo. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 0.91 g (90%) of 4.8 .

3-allyl-2-bromo-1,4,5-trimethoxybenzene (4.9) - To a solution of 4.8 ($0.91 \mathrm{~g}, 4.4$ $\mathrm{mmol})$ in 1,2 - dimethoxyethane (15 mL) was added copper(II) bromide ($1.6 \mathrm{~g}, 6.6$ $\mathrm{mmol})$. This was then allowed to stir at R.T. overnight. The mixture was passed over a silica plug and the filtrate concentrated in vacuo. The residue was purified by column chromatography with EtOAc/Hexane (1:4) to afford 0.82 g (70\%) of 4.9; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, \mathrm{J}=4.2,1.6$ $\mathrm{HZ}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dt}, \mathrm{J}=6.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$) $\delta 152.6,152.4,141.8,135.4,134.5,115.7,104.7,96.4,61.1,56.7,56.0,34.3$. select HMBC 6.47 (152.6, 141.8, 104.7)

2,4-dimethoxyphenol (4.11) - To a solution of 4.10 (10 g, 60mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added m-CPBA ($6.320 \mathrm{~g}, 120 \mathrm{mmol}$). This solution was allowed to reflux for 16 h . At this time the solution was concentrated and re-dissolved in EtOAc (100 mL). The organic layer was washed with sat $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ followed by brine (150 mL), and concentrated to afford a yellow oil. To this residue was added aq KOH and $\mathrm{MeOH}(2: 1)$
$(200 \mathrm{~mL})$. After 1 h the solution was acidified with 1 N HCl and extracted with EtOAc (3 $\times 100 \mathrm{~mL})$. The combined organic extracts was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to afford a yellow oil. The residue was purified by column chromatography on silica gel with EtOAc/Hexane (1:4) to afford $7.13 \mathrm{~g}(76 \%)$ of 4.11 as a solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $6.82(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) .3 .76(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 153.5, 147.0, 139.8, 114.0, 104.2, 99.4. 55.9, 55.8

1-(allyloxy)-2,4-dimethoxybenzene (4.12). - To a solution of 4.11 ($7.1 \mathrm{~g}, 45 \mathrm{mmol}$) in acetone (0.24 L) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(16 \mathrm{~g}, 120 \mathrm{mmol})$ and allyl bromine ($10 \mathrm{~mL}, 120$ $\mathrm{mmol})$. This was then allowed to reflux for 16 h . At this time the solution was filtered over a fritted filter and concentrated. The residue was purified by column chromatography on silica gel with EtOAc/Hexane (1:4) to afford $7.7 \mathrm{~g}(86 \%)$ of 4.12 as a solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=$ 8.6, 2.8 Hz, 1H), 6.11-6.01 (m, 1H), 5.36 (dd, J = 17.2, 1.6 Hz, 1H), $5.24(d d, J=10.5$, $\left.1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .3 .74(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\right) \delta$ $154.5,150.4,142.0,133.6,117.4,114.8,102.8,100.3,70.7,55.6,55.3$.

2-allyl-4,6-dimethoxyphenol (4.13). To a solution of 4.12 ($1.0 \mathrm{~g}, 5.14 \mathrm{mmol}$) was placed in a sealed tube and heated at $220^{\circ} \mathrm{C}$ for 3 days. The residue the provided 0.94 g (94\%) of allyl phenol; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.38(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}$, 1H), 6.05-5.95 (m, 1H), $5.31(\mathrm{~s}, 1 \mathrm{H}), 5.12-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .3 .76(\mathrm{~s}, 3 \mathrm{H}), 3.40$ $(\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 152.8,146.8,137.4,136.5,125.7,115.5,105.5$, 97.2, 55.9, 55.6, 34.0

REFERENCES

1. Evans, D. A.; Dinsmore, C. J.; Watson, P. S.; Wood, M. R.; Richardson, T. I.; Trotter, B. W.; Katz, J. L., Nonconventional stereochemical issues in the design of the synthesis of the vancomycin antibiotics: Challenges imposed by axial and nonplanar chiral elements in the heptapeptide aglycons. Angewandte ChemieInternational Edition 1998, 37, 2704-2708.
2. Christie, G. H.; Kenner, J., LXXI.-The molecular configurations of polynuclear aromatic compounds. Part I. The resolution of γ-6:6'-dinitro- and $4: 6: 4$ ' : 6'-tetranitro-diphenic acids into optically active components. Journal of the Chemical Society, Transactions 1922, 121, 614-620.
3. Oki, M., Topics in Sterochemistry. 1983, 14, 1-81.
4. Eliel, E.; Wilen, S., Stereochemistry of organic compounds. Wiley \& Sons: New York, 1994.
5. Bringmann, G.; Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M., Atroposelective Synthesis of Axial Chiral Biaryl Compound. Angewandte Chemie-International Edition 2005, 44, 5384-5427.
6. Buchanan, M. S.; Gill, M.; Gimenez, A.; Palfreyman, A. R.; Phonh-Axa, S.; Raudies, E.; Yu, J., Pigments of fungi. LII - Anisochiral flavomannin 6,6 ',8-tri-Omethyl ether from an Australian Dermocybe toadstool. Australian Journal of Chemistry 1999, 52, 749-753.
7. Horak, E., New Species of Dermocybe Agaricales from New Zealand. Sydowia 1987, 40, 81-112.
8. Muller, M.; Lamottke, K.; Steglich, W.; Busemann, S.; Reichert, M.; Bringmann, G.; Spiteller, P., Biosynthesis and stereochemistry of phlegmacin-type fungal pigments. European Journal of Organic Chemistry 2004, 4850-4855.
9. Takahashi, S.; Kitanaka, S.; Takido, M.; Sankawa, U.; Shibata, S., Studies of Constituents of Purgative Crude Drugs .10. Phlegmacins and Anhydrophlegmacinquinones - Dimeric Hydroanthracenes from Seedlings of Cassia-Torosa. Phytochemistry 1977, 16, 999-1002.
10. Gill, M.; Smrdel, A. F., Pigments of Fungi .16. Synthesis of Methyl (R)-(+)-Tetrahydro-2-Methyl-5-Oxo-2-Furanacetate and Its (S)-(-)-Antipode, Chiroptical References for Determination of the Absolute Stereochemistry of Fungal PreAnthraquinones. Tetrahedron-Asymmetry 1990, 1, 453-464.
11. Weislede.D; Lillehoj, E. B., Structure of Viriditoxin, a Toxic Metabolite of Aspergillus-Viridi-Nutans. Tetrahedron Letters 1971, 4705-\&.
12. Suzuki, K.; Nozawa, K.; Nakajima, S.; Kawai, K., Structure Revision of Mycotoxin, Viriditoxin, and Its Derivatives. Chemical \& Pharmaceutical Bulletin 1990, 38, 3180-3181.
13. Wang, J.; Galgoci, A.; Kodali, S.; Herath, K. B.; Jayasuriya, H.; Dorso, K.; Vicente, F.; Gonzalez, A.; Cully, D.; Bramhill, D.; Singh, S., Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. Journal of Biological Chemistry 2003, 278, 44424-44428.
14. DD Ridley, E. R. a. W. T., Chemical studies of the Proteaceae. IV. The structures of the major phenols of Grevillea striata; a group of novel cyclophanes Australian Journal of Chemistry 1970, 23, 147-163.
15. Furstner, A.; Stelzer, F.; Rumbo, A.; Krause, H., Total synthesis of the turrianes and evaluation of their DNA-cleaving properties. Chemistry-a European Journal 2002, 8, 1856-1871.
16. Fukuyama, Y.; Asakawa, Y., Novel Neurotrophic Isocuparane-Type Sesquiterpene Dimers, Mastigophorenes-a, Mastigophorene-B, MastigophoreneC and Mastigophorene-D, Isolated from the Liverwort Mastigophora-Diclados. Journal of the Chemical Society-Perkin Transactions 1 1991, 2737-2741.
17. Bringmann, G.; Pabst, T.; Rycroft, D. S.; Connolly, J. D., Novel concepts in directed biaryl synthesis - Part 76 - First synthesis of mastigophorenes A and B, by biomimetic oxidative coupling of herbertenediol. Tetrahedron Letters 1999, 40, 483-486.
18. Bringmann, G.; Pabst, T.; Henschel, P.; Kraus, J.; Peters, K.; Peters, E. M.; Rycroft, D. S.; Connolly, J. D., Nondynamic and dynamic kinetic resolution of lactones with stereogenic centers and axes: Stereoselective total synthesis of herbertenediol and mastigophorenes A and B. Journal of the American Chemical Society 2000, 122, 9127-9133.
19. Degnan, A. P.; Meyers, A. I., Total syntheses of (-)-herbertenediol, (-)mastigophorene A, and (-)-mastigophorene B. Combined utility of chiral bicyclic lactams and chiral aryl oxazolines. Journal of the American Chemical Society 1999, 121, 2762-2769.
20. Moorlag, H.; Meyers, A. I., Oxazoline-mediated biaryl coupling reactions. Stereocontrolled synthesis of 2,2',6,6'-tetrasubstituted biphenyls. Tetrahedron Letters 1993, 34, 6989-6992.
21. Marchlewski, L., Gossypol, ein Bestandtheil der Baumwollsamen. Journal für Praktische Chemie 1899, 60, 84-90.
22. Withers, W. A.; Carruth, F. E., Gossypol—A Toxic Substance in Cottonseed. A Preliminary Note. Science 1915, 41, 324.
23. Adams, R.; Kirkpatrick, E. C., Structure of Gossypol. XI. Absorption Spectra of Gossypol, its derivatives and of Certain Dinapthalene Compounds. Journal of the American Chemical Society 1938, 60, 2180.
24. Elsimar Metzker, C., Gossypol: a contraceptive for men. Contraception 2002, 65, 259-263.
25. Radloff, R. J.; Deck, L. M.; Royer, R. E.; Vanderjagt, D. L., Antiviral Activities of Gossypol and Its Derivatives against Herpes-Simplex Virus Type-li. Pharmacological Research Communications 1986, 18, 1063-1073.
26. Edwards, J. D.; Cashaw, J. L., Studies in the Naphthalene Series. III. Synthesis of Apogossypol Hexamethyl Ether1. Journal of the American Chemical Society 1957, 79, 2283-2285.
27. Edwards, J. D., TOTAL SYNTHESIS OF GOSSYPOL. Journal of the American Chemical Society 1958, 80, 3798-3799.
28. Meyers, A. I.; Willemsen, J. J., The synthesis of (S)-(+)-gossypol via an asymmetric Ullmann coupling. Chemical Communications 1997, 1573-1574.
29. Meyers, A. I.; Willemsen, J. J., An oxazoline based approach to (S)-Gossypol. Tetrahedron 1998, 54, 10493-10511.
30. Nelson, R. A.; Pope, J. A.; Luedemann, G. M.; McDaniel, L. E.; Schaffner, C. P., Crisamicin-a, a New Antibiotic from Micromonospora .1. Taxonomy of the Producing Strain, Fermentation, Isolation, Physicochemical Characterization and Antimicrobial Properties. Journal of Antibiotics 1986, 39, 335-344.
31. Ling, D.; Shield, L. S.; Rinehart, K. L., Isolation and Structure Determination of Crisamicin-a, a New Antibiotic from Micromonospora-Purpureochromogenes Subsp Halotolerans. Journal of Antibiotics 1986, 39, 345-353.
32. Li, Z. T.; Gao, Y. X.; Tang, Y. F.; Dai, M. J.; Wang, G. X.; Wang, Z. G.; Yang, Z., Total synthesis of crisamicin A. Organic Letters 2008, 10, 3017-3020.
33. Barba, B.; Diaz, J. G.; Herz, W., Anthraquinones and Other Constituents of 2 Senn a Species. Phytochemistry 1992, 31, 4374-4375.
34. Gluchoff, K.; Dangycay.Mp; Arpin, N.; Pourrat, H.; Regerat, F.; Topper, E.; Steglich, W.; Deruaz, D.; Lebreton, P., Chemotaxonomic Research on Fungi -7,7'-Biphysicon, Bianthraquinone Obtained from Tricholoma-Equestre L Per Fr (Basidiomycetes, Agaricales). Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie D 1972, 274, 1739-\&.
35. Fujitake, N.; Suzuki, T.; Fukumoto, M.; Oji, Y., Predomination of dimers over naturally occurring anthraquinones in soil. Journal of Natural Products 1998, 61, 189-192.
36. Hauser, F. M.; Gauuan, P. J. F., Total synthesis of (+/-)-biphyscion. Organic Letters 1999, 1, 671-672.
37. Buchanan, M. S.; Gill, M.; Yu, J., Pigments of fungi .43. Cardinalins-1-6, novel pyranonaphthoquinones from the fungus Dermocybe cardinalis Horak. Journal of the Chemical Society-Perkin Transactions 1 1997, 919-925.
38. Brimble, M. A.; Gibson, J. S.; Sejberg, J. J. P.; Sperry, J., A facile enantioselective synthesis of the dimeric pyranonaphthoquinone core of the cardinalins. Synlett 2008, 867-870.
39. Sperry, J.; Gibson, J. S.; Sejberg, J. J. P.; Brimble, M. A., Enantioselective synthesis of the dimeric pyranonaphthoquinone core of the cardinalins using a late-stage homocoupling strategy. Organic \& Biomolecular Chemistry 2008, 6, 4261-4270.
40. Govender, S.; Mmutlane, E. M.; van Otterlo, W. A. L.; de Koning, C. B., Bidirectional racemic synthesis of the biologically active quinone cardinalin 3. Organic \& Biomolecular Chemistry 2007, 5, 2433-2440.
41. Toki, S.; Ando, K.; Kawamoto, I.; Sano, H.; Yoshida, M.; Matsuda, Y., Es-242-2, Es-242-3, Es-242-4, Es-242-5, Es-242-6, Es-242-7, and Es-242-8, Novel Bioxanthracenes Produced by Verticillium Sp, Which Act on the N-Methyl-DAspartate Receptor. Journal of Antibiotics 1992, 45, 1047-1054.
42. Jaturapat, A.; Isaka, M.; Hywel-Jones, N. L.; Lertwerawat, Y.; Kamchonwongpaisan, S.; Kirtikara, K.; Tanticharoen, M.; Thebtaranonth, Y., Bioxanthracenes from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620 - I. - Taxonomy, fermentation, isolation and antimalarial activity. Journal of Antibiotics 2001, 54, 29-35.
43. Tatsuta, K.; Yamazaki, T.; Mase, T.; Yoshimoto, T., The first total synthesis of a bioxanthracene (-)-ES-242-4, an N-methyl-D-aspartate receptor antagonist. Tetrahedron Letters 1998, 39, 1771-1772.
44. Tatsuta, K.; Nagai, T.; Mase, T.; Tamura, T.; Nakamura, H., Absolute and atropisomeric structure of ES-242s, N-methyl-D-aspartate receptor antagonists. Journal of Antibiotics 1999, 52, 433-436.
45. Isaka, M.; Kongsaeree, P.; Thebtaranonth, Y., Bioxanthracenes from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620 - II. - Structure elucidation. Journal of Antibiotics 2001, 54, 36-43.
46. Gorstallman, C. P.; Steyn, P. S.; Rabie, C. J., Structural Elucidation of the Nigerones, 4 New Naphthopyrones from Cultures of Aspergillus-Niger. Journal of the Chemical Society-Perkin Transactions 11980, 2474-2479.
47. DiVirgilio, E. S.; Dugan, E. C.; Mulrooney, C. A.; Kozlowski, M. C., Asymmetric total synthesis of nigerone. Organic Letters 2007, 9, 385-388.
48. Kozlowski, M. C.; Dugan, E. C.; DiVirgilio, E. S.; Maksimenka, K.; Bringmann, G., Asymmetric total synthesis of nigerone and ent-nigerone: Enantioselective oxidative biaryl coupling of highly hindered Naphthols. Advanced Synthesis \& Catalysis 2007, 349, 583-594.
49. Kobayashi, E.; Ando, K.; Nakano, H.; lida, T.; Ohno, H.; Morimoto, M.; Tamaoki, T., Calphostins (Ucn-1028), Novel and Specific Inhibitors of Protein Kinase-C .1.

Fermentation, Isolation, Physicochemical Properties and Biological-Activities. Journal of Antibiotics 1989, 42, 1470-1474.
50. lida, T.; Kobayashi, E.; Yoshida, M.; Sano, H., Calphostins, Novel and Specific Inhibitors of Protein Kinase-C .2. Chemical Structures. Journal of Antibiotics 1989, 42, 1475-1481.
51. Broka, C. A., Total Syntheses of Phleichrome, Calphostin-a, and Calphostin-D Unusual Stereoselective and Stereospecific Reactions in the Synthesis of Perylenequinones. Tetrahedron Letters 1991, 32, 859-862.
52. Hauser, F. M.; Sengupta, D.; Corlett, S. A., Optically-Active Total Synthesis of Calphostin-D. Journal of Organic Chemistry 1994, 59, 1967-1969.
53. Manfredi, K. P.; Blunt, J. W.; Cardellina, J. H.; McMahon, J. B.; Pannell, L. L.; Cragg, G. M.; Boyd, M. R., Novel alkaloids from the tropical plant Ancistrocladus abbreviatus inhibit cell killing by HIV-1 and HIV-2. Journal of Medicinal Chemistry 1991, 34, 3402-3405.
54. Boyd, M. R.; Hallock, Y. F.; Manfredi, K. P.; Blunt, J. W.; McMahon, J. B.; Buckheit, R. W.; Bringmann, G.; Schaffer, M.; Cragg, G. M.; Thomas, D. W.; Jato, J. G.; Cardellina, J. H., Anti-Hiv Michellamines from AncistrocladusKorupensis. Journal of Medicinal Chemistry 1994, 37, 1740-1745.
55. Huang, S. L.; Petersen, T. B.; Lipshutz, B. H., Total Synthesis of (+)Korupensamine B via an Atropselective Intermolecular Biaryl Coupling. Journal of the American Chemical Society 2010, 132, 14021-14023.
56. Shibata, S.; Ogihara, Y.; Kobayash.N; Seo, S.; Kitagawa, I., Revises Structures of Luteoskyrin Rubroskyrin and Rugulosin. Tetrahedron Letters 1968, 3179-\&.
57. Kobayash.N; litaka, Y.; Shibata, S., X-Ray Structure Determination of (+)Dibromodehydrotetrahydrorugulosin, a Heavy Atom Derivative of (+)-Rugulosin. Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry 1970, B 26, 188-\&.
58. Nicolaou, K. C.; Lim, Y. H.; Papageorgiou, C. D.; Piper, J. L., Total synthesis of (+)-rugulosin and (+)-2,2 '-epi-cytoskyrin A through cascade reactions. Angewandte Chemie-International Edition 2005, 44, 7917-7921.
59. Nicolaou, K. C.; Lim, Y. H.; Piper, J. L.; Papageorgiou, C. D., Total syntheses of 2,2 '-epi-cytoskyrin A, rugulosin, and the alleged structure of rugulin. Journal of the American Chemical Society 2007, 129, 4001-4013.
60. Snider, B. B.; Gao, X. L., Efficient syntheses of rugulosin analogues. Journal of Organic Chemistry 2005, 70, 6863-6869.
61. Uehara, Y.; Li, P. M.; Fukazawa, H.; Mizuno, S.; Nihei, Y.; Nishio, M.; Hanada, M.; Yamamoto, C.; Furumai, T.; Oki, T., Angelmicins, New Inhibitors of Oncogenic Src Signal-Transduction. Journal of Antibiotics 1993, 46, 1306-1308.
62. Yokoyama, A.; OkabeKado, J.; Uehara, Y.; Oki, T.; Tomoyasu, S.; Tsuruoka, N.; Honma, Y., Angelmicin B, a new inhibitor of oncogenic signal transduction, inhibits growth and induces myelomonocytic differentiation of human myeloid leukemia HL-60 cells. Leukemia Research 1996, 20, 491-497.
63. Kajiura, T.; Furumai, T.; Igarashi, Y.; Hori, H.; Higashi, K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T., Signal transduction inhibitors, hibarimicins A, B, C, D and G produced by Microbispora - I. Taxonomy, fermentation, isolation and physicochemical and biological properties. Journal of Antibiotics 1998, 51, 394-401.
64. Hori, H.; Igarashi, Y.; Kajiura, T.; Furumai, T.; Higashi, K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oka, T., Signal transduction inhibitors, hibarimicins A, B, C, D and G produced by Microbispora - II. Structural studies. Journal of Antibiotics 1998, 51, 402-417.
65. Hori, H.; Higashi, K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T., Structure of angelmicin B, a novel src signal transduction inhibitor. Tetrahedron Letters 1996, 37, 2785-2788.
66. Hori, H.; Kajiura, T.; Igarashi, Y.; Furumai, T.; Higashi, K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T., Biosynthesis of hibarimicins - I. C-13-labeling experiments. Journal of Antibiotics 2002, 55, 46-52.
67. Kajiura, T.; Furumai, T.; Igarashi, Y.; Hori, H.; Higashi, K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T., Biosynthesis of hibarimicins - II. Elucidation of biosynthetic pathway by cosynthesis using blocked mutants. Journal of Antibiotics 2002, 55, 53-60.
68. Tezuka, M.; Kuroyana.M; Satake, M.; Yoshihir.K; Natori, S., Naphthoquinone Derivatives from Ebenaceae .5. New Naphthoquinones from Diospyros. Phytochemistry 1973, 12, 175-183.
69. Ferreira, M. A.; Aureacru.M; Correiaa.A; Lopes, M. H., Naphthoquinones from Euclea-Pseudebenus. Phytochemistry 1974, 13, 1587-1589.
70. Baker, R. W.; Liu, S.; Sargent, M. V.; Skelton, B. W.; White, A. H., Absolute stereochemistry of 1,2'-linked bi(naphthoquinone)s. Chemical Communications 1997, 451-452.
71. Narayan, S.; Roush, W. R., Studies toward the total synthesis of angelmicin B (hibarimicin B): Synthesis of a model CD-D ' arylnaphthoquinone. Organic Letters 2004, 6, 3789-3792.
72. Maharoof, U. S. M.; Sulikowski, G. A., Investigations into arylquinone atropisomers: synthesis and evaluation. Tetrahedron Letters 2003, 44, 90219023.
73. Ullmann, F.; Bielecki, J., Ueber Synthesen in der Biphenylreihe. Berichte der deutschen chemischen Gesellschaft 1901, 34, 2174-2185.
74. Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M., Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chemical Reviews 2002, 102, 1359-1469.
75. Clemo, G. R.; Cockburn, J. G.; Spence, R., CLXVII.-The catalytic production of polynuclear compounds. Part II. Journal of the Chemical Society (Resumed) 1931, 1265-1273.
76. Toda, F.; Tanaka, K.; Iwata, S., Oxidative coupling reactions of phenols with iron(III) chloride in the solid state. The Journal of Organic Chemistry 1989, 54, 3007-3009.
77. Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R., Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of .alpha.-(acylamino)acrylic acids. Journal of the American Chemical Society 1980, 102, 7932-7934.
78. Kar, A.; Mangu, N.; Kaiser, H. M.; Beller, M.; Tse, M. K., A general goldcatalyzed direct oxidative coupling of non-activated arenes. Chemical Communications 2008, 386-388.
79. Demir, A. S.; Reis, O.; Emrullahoglu, M., Generation of aryl radicals from arylboronic acids by manganese(III) acetate: Synthesis of biaryls and heterobiaryls. Journal of Organic Chemistry 2003, 68, 578-580.
80. Matsushita, M.; Kamata, K.; Yamaguchi, K.; Mizuno, N., Heterogeneously catalyzed aerobic oxidative biaryl coupling of 2-naphthols and substituted phenols in water. Journal of the American Chemical Society 2005, 127, 66326640.
81. Joseph, J. K.; Jain, S. L.; Sain, B., V2O5-O-2 as a simple and efficient protocol for the oxidative coupling of 2-naphthols to binaphthols under mild reaction conditions. Catalysis Communications 2006, 7, 184-186.
82. Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y., Oxidative biaryl coupling reaction of phenol ether derivatives using a hypervalent iodine(III) reagent. Journal of Organic Chemistry 1998, 63, 7698-7706.
83. Whitesides, G.; Sanfilip, J.; Casey, C. P.; Panek, E. J., Oxidative Coupling Using Copper(I) Ate Complexes. Journal of the American Chemical Society 1967, 89, 5302.
84. Lipshutz, B. H.; Siegmann, K.; Garcia, E., Kinetic Higher-Order Cyanocuprates Applications to Biaryl Synthesis. Journal of the American Chemical Society 1991, 113, 8161-8162.
85. Lipshutz, B. H.; Siegmann, K.; Garcia, E., Controlled Decomposition of Kinetic Higher-Order Cyanocuprates - a New Route to Unsymmetrical Biaryls.
Tetrahedron 1992, 48, 2579-2588.
86. Lipshutz, B. H.; James, B.; Vance, S.; Carrico, I., A potentially general intramolecular biaryl coupling approach to optically pure 2,2'-BINOL analogs. Tetrahedron Letters 1997, 38, 753-756.
87. Miyake, Y.; Wu, M.; Rahman, M. J.; Kuwatani, Y.; lyoda, M., Efficient construction of biaryls and macrocyclic cyclophanes via electron-transfer oxidation of Lipshutz cuprates. Journal of Organic Chemistry 2006, 71, 61106117.
88. Surry, D. S.; Su, X. B.; Fox, D. J.; Franckevicius, V.; Macdonald, S. J. F.; Spring, D. R., Synthesis of medium-ring and iodinated biaryl compounds by organocuprate oxidation. Angewandte Chemie-International Edition 2005, 44, 1870-1873.
89. Baudoin, O., The Asymmetric Suzuki Coupling Route to Axially Chiral Biaryls. European Journal of Organic Chemistry 2005, 2005, 4223-4229.
90. Jacques, J.; Fouquey, C.; Viterbo, R., Enantiomeric cyclic binaphthyl phosphoric acids as resolving agents. Tetrahedron Letters 1971, 12, 4617-4620.
91. Qiao-Sheng, H.; Vitharana, D.; Lin, P., An efficient and practical direct resolution of racemic 1,1'-bi-2-naphthol to both of its pure enantiomers. Tetrahedron: Asymmetry 1995, 6, 2123-2126.
92. Fish, R. G.; Groundwater, P. W.; Morgan, J. J. G., The Photo-Epimerization of Gossypol Schiffs Bases. Tetrahedron-Asymmetry 1995, 6, 873-876.
93. Blakemore, P. R.; Kilner, C.; Milicevic, S. D., Resolution, enantiomerization kinetics, and chiroptical properties of 7,7 '-dihydroxy-8,8 '-biquinolyl. Journal of Organic Chemistry 2006, 71, 8212-8218.
94. Bringmann, G.; Tasler, S.; Endress, H.; Kraus, J.; Messer, K.; Wohlfarth, M.; Lobin, W., Murrastifoline-F: First total synthesis, atropo-enantiomer resolution, and stereoanalysis of an axially chiral N,C-coupled biaryl alkaloid. Journal of the American Chemical Society 2001, 123, 2703-2711.
95. Puttmann, M.; Oesch, F.; Robertson, L. W., Characteristics of Polychlorinated Biphenyl (Pcb) Atropisomers. Chemosphere 1986, 15, 2061-2064.
96. Blakemore, P. R.; Milicevic, S. D.; Zakharov, L. N., Enzymatic resolution of 7,7 '-dihydroxy-8,8 '-biquinolyl dipentanoate and its conversion to 2,2 '-di-tert-butyl-7,7 '-dihydroxy-8,8 '-biquinolyl. Journal of Organic Chemistry 2007, 72, 9368-9371.
97. Okuyama, K.; Shingubara, K.; Tsujiyama, S.; Suzuki, K.; Matsumoto, T., Enantiodivergent Synthesis of Tetra-ortho-Substituted Biphenyls by Enzymatic Desymmetrization. Synlett 2009, 941-944.
98. Bringmann, G.; Hartung, T., Novel Concepts in Directed Biaryl Synthesis .12. 1st Atropo-Enantioselective Ring-Opening of Achiral Biaryls Containing Lactone Bridges with Chiral Hydride-Transfer Reagents Derived from Borane. Angewandte Chemie-International Edition in English 1992, 31, 761-762.
99. Bringmann, G.; Breuning, M.; Walter, R.; Wuzik, A.; Peters, K.; Peters, E. M., Novel concepts in directed biaryl synthesis, 80 - Synthesis of axially chiral biaryls by atropo-diastereoselective cleavage of configurationally unstable biaryl lactones with menthol-derived O-nucleophiles. European Journal of Organic Chemistry 1999, 3047-3055.
100. Bringmann, G.; Breuning, M.; Tasler, S.; Endress, H.; Ewers, C. L. J.; Gobel, L.; Peters, K.; Peters, E. M., Atropo-diastereoselective cleavage of configurationally unstable biaryl lactones with alkali metal activated primary 1-arylethylamines. Chemistry-a European Journal 1999, 5, 3029-3038.
101. Bringmann, G.; Hartung, T., Novel Concepts in Directed Biaryl Synthesis .10. the Atropo-Enantioselective Ring-Opening of Achiral Lactone-Bridged Biaryls Using Chirally Modified Aluminum Hydrides. Synthesis-Stuttgart 1992, 433-435.
102. Bringmann, G.; Vitt, D., Novel Concepts in Directed Biaryl Synthesis .55. Stereoselective Ring-Opening Reaction of Axially Prostereogenic Biaryl Lactones with Chiral Oxazaborolidines - an Am1 Study of the Complete Mechanistic Course. Journal of Organic Chemistry 1995, 60, 7674-7681.
103. Bringmann, G.; Pabst, T.; Rycroft, D. S.; Connolly, J. D., Novel concepts in directed biaryl synthesis - Part 76 - First synthesis of mastigophorenes A and B, by biomimetic oxidative coupling of herbertenediol. Tetrahedron Letters 1999, 40, 483-486.
104. Lee, W. K.; Park, Y. S.; Beak, P., Dynamic Thermodynamic Resolution: Advantage by Separation of Equilibration and Resolution. Accounts of Chemical Research 2009, 42, 224-234.
105. Smrcina, M.; Lorenc, M.; Hanus, V.; Sedmera, P.; Kocovsky, P., Synthesis of Enantiomerically Pure 2,2'-Dihydroxy-1,1'-Binaphthyl, 2,2'-Diamino-1,1'Binaphthyl, and 2-Amino-2'-Hydroxy-1,1'-Binaphthyl - Comparison of Processes Operating as Diastereoselective Crystallization and as 2nd-Order Asymmetric Transformation. Journal of Organic Chemistry 1992, 57, 1917-1920.
106. Smrcina, M.; Polakova, J.; Vyskocil, S.; Kocovsky, P., Synthesis of Enantiomerically Pure Binaphthyl Derivatives - Mechanism of the Enantioselective, Oxidative Coupling of Naphthols and Designing a Catalytic Cycle. Journal of Organic Chemistry 1993, 58, 4534-4538.
107. Tsubaki, K.; Miura, M.; Morikawa, H.; Tanaka, H.; Kawabata, T.; Furuta, T.; Tanaka, K.; Fuji, K., Synthesis of optically active oligonaphthalenes via secondorder asymmetric transformation. Journal of the American Chemical Society 2003, 125, 16200-16201.
108. Zhang, Y.; Yeung, S. M.; Wu, H. Q.; Heller, D. P.; Wu, C. R.; Wulff, W. D., Highly enantioselective deracemization of linear and vaulted biaryl ligands. Organic Letters 2003, 5, 1813-1816.
109. Hu, G.; Holmes, D.; Gendhar, B. F.; Wulff, W. D., Optically Active (aR)- and (aS)Linear and Vaulted Biaryl Ligands: Deracemization versus Oxidative

Dimerization. Journal of the American Chemical Society 2009, 131, 1435514364.
110. Becker, J. J.; White, P. S.; Gagne, M. R., Synthesis and characterization of chiral diphosphine platinum(II) VANOL and VAPOL complexes. Organometallics 2003, 22, 3245-3249.
111. Evans, D. A.; Wood, M. R.; Trotter, B. W.; Richardson, T. I.; Barrow, J. C.; Katz, J. L., Total syntheses of vancomycin and eremomycin aglycons. Angewandte Chemie-International Edition 1998, 37, 2700-2704.
112. Evans, D. A.; Dinsmore, C. J.; Watson, P. S.; Wood, M. R.; Richardson, T. I.; Trotter, B. W.; Katz, J. L., Nonconventional stereochemical issues in the design of the synthesis of the vancomycin antibiotics: Challenges imposed by axial and nonplanar chiral elements in the heptapeptide aglycons. Angewandte ChemieInternational Edition 1998, 37, 2704-2708.
113. Su, X. B.; Surry, D. S.; Spandl, R. J.; Spring, D. R., Total synthesis of sanguiin H5. Organic Letters 2008, 10, 2593-2596.
114. Mlyano, S.; Tobita, M.; Hashimoto, H., Asymmetric Synthesis of Axially Diasymmetric 1,1'-Binaphthyls via an Intramolecular Ullman Coupling raction fo (R)- and (S)- 2,2'- Bis(1-bromo-2-naphthylcarbonyloxy)-1,1'-binaphthyl. Bulletin of the Chemical Society of Japan 1981, 54, 3522-3526.
115. Mlyano, S.; Fukushima, H.; Handa, S.; Ito, H., Asymmetric Synthesis of Axially Chiral, Unsymmetrical Diphenic Acids via Intramolecular Ullmann Coupling Reaction. Bulletin of the Chemical Society of Japan 1988, 61, 3249-3254.
116. Moorlag, H.; Meyers, A. I., Oxazoline-mediated biaryl coupling reactions. Stereocontrolled synthesis of 2,2',6,6'-tetrasubstituted biphenyls. Tetrahedron Letters 1993, 34, 6989-6992.
117. Meyers, A. I.; Willemsen, J. J., The synthesis of (S)-(+)-gossypol via an asymmetric Ullmann coupling. Chemical Communications 1997, 1573-1574.
118. Degnan, A. P.; Meyers, A. I., Total syntheses of (-)-herbertenediol, (-)mastigophorene A, and (-)-mastigophorene B. Combined utility of chiral bicyclic lactams and chiral aryl oxazolines. Journal of the American Chemical Society 1999, 121, 2762-2769.
119. Brussee, J.; Jansen, A. C. A., A highly stereoselective synthesis of $s(-)-\left[1,1^{\prime}-\right.$ binaphthalene]-2,2'-diol. Tetrahedron Letters 1983, 24, 3261-3262.
120. Brussee, J.; Groenendijk, J. L. G.; Tekoppele, J. M.; Jansen, A. C. A., On the Mechanism of the Formation of "S(-)-(1,1'-Binaphthalene)-2,2'-Diol Via Copper(li)Amine Complexes. Tetrahedron 1985, 41, 3313-3319.
121. Li, X. L.; Yang, J.; Kozlowski, M. C., Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes. Organic Letters 2001, 3, 1137-1140.
122. Hewgley, J. B.; Stahl, S. S.; Kozlowski, M. C., Mechanistic study of asymmetric oxidative biaryl coupling: Evidence for self-processing of the copper catalyst to achieve control of oxidase vs oxygenase activity. Journal of the American Chemical Society 2008, 130, 12232-+.
123. Yin, J. J.; Buchwald, S. L., A catalytic asymmetric Suzuki coupling for the synthesis of axially chiral biaryl compounds. Journal of the American Chemical Society 2000, 122, 12051-12052.
124. Shen, X. Q.; Jones, G. O.; Watson, D. A.; Bhayana, B.; Buchwald, S. L., Enantioselective Synthesis of Axially Chiral Biaryls by the Pd-Catalyzed Suzuki Miyaura Reaction: Substrate Scope and Quantum Mechanical Investigations. Journal of the American Chemical Society 2010, 132, 11278-11287.
125. Kajiura, T.; Furumai, T.; Igarashi, Y.; Hori, H.; Higashi, K.; Ishiyama, T.; Uramoto, M.; Uehara, Y.; Oki, T., Biosynthesis of hibarimicins - II. Elucidation of biosynthetic pathway by cosynthesis using blocked mutants. Journal of Antibiotics 2002, 55, 53-60.
126. Kajiura, T., Elucidation of Biosynthetic Pathway of Hibarimicins, v-src Tyrosine Kinase Inhibitors. Actinomycetologica 2004, 22-25.
127. Vrettou, M.; Gray, A. A.; Brewer, A. R. E.; Barrett, A. G. M., Strategies for the synthesis of C2 symmetric natural products--a review. Tetrahedron 2007, 63, 1487-1536.
128. Shriner, R. L.; McCutchan, P., PREPARATION OF SOME METHYLATED GALLIC ACIDS. Journal of the American Chemical Society 1929, 51, 2193-2195.
129. Sanchez, I. H.; Larraza, M. I.; Basurto, F.; Yanez, R.; Avila, S.; Tovar, R.; Josephnathan, P., Formal Total Synthesis of Beta-Pipitzol. Tetrahedron 1985, 41, 2355-2359.
130. Lambert, W. T.; Roush, W. R., Synthesis of the A-B subunit of angelmicin B. Organic Letters 2005, 7, 5501-5504.
131. Li, J.; Todaro, L. J.; Mootoo, D. R., Synthesis of the AB subunit of angelmicin B through a tandem alkoxy radical fragmentation-etherification sequence. Organic Letters 2008, 10, 1337-1340.
132. Kim, K.; Maharoof, U. S. M.; Raushel, J.; Sulikowski, G. A., Diverging stereochemical pathways in an intramolecular Diels-Alder reaction determined by dienophile structure. Organic Letters 2003, 5, 2777-2780.
133. Martin, S. F.; Dodge, J. A., Efficacious Modification of the Mitsunobu Reaction for Inversions of Sterically Hindered Secondary Alcohols. Tetrahedron Letters 1991, 32, 3017-3020.
134. Lee, C. S.; Audelo, M. Q.; Reibenpies, J.; Sulikowski, G. A., Studies toward the total synthesis of hibarimicinone. Progress on the assembly of the AB- and GHring systems. Tetrahedron 2002, 58, 4403-4409.
135. Giuliano, R. M.; Bryan, R. F.; Hartley, P.; Peckler, S.; Woode, M. K., Structure of Methyl 6-Deoxy-Alpha-D-Idopyranoside. Carbohydrate Research 1989, 191, 111.
136. Bernet, B.; Vasella, A., Fragmentation of 6-Deoxy-6-Halo-Hexono-1,5Ortholactones - a Concerted, Nonstereospecific Process. Helvetica Chimica Acta 1984, 67, 1328-1347.
137. Coleman, R. S.; Dong, Y.; Carpenter, A. J., A Convenient Preparation of Terminally Differentiated, Selectively Protected 6-Carbon Synthons from DGlucosamine. Journal of Organic Chemistry 1992, 57, 3732-3735.
138. Plietker, B., The RuO4-catalyzed ketohydroxylation. Part 1. Development, scope, and limitation. Journal of Organic Chemistry 2004, 69, 8287-8296.
139. Hauser, F. M.; Rhee, R. P., New Synthetic Methods for Regioselective Annelation of Aromatic Rings - 1-Hydroxy-2,3-Disubstituted Naphthalenes and 1,4-Dihydroxy-2,3-Disubstituted Naphthalenes. Journal of Organic Chemistry 1978, 43, 178-180.
140. Kraus, G. A.; Sugimoto, H., Annelation Route to Quinones. Tetrahedron Letters 1978, 2263-2266.
141. Leeper, F. J.; Staunton, J., Biomimetic Syntheses of Polyketide Aromatics from Reaction of an Orsellinate Anion with Pyrones and a Pyrylium Salt. Journal of the Chemical Society-Perkin Transactions 11984, 1053-1059.
142. Dodd, J. H.; Starrett, J. E.; Weinreb, S. M., Total Synthesis of Tri-O-Methylolivin. Journal of the American Chemical Society 1984, 106, 1811-1812.
143. Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel, D. R.; Myers, A. G., A Convergent Enantioselective Route to Structurally Diverse 6-Deoxytetracycline Antibiotics. In Science, 2005; Vol. 308, pp 395-398.
144. Rao, D. V.; Stuber, F. A., An Efficient Synthesis of 3,4,5Trimethoxybenzaldehyde from Vanillin. Synthesis-Stuttgart 1983, 308-308.
145. Furstner, A.; Stelzer, F.; Rumbo, A.; Krause, H., Total synthesis of the turrianes and evaluation of their DNA-cleaving properties. Chemistry-a European Journal 2002, 8, 1856-1871.
146. Evans, G. E.; Staunton, J., An Investigation of the Biosynthesis of Citromycetin in Penicillium-Frequentans Using C-13-Labeled and C-14-Labeled Precursors. Journal of the Chemical Society-Perkin Transactions 1 1988, 755-761.
147. Bode, S. E.; Drochner, D.; Muller, M., Synthesis, biosynthesis, and absolute configuration of vioxanthin. Angewandte Chemie-International Edition 2007, 46, 5916-5920.
148. Zhang, Z. J.; Yu, B., Total synthesis of the antiallergic naphtho-alpha-pyrone tetraglucoside, cassiaside C-2, isolated from cassia seeds. Journal of Organic Chemistry 2003, 68, 6309-6313.
149. Yadav, J. S.; Reddy, B. V. S.; Madan, C.; Hashim, S. R., A mild and chemoselective dealkylation of alkyl aryl ethers by cerium(III) chloride-NaI. Chemistry Letters 2000, 738-739.
150. Wang, L.; Meegalla, S. K.; Fang, C. L.; Taylor, N.; Rodrigo, R., Exploratory synthetic investigations related to 12a-deoxypillaromycinone. Canadian Journal of Chemistry-Revue Canadienne De Chimie 2002, 80, 728-738.
151. Surry, D. S.; Fox, D. J.; Macdonald, S. J. F.; Spring, D. R., Aryl-aryl coupling via directed lithiation and oxidation. Chemical Communications 2005, 2589-2590.
152. Zhu, G. D.; Chen, D. H.; Huang, J. H.; Chi, C. S.; Liu, F. K., Regioselective Bromination and Fluorination of Apogossypol Hexamethyl Ether. Journal of Organic Chemistry 1992, 57, 2316-2320.
153. Hauser, F. M.; Gauuan, P. J. F., Total synthesis of (+/-)-biphyscion. Organic Letters 1999, 1, 671-672.
154. Drochner, D.; Huttel, W.; Bode, S. E.; Muller, M.; Karl, U.; Nieger, M.; Steglich, W., Dimeric orsellinic acid derivatives: Valuable intermediates for natural product synthesis. European Journal of Organic Chemistry 2007, 1749-1758.
155. Tasler, S.; Bringmann, G., Biarylic biscarbazole alkaloids: Occurrence, stereochemistry, synthesis, and bioactivity. Chemical Record 2002, 2, 113-126.
156. Mulrooney, C. A.; Li, X.; DiVirgilio, E. S.; Kozlowski, M. C., General Approach for the Synthesis of Chiral Perylenequinones via Catalytic Enantioselective Oxidative Biaryl Coupling. Journal of the American Chemical Society 2003, 125, 68566857.
157. Li, X. L.; Schenkel, L. B.; Kozlowski, M. C., Synthesis and resolution of a novel chiral diamine ligand and application to asymmetric lithiation-substitution. Organic Letters 2000, 2, 875-878.
158. Mislow, K.; Bunnenberg, E.; Records, R.; Wellman, K.; Djerassi, C., Inherently Dissymmetric Chromophores and Circular Dichroism. II. Journal of the American Chemical Society 1963, 85, 1342-1349.
159. Kitanaka, S.; Takido, M., (S)-5,7'-Biphyscion 8-Glucoside from Cassia-Torosa. Phytochemistry 1995, 39, 717-718.
160. Sperry, J.; Sejberg, J. J. P.; Stiemke, F. M.; Brimble, M. A., Biomimetic studies towards the cardinalins: synthesis of (+)-ventiloquinone L and an unusual dimerisation. Organic \& Biomolecular Chemistry 2009, 7, 2599-2603.
161. Drochner, D.; Huttel, W.; Nieger, M.; Muller, M., Unselective phenolic coupling of methyl 2-hydroxy-4-methoxy-6-methylbenzoate - A valuable tool for the total
synthesis of natural product families. Angewandte Chemie-International Edition 2003, 42, 931-+.
162. Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y., Oxidative biaryl coupling reaction of phenol ether derivatives using a hypervalent iodine(III) reagent. Journal of Organic Chemistry 1998, 63, 7698-7706.
163. Huang, C.; Gevorgyan, V., Synthesis of Unsymmetrical o-Biphenols and oBinaphthols via Silicon-Tethered Pd-Catalyzed C-H Arylation. Organic Letters 2010, 12, 2442-2445.
164. Zenk, M. H.; Gerardy, R.; Stadler, R., Phenol Oxidative Coupling of Benzylisoquinoline Alkaloids Is Catalyzed by Regio-Selective and StereoSelective Cytochrome-P-450 Linked Plant Enzymes - Salutaridine and Berbamunine. Journal of the Chemical Society-Chemical Communications 1989, 1725-1727.
165. Pickel, B.; Constantin, M. A.; Pfannstiel, J.; Conrad, J.; Beifuss, U.; Schaller, A., An Enantiocomplementary Dirigent Protein for the Enantioselective LaccaseCatalyzed Oxidative Coupling of Phenols. Angewandte Chemie-International Edition 49, 202-204.
166. Mikolasch, A.; Schauer, F., Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Applied Microbiology and Biotechnology 2009, 82, 605-624.
167. El-Seedi, H. R.; Yamamura, S.; Nishiyama, S., Anodic oxidation of 4-methoxy-1naphthol. Tetrahedron Letters 2002, 43, 3301-3304.
168. Takeya, T.; Doi, H.; Ogata, T.; Otsuka, T.; Okamoto, I.; Kotani, E., SnCl4mediated oxidative biaryl coupling reaction of 1-naphthol and subsequent ring closure of 2,2 '-binaphthol to the dinaphthofuran framework. Tetrahedron 2004, 60, 6295-6310.
169. Ogata, T.; Okamoto, I.; Doi, H.; Kotani, E.; Takeya, T., SnCl4-mediated oxidative reaction for formation of binaphthoquinone and dinaphthofuran frameworks and its application to natural product synthesis. Tetrahedron Letters 2003, 44, 20412044.
170. Schwartz, M. A.; Pham, P. T. K., Oxidative Coupling of Cis-3,N-Bis(Methoxycarbonyl)-N-Norreticuline - an Approach to the AsymmetricSynthesis of Morphine Alkaloids. Journal of Organic Chemistry 1988, 53, 23182322.
171. Brussee, J.; Jansen, A. C. A., A highly stereoselective synthesis of $s(-)-[1,1$ '-binaphthalene]-2,2'-diol. Tetrahedron Letters 1983, 24, 3261-3262.
172. Sartori, G.; Maggi, R.; Bigi, F.; Arienti, A.; Casnati, G., Regiochemical Control in the Oxidative Coupling of Metal Phenolates - Highly Selective Synthesis of Symmetrical, Hydroxylated Biaryls. Tetrahedron Letters 1992, 33, 2207-2210.
173. Sartori, G.; Maggi, R.; Bigi, F.; Arienti, A.; Casnati, G., Oxidative Coupling of Dichloroaluminum Phenolates - Highly Selective Synthesis of Hydroxylated Biaryls and Tetraaryls. Tetrahedron 1992, 48, 9483-9494.
174. Still, W. C.; Kahn, M.; Mitra, A., Journal of Organic Chemistry 1978, 43, 2923.
175. Eric Steiner, J. K., Etienne Charollais, Theodore Posternak, 259. Recherches sur la biochimie des champignons inferieurs IX. Synthese de precurseurs marques et biosynthese de la phoenicine et de l'oosporeine. Helvetica Chimica Acta 1974, 57, 2377-2387.

APPENDIX

Figure A1. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3-Bromo-4-hydroxy-5-methoxybenzaldehyde in CDCl_{3}.

Figure A2. $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3-Bromo-4-hydroxy-5-methoxybenzaldehyde in CDCl_{3}.

4

Figure $\mathrm{A} 3.300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 4 9}$ in CDCl_{3}.

Figure A4. $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 4 9} \mathrm{in} \mathrm{CDCl}_{3}$.

Figure A5. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 5 0}$ in CDCl_{3}.

Figure A6. $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 5 0}$ in CDCl_{3}.

Figure A7. 300 MHz 'H NMR of 5-(Benzyloxy)-1-bromo-2,3-dimethoxybenzene in CDCl_{3}.

Figure A8. $\quad 75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 5-(Benzyloxy)-1-bromo-2,3-dimethoxybenzene in CDCl_{3}.

Figure A9. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 5 1}$ in CDCl_{3}.

Figure $\mathrm{A} 10.75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 5 1}$ in CDCl_{3}.

Figure $\mathrm{A} 11.300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 5 2}$ in CDCl_{3}.

Figure A12. $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 5 2}$ in CDCl_{3}.

Figure A13. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.153 in CDCl_{3}.

Figure A14. $300 \mathrm{MHz}{ }^{\mathrm{l}} \mathrm{H}$ NMR of $\mathbf{2 . 1 5 4}$ in CDCl_{3}.

Figure A15. $\quad 75 \mathrm{MHz}{ }^{15} \mathrm{C}$ NMR of $\mathbf{2 . 1 5 4}$ in CDCl_{3}.

Figure A16. 300 MHz 'H NMR of Phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate in CDCl_{3}

Figure A17. $75 \mathrm{MHz}{ }^{15} \mathrm{C}$ NMR of Phenyl 6-hydroxy-3,4-dimethoxy-2-methylbenzoate in CDCl_{3}

Figure A18. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.158 in CDCl_{3}.

Figure A19. $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 5 8}$ in CDCl_{3}.

Figure A20. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.159 in CDCl_{3}.

Figure A21. $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 5 9}$ in CDCl_{3}.

Figure $\mathrm{A} 22.300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 5 6}$ in CDCl_{3}.

Figure A23. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.157 in CDCl_{3}.

Figure A24. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of Phenyl 6-(tert-butoxycarbonyloxy)-3,4-dimethoxy-2methylbenzoate in CDCl_{3}.

Figure A25. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of Phenyl 6-(tert-butyldimethylsilyloxy)-3,4-dimethoxy-2methylbenzoate in CDCl_{3}. .

Figure A26. 400 MHz 'H NMR of 2.160 in CDCl_{3}. .

Figure A27. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.160 in CDCl_{3}. .

Figure A28. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 6 1}$ in CDCl_{3}.

Figure A29. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ of $\mathbf{2 . 1 6 1}$ in CDCl_{3}.

Figure $\mathrm{A} 30.400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 6 4}$ in CDCl_{3}.

Figure $\mathrm{A} 31.400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 6 0}$ in CDCl_{3}.

Figure A 32 . $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ of $\mathbf{2 . 1 6 5}$ in CDCl_{3}.

Figure A33. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 6 6}$ in CDCl_{3}.

Figure A34. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 6 6}$ in CDCl_{3}.

Figure A35. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 5,8,9-trihydroxy-6-methoxy-3,4-dihydroanthracen-1(2H)-one in CDCl_{3}.

Figure A36. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 6 7}$ in CDCl_{3}.

Figure A37. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.168. in CDCl_{3}.

Figure $\mathrm{A} 38.100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.168 in CDCl_{3}. .

Figure A39. 400 MHz 'H NMR of 2.169. in CDCl_{3}

Figure A40. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 6 9}$ in CDCl_{3}.

Figure A41. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 7 0}$ in CDCl_{3}.

Figure A42. $100 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}$ of $\mathbf{2 . 1 7 0}$ in CDCl_{3}.

Figure A43. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 7 1}$ in CDCl_{3}. .

Figure A44. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 7 1}$ in CDCl_{3}. .

Figure A45. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 7 2}$ in CDCl_{3}. .

Figure A46. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 7 2}$ in CDCl_{3}. .

Figure A47. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.176 in CDCl_{3}.

Figure A48. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 7 7}$ in CDCl_{3}.

Figure $\mathrm{A} 49.75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 7 7}$ in CDCl_{3}.

Figure A50. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 7 8}$ in CDCl_{3}.

Figure A51. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 7 9}$ in CDCl_{3}.

Figure A52. $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.179 in CDCl_{3}.

Figure A53. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 8 1}$ in CDCl_{3}.

Figure A54. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 8 2}$ in CDCl_{3}.

Figure A55. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 8 3}$ in CDCl_{3}.

Figure A56. $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.186 in CDCl_{3}.

Figure A57. $150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2} . \mathbf{1 8 6}$ in CDCl_{3}.

Figure A58. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 8 7}$ in CDCl_{3}.

Figure A59. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2} .187$ in CDCl_{3}.

Figure A60. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 8 9}$ in CDCl_{3}.

Figure A61. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 8 9}$ in CDCl_{3}.

Figure A62. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 9 0}$ in CDCl_{3}.

Figure A63. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 9 0}$ in CDCl_{3}.

Figure A64. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of Faster Eluting 2.191 in CDCl_{3}.

Figure A65. $282 \mathrm{MHz}{ }^{19 \mathrm{~F}} \mathrm{~F}$ NMR of Faster Eluting $\mathbf{2 . 1 9 1}$ in CDCl_{3}.

Figure A66. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of Slower Eluting 2.191 in CDCl_{3}.

Figure A67. $282 \mathrm{MHz}{ }^{19 \mathrm{~F}} \mathrm{~F}$ NMR of Slower Eluting $\mathbf{2 . 1 9 1}$ in CDCl_{3}.

Figure A68. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of (aS)-2.192 in CDCl_{3}.

Figure A69. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $(\mathrm{aS})-\mathbf{2} .192$ in CDCl_{3}.

Figure A70. $282 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR of (aS)-2.192 in CDCl_{3}.

Figure A71. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $(a R)-2.192$ in CDCl_{3}.

Figure A72. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $(a R)-2.192$ in CDCl_{3}.

Figure A73. $282 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR of $(a R)-\mathbf{2} .192$ in CDCl_{3}.

Figure A74. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.197 in CDCl_{3}.

Figure A75. $100 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}$ of $\mathbf{2} .197$ in CDCl_{3}.

Figure A76. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 9 8}$ in CDCl_{3}.

Figure A77. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 2.198 in CDCl_{3}.

Figure A78. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 1 9 9}$ in CDCl_{3}.

Figure A79. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 1 9 9}$ in CDCl_{3}.

Figure A80. $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 2 0 1}$ in CDCl_{3}.

Figure A81. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 2 0 1}$ in CDCl_{3}.

Figure A82. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 2 0 2}$ in CDCl_{3}.

Figure A83. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 2 0 2}$ in CDCl_{3}.

Figure A84. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 2.203 in CDCl_{3}.

Figure A85. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{2 . 2 0 3}$ in d_{6}-Benzene.

Figure A86. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{2 . 2 0 3}$ in CDCl_{3}.

Figure A87. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of (aS)-2.204 in CDCl_{3}.

Figure A88. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of (aS)-2.204 in CDCl_{3}.

Figure A89. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $(a R)$-2.204 in CDCl_{3}.

Figure A90. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $(a R)-\mathbf{2} .204$ in CDCl_{3}.

Figure A91. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.38 in CDCl_{3}.

Figure A92. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3.38 in CDCl_{3}.

Figure A93. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.39 in CDCl_{3}.

Figure A94. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3.39 in CDCl_{3}.

Figure A95. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of $\mathbf{3 . 4 0}$ in CDCl_{3}.

Figure A96. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3.40 in CDCl_{3}.

Figure A97. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.41 in CDCl_{3}.

-154.20
-141.59
-132.62
-110.75
-97.71
-55.66
-12.82

Figure A98. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 3.41 in CDCl_{3}.

Figure A99. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.47 in CDCl_{3}.

Figure A100. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 . 4 7}$ in CDCl_{3}.

Figure A101. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.48 in CDCl_{3}.

Figure $\mathrm{A} 102.100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 . 4 8}$ in CDCl_{3}.

Figure A103. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.49 in CDCl_{3}.

Figure A104. $100 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}$ of $\mathbf{3 . 4 9}$ in CDCl_{3}.

Figure A105. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.51 in CDCl_{3}.

Figure A106. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 3.52 in CDCl_{3}.

Figure A107. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of $\mathbf{3 . 5 2}$ in CDCl_{3}.

Figure A108. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.8 in CDCl_{3}.

Figure A109. $100 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR}$ of 4.8 in CDCl_{3}.

Figure A110. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.9 in CDCl_{3}.

Figure A111. $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 4.9 in CDCl_{3}.

Figure A112. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.11 in CDCl_{3}.

Figure $\mathrm{A} 113.100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 4.11 in CDCl_{3}.

Figure A114. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.12 in CDCl_{3}.

Figure $\mathrm{A} 115.100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 4.12 in CDCl_{3}.

Figure A116. $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR of 4.13 in CDCl_{3}.

Figure $\mathrm{A} 117.100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR of 4.13 in CDCl_{3}.

