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CHAPTER 1 

 

INTRODUCTION 

 

Autism and the Broader Phenotype  

In 1943 Leo Kanner published a series of case reports that detailed his 

observations of eleven children presenting with what he called, �infantile autism�.  He 

distinguished these children as distinct from individuals with mental retardation on the 

basis of the lack of social reciprocity they displayed.  Most of the eleven children he 

characterized were males, in fact, only three were females.1  Kanner was first to publish 

features characteristic of the autism phenotype.  His research laid the ground-work for 

further study, assessment and diagnosis of the autism phenotype.    

Autism (OMIM #209850) is now recognized as a formal disorder and is 

characterized as part of a group of developmental disorders called Pervasive 

Developmental Disorders (PDDs), as  classified by the Diagnostic and Statistical Manual 

of Mental Disorders (DSM-IV).  This disorder is distinguished from other PDDs, such as 

Rett Syndrome, Asperger Syndrome and PDD-Not-Otherwise-Specified (PDD-NOS), on 

the basis of diagnostic criteria and assessment measures as outlined by the DSM-IV, the 

Autism Diagnostic Interview and its revision (ADI, ADI-R)2, 3 and the Autism Diagnostic 

Observation Schedule (ADOS).4  Autism is characterized by impairments in three main 

areas: development and use of language, reciprocal social interaction and repetitive 

behaviors, restricted interests and resistance to change in the environment or in daily 

routines.5  Autism represents a continuum of behavioral abnormalities and is more 
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accurately defined as a spectrum of disorders (Autism Spectrum Disorders, ASDs), with 

�classic autism� representing the more severe end of the spectrum where individuals meet  

diagnostic criteria defined by levels of impairment in the triad of symptom domains 

associated with the disorder.  The presentation of impairments in individuals with autism 

is highly variable.  Additional behavioral complications such as irritability, aggression, 

anxiety, hyperactivity and compulsive behavior may be present and the manifestation of 

impairments changes as a function of time.6  Further, cognitive impairments exist in more 

than two thirds of affected individuals.7  One study found a mental retardation rate of 

66.7%  in individuals with more narrowly defined autism.8  In addition, gastrointestinal 

disturbances such as diarrhea, abdominal pain and/or constipation are frequently present 

in individuals with autism.9  Seizures are a frequent co-morbid condition in autism; 

various studies have found the frequency of epilepsy in autism to be anywhere from 5% - 

38.3% (reviewed in reference 10).10   

 

Prevalence and Heritability of Autism 

The current estimated prevalence of classic autism is 1/500, which increases to 

1/150 (PMID: 17287715) when all PDDs (not Rett Syndrome) are included.7, 8  Males are 

affected four times as frequently as females.8  Twin studies lend strong support for 

genetic determinants in autism: monozygotic twins have a concordance rate of 60% for 

classic autism and up to 92% when broader criteria are used, as compared to dizygotic 

twin concordance rates of 0% and 10% for classic autism and more broadly defined 

impairments, respectively.11, 12  In addition, sibling recurrence rates are estimated to be 

~6-8% when �stoppage rules� (when the parents of a child with autism decide not to have 
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any more children) are taken into consideration.13, 14  This rate is much greater than 

would be expected based strictly on the population prevalence of autism, which is 1/500 

for narrowly defined autism.  It has been estimated that there are likely 15 or more 

genetic loci that contribute to risk for autism.15  Thus, it seems that the mode of 

inheritance is likely oligogenic with different families possessing different sets of risk 

alleles,5 thus contributing to the range of phenotypes seen within autism.  

 

Serotonin in Autism 

Serotonergic dysregulation has long been suspected to play a role in autism.  In 

1961 Schain and Freedman discovered about one-third of individuals with autism have 

elevated blood platelet serotonin levels (hyperserotonemia)16 and this finding has been 

replicated by other groups.17  In addition, selective serotonin reuptake inhibitors (SSRIs) 

are frequently effective in the treating of ritualized, repetitive behaviors, stereotypies, 

anger, and anxiety associated with autism.18-20  Further, when the essential precursor of 

serotonin (tryptophan) is depleted, autistic symptoms in affected individuals worsen.21  In 

addition, a positron emission tomography (PET) study performed on a cohort of boys 

with autism revealed a decrease in serotonin synthesis in the left thalamus and left frontal 

cortex in five of the seven autistic boys studied and in the right thalamus and right frontal 

cortex of the other two boys (the one female with autism did not have these 

asymmetries).22  PET studies also reveal a developmental difference in the capacity for 

serotonin synthesis between affected and unaffected individuals.6, 23  In a normal 

individual, serotonin synthesis in the brain is equal to or greater than 200% that of adult 

synthesis up until approximately five years of age, and then levels begin to decline 
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gradually until reaching adult levels.6, 23  In individuals with autism, serotonin synthesis 

gradually rises from age two until approximately age fifteen at which point it levels off at 

150% that of normal adult values. 21   Thus some individuals with autism from the age of 

two until five (and likely under two) have less capacity for central nervous system 

serotonin synthesis than children without autism.   

These studies indicate a role for serotonin in autism, but the argument could be 

made that serotonergic dysregulation is secondary to autism rather than etiological. 

Therefore studies looking at serotonin levels in unaffected first degree relatives are 

advantageous.  One study found a positive correlation between serotonin levels in 

subjects with autism and their unaffected first-degree relatives.24  Further, affected 

individuals with an affected sibling have greater serotonin levels than those without an 

affected sibling.25  In addition, rat pups injected with a serotonin analog during 

development exhibit behavioral and neurochemical features reminiscent of autism.26 The 

investigator of this study hypothesizes that elevated blood serotonin levels will lead to a 

decrease in the brain serotonin neurocircuitry by activating negative serotonergic 

feedback loops prematurely.26  This would lead to the decreased serotonin neurocircuitry 

found in the brains of individuals with autism.  Further, in consideration of findings of 

hyperserotonemia in ~25% of individuals with autism, it may be noted that higher levels 

of serotonin in blood platelets may, conceptually, be considered as equal to lower 

amounts of serotonin signaling in the brain since more is being retained within the 

neuron.  These studies are supportive of the idea that serotonin dysregulation is 

etiological rather than secondary to autism. Therefore any genes whose protein products 
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play a role in serotonergic signaling are functional candidate genes for autism 

susceptibility.     

 

Genetic Studies of Autism 

To study genetic determinants of autism risk, several groups have employed 

genome-wide linkage screens using multiplex families to detect regions of the genome 

that tend to be inherited in the affected offspring, and/or utilized allelic association tests 

to determine if common alleles at a given locus confer increased risk for autism.  

Genome-wide linkage screens based on categorical phenotypes within autism have 

revealed significant linkage peaks at chromosomal regions 7q, 2q and 17q.15, 27-42 Follow-

up studies for the 17q region with independent samples demonstrated significant linkage 

at or close to the serotonin transporter (SERT) gene (SLC6A4), located at 17q11.2.38, 43  

 

SLC6A4 as a Functional Candidate Gene 

The SLC6A4 gene is a functional candidate gene in autism as its protein product, 

SERT, is a key regulator of serotonin levels in the presynaptic neuron terminals and post-

synaptic synapses of serotonergic neurons which project from the raphe nuclei of the 

brainstem to cortical areas (reviewed by Purselle and Nemeroff, 2003).44  In addition, 

SERT is expressed on thalamocortical neurons for a short period during development.45  

Further, SERT is expressed in blood platelets where serotonin is taken up and stored in 

dense granules for later release in hemostasis (reviewed by Horiuchi, 2006).46  SLC6A4 is 

a member of the SLC6A gene family of Na+ and Cl- coupled transporters and is most 

similar to the norepinephrine transporter (NET) and dopamine transporter (DAT).47  
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SLC6A4 is expressed from a single gene that undergoes no alternative splicing of its 

coding exons thus the translated 630 amino acid SERT protein expressed in the brain is 

identical to that expressed in the periphery in blood platelets and lymphocytes.47-49  More 

than twenty polymorphisms in the coding region have been identified in SLC6A4.  SERT 

has twelve transmembrane-spanning domains48 with intracellular NH2 and COOH 

termini.50-52 Further, SERT is rapidly modulated by protein kinase G (PKG) and p38 

mitogen-activated protein kinase (MAPK) pathways in addition to various G-protein 

coupled receptors.47, 53-57 Internalization of SERT can be mediated by activation of 

protein kinase C (PKC) pathways, and this is dependent on extracellular serotonin 

levels.54   

 

Increased Linkage at 17q11.2 Based on Sex and Phenotype 

Importantly, the strength of genetic linkage to 17q11.2 is dependant on sex and 

phenotype.39, 58  Our lab did a study of 137 multiplex families that revealed a multipoint 

heterogeneity logarithm of the odds (HLOD) score of 2.74 which increased to 3.62 in a  

subset of families that display comparatively more severe rigid-compulsive behaviors.39  

A further study of 341 multiplex families revealed that when families with affected males 

only (MO; n=202) were analyzed independently of families with at least one affected 

female (female-containing, FC), the peak recessive HLOD score at chromosome 17q11.2 

went from 5.8 to 8.0, with little contribution from the female-containing families.58  An 

HLOD score of 8.0 for a complex psychiatric disorder is striking.  In Cystic Fibrosis, 

there is some allelic heterogeneity, but there is a single, more prominent mutation, 

∆F508, that only has an HLOD score of 6.0.59 
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Figure 1.  Linkage of autism at 17q11.2 is predominantly driven by male-only 
families.  Recessive multipoint HLOD scores are plotted along chromosome 17 as a 
position of the marker in centimorgans (cM) for the pooled autism dataset (All; n=341; 
black line), families in which only males are affected with autism (MO; n=202; blue 
line), and families in which at least one female is affected with autism (FC; n=138; red 
line).  Peak HLOD score for the pooled dataset is 5.8 and increases to 8.0 in MO 
families.58  Figure taken from Sutcliffe et al. (2005).58 
 

 

Rare Variants in SLC6A4 

Our lab went on to probe the possibility that rare or novel variants of SLC6A4 in 

contribute to autism susceptibility.  We used allelic discrimination assays to test for the 

presence of known, rare variants in autism families.  We also selected 120 unrelated 

probands who contributed most to the linkage peak at 17q11.2 and screened their 

SLC6A4 promoter and exons for novel variants.58  The Gly56Ala variant was identified in 

multiple affected families, particularly within the �linked� subgroup, and included three 

homozygous individuals.  Thus in the �linked� families, Gly56Ala was present with a 

minor allele frequency (MAF) of ~2.3%, whereas a previous study reported a MAF of 

~0.44% in a nonclinical sample.58, 60  In addition, three novel variants were identified in 
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the screen (Ile425Leu, Leu550Val, and Phe465Leu), all of which are coding substitutions 

that occur in transmembrane domains at highly conserved residues.58  

 

 

Figure 2.  Schematic representation of rare variants discovered in SLC6A4 of 
affected families.  Three of the variants are located within transmembrane domains 
(white dots; Ile425Leu, Phe465Leu, Leu550Val) and two are located in the intracellular 
amino and carboxyl terminal regions (black dots; Gly56Ala and Lys605Asn, 
respectively).  Gly56Ala has previously been reported to exhibit a dose-dependent 
increase in basal 5-HT transport activity and to be resistant to PKG- or MAPK- 
stimulated 5-HT uptake.  Ile425Leu occurs at a nucleotide that has also been affected by 
a previously reported polymorphism (Ile425Val) where the minor allele tracks with 
individuals presenting with a complex psychiatric phenotype including OCD and 
Asperger syndrome.  These novel variants on SERT exhibit a gain-of-function 
phenotype.  Figure taken from Sutcliffe et al. (2005).58 

 

Gly56Ala SERT exhibits a dose-dependant increase in basal 5-HT transport 

activity in EBV-transformed lymphocytes and transfected cells with Ala56 homozygous 

cell lines having an ~75% increase compared to Gly56 homozygous cell lines.58  The 

Ala56 SERT is also refractory to serotonin uptake stimulation induced by acute 

application of PKG or p38 MAPK activators.47, 58  Ile425Leu occurs at a nucleotide that 

was previously identified as a variant and leading to an Ile425Val substitution in two 

families segregating a complex neuropsychiatric phenotype including obsessive-
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compulsive disorder (OCD) and Asperger syndrome.61  Cells expressing Val425 SERT 

exhibit significantly increased surface expression of this protein resulting in elevated 

basal serotonin uptake.47  Val425 encoded SERT does not display altered regulation by 

kinase activation as Gly56 encoded SERT does, but both protein variants do exhibit 

elevated basal serotonin uptake.47, 58  The three newly identified variants in addition to 

Gly56Ala are associated with more severe rigid-compulsive behaviors.58  

 

SLC6A4 Repeat Polymorphisms: HTTPLR and VNTR 

The most commonly studied variants of SLC6A4 are two repeat polymorphisms 

located in noncoding regions of SLC6A4 that affect gene expression.62, 63 The first is a 44 

base pair (bp) insertion/deletion polymorphism (HTTLPR) located 1.2 kb upstream of the 

first exon (1a) that results in a long (l) and a short (s) allele.  

 

        

Figure 3. Schematic representation of HTTLPR.  The 44 bp insertion/deletion 
polymorphism is located approximately 1.2 kb upstream of the first exon of SLC6A4.  
The presence of the 44 bp insertion results in a long allele (l).  Deletion of the 44 bp 
region results in a short allele (s).  The l allele is associated with increased expression of 
SERT. (kb) kilobases, (bp) base pair. 

 

In vitro lymphoblast studies demonstrate the s allele of HTTLPR decreases 

SLC6A4 promoter transcriptional efficiency resulting in a lower concentration of SERT 

5’ 3’ 

EXON 1

~1.2 kb
44 bp insertion 
or deletion 

5 - HTTLPR
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and a reduction in the uptake of serotonin.62  In addition, in vivo imaging studies have 

found a significant increase in raphe SERT levels for l/l homozygous individuals as 

compared to levels in carriers of the s allele.64  

A number of studies have been done looking at association of the s allele with 

various personality traits or preponderance to psychiatric symptoms.  For instance, one 

study found the s allele to be associated with neuroticism.65  Another study found that 

carriers of the s allele have an exacerbated response toward developing depressive 

symptoms as a result of tryptophan depletion regardless of family history of depression; 

although, in heterozygous individuals a family history of depression resulted in an 

increased tendency toward depressive symptoms comparable in degree to homozygous 

carriers of the s allele.66    

 

Association Studies of HTTLPR Polymorphisms with Autism 

Studies looking at association of either HTTLPR allele with autism have been 

largely inconclusive.  Some groups have found positive association of the l allele with 

autism67, 68, some with the s allele with autism,39, 69-71 and a few studies found no 

association of either allele with autism.72-75  Reasons for this discrepancy may be the low 

degree of statistical power resulting from small sample sizes in these studies, the 

difficulty of genotyping this region due to the nature of it being a very GC rich segment, 

and/or differing populations being genotyped and thus differing risk alleles.  Of 

importance, the differing risk alleles would likely be associated with different aspects of 

the autism phenotype, different developmental patterns and/or different traits represented 
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differentially in various autism samples.  In addition, diagnostic criteria and 

ascertainment measures may differ amongst the various groups performing the studies.  

 

VNTR  

The second polymorphism of SLC6A4 is a variable nucleotide tandem repeat 

(VNTR) of a 16-17 bp element located in intron 2 of SLC6A4 (STin2, Serotonin 

Transporter intron 2).  There are typically 9, 10 or 12 repeats of this element commonly 

referred to as STin2.9, STin2.10, STin12, respectively.  VNTR variants demonstrate 

differential expression both in vitro and in vivo.63, 76, 77  Fiskerstrand and colleagues 

performed a study in which they transfected luciferase constructs containing Stin2.10 and 

Stin2.12 (they could not produce a stable construct of STin2.9) into embryonic stem (ES) 

cells and looked at the relative expression differences between the two alleles after 

removing LIF (Leukemia Inhibitory Factor), which is known to keep the cell in an 

undifferentiated state.  STin2.10 increased expression of the luciferase construct by a 

5.77 fold increase, demonstrating an ability of STin2.10 to enhance gene expression of a 

reporter gene.  STin2.12, however, enhanced expression of the reporter gene by a 167.85 

fold increase.76  However, these results do appear to be cell specific as STin2 expression 

constructs do not have observable effects in HeLa cells.76  
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Figure 3.  Schematic representation of the VNTR in SLC6A4.  This polymorphic 
region is located between the second and third exon of SLC6A4.  Depicted are repeats one 
through twelve of the 16-17 bp element and thus a representation of STin2.12.  Removal 
of repeats nine and ten would represent Stin2.10 while removal of repeats six, seven, and 
eight would result in a representation of STin2.9.  STin2.12 is associated with increased 
expression of SERT. This figure is  adapted from Klenova et al. 2004.78 
 

To examine STin2 allelic effects in vivo, the same group performed pronuclear 

injections of expression constructs of Stin2.10 and Stin2.12 variants placed upstream of a 

heterologous promoter driving LacZ into mouse embryos and looked at β-galactosidase 

(βgal) expression in the developing murine brain.  At embryonic day 10.5 (E10.5) βgal 

expression was observed in two regions on either side of the midbrain, neural tube floor 

plate and floor plate of the hindbrain, particularly in rhombomeres four and five for both 

constructs.  However, differential βgal expression patterns were seen in the rostral portion 

of the hindbrain in the regions of rhombomeres one and two; Stin2.10 animals had low 

levels of βgal expression in these rhombomeres whereas those with Stin2.12 had high 

levels of βgal expression in these rhombomeres, comparable to levels of βgal in 

rhombomeres four and five of both variants.63  This study suggests that not only do the 

VNTR polymorphic variants STin2.10 and STin2.12 exhibit differential enhancement 

EXON 2 EXON 3

Repeat    1    2    3    4   5    6     7    8   9   10   11  12

VNTR
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capabilities of reporter gene expression within a given cell type, but may also exhibit 

differential effects on spatial patterns of reporter gene expression.    

 

Association Studies of the Intron 2 VNTR with Autism 

A number of studies testing association of STin2 polymorphisms with autism 

have been undertaken.  Two studies found no preferential transmission of any STin2 

polymorphism with autism.72, 73  A German study also did not find preferential 

transmission of STin2 alleles with autism, but did find evidence for association of a 

haplotype containing the l allele of HTTLPR and STin2.12.67  One early study by the 

Cook laboratory found no preferential transmission of any STin2 polymorphism with 

autism, but did find evidence of significant association of a haplotype containing the s 

allele of HTTLPR and STin2.12.59  Subsequently, this group tested 81 new trios and 

obtained the same results of preferential transmission for a haplotype containing the s 

allele of HTTLPR and STin2.12.74   

One study of 125 Dutch patients with DSM-IV-TR, ADI-R or ADOS 

characterized PDD did not find association between STin2 alleles and PDD, however, 

taking specific autism phentoypes into account by using multivariate analysis to test the 

continuum of behavioral subtypes revealed an association between individuals with the 

homozygous STin2.12 genotype and more severe rigid-compulsive tendencies. Similarly, 

quantitative transmission disequilibrium test (QTDT) analysis revealed an association 

between the STin2.12 allele and more severe rigid-compulsive tendencies.79  The 2006 

study mentioned above by Cook and colleagues tested for association between specific 

autism behavioral subcategories (from ADI-R or ADOS) and STin2 genotype, but found 
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no significant associations.80  Finally, one Irish study of 84 families found excess 

transmission to autistic probands for multiple haplotypes of SLC6A4, the most significant 

being a haplotype defined by three polymorphisms including the STin12 allele.70   

 

Describing the Autism Phenotype 

Lord and colleagues (1994) describe the ADI-R as an effective diagnostic 

measure that is used to determine if behaviors commonly associated with autism or PDDs 

are found in the individual being examined and to evaluate how severe each behavior 

might be.3  This tool is used widely and has been studied extensively to assess and ensure 

its accuracy and relevancy.  It differs from the ADOS in that the primary caregiver of the 

individual who is presenting with these behaviors is interviewed by a trained investigator.  

The assessment is not minor, there are over 100 items on the partially-structured 

diagnostic and a certain threshold must be reached in four key areas for a diagnosis of 

autism to be made: communication, social interaction, repetitive behaviors, and age at 

onset of some symptoms.3, 81  Tadevosyan-Leyfer and colleagues performed a principle 

components analysis of items pertaining to the ADI-R providing a useful set of key 

components characteristic of the autism phenotype.81  These six factors can be used to 

mathematically approximate the nature of an affected individual�s phenotype.81  While 

the autism phenotype is described as being comprised of three key features (development 

and use of language, reciprocal social interaction and repetitive behaviors, restricted 

interests and resistance to change in the environment or in daily routines.5) that range in 

severity from person to person, these three categories likely do not accurately represent 

genetically relevant categories.  Thus, the value of a principle components analysis based 
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on a thorough evaluation of the autism phenotype, such as the ADI-R, is the ability to 

parse out a group of components that adequately describe the autism phenotype and 

delineate its features into categories that are likely to be genetically relevant.81  These 

components are: spoken language, social intent, compulsions, developmental milestones, 

savant skills and sensory aversions.81  The first three components, spoken language, 

social intent and compulsions are more closely related to the three categorical features 

used in diagnosing autism.81  Spoken language relates to how well, if at all, an individual 

can produce verbal output, and does not include aspects of language related to individual 

expression of a feeling, idea or desire.81  The second component, social intent, does 

include these aspects of language (including gesturing and greeting) in addition to 

nonverbal communication and ability to relate socially.81  The third component, 

compulsions, reflects the repetitive behaviors, restricted interests and resistance to change 

aspects used to diagnose autism, but does not include motor mannerisms that are complex 

as these characteristics seem to be more related to features of social interaction.81  In fact, 

in a factor analysis study done by Cuccaro and colleagues �repetitive sensory motor 

actions� was identified as a category distinct from �resistance to change�.82  The first three 

components in the principle components analysis are necessary for delineating diagnostic 

criteria for autism, but they are not sufficient for a holistic description of the autism 

phenotype.  The second three components, developmental milestones, savant skills and 

sensory aversions, vary from individual to individual to a much greater extent than the 

first three components but are important aspects of the autism phenotype at large and thus 

important to  genetic studies of autism.81      
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Hypothesis 

 Autism is a highly heritable disorder.  Given the multiple lines of evidence 

supporting serotonergic dysregulation in autism etiology, along with linkage studies 

showing evidence for linkage at the SLC6A4 chromosomal region, I aim to dissect the 

role two repeat polymorphisms of SERT may play in contributing to susceptibility for 

autism.  The goal of my study is to determine if alleles at STin2 and/or HTTLPR 

individually or as haplotypes are associated with autism susceptibility in our sample.  I 

hypothesize that preferential transmission will exist for HTTLPR and VNTR alleles, as 

well as a haplotype of these markers to individuals with autism in our sample. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

DNA Sample 

The sample for this study consisted of 694 combined multiplex and parent-child 

trio families (see Table 1).  The families were ascertained from multiple sources: 151 

families from the Tufts-Vanderbilt Consortium, 327 from the AGRE Consortium, 131 

from Stanford University and 85 from the University of Iowa.  Within each family is at 

least one proband who demonstrates full ADI criteria for autism and at least one other 

sibling who also met full ADI criteria for autism or presented on the broader spectrum.58  

The ADI or ADI-R were used to assess each affected individual.  In addition, data was 

analyzed based on individualized scores for the six principle components of the autism 

phenotype as based on analysis by Tadevosyan-Leyfer and colleagues.81   

In our ascertainment, subjects that had aberrant karyotypes, a genetic disorder of 

known causation, dysmorphic features or having a diagnosis of Fragile X syndrome were 

not included.  Lymphoblastoid cells, buccal cells or peripheral blood was used to isolate 

DNA from each individual, following the protocol recommended by the Pure Gene 

manufacturer (Gentra Systems, Minneapolis, MN).  
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Table 1. Genotyped families with autism organized by center. Labels are as follows: 
(AGR) Autism Genetics Resource Exchange Consortium, (IOW) Iowa State University 
Medical Center, (STA) Stanford University Medical Center, (TUF) Tufts University 
Medical Center, (VAN) Vanderbilt University Medical Center, (ADI) Autism Diagnostic 
Interview, (ADI-R) Autism Diagnostic Interview-Revised.  Stanford University Medical 
Center used an alternate form of the ADI for which not all questions were available when 
characterizing ascertained subjects. 
 

       
 ALL AGR IOW STA TUF VAN 

Families 694 327 85 131 98 53 
Individuals 2823 1420 361 522 353 167 

Number with autism 1256 623 162 259 153 59 
Female 268 147 26 52 34 9 
Male 988 476 136 207 119 50 

Number without diagnosis 1567 797 199 263 200 108 
Female 814 416 103 139 102 54 
Male 752 381 96 124 98 53 

Number of Families with:   
0 affected 26 15 1 0 9 1 
1 affected 143 36 19 16 27 45 
2 affected 471 244 55 105 60 7 
3 affected 45 29 7 7 2 0 
4 affected 9 3 3 3 0 0 

ADI version ADI / 
ADI-R

ADI ADI* ADI ADI / 
ADI-R 

 
 
 

Determination of Genotype 

Genotypes for HTTLPR were determined using PCR followed by gel-based size 

discrimination of alleles.  Gels were 3% NuSieve (3:1) agarose (FMC Bioproducts; 

Rockland, ME), which allowed for ample discrimination between the longer allele (525 

bp) versus the shorter allele (484 bp).   The following amplifying PCR primers were 

used:  5'-CTGAATGCCAGCACCTAACCCCTAATGT-3' and 

 5'-GGGGAATACTGGTAGGGTGCAAGGAGAA-3.' " 

PCR reaction volumes for HTTLPR were 20 µl, with 40 ng of DNA template and 

0.8 µl of 10 picomolar (pM) primer solution.  The Eppendorf Mastermix 2.5X kit 
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(Eppendorf, North America) supplied the buffer, dNTPS and Taq.  Cycling conditions 

consisted of an initial denaturing step at 95 ºC for three minutes followed by 50 cycles of  

95 ºC for 30 seconds, 61 ºC for 30 seconds, and 72 ºC for one minute.  A final extension 

step was 72 ºC for seven minutes.  

Genotypes for VNTR were also determined using PCR followed by gel-based size 

discrimination of alleles.   Gels were 3.5% NuSieve (3:1) agarose, which allowed for 

clear discrimination between the three STin2 alleles: STin2.12 (390 bp), STin2.10 (360 

bp) and STin2.9 (345 bp).  The following amplifying PCR primers were used: 

Forward: TGGATTTCCTTCTCTCAGTGATTGG and 

Reverse:  TCATGTTCCTAGTCTTACGCCAGTG 

PCR reaction volumes were 20 µl, with 20 ng of DNA template and 0.8 µl of 

10pM primer solution.  The Eppendorf Mastermix 2.5X kit (Eppendorf, North America) 

supplied the buffer, dNTPS and Taq.  Cycling conditions consisted of an initial 

denaturing step at 95 ºC for three minutes followed by 50 cycles of 95 ºC for 30 seconds, 

64 ºC for 30 seconds, and 72 ºC for one minute.  A final extension step was 72 ºC for 

seven minutes.  

 

Statistical Analysis 

 The first step of analyzing the HTTLPR and VNTR data involved quality control 

checks to verify internal controls and to be sure our data was consistent with Mendelian 

inheritance.  In addition, we verified the genotyping efficiency was robust. 

As reviewed by Laird and Lange (2006), the most common and simplest family 

based association test is the transmission disequilibrium test (TDT).83  This test uses trio 
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or multiplex families to test whether there is an increased transmission of a given allele or 

alleles to the affected offspring.  In rejecting the null hypothesis that no preferential 

transmission of alleles exists in affected individuals, the marker can be assumed to be in 

linkage disequilibrium (LD) with a disease susceptibility locus (DSL).83  The TDT is 

limited in its use however, particularly with cases of missing parents, complex diseases, 

or cases where the exact allele representation on homologous chromosomes is not 

specified (missing phase).83  An extension of the TDT which allows for testing of 

association despite these factors is the non-parametric family based association tests, or 

FBATs.83, 84  The FBAT is refractory to problems arising due to non-specified complex 

disease models, missing parents, general pedigrees and/or in cases where the distribution 

of a disease in a population is unknown.83, 84  In addition, the FBAT is unaffected by 

population admixture or stratification, and is useful in cases where multiple comparisons 

must be made.83, 84  This test is ideal for studying the association of a given gene in a 

complex disorder, such as the serotonin transporter gene in autism.  

Thus, we used the FBAT84, including the Haplotype Based Association Test 

(HBAT) to determine if any HTTLPR or VNTR alleles or haplotypes of these alleles are 

associated with autism in our sample.  An increased number of permutations results in 

greater analytical precision, thus we performed 1,000 permutations on our sample.  Given 

the gender bias of autism spectrum disorders, we separated our dataset into families 

containing affected males only and families containing affected females only.  

We performed our analysis based on the evidence for linkage driving our dataset 

based on previous findings in our lab.  In addition, we performed a quantitative 
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transmission disequilibrium test  based on the six components key to the autism 

phenotype, as based on the work done by Tadevosyan-Leyfer and colleagues (2003).81   
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CHAPTER III 

 

RESULTS AND CONCLUSIONS 

 

HTTLPR Results and Discussion 
 

There is no significant association of either HTTLPR allele with autism in our 

sample.  Further, there was no significant association of either HTTLPR allele with 

autism in families with affected males only or in families with affected females only. 

 

Table 2.  FBAT analysis of association of HTTLPR polymorphisms with autism.  
Labels are as follows: (Freq.) allele frequency, (S) seen, (E(S)) Expected to be seen, Var 
(S) variance.  There is no significant association of either HTTLPR allele with autism in 
the total sample, within families with affected males only or within families with affected 
females only.    
 
  

            
P P (-e) P (-p) All Famililes 

0.19 0.22 0.19 
Allele afreq S E(S) Var(S) P 

484 0.458 521 500 281.4 0.22 
528 0.542 517 538 281.4 0.22 

            
P P (-e) P (-p) Affected Males Only  

0.23 0.26 0.22 
Allele afreq S E(S) Var(S) P 

484 0.458 424 407 221.7 0.26 
528 0.542 440 457 221.7 0.26 

            
P P (-e) P (-p) Affected Females Only  

0.59 0.59 0.64 
Allele afreq S E(S) Var(S) P 

484 0.458 131 127 55.6 0.59 
528 0.542 147 151 55.6 0.59 
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These results are consistent with a previous finding of no association between 

HTTLPR genotype and autism,72-75, 85 but disparate with a number of other studies that 

have found association of either the l or s HTTLPR allele with autism.39, 67-71   

As mentioned above, the inconsistency amongst studies of HTTLPR could be due 

to a number of things such as small sample size, difficulty genotyping this region, 

differing family collections possessing somewhat different properties vis-à-vis etiologic 

heterogeneity and thus differing representation of risk alleles.  One very important 

possible reason for the discrepancy among HTTLPR association studies in autism may be 

a failure to account for the effect of a SNP located within the l allele of HTTLPR.     

Ten SNPs have been identified within HTTLPR.86  A prevalent A ! G 

polymorphism located in one of the two additional repeat units of the l allele is associated 

with altered transcriptional efficiency of HTTLPR.87  This makes HTTLPR a tri-allelic 

locus comprised of the s allele and the A and G variants of the l allele, represented as lG 

and lA, respectively.  The lA allele results a 2.8-fold increase in reporter gene expression 

as compared to s allele within transfected RN46A cells.  However, the effect of the lG 

allele on reporter gene expression is equivalent to that of the s allele.87  Further, 

quantitation of SERT mRNA levels in lymphoblastoid cell lines indicates the lA / lA  

genotype results in the highest levels of SERT mRNA while the s/s genotype results in 

the lowest levels of SERT mRNA.87   

The lG allele results in lower transcriptional activity as compared to the lA allele 

due to the corresponding presence of an AP-2 binding site, where AP-2 can suppress 

gene transcription.87  The AP-2 family of transcription factors are important in neural 
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development and AP-2 binding sites are present in regulatory sites in a number of genes 

that are part of monoamine neurotransmitter systems.88  AP-2 acts a suppressor of 

HTTLPR lG and if an oligonucleotide containing the sequence for the lG allele AP2 

binding-site is added into the cell, reporter gene expression between lG and lA will be 

equivalent, indicating that if AP2 fails to bind to its site on the lG allele, transcriptional 

efficiency between both l allele is the same.87   

Xian-Zhang Hu and colleagues studied the frequency of each allele in three 

populations and found the s:lG:lA ratio to be 2.5:5:2.5 in African Americans, 4:5:1 in 

Caucasians, and 2:1:0 in American Indians.87   

Frequently HTTLPR association studies consider this locus to be bi-allelic, not 

taking into account this A!G polymorphism that results in gene expression levels 

equivalent to those of the s allele.  This would presumably result in failure to detect 

possible associations accurately since grouping both l alleles into one group results in a 

dampening effect.87     One large (2,998 total individuals) genotyping study done by Hu 

and colleagues found an s allele frequency of .25 in subjects who were of African 

descent, .35-.40 in Caucasians, and .64-.66 in American Indians, revealing a disparate 

HTTLPR allele frequency among differing populations.87 

In addition, the inconsistency between these studies may partly be explained by 

failure to consider clinical heterogeneity, with which genetic heterogeneity has been 

correlated.  For instance, Cook and colleagues tested the possibility of a genotype-

phenotype interaction by comparing ADI-R and ADOS scores of individuals within the 

different genotype categories of HTTLPR.  Individuals with one or two copies of the s 

allele were found to have higher (more severe) scores on the �failure to use nonverbal 
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communication to regulate social interaction� subdomain of the ADI-R as compared to 

their l/l counterparts. The l/l individuals tended to have more severe scores on the 

�stereotyped and repetitive motor mannerisms� subdomain of the ADI-R and also had 

higher ADOS scores on �directed facial expressions� and �unusual sensory interests�, 

reflecting the important concept that genotypic heterogeneity often underlies phenotypic 

heterogeneity in complex disorders such as autism.80  This idea is further supported by 

the findings of our lab, which previously observed an increase in the evidence for linkage 

at 17q11.2 at SLC6A4, with the multipoint HLOD score increasing from 2.74 to 3.62 in 

families with more severe rigid-compulsive behaviors.39  In addition, our lab also found 

rare variants in SLC6A4 to be associated with more severe rigid-compulsive behaviors.58  

It is possible that our analysis of HTTLPR did not yield any significant associations 

because we did not test for the lG and lA polymorphisms and because we did not take 

phenotypic heterogeneity into account in this study.  Further analysis to this end is an 

important next step in the study of these data.  

 

VNTR Results 

There is no significant association of any of the VNTR alleles with autism in the 

total sample, within families with affected males only or within families with affected 

females only.  There were only enough individuals in the families with affected females 

only category with the 9 repeat VNTR allele to warrant analysis of this allele.    
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Table 3.  FBAT analysis of association of VNTR polymorphisms with autism.  Labels 
are as follows: (Freq.) allele frequency, (S) seen, (E(S)) Expected to be seen, Var (S) 
variance.  There is no significant association of any of the VNTR alleles with autism in 
the total sample, within families with affected males only or within families with affected 
females only.   
 

            
P P (-e) P (-p) All Families 

0.25 0.28 0.16 
Allele afreq S E(S) Var(S) P 

10 0.358 380 406 284.0 0.12 
12 0.629 692 665 280.9 0.11 

            
P P (-e) P (-p) Affected Male Only 

0.53 0.55 0.42 
Allele afreq S E(S) Var(S) P 

10 0.358 300 315 214.3 0.30 
12 0.629 545 529 214.2 0.28 

            
P P (-e) P (-p) Affected Female Only 

0.38 0.4 0.27 
Allele afreq S E(S) Var(S) P 

9 0.014 7 7 2.8 0.97 
10 0.358 99 110 61.6 0.17 
12 0.629 182 171 63.4 0.18 

 

 

Two previous studies reported no evidence of association at STin2 with autism,72, 

73  two studies reported an association of a haplotype containing the s variant of HTTLPR 

and STin2.12 with autism, 59, 74 and one study found evidence for association of a 

haplotype containing the l variant of HTTLPR and STin2.12 with autism.67  Further, one 

group found excess transmission to autistic probands for multiple haplotypes of SLC6A4, 

the most significant being a haplotype defined by three polymorphisms including the 

STin2.12 allele.70  In addition, two independent groups tested the possibility of 
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association of VNTR polymorphisms with specific autism phenotypes with disparate 

results: Cook and colleagues found no significant association of any STin2 genotype with 

specific behavioral subcategories from ADI-R or ADOS, while Conroy and colleagues 

found an association between individuals with the homozygous STin2.12 genotype and 

more severe rigid-compulsive tendencies. Similarly, QTDT analysis revealed an 

association between the STin2.12 allele and more severe rigid-compulsive tendencies in 

this study.79      

 
 

Discussion of VNTR 

Transcription Factors of VNTR Affecting SERT Expression 

The individual repeat units of STin2 are not all identical in sequence or length.76  

In fact, repeats four, seven, nine, and eleven are only 16 nucleotides in length and there 

are seven unique repeat sequences among the 12 units.76  Only residues 6, 10, 11, 12, 14 

and 15 may be polymorphic, and changes are conservative as only C/T and A/G 

substitutions are observed.76  Unlike trinucleotide repeats which would likely not contain 

enough primary sequence variation to result in multiple transcription factor consensus 

binding motifs, STin2 repeats are relatively large and variable in primary sequence 

information.  These factors increase the probability of transcription factor binding motifs 

that may be specific to a given allele of STin2.     

Y box binding protein (YB-1), a transcription factor, is known to interact with 

STin2.78  In fact, there are 12 potential binding sites within the 12 repeat allele of STin2 

and significantly, these DNA consensus sites span the repeat units of STin2.   
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Figure 5.  Primary sequence of each repeat and location of YB-1 consensus motifs in 
VNTR. Shown are the sequences of each repeat unit of the VNTR in SLC6A4.  The 
sequence is written 5´ to 3´ of the sense strand.  The seven unique sequences among the 
12 repeats are labeled a-g.  Repeats four, seven, nine and eleven are only 16 nucleotides 
in length; all the rest are 17 nucleotides in length.   Highlighted in red are the 12 putative 
binding consensus motifs for YB-1 comprised of the sequences GATG/CATC or 
GGTG/CACC.  These motifs encompass the region of possible sequence variation and 
possible variation in the number of nucleotides per repeat, 16 vs. 17.  Figure taken from 
Klenova et al. 2004.78 
 

The GATG/CATC and GGTG/CACC motifs are consensus motifs recognized and 

bound by YB-1.78, 89  The location of these motifs is important because these sites 

encompass the region of possible sequence variation and possible variation in the number 

of nucleotides per repeat (16 vs. 17 bp).78  Therefore, it is possible that YB-1 may affect 

STin2 expression in a differential pattern based on the primary sequence of the repeat and 

the size of the repeat.  Cotransfection assays in COS7 cells using STin2 variants upstream 

of an SV40 promoter attached to the Luciferase gene (termed pStin2.9Luc, Stin2.10Luc 

and Stin2.12Luc) in addition to a vector containing YB-1, reveal YB-1 differentially 

activates each polymorphism of STin2 in this specific cell line.  PStin2.9Luc expression 

was strongly affected by the presence of YB-1 and an increase in YB-1 concentration 

resulted in increasingly stronger activation of this variant.  On the other hand, the 

pStin2.10Luc expression was not affected by the presence of YB-1 and pStin2.12Luc 

expression was slightly repressed by the presence of YB-1.  This result may partially be 
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cell-specific as pStin2.10Luc was activated by the presence of a relatively low 

concentration of YB-1 in HEK293T cells in addition to pStin2.9Luc being activated by 

YB-1; this lends evidence to the idea that modulation of YB-1�s effect on STin2 

expression is affected by factors that may be present in some types of cells and not other 

types.78   

One possible explanation for differential modulation of STin2 variants by YB-1 

could be the frequency of G/A polymorphisms located in the consensus binding motifs in 

STin2.9.  Most of the consensus binding sites located in STin2.12 (the longest STin2 

variant) have the sequence, GGTGGGCT, but two consensus binding sequences, located 

at the junction between repeat six and seven, and at the end of repeat 12 have the 

sequence GATGGGCT.  The use of the GGTGGGCT consensus sequence between 

repeat three and four (rep 3/4) along with the GATGGGCT consensus sequence (rep 6/7) 

in EMSA competition experiments with a specific inhibitor oligonucleotide and YB-1, 

demonstrates differential binding of YB-1 to each type of motif.  Specifically, rep 3/4 

(GGTGGGCT) formed four complexes with YB-1 and only two of these complexes 

could be outcompeted by the presence of the inhibitor oligonucleotide, however, rep 6/7 

(GATGGGCT) formed two complexes with YB-1 (with a faint third complex 

occasionally being observed) and all complexes could be outcompeted by the inhibitor 

oligonucleotide, although it did take more oligonucleotide to produce this effect than it 

did for the two complexes that dissociated in rep 3/4.78  This suggests differential binding 

of YB-1 to GATTGGGCT motifs vs. GGTGGGCT motifs; the oligonucleotide with the 

GGTTGGGCT motif (rep 3/4) formed more (four total) complexes with YB-1 proteins 

and only two of them could be outcompeted by the inhibitor oligonucleotide.  
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Conversely, the GATGGGCT oligonucleotide motif only formed two to three complexes 

with YB-1 and all complexes could be outcompeted (although with more inhibitor 

nucleotide than it took to out-compete the two GGTTGGGCT motif complexes).   

One study done by Lovejoy and colleagues further supports the hypothesis that 

STin2 repeat domains differ in their ability to regulate enhancement of reporter gene 

expression.77  This group used ES cells to study the enhancement capabilities of each 

individual repeat, and also that of two larger oligonucleotides that span two separate 

repeat units.77   

 

Figure 6.  Sequence of the “spanning” oligonucleotides of VNTR tested for reporter 
gene expression enhancement in ES cells.  The sequence of each repeat is written 5� to 
3� along the sense strand.  The seven unique sequences among the 12 repeats are labeled 
a-g.  Underlined are the two �spanning� oligonucleotides tested for enhancing ability in 
an expression assay. The �spanning� c/d oligonucleotide has the sequence 
GACCCGGGGTGGGCTGT while the �spanning� f/d oligonucleotide has sequence, 
GACCTGGGATGGGCTGT.  (RP) repeat.  This figure was taken from Lovejoy et. al. 
2003.77   
 

 Figure 5 shows the seven unique repeat sequences tested in addition to two 

�spanning� oligonucleotides (termed c/d and f/d) that were also tested for enhancer 

activity.  The �spanning� c/d oligonucleotide has the sequence 

GACCCGGGGTGGGCTGT while the �spanning� f/d oligonucleotide has sequence, 
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GACCTGGGATGGGCTGT.  Repeat units c and g showed a small-fold increase in 

enhancer activity upon removal of LIF, whereas repeat unit e did not show a significant 

increase in enhancer activity.77  Surprisingly, the f/d oligonucleotide construct supported 

a 4.1 fold increase and the c/d construct supported a 13.5 fold increase in enhancer 

activity even though these two constructs differ by just two nucleotide residues.77  Thus, 

it appears that sequence variation, not just repeat number, of the STin2 repeat 

polymorphism, is an important determinant in enhancer ability, at least in murine ES 

cells.77  Interestingly, when these oligonucleotides are tested in the human placental cell 

line, JAR (often used to test SLC6A4 promoter function) the results are quite different 

with there not being a significant difference in the enhancing ability of the c repeat vs. the 

c/d repeat.77  The researchers in this study conclude that transcription factors that may 

bind to the differing transcription factor motifs within the VNTR domain are activated by 

tissue specific stimuli, not ubiquitous non-specific stimuli like that which would bind to a 

constitutively active regulatory domain.77  

 

CTCF: Interaction with YB-1 for Regulation of STin2 

The implications for the differential binding properties of the two types of YB-1 

consensus motifs in STin2 are further amplified when factors modulating YB-1�s 

interaction with STin2 are taken into account.  One example of a factor that affects the 

effect of YB-1 on STin2 polymorphisms is CCTC-binding protein (CTCF).78  CTCF has 

an 11-zinc finger DNA-binding domain and can bind to very divergent DNA sequences 

of approx. 50 bp in length within the promoter regions of human c-myc genes (reviewed 

in reference 72).90  Baculoviral-produced CTCF is able to cause dissociation of YB-1 -
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STin2.12 complexes as well as YB-1�rep 3/4 and YB-1�rep 6/7 complexes.78  In 

addition, co-transfection studies reveal that CTCF results in a strong inhibition of STin2.9 

expression in COS7 and HEK 293T cells, but only when YB-1 is present.78  In fact, in the 

absence of YB-1, CTCF has no effect on the expression levels of any of the STin2 

polymorphisms in COS7 or HEK 293T cells.78  PStin2.10Luc expression is increased by 

the presence of YB-1 in HEK 293T cells but when CTCF is added, the increase in 

expression is not as substantial.78  These experiments indicate that CTCF negatively 

regulates the enhancement effects of YB-1 on STin2 expression.  The investigators 

suggest that this regulation could occur through either of two distinct mechanisms: first, 

CTCF could bind to the YB-1 consensus motif on STin2, resulting in stereotaxic 

inhibition of this region for activation by YB-1.  Alternatively, CTCF might bind to YB-

1, resulting in the loss of YB-1�s ability to bind to its recognition motif on STin2.  The 

latter postulation is likely based on studies revealing that CTCF binds to YB-1 through 

interaction of CTCF�s zinc-finger region with YB-1.90  Truncation interaction studies 

reveal that YB-1 binds to the zinc-finger region of CTCF through YB-1�s DNA-binding 

cold-shock domain (CSD) located on the N-terminal.78  Finally, if CTCF was exerting its 

inhibitory effect through stereotaxic inhibition of YB-1�s recognition motif, one would 

expect a CTCF-STin2 complex present in the EMSA studies mentioned above and this 

was not observed.78  

 

Possible Reasons for Differential Expression 

To summarize, YB-1 differentially regulates STin2 polymorphisms in vitro and 

this is dependent upon cell type.  In addition, at least one factor that we know of, CTCF, 
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can diminish the enhancement effects of YB-1 on STin2 expression for those variants of 

STin2 that are responsive to YB-1.  The question that arises, is, why is there such a 

drastic difference in how each STin2 polymorphism is affected by YB-1?  

Although observed STin2 alleles are highly similar, differences exist that may 

have far-reaching implications for effects on expression.  The effects of YB-1 may 

depend on the secondary structure of the DNA to which it is binding.78, 89  Thus, we must 

consider the possibility that differences in both repeat number and complement (i.e. the 

number of 16 bp vs. 17 bp repeats and the presence of C/T or G/A variants) for STin2 

may affect the binding of YB-1 (and possibly many other transcription factors) through 

secondary structure effects on the DNA of this region.  Repeats six, seven, and eight are 

absent from the STin2.9 allele, and repeats nine and ten are absent in STin2.10.78  This 

means that one of the two GATGGGCT motifs (rep 6/7) is not present in STin2.9.  Based 

on the strength of STin2.9 activation by YB-1 in vitro, it is possible that when the rep 6/7 

motif is bound by YB-1 in STin2.10 or STin2.12, it may diminish enhancement of STin2 

expression by YB-1, perhaps through secondary DNA structure effects.78, 89  In addition, 

the presence of a single nucleotide polymorphism (within STin2.10 and STin2.12; G/A) 

at two locations, can affect how strongly YB-1 may bind, but also likely produces new 

transcription factor binding motifs recognized by entirely different transcription factors 

and indeed, this is the case.78  In fact, the presence of the G/A polymorphism in repeat six 

results in the creation of a number of predicted transcription factor binding sites for such 

transcription factors as TCF11/KCR-F1/Nrf1 homodimers, activator protein-1 and 

retinoic acid receptor-related orphan receptor alpha 1.78  STin2.9 would only carry one 

GATGGCT motif and thus would only contain one binding site for these other 
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transcription factors unlike STin2.10 and STin2.12 which would each have two binding 

sites for these factors.  However data are not yet available showing that any of the 

predicted factors functionally act on these sequences. Also unaddressed in this study was 

a discussion of why observable differences exist between the enhancing capabilities of 

STin2.10 and STin2.12, not just differences between STin2.9 and both STin2.10 and 

STin2.12.  Unlike STin2.9, differential frequency of G/A polymorphisms would not 

likely be a possible explanation for differential regulatory abilities of STin2.10 vs. 

STin2.12, since both alleles have the two G/A polymorphisms present.  One possible 

explanation for the difference in enhancing capacities is the size difference in the alleles, 

and thus the likely alteration in secondary DNA structure.  At this point, however, no 

further assumptions can be made without additional expression and transcription factor 

binding studies. 

STin2.12 is known to enhance reporter gene expression in ES cells by a 167 fold 

increase as compared to STin2.10 which enhanced reporter gene expression by only 5-6 

fold.76  Thus one possible effect of this polymorphism is enhanced expression of 

SLC6A4.  We know that depending on the cell type, the various repeats of STin2 and the 

various polymorphisms seem to have independent regulatory effects on reporter gene 

transcription.  Thus, while there is evidence for differential enhancer properties of the 

individual variants even within a given cell type, we must also consider the enhancer 

profile of each variant depending upon cell type. Different complements of transcription 

factors exist in differing cell types and the various STin2 polymorphisms may be affected 

differently. Recall that STin2 variants produced differential expression patterns in the 

brain of developing mouse embryos: Stin2.10 embyros had low levels of reporter-gene 
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expression in the region of rhombomeres one and two whereas Stin2.12 embryos had 

high levels of reporter-gene expression in these rhombomeres, comparable to levels of 

reporter-gene in rhombomeres four and five of both variants.63  This rostral portion of the 

hindbrain expresses SLC6A4 mRNA and is involved in the formation of serotonergic cell 

clusters.63  Thus, one could speculate that having one or more copies of the STin2.12 

allele could result in higher expression of SLC6A4 anywhere SLC6A4 is expressed, but 

could also, and perhaps more importantly, result in a significantly different spatial profile 

of SERT in the brain of a given individual.  Given the differences between the male and 

female brain anatomy, this differential spatial profile may be an important factor to 

consider in light of a possible STin2.12 gender bias.   

While Stin2, or VNTR, plays a role in the expression of SLC6A4, it may not play 

enough of a role to be associated with a complex neuropsychiatric disorder such as 

autism.   

 

Haplotype Analysis Results 

There was no significant association of a haplotype containing specific alleles of 

HTTLPR or VNTR with autism in our sample.   A haplotype containing the s allele of 

HTTLPR and STin2.12 has been previously associated with autism in two separate 

studies,59, 74 and one study found association of the l allele of HTTLPR and STin2.12 in 

autism.67   
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Table 4.  Haplotype Based Association Test for association of an 
HTTLP/VNTR haplotype with autism.  There was no significant association of a 
haplotype containing specific alleles of HTTLPR or VNTR with autism in our sample 
  

            
P P (-e) P (-p) All Families 

0.11 0.17 0.07 
            

P P (-e) P (-p) Affected Male Only 
0.16 0.25 0.12 

            
P P (-e) P (-p) Affected Female Only 

0.41 0.44 0.35 
 

The results of our analysis make sense since there was no significant association 

of any of the HTTLPR or VNTR alleles with autism in our sample.  

 

Quantitative Transmission Disequilibrium Test Results 

Finally, we performed a quantitative transmission disequilibrium test based on the 

six components key to the autism phenotype.81  There were no significant associations of 

HTTLPR or VNTR alleles with any of the six components in the combined dataset.  

Maternal inheritance of HTTLPR or VNTR alleles was not significantly associated with 

any of the six components.  However, paternal inheritance of VNTR alleles was 

associated with two components, the social intent component and the milestones 

component (p = .02 and p = .05, respectively).   
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Table 5.  QTDT analysis for parental transmission of HTTLPR and VNTR alleles.  
There were no significant associations of HTTLPR or VNTR alleles with any of the six 
components in the combined dataset.  Maternal inheritance of HTTLPR or VNTR alleles 
was not significantly associated with any of the six components.  However, paternal 
inheritance of VNTR alleles was associated with two components, the social intent 
component and the milestones component (p = .02 and p = .05, respectively).   
 

              
OVERALL Language_t Social Milestones_t Savant_t Rigid_t Sensory_t 

VNTR 0.90 0.40 0.70 1.00 0.90 0.50 
HTTLPR 0.90 0.30 0.50 0.60 0.10 0.90 

              
Maternal 

Only Language_t Social Milestones_t Savant_t Rigid_t Sensory_t 
VNTR 0.600 0.500 0.100 0.400 0.100 0.700 

HTTLPR 0.500 0.600 0.300 0.200 0.400 0.700 
              

Paternal Only Language_t Social Milestones_t Savant_t Rigid_t Sensory_t 
VNTR 0.700 0.020 0.050 0.900 0.400 0.600 

HTTLPR 0.800 0.400 0.700 0.300 0.400 0.300 
 

The social intent component is related to individual expression of a idea, desire or 

feeling and includes gesturing and greeting in addition to nonverbal communication and 

ability to relate socially.81  The milestones component relates to the attainment of 

milestones in physical and mental development.81   

Given the lack of association for any HTTLPR or VNTR alleles with autism, we 

have to consider the possibility that these two association results could be due to chance.  

This would seem most likely for the milestones component as it is nominally significant. 

Further study needs to be done to determine if paternal inheritance of VNTR alleles 

contributes to susceptibility for autism.   
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