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CHAPTER I 

 

INTRODUCTION 

 

Background 

Serotonin (5-HT) is a neuromodulator that is involved in a variety of behaviors, 

including mood, sleep, pain, appetite, aggression, and sexual behavior 1-3.  5-HT is 

synthesized by a subset of neurons in the central nervous system that have cell bodies 

located in the dorsal raphe nucleus.  These serotonergic neurons project widely 

throughout the brain and spinal cord to secrete 5-HT from axon terminals and 

varicosities4-6.  Released 5-HT binds to at least fifteen distinct G-protein-coupled 

receptors (GPCRs, e.g. 5-HT1A, 5-HT7) and one ionotropic receptor (5-HT3) to exert its 

effects on neuronal excitability 3,5,6.  Serotonin GPCRs are localized both pre- and post-

synaptically and mediate a multitude of neuronal functions including inhibition of 

transmitter release by coupling to voltage-gated and inwardly rectifying K+ channels 

and modulation of post-synaptic excitability stimulation of intracellular signaling 

cascades through activation of adenylyl cyclase and phospholipase Cβ 3.  

5-HT may be cleared by diffusion, enzymatic degradation, or the action of a Na+- 

and Cl--dependent plasma membrane serotonin transporter 7,8.  Among these 

mechanisms the latter is dominant, as evidenced by the effects of transport blockers on 

serotonergic signaling and neurotransmission 9-11.  In some brain regions, 5-HT diffuses 

to sites distant from its release; serotonergic neurotransmission is therefore not 

bounded by temporal and spatial constraints of a synaptic architecture that are 

characteristic of fast glutamatergic and GABA-ergic synapses 12.  Dopamine, and 

perhaps other biogenic amines, is released from dendrites by the dopamine transporter 

(DAT) operating in reverse 13, in contrast to the accepted model of transmitter release by 

secretion from synaptic vesicles.  The activity of neurotransmitter transporters is 

therefore central to shaping responses at target metabotoropic receptors 12,14. 
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Antidepressants and serotonin-selective reuptake inhibitors (SSRIs) block SERT 

activity and increase extracellular 5-HT concentrations 6,11,15-17.  These drugs are useful 

for the treatment of human disease (depression, obsessive-compulsive disorder, bulimia 

and eating disorders, anxiety and panic disorders, postanoxic intention myoclonus, 

alcoholism, and premenstrual dysphoric disorder) 18-22.  Although transporter inhibition 

is the proximal event in antidepressant action, the clinical benefit of antidepressant 

medications requires weeks of continuous dosing, indicating that their mechanism of 

action involves events downstream from acute transporter blockade 6,23.  Long-term 

effects of SSRI treatment may be due to changes in intrinsic properties of SERT 

structure, function, or regulation.  Thus, understanding SERT function and 

pharmacology remains a primary goal in the search to develop of novel treatments for 

diseases associated with serotonergic dysfunction. 

SERT is also a receptor for psychostimulant drugs with abuse potential such as 

3,4-methylenedeoxymethamphetamine (ecstasy, MDMA), d-amphetamine (AMPH), 

and cocaine 24-29.  In contrast to the antidepressants and cocaine, which are non-

transported SERT ligands, psychostimulant drugs serve as alternative substrates that 

compete with 5-HT for transport 28,30-36.  Cocaine also blocks DAT to cause a prominent 

hyperlocomotory response 29,37-39.  However, cocaine exerts non-locomotor behavioral 

effects even in mice lacking functional DAT 40, indicating that inhibition of 5-HT 

transport also plays a role in its mechanism of action 41-43. 

SERT function is well-studied in platelet vesicle and brain synaptosomal 

preparations.  5-HT transport requires extracellular Na+ and to a lesser extent Cl-, is 

stimulated by intracellular K+ or H+, and depends on 5-HT concentration with apparent 

Michaelis-Menten type kinetics 44-49.  The effect of Na+, K+–ATPase inhibitors (i.e. 

oubain) and ATP depletion on 5-HT transport is indirect, since these treatments deplete 

the ion gradients (primarily Na+) that are required for 5-HT accumulation 17,45,50.  A 

classical model of 5-HT transport postulates ion:substrate coupling due to fixed 

stoichiometric transport of 5-HT and other ions.  Depending on predicted 

stoichiometry, classical models result in the net movement of zero or 1 elementary 
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charge (e) into the cell per 5-HT molecule 45,48,49,51. Classical transport models therefore 

predict little or no current to be generated during the transport process. 

Electrophysiological studies in a native preparation suggest that the classical 

model does fully describe the properties of the 5-HT transport system in situ.  In 

identified serotonergic neurons of the leech Hirudo, 5-HT induces a current that is a) 

Na+- and voltage-dependent, b) rapidly activated in response to stimulation of 

presynaptic 5-HT release, c) correlated with presynaptic 5-HT uptake, and d) inhibited 

by SERT-selective antidepressants 52.  The 5-HT-induced current in Hirudo is therefore 

attributed to an as yet unidentified leech SERT and suggests that SERTs may generate 

substantial ion currents concomitant with 5-HT transport in other systems.  These 

findings reinforce the notion that neurotransmitter transporters play a centrally 

important role in serotonergic neurotransmission because of their ability to modulate 

synaptic physiology both electrically and chemically. 

Identification, cloning, and expression of transporter genes has enabled the 

identification of amino acid residues that are important for transporter structure and 

function.  cDNAs encoding a mammalian neurotransmitter transporters were first 

identified for the rat γ-aminobutyric acid transporter 1 (rGAT1) and human (-)-

norepinephrine transporter (hNET) 53,54.  Mammalian rat (rSERT) and human (hSERT) 

serotonin transporters subsequently identified by homology to GAT and NET 

sequences 27,55-57, helped to define the GAT/NET family of neurotransmitter 

transporters.  GAT/NET family cDNA sequences encode carriers for neurotransmitters, 

solutes, amino acids, as well as orphan transporters with no known function 11,15,58-68.  

Hydropathy analyses of primary amino acid sequences predict that GAT/NET 

transporters share a predicted topology containing 12 putative α-helical transmembrane 

domains (TMDs) that are joined by loop regions of unknown structure; amino- and 

carboxy-termini are intracellular in these models (Fig. 1) 53-55,69. 

Heterologous expression of transporter cDNAs enables identification of amino 

acid residues that are important for tertiary and quaternary structure, ligand 

recognition, and transport mechanisms.  Transfection of cDNA encoding SERT into 
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Figure 1.  Predicted transmembrane topology for mammalian SERTs. 
Shaded cylinders represent twelve putative transmembrane-spanning segments (TMDs);
glycosylation sites in the large extracellular loop 2 are indicated by branched structures.  
Relative positions of mutations (D98G, C109A) utilized in this study are indicated by 
arrows. 
malian cells is sufficient to impart 5-HT transport activity that recapitulates many 

e hallmark properties seen in brain and platelet preparations: potent activation by 

, Na+- and Cl--dependence, and cocaine and antidepressant sensitivity 27,45,55,57.  Rat 

RT) and human (hSERT) serotonin transporters share 92% overall amino acid 

ence identity; of the divergent residues, half are localized to the putative 

cellular tail regions and only 14 substitutions are located within predicted TMD 

es 27,55-57. 

rSERT and hSERT exhibit similar dependencies for 5-HT and ions and relatively 

le differences in inhibitory potency for antidepressants and psychostimulants, 

esting that transmembrane regions are likely to be integral ligand recognition 70-73.  

nd binding is similarly localized to discrete TMD regions in related catecholamine 

porters 74-76.  Mutation of the few TMD residues that are divergent in otherwise 

erved SERT sequences has proven fruitful for identifying of substrate and inhibitor 
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binding sites.  Single residue switches confer differences in antidepressant potency 

between hSERT and rSERT 70 and hSERT and dSERT 72. 

Residues implicated in 5-HT translocation and gating have also been identified.  

For example, an aspartate in putative TMD1 that is conserved among biogenic amine 

transporters is required for transporter function: when rSERT (Asp98) or hNET (Asp75) 

are mutated, transport activity is severely compromised or ablated 77.  The loss in 

transport activity is not paralleled by commensurate decreases in plasma membrane 

localization, indicating that the mutation interferes with ligand recognition and catalytic 

activity 77.  Application of an alternative substrate (gramine) rescues the effect of the 

Asp98 to Glu mutation in rSERT, arguing that TMD1 directly contacts 5-HT 77.  A role 

for TMD1 in substrate recognition is also supported by a recent mutagenesis screen 78.  

Cysteine mutagenesis and MTS reagent reactivity studies and single-channel 

biophysical investigation of SERT currents also implicate TMDs 3 and 7 in 5-HT 

recognition and transporter gating 79-82. 

In general, transport studies of cloned SERTs are consistent with the a classical 

model possessing fixed ion:substrate stoichiometry 27,55,57,83-85.  SERT pharmacology 

measured in brain and platelet preparations exhibits subtle but potentially important 

differences to that seen transfected mammalian cells.  Although 5-HT potency ranges 

from 50 nM to 1 µM in various different preparations, KM values tend to be significantly 

lower in brain synaptosomal preparations than in transfected cells or vesicles 86-90. 

Heterologous expression permits investigation of transporter function using 

voltage clamp to control membrane voltage and is therefore inherently suited to the 

study of electrically active proteins such as transporters and ion channels that bind and 

catalyze the transmembrane flux of charged ionic and molecular substrates.  Indirect 

approaches for estimating ion:substrate stoichiometry (i.e. ion substitution experiments 

or by addition of ionophores to alter plasma membrane ion gradients) yield variable 

conclusions for the magnitude of SERT-associated charge movement 17,44,45,47-49,51,84,91,92.  

Biophysical studies of GAT/NET transporters have been largely confined to intact host 

cell membranes, raising the possibility that studies in cells versus vesicles and 
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synaptosomes may come to different conclusions regarding ion:substrate stoichiometry 

and transporter-associated currents.   

Experimentally, the function of expressed GAT/NET transporters deviates from 

the classical model’s expectation of fixed ion:substrate stoichiometry, viz., for each 

neurotransmitter molecule transported, tens to hundreds of elementary charges (e) 

move through the transporter. Large (- 30 pA to –50 pA at –120 mV) 5-HT-induced and 

antidepressant-sensitive currents are recorded in HEK-293 cells expressing hSERT 87.  

hNET and rGAT1 generate similar sized currents in transfected cells 93,94.  Large SERT 

currents are also seen in Xenopus laevis oocytes 95-98.  Transport and current exhibit 

similarities in ion, substrate, and inhibitor sensitivities, suggesting that ligand 

recognition and activation mechanisms for substrate-induced currents and substrate 

transport functionally linked 77,87,93,98,99. 

In addition to substrate-induced current, GAT/NET transporters generate a 

constitutive current (also termed leak current or slippage) in addition to both capacitive 

and resistive non-steady-state currents 94-98,100.  Transporter-mediated ion channel 

activity, evidenced by single-channel currents or current fluctuations attributable to 

channel noise, is reported for rGAT1, hNET, and rSERT 82,101,102, suggesting that large 

macroscopic transporter currents are generated by ion channel activity 103-105.  Channel-

like conductances may therefore represent a conserved mechanism among members of 

the GAT/NET gene family that explains currents in excess of predictions based on fixed 

stoichiometry 98,103-105. 

However, large transporter-associated currents and channel-like activity are not 

universally observed.  Currents consistent with classical transporter models are 

reported for rGAT1 106-108 and rPROT 109.  In the face of conserved sequence in the 

GAT/NET family that would suggest similar structure and function, the apparent 

discrepancies in the literature regarding ion fluxes in excess of transmitter flux are 

puzzling.  Variable stoichiometry and excess current may therefore depend on as yet 

unidentified factors.  Heterologous expression systems that are commonly used to 

study transporter function could yield disparate results if they fail to fully reconstitute 
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interactions between expressed transporters and other proteins or cellular factors that 

alter transporter function. 

Indeed, GAT/NET transporters are known to associate with proteins that alter 

their function and subcellular distribution110-112.  For SERT, changes in 5-HT transport, 

5-HT-induced current, and plasma membrane transporter density are associated with 

protein kinase C (PKC) activation, SERT phosphorylation, and ligand occupancy 87,113-

116.  GAT/NET transporters form regulated complexes with Protein phosphatase 2A 

(PP2A) and Syntaxin 1A 111.  The PDZ-containing protein PICK-1 associates with 

catecholamine transporters and governs their distribution in neurons 112.  PKC and 

syntaxin 1A both interact with rGAT1 to control transporter trafficking and intrinsic 

activation by substrate 110,117,118.  Associated proteins in heteromeric transporter 

complexes are therefore appropriately situated to regulate other aspects of GAT/NET 

transporter function.  Allosteric interactions between subunits of an oligomeric SERT 

complex 119 and between binding sites for different SERT ligands 120 may provide 

additional means for functional modulation of transporter activity 121-123.  The extent to 

which neurotransmitter transporters function as channels versus transporters may 

therefore depend on a variety of factors that interdependently affect transporter 

function. 

The multi-subunit structural paradigm is well established for voltage- and 

ligand-gated ion channels 124-131.  Channel activity in GAT/NET transporters suggests 

that that they may also form a multisubunit structure.  Although the functional 

relevance of oligomerization for neurotransmitter transporter physiology remains 

unknown, evidence from a variety of experimental approaches supports the idea that 

GAT/NET transporters form functional oligomeric protein complexes. 

1) Epitope-tagged SERTs are co-immunoprecipitated from transiently transfected 

HeLa cells, indicating that SERTs form an SDS-stable oligomer 119.  Furthermore, co-

expression of MTSEA-sensitive or -insensitive mutants exhibit alters the degree of 

MTSEA inhibition, indicating that interactions between individual SERT proteins 

residing on the plasma membrane can modulate transporter function 119. 
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2) Fluorescent resonance energy transfer (FRET) is observed in HEK-293 and 

HeLa cells transiently expressing SERT-GFP fusion proteins 132.  SERT proteins are 

therefore constitutively localized in close physical proximity 132.  SERT- GFP 

fluorescence elutes with large molecular weight fractions (320 - 800 kDa), suggesting 

that SERT is part of a large complex or SERT oligomer 132. 

3) SERT proteins can be chemically cross-linked, indicating that they lie in close 

proximity, as would be expected for an oligomeric protein structure 133. 

4) 5-HT transport is susceptible to trans-dominant inhibition when mSERT is co-

expressed with transport-incompetent transmembrane deletion mutants in COS-1 cells 
134.  Expression of concatenated mSERT cDNAs leads to transport properties (Vmax, KM) 

that are unchanged for the dimeric construct whereas the tetramer exhibits a 90% 

decrease in Vmax (no change in KM) and the trimer is inactive 134. 

5) Partially purified SERT binding activity from human placenta tracks with a 

protein of ~300 kDa 135, about 4 times larger than the 68 kDa expected from the deduced 

amino acid sequence of mammalian SERT cDNA clones 27,55,57.  Other studies have 

arrived at either similarly large estimates 136,137 or sizes expected for a SERT monomer 
138,139 depending on the purification strategy and tissue source used. 

6) Radiation-induced loss of radioligand binding to hDAT indicates a target size 

of dimeric (~140 kDa, 140) or tetrameric size (~280 kDa, 141). 

7) Discrete immunoreactive bands of ~200 kDa in size are seen in Western blots 

from rat platelets and HeLa cells transiently expressing rSERT 142.  One possible 

explanation is that rSERT exists as an oligomer in the plasma membrane and SDS-

resistant oligomers result from membrane solubilization. 

8) 5-HT and SERT inhibitors slow the dissociation rate of previously bound [3H]-

imipramine and 143-146, consistent with allosteric interactions between multiple SERT 

binding sites.  Furthermore, [3H]-imipramine binding exhibits distinct affinity states, 
122,147,148 that could be due to inter-subunit interactions in a SERT oligomer. 

Despite nearly 30 years of study, the availability of an arsenal of selective and 

clinically effective pharmacological agents, and molecular cloning of transporter 
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cDNAs, many fundamental aspects of neurotransmitter transporter biology remain 

unclear at the molecular level.  For example, what mechanisms govern variable 

ion:substrate stoichiometry in GAT/NET transporters?  Do interactions between 

subunits of an oligomeric SERT protein complex affect 5-HT transport or 5-HT-induced 

current under physiological conditions?  What are the functional ramifications of 

transporter oligomerization?  This dissertation addresses these questions in detail.  Our 

results contradict expectations based on simple models of transporter function and lead 

us to conclude that SERT function is described by cooperative interactions between 

subunits of the SERT oligomer and another cellular factor.  We present a novel 

integrated model of SERT structure and function to describe our findings.  These 

conclusions may lead to the development of novel therapies for the treatment of 

diseases where SERT dysfunction or dysregulation is implicated. 
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Research Design 

Our primary goal is to determine whether subunits of the oligomeric SERT 

complex exhibit functional cooperativity.  We have designed our experiments to 

measure intrinsic properties of SERT function.  By utilizing functional assays in intact 

membranes of living cells, we minimize the possibility that artifacts inherent to purely 

biochemical approaches influence our conclusions.  Our approach utilizes two different 

heterologous expression systems to express recombinant SERT protein.  We exploit 

functional differences between wild-type SERT and previously reported SERT mutants 

in co-expression studies to assay for functional interactions.  We also deliberately alter 

SERT expression level by varying the quantity of cDNA in transfections or cRNA in 

oocyte injections. 

In order to test for SERT functional cooperativity, we employ the following 

logical arguments: 

1) For SERTs that function independently, we predict that functional properties 

in co-expression studies are predicted by the sum of individual responses determined 

from individual expression. 

2) Simple models of transporter function based on independent function allow us 

to generate expectations for functional properties in heterologous expression studies. 

3)  Ratiometric measurements of SERT activity allow us to identify SERT 

properties that are independent of expression level. 

In our design, the null hypothesis is that the data conform to the expectations of a 

simple model based on independent behavior.  Deviation from the null hypothesis 

suggests functional complexity that may be result from allosteric cooperativity.  The 

presence of novel phenotypes in response to co-expression or varying expression level 

thus argues strongly for the presence of allosteric interactions between different SERT 

functional units or between SERT and other factors. 

 The primary limitation in our approach therefore lies in the quality of the 

primary data: if properties of wt and mutant SERTs are not significantly different when 

measured individually, we will not be able to discriminate differences from our 
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predictions following co-expression.  A strength of the experimental design is the use of 

multiple different approaches to test for functional cooperativity.  By focusing our 

efforts on SERT properties that exhibit obviously different phenotypes, we mitigate 

against the possibility of making erroneous conclusions from spurious data. 
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CHAPTER II 

 

METHODS 

 

CHO-K1 Cells 

Molecular Biology.  The rat SERT cDNA in the pcDNA3 vector was used as the 

template for site-directed mutagenesis to create rSERT C109A using the Quick Change 

Mutagenesis kit (Stratagene) and the following synthetic oligonucleotide primers 

(Vanderbilt Molecular Biology Core Facility):  

sense: 5’-CGGTTTCCTTACATAGCCTACCAGAATGGCGGA-3’  

antisense: 3’-GCCAAAGGAATGTATCGGATGGTCTTACCGCCG-5’  

Three independent C109A mutant clones were subjected to analytical digestion and 

automated DNA sequence analysis (Prism 310, ABI Instruments) for confirmation, and 

two clones were selected for expression in mammalian cells.  No difference between the 

two independent clones is seen in functional assays.  cDNAs encoding the human 

serotonin transporter (hSERT), rat serotonin transporter (rSERT), rSERT D98G point 

mutant (D98G), human (-)-norepinephrine transporter (hNET), rat brain-specific proline 

transporter (rPROT), frog (-)-epinephrine transporter (fET), and rat GABA transporter 1 

(rGAT1) in pcDNA3 vector were generously provided by R. D. Blakely (Vanderbilt 

University Medical Center).  The “flip” splice variant of the AMPA-type ionotropic 

glutamate receptor D (GluR4-flip) in pRK-5 was kindly provided by S. Sikes (D. 

Lovinger laboratory, Vanderbilt University Medical Center).  CD8 cDNA was provided 

by J. P. Johnson (P. Bennett laboratory, Vanderbilt University Medical Center). HA-

tagged alpha 2A adrenergic receptor (HA-α2AR) cDNA in pcDNA3 was supplied by C. 

Tan (L. Limbird laboratory, Vanderbilt University Medical Center).  pEGFP-N1 is from 

Clontech. 

Plasmids containing wild-type or mutant cDNAs are prepared using standard 

methods.  XL1-Blue or DH5α strains of E. Coli are grown in LB or NZY medium under 

carbenicillin (50 mg/ml) or kanamycin (100 mg/ml, pEGFP-N1 only) selection.  
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Plasmid DNA is isolated from bacterial lysates using QiaSpin Mini or QiaFilter Maxi 

columns (Qiagen).  All DNA preparations are subjected to restriction digest to confirm 

plasmid integrity and spectrophotometry at 260 nm and 280 nm to determine DNA 

concentration and purity.  DNA is stored at –20°C and diluted in sterile water to 

appropriate concentrations on the day of transfection. 

Transient transfection of CHO-K1 cells.  CHO-K1 cells (American Type Culture 

Collection) are grown in culture with Ham’s F-12 culture medium (Life Technologies) 

supplemented with 10% FBS (Hyclone Laboratories) and 10 Units/ml Penicillin-

Streptomycin (Life Technologies) and seeded at a density of ~1x104 cells/well in 48-well 

tissue culture plates 24 hours prior to transfection.  The culture medium is removed and 

replaced with serum-free medium (Opti-MEM, Life Technologies, 0.5 ml/well) 

immediately prior to transfection.  Lipofectamine (Life Technologies) is mixed with 

cDNA (diluted in Opti-MEM according to manufacturer’s directions) such that each 

well receives a total of 1µl Lipofectamine and 400 ng total cDNA.  F-12 medium 

containing serum (0.5 ml/well) is added 6-10 hr. after initiation of transfection, and cells 

are allowed to grow for another 12 hr. before being used for transport assays. 

Expression of marker proteins.  Transfected CHO-K1 cells are lifted from wells by 

trypsinization (2 min. at 24°C, 0.05% trypsin, 0.5 mM EDTA, Life Technologies), 

centrifuged (500 x g, 5 min.), and resuspended in Na-KRH.  CD8 expression is assayed 

by incubating cell suspensions (2 ml) with anti-CD8 beads (5 µl Dynabeads M-450 CD8, 

Dynal Biotech) with gentle agitation (5 min., 24°C).  Cells suspensions are aliquoted 

onto glass coverslips and allowed to adhere (10 min., 24°C), then gently washed with 

Na-KRH to remove unbound beads.   Cells are visually scored for adherent beads under 

20X magnification on an inverted microscope).  EGFP expression is performed similarly, 

except bead incubation is omitted and cells are assayed for green fluorescence using 

mercury vapor illumination and a FITC filter cube (EM-2, Olympus).   

[3H]-5-HT transport.  Wells containing transiently transfected CHO-K1 cells are washed 

with 2 x 0.5 ml Krebs-Ringer’s-HEPES (KRH) buffer (120 mM NaCl, 1.3 mM KCl, 2.2 

mM CaCl2, 1.2 mM MgSO4, 1.2 mM KH2PO4, 10 mM HEPES, 10 mM glucose, 100 µM 
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pargyline, and 100 µM ascorbic acid, pH 7.4 at 24°C).  Cells are washed 2 times with 

KRH (0.5 ml/well) to remove growth medium and KRH is replaced (180 µl/well).  Cells 

are preincubated in KRH (10 min. at 24°C) containing indicated drugs.  In Na+-

substitution experiments, NaCl is isotonically replaced by choline-Cl, N-methyl-D-

glucamine-Cl (NMDG), or LiCl to make choline-KRH, NMDG-KRH, or Li-KRH, 

respectively.  Assays are initiated by addition of [3H]-5HT (Amersham, 25 nM final 

concentration) and incubated for 2-16 min., as indicated, at 24°C.  Assays are terminated 

by rapid aspiration of the medium followed by 3 x 0.5 ml washes with ice-cold KRH.  

Following aspiration of the final wash, 1% SDS (200 µl/well) is added to each well and 

the cells solubilized by orbital shaking (0.5-1 hr.).  Cell extracts are added to scintillation 

vials containing 3.5 ml Ecoscint H (National Diagnostics) and incorporated [3H] 

radioactivity is counted by liquid scintillation spectrometry and automatically 

converted to [3H]-DPM (1600 TS, Beckman Instruments).  Nonspecific 5HT transport is 

defined with citalopram (10 µM) or substitution of Na-KRH with NMDG-KRH as 

indicated.  Data represent mean ± SEM from 3 replicate wells unless otherwise 

indicated. 

[3H]-GABA transport.  Cells are assayed for GABA transport exactly as for 5-HT 

transport except that [3H]-GABA (New England Nuclear, 25 nM final concentration) 

was added to wells containing cells. 

Inhibition by MTS reagents.  Cell are washed with Li-KRH (2 x 0.5 ml) and 

preincubated in Li-KRH (180 µl/well) for 10 min, 24°C.  MTSET (25 mM) or MTSEA 

(0.25 mM) is freshly diluted in Li-KRH to 10X final concentration and immediately 

added to reaction wells (20 µl/well) containing Li-KRH (180 µl/well).  The reaction is 

terminated at the indicated time by addition of excess Na-KRH (0.5 ml/well) followed 

by rapid aspiration and replacement with fresh Na-KRH (0.5 ml/well).  Control cells 

are washed with Li-KRH and incubated for 15 min. in the absence of MTSEA (0.25 mM) 

or MTSET (2.5 mM).  Preincubation in Li-KRH alone does not affect subsequent 5-HT 

transport measurements in Na-KRH (data not shown). 
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Xenopus laevis oocytes 

Molecular biology.  Plasmid vectors containing cDNA inserts downstream of a T7 

promoter sequence are used for production of RNA for oocyte injection.  cDNA 

encoding the human serotonin transporter in pOTV vector (hSERT) was a kind gift of 

M. Sonders, Vollum Institute).  rSERT and D98G (in pBS II SK-, Stratagene) were 

generously provided by R. Blakely (Vanderbilt University Medical Center).  cDNA 

templates are linearized by Not I digestion.  ZH4IR was a gift of F. Bezanilla (UCLA).  

Linear cDNA is precipitated by addition of 2 volumes 100% ethanol and 0.5 volumes 

3M sodium acetate, pH 5.2 and overnight incubation at –20ºC.  In vitro transcribed RNA 

(cRNA) is produced according to manufacturer’s instruction (T7 mMessage mMachine, 

Ambion) and precipitated by the LiCl method.  After precipitation, cRNA is diluted to 

1.0 mg/ml with sterile water and stored at –80°C until use.  Human serotonin 

transporter cDNA in pOTV vector (hSERT) was a gift of Mark Sonders (Vollum 

Institute).   

cRNA injection.  Oocytes are isolated as described previously 95 and incubated in frog 

Ringer’s (96 mM NaCl, 2 mM KCl, 4 mM MgCl2, 0.6 mM CaCl2, 5 mM HEPES, 100 µM 

pargyline, and 100 µM ascorbic acid, pH 7.6 at 24°C, 195-205 mOsm).  cRNA is diluted 

with sterile water to appropriate concentrations and stored on ice on the day of 

injection.  Oocytes are injected (Nanoject, Drummond Scientific) with 41.4 nl cRNA 

solution and incubated in culture medium (frog Ringer’s supplemented 5% dialyzed 

horse serum (Hyclone Laboratories), 100 µg/ml streptomycin, 50 µg/ml tetracycline, 

550 µg/ml sodium pyruvate (Sigma) for 2-18 days at either 18ºC or 24ºC, as indicated.  

Due to time-, temperature-, and oocyte batch-dependent variability in SERT expression 

profiles (see Figs, 9, 10), we routinely compare measurements functional measurements 

between different oocytes from the same batch.  Experiments are repeated at least twice 

in separate oocyte batches to confirm the reproducibility of our findings. 

[3H]-5-HT transport.  Oocytes are washed once in 10 ml frog Ringer’s and preincubated 

in 180 µl/well frog Ringer’s (10 min. at 24°C) with or without added inhibitors.  Assays 

are initiated by addition of [3H]-5-HT (12-30 nM final concentration) in a volume of 200 

 15 
 



 

or 500 µl and are allowed to proceed for the indicated time at 24°C.  For 5HT 

concentration-dependent kinetic studies, [3H]-5-HT (30 nM) is supplemented with non-

radiolabeled 5-HT to the indicated final concentration.  In competition studies, 5-HT 

and AMPH are added 3 min. prior and cocaine and paroxetine are added 10 min. prior 

to initiation of the assay.  Reactions are terminated by 3 x 2 ml washes in ice-cold frog 

Ringer’s and incorporated [3H] radioactivity is determined as described.  The final wash 

is aspirated and incorporated [3H] radioactivity is determined as described.  Non-

specific [3H]-5-HT accumulation is defined in non-injected oocytes and is not 

significantly different from that measured in the presence of 10 µM citalopram or 10 µM 

cocaine (data not shown).  Data represent mean ± SEM from at least 3 replicate oocytes 

unless otherwise indicated. 

Two-electrode voltage clamp.  Oocytes are impaled with glass microelectrodes (A-M 

systems) containing 3M KCl (1-3 MΩ resistance) and whole-cell two-microelectrode 

voltage clamp (TEVC) is achieved using a Geneclamp 500 amplifier (Axon Instruments, 

Foster City, CA.  A Digidata 1200 A/D converter (Axon) interfaced to a PC computer 

running Clampex 7 software (Axon) is used to control membrane voltage and for data 

acquisition.  Resting membrane potentials are between -20 mV and -60 mV, depending 

on cRNA injected and incubation conditions.  Oocytes are voltage clamped at –80 mV 

and holding currents are between -10 nA and –90 nA.  In order to discriminate 5-HT-

induced current from current carried by 5-HT itself (labeled I5-HT in 95), we employ the 

following nomenclature for the current induced by 5-HT: I(5-HT) = [I(10 µM 5-HT)] – [I(Control)].  

I(5-HT) is elicited by superfusion of frog Ringer’s (~2 ml/min) containing 5-HT (0.32 - 32 

µM) at pH 7.6 or pH 5.0, 24°C, as indicated.  For some experiments conducted at pH 5.0, 

methanesulfonate (5 mM) is included in the Ringer’s solution; H+ potentiation of I(5-HT) 

was not different under these conditions.  Data were low-pass filtered at 0.5 kHz and 

digitized at 1 kHz; baseline currents are subtracted offline and digitally sampled at 10 

Hz for graphical presentation.  For voltage ramps, oocytes are clamped at –40 mV, and 

subjected to the indicated voltage protocol in the absence and presence of 5-HT (10 µM).  
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Data are low-pass filtered at 1-2 kHz and digitized at 2-5 kHz, offline subtracted, and 

digitally sampled at 100 Hz for presentation using Origin 5.0 (Microcal). 

Charge/transport ratio (ρ).  Voltage-clamped oocytes are superfused with Ringer’s 

containing 5-HT (3.2 µM) and [3H]-5-HT (30 nM) for 1 or 2 min at 24°C.  Oocytes are 

washed and incorporated [3H] radioactivity is determined as described.  Q5-HT is 

calculated assuming a valence of +1e for 5-HT.  Currents are baseline-subtracted and 

integrated offline (Origin) to determine total net charge movement (Q(5-HT)) and ρ is 

calculated for each oocyte from the quotient of Q5-HT and Q(5-HT) (Eqn. 2)  Specific 5-HT 

transport and charge movements are defined by subtracting responses in non-injected 

oocytes of the same batch from those in SERT cRNA-injected oocytes. 

Western Blotting.  An equal number of oocytes from each cRNA injection (typically 20-

30) are washed with ice-cold frog Ringer’s and incubated with 1.0 mg/ml EZ-Link 

Sulfo-NHS-biotin (Pierce) in with ice-cold frog Ringer’s with gentle agitation for 60 min.  

Oocytes are incubated for 60 min. in ice-cold frog Ringer’s containing 100 mM glycine, 

washed twice, and stored at –80°C until further use (< 1 month).  After thawing on ice, 

oocytes are solubilized as previously described 149 with minor modifications.  Briefly, 

oocytes are incubated with lysis buffer (150 mM NaCl, 10 mM Tris-HCl, pH 7.4 @ 24°C, 

1 mM EDTA, 1% Triton X-100, 1 µg/ml aprotionin, 1 µg/ml leupeptin, 1 µM pepstatin 

and 250 µM phenylmethylsulfonyl fluoride, 20 µl/oocyte) for 10 min on ice.  Extracts 

are triturated with a pipette until smooth, allowed to sit for 15 min. on ice, and 

centrifuged (15,000 x g, 15 min.) to pellet insoluble yolk material.  The supernatant is 

removed and an aliquot saved for determination of total protein using the BCA Reagent 

(Pierce).  Immunopure Immobilized Streptavidin beads (Pierce) are washed by 

centrifugation with lysis buffer (3 x 0.5 ml) and the final bead pellet resuspended to ~ 

2X bead volume with lysis buffer.  Oocyte extracts are incubated with 50 µl streptavidin 

bead slurry for 60 min., 24oC with rocking, then centrifuged for 10 min. at 15,000 x g, 

4°C.  The supernatant (intracellular fraction) is saved and the pellet (surface fraction) 

washed twice with 1 ml ice-cold lysis buffer.  Streptavidin beads are incubated with 40 

µl 4X loading buffer (62.5 mM Tris-HCl, pH 7.0, 10% glycerol, 2% SDS, 0.05% 2-
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mercaptoethanol) for 30 min. at 24°C to elute biotinylated proteins and the entire 

sample is loaded in a single lane for SDS-PAGE in 10% acrylamide slab gels.  For 

intracellular fractions, we load 25 µg /lane total protein (5% of the total extract).  

Proteins are transferred to Immobilion-P membranes (Millipore) overnight (4°C) and 

washed three times with PBS-T (phosphate-buffered saline, 0.1% Tween-20, 0.5 g/ml 

nonfat dry milk powder) for 15 min, 24°C.  Blots were incubated for 60 min. at 24°C 

with anti-hSERT mouse monoclonal antibody ST51-2 (MAb Technologies) diluted 

1:2,000 in PBS-T, then washed three times with PBS-T (15 min.) before incubation with a 

peroxidase-conjugated AffiniPure Goat anti-mouse antibody (Jackson 

ImmunoReasearch) diluted 1:20,000 in PBS-T for 60 min. at 24°C.  Immunoreactive 

proteins are detected using the Renaissance Western Blot Chemiluminescence Reagent 

Plus (NEN Life Science Products) and Hyperfilm XL (AmershamPharmacia) per 

manufacturer’s instructions.  Exposed film is scanned (Duoscan T1200, Agfa) and 

quantified using Quantity One densitometry software (Bio-Rad). 
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Chapter III 

 

Results 

 

Heterologous expression of mammalian SERTs in an immortalized cell line 

The Chinese hamster ovary cell line (CHO-K1) is devoid of endogenous 5-HT 

transport activity, making it a suitable host for heterologous expression of recombinant 

serotonin transporter (SERT).  Although parental CHO-K1 cells accumulate 5-HT at a 

low rate (Na-KRH, 2.1 ± 0.1 fmol/min./well, data not shown), this activity is 

independent of Na+ (NMDG-KRH, 2.1 ± 0.1 fmol/min./well, data not shown) and 

insensitive to blockade by addition of the antidepressant SSRI citalopram (Na-KRH + 10 

µM CIT, 1.9 ± 0.2 fmol/min./well, data not shown).  We therefore define specific 5-HT 

transport (Φ5-HT) in CHO-K1 cells as that which is blocked by addition of 10 µM CIT or 

substitution of Na+ with NMDG+. 

Transfection of rSERT cDNA (in pcDNA3 vector) in CHO-K1 cells results in 

robust Φ5-HT above background (Fig. 2).  Cells transfected with rSERT cDNA alone (200 

ng/well) generate a 21-fold increase in Φ5-HT over background.  When the amount of 

rSERT (200 ng/well) and Lipofectamine (1 µl/well) are held constant but the amount of 

empty pcDNA3 vector increases, we observe a biphasic increase in Φ5-HT with a peak 

(58-fold over CIT) at 200 ng added pcDNA3 (Fig. 2).  Further increases in pcDNA3 

inhibit Φ5-HT (2-fold increase over CIT with 800 ng/well added pcDNA3, Fig. 2).  In 

subsequent studies, the total amount of cDNA transfected is therefore kept constant 

(400 ng/well). 

The magnitude of Φ5-HT also depends on the amount of cDNA transfected.  Φ5-HT 

increases hyperbolically with increasing rSERT cDNA in the transfection (Fig. 3).  In a 

representative experiment, maximal Φ5-HT is achieved at ~100 ng rSERT and the data are 

well fit to the Hill equation (Fig. 3, Φ5-HTmax = 30.5 ± 1.3 fmol/min./well,  EC50 cDNA = 

19.3 ± 3.7 ng/well, nH = 1.1 ± 0.5).  cDNA potency for Φ5-HT is relatively constant across 

different cells and rSERT cDNA plasmid preparations (EC50 cDNA = 28.2 ± 5.0 ng/well, 
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Figure 2.  Φ5-HT depends on the amount of cDNA transfected. 
CHO-K1 cells are transfected with 200 ng rSERT (in pcDNA3 vector) and 
indicated amounts of empty pcDNA3.  Φ5-HT is measured during 10 min. 
incubations (24°C).  Data are expressed as the fold increase in Φ5-HT above that
observed in the presence of citalopram (30 µM).  Data represent mean ± SEM 
from n = 3 wells/condition from a single representative experiment.  Φ5-HT 
(rSERT, 200 ng/well alone) in this experiments is 12.8 ± 0.5 fmol/min./well. 
In the presence of CIT, 5-HT accumulation (0.6 ± 0.1 fmol/min./well) is not 
different from non-transfected cells (data not shown). 
M, n = 3 separate experiments with different batches of cells and cDNA, data 

). 

EA and MTSET inhibit SERT-mediated Φ5-HT primarily by covalent 

n of cysteine 109 (Cys109) 150.  In order to verify that the membrane-

t reagent MTSET inhibits Φ5-HT by reacting with Cys109 under our 

tal conditions, we constructed a single point mutation in rSERT, Cys109 to 

09A).  Physiological Na+ concentrations (120 - 140 mM) protect rSERT from 

ibition 150 and replacement of Na+ with Li+ facilitates MTS-dependent 

n 149.  We incubate transfected cells in Li-KRH for varying times to inactivate 
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Figure 3.  Φ5-HT depends on quantity of rSERT cDNA in transfected CHO-K1 
cells. 
CHO-K1 cells are transfected in culture wells with the indicated quantity of rSERT 
cDNA.  Empty pcDNA3 vector is added to achieve a total of 400 ng/well.  Data 
represent means ±  SEM from n = 3 wells/condition in a representative experiment.
Solid line represents a fit to the Hill equation (Φ5-HTmax = 30.15 ± 1.3 
fmol/min./well, EC50 cDNA = 19.3 ± 3.7 ng/well, nH = 1.1 ± 0.5). 

SERT, and then thoroughly wash cells with Na-KRH prior to measuring the remaining 

Φ5-HT under standard assay conditions (Na-KRH). 

In a representative experiment, rSERT and C109A express equivalent levels of Φ5-

HT (25 ng/well rSERT, 24.7 ± 1.7 fmol/min./well; 25 ng/well C109A, 17.3 ± 0.1 

fmol/min./well).  Our results independently verify that the Cys109 to Ala mutation 

does not dramatically alter SERT activity or plasma membrane localization 150,151.  Co-

transfection of rSERT + C109A leads to an increase in Φ5-HT (rSERT 25 ng/well + C109A 

25 ng/well: 30.4 ± 1.1 fmol/min./well, data not shown).  The fractional increase in Φ5-HT 

in resulting from addition of C109A is consistent with the increase in Φ5-HT that is 
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observed when the quantity of rSERT cDNA is increased from 25 ng to 50 ng (Fig. 3, 

17.7 fmol/min./well to 22.2 fmol/min./well, respectively). 

As expected 150, rSERT and C109A are differentially sensitive to inhibition of Φ5-

HT by MTS reagents.  In a representative experiment, preincubation (10 min., Li-KRH) 

with MTSET (2.5 mM) or MTSEA (0.25 mM) inhibits Φ5-HT 87.6% or 87.8%, respectively, 

in cells transfected with rSERT alone (data not shown).  In cells transfected with C109A 

alone, inhibition by MTSEA and MTSET is 21.2% and 8.0%, respectively  (p < 0.001 vs. 
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Figure 4.  Interactions between rSERT and C109A alter the timecourse for MTSET inhibition of 
Φ5-HT. 
CHO-K1 cells are transfected with 25 ng rSERT alone (filled squares, solid line), 25 ng rSERT + 125
ng C109A (open squares, dashed line), or 125 ng C109A alone (filled triangles) and incubated for 
the indicated time in Li-KRH + MTSET (2.5 mM) prior to Φ5-HT assays (15 min., 24°C).  Data are 
expressed as a percentage of Φ5-HT in cells incubated (Li-KRH, 15 min., 24°C) in the absence of 
MTSET.  Data represent means ± SEM from n = 3 separate experiments.  * indicates p < 0.05 vs. 
rSERT alone.  Lines represent fits to a single exponential decay function with indicated time 
constant (τ) ± 95% C. I. 
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rSERT, Student’s non-paired t-test, data not shown). 

Fig. 4 shows the results of an experiment designed to test whether co-transfection 

of rSERT and C109A exhibit functional interactions.   MTSET incubation decreases 

rSERT-mediated Φ5-HT in a time-dependent fashion (Fig. 4).  For MTSET incubations 

between 1 min. and 6 min., fractional inhibition of Φ5-HT is lower in cells transfected 

with rSERT, 25ng/well + C109A, 25ng/well than in cells transfected with rSERT alone, 

25 ng/well (Fig. 4, p < 0.05, Student’s non-paired t-test).  The data are well fit to an 

exponential decay function with a single time constant (Fig. 4, rSERT, 25ng/well, τ = 3.7 

± 0.9 min.).  C109A alone is unaffected by MTSET over this incubation time, but in cells 

co-expressing rSERT + C109A, the timecourse for inhibition of Φ5-HT is slowed and the 

data between 2 min. and 6 min. MTSET incubation are fit to an exponential (Fig. 4, 

rSERT, 25ng/well + C109A, 25 ng/well, τ = 11.2 ± 1.1 min.).  Although we fit the 

portion rSERT + C109A timecourse where Φ5-HT decreases to a single exponential, the 

data exhibit complex behavior at early MTSET incubation times (c.f. 1 min. MTSET 

incubation, where Φ5-HT is not different form control).  Importantly, the MTSET 

timecourse is clearly different in co-transfected cells, indicating that MTSET sensitivity 

is altered by interactions between rSERT and C109A.  We see similar results when 

rSERT and rSERT + C109A are incubated with MTSEA (0.25 mM, data not shown).  

Since the expectation for independence predicts that rSERT confers MTS sensitivity 

even when co-expressed with C109A, our findings violate the null hypothesis.  

Although rSERT interacts with C109A to alter sensitivity to synthetic MTS 

reagents, it is of interest to know whether SERT function is sensitive to inter-subunit 

interactions under physiological conditions.  Mutation of Asp98 renders SERT inactive 

(D98G) or seriously compromised (D98E) for Φ5-HT 77.  If SERTs interact, then D98G 

might alter Φ5-HT when co-expressed with rSERT.  Under our experimental conditions, 

transfection of D98G (350 ng/well) generates small but detectable Φ5-HT (Fig. 5, Φ5-HT = 

1.2 ± 0.1 fmol/min./well; 7.5% of rSERT control, 50 ng/well).  Increasing the quantity of 

D98G in cells co-transfected with a constant amount of rSERT (50 ng/well) causes Φ5-HT 
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to decrease (Fig. 5).  Although no effect is seen when the ratio of D98G to rSERT cDNA 

is 2:1 or below, D98G significantly inhibits Φ5-HT at cDNA ratios of 4:1 and 7:1 (Fig. 5, Φ5-

HT = 48.2 % of control and 40.8 % of control, respectively).  
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Figure 5.  D98G inhibits Φ5-HT when co-transfected with rSERT. 
CHO-K1 cells are transfected with the indicated cDNAs and Φ5-HT is measured in 15 
min. assays.  Data are expressed as the percentage of Φ5-HT relative to cells transfected 
with 50 ng rSERT + 350 ng pcDNA3.  Data represent means ± SEM from n = 3 
wells/condition.  Φ5-HT for D98G alone is 1.7 ± 0.2 fmol/min./well in this experiment.  * 
indicates p < 0.05 vs. 50 ng/well rSERT + 350 ng/well pcDNA3. 

Na+ potency can be determined by isotonic replacement of Na+ with Li+, 

choline+, or NMDG+ in the KRH buffer.  Fits of the data to the Hill equation establish 

the half-maximal effective Na+ concentration (EC50 Na).  In preliminary experiments in 

human embryonic kidney 293 (HEK-293) cells stably expressing hSERT (HEK-hSERT), 

we find that apparent Na+ potency depends on the substituting cation.  Although Na+ 

potency is highest in Li-KRH (Hill fit: EC50 Na = 8.0 ± 1.8 mM, nH = 1.6 ± 0.8, data not 
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shown), residual Φ5-HT (~15% of that in Na-KRH) is consistently observed in Li-KRH.  

Li+ has other effects on SERT 95,96,149 and is therefore not an inert Na+ substitute.  The 

large organic cations choline+ and NMDG+ are commonly used Na+ substitutes.  We 

observe that Na+ potency is much higher in the latter (Hill fits: choline-KRH, EC50 Na = 

82.6 ± 8.2 mM, nH = 1.5 ± 0.8; NMDG-KRH, EC50 Na = 16.8 ± 5.2 mM, nH = 1.5 ± 0.6, data 

not shown), suggesting that choline+ is also not an inert Na+ substitute for SERT.  We 

therefore substitute Na-KRH with NMDG-KRH to determine Na+ potency in 

subsequent experiments. 

In addition to reduced Φ5-HT (~40% of rSERT), D98E displays decreased Na+ 

potency for Φ5-HT (estimated EC50 Na > 100 mM) 77.  These results suggest that D98G, 

which generates even less Φ5-HT than rSERT or D98E but similar levels of surface protein 

expression 77, is further compromised in terms of Na+ recognition.  In CHO-K1 cells, 

D98G mediates Na+-dependent Φ5-HT, but Na+ potency is dramatically reduced relative 

to rSERT (EC50 Na = 68.5 ± 3.1 mM, nH = 1.9 ± 0.2, data not shown).  Consistent with the 

idea that a nearby tyrosine in TMD1 is required for high affinity CIT recognition 72, Na+-

dependent D98G-mediated Φ5-HT is insensitive to inhibition by CIT (10 µM), perhaps 

due to a substantial decrease in CIT affinity for D98G.  Na+ potency in rSERT-

transfected CHO-K1 cells (Fig. 6A & Table 1, EC50 Na = 13.8 ± 2.2 mM, nH = 2.0 ± 0.2, 

mean ± SD from n = 12 separate experiments) is similar to that seen in other studies 
17,77,84.  D98G (350 ng/well) decreases Φ5-HT an average of 58% (n = 3 experiments, Fig. 5 

and data not shown) when co-transfected with rSERT (50 ng/well) and causes Na+ 

potency to decrease significantly (Fig. 6A & Table 1, EC50 Na = 21.8 ± 3.6 mM, nH = 1.9 ± 

0.4, mean ± SD from n = 3 separate experiments; p < 0.001 vs. rSERT, Student’s non-

paired t-test).  Fig. 6A shows the Na+-dependence of Φ5-HT for rSERT (50 ng/well) and 

rSERT + D98G (50 ng/well + 350 ng/well, respectively) normalized to their respective 

maxima, which emphasizes the large decrease in Na+ potency (56.5% vs. rSERT alone) 

seen with D98G co-transfection.  
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Figure 6.  D98G decreases Na+ potency when co-transfected with rSERT. 
A, CHO-K1 ells are transfected with 50 ng rSERT (filled circles, solid line) or 50 ng rSERT + 350 ng 
rSERT D98G (open squares, dashed line).  Data are expressed as a percentage of maximal Φ5-HT for 
each transfection condition.  Data represent means ± SEM from n = 12 (rSERT) or n = 3 (rSERT + 
D98G) separate experiments.  Lines represent fits to the Hill equation (rSERT, EC50 Na = 13.8 ± 2.2 
mM, nH = 2.0 ± 0.2; rSERT + D98G, EC50 Na = 21.6 ± 6.1mM, nH = 1.9 ± 0.4; mean S.D.  from n = 12 or n
= 3 experiments; Student’s non-paired t-test, p < 0.001).  B, Model showing Hill fits to actual data for
rSERT (upper black line, relative Φ5-HT = 92%, EC50 Na = 13.8 mM, nH = 2.0) , D98G (lower black line, 
relative Φ5-HT = 8%, EC50 Na = 68.5 mM, nH = 1.9), and rSERT + D98G (rSERT + D98G observed, 
dashed line, Φ5-HT = 100%, EC50 Na = 21.6 mM, nH = 1.9), and the sum of the Hill functions for rSERT 
and D98G (rSERT + D98G expected, gray line, Φ5-HT = 100%, EC50 Na = 14.9 mM). 

For SERTs operating according to a simple classical transporter model, EC50 Na is 

an intrinsic property of each transporter.  For independent rSERT and D98G function, 

Na+ potency in cells expressing rSERT + D98G should be described by the sum of Hill 

functions that describe their respective Na+–dependence when expressed individually.  

We model independence in cells expressing rSERT + D98G to generate the expected 

EC50 Na in cells transfected with rSERT + D98G in Fig. 6B.  The relative contributions of 

rSERT and D98G to the sum are derived from individual expression data (rSERT, 

relative Φ5-HTmax = 92%, EC50 Na = 13.8 mM; D98G, relative Φ5-HTmax = 8%, EC50 Na = 68.5 
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mM).  For the sum of Hill equations for rSERT and D98G (Fig. 6B, rSERT + D98G, Φ5-

HTmax = 100%, EC50 Na = 14.9 mM) EC50 Na increases 8% from rSERT alone. 

Since rSERT + D98G transfection decreases Φ5-HT ~60% relative to rSERT alone 

(Figs. 5, 6), we also model independent rSERT and D98G Na+ potencies under 

conditions where we increase the fractional contribution of D98G to the Hill sum 

(rSERT, Φ5-HTmax = 80%, EC50 Na = 13.8 mM; D98G, Φ5-HTmax = 20%, EC50 Na = 68.5 mM).  

When D98G mediates 20% of the total Φ5-HT, EC50 Na increases 24% (rSERT + D98G, Φ5-

HTmax = 1.0, EC50 Na = 17.1 mM, data not shown) compared to rSERT alone.  

Experimentally, D98G causes Na+ potency to decrease 57%, 2.4-fold more than the 

adjusted model predicts.  The observed data is not predicted by models of independent 

rSERT and D98G function, and we therefore conclude that SERTs function 

cooperatively when assayed for Na+–dependent Φ5-HT. 

An alternative explanation for the data in Fig. 6 is that EC50 Na is sensitive to the 

absolute level of Φ5-HT.  We therefore measure Na+ potency in cells transfected with 

varying amounts of rSERT cDNA (10 – 50 ng/well).  When the magnitude of Φ5-HT is 

manipulated by changing the amount of rSERT cDNA transfected to mimic the decrease 

in Φ5-HT caused by D98G co-transfection, we observe no significant shift in Na+ potency 

(Fig. 7).  In a representative experiment, 5-HT transport is 65% smaller at 10 ng/well 

(Φ5-HT = 3.4 fmol/min./well) than at 50 ng/well (Φ5-HT = 9.6 fmol/min./well).  

However, Na+ potency is invariant over this cDNA range (10 ng/well, EC50 Na = 13.0 ± 

2.0 mM; 10 ng/well, EC50 Na = 12.9 ± 0.7 mM).  Fig. 7 shows the results from two such 

experiments and an exponential fit to the data.  The 95% confidence limits of the fit, 

weighted by the error associated with the individual data points, indicate that at low Φ5-

HT, EC50 Na is clearly differentiated from the experimental value observed when rSERT 

and D98G are co-transfected (Fig. 6, EC50 Na = 21.6 mM).  Thus, simply decreasing Φ5-HT 

is insufficient to shift EC50 Na.  At high SERT expression, EC50 Na tends to increase 

slightly (Fig. 7). 

Because hSERT and rGAT1 interact in FRET assays 132, GAT/NET transporters 

are believed to form hetero-oligomers.  In CHO-K1 cells, co-transfection of rSERT with 
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Figure 7.  Na+ potency is independent of the magnitude of 
Φ5-HT. 
CHO-K1 cells are transfected with 10, 20, 30, 50, or 400 ng rSERT and 
assayed for Na+-dependent Φ5-HT in 15 min. assays as described.  Data 
represent EC50 Na ± 95% C.I. of Hill fits to data from n = 4 – 6 oocytes in 
two separate experiments.  Solid line represents an exponential fit to the 
data and dotted lines represent 95% C.I. of the fit. 

other GAT/NET transporters decreases Φ5-HT, although the absolute level of inhibition 

is variable (data not shown).  Fig. 8 shows the sensitivity of rSERT-mediated Φ5-HT to co-

transfection with rGAT1.  Relative to cells transfected with rSERT alone (rSERT 25 

ng/well, Φ5-HT = 7.9 ± 0.6 fmol/min./well), addition of rGAT1 cDNA (rSERT 25ng/well 

+ rGAT1 125 ng/well, Φ5-HT = 1.4 ± 0.1 fmol/min./well) decreases Φ5-HT by 82%.  rGAT1 

(125ng/well) alone does not transport 5-HT above background levels defined by 

NMDG-KRH (data not shown).  The effect of rGAT1 on rSERT-mediated Φ5-HT is not 

reciprocal. Consistent with previous observations that GAT1-mediated ΦGABA is more 

rapid than Φ5-HT in SERT 11,105,106, we find that rGAT1 alone (25 ng/well) accumulates 
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Figure 8.  rSERT and rGAT1 are differentially sensitive to co-expression. 
CHO-K1 cells are transfected with A, 25 ng rSERT alone (open bar) or 25 ng rSERT 
+ 125 ng rGAT1 (shaded bar); or B, 25 ng rGAT1 alone (open bar) or 25 ng rGAT1 + 
125 ng rSERT (shaded bar).  Non-specific transport is defined in NMDG-KRH.  Data
represent means ± SEM from n = 3 well/condition in a representative experiment. 

GABA (ΦGABA = 19.7 ± 1.3 fmol/min./well) faster than rSERT transports 5-HT in CHO-

K1 cells.  However, ΦGABA is unaffected by co-transfection of a 5-fold excess of rSERT 

(25 ng rGAT1 + 125 ng rSERT, ΦGABA = 23.2 ± 0.9 fmol/min./well).  Na+ potency for 

ΦGABA is also unchanged by rSERT co-expression (rGAT1, EC50 Na = 51.2 ± 6.4 mM; 

rGAT1 + rSERT, EC50 Na = 58.4 ± 10.5 mM, data not shown). 

In contrast to rGAT1, hSERT does not interact with the dopamine D2 receptor 

(D2R) in FRET assays, suggesting GAT/NET family specificity for transporter 

oligomerization 132.  In order to test specificity in CHO-K1 cells, we co-transfect a 

number of different cDNAs with rSERT.  Co-transfection of cDNAs encoding hNET, 
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fET, rPROT, HA-tagged alpha 2A adrenergic receptor (HA-α2AR), and an AMPA-type 

ionotropic glutamate receptor (GluR4) all inhibit rSERT-mediated Φ5-HT under our 

experimental conditions.  rGAT1 consistently inhibits Φ5-HT more effectively than 

GluR4, but their effects on Na+ potency are equivalent (Table 1).  Table 1 summarizes 

results from selected rSERT co-transfections.  In general, co-transfection of rSERT with 

cDNAs encoding polytopic integral membrane proteins decreases Φ5-HT. 

Not all co-transfection conditions lead to inhibition of Φ5-HT.  Under similar 

conditions, increasing the amount pcDNA3 (Fig. 2) or rSERT itself (Fig. 3) actually 

enhances Φ5-HT.  In addition, co-transfection of the single-TMD T-cell co-receptor (CD8) 

or and the cytosolic green fluorescent protein (EGFP-N1) does not affect Φ5-HT (Table 1), 

and similar results are seen when EGFP is co-transfected (50 ng/well rSERT + 350 

ng/well partner cDNA, data not shown).  In order to determine whether CD8 and 

EGFP are expressed in CHO-K1 cells, we visually assay transfected cells for CD8 and 

GFP expression.  Cells co-transfected with CD8 (rSERT, 50 ng/well + CD8, 350 ng/well) 

bind anti-CD8 beads (data not shown).  Non-transfected cells bind few if any anti-CD8 

beads, indicating that CD8 is expressed with rSERT under our conditions.  Cells co-

transfected with EGFP-N1 (rSERT, 50 ng/well + EGFP, 350 ng/well) exhibit 

characteristic green fluorescence (data not shown), indicating that EGFP is also 

expressed with rSERT.  The failure of CD8 and EGFP to alter Φ5-HT is therefore not due 

to lack of protein expression. 

In both HEK-hSERT cells and transiently transfected CHO-K1 cells, we observe 

Hill slopes in the range of 1.5 to 2.0 (data not shown, Fig. 6A, Table 1).  Hill fits in excess 

of 1.0 indicate positive cooperativity in the Na+-dependent activation of Φ5-HT.  Ion some 

studies, Hill slope values are interpreted to directly report the number of ions co-

transported with 5-HT are therefore used to calculate ion:substrate stoichiometry 
17,103,152,153.  However, the exact role of Na+ in the mechanism of 5-HT transport remains 

unclear, and we can identify no a priori reason why the Hill slope should necessarily 

reflect Na+:5-HT co-transport.  We therefore regard Hill slope to report intrinsically 

cooperative behavior in SERT function and assign no particular mechanistic meaning to 
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its value.  Indeed, different studies variously report that Φ5-HT depends either 

hyperbolically or sigmoidally on Na+ concentration 48,49,92,. suggesting that differences 

in experimental protocols may contribute to variations in Hill slope. Nonetheless, Hill 

slopes for Na+ at rSERT are relatively constant at ~ 2.0 in our studies, regardless of 

transfection conditions. 

Table 1. Φ5-HT and Na+ potency are sensitive to rSERT co-transfection. 
CHO-K1 cells are transfected with the indicated cDNA.  Empty pcDNA3 vector is added to 
achieve a total of 400 ng/well.  Data represent means ± SEM from the indicated number of 
experiments.  * Indicates statistical significance by Student’s unpaired t-test: p < 0.05 vs. 50 ng 
rSERT alone. 
 
 

 
cDNA 

transfection 

 
EC50Na 
(mM) 

 
5HT Transport 
(% of rSERT) 

 
Hill slope 

(nH) 

 
experiments 

(n) 
 
rSERT 50 ng 
 

 
13.8 ± 2.2 

 
100 

 
2.04 ± 0.23 

 
12 

 
rSERT 50 ng  + 
D98G  350 ng 
 

 
21.8 ± 3.6 * 

 
41.8 ± 13.1 * 

 
1.85 ± 0.38 

 
3 

 
rSERT 50 ng  + 
CD8  350 ng 
 

 
11.0 ± 0.8 

 
85.1 ± 15.1 

 
2.71 ± 0.15 

 
4 

 
rSERT 50 ng  + 
rGAT1  350 ng 
 

 
18.4 ± 2.1 *  

 
9.0 ± 1.7 * 

 
2.08 ± 0.24 

 
4 

 
rSERT 50 ng  + 
GluR4-flip 350 ng 
 

 
19.7 ± 2.4 * 

 
30.1 ± 3.0 * 

 
2.39 ± 0.57 

 
4 

 
rSERT 10 ng 
 

 
16.6 

 
37.8 * 

 
1.91 

 
2 
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Heterologous expression of mammalian SERTs in Xenopus laevis oocytes 

Following cRNA injection, oocytes may be maintained in culture (18ºC) for 14-16 

days with modest attrition rates (~50%, data not shown).  Oocyte survival is assayed by 

visual identification of intact vitelline sheath and plasma membrane with no evidence 

of cytoplasmic leakage.  Exogenous infection of oocytes in culture is kept to a minimum 

by addition of antibiotics to the culture medium and by the use of sterile transfer 

pipettes for handling oocytes, but survival is highly variable depending on unknown 

factors that vary between oocyte batches.  The survival of oocytes at room temperature 
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Figure 9.  Increasing culture temperature stimulates expression of 
Φ5-HT in Xenopus laevis oocytes. 
Oocytes are injected with 42 ng rSERT cRNA and cultured for 3 
days at the indicated temperature.  Φ5-HT is measured in 30 min. 
assays (24°C).  Data represent means ± SEM from n = 5 
oocytes/condition in a single representative experiment.  * p < 0.05 
vs. 18°C. 

 32 
 



 

(24ºC) is greatly diminished, especially after 3 days in culture (< 25% remaining, data 

not shown).  However, Fig. 9 shows that 24ºC culture (total Φ5-HT = 6.0 ± 1.0 

fmol/min./oocyte) stimulates expression of Φ5-HT ~2-fold over 18ºC culture (total Φ5-HT 

= 3.2 ± 0.6 fmol/min./oocyte).  Under the same conditions, non-injected oocytes do not 

accumulate appreciable levels of [3H]-5HT (Fig. 9, non-injected total Φ5-HT = 0.043 ± 

0.003 fmol/min./oocyte). 

 Φ5-HT is also sensitive to culture time and the species of cRNA injected.  Fig. 10 

shows that expression of Φ5-HT develops more rapidly in oocytes injected with hSERT 

than rSERT cRNA.  The timecourse for hSERT is biphasic, with a peak at ~48 hr.  
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Figure 10.  Expression of Φ5-HT develops more rapidly for hSERT than for rSERT. 
Oocytes are injected with 21 ng cRNA encoding either hSERT (open squares) or rSERT 
(filled circles) on and cultured for the indicated time (24ºC).  Φ5-HT is measured in 30 min. 
assays.  Data represent means ± SEM from n = 3 - 6 oocytes/condition in a single 
representative experiment.  Dashed line represents a fit to a single exponential function (A
= 12.5 ± 3.4 fmol/min./oocyte, τ = 68.9 ± 32.3/hr.). 
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Although Φ5-HT decreases somewhat between 48 hr. and 70 hr., it is relatively stable 

over longer culture times (Fig. 10).  In contrast, Φ5-HT mediated by rSERT continues to 

rise over the culture time tested (118 hr.).  The rSERT timecourse is fit to a monophasic 

exponential function (Fig. 10, τ = 69/hr.).  The exact timecourse for expression of Φ5-HT 

varies between different batches of oocytes, but trends observed in Figs. 9 and 10 are 

consistent across oocyte batches.  hSERT generates more Φ5-HT than rSERT at short 

culture times due to its more rapid onset.  rSERT-mediated Φ5-HT continues to increase 

over the culture times tested (at both 24ºC and 18ºC), and both clones reach a similar 

steady-state Φ5-HT at long culture times.  We perform subsequent experiments with both 

hSERT and rSERT under varying experimental conditions.  For hSERT, Φ5-HT and I(5-HT) 

are measured in oocytes incubated for 4 days or less at 24°C in all experiments; in some 

experiments (Figs. 14, 16), rSERT-injected oocytes are cultured for up to 16 days (at 

18°C) to achieve higher expression prior to performing functional assays for Φ5-HT and 

I(5-HT) . 

The effect of increasing culture time on hSERT-mediated function is shown in 

Fig. 11.  Φ5-HT assays are conducted in the presence of low substrate concentration (30 

nM [3H]-5-HT) over short incubation time (2.5 min. @ 24ºC).  Fig. 11A shows that Φ5-

HT increases sigmoidally with respect to the amount of hSERT cRNA injected: the data 

are well fit to the Hill equation (day 2, Φ5-HTmax = 1.5 ± 0.1 fmol/min./oocyte, EC50 cRNA 

= 0.8 ± 0.1 ng/oocyte, nH = 1.3; day 4, Φ5-HTmax = 2.6 ± 0.1 fmol/min./oocyte, EC50 cRNA = 

2.5 ± 0.1 ng/oocyte, nH = 1.3).  A plot of the normalized data (Fig. 11B) emphasizes the 

3-fold decrease in cRNA potency for Φ5-HT in oocytes cultured for 2 additional days.  

Increasing the amount of cRNA injected also leads to a sigmoid increase in I(5-HT), but 

cRNA potency does not change from day 2 to day 4 (Fig. 11C, D).  Fits to the Hill 

equation demonstrate that cRNA potency for I(5-HT) on day 2 is similar to that seen for 

on day 4 (Fig. 11C, day 2, I5-HTmax = -28.7 ± 0.5 nA, EC50 cRNA = 1.5 ± 0.1 ng/oocyte, nH = 

1.4 ± 0.1; day 4, I5-HTmax = -35.3 ± 0.5 nA, EC50 cRNA = 1.1 ± 0.1 ng/oocyte, nH = 1.3 ± 0.1).  

Thus, cRNA potency for I(5-HT) and Φ5-HT is differentially sensitive to culture time. 
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Figure 11.  Increasing culture time decreases cRNA potency for Φ5-HT but not I5-HT. 
Oocytes are injected with hSERT cRNA and cultured for 2 days (filled symbols, dashed lines) or 4 
days (open symbols, solid lines) at 24ºC.  A, Φ5-HT measured in 2.5 min. assays. B, Φ5-HT normalized to
the fitted maximum from A.  Lines represent fits to the Hill equation (day 2, Φ5-HTmax = 1.5 ± 0.1 
fmol/min./oocyte, EC50 cRNA = 0.8 ± 0.1 ng/oocyte, nH = 1.3; day 4, Φ5-HTmax = 2.6 ± 0.1 
fmol/min./oocyte, EC50 cRNA = 2.5 ± 0.1 ng/oocyte, nH = 1.3).  C, I5-HT measured at –80 mV (note 
inverted axis).  D, I5-HT normalized to the fitted maximum from C.  Data represent means ± SEM from
n = 4 – 6 oocytes/condition in a single representative experiment.  Lines represent fits to the Hill 
equation (day 2, I5-HTmax = -28.7 ± 0.5 nA, EC50 cRNA = 1.5 ± 0.1 ng/oocyte, nH = 1.4 ± 0.1; day 4, I5-

HTmax = -35.3 ± 0.5 nA, EC50 cRNA = 1.1 ± 0.1 ng/oocyte, nH = 1.3 ± 0.1). 

In order to correlate hSERT function with surface expression, we treat cRNA-

injected oocytes with a membrane-impermeant biotinylating reagent (Sulfo-NHS-

biotin), solubilize oocytes, and isolate plasma membrane proteins with streptavidin 
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beads.  Following SDS-PAGE, we visualize hSERT protein using a monoclonal anti-

SERT antibody (ST 51-2).  Fig. 12 shows a representative Western blot from hSERT 

cRNA-injected oocytes.  hSERT immunoreactivity is absent in non-injected oocytes (lane 

1, 2), indicating that ST 51-2 detects authentic hSERT protein.   In lanes loaded with 

protein from cRNA-injected oocytes, several forms of hSERT are detected: a small (~60 

kDa) band that is present only in the intracellular fraction, a broad band (70-100 kDa) 

that is typical of mature hSERT 142, and a larger (~220 kDa) band in both surface and 

intracellular fractions that may represent an SDS-resistant SERT protein complex (Fig. 

12).  Band densities in biotinylated surface (S) and non-biotinylated intracellular (IC) 

fractions are comparable (Fig. 12, lanes 5, 6 and 7, 8) despite loading of IC lanes with 5% 

of the total extract and S lanes with the biotinylated bead eluate.  Surface SERT 

therefore represents no more than 5% of the total SERT protein in the oocyte. 

biotin            S   IC   S   IC    S   IC    S   IC
cRNA (ng)       0       0.42      4.2      21

217
123

71

48

kDa
Lane:   1      2      3 4     5     6     7     8

 
 
 
Figure 12.  Surface hSERT expression depends on the amount of cRNA injected. 
Oocytes are injected with SERT cRNA (0.41 to 41.4 ng/oocyte) and cultured for 2 days (24°C). 
A representative Western blot showing hSERT protein in biotinylated (S, surface) or non-
biotinylated (IC, intracellular) fractions is shown.  Lanes represent protein from 20 
oocytes/condition.  Equal protein is loaded in each lane. 

We also measure SERT function in the same batches of oocytes used for Western 
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Figure 13.  Φ5-HT and I5-HT are differentially sensitive to hSERT expression level. 
Oocytes are injected with SERT cRNA (0.41 to 41.4 ng/oocyte) and cultured for 2 days (24°C) 
 Φ5-HT (filled circles, dotted line) is measured in 2.5 min. (n = 3) or 30 min. (n = 2) assays.  I(5-HT) 
(open squares, solid line) is measured at -80 mV, pH 7.6.  Surface SERT (filled triangles, dashed 
line) is measured by densitometry of mature surface SERT bands in Western blots.  Data are 
expressed as a fraction of the indicated response in oocytes injected with 21 ng cRNA.  Data 
represent means ± SEM (where shown) from n = 5 (Φ5-HT), 4 (I(5-HT)), or 2 (surface SERT) separate 
experiments. Lines represent fits to the Hill equation (-HT, EC50 cRNA = 0.13 ± 0.03 ng/oocyte; I(5-

HT), EC50 cRNA = 3.42 ± 0.86 ng/oocyte; surface SERT, EC50 cRNA = 6.36 ± 0.81 ng/oocyte; nH = 1.0 
for all fits). 

blotting.  The relative densities of the mature surface hSERT (70-100 kDa) bands from 

two different oocyte batches are averaged and plotted against the amount of cRNA in 

Fig. 13.  Hill fits to the data show that the cRNA-dependence of surface SERT, Φ5-HT, 

and I(5-HT) are not equal.  As observed previously (Fig. 11), the cRNA-dependence of I(5-

HT) is shifted rightward with respect to Φ5-HT (2 day culture, 24°C).  At cRNA levels 

where Φ5-HT approaches saturation (e.g. 1.5 ng/oocyte), I(5-HT) is still rising and 

represents only 35% of the current measured after injection of 21 ng/oocyte.  
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Surprisingly, the cRNA dependence of cell surface hSERT protein is similar to I(5-HT) and 

quantitatively different from Φ5-HT (Fig. 13, Φ5-HT, EC50 cRNA = 0.13 ± 0.03 ng/oocyte; I(5-

HT), EC50 cRNA = 3.42 ± 0.86 ng/oocyte; surface SERT, EC50 cRNA = 6.36 ± 0.81 ng/oocyte; 

nH = 1.0 for all fits).  SERT protein correlates linearly with I(5-HT) (R2 = 0.90), but not Φ5-

HT, indicating that plasma membrane expression of SERT is selectively reported by I(5-

HT). 

A similar difference in cRNA potency is seen for rSERT in oocytes cultured for 
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Figure 14.  Increasing SERT expression reveals a functional conversion 
from Φ5-HT mode to I5-HT mode. 
Oocytes are injected with increasing amounts of rSERT cRNA and cultured 
for 14-16 days (18ºC).  Φ5-HT is measured in 60 min. assays (12 nM [3H]-5-HT) 
and I5-HT is at –80 mV, pH 7.6.  Data represent means± SEM from n = 4 - 6 
oocytes/condition in a single representative experiment.  The solid line 
represents a fit to the exponential function y = a – bcx, where a = 127.9 ± 15.3, 
b = 104.2 ± 20.9 and c = 0.53 ± 0.17.  Prior to being plotted parametrically, data
are fit to the Hill equation (Φ5-HTmax = 126.0 ± 3.1 fmol 5HT/60 min./oocyte, 
EC50 cRNA = 0.59 ± 0.02 ng/oocyte, nH = 2.4 ± 0.2; I(5-HT)max = -40.0 ± 4.4 nA, EC50

cRNA = 20.0 ± 4.8 ng/oocyte, nH = 1.0 ± 0.2). 
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14-16 days at 18°C to maximize expression (Fig. 14).  In order to determine whether 

accumulation of significant 5-HT inside the oocyte affects the cRNA dependence of Φ5-

HT and I(5-HT), we also increase incubation time for Φ5-HT assays to 60 min.  Even under 

conditions of high SERT expression and increased absolute 5-HT accumulation (~125 

fmol/oocyte), rSERT cRNA exhibits differential potency for Φ5-HT and I(5-HT).  As for 

hSERT, increasing rSERT cRNA leads to sigmoidal rises in Φ5-HT and I(5-HT) that are 

evident when the data are plotted as in Fig. 13 (not shown).  At 4.1 ng/oocyte rSERT 

cRNA, Φ5-HT has reached a plateau, but I(5-HT) increases 3.8-fold between 4.1 ng and 41.4 

ng/oocyte cRNA (-7.1 ± 0.9 nA and -27.4 ± 2.6 nA, respectively, Fig. 14 data).  Fig. 14 

shows a parametric plot the data to emphasize the relationship between Φ5-HT and I(5-

HT).  In the low cRNA range (≤ 1 ng/oocyte), increases in cRNA lead predominantly to 

more Φ5-HT.  An inflection point is reached at 2-5 ng/oocyte; above 2 ng/oocyte, 

increasing cRNA generates primarily additional I(5-HT) (Fig. 14).  A simple model of 

SERT function predicts that the slope of the parametric plot will be independent of the 

number of SERT proteins (N, Eqn. 3), and thus reflects only intrinsic properties of SERT 

function (i, po, ν, q).  However, the slope of the line fit to the data is not constant (Fig. 

14), suggesting that cooperative interactions govern the relative magnitudes of Φ5-HT 

and I(5-HT). 

Fig. 15 shows a current trace from a representative oocyte injected with rSERT 

cRNA (14 ng).  I(5-HT) is elicited first at pH 7.6, and subsequently at pH 5.0.  After 

establishing a stable baseline current (defined as zero current by offline leak 

subtraction), the oocyte is superfused with 5-HT (3.2 µM) long enough to determine 

steady-state 5-HT-induced current amplitude (Fig. 15, I(5-HT) pH 7.6), then returned to 

control solution.  Superfusion of frog Ringer’s, pH 5.0, elicits a steady-state constitutive 

inward leak current (Fig. 15, IH+ leak) in both non-injected and cRNA-injected oocytes, 

but the magnitude of IH+ leak is larger in oocytes expressing SERT 154,155.  Superfusion of 

5-HT (3.2 µM) at pH 5.0 potentiates 5-HT-induced current, (Fig. 15, I(5-HT) pH 5.0).  H+-

potentiation of I(5-HT) confirms rSERT expression (I(5-HT) in hSERT is insensitive to 
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extracellular acidification 154) and allows us to more easily measure I(5-HT) in oocytes 

injected with small quantities of cRNA. 
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Figure 15.  H+-potentiation of I(5-HT) in rSERT. 
Oocytes are injected with 14 ng rSERT cRNA and cultured for 13 days (18°C).  Data 
represent baseline-subtracted current from a single representative oocyte.  Dashed line 
indicates the zero current level.  Filled bars indicate time during which 5-HT (3.2 µM) is 
superfused and open bar indicates time during which frog Ringer’s, pH 5.0 is superfused.  
Artifact spikes in current recording indicate actual time that superfusion switches are 
initiated; the delay between switch artifact and change in current represents the 
combination of a) lag time for superfusion to reach the oocyte in the recording chamber, 
and b) penetration of 5-HT through the oocyte’s protective vitelline layer. 
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Figure 16.  Increasing rSERT expression alters ρ. 
Οocytes are injected with increasing amounts of rSERT cRNA and cultured for 14-16 days 
(18°C).  I(5-HT) is measured at -80 mV, pH 5.0 during a 2 min. superfusion of 5-HT (3.2 µM) + 
[3H]-5-HT (30 nM).  Q5-HT and Q(5-HT) are calculated as described to obtain ρ.  Data represent 
means ± SEM from n = 3–6 oocytes/condition in a single representative experiment.  Line 
represents a fit to the Hill equation (ρmax = 37.5 ± 5.6 e/5-HT; EC50 cRNA = 10.2 ± 3.7 
ng/oocyte; nH = 1.0).  Statistically significant differences are indicated by *, p , 0.05, **, p < 
0.01 versus oocytes injected with 1.4 ng cRNA.   

In order to test whether the differential cRNA dependence of Φ5-HT and I(5-HT) is 

due to voltage differences intrinsic to the respective assay conditions, we measure  Φ5-

HT and I(5-HT) simultaneously under voltage clamp at –80 mV.  Superfusion of 5-HT (3.2 

µM) + [3H]-5-HT (30 nM) for 2 min. at 24°C elicits both Φ5-HT  and I(5-HT) , from which we 

calculate charge movement associated with 5-HT flux (Q5-HT) and total charge 

movement (Q(5-HT)) (Eqn. 2).  Fig. 16 shows that ρ increases 4.3-fold as the amount of 

cRNA increases from 1.4 ng to 33.6 ng (ρ = 6.7 ± 1.6 and 28.6 ± 3.1, respectively).  In 

contrast to I(5-HT), Φ5-HT is relatively insensitive to pH change 77,154.  We therefore 

calculate that under physiological conditions (–80 mV, pH 7.6), ρ varies between ~1 and 
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~4 over a range of rSERT expression in oocytes.  The validity of this calculation is 

reinforced by the observation that ρ = 4.4 when measured at pH 7.6 in a separate batch 

of oocytes injected with 8.3 ng/oocyte rSERT cRNA (Fig. 22).  The differential cRNA 

dependence of I(5-HT) and Φ5-HT is therefore not due to differences in membrane 

potential.  We conclude that one or more microscopic properties of SERT function (Eqn. 

3) are therefore sensitive to expression level. 

Fig. 17 shows the H+-potentiation ratio of I(5-HT) in the same batch of oocytes as 

those shown in Fig. 16.  I(5-HT) pH 7.6 and I(5-HT) pH 5.0 are highly correlated across the range 

of cRNA tested (R2 = 0.99, Fig. 14 and data not shown), indicating that cRNA potency is 
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Figure 17.  H+-potentiation of I(5-HT) is independent of 
rSERT expression level. 
Data is from oocytes shown in Fig. 16.  I(5-HT) is measured at -80 mV, pH 7.6
and pH 5.0.  Data represent means ± SEM from n = 4 - 10 
oocytes/condition in a single representative experiment.  Dashed line 
indicates average level of H+ potentiation across all cRNA injections tested.
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Figure 18.  Increasing 5-HT concentration decreases cRNA potency for Φ5-HT but not Ι5-HT. 
Oocytes are injected with increasing amounts of hSERT cRNA and cultured for 2 days (24°C).  Φ5-

HT is measured in the presence of 0.1 µM 5-HT (filled squares, dotted line), 1.0 µM 5-HT (open 
circles, sold line), or 10 µM 5-HT (filled triangles, dashed line) and normalized to the respective Φ5-

HTmax.  Lines represent fits to the Hill equation (0.1 µM 5-HT, EC50 cRNA = 0.45 ± 0.01 ng/oocyte; 1.0 
µM 5-HT, EC50 cRNA = 0.84 ± 0.04 ng/oocyte; 10 µM 5-HT, EC50 cRNA = 2.20 ± 0.12 ng/oocyte; nH = 
1.3).  [3H]-5-HT concentration in all experiments is 30 nM and indicated 5-HT concentration is 
achieved by addition of non-labeled 5-HT.  B, Ι5-HT measured at different 5-HT concentrations (1.0 
µM 5-HT (open circles, dashed line), 3.2 µM 5-HT (solid triangles, sold line), or 32 µM 5-HT (open 
squares, dotted line) and normalized to the respective Ι5-HTmax.  Lines represent fits to the Hill 
equation (1.0 µM 5-HT, EC50 cRNA = 3.0 ± 0.4 ng/oocyte; 3.2 µM 5-HT, EC50 cRNA = 3.1 ± 0.4 
ng/oocyte; 32 µM 5-HT, EC50 cRNA = 3.5 ± 0.5 ng/oocyte; nH = 1.0 for all fits).  Data are expressed as 
a percentage of the maximal Φ5-HT (A) or Ι5-HT (B) measured for each condition.  For A and B, data 
represent mean ± SEM from n = 4 - 6 oocytes/condition in a single representative experiment. 

not altered by extracellular acidification.  When measured directly, the ratio of I(5-HT) pH 

7.6 to I(5-HT) pH 5.0 is independent of SERT expression level (Fig. 17, dashed line, I(5-HT) 

pH5.0/I(5-HT) pH7.6 = 8.8 ± 0.4, from 1.4 to 33.6 ng/oocyte).  In contrast to the ratio of I(5-HT) 

to Φ5-HT (Figs. 13, 14, 16), H+-potentiation conforms to the predicted behavior for SERTs 

operating according to a simple model (Eqn. 3). 
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Figure 19.  Potency for inhibition of Φ5-HT is sensitive to hSERT expression level. 
Oocytes are injected with 0.42 ng/oocyte (open symbols, solid lines) or 21 ng/oocyte (filled symbols, 
dashed lines) hSERT cRNA and cultured for two days (24°C).  A, Φ5-HT is measured in the presence of
increasing concentrations of non-labeled 5-HT (squares).  Lines represent fits to the Hill equation 
(0.42 ng/oocyte, solid line, IC50  = 1.6 ± 0.3 µM; 21 ng/oocyte, dashed line, IC50 = 7.7 ± 0.9 µM; nH = 
1.0).  B, Φ5-HT is measured in the presence of increasing concentrations of cocaine (triangles).  Lines 
represent fits to the Hill equation (0.42 ng/oocyte, solid line, IC50  = 1.9 ± 0.42 µM; 21 ng/oocyte, 
dashed line, IC50 = 20 ± 3.2 µM; nH = 1.0).  Data represent means ± SEM from n = 4 - 6 
oocytes/condition in a single representative experiment. 

In order to investigate whether other SERT properties are sensitive to SERT 

expression level, we examine hSERT pharmacology in oocytes injected with varying 

quantities of hSERT cRNA.  As expected, Φ5-HT increases as 5-HT concentration 

increases (0.1 µM 5-HT, Φ5-HTmax = 0.38 ± 0.07 pmol/min./oocyte; 1.0 µM 5-HT, Φ5-HTmax 

= 3.08 ± 0.08 pmol/min./oocyte; 10 µM 5-HT, Φ5-HTmax = 17.39 ± 0.11 

pmol/min./oocyte).  Fig. 18A shows normalized data in order to emphasize the 5-HT 

concentration-dependent shift in apparent cRNA potency (0.1 µM 5-HT, EC50 cRNA = 0.45 

± 0.01 ng/oocyte; 1.0 µM 5-HT, EC50 cRNA = 0.84 ± 0.04 ng/oocyte; 10 µM 5-HT, EC50 cRNA 

= 2.20 ± 0.12 ng/oocyte; nH = 1.3 for all fits).  Over a similar range of 5-HT 

concentrations, cRNA potency for I(5-HT) is unchanged (Fig. 18B, 1.0 µM 5-HT, EC50 cRNA 

= 3.0 ± 0.4 ng/oocyte; 3.2 µM 5-HT, EC50 cRNA = 3.1 ± 0.4 ng/oocyte; 32 µM 5-HT, EC50 

cRNA = 3.5 ± 0.5 ng/oocyte; nH = 1.0 for all fits). 
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Figure 20.  5-HT potency for I5-HT is independent of hSERT expression level. 
Oocytes are injected with 0.42 ng/oocyte (open circles) or 21 ng/oocyte (filled circles) hSERT cRNA 
and cultured for 2 days (24°C).  A, I(5-HT) measured at -80 mV, pH 7.6.  Data are expressed as the 
inverse of  the actual current.  Data represent mean ± SEM from n = 5 or 7 oocytes/condition in a 
single representative experiment.  Lines represent fits to the Hill equation (0.42 ng/oocyte, dashed 
line, I(5-HT)max = -7.6 ± 0.9 nA, EC50 5-HT = 1.5 ± 0.1 µM, nH = 1.2; 21 ng/oocyte, solid line, I(5-HT)max = –
20.4 ± 0.9 nA, EC50 5-HT = 2.0 ± 0.2, nH = 1.4).  B, data from A expressed as a percentage of the 
respective maximal current. 

We also plot Φ5-HT data from the experiment shown in Fig. 18A against [5-HT] to 

measure changes in 5-HT potency at different levels of cRNA injection (data not 

shown).  We observe that 5-HT exhibits higher potency at lower hSERT expression (0.42 

ng/oocyte, EC50 5-HT = 1.7 ± 0.5 µM; 21 ng/oocyte, EC50 5-HT = 8.0 ± 4.0 µM; nH = 1.0 for 

all fits, mean ± SEM from n = 3 separate experiments, data not shown).  5-HT potency is 

therefore inversely correlated with SERT expression and cRNA potency is inversely 

correlated with 5-HT concentration. 

Expression-level-dependent shifts in substrate potency are also observed in 

competition assays where we measure concentration-dependent inhibition of Φ5-HT (Fig. 
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Figure 21.  SERT ligands exhibit expression level-sensitive potency shifts for 
Φ5-HT but not I(5-HT). 
pKi for inhibition of Φ5-HT by 5-HT (open squares, data from Fig. 19), cocaine 
(filled triangles, data from Fig. 19), and pEC50 for 5-HT (open circles, data from 
Fig. 20).  pKi values are calculated from Eqn. 4.  * p < 0.05 vs. I(5-HT). 

19).  5-HT potency for inhibition of Φ5-HT is higher in oocytes injected with 0.42 ng 

hSERT cRNA than in oocytes injected with 21 ng hSERT cRNA (Fig. 19A).  Inhibitory 

potency for the non-transported ligand cocaine follows the same trend as 5-HT,  only 

the magnitude of the potency shift is larger (Fig. 19B).  The transported substrate D-

amphetamine (AMPH) shares expression-level sensitivity with 5-HT (0.42 ng/oocyte, 

IC50 = 40 ± 5.7 µM; 21 ng/oocyte, IC50 = 170 ± 30 µM, data not shown), and the non-

transported antidepressant paroxetine (IC50 = 7.9 ± 1.3 nM; 21 ng/oocyte, IC50 = 55.2 ± 

9.6 nM, data not shown) shifts similarly to cocaine.  pKi values are estimated for 5-HT 

and cocaine (Eqn. 4, pKi = -5.8 and –5.12 for 5-HT and pKi = –5.73 and –4.7 for cocaine in 

oocytes injected with 0.42 ng/oocyte and 21ng/oocyte, respectively).  

In contrast to Φ5-HT, the potency for 5-HT to elicit I(5-HT) is insensitive to hSERT 

expression level (Fig. 20).  At low hSERT cRNA (0.42 ng/oocyte), 5-HT potency for I(5-
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HT)  is similar to that seen for Φ5-HT (Fig. 20, I(5-HT)max = -7.6 ± 0.9 nA, EC50 5-HT = 1.6 ± 0.9 

µM, nH = 1.0, mean ± SEM from n = 5 oocytes).  At higher expression level (21 

ng/oocyte), 5-HT potency remains essentially unchanged (Fig. 20, I(5-HT)max = –20.4 ± 0.9 

nA, EC50 5-HT = 2.4 ± 0.4, nH = 1.0, n = 7 oocytes). 

Fig. 21 summarizes changes in ligand potency observed at low and high SERT 

expression.  Inhibitory potency decreases 4 to 5 fold for 5-HT and 10 fold for cocaine 

when cRNA is increased from 0.42 ng/oocyte to 21 ng/oocyte (Fig. 19).  Over the same 

range of cRNA, however, 5-HT potency for I(5-HT) does not change substantially (Fig. 

20).  Substrate and inhibitor potency is therefore sensitive to SERT expression level 

when measured in the functional context of 5-HT transport, but not 5-HT-induced 

current.  The finding that SERT transport and current properties are differentially 

sensitive to expression level suggests that SERT may interact with a protein or cellular 

factor that modulates its function.  One possibility is that ρ is sensitive to inter-subunit 

interactions in an oligomeric SERT functional complex 119,132. 

In order to determine whether rSERT and D98G exhibit functional interactions, 

we inject oocytes with rSERT cRNA alone (8.3 ng/oocyte) or mixed with D98G (rSERT, 

8.3 ng + D98G, 33.1 ng/oocyte) and measure Φ5-HT and I(5-HT) during 1 min. (24°C) 

assays at –80 mV to obtain ρ.  Fig. 22A shows that co-injection of rSERT + D98G  

attenuates total charge movement, Q(5-HT), by 51% compared to rSERT alone.  However, 

the charge movement associated with 5-HT flux, Q5-HT, is unaffected (Fig. 22B).  D98G 

consequently decreases ρ by 35% compared to rSERT (Fig. 22C).  D98G alone mediates 

no detectable I(5-HT) above that seen in non-injected oocytes (data not shown).  D98G 

therefore selectively attenuates I(5-HT) when co-expressed with rSERT. 

The effect of D98G in oocytes is specific, since when we co-inject rSERT with a 

Shaker K+ channel (rSERT, 8.3 ng + ZH4IR, 2.3 ng/oocyte), we observe no effect on Φ5-

HT or I(5-HT).  However, in the same batch of oocytes we do record a large outward 

current (up to 16 µA at +100 mV, data not shown).  Given that under voltage clamp in 

oocytes, po ≈ 0.75 and i ≈ 1 pA for this Shaker construct 156, we calculate that there are 

~1.3 x 106 Shaker channels expressed on the plasma membrane of an oocyte generating 
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10 µA current at +60 mV (Eqn. 3).   

In order to determine whether SERT and D98G interact to alter ion permeation 

properties, we examine the voltage dependence of I(5-HT) in oocytes injected with rSERT 

cRNA alone or together with D98G cRNA.  Fig. 23A shows representative raw currents 

from an oocyte injected with rSERT cRNA alone (8.3 ng/oocyte) recorded over the 

indicated voltage ramp in the absence and presence of 5-HT (10 µM), pH 5.0.  I(5-HT) is 

defined by subtraction (Fig. 15) and plotted as a function of membrane voltage to 

generate I(5-HT) (V) in Fig. 23B.  I(5-HT)(V) exhibits the inward rectification and 
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Figure 22.  ρ is sensitive to co-expression of rSERT with D98G. 
Oocytes are injected with rSERT cRNA (8.3 ng/oocyte, open bars) or rSERT + D98G (8.3 
ng/oocyte + 33.1 ng/oocyte, filled bars) and cultured for 8 days (18°C).  A, total charge movement
(Q(5-HT)) obtained from integration of I(5-HT); B, charge movement due to 5-HT itself (Q5-HT) while I(5-

HT) is induced; C, ρ, the ratio Q(5-HT)/Q5-HT.  Data represent means ± SEM for n = 6 or n = 5 
oocytes/condition in a single representative experiment.  * p < 0.05, ** p < 0.001 vs. rSERT alone. 
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exponential dependence on membrane potential that is characteristic of SERTs 95,98 (Fig. 

23B).  Extracellular acidification (from pH 7.6 to pH 5.0) increases the magnitude of I(5-

HT) (V) (see Fig. 15) but does not change the shape of I(5-HT) (V) (data not shown).  In 

oocytes injected with a mixture of rSERT + D98G (8.3 ng/oocyte + 33.1 ng/oocyte, 

respectively), I(5-HT) is attenuated at all membrane potentials tested (Fig. 23B).  At –80 

mV, I(5-HT) is inhibited 89% by D98G (Fig. 23B, rSERT, -44.45 ± 9.47 nA; rSERT + D98G, -

5.12 ± 2.19 nA).  We are unable to detect I(5-HT) at any membrane potential in oocytes 

injected with D98G alone (33.1 ng/oocyte, data not shown).  Normalizing the data 

shows that co-expression of rSERT and D98G does not change the shape of the I(5-HT) (V) 

despite a marked reduction in current amplitude (Fig. 23C). 
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Figure 23.  Co-expression of rSERT and D98G decreases I5-HT without altering its voltage 
dependence. 
Oocytes are injected with indicated cRNA and cultured for 8 days (18°C).  A, upper panel: voltage 
ramp command protocol; lower panel: representative raw currents measured at pH 5.0 in the 
absence (Control, gray line) and presence of 5-HT (10 µM, black line).  Data represent current in a 
single oocyte injected with 8.3 ng rSERT cRNA.  The dashed line indicates zero current level.  B, 
I(5-HT)(V) at pH 5.0 in oocytes injected with either rSERT (8.3 ng, black line) or rSERT + D98G (8.3 
ng + 33.1 ng, gray line).  C, I(5-HT)(V) in oocytes injected with rSERT (8.3 ng, open circles) or rSERT 
+ D98G (8.3 ng + 33.1 ng, filled triangles).  Data are expressed as the fraction of at –120 mV, pH 
5.0.  Data represent means ± SD from n = 3 (rSERT) or n = 4 (rSERT + D98G) oocytes/condition in 
a single representative experiment. 



 

Chapter IV 

 

Discussion 

 

We express mammalian SERTs in two different heterologous hosts in order to 

study the function of transporters that are natively expressed in blood platelets and 

serotonergic neurons of the central and enteric nervous systems 7. 

We choose the cell line CHO-K1 to study the 5-HT transport activity and Xenopus 

laevis oocytes to study biophysical properties of mammalian SERTs in heterologous host 

cells.  These expression systems represent the state of the art for heterologous 

expression of transporters and ion channel proteins for the purposes of studying 

integral membrane protein physiology.  Their use in this study is therefore consistent 

with established paradigms in our field of study.  We demonstrate that CHO-K1 and 

oocytes cells are appropriate heterologous hosts that, a) lack endogenous 5-HT 

transport activity and background currents that could interfere with our ability to 

identify the SERT-specific component of our measurements, and b) are easily made to 

express SERT protein by transient cDNA transfection or cRNA injection, respectively 

(Figs. 2, 9). 

 

SERT interactions in transiently transfected CHO-K1 cells 

Expression of SERT-mediated 5-HT transport activity (Φ5-HT) in cells depends on 

the amount of SERT cDNA transfected and on the total amount of cDNA in the 

transfection reaction.  Our experiments utilize a cationic lipid-mediated transfection 

reagent to achieve transient expression of SERT for functional studies in the absence 

and presence of after SERT mutants and other putative interacting proteins.  It is 

therefore important to understand the effects of increasing cDNA on Φ5-HT.  Increasing 

the amount of empty plasmid vector (pcDNA3) in the presence of a fixed SERT cDNA 

produces a biphasic Φ5-HT response (Fig. 2).  Φ5-HT is therefore sensitive to changes in the 

transfection conditions.  Since the amount of transfection reagent is constant, we 
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interpret the results in Fig. 3 to mean that transfection efficiency in CHO-K1 cells is 

strongly influenced by the overall DNA:Lipofectamine ratio.  In order to eliminate this 

variable from subsequent studies of SERT in CHO-K1 cells, we add pcDNA3 to all 

transfections so that the total quantity of cDNA remains constant (400 ng/well). 

Saturation of Φ5-HT signal due to intrinsic limitations in the cell’s ability to 

produce SERT protein is another possible source of experimental artifact in 

heterologous expression systems.  The cDNA-response curve establishes that Φ5-HT does 

saturate (Fig. 3), suggesting that SERT expression may be limited at high cDNA levels.  

In order to avoid ceiling artifacts associated with saturating Φ5-HT, we subsequently 

transfect a half-maximal effective quantity of cDNA (EC50 cDNA, 25-50 ng/well).  Similar 

cDNA-response curves are seen for multiple different batches of both rSERT and C109A 

cDNA (data not shown). 

In order to test for inter-subunit cooperativity in the SERT oligomer, we transfect 

cells with wild-type rSERT alone or a point mutation (C109A) that is resistant to 

inhibition by methanethiosulfonate (MTS) reagents.  Inhibition of rSERT-mediated Φ5-HT 

by extracellularly applied membrane-impermeant MTS reagents is a results from 

covalent modification of Cys109 150.  Consistent with previous observations 119, co-

expression of rSERT + C109A alters the timecourse for inhibition of Φ5-HT by MTSET 

and MTSEA, indicating that Cys109 reactivity is sensitive to interactions between rSERT 

and C109A.  Because C109A is non-reactive over our incubation time, MTS inhibition in 

co-transfected cells should be conferred solely by the reactivity rSERT. 

MTSET and MTSEA are cationic at neutral pH, and are largely impermeant to 

the plasma membrane lipid bilayer 157.  The reactivity rate of MTS reagents with 

cysteine in aqueous solution is orders of magnitude faster 157 than the inhibition rate we 

measure for rSERT in intact cells (Fig. 4).  Our results are consistent with the time-

dependence of SERT inactivation reported by other investigators 150, suggesting that 

aqueous accessibility of Cys109 is rate limiting for MTS inhibition of rSERT.  Thus, 

allosteric interactions between rSERT and C109A located on the plasma membrane are 

likely to alter the MTS inhibition rate.  Despite its effects in MTS inhibition, co-
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expression of rSERT with C109A does not perturb the magnitude of Φ5-HT in our 

experiments.  The data suggest that the changes in SERT properties that we see in 

transfected host cells are not due to interactions that are forced by heterologous 

overexpression.  We therefore conclude that SERT expression in CHO-K1 cells reveals 

authentic SERT functional properties. 

In order to determine whether rSERT interactions occur under more 

physiologically relevant conditions, we co-transfect the functionally impaired D98G 

mutant with rSERT and measure the Na+-dependence of Φ5-HT.  Although D98G 

generates detectable Φ5-HT in our assays (< 10 % of Φ5-HTmax for rSERT), the Na+–

dependence of D98G-mediated Φ5-HT is right-shifted 6.6-fold relative to rSERT.  Like 

C109A, rSERT also interacts with D98G, resulting in decreased Φ5-HT and a loss in Na+ 

potency for activation of Φ5-HT.  Assuming that Na+ kinetics in cells expressing rSERT + 

D98G are described by the Hill equation, Na+ potency should be approximated by the 

sum of the two independent responses if rSERT and D98G function independently.  

When the data are modeled in this way, EC50 Na for rSERT + D98G increases only 0.5 

mM relative to rSERT alone (data not shown).  Experimentally, we observe a 7.8 mM 

increase in EC50 Na+ (Fig. 6), indicating that rSERT and D98G do not function 

independently with respect to Na+–dependent activation of Φ5-HT.  The D98G-mediated 

decrease in Φ5-HT is not due to addition of excess cDNA (Fig. 3), but we cannot rule out 

the possibility that D98G attenuates surface expression of rSERT by an unknown 

mechanism. 

However, we rule out the possibility that Na+ potency depends solely on SERT 

expression level.  Despite a decrease in Φ5-HT that is comparable to rSERT + D98G (50 

ng/well + 250 ng/well), transfection with less rSERT cDNA (10 ng/well) does not 

change EC50 Na.  Na+ potency therefore represents an expression level-independent 

microscopic property of SERT function.  The sensitivity of Na+ potency to D98G co-

expression therefore supports the hypothesis that SERT function is mediated by 
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interdependent SERT proteins that interact to modulate function under physiological 

conditions. 

Structural similarities in GAT/NET proteins may allow for promiscuous hetero-

oligomerization between different transporters 132.  We test for interactions between 

rSERT and rGAT1 (which interact in FRET assays 132) by co-transfection in CHO-K1 

cells.  Like D98G, rGAT1 co-expression decreases Φ5-HT and Na+ potency at rSERT.  

rSERT does not affect rGAT1 function (Fig. 8), suggesting that even if SERT and GAT 

form mixed oligomers, the functional consequences of their physical association are 

distinct. 

Substrate potency is higher for expressed SERT (EC50 5-HT = 0.3 - 3 µM) than for 

GAT1 (EC50 GABA = 5 - 8 µM); Na+ potency is similarly increased at GAT1 (rSERT, EC50 Na 

= 13 mM; rGAT1, EC50 Na = 55 mM, data not shown) 54,94,100,106,158.  The data suggest a 

role for oligomerization in maintaining the precise alignment of critical residues that 

comprise binding sites and gating apparatus required for higher potency interactions 

with 5-HT and Na+ seen in SERT.  SERT oligomeric structure may help to coordinate 

inter-subunit interactions for SERT in the same way that the K+ channel tetrameric 

structure creates an energetically flat landscape for potassium that simultaneously 

facilitates K+ selectivity and a high rate of ion flux 158.  The higher sensitivity of SERT to 

Na+ and substrate (compared to rGAT1) may confer increased sensitivity to functional 

perturbations by co-assembly with integral membrane proteins (Table 1). 

Interestingly, the Hill slope for the Na+-dependence of Φ5-HT is insensitive to 

manipulations that alter the magnitude of and potency (Table 1).  Since co-transfection 

of rSERT with neither D98G nor rGAT1 alters nH, we surmise that this factor reflects a 

required step in the 5-HT translocation process.  Similar to Q10 , the Hill slope may 

therefore report cooperativity that is required for a high energy conformational 

transition such as 5-HT permeation itself.  We conclude therefore that either a) 

cooperative interactions between SERT subunits do not affect the mechanism reported 

by the Hill slope, or b) subunit interactions that do perturb the mechanism underlying 

Hill slope are non-productive for 5-HT transport. 
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Co-expression studies in CHO-K1 cells reveal that a) rSERT interacts with C109A 

to change intrinsic properties of MTS reactivity, b) rSERT interacts with D98G to alter 

EC50 Na, a microscopic SERT property, c) rSERT interacts with multiple polytopic 

integral membrane proteins to decrease Φ5-HT.  Decreases in Φ5-HT and Na+ potency 

shifts are not due to nonspecific effects because co-transfection of transport-capable 

SERTs (C109A, rSERT itself) mimics the effects of transport-incapable protein co-

expression (rGAT1, GluR4, HA-α2AAR).  Furthermore, co-expression of single-TM 

(CD8) and cytosolic (EGFP) proteins do not affect rSERT Φ5-HT activity.  Our data are 

consistent with the notion that SERT may form hetero-oligomeric complexes with 

proteins outside of the GAT/NET transporter family, suggesting that SERT may 

interact with other integral membrane proteins to alter its function in the native context. 

 

SERT interactions in cRNA-injected oocytes 

In oocytes, injection of SERT cRNA leads to expression of Φ5-HT and I(5-HT) that 

varies considerably depending on species (rSERT vs. hSERT), culture time and 

temperature, and the quantity of cRNA injected.  As for expression in CHO-K1 cells, we 

establish parameters for SERT expression in oocytes in order to focus our studies on 

how varying expression level and co-expression affects microscopic properties of SERT 

function. 

cRNA potency for Φ5-HT and I(5-HT) depends on factors (time, temperature) that 

are not expected to alter intrinsic SERT properties (Eqn. 3).  For example, increasing 

culture time decreases cRNA potency for Φ5-HT but not I(5-HT) (Fig. 11).  Simple 

transporter models also do not predict Φ5-HT and I(5-HT) to vary independently.  The 

differential effect of culture time suggests that elementary properties of SERT function 

vary with expression level. 

In order to test this hypothesis, we measure biotinylated SERT protein in 

Western blots from oocytes injected with varying amounts of hSERT cRNA.  Increasing 

hSERT cRNA does cause expression of hSERT protein on the plasma membrane to 

increase (Fig. 12).  Φ5-HT and I(5-HT) both increase as expression level rises, but the 
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amount of cRNA required to elicit half-maximal Φ5-HT is 26-fold lower than I(5-HT) and 

49-fold lower than surface SERT protein (Fig. 13).  A similar 34-fold potency difference 

between Φ5-HT and I(5-HT) is seen for rSERT (Fig. 14).  Because Φ5-HT and I(5-HT) necessarily 

result from the activity of functional SERT on the plasma membrane, a simple model of 

SERT function predicts that Φ5-HT and I(5-HT) will be linearly correlated (Eqn. 3).  This is 

clearly not the case (Figs. 13, 14, 16).  We conclude that the balance of channel-like to 

transporter-like SERT function results from allosteric cooperativity that is revealed by 

changes in expression level. 

The data in Fig. 13 further suggest that counting transporters from I(5-HT) data 

(Eqn. 3, denominator) leads to significant overestimates of the number of transporters 

on the cell surface.  Consider an oocyte injected with a half-maximal quantity of hSERT 

for I(5−ΗΤ) (3.4 ng, Fig. 13).  A reasonable value for I(5-HTmax) at –80 mV, pH 7.6 is -10 nA 

(Fig. 20).  Given literature values for single channel conductance and turnover rate (i = 

0.48 pA at –80 mV 82 and ν = 1/sec. 11), Eqn. 3 predicts 6.25 x 1010 SERTs on the oocyte 

surface, consistent with other measurements 103,106,159.  From Hill fits to the data in Fig. 

13 we calculate that at the EC50 cRNA for Φ5-HT (0.13 ng/oocyte), surface SERT represents 

only 2% of its maximum value.  Correcting for this overestimate yields 1.25 x 109 

transporters, 50-fold fewer than Eqn. 3 predicts. 

We rule out several alternative explanations for the differential cRNA-

dependence of Φ5-HT and I(5-HT).   The expression-level dependence of ρ does not result 

from an inability to measure steady-state current at low cRNA because even below 1 ng 

cRNA, I(5-HT) at pH 7.6 is greater than 5-HT-induced current in non-injected oocytes.  

Furthermore, I(5-HT) is 9-fold larger at pH 5.0 (Fig. 15) but exhibits the same cRNA 

dependence as current at physiological pH. 

The results in Figs. 13 and 14 could also be explained by increasing transporter 

number and activity, which significantly depletes 5-HT concentrations in the reaction 

well.  A decrease in 5-HT concentration would result in apparent saturation of Φ5-HT by 

decreasing the effective 5-HT concentration and limiting substrate availability for Φ5-HT.  

However, a) we measure initial transport rates 96 in brief assays (2.5 min.) to minimize 
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the possibility that extracellular depletion or intracellular accumulation of substrate will 

alter Φ5-HT; b) increasing incubation time by 30 fold, which should magnify substrate 

depletion at all expression levels, does not change EC50 cRNA (Fig. 14); c) even in long (60 

min.) uptake assays in oocytes injected with 33.6 ng rSERT cRNA, less than 5% of the 

added [3H]-5-HT is accumulated inside the oocyte.  Saturation of Φ5-HT at high 

expression is therefore due to a functional limitation in SERT transport activity. 

The voltage disparity intrinsic to separate current (Vm = -80 mV) and transport 

assays (Vm = Vrest) could also differentially affect Φ5-HT and I(5-HT).  However, ρ is 

sensitive to the amount of cRNA injected even under constant voltage (Fig. 16).  

Extrinsic chemical and electrical driving forces that are experimentally controlled in Fig. 

16 are unlikely to account for the results shown in Figs. 13 and 14.  Like ρ, the H+-

potentiation ratio is predicted to be independent of the number of expressed SERTs 

(Eqn. 3).  In contrast to ρ, H+-potentiation of I(5-HT) does not vary with expression level 

(Fig. 17).  We therefore conclude that increasing the amount of transporter protein on 

the plasma membrane alters an intrinsic molecular property of 5-HT transport (Eqn. 3, ν 

or q) relative to 5-HT-induced current (Eqn. 3, i or po).  Interestingly, expression level-

dependent changes in SERT function are seen only in the functional context of Φ5-HT. 

Changing SERT expression level also changes its pharmacology.  5-HT activates 

Φ5-HT with higher potency at low SERT expression.  The same data, expressed as a 

function of cRNA injected Fig. 18, show that cRNA potency is lower when Φ5-HT is 

assayed in the presence of high 5-HT concentrations.  Because 5-HT exposure is acute 

(2.5 min. preincubation plus 2.5 min. assay incubation), we conclude that interactions 

between 5-HT and SERT alter a dynamic property of SERT-mediated Φ5-HT.   Thus, the 

data argue that changing expression level alters SERT’s sensitivity to 5-HT 

concentration.  5-HT-dependent shifts in cRNA potency therefore report changes in 

intrinsic SERT properties that result from varying SERT expression level. 

High expression level also decreases potency for inhibition of Φ5-HT by both 

substrates (5-HT and AMPH) and inhibitors (cocaine and paroxetine; Fig. 19, data not 

shown).  For net transport measurements, alterations in 5-HT potency need not 
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necessarily reflect changes in binding affinity if a rate-limiting transition occurs after 

initial 5-HT binding.  In oocytes expressing dSERT, both Φ5-HT and I(5-HT) exhibit 

temperature sensitivities (Q10 ≈ 3) that are typically associated with relatively large 

conformational changes 97.  5-HT potency may therefore be modulated by interactions 

that affect rate-limiting steps leading to substrate translocation or gating of current.  For 

dSERT, 5-HT concentration modulates ρ in dSERT due to its differential potency for 

activation of transport versus current 97.  We find that 5-HT potency for Φ5-HT and I(5-HT) 

is similar at high hSERT expression (Figs. 11, 18).   However, low hSERT expression 

reveals differential 5-HT potency for Φ5-HT  and I(5-HT).  5-HT potency is therefore not a 

constant, but instead reports cooperative interactions between 5-HT and SERT that vary 

with expression level only in the functional context of Φ5-HT. 

ρ is also sensitive to co-injection of rSERT with an inactive mutant, D98G, which 

affects ρ by inhibiting current without affecting transport (Fig. 22).  Based on previous 

data 77,119, we assume that SERT forms oligomers capable of functional interactions in 

oocytes as well as mammalian cells.  D98G might therefore form a mixed oligomeric 

complex that disrupts interactions that are important for determining ρ.  Residues in 

TMD 1 are implicated in substrate and inhibitor recognition and translocation 72,77,160, 

suggesting that perturbations of this structure could interfere with substrate and ion 

conduction if they permeate through a shared pore.  However, both Φ5-HT and I(5-HT)(V) 

are unaffected by D98G, suggesting that ion permeation properties (such as selectivity) 

that would alter I(5-HT)(V) are not perturbed by D98G.  One possible explanation is that 

D98G acts as a dominant-negative subunit such that oligomers containing D98G 

become functionally silent; D98G expression therefore effectively decreases the number 

of active SERTs. 

  The effect of D98G in oocytes to decrease I(5-HT) but not Φ5-HT is contrasted with 

its ability to inhibit Φ5-HT in co-transfected CHO-K1 cells (Figs. 5. 6).  However, this 

apparent discrepancy can be explained by differences in the relative expression of Φ5-HT 

and I(5-HT) in oocytes and cells.  In oocytes, the amount of rSERT cRNA (Figs. 22, 23; 8.3 
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ng/oocyte) is saturating for Φ5-HT but approximately half-maximal for I(5-HT) (Figs. 13, 

14).  We may assume that rSERT + D98G complexes form but are nonfunctional.  D98G 

decreases I(5-HT)  ~60%, suggesting that ~40% of remaining transporters are composed of 

only rSERT.  Since surface SERT expression and I(5-HT)  are highly correlated, it is 

reasonable to assume that the amount of functional SERT is effectively decreased 60% 

by D98G co-injection.  From Fig. 13, 60% of I(5-HT)  corresponds to I(5-HT)  from oocytes 

injected with ~ 1 ng cRNA.  However, at 1ng/oocyte, Φ5-HT is still near saturation (Fig. 

13).  Thus, the effect of D98G to inhibit in oocytes is masked by the saturation of Φ5-HT.  

This analysis suggests the presence of spare transporters for Φ5-HT after injection of high 

levels of cRNA. 

The concept of spareness implies the existence of an enabling factor for Φ5-HT that 

can dynamically associate with functional transporters to stimulate Φ5-HT.  The data 

suggest that if an enabling factor normally associates with rSERT, it does not interact 

directly with D98G.  Expression of D98G might be expected to compete with rSERT for 

association, which would decrease the effect of the factor (and thereby decrease Φ5-HT), 

the opposite of what we observe.  The existence of a Φ5-HT-enabling factor with limited 

but constitutive cellular expression can also explain the differential sensitivity of Φ5-HT 

and I(5-HT) to SERT expression level.  The factor stimulates Φ5-HT at low, but not at high, 

expression levels, effectively increasing cRNA potency for Φ5-HT relative to I(5-HT) .  Φ5-HT 

saturates when increasing SERT expression exhausts the supply of the endogenous 

enabling factor.  I(5-HT) is not affected by the activity of an enabling factor and therefore 

correlates linearly with surface SERT protein.  cRNA potency for Φ5-HT therefore reports 

SERT association with the unknown factor.  The effects of an enabling factor may also 

mediate expression-level dependent changes in SERT pharmacology.  At high 

expression, where Φ5-HT is not activated by the enabling factor, ligand potency is 

decreased.  Interaction with the factor is therefore correlated with higher ligand potency 

for Φ5-HT.  Consistent with this interpretation, high substrate concentrations decrease 

cRNA potency.  
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Other explanations for our data are possible.  Increasing SERT expression level 

might favor the formation of oligomeric SERT complexes if multimer formation is mass-

dependent.  If monomeric SERT supports 5-HT transport but an oligomeric structure is 

required for current, then altering the relative proportions of these different quaternary 

structures will perturb ρ.  At low expression, monomers generate Φ5-HT; as expression 

level increases, so does the relative abundance of oligomers.  I(5-HT) is therefore 

stimulated at high expression levels.  A variable oligomer model is also consistent with 

the effect of D98G to perturb current but not transport in oocytes.  If D98G mediates its 

effect on I(5-HT) by forming current-impaired complexes with rSERT, then D98G should 

selectively decrease I(5-HT) without affecting Φ5-HT.  mSERT monomers exhibit different 

pharmacological properties from concatenated oligomers 134, suggesting that 

expression-level dependent oligomerization may also explain differences in SERT 

pharmacology that we observe. 

However, the variable oligomer model does not explain our results in CHO-K1 

cells where D98G inhibits Φ5-HT and alters Na+ potency.  We find little precedent for 

variable oligomerization in the transporter or ion channel literature.  On the contrary, 

KATP channel expression in oocytes is subject to a strict control mechanism that prevents 

expression of incomplete assemblies 161.  The application of ultrastructural techniques to 

visualize oligomer formation in cells where SERT function has been measured should 

allow for the design of discriminating experiments to test the variable oligomer model.  

A linear correlation between freeze-fracture particle and pre-steady-state current is 

reported for EAAT3 glutamate transporters that form a pentameric structure 162.  In 

light of our findings, it would be interesting to know how transport and steady-state 

currents correlate with particle density, size and shape for EAAT-3. 

Another possibility is that SERTs are physically linked into oligomeric complexes 

by an accessory protein.  GAT/NET transporters are known to associate with syntaxin 

1A and the catalytic subunit of PP2A 110,111.  Catecholamine transporters interact with 

the PDZ-containing protein PICK-1 112, which is also involved in PKC regulation of 

AMPA-type glutamate receptors 163.  Our observation that rSERT interacts with GluR4 
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in CHO-K1 cells could therefore be mediated by common interactions with PICK-1, a  

PICK-1 homologue, or an associated protein.  It is temping to speculate that 

neurotransmitter transporters might be tethered into complexes by proteins such as 

PSD-95 family or GRIP proteins that cluster NMDA 164 and AMPA 165,166 glutamate 

receptors, respectively.  However, direct association between channel-clustering 

proteins and neurotransmitter transporters have not been reported in the literature. 

Since association with PKC thus appears to be a common theme for both 

transporter regulation and transporter-associated proteins 167, PKC itself or an 

unidentified PKC-associated protein may be reasonably hypothesized to play a role in 

transporter tethering.  Indeed, rGAT1 localization and function are regulated by PKC in 

oocytes, and high transporter expression abolishes PKC-dependent subcellular 

trafficking 168.  We suspect that cRNA potency in oocytes reflects SERT interactions with 

host factors that are required for, or regulate, function on the plasma membrane.  In 

addition to SERT itself 119, candidate factors include molecules that interact with 

GAT/NET transporters 110-112,118,167,169,170.  Regulators of SERT function may similarly 

limit uptake as transporter number increases, especially if their abundance or activity is 

endogenously limited.  Induction of I(5-HT) and saturation of  at high SERT expression 

may therefore reflect disassembly or functional uncoupling of SERT-associated 

regulatory complexes.  As suggested by SERT phosphorylation studies 113, ligand 

occupancy may modulate functional associations between SERT and associated proteins 

to alter the balance of transporter-like to channel-like function.  However, the identity of 

proteins or cellular factors that may be responsible for promoting SERT or 

oligomerization is presently unknown 

 

A model for Cooperative SERT interactions 

Although existing transporter models can account for large transporter-mediated 

ion fluxes 95,98,171-173, they do not predict the expression-level dependence of ρ or  the 

substrate and inhibitor potency reported here.  To explain our data, we propose the 

following model (Fig. 24): functional SERT exists as part of a ternary complex composed 
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of the SERT oligomer (T), substrate (S), and an endogenous oocyte factor of limited 

abundance (X).  The total number of oligomeric transporters on the plasma membrane 

is N = T + TS + TX + TSX.  In our experiments, we vary N by increasing cRNA injection, 

and we vary S by addition of 5-HT.  X is required for 5-HT transport activity and 

modulates ρ by promoting Φ5-HT in favor of I(5-HT).  cRNA potency for therefore reports 

association of X and T.  Factor X also governs ligand recognition: at low N, substrates 

and inhibitors interact with higher potency at T.  Reciprocally, T-X association is 

sensitive to substrate concentration: high [S] decreases cRNA potency, consistent with a 

functional uncoupling of X and T. 
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Figure 24.  Model for SERT interactions with 5-HT and an endogenous cellular factor of 
limited abundance. 
SERT (T, cylinders) associates with an endogenous factor (X, black rectangles).  Top row, in the 
absence of 5-HT (S), association of X with T decreases the magnitude of SERT-associated leak 
current (I LEAK).  At low SERT expression, T is electrically silent (white cylinders), whereas at 
higher SERT expression levels, T generates measurable current (green cylinders).  Bottom row, 
in the presence of S, X stimulates T to produce measurable 5-HT transport (blue cylinders, Φ5−ΗΤ)
even at low expression levels.  At higher expression, S induces current (green cylinders, I5−ΗΤ) 
when T is not associated with X. 
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At low N, endogenous levels of X saturate available transporters such that 

constitutive current is suppressed.  TX dominates, generating little constitutive current.  

In the presence of a fixed, low concentration of S generates TSX, which mediates 

appreciable Φ5-HT.  I(5-HT) remains small because X keeps T running in transporter mode 

and ρ ≈ 1.  As N rises due to increased cRNA injection, X becomes limiting and TSX-

mediated Φ5-HT plateaus.  Both constitutive and substrate-induced currents grow in 

proportion to N because the measured I(5-HT) is generated mainly by T.  Transporters 

that exist free of X are therefore spare with respect to Φ5-HT: they are capable of 

participating in transport but lack a required interaction with X to become active for Φ5-

HT. 

Our data also indicate that X and S interact allosterically through T.  TSX 

generates Φ5-HT while TS generates I(5-HT); thus transport and current both increase dose-

dependently with [S].  However, cRNA potency for Φ5-HT is higher at low substrate 

concentrations (Fig. 18A) because S interacts more potently with T than with TX.  This is 

unexpected if S and X are independent.  Thus we hypothesize that high concentrations 

of S cause X to dissociate from T, decreasing cRNA potency for Φ5-HT.  The same result 

occurs at high N, where T is physically dissociated from X.  As a corollary, S-X 

interactions are independent of X for I(5-HT): S activates I(5-HT) with constant potency at 

either low or high expression (Fig. 20), and cRNA potency is unaffected by S (Fig. 18B)   

Although our model appears to make Φ5-HT and I(5-HT) mutually exclusive, 

(depending on functional association with X), we hypothesize that T and TX represent 

extremes on a continuum of SERT function.  S increases the probability that we measure 

T alone vs. TX and X changes the probability of finding T in Φ5-HT mode versus I(5-HT) 

mode.  Ligand-dependent modulation of T function suggests that T-X transitions may 

be dynamically regulated by substrates, regulatory proteins, or post-translational 

modifications such as those seen for hSERT 111,113 and rGAT1 174,175.  Dynamic regulation 

raises the possibility that the behavior of any individual SERT may therefore change 

from one instant to the next.  Amperometric or time-resolved fluorescent methods that 

measure transport in combination with voltage clamp may be able to overcome the 
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bandwidth limitations of the present study to measure millisecond fluctuations in ρ at 

the level of the elementary SERT functional unit. 

Finally, our model provides an explanation for apparent discrepancies in the 

literature.  The heterogeneity of currents associated with GABA transporter function 
94,102,107,108,176, may be reconciled if different experimental protocols alter the relative 

abundance of transporters and regulatory factors.  We speculate that the balance of 5-

HT transport to 5-HT-induced current will depend on the relative expression and 

localization of transporters and associated factors in the native environment.  Indeed, 

large pre-synaptic 5-HT-induced currents are also observed in native synapses 52.  

Furthermore, 5-HT stimulates transport more potently in brain vesicles and 

synaptosomes (EC50 = 50-100 nM) than in heterologous cellular hosts (EC50 = 0.5-1 µM), 

suggesting that SERT expression alone may fail to fully recapitulate the native 5-HT 

transport system 8,27,33,57,86,88-92,177,177,177. 

 

Summary and Conclusions 

Molecular biological techniques such as heterologous expression of recombinant 

cDNA are powerful because they allow for insightful studies the activity of specific 

proteins.  Ideally, controlled expression isolates the activity of interest from 

complicating factors that may be present in the native context.  Heterologous expression 

carries an important caveat: factors that modulate the activity of a given protein in situ 

are not necessarily recapitulated in the experimental context of host cells.  Thus, 

heterologous expression may result in the absence of regulatory factors that are 

required for protein structure or function, thereby altering intrinsic properties of the 

expressed protein activity. 

Expression of transporters and ion channels in host cells is particularly useful for 

physiological studies, since endogenous (and sometimes redundant) transport 

pathways and currents can contaminate measurements in native cells.  Although 

pharmacological blockers and ion substitutions can be used to discriminate among 

otherwise similar activities, selectivity itself must first be defined.  However, inhibitor 
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selectivity may be problematic if it is defined using heterologous expression systems 178.  

Nonetheless, in vitro expression permits the use of methods (such as simultaneous 

transport and current measurements) that would otherwise be difficult or impossible in 

vivo. 

Channel-like activity in heterologous systems is generally ascribed to expressed 

GAT/NET transporters because a) large currents are observed concomitant with 

transport and radioligand binding in transfected or injected cells but not naïve controls 

and b) transport and current exhibit similar ionic requirements and inhibitor 

sensitivities 103-105.  Furthermore, channel events correlate with spikes of NE flux in 

membrane patches containing hNET 179.  For SERT, we observe robust Φ5-HT even under 

conditions when I(5-HT) is negligible, but never the reverse, and expression of I(5-HT) is 

highly correlated with plasma membrane SERT protein (Fig. 11).  It is therefore unlikely 

that substrate-induced and constitutive ionic currents are simply due to induction of 

endogenous channels 180. 

Non-classical transporter properties are not unique to the GAT/NET family.  

EAAC1-mediated glutamate transport is biphasic with respect to the amount of injected 

cRNA 181, and Cl- flux through NaPi-1 exhibits a different cRNA dependence than Pi 

transport 182.  Large currents and variable stoichiometry are common for GAT/NET and 

EAAT transporters 103-105, but are also found  in other transporters.  Depending on Na+ 

concentration, sugar concentration, and membrane voltage, ρ may be either 1 or 2 for 

the SGLT1 Na+/glucose co-transporter expressed in Xenopus oocytes 183 and hormones 

modulate glucose transport kinetics and ion stoichiometry in Tilapia intestinal brush-

border membranes 184.  Stoichiometry of the Na+/HCO3- transporter NBC1 depends on 

the cellular host in which it is expressed 185. 

Constitutive (leak) conductances are also found in a wide variety of transport 

proteins, including SGLT1 183, NBC1 and NBCn1-B 185,186, the H+/metal ion transporter 

DCT1 187,188, Na+/L-ascorbic acid transporters SVCT1 and SVCT2 189, Na+/PO4 

transporter NaPi-1 190, vesicular glutamate transporter VGLUT1 191, the amino acid 

transporter rBAT 192, the yeast iron transporter SMF1 193, and an insect amino acid 
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transporter, CAATCH1 194.  The existence of such functional parallels across disparate 

structures suggests that channel-like properties represent a conserved theme in 

transporter function. 

Classical transporter models predict ρ to be between zero and two for GAT/NET 

transporters 33,91,103,105.  Experimentally, however, ρ is as high as 7 for hDAT 99 and 

rSERT 98 and 50 for dSERT 95,97 expressed in oocytes.  In our experiments, low SERT 

expression results in a functional unit that moves ~7e per 5-HT at pH 5.0; ρ increases 

4.3-fold as expression level rises (Fig. 16).   Our results are thus consistent with other 

studies where large SERT currents are measured in oocytes injected with relatively 

large quantities of cRNA 95-99.  However, the present data do not allow us to 

discriminate whether the ρ we measure reflects a property of each transporter, or the 

average behavior of a heterogeneous SERT population operating with intrinsically 

different ρ values.  On average, SERT behaves as expected for a classical transporter at 

low expression level but becomes increasingly channel-like as the surface density of 

SERT protein increases. 

We present evidence from two different expression systems that SERT functions 

as part of a heteromeric complex possessing inter-subunit cooperativity.  The data fail to 

conform to the expected behavior for classical transporter models which postulate a 

SERT protein that possessively catalyzes the transmembrane flux of 5-HT, Na+ and Cl- 

in 1:1:1 stoichiometry, generating +1e per transport cycle 17.  We conclude that allosteric 

interactions between individual SERT gene products and between SERT and an as yet 

unidentified cellular factor alter intrinsic properties of serotonin transporter function 

and pharmacology. 

The model that we propose provides a unifying framework for understanding 

the complexity of SERT function.  Depending on expression level, SERT function ranges 

from transporter-like (zero or small net change movement accompanying 5-HT 

transport) to channel-like (large net charge movement in synchrony with 5-HT flux).  

The model also accounts for the expression level-dependent changes in SERT 
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pharmacology that we observe.  Furthermore, we model SERTs as functional oligomers 

that are sensitive to inter-subunit interactions in heteromeric complexes. 

Our representation for neurotransmitter transporters is reminiscent of the 

ternary complex model for G-protein coupled receptors (GPCRs) 195, where ligand 

affinity is regulated by association with an interacting factor that acts as a molecular 

switch (G-protein).  The presence of spareness in our model further strengthens the 

functional parallel with classical GPCR models of GPCR function.  Although the 

identity of transporter-modulating factors remains unknown, our results suggest strong 

functional parallels between channels, receptors, and transporters. 

 

 

Future Directions 

1)  Identification of factors responsible for the differential cRNA-dependence of Φ5-

HT and I(5-HT). 

Our experiments reveal a method for identifying novel factors that could be 

responsible for enabling 5-HT transport in Xenopus oocytes.  We observe that the 

quantity of cRNA required to achieve half-maximal Φ5-HT is lower than that required for 

I(5-HT).  If the novel factor responsible for this difference is a protein whose endogenous 

abundance is limited, we imagine that it could be identified through expression cloning 

in oocytes.  Increasing expression of the limiting factor above the endogenous level 

should increase Φ5-HT at high SERT expression, where it is normally in saturation. 

mRNA isolated from cells that natively express SERT, such as placenta or 

serotonergic neurons, could be used as a source for genetic sequences encoding a 

putative Φ5-HT-enabling factor.  Alternatively, mRNA may be identified by a priori 

determination of candidate factors (i.e. PICK-1 or Syntaxin  1A) .  In either case, mRNA 

is co-injected into oocytes with or without with varying quantities of SERT cRNA.  The 

cRNA potency for and are then assayed for Φ5-HT and I(5-HT).  Expression of the enabling 

factor should shift the cRNA dependence of Φ5-HT leftward, increase maximal Φ5-HT, and 

shift the cRNA dependence of I(5-HT) rightward. 
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An alternative approach that could allow for more rapid screening might involbe 

measurement of Φ5-HT in single SERT-transfected mammalian cells.  Methodologies 

such as amperometry, that can detect loss of oxidizable substrate from a localized space 

or fluorimitry, which may report intracellular accumulation of fluorescent 5-HT 

congeners caould be useful in this regard.  Expression of a Φ5-HT-enabling protein 

should increase Φ5-HT even at high SERT expression where is otherwise limited by 

functional saturation. 

2)  Test for transporter spareness. 

High SERT expression functionally uncouples SERT from a putative transport-

enabling factor, resulting in transporters that are spare with respect to Φ5-HT.  The 

existence of spare G-protein coupled receptors (GPCRs) in physiological systems has 

long been appreciated, and reliable tests for receptor reserve have been devised 196.  This 

classical methodology is applicable to testing for the existence of spare transporters as 

well.  Irreversible inacitvators of SERT have been reported 197-199.  Other covalent 

inhibitors such as MTSEA or MTSET may also be sufficient for this in heterologous 

systems where SERT responses can be easily discriminated from background responses. 

For GPCRs, receptor activity is measured in agonist concentration-response 

curves.  If spare receptors are present, increasing concentrations of an irreversible 

antagonist will first shift the agonist EC50 rightward without decreasing the maximal 

response 196.   As receptor spareness is exhausted by inactivation, further increases in 

irreversible inhibitor concentration will decrease the maximal agonist-elicited effect.  

For SERT, we envision utilizing the cRNA-Φ5-HT response curve as a functional readout 

of transporter spareness.  If SERTs are able to dynamically interact with a factor that 

stimulates Φ5-HT, addition of an irreversible inhibitor should decrease EC50 cRNA without 

affecting Φ5-HT.  Since spare transporters in our model primarily generate I(5-HT), 

irreversible inhibitors should decrease I(5-HT) even though Φ5-HT may not change. 

3)  Screen for compounds that discriminate Φ5-HT mode from I(5-HT) mode.   

SERT ligands more potently inhibit Φ5-HT at low expression in oocytes, when 

SERT is functionally associated with an Φ5-HT-enabling factor.  In the present study, all 
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tested ligands exhibit expression level-dependent shifts in inhibitory potency, although 

the magnitude of the shift is greater for non-transported inhibitors (cocaine, paroxetine) 

than for transportable substrates (5-HT, AMPH).  A reasonable hypothesis that we have 

not yet tested directly is that there exists a spectrum of intrinsic activity for inhibition of 

Φ5-HT at low vs. high expression.  Alternatively, compounds may selectively inhibit Φ5-

HT or I(5-HT).  We anticipate that there exist ligands which will exhibit Ki values for 

inhibition of Φ5-HT at low SERT expression that are several orders of magnitude smaller 

than for the Ki for inhibition of I(5-HT) or inhibition of Φ5-HT at high SERT expression. 

Since we speculate that interconversion of SERT function may be dynamically 

regulated by interactions with the putative enabling factor, and since dysregulation of 

SERT is implicated in human disease phenotypes, there exists a possibility that selective 

inhibition of SERT in different functional modes will be therapeutically advantageous.  

We therefore suggest designing a pharmacological screen to identify compounds that 

selectively inhibit of Φ5-HT at low vs. high expression, and for compounds that exhibit 

selectively inhibit Φ5-HT relative to I(5-HT). 
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APPENDIX A.  DEFINITIONS AND ABBREVIATIONS 

 

5-HT, 5-hydroxytryptamine, serotonin; MDMA, 3,4-methylene-

deoxymethamphetamine, ecstasy; AMPH, d-amphetamine; MTS, methanethiosulfonate; 

MTSEA, (2-aminoethyl)methanethiosulfonate; MTSET, [2-(Trimethylammonium)ethyl] 

methanethiosulfonate; TMD, transmembrane-spanning segment; Asp98, aspartate 98 in 

the primary sequence of rSERT; D98G, Asp98 mutation to glycine in rSERT; Cys109, 

cysteine 109 in rSERT; C109A, Cys109 mutation to alanine in rSERT; CHO-K1, Chinese 

hamster ovary cell line; HEK-293, human embryonic kidney cell line; e, elementary 

charge (1.602 x 10–19 Coulombs, C); F, Faraday’s constant, 9.548 x 104 C/mol; Φ5-HT, 5-HT 

transport rate (mol 5HT/unit time); Φ5HTmax, maximal Φ5-HT; I5-HT, current carried by 5-

HT, equal to F⋅Φ5-HT (Amps, A); Q5HT, time integral of I5-HT, charge movement due to the 

5-HT+ itself (C); I(5-HT), 5-HT-induced current (A); I(5-HT) pH 5.0, I(5-HT) at indicated pH; 

IH+leak, constitutive current induced by extracellular acidification; Imax, maximal I(5-HT); 

Q(5-HT), time integral of I(5-HT), total 5-HT-induced charge movement (C); ρ, 

charge/transport ratio, Q(5-HT)/Q5HT (unitless); ΦGABA, GABA transport rate (mol 

GABA/unit time);Vm, membrane potential; Vrest, resting membrane potential; EC50 cRNA, 

half-maximal quantity of injected cRNA (ng/oocyte); EC50 Na, half-maximal 

concentration of Na+ (mM); IC50, half-maximal inhibitory concentration; nH, Hill slope 

(unitless); PKC, protein kinase C; PP2A, protein phosphatase 2A catalytic subunit; 

PICK-1, protein interacting with C-kinase 1; GRIP, glutamate receptor interacting 

protein. 
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APPENDIX B.  STATISTICS AND CURVE FITTING 

 

Reported values represent mean ± SEM from replicate determination in a single 

experiment unless otherwise indicated.  Statistical significance is determined using 

Student’s non-paired t-test (Origin).  Significant differences are indicated by *, p < 0.05 

or **, p < 0.001. 

For curve fits, parameter values represent mean ± 95% C.I. from at least 10 

iterative fits using the Levenberg-Marquardt nonlinear least squares algorithm (Origin) 

unless otherwise indicated. 
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APPENDIX C.  EQUATIONS 

 

The Hill equation.  A generic form of the equation is shown.  Variables are indicated in 

Results.  E, effect (e.g. Φ5-HT or I(5-HT)); x, independent variable (e.g. quantity of cRNA, 

Na+, 5-HT or drug concentration); EC50, half-maximal value of x; nH, Hill slope. 
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Mathematical definition of ρ.  Terms are defined in APPENDIX A. 
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Predicted relationship between current generated by a transporter or channel.  N, 
number of functional units, i, single channel conductance, po, open probability, ν, 
turnover rate, q charge transfer per cycle. 
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Calculation of Ki values by the method of Cheng-Prusoff.  The form of the equation is 
adapted from 200.
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