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CHAPTER I 

 

I. INTRODUCTION 

 

     We are inundated by information. Cellular phones, personal digital assistants, radios, 

TV, advertisements on billboards, email, the internet, etc, have all contributed to keeping 

us connected and keeping inputs of information flowing toward us. Having too much 

information can be bad. With too much information, we may be exposed to 

contradictions in views and low signal to noise ratios that make it increasingly difficult to 

find high quality information to make a relevant decision. Enrico Coiera [1] postulates an 

impending “information famine” based on Malthus’ law, where, rather than human 

population needs outgrowing their food sources, the information glut outgrows humans 

limited ability to find and assimilate high quality information. Malthus’ predictions of 

widespread famine did not come to pass. Malthus did not foresee the vast advances in 

agricultural technology that would feed the world’s population. In a similar vein, I 

propose that advanced search technology may provide a solution to the current 

information glut. If we can increase the accuracy of information search technology at a 

greater rate than information grows, we may avoid the forthcoming “information 

famine.”  

     The “information famine” becomes dire as the health professions increasingly 

embrace the premise of evidence based care. Virtually every publication and talk 

regarding the biomedical literature mentions its current volume and exponential growth, 
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and the growing challenge for health professionals and medical librarians in identifying 

high quality articles applied to evidence based care effectively and efficiently.  

     Health professionals justify medical decisions through the medical literature, and 

finding research articles to support a medical decision has become a prelude to better care 

and health outcomes. Unfortunately, the number of research articles continues to grow so 

fast that finding the research article needed is increasingly difficult. 

      The “information glut” on the web is even worse. The lack of quality standards and 

ease of publishing allow a wide range of quality information [2]. Studies have shown that 

health consumers have limited ability to evaluate information on medical web sites [3, 4]. 

Fortunately, to this date, there have been limited examples of adverse outcomes either by 

health consumers or professionals due to wrong information found on the web [5, 6]. 

However, as the use of web resources grows the potential for such outcomes increases.     

     Machine learning, specifically text categorization, provides a solution to identifying 

documents or websites that match quality standards. With a moderately small set of 

manually classified documents or websites, a text classification algorithm learns an 

applicable statistical model. I present a novel use of text categorization in medicine to 

solve practical problems in identifying quality documents or web pages.  

     The motivation of the following work is to extend original work using text 

categorization for identifying high quality articles in internal medicine. The goal is to 

show that the machine learning filter models built for a specific task compare favorably 

to other methods to identify quality articles, and the machine learning filter models built 

for a specific task generalize to time periods outside the training time period. The 

machine learning filter models can also be used in specific content categories and areas 
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outside of internal medicine.  I also present an implementation of these models for 

identifying high quality articles in all of MEDLINE. 

    In addition, I apply similar text categorization methods to identify low quality web 

sites. The framework was used to solve practical problems in identifying articles and web 

pages in medicine.  
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Overview and Dissertation Structure 

     At the core of this dissertation is the application of machine learning pattern 

recognition techniques, specifically text categorization, for identifying information in the 

medical literature and the web.  The dissertation follows a logical progression of 

experiments. 

     In previous work I provided context and motivation for the proposed work. I showed 

that using powerful text categorization techniques and a suitably constructed, high quality 

and content labeled article collection for training, one can automatically construct quality 

filters to identify articles in the content areas of treatment, prognosis, diagnosis, and 

etiology in internal medicine that perform with better sensitivity, specificity, and 

precision than current methods. I also showed that it is possible to automatically construct 

Boolean queries from a corpus using machine learning techniques such that the Boolean 

queries have as good classification performance as the SVM models, and the resulting 

Boolean queries are human-readable, manageable, and simple for use in current search 

engines. 

   The dissertation is composed of 4 parts – namely MODELS AND EVALUATION OF 

INFORMATION RETRIEVAL PERFORMANCE, EVALUATION OF 

GENERALIZATION, EBMSEARCH PROOF OF CONCEPT SEARCH ENGINE 

SYSTEM, and EXTENSIONS TO THE WORLD WIDE WEB. “Models and evaluation of 

information retrieval performance” compares the machine learning models to other 

citation and web based measures of identifying quality articles. “Evaluation of 

generalization” identifies time periods, content categories, and areas outside of internal 

medicine where the machine learning models are applicable. “EBMSearch proof of 
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concept search engine system” implements the models in a proof of concept system. 

Finally “extensions to the World Wide Web” take the general machine learning 

framework and apply it to identifying quality web pages on the internet. 

 

Models and Evaluation of Retrieval Performance 

     In this section, I studied the machine learning models and compared to other methods 

to identify high quality articles in the literature. I presented comparisons of specific 

machine learning filter models built for a specific gold standard to bibliometric citation 

count, impact factor, and non-specific machine learning models for identifying high 

quality articles. Furthermore, with the growth of medical content and secondary sources 

of medical information on the web and based on the observation that higher quality 

articles should be cited more often and on better websites than lower quality articles, it 

may be possible to use metrics such as Google PageRank or Yahoo WebRanks to rank 

the medical literature. I explored this possibility and compared the discriminatory power 

of web measures to specific machine learning filter models built for the specific gold 

standard. 

     The machine learning models built for a specific gold standard outperformed 

bibliometric citation count, impact factor, non-specific machine learning models, Google 

PageRank, and Yahoo WebRanks in identifying articles from a constructed gold 

standard. Specific machine learning filter models were superior to other methods in 

identifying articles in the literature. 
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Evaluation of Generalization 

     In this section, I explored the generalization of the machine learning models for 

identifying high quality articles in another time period outside the time period for articles 

used to train the models, to areas outside of internal medicine including pediatrics, 

oncology, and surgery, and to format, purpose, and rigor content categories.  

     In the first set of experiments, I built models using a 1998-2000 gold standard and 

evaluated the models’ ability to identify high quality articles in a labeled 2005 gold 

standard in the content categories of treatment, diagnosis, prognosis, and etiology. I 

found that the models built using previous years identified articles in the 2005 dataset 

with area under the receiver operating curve upwards of 0.94. The selected gold standard 

is a stable, reliable gold standard and the machine learning methodology provides robust 

models and model performance estimates. Machine learning filter models built with the 

1998-2000 corpus can be applied to identify high quality articles in another time period. 

     In the next set of experiments, I expanded the gold standard to include labeled articles 

in other areas of medicine such as pediatrics and surgery, format categories such as 

original, review, case reports, and general/ miscellaneous articles, purpose categories 

including etiology, prognosis, diagnosis, treatment, costs, economics, clinical prediction 

guide, and qualitative content, and rigor categories for clinical prediction guide and 

economics content. The models using this labeled dataset had estimated performances 

upwards of 0.94 area under the receiver operating curve in identifying articles in other 

areas of medicine in the format, purpose, and rigor categories. Machine learning models 

generalize effectively to identify articles in several content categories and other areas of 

medicine.   
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EBMSearch: Proof of Concept Search Engine 

   In this section, I implemented a proof of concept system called EBMSearch that applies 

the machine learning filter models to a subset of MEDLINE articles. Models were built 

for 4 categories and applied to a subset of MEDLINE articles published from 2000 to 

2006. I developed a simple interface that accepted a Pubmed query, content category, and 

time period and returned a list of articles ranked by scores output from the models. 

 

Extensions to the World Wide Web 

      In this section, I extended the general machine learning framework to identify web 

pages that make false cancer treatment claims. Patients with conditions that are not 

currently fully treatable are susceptible to unproven and dangerous promises about 

miracle treatments. In extreme cases, fatal adverse outcomes have been documented. To 

help protect patients, who may be desperately ill and thus prone to exploitation, I 

explored the use of machine learning techniques to identify web pages that make 

unproven claims. The resulting models identify web pages that make unproven claims in 

a fully automatic manner, and substantially better than previous web tools and state of the 

art search engine technology. 
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Conventions 

     In this dissertation, “I” and “we” are used where appropriate. Published chapters are 

collaborative in nature, and “we” is used. In other unpublished chapters, the inserted 

papers are manuscripts intended for journal submission, and “we” is used. In core 

dissertation content, “I” is used. 

     Each chapter is a published paper or manuscript. Each chapter has its own references 

that may refer to citations that are chapters in this dissertation. The text and references of 

published chapters is retained to maintain the original copyright of the published works.  

 

Summary 

     This dissertation focuses on increasing the accuracy of information search technology 

by applying pattern recognition techniques to identify quality and content both in the 

medical literature and the web. I evaluated the models built by the pattern recognition 

techniques against citation metrics (bibliometric citation count and impact factor) and 

web link metrics (Google PageRank and Yahoo WebRanks). Furthermore, I generalized 

the machine learning models to time periods outside the time period used to build the 

models, other areas of medicine including oncology, pediatrics, and surgery, and other 

format, purpose, and rigor content areas.  Next, I presented a proof of concept system that 

implements the models. Finally, the pattern recognition framework was extended for use 

on the web to identify web pages that make false cancer treatment claims. 

     The following two chapters summarize initial work that served as the background for 

this dissertation.  
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CHAPTER II 

 

II. BACKGROUND/ PRIOR WORK 

 

     This chapter reviews text categorization and it use in medicine. In the first set of 

experiments, I present experiments as relevant background that describes and evaluates 

the use of text categorization in medicine. In a second set of related experiments, I 

present a method to convert the text categorization models to related, relevant Boolean 

queries. 

 

Text Categorization Models for High Quality Retrieval in Internal Medicine 

Aphinyanaphongs Y, Statnikov A, Tsamardinos I, Hardin D, Aliferis, C.  “Text 

Categorization Models for High Quality Article Retrieval in Internal Medicine.” J 

American Medical Informatics Association. 2005; 12 (2): 207-216. 

 

Abstract 

OBJECTIVE: Finding the best scientific evidence that applies to a patient problem is 

becoming exceedingly difficult due to the exponential growth of medical publications. 

The objective of this study was to apply machine learning techniques to automatically 

identify high quality, content-specific articles for one time period in internal medicine 
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and compare their performance to the Boolean-based PubMed clinical query filters of 

Haynes, et. al. 

DESIGN: The selection criteria of the ACP Journal Club for articles in internal medicine 

were the basis for identifying high quality articles in the areas of etiology, prognosis, 

diagnosis, and treatment. Naïve Bayes, a specialized AdaBoost algorithm, and linear and 

polynomial support vector machines were applied to identify these articles. 

MEASUREMENTS: The machine learning models were compared in each category to 

each other and to the clinical query filters using area under the receiver operating 

characteristic curves, 11-point average recall-precision, and a sensitivity/ specificity 

match method.  

RESULTS: In most categories, the data-induced models have better or comparable 

sensitivity, specificity, and precision than the clinical query filters. The polynomial 

support vector machine models perform the best among all learning methods in ranking 

the articles as evaluated by area under the receiver operating curve and 11-point average 

recall-precision. 

CONCLUSIONS: This research shows that, using machine learning methods, it is 

possible to automatically build models for retrieving high quality, content-specific 

articles, using inclusion or citation by the ACP Journal Club as a gold standard, in a given 

time period in internal medicine that perform better than currently-used PubMed clinical 

query filters. 

INDEX TERMS: Information Retrieval, PubMed, Artificial Intelligence, Machine 

Learning 
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Introduction 

     Evidence Based-medicine (EBM) is an important development in clinical practice and 

scholarly research. The aim of EBM is to provide better care with better outcomes by 

basing clinical decisions on solid scientific evidence. EBM involves three distinct steps:  

(a) identification of evidence from the scientific literature that pertains to a clinical 

question, (b) evaluation of this evidence, and (c) application of the evidence to the 

clinical problem [1].   

     In practice, the application and adoption of EBM to real life clinical questions is 

challenging. Insufficient time for searching, inadequate skills to appraise the literature, 

and limited access to relevant evidence are among the most cited obstacles. Coupled with 

the scientific literature's exponential growth, applying EBM in daily practice proves a 

challenging and daunting task [2]. This paper addresses the barriers to EBM by 

improving physician access to the best scientific evidence, (i.e. the first step of EBM). 

     We hypothesize that by using powerful text categorization techniques and a suitably 

constructed, high quality and content labelled article collection for training, we can 

automatically construct quality filters to identify articles in the content areas of treatment, 

prognosis, diagnosis, and etiology in internal medicine that perform with better 

sensitivity, specificity, and precision than current Boolean methods. We note that 

throughout this paper, references are made to both full-text articles and MEDLINE 

records. We clarify that (a) our filters make judgments about articles and (b) these 

judgments are made using the MEDLINE records (i.e. titles, abstracts, journal, MeSH 

terms, and publication types) as the latter are provided by PubMed. Hence, when the 
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context is about processing the records we use "MEDLINE records", whereas when we 

discuss making judgments about the articles we use the term "articles". 

     The background section describes previous approaches for identifying the best 

scientific evidence. The methods section describes corpus construction, the representation 

of an article (i.e. as a MEDLINE record), articles that meet rigorous EBM standards (high 

quality) and those that do not, and the learning methods applied to differentiate high 

quality articles from articles that do not meet EBM criteria. In the results and discussion, 

we compare the machine learning methods to each other using ROC analysis and 11 point 

precision recall and to current methods with standard sensitivity, specificity, and 

precision metrics, and a sensitivity/specificity match method. We further discuss 

advantages, limitations, and extensions of this work. We conclude with a broad overview 

of the findings of this paper. 

 

Background 

     Specialized sources for high quality scientific evidence include The Cochrane 

Collaboration’s Library, Evidence-Based Medicine, and the ACP Journal Club [3-5]. 

Each group and journal brings together expert reviewers who routinely review the 

literature and select articles that warrant attention by clinicians. These articles are either 

cited by the Cochrane Collaboration, or republished with additional commentary as in 

Evidence-Based Medicine and the ACP Journal Club.  

     These manual methods are labor-intensive and the reporting of high quality articles is 

slow due to the expert review process. In light of these limitations, more recent 

approaches address finding high quality, content specific articles as a classification 



 

 
 

13

problem. The problem is to classify documents as both high-quality and content-specific 

or not. 

     In 1994, Haynes and colleagues used the classification approach to find high quality 

articles (as represented by their MEDLINE record) in internal medicine [6]. Evaluating 

articles in ten journals from 1986 and 1991, three research assistants defined high quality 

articles by constructing a gold standard according to content and methodological criteria. 

The content areas included etiology, prognosis, diagnosis, and treatment, and the 

methodological criteria were similar to the criteria currently used by the ACP Journal 

Club [7]. The authors selected terms that would most likely return high quality articles in 

these content categories based on interviews with expert librarians and clinicians. Valid 

MeSH terms, publication types, and wildcarded word roots (i.e. random* matching 

randomize and randomly) in the title and abstract were collected. Using the above gold 

standard and the selected terms, they ran an exhaustive search of all disjunctive Boolean 

set term models of 4 to 5 terms, and evaluated each disjunctive set on an independent 

document set according to sensitivity, specificity, and precision of returning high quality 

articles. The optimal Boolean sets (see Table II-1) were shown to have high sensitivity, 

specificity, and precision and are currently featured in the clinical queries link in PubMed 

[8].  This method required interviewing to select terms, a gold standard constructed by an 

ad-hoc review panel of expert clinicians, and reliance on NLM assigned terms. The 

learning method also relied on a search of term disjunctions that grows exponentially 

with the number of search terms. 
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Table II-1 - Clinical Query Filters described in the "filter table" used in the clinical 

queries link in PubMed (3). These Boolean filters were run on the gold standard corpus 

and sensitivity, specificity, and precision were measured. 

 

Category 
Optimized 

for 
PubMed equivalent 

Therapy sensitivity 
"randomized controlled trial" [PTYP] OR "drug therapy" [SH] 

OR "therapeutic use" [SH:NOEXP] OR "random*" [WORD] 

 specificity (double [WORD] AND blind* [WORD]) OR placebo [WORD] 

Diagnosis sensitivity 

"sensitivity and specificity" [MESH] OR "sensitivity" [WORD] 

OR "diagnosis" [SH] OR "diagnostic use" [SH] OR 

"specificity" [WORD] 

 specificity 
"sensitivity and specificity" [MESH] OR ( "predictive" 

[WORD] AND "value*" [WORD]) 

Etiology sensitivity 

"cohort studies" [MESH] OR "risk" [MESH] OR ("odds" 

[WORD] AND "ratio*" [WORD]) OR ("relative" [WORD] 

AND "risk" [WORD]) OR "case" control*" [WORD] OR case-

control studies [MESH] 

 specificity 
"case-control studies" [MH:NOEXP] OR  "cohort studies" 

[MH:NOEXP] 

Prognosis sensitivity 

"incidence" [MESH] OR "mortality" [MESH] OR "follow-up 

studies" [MESH] OR "mortality" [SH] OR prognos* [WORD] 

OR predict* [WORD] OR course [WORD] 

 specificity prognosis [MH:NOEXP] OR "survival analysis" [MH:NOEXP] 

 

PTYP – publication type MESH – MeSH main heading 

SH – MeSH subheading NOEXP – MeSH subtree for the term is not exploded 
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      Other researchers have applied a similar methodology to developing sets of search 

terms for controlled trials, systematic reviews, and diagnostic articles [9] [10] [11] [12] 

[13] [14].   

     The common methodological features of these studies are: (a) that the search term sets 

are selected through interviews or article inspection by health professionals and/or 

librarians and (b) search is conducted via Boolean queries involving combinations of 

MeSH qualifiers, MeSH terms, publication types, and text words.  The selection of a gold 

standard varies with more recent research utilizing reproducible, expert-derived gold 

standards. In the present research, we follow an expert-derived, publisher-based 

methodology for gold standard construction while automating term selection from the 

corpus. Additionally, we use more sophisticated classifiers to build models for high 

quality, content-specific article retrieval. 

      

Methods 

 

A. Definitions 

     In this paper, we chose not to build new criteria to define quality, but instead, we build 

on existing criteria [7] that the ACP Journal Club uses to evaluate full text articles [15].  

     The ACP Journal Club is a highly-rated meta-publication.  Every month expert 

clinicians review a broad set of journals [7] in internal medicine, and select articles in 

these journals according to specific criteria [7] in the content areas of: treatment, 

diagnosis, etiology, prognosis, quality improvement, clinical prediction guide, and 

economics.  Selected articles are further subdivided into articles that are summarized and 
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abstracted by the ACP because of their “clinical importance” [15], and those that are only 

cited because they meet all the quality selection criteria but may not pertain to vitally 

“important clinical areas” [15]. For the purposes of the present study, abstracted and cited 

articles published in the ACP Journal Club for a given year are considered high quality 

and are denoted as ACP+; all other MEDLINE articles not abstracted or cited in the ACP 

Journal Club, but present in the journals reviewed by the ACP Journal Club, are denoted 

as ACP-. By using articles abstracted and cited by the ACP Journal Club as our gold 

standard, we capitalize on an existing, focused quality review that is highly regarded and 

uses stable explicit quality criteria.  

     

B. Corpus Construction 

     We constructed two corpora that reflect the progression of our experiments. Corpus 1 

has 15,786 MEDLINE records used for high quality treatment and etiology article 

prediction. Corpus 2 has 34,938 MEDLINE records used for high quality prognosis and 

diagnosis article prediction. In order to learn high quality models, sufficient ACP+ 

articles must exist in each category. For our initial experiments including treatment and 

etiology, we selected a publication time period from July 1998 to August 1999. This 

chosen period did not yield sufficient ACP+ articles for the prognosis and diagnosis 

categories so we obtained additional prognostic and diagnostic articles by lengthening the 

selected publication time period from July 1998 to August 2000. The resulting 

distribution of positive/ negative articles in each category is 379/15407 in treatment, 205/ 

15581 in etiology, 74/ 34864 in prognosis, and 102/ 34836 in diagnosis. 
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     We downloaded all the MEDLINE records in the respective time periods and marked 

the articles as ACP+. We used a custom script to match word for word the ACP+ title, 

authors, and journal to the downloaded citations. Next, we downloaded all MEDLINE 

records from PubMed with abstracts from the journals reviewed by the ACP in the 

publication period of July 1998 through August 1999 for corpus 1 and July 1998 to 

August 2000 for corpus 2. Two conditions motivated this period of time.  As discussed 

above, each selected time period provided sufficient ACP+ articles in each category. 

Selecting a period of several years before the start of the present study gave ample time 

for the journal club to review the published full text articles for republication in the ACP 

journal. Thus, to ensure that no ACP+ articles are missed, the ACP journal was reviewed 

from the journal time periods of July 1998 to December 2000 and July 1998 to December 

2001 for each respective corpus. From these two selected ACP journal time periods, we 

marked in the publication time periods any cited or abstracted articles. 

     Furthermore, as stated before, we identified 49 journals [7] appearing in the review 

lists of the table of contents of the first ACP journal in July 1998 to the last ACP journal 

in December 2001.  By collating all articles from these select journal sources that ACP 

stated it used in preparing the Journal Club, a complete set of references (for the purposes 

of the current study) was obtained.  

     At the time of this study, the Esearch and Efetch services of PubMed did not exist 

[16]. We instead, created custom Python scripts that simulated a user search session to 

download the MEDLINE records. Each search was limited to the title of one of the 49 

journals and set to only retrieve records with abstracts and during the publication period.  

These MEDLINE records were downloaded in XML format, stored in a MySQL database 
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[17], and parsed for PubMedID, title, abstract, publication type, originating journal, and 

MeSH terms with all qualifiers. 

 

C. Corpus Preparation 

     We partitioned each corpus into n fold cross-validation sets to estimate the 

classification and error of the constructed models. Each cross validation set had a train, 

validation, and test split with the proportions of ACP+ and ACP- articles maintained in 

each split. 

     We chose the number n of n-fold cross-validation sets based on the frequency of 

ACP+ high quality articles. For all categories, we chose an n of 5. This choice for n 

provided sufficient high quality positive samples for training in each category and 

provided sufficient article samples for the classifiers to learn the models in our 

preliminary experiments.  

     Specifically, the cross-validation sets were constructed as follows.  First each corpus 

was partitioned into 5 disjoint “test” subsets whose union is the complete corpus.  For 

each test split, the remaining 80% of the articles were further partitioned into a 70% 

“train” split and a 30% “validation” split.  In all cases the train, validation, and test splits 

are chosen so that the proportions of ACP+ articles and ACP- articles are as close as 

possible to the proportions in the corpus.  The validation split was used to optimize any 

specific learning model parameters. We optimized the models using maximization of area 

under the ROC curves [18]. 

 

D. Article Preparation 
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     The abstracts, titles, and originating journal were parsed into tokens using the 

algorithm described below and weighted for classifier input. Additionally we extracted 

MeSH terms including headings and subheadings, and publication types for each 

MEDLINE record and encoded these as phrases. For example, the publication type Case 

Reports is encoded as a single variable, and following the algorithm below would be 

encoded as “pt_Case Reports.” Next, individual words in the title and abstract were 

further processed by removal of stop words identified by PubMed [19] such as: “the,” 

“a,” “other,” etc. that are not likely to add semantic value to the classification.  The words 

were further stemmed by the Porter stemming algorithm which reduced words to their 

roots [20].  Stemming increases the effective sample by removing word forms often do 

not add additional semantic value to the classification.   

      We then encoded each term into a numerical value using log frequency with 

redundancy (See on-line supplement for mathematical details [7]). The log frequency 

with redundancy scheme weights words based on their usefulness in making a 

classification, since words that appear frequently in many articles are assumed to be less 

helpful in classification than (more selective) words that appear in fewer articles. This 

weighting scheme was chosen due to its superior classification performance in the text 

categorization literature [21].  

In summary, the algorithm for processing each article is described below:  

 

For each article/MEDLINE record in the set 

     Extract original journal 

     Extract MeSH terms 
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          replace all punctuation and spaces with '_' 

          associate main headings with each  

subheading ||i.e. Migraine:etiology and Migraine: therapy|| 

          precede all terms with 'mh_'  *thus all MeSH terms are encoded as single 

variables* 

     Extract publication types 

          precede all terms with 'pt_' 

          replace all punctuation with '_' 

     For abstract and title words separately 

          if title word: precede term with ‘title_’ 

          convert all words to lowercase 

          remove all punctuation and replace with '_' 

          remove MEDLINE stop words 

          Porter-stem all words 

          calculate weights using log frequency with redundancy [21] 

          calculate raw frequency occurrence of terms  

For each encoded word 

  If the word appears in less than 3 documents, remove it from the calculations. 

 

     Finally, we calculated the raw occurrence of terms in each article.  Naïve Bayes and 

the first version of the Boostexter algorithm are designed to work with discrete data using 

frequency of term occurrence as input.  The second version of Boostexter and support 

vector machines used the log frequency with redundancy weighted terms as input [22]. In 
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all cases, no term selection was employed, and each algorithm used all available terms for 

learning. 

 

E. Statistical and Machine Learning Methods 

1. Naïve Bayes 

     Naïve Bayes is a common machine learning method used in text categorization. The 

Naïve Bayes classifier [23] estimates the probabilities of a class c given the raw terms w 

by using the training data to estimate P(w|c). The class predicted by the Naïve Bayes 

classifier is the max a-posteriori class. 

     We coded the algorithm in C as described in Mitchell 1997 [24].  No parameter 

optimization is necessary for Naïve Bayes.  See the online supplement for equations [7]. 

 

2. Text-Specific Boosting 

     Boostexter is a collection of algorithms that apply boosting to text categorization [22].  

The idea behind boosting is that many simple and moderately inaccurate classification 

rules (called the “weak learners”) can be combined into a single, highly accurate rule.  

The simple rules are created sequentially, and for each iteration, rules are created for 

examples that were more difficult to classify with preceding rules. The prototypical 

algorithm for boosting is AdaBoost [25]. See the online supplement for mathematical 

details [7]. 

      The AdaBoost.MR algorithm in the Boostexter suite uses boosted trees to rank 

outputs with real values.  AdaBoost.MR attempts to put correctly labeled articles at the 

top of the rankings. The algorithm minimizes the number of misordered pairs, i.e. pairs 
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where an incorrectly labeled article is higher in the ranking than a correctly labeled 

article. The AdaBoost.MR algorithm runs with real valued weights and discrete counts of 

word frequencies as inputs depending on the version. 

 

3. Support Vector Machines (SVMs) 

     Support vector machines (SVMs) can function as both linear and non-linear classifiers 

for discrete and continuous outputs. The type used in this study is the soft margin 

hyperplane classifier that calculates a separating plane by assigning a cost to 

misclassified data points. The solution is found by solving a constrained quadratic 

optimization problem.  In addition, for the non-linear case, the problem is solved by using 

a “kernel” function to map the input space to a "feature" space where the classes are 

linearly separated. Linear separation in feature space results in a non-linear boundary in 

the original input space [26-28]. 

     For the text categorization task, the words were weighted using log frequency with 

redundancy and utilized as features for the linear and polynomial SVMs.  We use the soft 

margin implementation of SVMs in SVM-Light [29]. For the linear SVM, we used 

misclassification costs of {0.1, 0.2, 0.4, 0.7, 0.9, 1, 5, 10, 20, 100, 1000} for optimization 

on the validation set. For the polynomial SVM, we used misclassification costs of {0.1, 

0.2, 0.4, 0.7, 0.9, 1, 5, 10, 20} and polynomial degrees of {2, 3, 5, 8}. These costs and 

degrees were chosen based on previous empirical research [30], since the theoretical 

literature on domain characteristics as it relates to optimal parameter selection is not yet 

well-developed in this domain. Combinations of both cost and degree were run 

exhaustively on the validation set, and the optimal cost and degree were applied to the 
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test set in each cross fold validation set. See the on-line supplement for the mathematical 

details [7]. 

 

4. Clinical query filters (CQF) 

     We ran the category-specific Boolean queries shown in Table II-1 on the 

corresponding test sets.  As described above, two set of Boolean queries exist (i.e. 

optimized separately for sensitivity and specificity [6]). We measured the optimized 

sensitivity and specificity values independently for each cross validation set. For the best 

learning method, we fix these values in each fold and calculate the corresponding 

sensitivity, specificity, and precision. We report the average optimized and matched 

values across all folds in Table II-2. 

 

F. Evaluation Criteria 

     We used 4 evaluation criteria: (a) area under the receiver operating curve (ROC) 

(AUC) of each method with statistical comparison between methods using the Delong 

paired ROC comparison test [31], (b) 11 point precision-recall curves, (c) comparison to 

the specificity of the clinical query filters at the point of equal sensitivity, and (d) 

comparison to the sensitivity of the clinical query filters at the point of equal specificity. 

For (c) and (d), we used McNemar’s test to statistically compare each method to the best 

learning method. 

     We calculate the AUC and ROC for each method in each fold, and calculate the 

averaged statistical significance of the difference of the best performing method over all 

folds to each of the other methods using Delong method [31]. For a single learning 
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method, we estimate the statistical significance across all cross validation sets. We 

averaged the p-values for all the sets to obtain an empirical mean. We statistically 

evaluate this empirical mean by examining the distribution of means obtained by 

randomly permuting a complete experiment (i.e. in this case, randomly permuting 5 cross 

validation sets for one method and obtaining a permuted mean) 500 times. With the 

empirical mean and the distribution of means created by the permutations, we report a 

significance value for the empirical mean and thus conclude a statistical p-value 

difference between the best learning method and the compared method.  

     Note that although several parametric tests for comparing mean p-values exist, they 

assume independence between measurements [32]. These independence assumptions do 

not apply in an n-fold cross validation setting; thus we resort to a random permutation 

test here. 

     We compare the sensitivity and specificity of the machine learning methods to the 

sensitivity and specificity of the respective optimized Boolean clinical query filter. The 

query filters returned articles with the query terms present whereas the learning 

algorithms return a score. To make the comparison, in each fold, we fixed the sensitivity 

value returned by the sensitivity-optimized filter, and varied the threshold for the scored 

articles until the sensitivity was matched.  We report the averaged fixed sensitivity and 

matched threshold in Table II-2. The same procedure was run for the specificity returned 

by the optimized specificity filter. 

     We assessed the statistical significance of differences of sensitivities (or specificities) 

between the best learning method and the clinical query filter Boolean models using 

McNemar’s test (calculated for each cross-validation set) [33]. To report the significance 
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across all cross validation sets, we followed the same procedure as described above in 

comparing ROC curves. Instead of using the Delong method, we instead compare the 

best learning method to the Boolean models with McNemar’s test for all the sets to obtain 

an empirical mean. We statistically evaluate this empirical mean by examining the 

distribution of means obtained by randomly permuting a complete experiment (i.e. in this 

case, randomly permuting 5 cross validation sets and obtaining a permuted mean) 500 

times. 
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Table II-2 - Best learning method compared to clinical query filters fixed at optimal sensitivity and specificity. The first number is the 

average across 5 folds. The numbers in parenthesis report the minimum and maximum value across the 5 folds.  Cells in bold denote 

the performance for the filter optimized for sensitivity or specificity respectively. 

 
Category Optimized for Method Sensitivity Specificity Precision 

Treatment Sensitivity Query Filters 0.75(0.74-0.76) 0.09(0.08-0.09) 

    Poly SVM 
0.96(0.91-0.99) 

0.86(0.68-0.93) 0.18(0.07-0.25) 

  Specificity Query Filters 0.4 (0.37-0.42) 0.19 (0.17-0.21) 

    Poly SVM 0.80(0.74-0.83) 
0.96 (0.95-0.96)

0.33(0.31-0.34) 

Etiology Sensitivity Query Filters 0.85 (0.85-0.86) 0.06 (0.06-0.06) 

    Poly SVM 
0.70 (0.61-0.78)

0.95(0.92-0.97) 0.15(0.11-0.21) 

  Specificity Query Filters 0.28(0.24-0.37) 0.05 (0.04-0.06) 

    Poly SVM 0.76(0.68-0.78) 
0.93 (0.92-0.94)

0.12(0.12-0.12) 

Prognosis Sensitivity Query Filters 0.70 (0.70-0.71) 0.006 (0.006-0.007) 

    Poly SVM 
0.88 (0.80-0.93)

0.71 (0.32-0.86) 0.009 (0.003-0.013) 

  Specificity Query Filters 0.51 (0.33-0.80) 0.02 (0.011-0.026) 

    Poly SVM 0.62(0.60-0.67) 
0.94 (0.94-0.94)

0.02(0.02-0.02) 

Diagnosis Sensitivity Query Filters 0.7(0.69-71) 0.009 (0.009-0.010) 

    Poly SVM 
0.95(0.86-1.0) 

0.53 (0.04-0.95) 0.015(0.003-0.048) 

  Specificity Query Filters 0.67(0.48-0.80) 0.048 (0.034-0.056) 

    Poly SVM 0.77(0.70-0.86) 
0.96 (0.96-0.96)

0.055(0.049-0.059) 
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Results 

A. Area under the receiver operating curve analysis 

     The areas under the receiver operating characteristic curves (AUC) for each category 

averaged over 5 folds are presented in Table II-3.  Values upwards of 0.91 with ranges 

for the best learning methods suggest that the corresponding learning methods can 

distinguish very well between positive and negative class articles. The polynomial SVM 

turned out best, and it was compared as a baseline to all other learning methods and the 

clinical query filters. In the treatment and etiology categories, in nearly all cases except 

Boostexter raw in etiology, the difference of the polynomial SVM output to the other 

methods was not due to chance.  In contrast, in the sample limited diagnosis category, the 

difference between the polynomial SVM output and the Boostexter algorithms and the 

linear SVM may be due to chance. Similarly, in the sample limited prognosis category, 

the linear and polynomial SVM difference may be due to chance as well.   

     The ROC curves for each category and learning method are depicted in Figure II-1. In 

all cases, the learning methods perform well with the exception of Naïve Bayes in the 

prognosis and diagnosis categories. Finally, in each ROC graph, the corresponding 

clinical query filter performances are shown by small X’s. The leftmost symbol 

corresponds to fixed specificity and the rightmost symbol corresponds to fixed 

sensitivity.  

B. 11 point precision recall  

     We further compare qualitatively the clinical query filters to the best learning method 

(polynomial SVM) in each category in Figure II-2. For each category, we mark on the 11 
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point precision recall graph the corresponding precision recall performance for the 

optimized sensitivity and specificity clinical query filters. The leftmost point is the filter 

optimized for specificity and the rightmost point is the filter optimized for sensitivity. For 

treatment, etiology, 
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Table II-3 - Area under the Receiver Operating Curve (AUC) Performance of each machine learning method in each category. 

Diagnosis      Prognosis     

Learning method 
Average 
AUC* 

Min 
AUC* 

Max 
AUC* 

^Significance 
(Delong)  Learning method 

Average 
AUC* 

Min 
AUC* 

Max 
AUC* 

Significance 
(Delong) 

Naïve Bayes 0.82 0.80 0.84 0.001 (0)  Naïve Bayes 0.58 0.47 0.66 0 (0)

Boostexter –Weighted 0.87 0.85 0.90 0.10 (0)  
Boostexter –
Weighted 0.71 0.56 0.86 0.01 (0)

Boostexter – Raw 
Frequency 0.94 0.91 0.97 0.43 (0.03)  

Boostexter – Raw 
Frequency 0.79 0.73 0.85 0.04 (0)

Linear SVM 0.95 0.93 0.97 0.11 (0)  Linear SVM 0.91 0.86 0.94 0.39 (0.01)
Polynomial SVM 0.96 0.95 0.98 N/A  Polynomial SVM     0.91 0.87 0.95 N/A
    
Treatment      Etiology 

MLmethod 
Average 
AUC 

Min 
AUC 

Max 
AUC 

Significance 
(Delong)  MLmethod 

Average 
AUC 

Min 
AUC 

Max 
AUC 

Significance 
(Delong) 

Naïve Bayes 0.95 0.94 0.95 0.01 (0)  Naïve Bayes 0.86 0.84 0.88 0.02 (0)

Boostexter –Weighted 0.94 0.92 0.95 0.03 (0)  
Boostexter –
Weighted 0.85 0.83 0.87 0.01 (0)

Boostexter – Raw 
Frequency 0.94 0.93 0.96 0.01 (0)  

Boostexter – Raw 
Frequency 0.90 0.88 0.93 0.25 (0)

Linear SVM 0.96 0.95 0.97 0.03 (0)  Linear SVM 0.91 0.86 0.93 0.03 (0)
Polynomial SVM 0.97 0.96 0.98 N/A  Polynomial SVM 0.94 0.89 0.95 N/A

 
* - average, minimum, and maximum AUC across the respective number of folds for each category. 

^ - Mean significance using the Delong method across all folds comparing the best learning method in each category (Polynomial 
SVM) with each other learning method. The number in parenthesis is the significance produced by random permutation test as 
described in Section IIIF 
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Figure II-1 - Receiver Operating Curves for Each Category  
x’s – clinical query filter performance at optimized sensitivity (right x) and specificity (left x) 
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Figure II-2 – 11 Point Precision Recall curves compared to optimized sensitivity and specificity clinical query filters. 
plus, square, x’s, triangles – clinical query filter optimized for sensitivity (left mark) and specificity (right mark) 
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and diagnosis, the polynomial SVM performed better than either optimized clinical query 

filter using this metric. For prognosis, the polynomial SVM performed as well as the 

clinical query filters using this metric. 

C. Comparison to clinical query filters 

     For the most part, the learning methods outperformed the query filters for each 

sensitivity, specificity, and precision measure. Table II-2 compares the best learning 

method by AUC and the results of the clinical query filters fixed for sensitivity and 

specificity respectively for each category. The average with the ranges across 5 folds 

across all cross-validation sets appear inside parentheses. 

     In comparison to the clinical query filters, the polynomial SVM has better 

performance in the treatment and etiology categories. In the prognosis category the 

polynomial SVM model and the clinical query filters perform similarly. In the diagnosis 

category, the polynomial SVM performs better than the specificity optimized filter but 

worse than the sensitivity optimized filter (See discussion). The polynomial SVM model 

for treatment and etiology at a threshold that matches the sensitivity of the sensitivity-

optimized clinical query filter has at least double precision compared to the clinical query 

filters though remaining below 20% in both categories. Specificity of the polynomial 

SVM model is also better (by approximately 10% in both categories). Likewise, in the 

same categories, the polynomial SVM model at a threshold that matches the specificity of 

the specificity-optimized clinical query filter has almost double precision compared to the 

clinical query filters. Sensitivity of the polynomial SVM model is also better (by 40% 

and 48% respectively). For the prognosis category, the polynomial SVM model performs 
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comparably to the sensitivity and specificity-optimized clinical query filters. For 

diagnosis, the polynomial SVM model has a 10% improvement in sensitivity for the 

specificity optimized filter, but a 17% decline in specificity for the sensitivity optimized 

filter (See discussion for details).
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Table II-4 – McNemar’s test p-values averaged over 5 folds with significance tests. The permutation significance is produced by 

random permutation tests as described in Section IIIF. 

 

Category Filter Compared Mean p-values Permutation Significance 

Treatment Sensitivity < 0.0001 < 0.0001 

  Specificity 0.019 < 0.0001 

Etiology Sensitivity < 0.0001 < 0.0001 

  Specificity 0.34 0.14 

Prognosis Sensitivity < 0.0001 < 0.0001 

  Specificity 0.95 1.0 

Diagnosis Sensitivity 0.07 < 0.0001 

  Specificity 0.90 1.0 
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     Table II-4 compares statistically the polynomial SVM and the clinical query filters 

using McNemar’s test. As described in the methods section, we report (a) the average p-

values across all cross validation sets and (b) the significance using a random 

permutation test.  

     When comparing the optimized sensitivity filters to the polynomial SVM, the mean p-

values are significant at the 0.05 level except for the sensitivity optimized diagnosis filter 

at the 0.07 level. Thus, the improvements compared to the clinical query filters in both 

precision and specificity are not due to chance. 

     When comparing the optimized specificity filter to the polynomial SVM, in etiology, 

prognosis, and diagnosis categories, the mean p-values are not significant whereas in the 

treatment category, the polynomial SVM models are significant at the 0.05 level. Hence 

we conclude that the differences between the polynomial SVM fixed at optimized 

specificity and the query filters are not due to chance in the treatment category, but may 

be due to chance in the other 3 categories. We speculate that in these 3 categories, non-

significant differences are due to the low ratios of ACP+ to ACP- articles (i.e. low 

priors). 

 

Discussion 

     We have shown that machine learning methods applied to categorizing high quality 

articles in internal medicine for a given year perform better than currently used Boolean 

methods in most categories. This work is a step toward efficient high-quality article 

retrieval in medicine.  
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A. Performance in the Diagnosis Category 

     In light of the comparable or superior performance of the SVM model over the clinical 

query filters in treatment, etiology, and prognosis, the lower performance of the diagnosis 

polynomial SVM versus the sensitivity-optimized query filter warranted further attention.  

      Recall that we match the sensitivity returned from the optimized diagnosis Boolean 

query to the sensitivity produced by varying the threshold for the SVM output. Because 

the number of positive articles in the diagnosis category is very small (and even smaller 

within the splits of cross-validation), and because the Clinical Query Filters exhibit very 

high sensitivity in the content category, even a small number of outliers (i.e., MEDLINE 

documents receiving a low score) in terms of SVM model scores, will result in significant 

reduction of the specificity once we set the SVM threshold to match the near-perfect 

sensitivity of the Clinical Filters.  

      Indeed, we identified such outliers and verified that they were the source of the 

reduced performance in the diagnosis category once we fix the thresholds to match the 

CQF sensitivity. By close examination we found that the ACP+ articles scored low 

because the terms used to identify these articles were not used in training of the SVM 

model. More specifically, MeSH subheadings were not encoded individually. For 

example, one of the ACP+ articles scoring low was identified by the diagnosis clinical 

query filters with the MeSH subheading “diagnosis” (See Table II-1). Recall from the 

article preparation procedure in Section IIID that mesh subheadings are not encoded 

explicitly, but only as part of the matching major heading. Thus “diagnosis” would not be 

encoded individually, but only as part of the major heading as in “Migraine:diagnosis.”  
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If the ACP+ article was encoded as “Pneumonia:diagnosis,” it would not score high. The 

SVM classifiers did not have sufficient information to give some ACP+ articles a high 

score, since none of these words were found in the text.  

      It is evident that this problem can be fixed simply by encoding the subheadings 

individually in future versions of the models discussed here. However we do note that in 

such circumstances, using the human Mesh indexing provides a slight edge over not 

using them.  

 

B. Implicit Selection Bias 

     A potential drawback of the constructed models is that they may reflect implicit 

selection biases by the editors of the ACP Journal Club, and the high quality articles 

selected by the models are not based on sound methodology. For example, it is 

conceivable that editors for a particular year could have a favourable bias toward a 

particular subject, and the subject rather than the methodology causes a high quality 

classification. 

     We answer this concern through cross-validation and a method presented in [34] to 

convert the models to Boolean queries. Specifically, we built Boolean models using an 

approximate Markov Blanket feature selection technique [34] modified from [35] to 

obtain the set of minimal terms, and a decision tree to build the corresponding Boolean 

query. The feature selection/ decision tree method presented in [7] shows that the models 

emphasize methodological words in nature rather than topic specific ones. 

  

C. Labor Reduction 
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      The machine learning based methods may significantly reduce labor through 

automated term selection, reliance on an existing, publisher-based, expert derived gold 

standard, and a reduced feature set without manually assigned MeSH terms and 

publication types that has equivalent performance to the full set with terms and types.  

     Recall from the background section the strategy for development of the clinical query 

filters [6]. In the Haynes approach, significant time is spent interviewing people for the 

selected terms, building the gold standard, and running an exhaustive search through the 

space of term disjunctions. In addition, the filters rely on MeSH terms and publication 

types that must be assigned before the filters can be used. 

     In contrast, the methods here are less labor intensive. First, there is no selection of 

terms as these are implicit in the training articles.  Second, we have a framework for 

automatic generation of a gold standard through the ACP Journal Club that is reliable and 

reproducible. Manual review is not needed as long as the ACP journal is electronically 

available. Finally, we use sophisticated classifiers that can build models in 4-8 hours 

(depending on model and experiment design) on a Pentium 4, 2GHz with full term sets 

versus several days depending on the number of selected terms with the exhaustive 

search of term disjunctions [6]. 

     In an additional experiment, we compared the inclusion/ exclusion of manually 

assigned, labor-intensive MeSH terms and publication types (NLM assigned terms) as 

model input features. We compared the ROC performance of a feature set inclusive NLM 

assigned terms to a feature set without both.  The ROC curves in Figure II-3 show that 

the reduced feature set without NLM assigned terms has comparable ROC curves to the 

feature set inclusive of these terms. Though we do not show the results here (see on-line 
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supplement for further details [7]), each average AUC was not significantly different for 

each feature set using the Delong method [31]. The results suggested, with our methods, 

we can make quality and content determinations without the labor-intensive NLM term 

indexing process. Note that we do not advocate abandoning human indexing in general, 

but for this task, no additional benefit is gained from manual term assignments. 

 

D. Extensions 

     Another avenue to explore is the use of additional predictor information. For example, 

we hypothesize that additional information such as general word location, impact factors, 

citation information, author locations, or user feedback information may improve model 

performance. 

     We also plan to extend these models to areas outside of internal medicine. One 

approach is to build a gold standard that considers articles in other specialties. Evidence 

Based Medicine is the sister journal of the ACP journal that could be used for a more 

general gold standard, since its scope of review covers all aspects of medicine. 
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Figure II-3 – Title+Abstract (TA) vs. Title+Abstract+MeSH+Publication Types (TAM) Performance Comparisons. 
x’s – clinical query filter performance at optimized sensitivity (right x) and specificity (left x) 
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E. Limitations 

     In general, the prognosis and diagnosis samples sizes are limited. We chose not to 

alter the ratio of positive to negative articles to maintain the priors across all learning 

tasks and produce realistic estimates of future performance. The small priors for both 

these categories make learning difficult.  Nevertheless, with these sample sizes, our 

system performs at least comparably to the clinical query filters in prognosis and in some 

cases in diagnosis. 

     Another admitted limitation of our comparisons to the clinical query filters is that the 

new models and filters were built for the exact same goals but with different gold 

standards. Our comparisons simply show that the new models implement the present gold 

standard better than the clinical query filters. In the future, using an independent gold 

standard and evaluating both methods trained on independent sets would strengthen this 

comparison. 

     A potential limitation of any information retrieval study is the choice of gold standard. 

A gold standard is only as good as the experts brought together to create it. The use of the 

ACP Journal Club articles meets our criteria, and we propose that currently, is the best 

general method to create such gold standards.  The journal club articles are easily 

obtained from their website, the cited articles are readily available for use by other 

researchers, and the gold standard is created by recognized experts and editors in the field 

of internal medicine. 

     This work is a step toward more efficiently returning high quality articles. The work 

does not address explicitly the utility of these models in a clinical setting or outside of 
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internal medicine. Finally, the learning method’s built models are constrained to one 

specific time period in internal medicine.  

 

Summary 

     Text categorization methods can learn models that identify high quality articles in 

specific content areas (etiology, treatment, diagnosis, and prognosis) by analyzing 

MEDLINE records in internal medicine using the operational gold standard of articles 

that match the ACP inclusion criterion for methodologic rigor. These learning methods 

exhibit high discriminatory performance as measured by the AUC. The performances are 

also comparable or better than the Boolean based clinical query filters for each category 

by direct comparisons of sensitivity, specificity, and precision at fixed levels and by 11 

point precision recall comparisons. Polynomial SVMs have the best performance while 

linear SVMs came close in terms of AUC. We presented an efficient and improved 

means for identifying high quality articles in internal medicine. 
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Learning Boolean Queries for Article Quality Filtering 

Aphinyanaphongs Y, Aliferis C. “Learning Boolean Queries for Article Quality 

Filtering.” In: MEDINFO; 2004; San Francisco, CA; 2004. 

 

Abstract  

     Prior research has shown that Support Vector Machine  models have the ability to 

identify high quality content-specific articles in the domain of internal medicine. These 

models, though powerful, cannot be used in Boolean search engines nor can the content 

of the models be verified via human inspection. In this paper, we use decision trees 

combined with several feature selection methods to generate Boolean query filters for the 

same domain and task. The resulting trees are generated automatically and exhibit high 

performance. The trees are understandable, manageable, and able to be validated by 

humans. The subsequent Boolean queries are sensible and can be readily used as filters 

by Boolean search engines. 

 

Introduction 

     The pace of research far overcomes the ability of modern health professionals to be up 

to date about all the recent research developments and current best practices. By one 

account, a general physician reviewing just 20 clinical journals in adult internal medicine 

would have to read 19 articles a day for 365 days a year to keep up [1]. Increasingly, 

physicians are turning to electronic sources for their information needs. Services like 
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MDConsult [2], Up2Date [3], and Pubmed Central [4] evaluate and abstract research 

articles.  

     However, the final authority on what constitutes best medical practices and high 

quality knowledge is provided by the primary sources themselves (i.e the biomedical 

research literature). Thus there exists a great need for a way to identify the most 

important of the primary sources, that is the original research, the methodological quality 

and scope of which are likely to yield the highest benefit to the healthcare professionals. 

     A primary point of practical significance is the technology and overall process for 

constructing quality filters to return these primary sources. More specifically, in most 

cases, filters consist of Boolean queries that were formulated by taking human-derived 

queries and modifying them, or by stringing together words that are deemed intuitive by 

human experts for some domain in disjunctions or conjunctions and evaluating their 

performance [5, 6]. A more structured, yet still, ad-hoc approach was taken to generate 

Boolean queries to return high quality content related articles in [7] and [8]. In the 

pioneering study in [8], experts were polled, and words that were deemed relevant to a 

content area were selected. The exact combination of words was optimized separately for 

sensitivity and specificity by a brute force search of all disjunctions of the selected words 

(up to a small number of words per query). The resulting queries perform well, and are 

featured in the clinical queries (CQF) link in PubMed [4].  Alternately in [7], word 

frequencies in the abstract were used to identify candidate terms. These terms are 

individually evaluated for sensitivity and precision, and the terms with the highest 

(sensitivity * precision) product were combined in a disjunctive Boolean query to find 
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diagnostic studies. The authors report improved performance over the CQF diagnostic 

filter. 

     The authors of the present article in [9] address the problem of returning quality 

articles by running a suite of powerful classifiers on a suitable corpus and not rely on 

human experts. While the resulting models perform very well, a question remains as to 

(a) their understandability by humans, and (b) their usability through Boolean based 

systems such as Pubmed. Even though the Boolean model can capture any set of 

documents, the process of formulating such queries, especially by humans, can be 

challenging. Indeed, analysis of search engine logs show that most search engine users 

avoid Boolean formulations [10]. 

     Flake et. al. recently introduced a hybrid approach that converts corpus-based SVM 

models to Boolean queries in the web domain [11]. Their method combines in an ad-hoc 

manner a linear approximation to a polynomial SVM classifier with a modified Adaboost 

[12] algorithm to convert the original polynomial SVM models to sets of Boolean 

Queries (also referred to as “query modifications” in the information retrieval literature). 

The Flake et al. method is highly heuristic and not guaranteed to perform well in specific 

data and problem domains, however. 

     Thus the motivation for this paper is how to convert sophisticated machine learning 

models into usable queries. The application of SVMs to current information retrieval 

systems is not straightforward and would require a dedicated system built expressly for 

this purpose. To bridge the gap and give users applicable technology, we explore the 

formulation of Boolean queries from a training corpus that includes examples of the high 

quality content specific articles.       
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     Specifically, we ask the question:  

     Is it possible to automatically construct Boolean queries from a corpus using machine 

learning techniques such that the Boolean queries have as good classification 

performance as the SVM models, and are the resulting Boolean queries human-readable, 

manageable, and simple for use in current search engines? 

     Throughout the present paper, we use “word”, “term”, “feature”, and “variable” 

interchangeably. The choice of word depends on the appropriate context in which it is 

found. 

 

Methods 

 

Corpus Preparation 

     We use for the present study a modified version of the corpus in [9]. This corpus uses 

the ACP journal as a gold standard for both content and quality of articles [13]. The ACP 

journal is a meta-publication that routinely reviews over a hundred journals for articles 

that meet its selection criteria. Articles that are abstracted or cited by the ACP are 

considered positive instances and all other articles in the same journals to be negative. A 

more detailed description of the gold standard construction methodology can be found in 

[9]. The criteria for inclusion in ACPJ can be found in [13].  

     We selected the treatment content area for several reasons. This area had sufficient 

sample to represent the concepts for a high-quality treatment article. The criteria for 

selection are simple, and the predominant class of questions asked by physicians is 

treatment related [14]. 
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     The conversion of documents to a format suitable for the machine learning algorithms 

followed the procedures in [9] closely. The articles in the ACP selected journals were 

cross-referenced in PubMed, and the title, abstract, and MeSH terms parsed. The 

processing of the terms differs from [9] in that title and abstract terms were represented 

separately rather than as one group.  

     The resulting terms were encoded as binary variables (either appearing in the 

document or not) in all documents. The final treatment category counts included 397 

positive documents and 15407 negative documents with 27891 unique words. 

     The articles were further split into a training, validation, and test set, with 221 positive 

/ 8998 negative, 76 positive/ 3081 negative, and 82 positive/ 3328 negative documents 

respectively.  A single split was selected because the sample size was large enough, and 

utilizing a single split simplified the creation of a single Boolean query by removing 

concerns about how to combine the queries from each split. 

 

Support Vector Machine Classifiers 

 

     We used a support vector machine (SVM) from our previous experiments as an 

empirical “upper bound” on the performance of the binary encoded test set. SVMs 

function as both linear and non-linear classifiers. They maximize the margin between the 

instances belonging to different classes. The solution that generalizes best to unseen 

instances is found by solving a constrained quadratic optimization problem in terms of 

the patterns that lie on the margin (i.e. support vectors) [15]. 
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     We use a Matlab [16] wrapper [17] for Thorsten Joachim’s SVM-light [18]. This 

implementation utilizes a decomposition method to make learning a large number of 

examples tractable [19]. We use misclassification costs of {0.1, 0.2, 0.4, 0.7, 1.0, 2.0} 

and degrees of {1, 2, 5} on the validation sets. The best performance combination of 

degree and cost was used on the test set. 

 

Decision Tree Classifiers 

 

     Our primary means to generate Boolean queries is induction of decision trees. The 

reason for this choice is that the output of a decision tree maps well to Boolean queries. 

Each leaf of the decision tree corresponds to a path that describes the conjunction of word 

absence or presence for a classification. 

     In the text categorization domain, decision trees are a learning method that attempts to 

partition a training set based on individual words that describe the domain. The extensive 

work of Apte and Weiss [20], demonstrated that decision trees can produce superior 

classification performance in text while producing trees that are understandable. Our 

work extends the findings of Apte in several ways. First, we construct and apply the work 

to a new task. Second, we introduce new feature selection methods. Third, we analyze the 

trees in this problem domain to address the understandability and manageability of the 

resulting queries. 

     In this paper, we use the CART implementation of decision trees in Release 13 of 

Matlab with the gini index of diversity [21] to rank the relevant features. The full tree is 

pruned based on retaining a performance of at least 1% of the maximum performance on 
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the validation set with the smallest tree size. For example, suppose the best tree performs 

at 92% AUC with 10 nodes and a smaller tree performs at 91% AUC with 5 nodes. We 

would select the smaller tree as it retains at least 1% AUC of the maximum. 

     The Flake algorithm was implemented by the first author in Matlab following the 

description in [11] since public domain code is not currently available. 

 
Feature Selection Algorithms 

 

     Decision trees are known to suffer from the curse of dimensionality [22]. As the 

number of features increases, the increase in sample size must grow exponentially in the 

worst case, or the decision tree will not generalize well. To overcome this problem, we 

use several feature selection algorithms with the decision tree.  

     In our first evaluation of the method we employ three variable selection algorithms:  

 

Linear and Approximate-Polynomial Recursive Feature Elimination (RFEL RFEPA) 

     RFE builds on the power of SVM classification. The basic procedure can be summarized as follows 

[23]:  

1. Build an SVM classifier using all V features 

2. Compute weights of all features and choose the first |V|*k features (sorted by weight in 

decreasing order, k being a feature set cardinality reduction parameter, typically set to 

0.5) 

3. Repeat steps 1 and 2 until an empty feature set is produced 

4. Choose among all feature subsets created the one that gives the best performance in a 

validation set 
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     Linear RFE (RFEL) uses linear SVMs in step 1 as the name implies. In step two 

features are selected by their weights.  In Approximate-Polynomial RFE (RFEPA) a 

polynomial-kernel SVM is used in step 1 while Step 2 uses, instead of weights, ranking 

coefficients such that the ranking coefficient of the feature i is the change of cost function 

by removing  feature i. As a speed-up heuristic, one does not recompute Lagrange 

coefficients while ranking features. We also note that in the linear case, non-linear RFE is 

identical to the linear RFE. The exact mathematical formulations and parameter values 

used for both methods can be found in [23].  

 

HITON-PCFW  (filtered and wrapped HITON PC) 

     HITON is a feature selection algorithm introduced in [24] that combines induction of 

Markov Blankets and wrapping (i.e., heuristic search over variables subsets) to identify 

the smallest variable subset that gives optimal classification performance. It was shown 

by its authors (a) to be sound given the distributional assumption of faithfulness, 

universal approximator learners, and a quadratic loss misclassification function (for 

details please see the original publication); and (b) to have superior variable reduction 

performance (while maintaining optimal or near-optimal classification performance) to a 

range of state-of-the-art variable selection methods across a representative sample of 

biomedical tasks, including text categorization. Given HITON’s powerful reduction 

capabilities we apply it in our experiments. 

     In order to significantly speed-up the algorithm we modify HITON in two ways: (a) 

we apply, as a first step, a univariate association-based reduction in the number of terms 

used (which was shown in [25] to lead to excellent classifiers - but not optimally small 



Aphinyanaphongs – Text Categorization ModelsPage 54 of 224 

 
 

54

ones) and (b) we do not pursue full induction of the Markov Blanket (i.e., parents, 

children and spouses of the Target category in the Bayesian Network representing the 

classification tasks) but use an approximation to the Markov Blanket the parents and 

children only.  

     The price paid for the resulting speed up is that the modified algorithm is no longer 

sound even if the original HITON assumptions hold. This is because some members of 

the Markov Blanket (i.e., parents of children that do not have direct arcs with the target 

variable) will be omitted; yet they are necessary for optimal classification in the worst 

case. As we will see this heuristic modification to HITON works well in our experiments. 

 

Experimental Design 

     The design is a simple 2 step methodology. In step 1, a word set is selected to 

represent the domain. In step 2, an SVM classifier and a decision tree classifier are 

trained using this word set.      This design is illustrated in Figure II-4. 
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Figure II-4 – Experimental Design Methodology 

Step 2
Step 2

Step 1
Step 1

Select Words
- Full Set

- Haynes Selected
- RFEL, RFEPA, HITON-PCFW

Selected

Build Decision
Tree

Build SVM
 

 

     For step 1, we used 3 sets of words as inputs to the decision tree: the word set with the 

best performance/ feature ratio from each of the 3 selection methods, the full word set, 

and the word set from the Haynes experts [8].  

     The decision trees and the subsequent Boolean queries are evaluated quantitatively via 

a combined sensitivity-specificity measure to the CQF filters of Pubmed; they are also 

examined qualitatively. 

 

Results 

The performance to feature results are shown in Table II-5. We use SVMs and examine 

the area under the receiver operating curve (AUC). The Markov blanket HITON-PCFW 

algorithm has the best performance-to-feature ratio and is able to reduce from 27891 

features to 13. 
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Table II-5 – Feature Selection Performance 

 
HITON-PCFW  (13 Features)* 0.92 AUC 

 

RFE 

Features 28000 1743 871 217 54 13 

RFEL 0.95 0.85 0.96 0.97 0.86 # 

RFEPA 0.83 0.95 0.94 0.95 0.92 0.91 

 
* - HITON-PCFW  returns a single set. 
# - RFEL did not converge to a solution 
The performance of decision trees with varying inputs are shown in Table II-6. The best decision tree (best 
AUC performance) is illustrated in Figure II-5. 

 

Figure II-5 – Decision tree produced by HITON/ DT 

 
 

     The triangles are decision nodes. The left branch corresponds to the word being 

absent, and the right branch to the word being present. The leaves indicate the probability 

of a high quality treatment related document. 
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Table II-6 – Decision Tree Performance on Test Set 

Method AUC Words in pruned tree 

Full Feature Set (27891 features) 
     - SVMs 
     - DT 

0.98 
0.94 

N/A 
2 

HITON-PCFW  Feature Set (13 features) 
     - SVM 

     - DT 

0.95 
0.95 

N/A 
4 

Haynes Feature Set (747 features) 
     - SVM 
     - DT 

0.94 
0.93 

N/A 
2 

 
     Table II-6 shows that the best performing decision tree is using the HITON-PCFW  

feature set. The other decision tree methods follow closely. The words in the trees differ. 

Using the full feature set, the terms “publication type (pt) randomized controlled trial 

(RCT)”(top node) and “pt meta-analysis” are returned. Using the Haynes feature set, the 

terms “pt RCT” (top node) and “mesh heading RCT” are returned. The terms using the 

HITON-PCFW  feature set are in Figure II-5. 

 
 
     Table II-7 compares the CQF filters with the decision trees.  For each constructed 

decision tree we measure the sensitivity and specificity for the given task. These statistics 

provide two related measures for comparing two algorithms. None is sufficient by itself. 

This is because an algorithm may achieve perfect sensitivity by classifying all samples as 

positive or perfect specificity by classifying all samples as negative. Thus, a combined 

measure is required. The measure we used is the proximity of the sensitivity and 

specificity of the algorithm to perfect sensitivity and specificity expressed as  [26]: 
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 2 2(1 ) (1 )dist sens spec= − + −  

Table II-7 – Decision Trees Compared to CQF filters 

Method Distance 

CQF filter – optimized for sensitivity 0.23 

CQF filter – optimized for specificity 0.50 

Full feature set/ decision tree 0.11 

HITON features set/ decision tree 0.11 

Haynes feature set/ decision tree 0.11 
 

 

     Note, that we cannot use AUCs or fix the measures. First, AUC’s cannot be generated 

for the CQF filters because the documents are not ranked. Either the query is satisfied or 

not. Second, fixing sensitivity and specificity as used in [9] cannot be used because of the 

limited thresholds output by the decision trees. Equivalent matches cannot be generated.  

     The decision tree methods (bolded) outperform both optimized CQF filters and have 

the best tradeoff between sensitivity and specificity. 

     In additional experiments, we ran the Flake method on this dataset. We found that the 

classifier performance was poor and selected counter-intuitive terms. Since the Flake 

method is highly heuristic and not designed for this domain, we did not pursue it further. 
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Discussion 

     Every decision tree method produces a tree that is manageable, readable, and can be 

validated by humans. The simplicity of the solutions is not surprising since, for this 

proof-of-concept study, we purposely chose a task that had simple guidelines. 

     Specifically, the decision tree in Figure II-5 has words that are intuitive to the 

treatment class. Publication type (pt_) randomized controlled trial and pt meta analysis 

seem appropriate considering the criteria of the ACP journal [13].  The ACPJ criteria for 

treatment are a random allocation of participants to comparison groups, 80% follow-up of 

those entering the study, and the outcome to be of known or probable clinical importance. 

     The Boolean queries at each leaf appear to be equally sensible. For example, the leaf 

obtained with pt randomized controlled trial with the word treatment in the abstract has a 

24% probability of being a good document. Human experts could develop this Boolean 

query intuitively.  

     The next highest leaf is the article is not a pt randomized controlled trial, but is a pt 

meta analysis, then we are 28% sure that the article is of high quality in the treatment 

class. This query is less intuitive since it says that meta-analysis qualify as high quality 

treatment related articles. 

     In light of these Boolean queries, how easy would it be for an expert to construct 

them? The first query seems straightforward and is an example of a disjunctive query that 

experts excel at constructing. It follows closely the intuitive notion of what content 

bearing words would indicate a high quality treatment related study.  We argue that 

second query is more difficult for an expert to construct. Experts can readily explain, in 
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specific instances, what would make a good document, but when it comes to generating 

an efficient query, especially with “not” qualifiers, the problem of selecting the 

appropriate words becomes very hard [27, 28]. 

     Given the good performance of the decision trees, it makes sense to ask why the 

feature selection process is necessary if running a decision tree using the full feature set 

produces good results? The answer is not apparent in this data set. Initial experiments in 

more complex categories showed that feature selection is necessary. We ran the same 

experimental design in the etiology category area, and preliminary results show that a 

decision tree approach on the full feature set does not produce as good results as the 

feature selection/ decision tree method.  

     Table II-8 motivates the use of the feature set/ decision tree method. In this category, 

the full feature built decision tree is less complicated, but does not perform as well. Using 

the HITON/ decision tree method, the tree is more complicated, but the tree performs 

better than the former method. Feature selection is, indeed, necessary in this more 

complex category.  
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Table II-8 – Etiology Decision Tree Comparison 

Decision Tree Elements HITON/ DT Full/ DT 

Number Features Used 13 85662 

Max Depth 12 3 

Number Leaves 45 5 

Number Nodes 45 5 

AUC performance 0.90 0.80 

 

 

     The methodology in the present paper reduces labor by learning the needed words 

from a corpus rather than asking experts to define words that represent the treatment area. 

This approach has two advantages. It reduces variability in term selection and bypasses 

the need for appropriate experts. While the opposite method of [8] produces results 

comparable to the corpus-based methods (Table II-6), the resulting tree is limited in its 

interpretation. For example, the best Boolean query is “not pt randomized controlled trial 

and mesh heading randomized controlled trial.” This query essentially represents the 

same concept, and, in comparison to the second query, misses the pt meta analysis 

concept. The Boolean query construction of Haynes is sub-optimal for this category as 

seen by the distance measures in Table II-7, and lower AUC in Table II-6. The possibility 

of missing words that describe the content is a weakness in the methodology. Similarly 

human cognitive biases equating co-occurrence with association hinder the construction 

of effective Boolean queries by experts [28]. 



Aphinyanaphongs – Text Categorization ModelsPage 62 of 224 

 
 

62

 

Conclusions 

The contribution of this paper is 4-fold. First we have presented a combined feature 

selection/decision tree method that can produce decision trees that perform as well as the 

best text classifiers and outperform methods currently available for this task. Second, 

these decision trees are understandable, manageable, and amenable to validation by 

humans. Third, these trees and queries are generated automatically from a corpus hence 

the process can be readily repeated many times in similar domains/tasks. Fourth, the 

Boolean queries discovered can be readily applied in existing search engines. 

Our future research will also explore this method in more difficult categories with 

broader criteria for ACP inclusion such as diagnosis, prognosis, and etiology to further 

delineate the limits of the methodology presented here as well as potential improvements. 
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CHAPTER III 

 

III. MODELS AND EVALUATION OF RETRIEVAL PERFORMANCE 

 

     In this section, I explore the machine learning filter models when compared to other 

methods to identify high quality articles in the literature.  Specifically, I compare the 

machine learning models built for the specific gold standard to bibliometric citation 

count, impact factor, and non-specific machine learning models to rank the literature.  In 

subsequent research, I compare the machine learning models to total web page hit count 

for each article, 2005 impact factors, bibliometric citation count, Google Pagerank, and 

Yahoo Webranks for ranking the literature. 

 

A Comparison of Citation Metrics to Machine Learning Filters for the 
Identification of High Quality MEDLINE Documents  

Aphinyanaphongs Y, Statnikov A, Aliferis C. “A Comparison of Citation Metrics to 

Machine Learning Filters for the Identification of High Quality MEDLINE Documents.” 

J American Medical Informatics Association. 2006; 13 (4): 446- 455. 

 

Abstract 

OBJECTIVE: The present study explores the discriminatory performance of existing and 

novel gold-standard-specific machine learning (GSS-ML) focused filter models (i.e., 

models built specifically for a retrieval task and a gold standard against which they are 
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evaluated) and compares their performance to citation count and impact factors, and non-

specific machine learning (NS-ML) models (i.e., models built for a different task and/or 

different gold standard).  

DESIGN: Three gold standard corpora were constructed using the SSOAB bibliography, 

the ACPJ-cited treatment articles, and the ACPJ-cited etiology articles. Citation counts 

and impact factors were obtained for each article. Support vector machine models were 

used to classify the articles using combinations of content, impact factors, and citation 

counts as predictors. 

MEASUREMENTS:  Discriminatory performance was estimated using the area under the 

receiver operating characteristic curve and n-fold cross-validation.  

RESULTS: For all three gold standards and tasks, GSS-ML filters outperformed citation 

count, impact factors, and NS-ML filters. Combinations of content with impact factor or 

citation count produced no or negligible improvements to the GSS machine learning 

filters. 

CONCLUSIONS: These experiments provide evidence that when building information 

retrieval filters focused on a retrieval task and corresponding gold standard, the filter 

models have to be built specifically for this task and gold standard. Under those 

conditions, machine learning filters outperform standard citation metrics. Furthermore, 

citation counts and impact factors add marginal value to discriminatory performance. 

Previous research that claimed better performance of citation metrics than machine 

learning in one of the corpora examined here is attributed to using machine learning 

filters built for a different gold standard and task. 

Index Terms: Information Retrieval, Pubmed, Machine Learning, Artificial Intelligence.  



Aphinyanaphongs – Text Categorization ModelsPage 67 of 224 

 
 

67

Introduction & Background 

     The growth of publication volume in the majority of fields of biomedicine is rapidly 

becoming intractable. Modern approaches to biomedical information retrieval are seeking 

to alleviate the problem by developing specialized filters that find documents that satisfy 

special content or methodological criteria. Such filters have been developed, for example, 

to identify randomized controlled trials or to select documents that focus on prognosis 

and satisfy rigorous criteria of statistical design and analysis, etc. This Focused Filter 

Paradigm is implemented either via automated methods based on machine learning [1] or 

on manual and semi-manual construction of search queries tailored to the criteria of 

interest [2-4].  

     Citation metrics such as citation count and impact factor have a rich history in medical 

bibliometrics as indicators of impact, and indirectly of quality, of scientific papers [5, 6]. 

The recent successful application of advanced citation-based algorithms such as 

PageRank [7] and Kleinberg’s HITS algorithms [8] in WWW search has re-invigorated 

interest in citation metrics for biomedical bibliographies.  

     Citation metrics differ dramatically from the focused filter paradigm in identifying 

documents.  Citation metrics capture a document’s research impact directly, and they 

may also serve as proxies for methodological quality or utility. Focused filters, in 

contrast, can, in principle, capture arbitrarily specialized and complex sets of quality 

criteria used by human editors to create a set of indexed documents. Because every 

focused filter is built for specific criteria (e.g., whether a document describes a 

randomized controlled trial or not), we would expect, a priori, focused filter models to 

outperform, with respect to the same criteria, a generic metric such as citation that is not 
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devised for these criteria. For example, a paper describing a randomized controlled trial 

may have equal number of citations with a case-control study, rendering the two non-

distinguishable by citation number whereas from a pattern recognition or from a 

biomedical librarian’s perspective the citations are perfectly distinguishable. 

     Very recent research by Bernstam et al, used a bibliographic collection of articles 

selected by the Surgical Oncological Society for their “importance” in surgical oncology 

and reported - counter to the above intuitive principle - that citation count ranks 

documents from this surgical oncological bibliography (SSOAB gold standard) higher 

than documents ranked with PageRank or by a machine learning (focused filter) model 

[9].  However, [9] evaluated machine learning models that were not built specifically 

either for the quality criteria of SSOAB or for its content type, but rather for different 

quality and content criteria (evidence based medicine quality criteria captured by the 

ACP Journal Club corpus gold standard [10]). In other words, focused filters with a 

different focus than the gold-standard and content type at hand were compared to citation 

metrics. The research in [9] therefore supports the claim that citation count, which is an 

easy to compute, context-free, and relatively accessible metric, may, in fact, be better for 

finding high-quality documents than sophisticated human or pattern recognition queries 

and models. A natural question to ask is whether the conclusions of [9] can be attributed 

to use of filters with a different focus, or whether, intrinsically, citation metrics are 

superior to machine learning filters (regardless of focus). Answering this question has 

great methodological importance since it will help indicate, in part, what approaches are 

likely to yield better results in developing next-generation biomedical information 

retrieval systems. 
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Hypothesis & Experiments 

     Our main hypothesis is that citation metrics are not superior to focused filter models 

as long as the latter are built for the specific criteria used to evaluate them. We conducted 

a series of experiments to test this hypothesis:  

• Experiment 1: We built content-based, (i.e., title, abstract terms, journal, 

MeSH terms) SSOAB-specific filter models using machine learning and 

compared them to citation-based models and content-based focused filters 

specific to the ACP Journal Club gold standard [10] using the SSOAB as the 

gold standard. 

In addition, we applied feature selection and an SVM-based feature weighting 

method to examine the implicit criteria used by the SSOAB editors in building 

their corpus. 

• Experiment 2: We built machine learning models that, in addition to the 

document content, include citation metrics as predictors. We analyzed 

whether citation metrics add any value to classification of SSOAB documents 

compared to classification based on only content data. 

• Experiment 3: We tested whether the performance of the machine learning 

filters is partially attributable to their predicting citation count. We 

specifically tested how well the machine learning modeling techniques used 

for the filters predict citation counts from the document content. 
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• Experiment 4: To further establish the generalizability of these results with 

other corpora and datasets, we repeated the above three experiment sets with 

two ACP Journal Club corpora in the treatment and etiology categories.   

 

Methods 

     In section A, we specify the definitions used throughout the paper.  In section B, C, 

and D, we explain the methods used to create the SSOAB and ACP Journal Club gold 

standards and obtaining their respective citation counts and impact factors.  In Section E, 

we explain how the articles are represented and classified by the SVM classification 

model described in Section F for experiments 1, 2, and 4. In Section G, we describe the 

regression models used to predict citation count for experiment 3.  In sections H and I, we 

describe the performance metrics and the cross-validation method used for performance 

estimation and model selection.  Finally, in section J, we describe the feature selection 

methods used to understand the implicit criteria of the selected articles in the SSOAB 

gold standard. 

 

Definitions 

 

     We introduce here definitions that are important for following the design, methods, 

results and conclusions of the paper. Throughout the paper, we use filter, models, and 

filter models interchangeably. 

Definition 1. Content-based filter: A filter (human query or machine learning model) that 

is based on the content of the MEDLINE document. In the present study, the content 
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includes the title, abstract, journal title, MeSH terms or combinations of them, 

represented by schemes appropriate to the modeling methodology. 

Definition 2. Context-free citation metric: Any citation metric that is calculated 

independent of clinical or research context of use, or of gold standards of quality, 

importance, utility, cost, etc. Citation count, PageRank, and Impact Factor are context-

free citation metrics. 

Definition 3. Gold-standard-specific (GSS) filter: Any filter designed for, and evaluated 

by, a specific gold standard and/or related context of use. For example, a filter designed 

to identify rigorous treatment articles in internal medicine according to the ACPJ 

treatment methodological quality criteria. 

Definition 4. Non-specific (NS) filter: Any filter designed for a specific gold standard 

and/or related context of use but used for a different context of use and/or evaluated by a 

different gold standard. For example, a filter designed to identify rigorous treatment 

articles in internal medicine according to the ACPJ treatment methodological quality 

criteria but used to find articles included in the SSOAB bibliography. 

 

Gold Standard Construction 

 

1. SSOAB 

     The SSOAB bibliography is a collection of articles selected by the Surgical 

Oncological Society for their “importance” in surgical oncology [11].  The bibliography 

includes 458 articles covering a wide range of topics and study designs in surgical 

oncology. The bibliography does not purport to be evidence-based in allowing only 
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articles with high methodological rigor nor does it have strict inclusion criteria by the 

editors. We emphasize that in light of the lack of stated editorial standards of the SSOAB 

corpus, we are interested in it primarily because this corpus serves as the basis for the 

methodological evaluations and resulting claims in [9] which is central to the main 

hypothesis of the present study. 

     The SSOAB corpus was constructed as follows: we began with the 458 articles as 

positives and augmented the corpus with negative articles. We identified negative 

documents by examining the journal and issue for each published article included in the 

SSOAB bibliography, and taking all other original research articles not selected by the 

SSOAB with abstracts (as indexed by Pubmed) in the same journal and issue to be 

negative instances. This procedure generated a corpus that consists of “pure positive” 

documents (i.e., ones included in the SSOAB) and “pure negative” documents (i.e., 

following the rationale that documents we characterized as negative using this process 

cannot be falsely negative since at least one positive article was identified as positive in 

the same issue, the remaining articles were assumed reviewed and are truly negative and 

not negative by omission) 1. We further excluded 27 of the original 458 positive articles 

that did not have available abstracts from Pubmed. These methods resulted in an SSOAB 

corpus with 431 positives and 7,379 negatives. 

 

2. ACPJ-treatment, ACPJ-etiology 
                                                 
1  In [9], it is proposed that only the documents in the SSOAB are the true positives and all else are 
negatives. This is a non-sequitur in the context of that study’s conclusions since one would only need a 
look-up table to find the good articles, and not citation (or other) metrics as recommended by [9]. In other 
words, since all the documents are assumed labeled by [9], the use of citation or any predictive method for 
identifying articles is unnecessary. An ideal design would be to rank the articles by citation count and 
observe how citation predicts new SSOAB editor inclusion/exclusion decisions. Implicit thus in [9] is that 
the SSOAB positives are a subset of all good articles and that “SSOAB-positive-like” documents will be 
returned when using citation count as filtering criterion. 
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     The ACP Journal Club is a highly-rated meta-publication.  Every month expert 

clinicians review a broad set of journals in internal medicine, and select articles in these 

journals according to specific criteria in the content areas of treatment, diagnosis, 

etiology, prognosis, quality improvement, clinical prediction guide, and economics.  

Selected articles are further subdivided into articles that are summarized and abstracted 

by the ACP because of their “clinical importance”, and those that are only cited because 

they meet all the quality selection criteria but may not pertain to vitally “important 

clinical areas”. For the purposes of the present study, articles were abstracted or cited by 

the ACP are considered positive instances and all other articles in the same journals were 

considered negative. The criteria for inclusion in ACPJ can be found in [10].   

     We used for the present study a modified version of the ACPJ corpus as in [1].  We 

considered all articles cited and abstracted in the treatment and etiology categories from 

49 selected journals covered by the ACPJ between July 1998 and August 1999 as 

positives, and all other articles published in the same 49 journals in the same period but 

not cited or abstracted as negatives. This procedure resulted in 15,786 documents with 

205/15,581 positives/negatives in etiology and 379/15,407 in treatment respectively. Note 

that the method to build the ACPJ corpus differs from the SSOAB method in that the 

ACPJ documents are not limited to a specific issue, but instead to the documents 

published in a given time frame for the specific journal. 

A. Citation Count 

     Citation count is the number of publications citing an article. We downloaded citation 

counts from the Web of Science [12] using a screen scraping interface coded in Python. 

The screen scraper established an http connection to the Web of Science servers and 
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navigated through several GET and POST requests to identify an article and parse out the 

number of cited articles. We obtained citation counts of articles in the SSOAB [11] and 

ACPJ gold standards [1, 10] on August 2005 and August 2002. These collection dates 

allowed approximately 2.5-3 years for citations to accumulate in each respective gold 

standard.  

     A relatively small number of articles did not have a citation count since the 

corresponding journals were not followed by the Web of Science. For the SSOAB gold 

standard, we obtained 7,676 citations with counts out of 7,810 citations in the gold 

standard. For the ACPJ gold standard, we obtained 13,279 citations that had counts out of 

15,786 citations in the gold standard.  

     For the articles without citation counts, we used the following imputation procedure to 

provide an estimate for the missing citation count values. For each article X with a 

missing citation count, we randomly selected an article Y with an observed citation count 

from the same labeled class and assigned the citation count of Y to X. We did not assign 

the mean citation count of each respective class as the citation count for articles with 

missing citations, because the machine learning algorithm would inappropriately use the 

assigned mean citation count as a near-perfect, but biased, predictor for classification of 

all documents with missing values. 

B. Impact Factor 

     An impact factor of a journal is the average number of citations an article published in 

this journal receives in two years [13].  For example, the 2004 impact factor for journal X 

would be the number of citations received by articles published in X within 2002-03, 

divided by the total number of published articles in X within 2002-03. We obtained 
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impact factors from the Web of Science for 2005 and 2001. These years corresponded to 

the time periods covered by the gold standard corpora.  

C. Document Representation and Pre-processing for Machine Learning 

     The conversion of documents to a format suitable for the machine learning algorithms 

followed the procedures in [1]. The articles in the SSOAB and ACPJ selected journals 

were cross-referenced in PubMed, and the title, abstract, journal, and MeSH terms were 

extracted. We represented each document as a set of terms for the learning algorithms 

[14].  We additionally stemmed each term [15], removed “stopword” terms [16], and 

removed any terms occurring in fewer than 5 documents. Very infrequent terms are 

difficult to assess statistically and may affect negatively the generalization of the 

classification models. Selected terms from the title, abstract, and MeSH were further 

encoded as weighted features using a log frequency with redundancy scheme for all 

documents [17]. The SSOAB collection contained, after imputation of citation counts, 

7,810 articles with abstracts and citation counts represented by 16,441 features including 

citation count. The ACPJ etiology and treatment collection contained, after imputation of 

citation counts, 15,786 articles with abstracts and citation counts represented by 28,229 

features including citation count (see Gold Standard Construction section for additional 

information).  

D. Classification Methods 

     In our experiments, we employed Support Vector Machine (SVM) classification 

algorithms. The SVM’s calculate a maximal margin hyperplane separating two or more 

classes of the data. To accomplish this, the data are mapped to a higher dimensional 

space by means of a kernel function, where a separating hyperplane is found by solving a 
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constrained quadratic optimization problem [18]. We used SVMs, because for several 

published text categorization tasks, SVMs have had superior classification performance 

compared to other methods [1, 19], and this motivated our use of them.  We used an 

SVM classifier implemented in libSVM v2.8 [20] with a polynomial kernel. We 

optimized the SVM penalty parameter C over the range {0.1, 1, 10, 100} and degree d of 

the polynomial kernel over the range {1, 2, 3, 4}. Since theoretical literature on domain 

characteristics as it relates to optimal parameter selection is not yet developed , the ranges 

of costs and degrees for optimization were chosen based on previous empirical studies [1, 

19, 21]. Different combinations of costs and degrees were exhaustively evaluated by 

cross-validation, and the best performing model was selected for the final application of 

the SVM classifier (see section on Performance Estimation and Model Selection).  

E. Regression Methods 

     In our experiments for the citation prediction task, we used epsilon - Support Vector 

Regression (e-SVR) [22]. This regression technique uses an epsilon-insensitive loss 

function (as opposed to a square loss function in linear regression) to calculate an optimal 

surface that approximates the continuous response variable. Similar to SVM for 

classification, the data is mapped to a higher dimensional feature space by means of a 

kernel function, and the optimal approximating surface is found by solving a constrained 

quadratic optimization problem. We used e-SVR with a polynomial kernel implemented 

in libSVM v.2.8 [20]. We optimized the e-SVR penalty parameter C over {50, 100}, the 

kernel degree d over {1, 2, 3}, and used the software default epsilon of 0.1.  

F. Performance Metrics   
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     Among the many classifier performance metrics such as precision, recall, average 11-

point precision, F1 score, breakeven point, accuracy, error, and area under ROC curve 

(AUC) that have been used for two-class text categorization (for example, see [21, 23-

25]), we decided to use AUC [26, 27] for the following two reasons. First, the AUC 

metric does not correspond to a single threshold on the classifier predictions which is the 

case for precision, recall, accuracy, F1 score, and other common metrics (but not for 

average 11-point precision). The AUC is a comprehensive metric and is computed for 

values of sensitivity and specificity over all possible thresholds observed in the data. 

Second, unlike all other performance metrics mentioned above, AUC is insensitive to the 

class distribution [26]. Thus, the interpretation of AUC is fairly straightforward for this 

task2. Relying on performance measures that are sensitive to class distributions may be a 

misleading measure of discriminatory performance. For example, we would not use 

accuracy (defined as the proportion of correct classifications over all classifications) as a 

performance measure, because excellent accuracy can be achieved in extremely skewed 

distributions by classifying all documents as belonging to the most prevalent class [28]. 

     In order to generate an ROC curve for classification experiments, we used outputs of 

the SVM model corresponding to distances from the testing examples to the maximum 

margin hyperplane that separates positive and negative training examples. The SVM 

outputs were ranked, and an ROC curve was generated from this ranked list of examples. 

The ROC curve for citation count was similarly determined by ranking the articles by 

citation count. The area under ROC curve was computed as in [27]. 

                                                 
2 AUC changes between 0 and 1 with 1 being perfect classification, 0.5 being random classification 
performance, and 0 being inverse classification with all true positives classified as negatives and all true 
negatives classified as positives [26]. 
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     For the experiments with regression algorithms, we used Pearson’s and Spearman’s 

correlation coefficients [29] to measure how well the predicted citation count matches the 

true citation count. We also used R2 (also known as “coefficient of determination”) which 

indicated the proportion of variance in the true citation count accounted for by the 

regression model [29]. In the statistical literature, correlation coefficients greater than 0.8 

(i.e., R2> 0.64) are generally considered as indicative of strong correlation, whereas a 

correlation smaller than 0.5 (i.e., R2<0.25) is generally considered as weak.  

G. Performance Estimation and Model Selection 

     We used 5-fold cross-validation to estimate the performance of the learning 

algorithms [30]. This procedure first divided the data randomly into 5 non-overlapping 

subsets of documents where the proportion of positive and negative documents in the full 

dataset is preserved for each subset. Next, the following was repeated 5 times: we used 

one subset of documents for testing (the “original testing set”) and the remaining four 

subsets for training (the “original training set”) of the classifier. The average performance 

over 5 original testing sets is reported.  

     In order to optimize parameters of the SVM or epsilon-SVR algorithms, we used 

another “nested” loop of cross-validation by further splitting each of the 5 original 

training sets into smaller training sets and validation sets. For each combination of learner 

parameters, we obtained cross-validation performance and selected the best performing 

parameters inside this inner loop of cross-validation. We next built a model with the best 

parameters on the original training set and applied this model to the original testing set. 

Details about the “nested cross-validation” procedure can be found in [31, 32]. Notice 

that the final performance estimate obtained by this procedure will be unbiased because 



Aphinyanaphongs – Text Categorization ModelsPage 79 of 224 

 
 

79

each original testing set is used only once to estimate performance of a single model that 

was build by using training data exclusively. 

H. Feature selection and feature weighting for examining implicit criteria used 
in gold standard corpus. 

     The SSOAB corpus was not built using a set of explicit criteria like the ACPJ corpus 

[10]. To gain insight into the implicit criteria used for the SSOAB, we performed feature 

selection and ranked the selected features according to their contribution weight to an 

SVM classification model built with only these features for predicting class membership 

(i.e., SSOAB inclusion or not). 

     In general, there exist many feature selection algorithms applicable to text 

categorization. We focus here on Markov Blanket induction ones such as HITON [33] 

because under the broad distributional assumption of Faithfulness, they find a unique and 

smallest set of predictors that gives the largest predictive performance for “universal 

approximator” learners such as SVMs [34]. To speed up the feature selection operation, 

we used the HITON_PC algorithm which approximates the Markov blanket.  

     Specifically, while the Markov Blanket (the provably minimal set of optimal 

predictors) consists of the set of parents, children, and spouse nodes of the response 

variable in the Bayesian network that is a perfect map of the dependencies and 

independencies in the joint probability distribution of predictor terms and the response 

variable (target class), HITON_PC is guaranteed to return the parents and children of the 

target variable and has been shown in prior experiments to approximate well the Markov 

Blanket in text categorization tasks while being more computationally efficient than 

finding the latter [35]. We used an implementation of HITON_PC from the 

Causal_Explorer toolkit [36] with G2 statistical test and a threshold p-value of 0.10. 
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HITON_PC was executed on binary features indicating presence or absence of a term in 

the document 

     The entire procedure for understanding the importance of terms for inclusion in the 

SSOAB  has the following three steps: 

I. Features were selected by HITON_PC in the context of cross-validation design 

for each original training set. Using the data corresponding only to selected 

features, the SVM classifier was optimized and trained on the original training 

set and tested on the original testing set (see Performance Estimation and Model 

Selection section). This allowed us to access classification performance of 

selected features in an unbiased fashion since the testing data is neither used for 

classifier learning nor for feature selection.  

II. If the performance of HITON_PC features matched one of the entire feature set 

(i.e. without feature selection, which is best case), then we (a) re-selected 

features using all examples in the corpus and (b) optimized and trained the SVM 

classifier on the selected features using all examples in the dataset. Notice that 

we can use all data in this analysis since the analysis is explanatory and not 

predictive. 

III. Finally, we computed contribution Δi of each selected feature i on step II to the 

SVM model’s objective function as described in [37]. We report the normalized 

contribution of each feature which is equal to Δi / ∑Δi. 
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Results  

Experiment 1: The results for experiment 1 are shown in Table III-1. GSS focused 

filter models built using machine learning for the SSOAB gold standard out-performed 

impact factor, citation counts, and NS models with a different focus in predicting SSOAB 

article inclusion. The GSS focused filter models built specifically for content have the 

highest AUC of 0.893. Prediction by impact factor in both 2001 and 2005 were nearly 

random at 0.549 and 0.558 AUC, respectively. Citation count by itself was moderately 

predictive with an AUC of 0.791. Predictions using NS models built for the ACP Journal 

Club treatment category were nearly random at 0.548 AUC.  

 

 

Table III-1 – Comparison of gold-standard-specific, content-based machine learning 

filters with citation metrics and models built for ACPJ criteria in the SSOAB quality 

classification task 
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Gold standard: SSOAB Area under the ROC curve p – value*

SSOAB-specific  (GSS) filters 0.893 (weighted)  N/A 

Citation Count 0.791 (ranked) <0.0001 

ACPJ Treatment-specific (NS) filters 0.548 (weighted)  <0.0001 

Impact Factor (2001) 0.549 (ranked)  <0.0001 

Impact Factor (2005) 0.558 (ranked)  <0.0001 

weighted – content terms weighted by log frequency with redundancy scheme [17]. 

ranked – citations are ranked by counts (or impact factor) and a composite ROC 

generated. 

* - p-values for each feature set are calculated in comparison to the content only focused 

filters using the Delong paired comparison test [38]. 

 

 

The AUC produced by the content method alone were significantly different than the 

AUC produced by the citation metrics (using the Delong AUC paired comparison 

statistical test at the 0.05 level  [38]). Results indicate that using machine learning models 

built for a specific gold standard is essential for discriminative performance in this task. 

The SSOAB specific models outperformed the ACPJ specific models by 0.345 when 

applied to the SSOAB corpus. 

 

Additional Analyses: Feature Selection and term importance  
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     We performed feature selection and feature weighting experiments to gain insight into 

the SSOAB corpus construction. The results of feature selection and weighting are 

presented in Table III-2. 
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Table III-2 – Features selected by the HITON_PC algorithm from the entire SSOAB 

corpus (i.e. using all documents).  Some words are stemmed [15]. 

Feature Rank Features Normalized 

contribution 
1 adjuv 0.222
2 Pancreatic Neoplasms[MeSH] 0.18
3 node 0.134
4 cutan 0.115
5 randomis[Title] 0.078
6 Minnesota[MeSH] 0.043
7 pancreaticoduodenectomi 0.034
8 discov[Title] 0.03
9 N Engl J Med[Journal] 0.029
10 resect 0.026
11 referr 0.02
12 cancer 0.017
13 melanoma[Title] 0.016
14 soft[Title] 0.016
15 carcinoma 0.014
16 surgery[MeSH] 0.01
17 North America[MeSH] 0.005
18 Stomach:pathology[MeSH] 0.003
19 Multiple Endocrine Neoplasia:genetics[MeSH] 0.003
20 Hospitals, Veterans[MeSH] 0.002
21 Animals[MeSH] 0.001
22 Metabolism[MeSH] 0.001

 Performance of SVM with the above 23 features 0.834

 Performance of SVM with all features (16440 features) 0.893
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     These results are interesting since the SSOAB editors are not operating with explicit 

selection criteria. The selected words are indicative of the unstated criteria and may 

reveal possible biases (positive and negative ones) in article selection by the SSOAB. The 

top 5 words suggest that the SSOAB editors were selecting articles that are related to 

surgical oncology, are treatment related (through the inclusion of “randomized”), and are 

biased toward pancreatic neoplasms. Inspection of words ranked 6-16 further support the 

selection of surgical oncological articles with a bias to articles discussing 

pancreaticoduodenal cancer, articles with studies taking place in Minnesota, and articles 

published in the New England Journal of Medicine, while the 6 lowest weighted words 

account for less than 0.015 of the classifier’s behavior and their interpretation is not as 

important. 

 We extended the analysis by inspecting “stable” features by taking the 

intersection of the selected words from each cross-validation training set. This procedure 

resulted in 8 most stable features (“resect”, “node”, “surgery[MeSH]”, “adjuv”, “cancer”, 

“Pancreatic Neoplasms[MeSH]”, “randomis[Title]”, “N Engl J Med[Journal]”). These 

words further support our observations of article selection by the SSOAB with biases 

toward pancreatic neoplasms and publications by the New England Journal of Medicine. 

 This feature analysis is not exhaustive or conclusive, and the results are included 

to illustrate that techniques are available to analyze the corpora to detect terms significant 

for document selection in each corpus. For a previously published analysis of term 

importance for ACPJ, please see [35]. 

Experiment 2: The results of experiment 2 are shown in Table III-3. Machine 

learning GSS focused filters that include citation metrics as predictors are minimally 
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better than filters that do not.  The addition of citation information to the content models 

increased the AUC by 0.022 over using content alone. The resulting AUCs were 

statistically different when comparing content to content + citation count using the 

Delong method at the 0.05 level [38].  
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Table III-3 – Comparison of gold-standard-specific, content-based machine learning 

filters with hybrid content + citation metric models 

Gold standard: SSOAB Area under the Curve p – value* 

SSOAB-specific model (from 

experiment 1) 

0.893 (weighted) N/A 

SSOAB-specific model (GSS Content 

+ Citation Count-based) 

0.915 (weighted + normalized)  <0.0001 

SSOAB-specific model (GSS Content 

+  Impact Factor (2005) – based) 

0.899 (weighted + normalized) 0.026 

SSOAB-specific model (GSS Content 

+ Citation Count + Impact Factor 

(2005) – based) 

0.914 (weighted + normalized) <0.0001 

weighted – content terms weighted by log frequency with redundancy scheme [17]. 

normalized – citation counts and impact factors are normalized between 0 and 1 and 

added as a feature. 

* - p-values for each feature set are calculated in comparison to the content only focused 

filters using the Delong paired comparison test [38]. 
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Additionally, including impact factor with citation count and content showed no 

improvement in area under the curve when compared to using content with citation count 

(since impact factor is a composite measure of of citation count) . Content alone 

compared to content with impact factor showed a statistically significant, but negligible 

improvement in AUC. 

Experiment 3: Table III-4 shows the results for experiment 3. Correlation 

coefficients of 0.46 (R2 of 0.212) for the SSOAB citation prediction task showed limited 

ability for content to predict citation count. Similar results were provided for the ACP 

Journal Club gold standard in both etiology and treatment categories: the predictions had 

small correlations of 0.60 and 0.61 for Pearson (R2 of 0.360 and 0.372 respectively) and 

0.49 for Spearmans correlation coefficients.  The inability of SVM models to predict well 

citation counts means that citation count contains information not captured by the 

machine learning model (by the results of experiment 3); however, the information 

captured by citation counts do not add to the classification that is based on content alone 

(as evidenced by the results of experiment 2). 
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Table III-4 – Results of Support Vector Regression prediction of citation counts from 

content compared to the true citation counts in all corpora.  

Corpus Pearson Corr. Coef. of 

predictions with true 

citation count 

Spearman Corr Coef. of 

predictions with true 

citation count 

Coefficient of 

Determination (R2) 

SSOAB  0.46 0.46 0.212 

ACPJ Etiology 0.60 0.49 0.360 

ACPJ Treatment 0.61 0.49 0.372 

 

 

Experiment 4: Table III-5 and Table III-6 provide results analogous to experiments 1 

and 2 but for the ACP Journal club categories in etiology and treatment. In etiology, with 

results shown in Table III-5, the GSS focused machine learning models outperformed the 

citation methods and the NS models built using the SSOAB corpus. Also, the inclusion of 

citation metrics with content did not add value relative to a strictly content-based model. 

The content based model achieved AUC of 0.932 outperforming citation count, impact 

factors, and the SSOAB-based NS model that have AUCs of 0.691, 0.670, 0.673, and 

0.772 respectively (see Table III-5). The addition of citation count or impact factor with 

content models did not improve discriminatory performance noticeably.  

Similar results are shown for the treatment task in Table III-6. The GSS content based 

models outperformed any individual citation method and the NS models built using the 

SSOAB corpus. The models including citation metrics with content did not add value. 

The GSS content based models gave an AUC of 0.966, and the inclusion of citation 
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metrics did not add value to the classification. Citation is moderately predictive at AUC 

of 0.762 and impact factors for 2001 and 2005 are even less so with AUCs of 0.601 and 

0.594 respectively. The SSOAB specific models applied to the ACPJ treatment category 

gave an AUC of 0.770.  In both ACPJ categories, inclusion of impact factors as a 

predictor did not improve classification performance. The results of these experiments 

showed that the GSS focused filter’s advantage over citation metrics and NS models built 

for other gold standards generalizes beyond the SSOAB corpus.  

 

Study Limitations  

     The current work compares citation metrics with machine learning ones on the same 

gold standard (SSOAB) just as [9] does. Despite its limitations of not using explicit 

inclusion criteria and of not being updated very regularly, we included SSOAB primarily 

because it allows us to compare to the results and conclusions of [9], a comparison 

central to the main hypothesis of the  
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Table III-5 – Comparison of ACPJ_etiology-specific content-based machine learning 

filters with citation metrics in the ACPJ-Treatment quality classification task. 

Gold standard: ACPJ Etiology  Area under the Curve p – value* 

ACPJ_etiology-specific filter (GSS, 

Content-based) 

0.932 (weighted) N/A 

Citation Count 0.691 (ranked) <0.0001 

Impact Factor (2001)  0.670 (ranked) <0.0001 

Impact Factor (2005)  0.673 (ranked) <0.0001 

ACPJ_etiology -specific filter (GSS 

Content + Citation Count –based) 

0.935 (weighted + normalized) 0.05 

ACPJ_etiology -specific filter (GSS 

Content + Impact Factor (2005) –

based) 

0.924 (weighted + normalized) <0.0001 

ACPJ_etiology -specific filter (GSS 

Content + Citation Count + Impact 

Factor (2005) –based)   

0.928 (weighted + normalized) 0.04 

SSOAB-specific Models (NS, 

Content-based Only) 

0.772 (weighted) <0.0001 

 weighted – content terms weighted by log frequency with redundancy scheme [17]. 

normalized – citation counts and impact factors are normalized between 0 and 1 and 

added as a feature. 

ranked – citations are ranked by counts (or impact factor) and a composite ROC 

generated. 

* - p-values for each feature set are calculated in comparison to the content only focused 

filters using the Delong paired comparison test [38]. 
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Table III-6 - Comparison of ACPJ_treatment-specific, content based machine learning 

filters with citation metrics in the ACPJ-Treatment quality classification task  

Gold standard: ACPJ Treatment  Area under the Curve p – value* 

ACPJ_ treatment-specific filter 

(GSS, Content-based) 

0.966 (weighted)  N/A 

Citation Count 0.762 (ranked) <0.0001 

Impact Factor (2001)  0.601 (ranked) <0.0001 

Impact Factor (2005)  0.594 (ranked) <0.0001 

ACPJ_ treatment-specific filter (GSS 

Content + Citation Count –based) 

0.966 (weighted + normalized) 0.15 

ACPJ_ treatment-specific filter (GSS 

Content + Impact Factor (2005) –

based) 

0.962 (weighted + normalized) <0.0001 

ACPJ_ treatment-specific filter (GSS 

Content + Citation Count + Impact 

Factor (2005) –based)   

0.963 (weighted + normalized) <0.0001 

SSOAB-specific Filters (NS, Content-

based Only) 

0.770 (weighted) <0.0001 

 

weighted – content terms weighted by log frequency with redundancy scheme [17]. 

normalized – citation counts and impact factors are normalized between 0 and 1 and 

added as a feature. 

ranked – citations are ranked by counts (or impact factor) and a composite ROC 

generated. 

* - p-values for each feature set are calculated in comparison to the content only focused 

filters using the Delong paired comparison test [38]. 
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present paper.  While we use the gold standard and metrics that [9] employ, our research 

design also differs in the following specific ways: 

- First, in the interest of generality we test our hypotheses not only on one corpus (i.e., 

SSOAB) but also on the ACPJ-treatment and ACPJ-etiology  gold standards. Hence our 

results have a greater degree of generality.  

- Second, [9] apply the metrics and filters on all of Medline; whereas, we train models on 

a part of Medline and test the models on an independent subset. We believe that this 

difference corresponds to what we perceive as a non-trivial flaw in [9]: by testing 

performance on all of Medline, [9] does not allow for generalizing the performance of 

their metrics and models. In effect their design amounts to that, among all Medline 

documents, only a few hundred ones included in SSOAB are of “importance” in surgery. 

Further, solving this problem exactly is rather trivial: just maintain a lookup table with all 

SSOAB positive articles. However with the design of the present study we address the 

issue of generalization beyond the studied SSOAB documents: can we show that filtering 

mechanisms or criteria/metrics can identify “SSOAB positive-like” documents in the 

future? (rather than simply regurgitating the known SSOAB positive ones?). The current 

design that uses separate training and testing document collections allows us to answer 

this question.  

- Third, [9] uses HITS and precision-recall curves for a limited set of queries. We are 

using area under the ROC curve (AUC). We preferred AUC because both HITS curves 

and precision-recall curves are affected by the prevalence of positive documents in the 

corpus especially as this prevalence is sensitive to the choice of query and a priori is 

expected to vary considerably from query to query. [9] uses 40 queries that are by no 
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means standard in the field and are not necessarily capturing properties of real-life 

queries. They normalize and average their results over the 40 queries. In contrast, in the 

present study, we compute AUC performance not for a specific query set but for all the 

corpus (which is to effectively be interpreted as an average over all possible queries). Our 

findings indicate that the findings by [9] hold in this more general design as well so they 

are not necessarily an artifact of their experimental design. We have conducted additional 

experiments that provide HITS and precision-recall results in our cross-validation design. 

As expected, the results are consistent with our ROC results, and we include them in the 

appendix. The graphs in the appendix should only be interpreted in the context of the 

experiments in this paper, and not be compared to the hits and precision-recall curves in 

[9] due to differences in priors for the testing sets. In our experiments, we believe the 

query-independent experiments conducted in cross-validated fashion with AUC as a 

performance metric are more general than averages over sets of example queries.  

     A limitation of our study is that we do not compare the machine learning models to 

PageRank. Computation of PageRank for MEDLINE requires access to the complete 

proprietary citation database of ISI which is not available to the public or to the research 

community (with the exception of [9] to the best of our knowledge). The problem is 

alleviated to a large extent since [9] established that citation count is better than 

PageRank so by transitivity our experiments suggest that GSS machine learning is 

superior to PageRank as well. However, the present study did not produce the data that 

would directly support a similar argument for the ACPJ gold standards, and when the full 

citation data becomes available to the research community it will be interesting to 
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produce comparisons of PageRank to GSS models built for a variety of tasks and gold 

standards. 

     The study in the present paper is furthermore limited in the use of three tasks and 

corresponding gold standards out of many possible ones. Several more studies with other 

tasks, specialties of medicine, time horizons, and gold standard corpora/criteria will be 

needed before the relative value of focused filters versus citation metrics is entirely 

understood. 

 

Discussion and Conclusions 

     An article may cite another article for a variety of reasons: authors may cite articles to 

acknowledge prior work, identify methodology, provide background reading, correct or 

criticize, substantiate claims, alert readers to forthcoming work, authenticate data, 

identify original publication of a term or concept, disclaim work of others, or dispute 

priority claims [39]. In addition, the citing paper may be a comprehensive review that 

attempts to cite most recent papers on the topic, the article reviewers may have 

recommended that the citation be included, the cited article may be a highly controversial 

or fashionable one, etc. An article citation thus may or may not endorse a cited article. 

The lack of an unambiguous connection between citation, context of use, manner of use, 

and/or endorsement prevents citation count from being a single effective measure of 

inclusion in an “importance” bibliography. More generally stated, the conceivable 

reasons for citation are so numerous that it is unrealistic to believe that citation conveys 

just one semantic interpretation. Instead citation metrics are a superimposition of a vast 

array of semantically distinct reasons to acknowledge an existing article. It follows that 
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any specific set of criteria cannot be captured by a few general citation metrics and only 

focused filtering mechanisms, if attainable, would be able to identify articles satisfying 

the specific criteria in question.   

     Another limitation of citation metrics is that they assume that the frequency of 

citations is uniform across all topics. This assumption is clearly not true for all topics in 

biomedicine. For example, the total number of citations using the query “breast cancer” 

in Pubmed returns 141,704 citations whereas the query “osteosarcomas” returns 15,904 

articles (executed on 11/15/2005) [40].  Thus even the highest ranking article in 

osteosarcomas by citation count may not rank comparably to articles at lower ranks 

within breast cancer.   

     We also note that citation metrics are not only limited by their lack of focus, but, in 

general, they are not available until several years have passed, which reduces their 

usefulness for assessing cutting-edge articles. Since predicting future citation count is an 

open and unsolved problem in pattern recognition so far, it follows that citation metrics 

are not only too non-specific but also unavailable when needed the most (i.e., for articles 

published in recent years). 

     How feasible and practical is it to built GSS focused filters for identifying high quality 

articles? Several examples of recent research has provided evidence that construction of 

focused filters is feasible and practical using both manual and machine learning 

approaches for non-trivial sets of criteria [1, 2, 4, 41]. 

     We observe that the SSOAB machine learning models’ discriminatory performance as 

measured by the AUC indicates, in addition to theoretical interest, promising potential for 

practical application. As an indicative example, consider a query (in the domain -surgical 
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oncology, internal medicine, etc- for which the model is trained), that returns 1,000 

MEDLINE documents, a number which by any standard is very difficult to check 

manually. A reasonable prior for high-quality articles as informed by the literature on 

quality corpora is about 5% [10], which means that there are 50 important documents in 

the 1000 relevant ones3. By applying the SSOAB machine learning model threshold that 

corresponds to the ROC point with sensitivity and specificity of 85% and 85% (AUC of 

0.89 from experiment 1) correspondingly, a system built around these models would 

select 186 documents of which 43 are true positive and 143 false positive. This filtered 

document set is more manageable by manual inspection. Additionally, further 

improvements of AUC would improve identification of high quality articles. For 

example, with the same scenario, at 90% sensitivity and 93% specificity (AUC of 0.97 

for ACPJ treatment category in experiment 4), 112 articles would be returned with 45 

true positives (out of 50) and 67 false positives. In relevance queries that return fewer 

documents to begin with (e.g., 200 documents) a user might select a point on the ACPJ 

treatment ROC curve that has 99% sensitivity and 70% specificity which would return all 

10 true positives and 57 false positives.   

     In conclusion, whereas the appeal of “one metric fits all needs” is indeed powerful, 

and citation counts are fairly easy to obtain, the experiments we present together with the 

inherent theoretical limitations of citation metrics we discussed demonstrate that context-

free citation approaches are inferior to focused filters built for specific tasks and gold 

standards. Furthermore, including citation metrics as predictors does not give extra 

advantages to the focused filters. We propose that a divide-and-conquer approach that 

                                                 
3 Caveat in the above example scenario: the proportion of positive documents may vary between query 
results. The overall prior of positives mentioned corresponds to average performance over all queries. 
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uses GSS focused filters for well-defined queries, contexts of use, and quality criteria as 

more likely to be successful than context-free citation metrics.  
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Appendix : HITS Curves and Precision – Recall Curves from Cross-Validated 
Design. 

     The HITS and precision-recall curves were generated using the cross-validated design.  

Both curves were generated independently within each fold of the cross-validated design, 

and an average composite curve for both metrics was generated as an average over the 

curves from each fold (Figure III-1 and Figure III-2). 

     These curves should not be compared to the HITS and precision-recall curves 

generated in [9] due to differences in the experimental datasets (see Study Limitations).  
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Figure III-1 – Average HITS curves used on SSOAB corpus. The GSS SSOAB model 

returns the most documents in the first 150 articles. Citation count and the NSS ACPJ 

Txmt Model applied to the SSOAB corpus return fewer documents in the top 150 returns.  

The SSOAB corpus was composed of 431 positives and 7,379 negatives. Each curve was 

an average across all folds. 
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Figure III-2 – Average precision-recall curves used on SSOAB corpus. The GSS SSOAB 

model returns the best performing precision-recall curve. Citation count and the NSS 

ACPJ Txmt Model have curves below, thus performing lower than, the GSS SSOAB 

model.  The SSOAB corpus was composed of 431 positives and 7,379 negatives. Each 

curve was an average across all folds. 
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A Comparison of Web Hyperlinks to Machine Learning Filters for the 
Identification of High Quality MEDLINE Documents  

 

Abstract 

     Mining web hyperlinks between web pages has formed the basis for the commercial 

success of search engines such as Google and Yahoo. We hypothesized that mining web 

hyperlinks and web pages on the internet may identify high quality MEDLINE articles. 

Our assumption for hyperlink analysis to be successful in identifying quality MEDLINE 

articles is that medical sources on the web are more likely to link and cite higher quality 

medical literature. We built a gold standard database based on article selections by the 

ACP Journal Club in the treatment, etiology, diagnosis, and prognosis content categories. 

We ranked these articles using Google PageRank, Yahoo WebRanks, 2005 impact 

factors, total web page hit count for each article, bibliometric citation count, and machine 

learning filter models. We generated receiver operating curves and calculated area under 

the curves as a measure of discriminatory power for identifying high quality articles 

using each method. The machine learning filter models had superior performance of 0.95 

average areas under the curve across the 4 categories. Bibliometric citation count, total 

web page hit count, impact factor, Google, and Yahoo had average area under the curves 

of 0.68, 0.60, 0.58, 0.53, and 0.49 respectively. Bibliometric citation measures and web-

based ranking measures are not effective in identifying high quality articles in the 

medical literature. Machine learning filter models have superior performance in 

identifying high quality articles from an ACP Journal Club gold standard in 4 content 

categories. 
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Introduction 

     An article or journal receiving a high number of citations is an indicator of impact and 

possibly quality. Since the 1960s, the calculation of an “impact factor” of a journal has 

been based on counting the number of citations to a journal in a fixed time period as a 

measure of the impact of the journal.  Impact factors have proven to be valuable, 

successful, and often controversial in identifying impact for journals and research in the 

literature [1-3]. 

     The web analog to bibliometric citation count is hyperlinks. Search engines such as 

Google and Yahoo use ranking algorithms which rely heavily on the hyperlinked 

structure of the web. The basic premise of these linked based algorithms is that the 

number and quality of hyperlinks to a web site determine its importance (reported as a 

score).  The number of hyperlinks is defined as the raw number of hyperlinks to the page.  

Quality is defined as the importance of the web page with the hyperlink pointing to the 

page. Thus, a web page gains “importance” in two ways: first, by having many links 

pointing to the web site, and second, by having high quality hyperlinks from web sites 

such as Yahoo pointing to the web page [4]. 

     An interesting hypothetical question is whether the success of these link based 

measures would carry over to identifying MEDLINE articles using web based hyperlinks. 

Our assumption for hyperlink analysis to be successful in identifying quality MEDLINE 

articles is that medical sources on the web are more likely to link and cite higher quality 

medical literature to substantiate claims or otherwise. With the ease of creating a 
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hyperlink, and the volume of hyperlinks available, it seems reasonable to assume that 

hyperlink measures could identify quality articles in the primary literature. 

     Answering this question has practical significance.  First, if high quality MEDLINE 

articles are cited more often and with higher rank with Google PageRank or Yahoo 

Webrank on the web than low quality articles, general search engines may be a viable 

means for ranking medical literature. Second, if identifying high quality articles is 

marginal, we provide evidence that health professionals should take caution in using 

general search engines to identify evidence from the medical literature. 

    In this study, we explored the usefulness of web hyperlinks in identifying high quality 

articles in MEDLINE. We compared rankings by total number of pages citing a 

reference, rankings by Yahoo, rankings by Google, rankings by bibliometric citation 

count, and rankings by machine learning filters for the same task. We hypothesize that 

web citation metrics have marginal performance in identifying high quality MEDLINE 

articles and do not perform as well as machine learning filter models for the same task 

because of the unfocused nature of hyperlinks and web pages on the internet. 
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Background 

      In [5], Bernstam and colleagues compared bibliometric citation count to machine 

learning filters built for a different task to identify articles selected for a surgical 

oncology society bibliography. Bernstam and colleagues concluded that bibliometric 

citation count had superior discriminatory performance over impact factors, the Pagerank 

algorithm (as applied to the bibliometric citation graph), Pubmed, sensitive clinical query 

filters of Pubmed, specific clinical query filters of Pubmed, and EBMSearch (a search 

engine implementing machine learning filters built for a different task). In subsequent 

work, we explored the use of machine learning filters built specifically for the surgical 

oncology task [6]. We showed that machine learning filters built specifically for the task 

had superior discriminatory performance over bibliometric citation count, the 

EBMSearch filters built for a different, treatment specific task, impact factors in 2001, 

and impact factors in 2005. 

    As far as we know, there is no research that uses web citation metrics to identify high 

quality MEDLINE articles. Instead, researchers focused on high quality web pages. They 

used web citation metrics, specifically scaled PageRank scores between 0 and 10 as 

reported by the Google browser toolbar [7], to identify high quality web pages4. 

     Fricke and Fallis [8] evaluated PageRank score as one indicator of quality for 116 web 

sites about carpal tunnel syndrome. They made a strong statement that web sites with a 

Google PageRank score greater than 5 had good quality of information about carpal 

tunnel syndrome. Of the 57 inaccurate web sites, 29 had PageRank scores greater than 5 

while of the 59 accurate web sites, 41 had PageRank scores greater than 5. They 

                                                 
4 Versions of the Google toolbar as if this publication do not display Pagerank scores for web pages. 
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concluded that, as a univariate measure, PageRank scores select more accurate websites 

at this threshold. 

     However, the conclusion is problematic. First, the threshold is too low.  Users 

typically do not look beyond the top 10 or 20 results of a search engine [9].  A practical 

question is that in the range of web sites selected by users, is PageRank score an indicator 

of quality.  Second, the use of PageRank score is not inherently useful for discrimination 

or helping users to avoid inaccurate or poor information. The results imply that even with 

the 70 web sites with high PageRank, 29 of them will have inaccurate information. 

Unfortunately, Fallis and Fricke did not calculate a correlation between PageRank score 

and quality.   

    Griffiths [10] evaluated PageRank scores with evidence based quality scores for 

depression websites.  The authors obtained Google PageRank scores for 24 depression 

websites from the DMOZ Open Directory Project website. Two health professional raters 

assigned an evidence based quality score to each site. PageRank scores correlated weakly 

(r = 0.61, P=0.002) with the evidence based quality scores. Despite this, the authors 

concluded that as a screening tool, PageRank may be an appropriate technique to exclude 

low quality sites. 

     Tang, Craswell, and Hawking [11] compared Google results with a domain-specific 

search engine for depression.  They found that of a 101 selected queries, Google returned 

more relevant results, but at the expense of quality.  Of the 50 treatment related queries, 

Google returned 70 pages of which 19 strongly disagreed with the scientific evidence.  

These authors concluded that a tension exists between relevance and quality, and 
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indexing more pages may give a greater number of results, but selective inclusion can 

give better quality.  

     In summary, Google PageRank seems a valid, but rather weak, baseline to compare 

against any pattern recognition based, automated method to identify high quality 

websites.  Yahoo Webrank scores have not been studied in the context of high quality 

web pages.  

 

Methods 

 

A. Google PageRank and Yahoo WebRank 

     Google PageRank and Yahoo WebRank algorithms are proprietary. Google relies on 

over a hundred different factors in ranking web pages [12]. In general, both rely on 

combinations of anchor text, meta-tags, traffic patterns, and hyperlinks for ranking web 

pages.  For a more thorough description of the core Google PageRank algorithm, we refer 

the reader to [4]. We could not find any resources on the Yahoo Webranks algorithm 

describing the ranking algorithm. 

     The raw scores from Google or Yahoo are not available. Google provides a proxy to 

the score output from the PageRank algorithm through the Google browser toolbar [7]. 

Though the exact scaling is not known, search engine optimizations analysts have 

suggested that the toolbar logarithmically scales the output of the PageRank algorithm to 

integer values between 0 and 10. In early 2005, Yahoo also provided a 0-10 integer 

WebRank score through the Yahoo browser toolbar [13]. Since then, the score has been 
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removed from the toolbar, and the WebRank scores are not available either through the 

toolbar or the application programming interface [14]. 

     Since the raw scores are not available, we used paired comparisons and a mergesort 

algorithm [15] to rank the articles for both Yahoo and Google. To sort a list of articles, 

one article must rank higher than another article.  An article ranks higher than another 

article if it appears in the results list of Google or Yahoo first. To make the comparison, 

we queried the respective search engines with the titles of two articles in quotes “OR”ed 

together. Then beginning with the first returned web page, we parsed each web page and 

matched the title and the first author’s last name in the web page. Whichever article title 

and first author’s last name matched first, gets a higher ranking than the corresponding 

paired citation. Through series of these comparisons, we eventually sorted the list of 

articles. The resulting ranks should be equivalent to the exact rankings if it was possible 

to query the search engine with a large Boolean “OR” composed of all titles and first 

author’s last name of all articles. The paired comparisons and sorts were run over a time 

period of several months spanning September 2006 to January 2007.  

 

B. Web Page Hit Count 

     We constructed a Google query using the first author’s last name and words of the title 

in quotes. For each query, we obtained the total number of web pages returned citing the 

reference. The total results count is available through the Google search api. I obtained 

the web page hit counts in January of 2007. 

 

C. Classification Methods 
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     In our experiments, we employed Support Vector Machine (SVM) classification 

algorithms. These methods calculate a maximal margin hyperplane separating two or 

more classes of the data. To accomplish the separation, the data is mapped to a higher 

dimensional space by means of a kernel function, where a separating hyperplane is found 

by solving a constrained quadratic optimization problem [16]. For several published text 

categorization tasks, SVMs have had superior classification performance compared to 

other methods [17, 18], and this motivated our use of them.  We used an SVM classifier 

implemented in libSVM v2.8 [19] with a polynomial kernel. We optimized the SVM 

penalty parameter C over the range {0.1, 1, 10} with imbalanced costs applied to each 

class proportional to the priors in the data [20], and degree d of the polynomial kernel 

over the range. Since theoretical literature on domain characteristics as it relates to 

optimal parameter selection is not yet developed , the ranges of costs and degrees for 

optimization were chosen based on previous empirical studies [17, 18, 21]. Different 

combinations of costs and degrees were exhaustively evaluated by cross-validation, and 

the best performing model was selected for the final application of the SVM classifier 

(see section on Performance Estimation and Model Selection) 

 

D. Bibliometric Citation Count 

Bibliometric citation count is the number of publications citing an article. We 

downloaded citation counts from the Web of Science [22] using a screen scraping 

interface coded in Python [23]. The screen scraper established an http connection to the 

Web of Science servers and navigated through several GET and POST requests to 

identify an article and parse out the number of cited articles. We manually determined the 
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number of cited articles for any articles in the few cases where the automated method 

failed.  We obtained citation counts of articles in the ACPJ gold standards [17, 24] on 

August 2002. These collection dates allowed approximately 2.5-3 years for citations to 

accumulate in each respective gold standard.  

A relatively small number of articles did not have a citation count since the 

corresponding journals were not followed by the Web of Science. For the ACPJ gold 

standard, we obtained 13,279 citations that had counts out of 15,786 citations in the gold 

standard. Articles without citation counts were excluded from the study. 

 

E. Impact Factor 

An impact factor of a journal is the average number of citations an article published 

in the journal receives in two years [25].  For example, the 2004 impact factor for journal 

X would be the number of citations received by articles published in X within 2002-03, 

divided by the total number of published articles in X within 2002-03. We obtained 

impact factors from the Web of Science for 2005. 

 

 

F. Performance Metrics   

We used receiver operating characteristic (ROC) curves to analyze performance of 

the classification algorithms [26].  Intuitively, these curves depict the tradeoff between 

correct and incorrect classification. The ROC curve is plotted in the dimensions of (1-

specificity) and sensitivity. In inspecting ROC curves, the point (1,0) (i.e. specificity=1 

and sensitivity=0) corresponds to a classifier where all examples are classified as 
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negative, the point (1,1) where all examples are classified as positive, and the coordinate 

(0,1) is where all examples are classified perfectly. The closer a point on the ROC curve 

is to the (0,1) coordinate, the better performance the classifier has, assuming that false 

positives and false negatives have the same cost.  

A composite measure of ROC performance is typically reported as the area under the 

ROC curve (AUC) [27]. Areas range from 0 to 1 with 1 being perfect classification, 0.5 

being random classification performance, and 0 being an inverse classification with all 

true positives classified as negatives and all true negatives classified as positives [26]. 

The AUC performance metric has the important property of being invariant to class 

distribution. Class invariance is essential for this domain since we often have many more 

negative documents than positive ones. Relying on performance measures that are 

sensitive to class distributions may be a misleading measure of discriminatory 

performance. For example, we would not use accuracy (defined as the proportion of 

correct classifications over all classifications) as a performance measure, because 

excellent accuracy can be achieved in extremely skewed distributions by classifying all 

documents as belonging to the most prevalent class [28].  

 

G. Document Representation and Pre-processing for Machine Learning 

     The conversion of documents to a format suitable for the machine learning algorithms 

followed the procedures in [17]. The articles in the ACPJ selected journals were cross-

referenced in PubMed, and the title, abstract, journal, and MeSH terms were extracted. 

We represented each document as a set of terms for the learning algorithms [29].  We 

stemmed each term [30], removed “stopword” terms [31], and any terms occurring in less 
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than 5 documents. Very infrequent terms are difficult to assess statistically and may 

affect negatively the generalization of the classification models. Selected terms were 

further encoded as weighted features using a log frequency with redundancy scheme for 

all documents [32]. The ACPJ etiology and treatment collection contained, after 

imputation of citation counts, 15,786 articles with abstracts and citation counts 

represented by 28,229 features including citation count.  

 

H. Performance Estimation and Model Selection 

We used 5-fold cross-validation to estimate the performance of the learning 

algorithms [33]. This procedure first divided the data randomly into 5 non-overlapping 

subsets of documents (subject to the constraint that the proportion of positive and 

negative documents in the full dataset is preserved for each subset). Next, the following 

was repeated 5 times: we used one subset of documents for testing (the “original testing 

set”) and the remaining four subsets for training (the “original training set”) of the 

classifier. The average performance over 5 original testing sets is reported.  

In order to optimize parameters of the learner (e.g., SVM algorithms), we used 

another “nested” loop of cross-validation by further splitting each of the 5 original 

training sets into smaller training sets and validation sets. For each combination of learner 

parameters, we obtained cross-validation performance and selected the best performing 

parameters inside this inner loop of cross-validation. We next built a model with the best 

parameters on the original training set and applied this model to the original testing set. 

Details about the “nested cross-validation” procedure can be found in [34, 35]. Notice 

that the final performance estimate obtained by this procedure will be unbiased because 
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each original testing set is used only once to estimate performance of a single model that 

was built by using training data exclusively. 

 

I. Gold Standard Construction 

 

1. ACPJ Journal Club 

 

The ACP Journal Club is a highly-rated meta-publication.  Every month expert 

clinicians review a broad set of journals in internal medicine, and select articles in these 

journals according to specific criteria in the content areas of treatment, diagnosis, 

etiology, prognosis, quality improvement, clinical prediction guide, and economics.  

Selected articles are further subdivided into articles that are summarized and abstracted 

by the ACP because of their “clinical importance”, and those that are only cited because 

they meet all the quality selection criteria but may not pertain to vitally “important 

clinical areas”. For the purposes of the present study, articles that are abstracted or cited 

by the ACP are considered positive instances and all other articles in the same journals to 

be negative. The criteria for inclusion in ACPJ can be found in [24]. 

     We used for the present study a modified version of the ACP Journal corpus. The 

Google 5 and Yahoo programming interfaces [36, 37] only allow a 1000 daily requests to 

the search interface. Due to this request limitation and the paired sorting algorithm which 

guarantees sort in O(n log n), we limit the total number of articles in the data sets to 1000. 

The distribution of positives and negatives is illustrated in Table III-7. 

                                                 
5 Direct programmatic access to Google’s search results is no longer available. The search results of the 
current api must be screen scrapped to obtain the same search results. 
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Table III-7 - Positives and negatives distribution in each category. The sizes were limited 

due to Google and Yahoo API restrictions. 

Category Positives Negatives 

Treatment 297 750 

Etiology 169 855 

Prognosis 21 902 

Diagnosis 29 901 

 

 

J. Experimental Procedure 

     In each category, we created a dataset composed of the positives and negatives as 

shown in Table III-7. We ranked the articles in each category by Google PageRank, 

Yahoo WebRank, impact factor, web page hit count, bibliometric citation count, and 

machine learning filter model score. 

     We ranked the articles by Google PageRank and Yahoo WebRank by paired article 

comparisons as described in the Methods Section. Articles were sorted by rank, and an 

area under the curve was calculated. The paired comparisons and sorts were run over a 

time period of several months spanning September 2006 to January 2007. 

     We ranked articles from 2005 impact factors obtained from the Web of Science. 

Articles were ranked by the impact factor of the originating journal. Area under the curve 

was calculated. 
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     We ranked articles by web page hit count by querying Google with the last name of 

the first author and the title of the article in quotes. We used the estimated total result 

count in the Google result set as a measure of the number of web pages citing the selected 

article. The articles were ranked according to the total hit count and an area under the 

curve was calculated. The web page hit counts were obtained in January of 2007. 

     We ranked articles by bibliometric citation count by screen scraping the Web of 

Science in August 2002 as described in the Methods Section. Articles were ranked 

according to total bibliometric citation count and an area under the curve was calculated. 

     For the machine learning models, we used 5 fold cross validation to estimate the area 

under the curve performance for each category as explained in the Methods section. 

 

Results  

     The area under the curves for each ranking method are shown in Table III-8 and the 

average area under the curve in Table III-9. 

 

Table III-8 - Area under the ROC curve for each ranking method. *- area under the curve 

below 0.5 indicates that the method ranks articles in reverse order.  Thus reversing the 

ranking would rank the positives higher than the negatives. 
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Method Treatment Etiology Prognosis Diagnosis 

Google PageRank 0.54 0.54 0.43* 0.46* 

Yahoo WebRanks 0.56 0.49* 0.52 0.52 

Impact Factor 2005 0.67 0.62 0.51 0.52 

Web page hit count 0.63 0.63 0.58 0.57 

Bibliometric Citation Count 0.76 0.69 0.67 0.60 

Machine Learning Filter Models 0.96 0.95 0.95 0.95 

 

Table III-9 - Average area under the ROC curves for each method. 

 

Method Average area under the curve across 4 categories. 

Google PageRank 0.53 

Yahoo WebRanks 0.49 

Impact Factor 2005 0.58 

Web page hit count 0.60 

Bibliometric Citation Count 0.68 

Machine Learning Filter Models 0.95 

 

 

    Ranking by Google Pagerank and Yahoo Webranks have the lowest discriminatory 

power compared to impact factor, web page hit count, bibliometric citation count, and the 

machine learning filter models.  In the diagnostic and prognostic categories, the article 

rankings by Google are reversed in placing negatives above positives. Impact factor has 

limited ability to discriminate quality of articles. Web page hit count has some 
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discriminatory power with bibliometric citation count having the next highest 

discriminatory power. The machine learning filter models have the best discriminatory 

power of the compared methods upwards of 0.95 in all categories. 

 

Study Limitations  

     Sample was limited for each category. Each category was limited to a 1000 articles 

due to the limits set by the Google and Yahoo APIs. Ranking the 15,000 or 30,000 

articles through paired comparisons is possible and a point of future research. 

     Another limitation was that web pages citing an article were identified using queries to 

Google and Yahoo of the last name of the first author and the title words in quotes. We 

did not run formal experiments to establish how well web pages citing an article were 

identified using this query. In initial experiments, we observed that queries with title 

words in quotes would rarely return web pages that did not cite the article. In subsequent 

experiments, manual ad-hoc inspection of the top 10 results of 50 random queries 

confirmed this observation that the queries identified web pages citing an article with 

high sensitivity and specificity.  

     We did not compare to Google Scholar [38]. Google does not provide an API to this 

site. Though the exact inner workings of Google Scholar are not available, the web site 

states “Google Scholar aims to sort articles the way researchers do, weighing the full text 

of each article, the author, the publication in which the article appears, and how often the 

piece has been cited in other scholarly research. The most relevant results will always 

appear on the front page.” How this translates to ranking our articles is unknown and a 

point of future research. 
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     Another potential limitation is that the articles selected in our dataset are from 1998-

1999. It is conceivable but not likely that web based measures would not rank correctly 

older articles. Older articles on the web may not be cited as often or at all if the articles 

themselves are obsolete. A point of future research would be to replicate these 

experiments with a more recent corpus. 

 

Discussion and Conclusions 

     Machine learning methods outperformed web and bibliometric citation measures in 

discriminating high quality articles. We reached a similar conclusion in prior work when 

comparing bibliometric citation counts to machine learning methods with the space of 

MEDLINE documents [6]. The same reasoning for why bibliometric citation count does 

not discriminate as well as machine learning algorithms also applies to web hyperlinks. 

Links do not necessarily confer authority to the linked page. 

      In prior work in using web hyperlinks to identify quality web pages, Chakrabarti 

observed that many links have nothing to do with the conferral of authority [39]. Some 

links exist purely for navigational purpose or as paid advertisements. Chakrabarti et al, 

hope that, in an aggregate sense, over a large enough number of links, the view of links as 

“conferring authority” will hold. 

      Aggregate links do not confer authority for identifying high quality articles in 

medicine. Rankings by Google and Yahoo rely on link analysis, and thus, by proxy, 

should rank quality articles higher. According to this gold standard, higher quality articles 

are not preferentially cited over lower quality articles or cited on higher quality web sites. 
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     A potential future direction to leverage link information is to attempt to establish 

intent of the links. Would it be possible to determine when a link confers authority rather 

than other links that are navigational or advertising in nature. It may be possible that 

reduction of link “noise” would improve the ranks of higher quality articles.  

     But the assumption that higher quality articles are cited more often than lower quality 

articles does seem to hold as illustrated by the discriminatory power of the web page hit 

count. We made an initial assumption that secondary sources of medical information 

would cite higher quality articles more often than lower quality articles. The 

discriminatory power of web page hit count is interesting and should be explored in 

future work. 

     Another potential future direction is to consider ranking articles by the intent of the 

web pages they appear on.  For example, we compared two articles using the paired 

comparison test. The top web page in the results lists is a NEJM [40] citation located on a 

table of contents web page on the NEJM web site. This type of citation is not an explicit 

endorsement and is navigational in nature. Contrast this with the second article that 

appears at a lower rank from emedicine.com [41]. The article appears as a citation from a 

secondary source written by the emedicine authors. In this example, the second article 

should rank higher because it is on a web page that endorses the article when compared to 

the first article where the web site ranks highly because it is from a more popular source. 

      In preliminary experiments, we made an attempt to rank articles by determining the 

intent of the web page.  We excluded pages that were navigational or contained the 

abstract of the article (as articles that contained the abstract were likely to be publisher 

pages listing the abstract or sites such as Pubmed that list the abstract of the article). In 
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one class, using these general heuristics, we were able to improve the area under the 

curve from 0.54 to 0.71 in treatment. Further improvements are likely if it is possible to 

build filters that may determine page intent. Whether these results generalize to other 

content areas are unknown and an area for future research. 

     Ultimately coming up with a way to measure article quality through links or web page 

endorsement is important. A limitation of the machine learning filter model is that a 

explicit gold standard must be created to build the model. In contrast, it may be possible 

to use web links to identify articles without an explicit gold standard. Though the 

question does remain as to what is being ranked highly if we use web links. If we could 

count links that “conferred authority” only, we would find literature that was cited by 

secondary sources, and the articles that rank highly are articles that are cited more often 

by these secondary sources. A method such as this may prove to be valuable for ranking 

the literature.  In other words, a hypothesis to be tested is that ranking the literature by 

how often the myriad of secondary sources cite the individual articles may be effective. 

     The question of why articles rank highly on the web is important. Articles that rank 

highly seem to follow popularity trends.  Articles published in the NEJM [40] or JAMA 

[42] will rank higher than articles published in other journals because the websites and 

journals are highly cited and linked to on the web in general. The distinction between 

ranking by popularity and quality is not clear. 

     The results of this study also suggested that health professionals should use their 

discretion in evaluating the results of a web search. As shown in these experiments, 

ranking articles by Google, Yahoo, or web hyperlinks does not necessarily return the 
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highest quality articles and instead returns articles ranked according to Pagerank or 

Webranks. 

     We also considered counting backlinks to webpages that have the individual article 

selected. For example, we considered counting the number of backlinks from the Pubmed 

page where the citation appears. The idea is that a webpage that cites the article will link 

to a version of the article containing the abstract either on the Pubmed site or a 

publisher’s website. Unfortunately, at the time of this writing, the Google and Yahoo 

APIs do not provide complete lists of backlinks to individual web pages. We suspect that 

counting web page hit counts is a valid proxy for counting backlinks and is a more 

accurate measure of citation by web pages since most pages may not link to Pubmed or 

publisher versions of the citation. 

     Finally, the machine learning filter models perform best when compared to these 

citation metrics. The machine learning filters are focused on their intent and will identify 

articles that match the criteria of the gold standard. The superior performance of these 

filters to other citation measures is supported by our previous evaluative studies [6, 17]. 

 

Conclusions 

     We have compared machine learning filter models to Google PageRank, Yahoo 

Webranks, impact factor, bibliometric citation count, and web page hit count for 

discriminating high quality articles from an ACP Journal Club gold standard. The 

machine learning filter models had superior performance in identifying high quality 

articles from an ACP Journal Club gold standard in the categories of prognosis, 

diagnosis, treatment, and etiology. 
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CHAPTER IV 

 

IV. EVALUATION OF GENERALIZATION OF MACHINE 
LEARNING MODELS 

 

 

     In this section, I explore the generalization of the machine learning models to 

identifying high quality articles. In the first set of experiments, I apply models built using 

a gold standard collected from 1998-2000 to a second gold standard collected in 2005. 

My goal was to validate the performance of the original filters on current corpora, to 

verify the model fitting and model error estimation procedures, and to validate 

consistency of the ACP Journal Club gold standard. In the second set of experiments, I 

explore the use of machine learning filter models in areas outside of internal medicine, in 

other semantic categories including clinical prediction guide, costs, and economics, and 

other purpose and format categories. 

 

Prospective Validation of Text Categorization Filters for Identifying High-
Quality, Content-Specific Articles in MEDLINE. 

 

Aphinyanaphongs Y, Aliferis C. “Prospective Validation of Text Categorization Filters 

for Identifying High Quality, Content-Specific Articles in MEDLINE.” In: Proceedings 

AMIA Symposium; 2006; Washington DC. 
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Abstract 

     Finding high quality articles is increasingly difficult with the exponential growth of 

the medical literature. This growth requires new methods to identify high quality articles. 

In prior work, we introduced a machine learning method to identify high quality 

MEDLINE documents in internal medicine. The performance of the original filter models 

built with this corpus on years outside 1998-2000 was not assessed directly. Validating 

the performance of the original filter models on current corpora is crucial to validate them 

for use in current years, to verify that the model fitting and model error estimation 

procedures do not over-fit the models, and to validate consistency of the chosen ACPJ 

gold standard (i.e., that ACPJ editorial policies and criteria are stable over time). Our 

prospective validation results indicated that in the categories of treatment, diagnosis, 

prognosis, and etiology, the original machine learning filter models built from the 1998-

2000 corpora maintained their discriminatory performance of 0.95, 0.97, 0.94, and 0.94 

area under the curve in each respective category when applied to a 2005 corpus. The 

ACPJ is a stable, reliable gold standard and the machine learning methodology provides 

robust models and model performance estimates. Machine learning filter models built 

with 1998-2000 corpora can be applied to identify high quality articles in recent years. 

  

Introduction 

     The purpose of a query filter is to identify medical articles that meet certain criteria 

(e.g., related to quality, impact, or content). Recent approaches have utilized machine 

learning or semi-manually constructed Boolean query based filters to pre-select articles 
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that meet quality and content criteria [1-5]. These filters had good discriminatory 

performance when evaluated using cross-validation techniques [6]. 

     Both machine learning and Boolean filters can perform much worse than expected 

when applied to other corpora because of two main reasons: First, it is possible for filters 

to be over-fitted, and second,  the examples that were used to train the original filters may 

have a different distribution than the documents on which the filters are eventually 

applied [7].  

     Computational Learning Theory suggests that over-fitting typically occurs when filter 

developers fit model parameters using the training data and then estimate the future 

performance of the model on the same data, or when very complex models are pursued, 

relative to the classification function’s intrinsic complexity especially in small sample 

learning settings (i.e., the complexity of the models considered is not tempered by the 

available sample and the difficulty of the learning task) [8]. Sound data modelling 

principles in order to avoid over-fitting  include: (a) choosing model complexity and 

parameters that minimize both error in the training data and complexity of the model 

class employed; (b) estimating future (generalization) error  in portions of the data 

reserved especially for that purpose (i.e., they are not used to fit the model) [9].  

     With regards to filter failure because of non-representative samples, this may occur 

because of small samples or very rare positive examples even if the total sample is large. 

In addition, non i.i.d. (independently sampled and identically distributed) sampling from 

the general population of documents. may lead to divergence of the training document set 

distribution from the application document set distribution. A particularly worrisome 

reason for violation of i.i.d. sampling in our context is if the gold standard for document 
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labelling is not stable over time. For example, if the editorial policies of the ACP Journal 

Club changes over time, a filter built with an older editorial policy may exhibit worse 

performance for documents characterized as high-quality according to a more recent and 

thus revised editorial policy.  

     In this study, we address these points of failure for both Machine Learning (i.e., our 

own) and Boolean/semi-manual (i.e., Pubmed/Haynes et al’s Clinical Query (CQ)) filters. 

We explore the extent of over-fitting or changes in the characteristics of the data by 

evaluating classification performance on articles collected independently of the original 

corpus. We built a machine learning filter model using a training corpus collected in one 

year, evaluated its performance on a prospective testing corpus collected in another year, 

and in the same prospective corpus, compared the machine learning filter models to the 

CQ filters [10] of Pubmed6.     Thus, we have two main hypotheses. First, machine 

learning filter models built from an original corpus collected from 1998 to 2000 are able 

to identify high quality articles in an independently collected 2005 corpus and perform as 

well as estimated performance measures using cross-validation on the original corpus. 

Second, machine learning filter models retain their performance edge over the 

corresponding CQ filters in the 2005 corpus.  

 

                                                 
6 The CQF filters are literally Boolean combinations of terms applied to a corpus. The machine learning 
filter models, in contrast, are not Boolean based. The machine learning filters are statistical models using 
all the terms in the training corpus. 
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Methods 

 

Definitions  

     At the core of our efforts lie the selection of a rigorous quality, content gold standard 

and the creation of a document collection that captures this gold standard. The ACP 

journal club is a highly-rated meta-publication [11].  Every month experts review the best 

journals in internal medicine and select the best articles according to specific selection 

criteria in the article class areas of: treatment, diagnosis, etiology, prognosis, quality 

improvement, clinical prediction guide, and economics.  Selected articles are further 

subdivided into articles that are cited and abstracted by the ACP because of their clinical 

importance, and those that are only cited because they meet all the selection criteria but 

may not pertain to vitally important clinical areas. Every article is subjected to rigorous 

review for inclusion [11].  By using articles abstracted and cited by the ACP as our gold 

standard, we capitalize on an existing high quality review. 

     

Corpus Construction  

     We constructed corpora in the treatment, etiology, diagnosis, and prognosis categories 

spanning the time periods of July 1998 – August 1999, July 1998 – August 2000, and 

March 11, 2005 – August 31, 2005.  From [1], we reused the two corpora built from the 

first two periods. For each corpus, we started with 49 journals, selected the respective 

time period, and collected all articles with abstracts published by these journals.  We then 

reviewed the ACP Journal Club for at least 18 months after the specified time period for 

each corpus, and labeled as positive any article that was cited/ abstracted by the Journal 
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Club in the time period. The first corpus spanning July 1998 – August 1999 resulted in a 

positive/negative article distribution of 379/ 15,407 articles in treatment, and 205/ 15,581 

articles in etiology. The second corpus spanning July 1998 – August 2000 resulted in a 

positive/negative article distribution of 74/34,864 articles in prognosis, and 102/34,836 

articles in diagnosis.  Refer to [1] for additional details and motivations for these 

constructed corpora. 

     We constructed the third corpus for the prospective analysis from March 11, 2005-

August 31, 2005.  We built the third corpus using the electronic citations available from 

the ACP Journal club at http://www.acpjc.org. Both articles cited and abstracted and 

articles cited only were available in both the print and electronic versions of the journal 

club.  As of July 2005, the electronic version included an expanded list of articles cited 

only available at http://www.acpjc.org/Content/oan which we included in the independent 

dataset.   

     We covered available electronic citations in the Journal Club from July/Aug 2005 to 

Jan/Feb 2006 in 41 journals selected for their overlap with the 1998-2000 49 journals7. 

Because the time frame covered by the Journal Club varied from month to month, we 

selected 3/11/2005 as the start time period for this third corpus by averaging the earliest 

citation given in each journal, and the end time period of 8/31/2005 by averaging the 

latest citation given in each of the 41 selected journals. If no article occurs in a given 

journal, a date is not included in the average. Thus we selected all articles with abstracts 

published in 41 journals from 3/11/2005 to 8/31/2005 and identified articles cited in this 

time period by the ACP Journal club as positive and all others were identified as 

negative. This procedure resulted in a positive/negative article distribution of 351/6,921, 
                                                 
7 Journal lists for both corpora are available from the authors. 
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47/7,601, 30/7,618, 23/7,625 in treatment, etiology, prognosis, and diagnosis 

respectively. 

     All original articles as Pubmed citations (i.e. abstracts, not full text) were downloaded 

with the esearch and efetch utilities available from Pubmed [12]. Each search was limited 

to the title of one of the journals, set to only retrieve articles during the publication 

period, and with the “only items with abstracts” checkbox marked. A custom parser 

extracted PubmedID, title, journal, abstract, publication type, and MeSH terms from the 

XML efetch downloads.  

 

Article Preparation  

     The conversion of documents to a format suitable for the machine learning algorithm 

followed the procedures in [1]. The articles in the ACPJ selected journals were cross-

referenced in PubMed, and the title, abstract, journal, publication type, and MeSH terms 

were extracted. We created two representations for each document: one for the machine 

learning algorithm, and one for the CQ filters.   

     For the machine learning algorithm, we represented each document as a set of terms 

for the learning algorithms [13].  We additionally stemmed each term [14], removed 

“stopword” terms [15], and removed any terms occurring in fewer than 5 documents. 

Very infrequent terms are difficult to assess statistically and may affect negatively the 

generalization of the classification models. Terms were further encoded as weighted 

features using a log frequency with redundancy scheme [16].  

     For the CQ filters, we represented each document as a set of terms.  Words were not 

stemmed, but “stopwords” and infrequent terms (occurring in < 5 documents) were 

removed. 
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Statistical and Machine Learning Methods 

 

Support Vector Machines (SVMs) 

     In our experiments, we employed Support Vector Machine (SVM) classification 

algorithms. The SVM’s calculate maximal margin hyperplane(s) separating two or more 

classes of the data. To accomplish this, the data are mapped to a higher dimensional 

space by means of a kernel function, where a separating hyperplane is found by solving a 

constrained quadratic optimization problem [17]. SVMs have had superior text 

classification performance compared to other methods [1, 18], and this motivated our use 

of them.  We used an SVM classifier implemented in libSVM v2.8 [19] with a 

polynomial kernel. We optimized the SVM penalty parameter C over the range {0.1, 1, 

2} with imbalanced costs applied to each class proportional to the priors in the data [20], 

and degree d of the polynomial kernel over the range {1, 2}. Since theoretical literature 

on domain characteristics as it relates to optimal parameter selection is not yet developed, 

the ranges of costs and degrees for optimization were chosen based on previous empirical 

studies [1, 18]. Different combinations of costs and degrees were exhaustively evaluated 

by cross-validation. 

 

Clinical Query Filters 

     The CQ filters are Boolean queries optimized separately for sensitivity, specificity, 

and accuracy [10]. We applied the exact queries for optimized sensitivity and specificity 
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cited in Pubmed and recently updated with a year 2000 corpus to the text categorization 

task [2-4].  

 

Estimating Model Performance 

     We used 5-fold cross-validation that avoids over-fitting to estimate the performance of 

the learning algorithms [6]. This choice for n provided sufficient high-quality positive 

samples for training in each category and provided sufficient article samples for the 

classifiers to learn the models. The cross-validation procedure first divided the data 

randomly into 5 non-overlapping subsets of documents where the proportion of positive 

and negative documents in the full dataset is preserved for each subset. Next, the 

following was repeated 5 times: we used one subset of documents for testing (the 

“original testing set”) and the remaining four subsets for training (the “original training 

set”) of the classifier. The average performance over 5 original testing sets is reported.  

     In order to optimize parameters of the SVM algorithms, we used another “nested” 

loop of cross-validation by further splitting each of the 5 original training sets into 

smaller training sets and validation sets. For each combination of learner parameters, we 

obtained cross-validation performance and selected the best performing parameters inside 

this inner loop of cross-validation. We next built a model with the best parameters on the 

original training set and applied this model to the original testing set. Details about the 

“nested cross-validation” procedure can be found in [7, 21]. Notice that the final 

performance estimate obtained by this procedure will be unbiased because each original 

testing set is used only once to estimate performance of a single model that was built by 

using training data exclusively. 

 



Aphinyanaphongs – Text Categorization ModelsPage 137 of 224 

 
 

137

Applying Filters to Prospective Corpora 

     We built final machine learning filter models in each category using the 1998-1999 

and 1998-2000 corpora and then applied both the final machine learning filter models and 

the CQ filters to the prospective 2005 corpus. We built the final machine learning filter 

models by selecting best performing parameters (i.e. cost and degree) and applying these 

parameters to build final models in each category using all the data. Best parameters were 

selected by first, dividing the data into 5 non-overlapping subsets preserving positive/ 

negative proportions. For each set of parameters, we estimated performance using cross-

validation over the 5 folds. Average performance across all folds with each set of 

parameters was recorded. We selected the parameters that built the best performing filter 

model, and used these parameters to build a final machine learning filter model for each 

category using all the data. 

  

Comparing CQ Filters to Learning Models 

     We compared the sensitivity and specificity of the machine learning filter models with 

the sensitivity and specificity of the respective optimized Boolean CQ filter [10]. The CQ 

filters return articles with the query terms present, whereas the learning algorithms return 

a score. To make the comparison, in each fold, we fixed the sensitivity value returned by 

the sensitivity-optimized CQ filter and varied the threshold for the scored articles until 

the sensitivity was matched. We report the fixed sensitivity, corresponding specificity, 

and precision. The same procedure was run for the specificity returned by the optimized 

specificity CQ filter. 
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Results 

 

Area under the curve analysis 

     We built machine learning filter models for treatment, etiology, prognosis, and 

diagnosis categories using the 1998-1999 and 1998-2000 corpora. In Table IV-1, we 

report the cross-validation area under the ROC curve for the 1998-1999 and 1998-2000 

built machine learning filter models, and area under the ROC curve performance when 

the machine learning filter models were applied to the entire 2005 corpora in the 4 

categories. 
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Table IV-1 - Top row is cross-validation estimated  area under the curve for optimal 

1998-1999 and 1998-2000 models. Bottom row is area under the curve for the optimal 

models applied to 2005 corpora (no cross-validation applied). Treat – treatment, Diag – 

diagnosis, Prog-prognosis, Etio – etiology. ± - is the range of AUC estimates across the 5 

folds. 

 Treat Diag Prog Etio 

X-Val 

AUC 

0.97± 

.02  

0.99 ± 

.02 

0.95± 

.02 

0.95 ± 

.01 

2005 AUC 0.95 0.97 0.94 0.94 

 

     The optimal machine learning filter models built using the 1998-1999 and 1998-2000 

corpora and applied to the 2005 corpora had performances within the range of estimates 

of each fold in each cross-validation set.  The optimal machine learning filter models 

were able to discriminate high quality articles from other non-high-quality articles in the 

2005 corpora. 

 

Comparison to CQ filters 

     We applied the CQ filters of Pubmed to the entire 2005 corpora and reported their 

corresponding sensitivity and specificities in Table IV-2. In all 4 categories, the CQ 

filters performed well. The support vector machine outperforms the CQ filters in 

sensitivity, specificity, and precision at fixed sensitivity and specificity levels. 

     The specificity and sensitivity optimized prognosis CQ filters and specificity 

optimized etiology CQ filters have lower sensitivity and specificity than previously 
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reported results. The sensitivity optimized prognosis CQ filter (90.0% as reported in [3] 

vs. 80.0% in the current study), specificity optimized prognosis CQ filter (94.1% as 

reported in  [3] vs. 76.8% in the current study), and the specificity optimized etiology CQ 

filter (94.9% as reported in [2] vs. 83.9% in the current study) do not perform as 

expected. Further investigation is necessary to determine the cause of this performance 

discrepancy and possible solutions. 
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Table IV-2 – Optimized Support Vector Machine (SVM) compared to Clinical Query 

Filters fixed at optimal sensitivity and specificity.  All values are calculated using the 

entire 2005 corpora. 

Category Optimized 

For 

Method Sensitivity Specificity Precision 

Treatment Sensitivity Query 

Filters 

0.710 0.147 

  SVM 

0.980 

0.888 0.305 

 Specificity Query 

Filters 

0.803 0.318 

  SVM 0.948 

0.913 

0.349 

Etiology Sensitivity Query 

Filters 

0.435 0.010 

  SVM 

0.979 

0.753 0.024 

 Specificity Query 

Filters 

0.681 0.025 

  SVM 0.936 

0.839 

0.035 

Diagnosis Sensitivity Query 

Filters 

0.682 0.01 

  SVM 

0.956 

0.884 0.02 

 Specificity Query 

Filters 

0.652 0.07 

  SVM 0.821 

0.972 

0.08 

Prognosis Sensitivity Query 

Filters 

0.707 0.011 

  SVM 

0.800 

0.874 0.024 

 Specificity Query 

Filters 

0.800 0.013 

  SVM 1.00 

0.768 

0.017 
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Discussion 

     These experiments addressed a pertinent and important question for using a filter to 

identify articles in a corpus. If we built machine learning or apply semi-manually 

constructed Boolean-based CQ filters using a corpus from a different time period, can we 

reliably apply these filters to current corpora and identify the high quality articles. 

     Our results showed that we can identify articles in this 2005 corpus using CQ filters or 

machine learning filter models. The optimized machine learning filter models built with 

the 1998-1999 and 1998-2000 corpora from [1] do generalize as estimated by the cross-

validation procedure and were able to identify high quality articles accurately in a 2005 

corpora as measured by area under the curve. The CQ filters of Pubmed were also able to 

identify high quality articles. As anticipated by [1], the optimized machine learning filter 

models generalize well and had superior ability over the optimized CQ filters to identify 

quality articles in the 2005 corpus. 

     These results also validate the optimization methods used to build the machine 

learning filter models and the consistent editorial policies of the ACP Journal Club.  The 

ability of the 1998-1999 and 1998-2000 corpora based machine learning filter models to 

identify high quality articles in the 2005 corpus imply that the procedure to optimize the 

machine learning filter model (through cross-validation) is valid and creates robust 

models and model performance estimates. 

     Furthermore, the ACP Journal Club is a consistent, stable gold standard. The 1998-

1999 and 1998-2000 based corpora machine learning filter models discriminatory power 

to identify high quality articles succeeds due to consistent article selection in the original 
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and prospective corpora. The machine learning filter models prediction of high quality 

articles in the 2005 corpora imply that the methodologic criteria for high quality articles 

has not changed over time, and we may reliably apply these machine learning filter 

models in current years. 

     The true purpose of any filter is to identify high quality articles in later corpora. This 

paper is a step to validating filters for medical information retrieval. Coupled with our 

previous work [1], we are establishing a foundation for usage of these filters.  

     In current work, we are systematically evaluating these filters in answering “real-life” 

clinical questions. As a first step, we have built a proof of concept system at 

www.ebmsearch.org. How well these filters can assist expert reviewers and their 

generalization to other categories and domains are open questions that we have 

experiments underway to answer. 
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Extending Text Categorization Filters in Medicine 

 

Abstract 

    In this study, we evaluated machine learning filter models to identify high quality 

articles in areas outside of internal medicine and format, purpose, and rigor content 

categories. In previous studies, we concluded that machine learning filter models 

identified high quality articles in internal medicine in the treatment, prognosis, diagnosis, 

and etiology content categories with high area under the receiver operating curve (AUC). 

In this study, we used a gold standard encompassing 49,028 articles in 161 journals in 

areas including pediatrics, psychology, and surgery. We built machine learning filter 

models in 18 content categories and evaluated their discriminatory performance to 

identify labeled articles using area under the receiver operating curve analysis. We also 

compared 5 rigor filter models to Pubmed’s Clinical Query Filters. The machine learning 

filter models identified high quality articles with AUC of greater than 0.92 in all 18 

content categories. The machine learning filter models showed comparable performance 

in treatment and superior performance in etiology, prognosis, diagnosis, and clinical 

prediction guide when compared to Pubmed’s Clinical Query Filters at fixed sensitivity 

and fixed specificity. An implementation of the models is available at 

www.ebmsearch.org. Machine learning filter models effectively identify high quality 

articles in content categories and areas outside of internal medicine. 
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Introduction 

     Every publication and talk regarding the biomedical literature mentions its current 

volume, exponential growth, and the growing challenge for health professionals and 

medical librarians to identify high quality articles applied to evidence based care. Enrico 

Coiera [1] postulates an impending “information famine” based on Malthus’ law, where, 

rather than human population needs outgrowing their food sources, the information glut 

outgrows humans limited ability to find and assimilate high quality information. As 

sound as Malthus’ logic seemed to be, his predictions of widespread famine did not come 

to pass. Malthus did not foresee the vast advances in agricultural technology that would 

feed the world’s population. In a similar vein, we propose that advanced search 

technology may provide a solution to the current information glut.  

     If we can increase the accuracy of information search technology at a greater rate than 

information grows, we may avoid the forthcoming “information famine.” As a first step 

to increasing the accuracy of search technology, we used automated mechanisms to filter 

the medical literature for identifying content-specific, high-quality medical articles in 

internal medicine [2]. 
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Background 

     Researchers proposed and implemented several methods to automatically or semi-

automatically filter the medical literature to identify high quality articles.  The problem 

was defined as a classification problem in identifying high-quality content specific 

articles or not.   

     Haynes and colleagues created Boolean queries to identify high quality articles. They 

used a manually built gold standard of 49,028 labeled articles to create Boolean queries 

that identify clinically relevant articles in the categories of prognosis, diagnosis, etiology, 

treatment, and clinical prediction guide. Evaluating articles in 161 journals in 2000, six 

research assistants labeled high quality articles by constructing a gold standard according 

to content and methodological criteria [3]. The content areas included etiology, 

prognosis, diagnosis, and treatment, and the methodological criteria were similar to the 

criteria currently used by the ACP Journal Club [4]. The authors selected terms that 

would most likely return high quality articles in these content categories based on 

interviews with expert librarians and clinicians. Valid MeSH terms, publication types, 

and wildcarded word roots (i.e. random* matching randomize and randomly) in the title 

and abstract were collected. Using the above gold standard and the selected terms, they 

ran an exhaustive search of all disjunctive Boolean set term models of 4 to 5 terms, and 

evaluated each disjunctive set on an independent document set according to sensitivity, 

specificity, and precision of returning high quality articles. The optimal Boolean sets 

were shown to have high sensitivity, specificity, and precision and are currently featured 

in the clinical queries link in PubMed [5].  This method required interviewing to select 

terms, a gold standard constructed by an ad-hoc review panel of expert clinicians, 
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reliance on NLM assigned terms, and search of term disjunctions that grows 

exponentially with the number of search terms. 

     Other researchers have applied a similar methodology to developing sets of search 

terms for controlled trials, systematic reviews, and diagnostic articles [6-11].   

     Another approach to classification is to use citation measures to identify high quality 

articles. Citation measures capture directly an article’s impact and may serve as a proxy 

for methodological quality.  Bernstam and colleagues tested this hypothesis.  They 

proposed raw citation count and the PageRank algorithm as measures of quality for a 

Society of Surgical Oncology gold standard [12].  They showed that raw citation count 

identified articles in the gold standard better than PageRank or automated filters designed 

for another task [13].  In further research, we showed that machine learning filter models 

designed specifically for the SSOAB gold standard outperformed citation count and 

PageRank in identifying articles for this specific gold standard.  We also extended the 

analysis to an ACP Journal club gold standard in treatment and etiology with similar 

findings [14].  It is likely that citation count is, at best, a moderate predictor of medical 

literature quality. 

     In more recent years, Google Scholar arose as a means to use citation counts to 

measure impact. Though the exact algorithms used by Google are proprietary, the basic 

tenet involves ranking articles by their citation counts [15].  We postulate that the 

moderate correlation between citation count and quality should extend to the web as well.   

     The moderate correlation between citation count and quality is based on the idea that 

not all citations, whether bibliographical or web based, are necessarily endorsements of 

the article or page.  An article may cite another article for a variety of reasons: authors 



Aphinyanaphongs – Text Categorization ModelsPage 150 of 224 

 
 

150

may cite articles to acknowledge prior work, identify methodology, provide background 

reading, correct or criticize, substantiate claims, alert readers to forthcoming work, 

authenticate data, identify original publication of a term or concept, disclaim work of 

others, or dispute priority claims [16]. The lack of an unambiguous connection between 

citation, context of use, manner of use, and/or endorsement prevents citation count from 

being a single effective measure of inclusion in an “importance” bibliography. More 

generally stated, the conceivable reasons for citation are so numerous that it is unrealistic 

to believe that citation conveys just one semantic interpretation. Other research with 

medical datasets seems to support this weak relationship between citation counts and 

quality [17-20].   

     A promising approach to classification is in the use of text categorization techniques 

to identify high quality articles.  We applied advanced pattern recognition techniques to 

identify high quality articles in internal medicine [2]. We constructed a high quality 

corpus with labeled high quality articles in etiology, prognosis, diagnosis, and treatment.  

We used 10 fold cross-validation techniques to estimate performance and were able to 

identify high quality articles with high discriminatory performance as measured by area 

under the curve (AUC) and with better performance than corresponding Boolean clinical 

query filters built for the same task. 

     In later work, we validated that models built from an earlier corpus identified high 

quality articles in a later corpus [21].  Furthermore, we showed that the models perform 

better than general citation counts such as PageRank and raw bibliographic citation count 

in identifying high quality articles [14]. We showed that in treatment related clinical 
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questions, the models perform on par if not better in identifying expert librarian selected 

articles that answered the clinical questions [22]. 

     Though the previous studies showed that the validated models performed better than 

general citations metrics and identified articles that could answer treatment related 

clinical questions, the experiments had several limitations. The models were only proven 

to work in internal medicine. The machine learning filter models were compared to 

Pubmed’s Clinical Query Filters which were built with a different corpus than the 

validated filter models. Finally, we only evaluated these filters for four semantic 

categories. 

 

Hypothesis 

     In this study, we address the shortcomings of the previous work and address 5 

hypotheses. First, we hypothesize that the models work in areas outside of internal 

medicine. The models work in other semantic categories including clinical prediction 

guide, costs, and economics.  The models generalize to purpose and format categories.  

The models work better than the Clinical Query Filters when directly compared. Finally, 

these filters can be implemented in a practical system. 
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Methods 

 

Gold Standard Construction 

     We used a rigorous gold standard developed by the Hedges group [3].  Haynes and 

colleagues trained 6 research assistants to rate articles from 161 journals for the 

publishing year 2000.  They rated each article by purpose and quality in the content areas 

of treatment, diagnosis, prognosis, etiology, economics, clinical prediction guide, 

qualitative, and review. Furthermore, articles were labeled by format in the areas of 

clinically relevant original studies, review articles, general papers, or case reports. 

     The research assistants were rigorously calibrated and inter rater agreement for 

methodologic criteria exceeded 80% beyond chance. Some methodologic criteria for 

ranking are given in Table IV-3. 
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Table IV-3 – Labeling Criteria 

 

Purpose/ Rigor 

Class Category Criteria 

Format Original Any full text article in which the investigators report first-hand 

observations. 

 Review Any full text article that is bannered ‘review, overview, or meta-analysis’ 

in the title or in a section heading, or it is indicated in the text of the article 

that the intention was to review, summarize, highlight, etc. the literature on 

a particular topic. 

 General and 

Miscellaneous 

Articles 

A general or philosophical discussion of a topic without original 

observation and without a statement that the purpose was to review or 

appraise a body of knowledge. This could include news items, unbannered 

editorials, bannered and unbannered conference reports, position and 

opinion papers, musings, psychosocial observations, and decision analysis 

that cannot be classified as an original study or review. 

 Case Report Is an original study or report that presents only individualized data. The 

data are not combined in any way, and often involves less than 10 subjects. 

If the article is a CR do not fill out as an original study. If the article also 

states that it is a review of the literature, fill out a second line for review 

article. 

Purpose Etiology Content pertains directly to determining if there is an association (causal 

link) between an exposure and a disease or condition (examples of a 

condition are low birth weight, large [or small] for gestational age, preterm 

birth, miscarriage, abortion, cesarean section, pregnancy, or death). The 
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question that is being asked is “What causes people to get a disease or 

condition?” 

 Prognosis Content pertains directly to the prediction of the clinical course or the 

natural history of a disease or condition (examples of a condition are low 

birth weight, large [or small] for gestational age, preterm birth, or 

pregnancy) with the disease or condition existing at the beginning of the 

study. 

 Diagnosis Content pertains directly to using a tool to arrive at a diagnosis of a disease 

or condition.  Screening to make a diagnosis is included here. 

 Treatment Content pertains directly to therapy (including adverse effects 

studies), prevention, rehabilitation, quality improvement, or 

continuing medical education. For a study to be classified as 

therapy (which includes prevention, continuing medical 

education and quality improvement) the investigators must 

intervene – there has to be an intervention that can be 

manipulated. 

 Costs Content pertains directly to the costs or financing or 

economics of a health care issue. 

 Economics Content pertains directly to the economics of a health care 
issue. The economic question addressed must be based on 
comparison of alternatives, i.e., comparison of the costs and 
effects of at least 2 different forms of intervention or service 
provision. Thus, ‘costing’ or ‘financing’ of a single health 
service, even if for a variety of conditions, does not constitute 
an economic study; an economic study would compare 2 (or 
more) different ways of providing the same service, and would 
include at least intermediate (e.g., BP) or more advanced (e,g., 
stroke) outcomes. Economics studies are also Costs studies 
and should be co-classified there. 
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 Clinical 

Prediction 

Guide 

Content pertains directly to the prediction of some aspect of a 

disease or condition; the authors must indicate that the purpose 

of the study is to develop or validate a rule, guide, index, 

equation, scale, score or model to predict a diagnosis, 

prognosis, risk (ET), therapeutic response, therapeutic drug 

levels or clinical outcome. For everything except diagnosis the 

patients must be followed over time. 

 Qualitative Content of study contains the following qualities: The content 

relates to how people feel or experience certain situations, 

specifically those situations that relate to health care in 

humans.  Collection methods are appropriate for qualitative 

data. Analyses are appropriate for qualitative data.  

Rigor Treatment Random allocation of participants to comparison groups; 

Outcome assessment of at least 80% of those entering the 

investigation; Analysis consistent with study design. 

 Etiology Observations concerned with the relationship between 

exposures and putative clinical outcomes; Data collection is 

prospective; Clearly identified comparison group(s); Blinding 

of observers of outcome to exposure. 

 Diagnosis Inclusion of a spectrum of participants; Objective diagnostic 

(“gold”) standard OR current clinical standard for diagnosis; 

Participants received both the new test and some form of the 

diagnostic standard; Interpretation of diagnostic standard 
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without knowledge of test result and visa versa; Analysis 

consistent with study design. 

 Prognosis Inception cohort of individuals all initially free of the outcome 

of interest; Follow-up of at least 80% of patients until the 

occurrence of a major study end point or to the end of the 

study; Analysis consistent with study design.  

 Clinical 

Prediction 

Guide 

Guide is generated in one or more sets of real patients 

(training set); Guide is validated in an independent set of real 

patients (test set). 

 Qualitative Methodologic rigor is not evaluated for qualitative studies. 

 Cost Methodologic rigor is not evaluated for costs studies. 

Economics studies are a subset of costs studies and should be 

indicated so; economics studies should then be further 

evaluated under Economics (see next). 

 Economics Question is a comparison of alternatives; Alternative services 

or activities compared on outcomes produced (effectiveness) 

and resources consumed (costs); Evidence of effectiveness 

must be from a study of real patients that meets the above-

noted criteria for diagnosis, treatment, quality improvement, or 

a systematic review article; Effectiveness and cost estimates 

based on individual patient data (micro-economics); Results 

presented in terms of the incremental or additional costs and 
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outcomes of one intervention over another; Sensitivity 

analysis if there is uncertainty. 

 

 

     The selected journals encompass areas outside of internal medicine including 

pediatrics and the surgical specialties. These additional journals include the “American 

Journal of Surgery,” “Annals of Surgery,” “Archives of Surgery,” “Clinical Pediatrics,” 

“Journal of Pediatrics,” “Obstetrics and Gynecology,” and others. Table IV-4 shows a 

random selection of 79 out of the 161 rated journals. A more comprehensive list is 

available from the authors.   
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Table IV-4 – 79 out of 161 Randomly Selected Journals Reviewed for Hedges Corpora. 

A more comprehensive list is available from the authors.                

AJR American Journal of Roentgenology 
Acta Orthopaedica Scandinavica 
American Journal of Cardiology 
American Journal of Gastroenterology 
American Journal of Medicine 
American Journal of Obstetrics & Gynecology 
American Journal of Public Health 
American Journal of Surgery 
Annals of Emergency Medicine 
Annals of Medicine 
Annals of the Rheumatic Diseases 
Archives of Disease in Childhood 
Archives of Family Medicine 
Archives of Medical Research 
Archives of Surgery 
Arthritis & Rheumatism 
Australian & New Zealand Journal of Psychiatry 
Birth 
Canadian Journal of Gastroenterology 
Canadian Journal of Psychiatry Revue 
Canadienne de Psychiatrie 
Cancer 
Chest 
Clinical & Investigative Medicine Medecine 
Clinique et Experimentale 
Clinical Psychology Review 
Cochrane database of systematic reviews 
computer file 
Critical Care Medicine 
Development & Psychopathology 
Diabetes Care 
Diabetic Medicine 
Family Planning Perspectives 
Family Practice 
Gastroenterology 
Gut 
Health Education & Behavior 
Heart & Lung 
Injury 
International Journal of Geriatric Psychiatry 
JAMA 
Journal of Abnormal Child Psychology 
Journal of Arthroplasty 
Journal of Autism & Developmental Disorders 

Journal of Child & Adolescent 
Psychopharmacology 
Journal of Clinical & Experimental 
Neuropsychology 
Journal of Clinical Child Psychology 
Journal of Clinical Epidemiology 
Journal of Clinical Nursing 
Journal of Clinical Psychopharmacology 
Journal of Consulting & Clinical Psychology 
Journal of Family Practice 
Journal of Infectious Diseases 
Journal of Internal Medicine 
Journal of Manipulative & Physiological 
Therapeutics 
Journal of Neuropsychiatry & Clinical 
Neurosciences 
Journal of Orthopaedic Research 
Journal of Pediatrics 
Journal of Psychosomatic Research 
Journal of Rheumatology 
Journal of Trauma Injury Infection & Critical 
Care 
Journal of Vascular Surgery 
Journal of the American College of Cardiology 
Journal of the American Geriatrics Society 
Journal of the American Medical Informatics 
Association 
Lancet 
Medical Care 
Medical Journal of Australia 
Midwifery 
Neurology 
Nursing Research 
Patient Education & Counseling 
Plastic & Reconstructive Surgery 
Psychiatric Services 
Psychological Medicine 
Psychology & Aging 
Psychosomatic Medicine 
Public Health Nursing 
Radiology 
Social Science & Medicine 
Stroke 
Thorax 
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Article Preparation 

     The conversion of documents to a format suitable for the machine learning algorithm 

followed the procedures in [2]. The articles in the ACPJ selected journals were cross-

referenced in PubMed, and the title, abstract, journal, publication type, and MeSH terms 

were extracted. We created two representations for each document: one for the machine 

learning algorithm, and one for the clinical query (CQ) filters.   

     For the machine learning algorithm, we represented each document as a set of terms 

for the learning algorithms [23].  We stemmed each term [24], removed “stopword” 

terms [25], and removed any terms occurring in fewer than 5 documents. Very infrequent 

terms are difficult to assess statistically and may affect negatively the generalization of 

the classification models. Terms were further encoded as weighted features using a log 

frequency with redundancy scheme [26].  

     For the CQ filters, we represented each document as a set of terms.  Words were not 

stemmed, but “stopwords” and infrequent terms (occurring in < 5 documents) were 

removed. 

 

Statistical and Machine Learning Methods 

 

Support Vector Machines (SVMs) 

     In our experiments, we employed Support Vector Machine (SVM) classification 

algorithms. The SVM’s calculate maximal margin hyperplane(s) separating two or more 

classes of the data. To accomplish this, the data are mapped to a higher dimensional 

space by means of a kernel function, where a separating hyperplane is found by solving a 
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constrained quadratic optimization problem [27]. SVMs have had superior text 

classification performance compared to other methods [2, 28], and this motivated our use 

of them.  We used an SVM classifier implemented in libSVM v2.83 [29] with a 

polynomial kernel. We optimized the SVM penalty parameter C over the range {0.1, 1, 

2} with imbalanced costs applied to each class proportional to the priors in the data [30], 

and degree d of the polynomial kernel over the range {1, 2}. Since theoretical literature 

on domain characteristics as it relates to optimal parameter selection is not yet developed, 

the ranges of costs and degrees for optimization were chosen based on previous empirical 

studies [2, 28]. Different combinations of costs and degrees were exhaustively evaluated 

by cross-validation. 

 

Clinical Query Filters 

      The CQ filters are Boolean queries optimized separately for sensitivity, specificity, 

and accuracy [31]. We applied the exact queries built with this gold standard optimized 

for sensitivity and specificity cited in Pubmed [6, 32, 33]. Queries in treatment, diagnosis, 

prognosis, etiology, and clinical prediction guide were compared to the corresponding 

models. 

 

Estimating Model Performance 

     We used cross-validation to estimate the performance of the learning algorithms [34]. 

This choice for n provided sufficient high-quality positive samples for training in each 

category and provided sufficient article samples for the classifiers to learn the models. 

The cross-validation procedure first divided the data randomly into 5 non-overlapping 
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subsets of documents where the proportion of positive and negative documents in the full 

dataset is preserved for each subset. Next, the following was repeated 5 times: we used 

one subset of documents for testing (the “original testing set”) and the remaining four 

subsets for training (the “original training set”) of the classifier. The average performance 

over 5 original testing sets is reported.  

     In order to optimize parameters of the SVM algorithms, we used another “nested” 

loop of cross-validation by further splitting each of the 5 original training sets into 

smaller training sets and validation sets. For each combination of learner parameters, we 

obtained cross-validation performance and selected the best performing parameters inside 

this inner loop of cross-validation. We next built a model with the best parameters on the 

original training set and applied this model to the original testing set. Details about the 

“nested cross-validation” procedure can be found in [35, 36]. Notice that the final 

performance estimate obtained by this procedure will be unbiased because each original 

testing set is used only once to estimate performance of a single model that was built by 

using training data exclusively. 

 

Comparing CQ Filters to Learning Models 

We compared the sensitivity and specificity of the machine learning filter models with 

the sensitivity and specificity of the respective optimized Boolean CQ filter [31]. The CQ 

filters return articles with the query terms present, whereas the learning algorithms return 

a score. To make the comparison, in each fold, we fixed the sensitivity value returned by 

the sensitivity-optimized CQ filter and varied the threshold for the scored articles until 

the sensitivity was matched. We report the fixed sensitivity, corresponding specificity, 
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and precision. The same procedure was run for the specificity returned by the optimized 

specificity CQ filter. 

 

Building final models 

     We built final machine learning filter models in each category using the Hedges 

corpora and applied the final machine learning filter models to 13 million documents in 

the MEDLINE article collection. We built the final machine learning filter models by 

selecting best performing parameters (i.e. cost and degree) and applying these parameters 

to build final models in each category using all the data. Best parameters were selected 

by first, dividing the data into 5 non-overlapping subsets preserving positive/ negative 

proportions. For each set of parameters, we estimated performance using cross-validation 

over the 5 folds. Average performance across all folds with each set of parameters was 

recorded. We selected the parameters that built the best performing filter model and used 

these parameters to build a final machine learning filter model for each category using all 

the data [37]. 

 

Building a system 

     We implement a system called EBMSearch located at http://www.ebmsearch.org. 

EBMSearch applied these models to articles published between 2000 and 2006 in 

MEDLINE.  Users select format and purpose and rigor categories of cost, economics, 

clinical prediction guide, diagnosis, prognosis, etiology, and treatment, and time frames 

of 1 year, 2 years, and 5 years for ranking the returned results. The resulting list of 

articles is ranked by SVM model output score.  
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     The EBMSearch query mirrors the functionality of a Pubmed query. EBMSearch 

supports field descriptions and tagged search by text word and location (i.e. title, abstract, 

etc), author, journal title, date, phrase, gender, language, age group, or human or animal 

studies [38].  EBMSearch also supports automatic term mapping for untagged terms to 

match, in order, terms in a MeSH translation table, a Journals translation table, Full 

Author translation table, and an Author index [39].  Any Pubmed query is an acceptable 

EBMSearch query. In addition, the user specifies a search category (i.e. treatment, 

diagnosis, prognosis, etiology, clinical prediction guide, and qualitative studies) and a 

time frame to search (i.e. 1 year, 2 years, 5 years).  

     EBMSearch sorts the returned articles by score from the category specific SVM 

model. The SVM model output score is a relative value denoting how statistically similar 

terms in the article matched terms in the gold standard articles. We defined relevancy as 

articles similar to the gold standard articles. We generally state that model scores below 0 

are not relevant, and scores above 0 are relevant. Scores above 1 are more relevant and 

scores below 1 are less relevant. All articles from the query are sorted and shown from 

highest to lowest score regardless of relative value. Ranking has proven popular with 

other major search engines including Pubmed, Yahoo, Google, and MSNSearch. 

 

Results 

 

Area under the curve analysis 

     We built machine learning filter models for clinical prediction guide, cost, diagnosis, 

economics, etiology, prognosis, qualitative, and treatment purpose categories. We also 
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built models for the rigor categories of clinical prediction guide, cost, diagnosis, etiology, 

prognosis, treatment and economics, and the format categories of case reports, original, 

review, and general miscellaneous. In Table IV-5, we report the 5 fold cross-validation 

area under the ROC curve with ranges for the machine learning filter models.  In all 

purpose, rigor, and format categories, the machine learning filter models discriminate 

articles with area under the curves of greater than 0.926 and close ranges across the five 

folds. Composite ROC curves for each class are shown in Figure IV-1, Figure IV-2, 

Figure IV-3, and Figure IV-4. 
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Figure IV-1 - Format Category Receiver Operating Curves 
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Figure IV-2 - Rigor Category Receiver Operating Curves 
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Figure IV-3 - Purpose Category Receiver Operating Curves (Cost, CPG, Diagnosis, 

Etiology) 
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Figure IV-4 - Purpose Category Receiver Operating Curves (Economics, Prognosis, 

Qualitiative, Treatment) 
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Table IV-5 – AUC for specific categories. 

 

Class Category Positives Negatives AUC 

Purpose Clinical Prediction Guide 232 48796 0.980 (0.966 - 0.989) 

Purpose Cost 300 48728 0.995 (0.987 - 0.998) 

Purpose Diagnosis 1114 47914 0.966 (0.958 - 0.973) 

Purpose Economics 236 48792 0.991 (0.984 - 0.997) 

Purpose Etiology 3018 46010 0.926 (0.920 - 0.931) 

Purpose Prognosis 1642 47386 0.942 (0.939 - 0.945) 

Purpose Qualitative 336 48692 0.997 (0.997 - 0.998) 

Purpose Treatment 8328 40700 0.953 (0.952 - 0.954) 

Rigor Clinical Prediction Guide 91 48937 0.985 (0.974 - 0.995) 

Rigor Diagnosis 147 48881 0.982 (0.972 - 0.992) 

Rigor Etiology 281 48747 0.962 (0.955 - 0.976) 

Rigor Prognosis 190 48838 0.963 (0.954 - 0.970) 

Rigor Treatment 1587 47441 0.988 (0.983 - 0.992) 

Rigor Economics 34 48994 0.997 (0.993 - 0.998) 

Format Case Reports 4591 43461 0.986 (0.985 - 0.989) 

Format Original 25750 22302 0.985 (0.984 - 0.987) 

Format Review 3097 44955 0.970 (0.965 - 0.973) 

Format GM 14747 33305 0.980 (0.980 - 0.982) 
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Comparison to CQ filters 

     We applied the CQ filters of Pubmed to the 2000 corpora and reported their 

corresponding sensitivity and specificities in Table IV-6. In all 5 categories, the CQ 

filters performed well. Overall, the machine learning filter models outperform the CQ 

filters in sensitivity, specificity, and precision at fixed sensitivity and specificity levels. 

     In treatment, at fixed sensitivity and specificity, the machine learning models have 

similar performance compared to the CQ filters.   

     In etiology, the machine learning filter models have 0.21 higher specificity at fixed 

sensitivity than the CQ filters. At fixed specificity in etiology, the models have 0.27 

higher sensitivity than the CQ filters. 

     In diagnosis, the machine learning filter models have 0.19 higher specificity at fixed 

sensitivity than the CQ filters.  At fixed specificity, the filter models have a slight 

advantage of 0.045 higher sensitivity. 

     In prognosis, the machine learning filter models have 0.13 higher specificity at fixed 

sensitivity than the CQ filters.  At fixed sensitivity, the filter models have a 0.20 

advantage over the CQ filters. 

     In clinical prediction guides, the machine learning filter models have slight advantage 

in sensitivity and specificity at both fixed sensitivity and specificity (0.098 higher 

specificity at fixed sensitivity and 0.052 higher sensitivity at fixed specificity).  

     The exact splits used to build the Boolean queries were not available to replicate the 

Boolean query building methods. Though the Boolean queries perform well, it is possible 
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Table IV-6 – Sensitivity/ Specificity Optimized CQF Comparison  

Category Optimized For Method Sensitivity Specificity Precision 

Treatment Sensitivity Query Filters 0.786 (0.775 - 0.793) 0.134 (0.127 - 0.138) 

  SVM 
0.990 (0.978 - 1.000) 

0.798 (0.594 - 0.963) 0.244 (0.076 - 0.462) 

 Specificity Query Filters 0.950 (0.937 - 0.966) 0.529 (0.509 - 0.547) 

  SVM 0.970 (0.968 - 0.972) 
0.972 (0.969 - 0.974) 

0.526 (0.507 - 0.544) 

Etiology Sensitivity Query Filters 0.631 (0.626 - 0.636) 0.014 (0.014 - 0.015) 

  SVM 
0.934 (0.911 - 0.946) 

0.841 (0.824 - 0.877) 0.033 (0.030 - 0.041) 

 Specificity Query Filters 0.565 (0.429 - 0.737) 0.050 (0.038 - 0.067) 

  SVM 0.836 (0.821 - 0.857) 
0.938 (0.934 - 0.941) 

0.071 (0.069 - 0.073) 

Diagnosis Sensitivity Query Filters 0.728 (0.723 - 0.732) 0.011 (0.010 - 0.011) 

  SVM 
0.990 (0.966 - 1.000) 

0.918 (0.914 - 0.937) 0.035 (0.033 - 0.043) 

 Specificity Query Filters 0.645 (0.517 - 0.724) 0.106 (0.082 - 0.122) 

  SVM 0.690 (0.690 - 0.690) 
0.984 (0.983 - 0.984) 

0.105 (0.102 - 0.109) 

Prognosis Sensitivity Query Filters 0.798 (0.791 - 0.803) 0.016 (0.014 - 0.018) 

  SVM 
0.863 (0.763 - 0.921) 

0.928 (0.880 - 0.965) 0.050 (0.029 - 0.077) 

 Specificity Query Filters 0.516 (0.316 - 0.711) 0.032 (0.020 - 0.043) 

  SVM 0.816 (0.816 - 0.816) 
0.940 (0.939 - 0.941) 

0.050 (0.049 - 0.051) 

Sensitivity Query Filters 0.794 (0.787 - 0.799) 0.008 (0.007 - 0.013) 

 SVM 
0.947 (0.929 – 1.000) 

0.892 (0.706 – 0.939) 0.024 (0.006 - 0.028) 

Specificity Query Filters 0.559 (0.412 – 0.714) 0.124 (0.086 – 0.167) 

Clinical 
Prediction Guide 

 SVM 0.611 (0.556 – 0.667) 
0.993 (0.991 - 0.994) 

0.126 (0.117 – 0.137) 
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that the queries are overfit to the data since there is likely overlap between training and 

testing data.  

 

EBMSearch Implementation 

     Figure IV-5 shows the front page of the EBMSearch proof of concept system that 

implements the models.  Users input Pubmed formatted queries, a category, and a time 

period. The result page is shown in 
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Figure IV-6.  Results are rank ordered with sections and query terms highlighted. 

Clicking on the citation title will send the user to the corresponding Pubmed page. 

    We refer the reader to [22] for a preliminary evaluation of a subset of these models in 

answering clinical questions.   
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Figure IV-5 – Start page for EBMSearch.org 
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Figure IV-6 – Results Page for EBMSearch.org 
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Discussion 

     The machine learning filter models are robust and versatile in areas outside of internal 

medicine including pediatrics and surgery, other categories including cost, economics, 

and clinical prediction guide, and other article classes including format and purpose 

categories. The machine learning models also have equal or better performance than the 

clinical query filters at fixed sensitivity and specificity. 

 

Comparison to Clinical Query Filters 

     The comparison between the clinical query filters and the machine learning filter 

models is more valid compared to previous studies. In previous studies [2], we compared 

the machine learning filter models built on one gold standard to the clinical query filters 

built on another gold standard. This design may bias the results of the learning algorithm. 

In this study, the gold standards are identical. In the etiology, diagnosis, and prognosis 

categories, the machine learning filters identify articles with better sensitivity and 

specificity at fixed specificity and sensitivity respectively. In the treatment and clinical 

prediction guide categories, the performance at both fixed sensitivity and specificity are 

nearly identical. 

     Clinical query filters were not available in the economics rigor category, or the 

purpose categories of clinical prediction guide, cost, diagnosis, economics, etiology, 

prognosis, qualitative, or treatment, or the format categories of case reports, original, 

review, or general miscellaneous. Thus, we made no comparisons between the machine 

learning filter models to these other categories. 
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     The results of the clinical query filters may be biased high because of training and test 

set overlaps. The original train/ test splits to build the clinical query filters were not 

available. We generated each train/test cross validation split randomly without knowing 

whether the data used to build the original clinical query filters overlapped with data in 

each test split. Likely, this design resulted in data overlap between the training and test 

sets. Even with this bias though, the machine filter models have superior performance in 

etiology, diagnosis, prognosis, and clinical prediction guide. In future work, we propose 

evaluating clinical query filter and machine learning filter models on an independently 

collected and labeled validation set to generate unbiased results.  

 

Model Generalization 

     The models generalized with high discriminatory performance in the selected article 

collections in the purpose, rigor, and format categories. Our results showed that it is 

possible to build a high performing model if we have a rigorously defined standard with 

clear semantics. An open theoretical question considers the possibility of building models 

for article collections that do not have clear selection criteria. Previous work suggested 

that it is possible to build models with article collections that do not have clear selection 

criteria. In [14], we built machine learning filter models for an SSOAB gold standard that 

was constructed without clear selection criteria. Optimizing discriminatory performance 

for article collections without clear selection criteria is an open area for research. 

Furthermore, the high discriminatory performance of these models led to a more general 

observation of methodological rigor. Quality themes and rigor criteria extended across 
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other topics in medicine. Study designs were not specific to one medical topic area. For 

example, randomized controlled trials were as valid in pediatrics and internal medicine. 

 

Added advantages 

     The high performance for the machine learning filter models in the clinical prediction 

guide and economics rigor categories suggest that it is possible to build machine learning 

filter models for categories that have low positive sample. The positive to negative ratio 

for economics is 0.069% and the positive to negative ratio for clinical prediction guide is 

0.19%. These filters perform well with AUC of 0.997 and 0.985 respectively.  Studies of 

sample size for creating effective models are a useful area of future research. 

 

EBMSearch 

     The EBMSearch system is a proof of concept system implementing the machine 

learning filter models.  In this paper, we do not explore issues regarding choosing a score 

above which to show the results or the best presentation for the results.  In future work, 

we would explore methods for choosing scores for the resulting articles that optimize the 

sensitivity and specificity tradeoff.  Also, we would explore the optimal presentation of 

the results. Web search engines have shown ranked listings to be an effective means to 

meet an information need. It would be interesting to explore at what point showing 

articles in dated order is preferable to showing articles in ranked order.  
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Limitations 

 

     The performance of the clinical query filters may be biased. Ideally, within the cross 

validation design, we would keep the training and testing sets separate. The data used to 

build the Boolean query should not be the same as that used to evaluate the Boolean 

query. In this study, the training data used to build the Boolean queries has overlap with 

the testing data used to test the Boolean queries. Thus clinical query filters may perform 

better in this study than in an independent test set. In contrast, the design for evaluating 

performance of the machine learning filter models is a nested cross-validation design 

which keeps the training data separate from the testing data and avoids bias in 

performance estimation.  

     For this study, we chose this performance estimation design for the clinical query 

filters and machine learning filter models to compare the state of the art available in 

ranking/ identifying high quality literature. 

     A potential limitation of any information retrieval study is the choice of gold standard. 

We selected this gold standard because of the well-documented and rigorous 

methodology used by Haynes and colleagues to build this standard. 

     Finally, we do not address the true utility of this system to answer clinical questions 

effectively or influence medical decision making and outcomes. Evaluating this system 

and establishing the question types that the system can answer and the impact of the 

returned results on medical decision making and outcomes are an area for future research.  
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Conclusions 

     We have built models that have high discriminatory performance in identifying 

articles selected by rigorously defined criteria in purpose, format, and rigor categories. 

These models encompass areas outside of internal medicine and include cost, economics, 

and clinical prediction guide categories. These models have better or similar 

discriminatory performance when compared to available clinical query filters. We have 

also presented a working proof of concept system for implementing these models. This 

work paves the way for practical application of machine learning filter models to identify 

high quality articles in the literature. 
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CHAPTER V 

 

V. EBMSEARCH: PROOF OF CONCEPT SEARCH ENGINE  

 

     In this section, I present the EBMSearch system that implements the machine learning 

filter models to all of MEDLINE. In this section, I describe EBMSearch and its 

implementation. 

 

EBMSearch 

     I implemented a demonstration proof of concept system called EBMSearch located at 

http://www.ebmsearch.org. EBMSearch applies machine learning filter models built 

using the ACP Journal Club gold standard to articles in MEDLINE published from 2000 

to 2006*.  Users select machine learning filter models built using the ACP Journal Club 

gold standard in the categories of diagnosis, prognosis, etiology, and treatment, and time 

frames of 1 year, 2 years, and 5 years for ranking the returned results. The resulting list of 

articles is ranked by SVM model output score. The index page is shown in Figure V-1. 
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Figure V-1 – Index page for EBMSearch system. 

     The EBMSearch query mirrors the functionality of a Pubmed query. EBMSearch 

supports field descriptions and tagged search by text word and location (i.e. title, abstract, 

etc), author, journal title, date, phrase, gender, language, age group, or human or animal 

studies [1].  EBMSearch also supports automatic term mapping for untagged terms to 

match, in order, terms in a MeSH translation table, a Journals translation table, Full 

Author translation table, and an Author index [2].  Any Pubmed query is an acceptable 

EBMSearch query. In addition, the user specifies a search category (i.e. treatment, 

diagnosis, prognosis, etiology) and a time frame to search (i.e. 1 year, 2 years, 5 years).  
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     EBMSearch sorts the returned articles by score from the category specific SVM 

model. Scores above 0 are in the positive class. Scores at 0 are indeterminate, and scores 

below 0 are in the negative class. The score threshold set at 0 for article classification (i.e. 

positives/ negatives) is determined by the distribution of positives and negatives in the 

gold standard for classifying articles across all topics. The classification threshold can be 

varied based on the user defined threshold of sensitivity and specificity he or she is 

willing to review. For example, a user writing a review article may read more articles and 

accept a lower threshold to identify articles with higher sensitivity and lower specificity. 

A second user may want to read fewer articles and accept a higher threshold to identify 

articles with lower sensitivity and higher specificity. All articles from the query are sorted 

and shown from highest to lowest score regardless of relative value. Ranking has proven 

popular with other major search engines including Pubmed, Yahoo, Google, and 

MSNSearch. The results page is shown in Figure V-2. 
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Figure V-2 – Results page of EBMSearch system. 

 

     I built a results interface that allows quick content skimming of the result set. Query 

terms are presented in bold in the abstract and/or the title. Major sections in the abstract 

such as the Introduction, Methods, Results, Conclusions, etc are highlighted in red. 

Originating journal is highlighted in green. I also used color and highlighting to 

differentiate parts of the results page. A blue bar separates the search interface from the 
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result articles. Determining whether these search refinements improve skimming of the 

results page was not pursued in this dissertation. 

     I implemented EBMSearch using a python based web framework called Turbogears 

[3]. Turbogears adheres to a Model-View-Controller architecture which has advantages 

in separating data, logic, and presentation of the website [4]. Whether this system would 

function with production like loads is unknown. 

     In earlier versions, I implemented a spell checker, an automated suggestion list based 

on MeSH terms to help users refine their queries, and semi-automatic MeSH explosions. 

These GUI features were excluded from the current version. The spell checker would 

identify misspellings using the Aspell algorithm [5]. The automated suggestion list 

proposed MeSH terms that included the query terms. We implemented the suggestion list 

by adding terms from MeSH and synonyms to an inverted index [6]. For example, given 

the query “diabetes” the system would suggest MeSH term “diabetes mellitus type II” 

since the term diabetes occurs in the MeSH term. Similarly, for a query such as “heart 

attack”, the system would suggest “myocardial infarction” as the appropriate MeSH 

descriptor to refine the results. We obtained the MeSH terms and synonyms from 

download files available from the National Library of Medicine [7]. I also considered 

semi-automatic MeSH explosions. For example, a search for “pneumonia” would 

automatically map to “Pneumonia [MAJR]”. Pubmed has since implemented a spell 

checker [8] and MeSH explosions for query refinement [9]. Research supporting these 

user interface changes is a logical step for future research. An earlier version of the 

results page showing some of these features is shown in Figure V-3. 
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Figure V-3 – Proof of concept interface. The left side will display the MeSH tree if one of 

the terms is a MeSH term. Suggestions are made if the search query matches part of the 

MeSH term vocabulary. For example, “diabetes mellitus” and “diabetes insipidus” are 

suggested for a search of “diabetes.”  
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     I excluded the earlier version with these GUI enhancements from production. Their 

implementation is not within the present focus of this proof of concept system8. In future 

work, I will create a more robust search engine for general use. 
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CHAPTER VI 

 

VI. EXTENSIONS TO THE WORLD WIDE WEB 

 

    In this section, I extend the machine learning framework to the web. I built the first 

validated models that identify web pages that make unproven cancer treatment claims 

outperforming unvalidated web models and PageRank by 30% area under the receiver 

operating curve. 

 

Text Categorization Models for Identifying Unproven Cancer Treatments on 
the Web 

 

Aphinyanaphongs, Y, Aliferis C. “Text Categorization Models for Identifying Unproven 

Cancer Treatments on the Web.” In: Medinfo 2007; Sydney, Australia. 

 

Abstract 

     The nature of the internet as a non-peer-reviewed (and largely unregulated) 

publication medium has allowed wide-spread promotion of inaccurate and unproven 

medical claims in unprecedented scale. Patients with conditions that are not currently 

fully treatable are particularly susceptible to unproven and dangerous promises about 

miracle treatments. In extreme cases, fatal adverse outcomes have been documented. 

Most commonly, the cost is financial, psychological, and delayed application of 

imperfect but proven scientific modalities. To help protect patients, who may be 
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desperately ill and thus prone to exploitation, we explored the use of machine learning 

techniques to identify web pages that make unproven claims. This feasibility study shows 

that the resulting models can identify web pages that make unproven claims in a fully 

automatic manner, and substantially better than previous web tools and state-of-the-art 

search engine technology. 

 

Introduction 

     “The killing of all parasites and their larval stages together with removal of isopropyl 

alcohol and carcinogens from the patients' lifestyle results in remarkable recovery (from 

cancer), generally noticeable in less than one week [1].” This is one example of an 

unproven treatment claim made on the web. These unproven treatments are known as 

quackery with the quacks promoting them defined as "untrained people who pretend to be 

physicians and dispense medical advice and treatment [2]." The internet allows quacks to 

advocate inaccurate and unproven treatments with documented fatal, adverse outcomes in 

some situations [3-6]. 

     In regards to cancer patients, Metz et al. reported that 65% of cancer patients searched 

unproven treatments and 12% purchased unconventional medical therapies online [7]. In 

another study, Richardson reported that 83% of cancer patients had used at least one 

unproven treatment [8]. Many patients are ill-equipped to evaluate treatment information 

[9]. The language and quality of web pages with unproven treatments is also highly 

variable [10]. The rapid growth of the internet, combined with the ease of publishing 

unproven claims leads susceptible and often desperately ill patients to further adverse 
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outcomes, patient and family despair, and sunk costs. It is thus an important mandate of 

the medical profession to protect patients from inaccurate and poor medical information. 

     So far extensive research has developed several manual methods to combat the 

propagation of unproven claims on the web. The Health-on-the-Net Foundation 

advocates self-regulation of health related websites [11].  The foundation applies strict 

criteria to websites and grants them a seal of approval if they pass. However, most health 

care consumers ignore the seals [12]. In another approach, experts produced rating tools 

that consumers are supposed to apply to websites[13, 14]. Another method is manual 

review of individual websites that are published either in print or electronically.  

     Each method has limitations. Self-regulation relies on knowledge of the certification 

and a vigilant public to report failing web sites. Rating tools are dependent on a 

knowledgeable public to apply, they are difficult to validate, time consuming to produce, 

and do not always produce consistent ratings [15, 16]. Moreover, the rating tools are not 

appropriate for use on complementary/ alternative medicine sites [17]. Furthermore, 

manual review suffers from limits in reviewer time and the selection of web sites to 

review. 

     Ideally, we would like a solution that is validated, easy to apply by health care 

consumers, and works on any webpage. In this paper, we hypothesize that automated 

approaches to identifying web pages with unproven claims may provide a solution. 
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Previous Work On Automatic Webpage Identification 

     Previous research focused on automated or semi-automated approaches to identifying 

high quality medical web pages.  

     Price and Hersh [18] evaluated web page content by combining a score measuring 

quality proxies for each page. Quality proxies included relevance, credibility, bias, 

content, currency, and the value of its links. The authors evaluated the algorithm on a 

small test collection of 48 web pages covering nine medical topics labeled as desirable or 

undesirable by the investigator. In all cases, the score assigned to the desirable pages was 

higher than the scores assigned to undesirable pages. 

     Even though the algorithm perfectly discriminated between desirable and undesirable 

webpages, several limitations exist. The test sample was small and not representative of 

the scale for a web classification task. The algorithm does not measure content quality 

directly, but used proxies for quality to compile a score for a web page. The usefulness of 

some of the explicit criteria may not correlate with content quality [19], and may not be 

valid or good features to include for scoring. 

     As a leading search engine, Google has become a de facto standard for identifying and 

ranking web pages. Pages that rank highly in Google are assumed to be of better quality 

than those at lower rank. Several researchers have explored this assumption for health 

pages. Fricke and Fallis [20] evaluated PageRank score as one indicator of quality for 

116 web sites about carpal tunnel syndrome. Their results show that PageRank score is 

not inherently useful for discrimination or helping users to avoid inaccurate or poor 

information. Of the 70 web sites with high PageRank, 29 of them had inaccurate 

information.  
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     Griffiths [21] evaluated PageRank scores for depression websites using evidence 

based quality scores.  The authors obtained Google PageRank scores for 24 depression 

websites from the DMOZ Open Directory Project website. Two health professional raters 

assigned an evidence based quality score to each site. PageRank scores correlated weakly 

(r = 0.61, P=0.002) with the evidence based quality scores. 

     Tang, Craswell, and Hawking [22] compared Google results with a domain-specific 

search engine for depression.  They found that of a 101 selected queries, Google returned 

more relevant results, but at the expense of quality.  Of the 50 treatment related queries, 

Google returned 70 pages of which 19 strongly disagreed with the scientific evidence.  

 

Hypothesis 

     Our fundamental hypothesis for this feasibility study is that we can model expert 

opinion and build machine learning models that identify web pages that make unproven 

claims for the treatment of cancer. 

     To the best of our knowledge, there is no research on validated automated techniques 

for identifying web pages that make unproven claims. In prior work, we showed that text 

categorization methods identified high quality content specific articles in internal 

medicine [23]. Extending this work into the web space, we reverse the hypothesis of the 

previous studies. Rather than identifying high quality pages, we explore automated 

identification of low quality pages, specifically pages that make unproven claims for 

cancer treatment. 
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Materials and Methods 

 

Definitions 

     Our gold standard relied on selected unproven cancer treatments identified by experts 

at http://www.quackwatch.org. The website is maintained by a 36 year old nonprofit 

organization whose mission is to “combat health related frauds, myths, fads, fallacies, 

and misconduct.” The group employs a 152 person scientific and technical advisory 

board composed of academic and private physicians, dentists, mental health advisors, 

registered dietitians, podiatrists, veterinarians, and other experts whom review health 

related claims. By using unproven treatments identified by an oversight organization, we 

capitalized on an existing high quality review. 

 

Corpus Construction 

     For this feasibility study, we randomly chose 8 unproven treatments from 120 dubious 

cancer treatments listed by quackwatch.org [24]. The randomly selected treatments were 

“Cure for all Cancers”, “Mistletoe”, “Krebiozen”, “Metabolic Therapy”, “Cellular 

Health”, “ICTH”, “Macrobiotic Diet”, and “Insulin Potentiation Therapy.” We then 

identified web pages that have these treatments by appending the words “cancer” and 

“treatment” and querying Google. We retrieved the top 30 results for each unproven 

treatment. We used a python script to download and store each result as raw html for 

further labeling.  

 



Aphinyanaphongs – Text Categorization ModelsPage 197 of 224 

 
 

197

Corpus Labels 

     We applied a set of criteria for identifying web pages with unproven treatment claims. 

First, of the initial 240 pages, we excluded not found (404 response code) error pages, no 

content pages, non-English pages, password-protected pages, pdf pages, redirect pages, 

and pages where the actual treatment text does not appear in the document9. Of the 

remaining 191 html pages, both authors independently asked the following question of 

each web page: does the web page make unproven claims about the proposed treatment 

and its efficacy. We labeled web pages with unproven claims as positive and the others as 

negative. 

     Web pages that are purely informational in nature but do not make any unproven 

claims about the cancer treatment and its efficacy were labeled as negative.  Web pages 

selling a book with user comments that has unproven claims were labeled as positive. 

Portal pages that do not make any claim were labeled as negative. Web pages that 

attempted to present an objective viewpoint of the treatment were carefully reviewed for 

any unproven claims, and, if so, were labeled positive. Additionally web pages that sell 

unproven treatments but do not make claims were labeled negative. 

     Both authors applied the criteria independently. We calculated the inter-observer 

agreement (Cohen’s Kappa [25]) at 0.7610. Of the 20 sites with discrepant labelings, the 

reviewers discussed the labels until consensus was reached. The final corpus was 

composed of 191 web pages with 93 labeled as positive and 98 as negative. 

 

                                                 
9 The Google ranking algorithm relies on anchor text to identify web page content. Anchor text may point 
to a web page that does not use the anchor text in the web page itself.  
10 We set a threshold of 0.70 for Cohen’s Kappa. If kappa was below 0.70, we would refine the labeling 
criteria until the threshold was reached. 
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Webpage Preparation 

     For this feasibility study, we chose the simplest web page representation. We 

converted web pages to a “bag of words” suitable for the machine learning algorithm[23]. 

First, for each web page, we removed all content between style and script tags. Second, 

all tags (including the style and script tags) were removed. Third, we replaced all 

punctuation with spaces. We split the remaining string on the spaces to obtain individual 

words. Finally, we stemmed each word [23], applied a stop word list [23], removed any 

words that appear in less than 3 web pages, and encoded as weighted features using a log 

frequency with redundancy scheme [23]. 

 

Learning Model (Support Vector Machines) 
 
     We employed Support Vector Machine (SVM) classification algorithms. The SVM’s 

calculate maximal margin hyperplane(s) separating two or more classes of the data. 

SVMs have had superior text classification performance compared to other methods [23], 

and this motivated our use of them.  We used an SVM classifier implemented in libSVM 

v2.8 [26] with a polynomial kernel. We optimized the SVM penalty parameter C over the 

range {0.1, 1, 2, 5, 10} with imbalanced costs applied to each class proportional to the 

priors in the data [23], and degree d of the polynomial kernel over the range {1, 2, 5}. 

The ranges of costs and degrees for optimization were chosen based on previous 

empirical studies [23].   

 



Aphinyanaphongs – Text Categorization ModelsPage 199 of 224 

 
 

199

Model Selection and Performance Estimation 
 
     We used 10-fold cross-validation that provides unbiased performance estimates of the 

learning algorithms [23]. This choice for n provided sufficient high-quality positive 

samples for training in each category and provided sufficient article samples for the 

classifiers to learn the models. The cross-validation procedure first divided the data 

randomly into 10 non-overlapping subsets of documents where the proportion of positive 

and negative documents in the full dataset is preserved for each subset. Next, the 

following was repeated 10 times: we used one subset of documents for testing (the 

“original testing set”) and the remaining nine subsets for training (the “original training 

set”) of the classifier. The average performance over 10 original testing sets is reported.  

     To optimize parameters of the SVM algorithms, we used another “nested” loop of 

cross-validation [23] by splitting each of the 10 original training sets into smaller training 

sets and validation sets. For each combination of learner parameters, we obtained cross-

validation performance and selected the best performing parameters inside this inner loop 

of cross-validation. We next built a model with the best parameters on the original 

training set and applied this model to the original testing set. Notice that the final 

performance estimate obtained by this procedure will be unbiased because each original 

testing set is used only once to estimate performance of a single model that was built by 

using training data exclusively. 
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Quackometer 

     We compared our algorithm to a heuristic, unvalidated, and unpublished quack 

detection tool available at http://www.quackometer.net. The exact details of the detection 

tool are proprietary. In general, the algorithm counts words in web pages that quacks use, 

and sorts the words into at least 5 dictionaries [27]. It looks for altmed terms such as 

“homeopathic” and “herbal”, pseudoscientific words such as “toxins” and “superfoods”, 

domain specific words such as “energy” and “vibration”, skeptical words such as 

“placebo” and “flawed”, and commerce terms such as “products” and “shipping”. The 

algorithm counts the frequency of terms, applies a frequency threshold, and generates a 

corresponding score from 0 to 10. The tool is available at [28]. 

     We compared our models to the Quackometer by calculating the corresponding area 

under the curve (AUC) for each 10 fold-split and reporting the mean and standard 

deviation. 

 

Google PageRank 

     The PageRank algorithm [29] is used by Google to identify higher quality pages on 

the web. The basic tenet is that a web page will rank highly if the web page has more and 

higher quality links pointing to it.  For example, if a web page has a link from Yahoo (a 

highly linked page), it would rank higher than a link from a less linked to web page. In 

detecting web pages with unproven claims, our assumption is that web pages with poor 

quality information should get fewer and lower quality links than web pages with better 

quality. 
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     We used Google as a proxy for PageRank11. We made the comparison to our 

algorithms within each topic rather than within each 10 fold split. We compared within 

each topic to avoid bias in ranking situations where one topic has uniformly higher 

Google rank than another topic. We inverted the labels12 in the 8 randomly selected 

topics, calculated the AUC, and reported the mean AUC and standard deviation. 

 

Results 

Table VI-1 shows the AUC performance between the machine learning filter models, 

Quackometer, and Google. The machine learning method identified web pages that make 

unproven claims with an AUC of 0.93 with a standard deviation of 0.05 across the 10 

folds. Quackometer does worse with an AUC of 0.67 and a standard deviation of 0.10 

across the same 10 folds. Finally Google performs least effectively in discriminating web 

pages with an AUC of 0.63 and a standard deviation of 0.17 across the 8 selected topics.  

Figure VI-1 shows the corresponding receiver operating curves for each method. 

                                                 
11 Google uses a proprietary version of PageRank for ranking. 
12 We test the assumption that PageRank will rank web pages with proven claims higher than web pages 
with unproven claims. 
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Table VI-1 – Area Under Curve for Each Discrimination Method 

Model Mean Area Under the Curve 

Support Vector Machine 0.93 (std. 0.05) 

Quackometer 0.67 (std. 0.10) 

Google 0.63 (std. 0.17)13 

  

 
 

 

Figure VI-1 - Receiver operating curves for each method. 

 
 

Discussion 

This feasibility study showed that machine learning filter models identify web pages that 

make unproven claims on a select, focused gold standard. The learning filters have 

superior performance over the Quackometer [27] and Google. We also note that the loose 

                                                 
13 The mean and standard deviation are calculated across the 8 topics rather than across the test sets of the 
10 folds. 
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correlation between Google and high quality sites seems comparable to previous work 

[20-22].  

This method has distinct advantages to rating instruments [13, 14] or manual review. 

First, there is no need to state explicit rating criteria. The model identified patterns in the 

data that label a page with unproven claims. Second, compared to the limited focus of 

manual review on select web pages, these models allow application to any web page.  

We also highlight a subtle point in this work. We make a distinction between web pages 

that make unproven claims and web pages that promote the unproven treatment. 

Oftentimes, this distinction is blurry. For this work, we only want to identify pages that 

make unproven claims. Pages that promote a product but do not make unproven claims 

are not identified. In future studies, we are interested in evaluating models that identify 

web pages that promote treatments.  

In Table VI-2, we present excerpts from pages where the previous models failed to 

identify pages with unproven claims. These pages should have been identified by the 

Quackometer [27] and should not have appeared in the top 30 Google results. Such 

failure to identify or mark these pages may result in patient’s exposure to potentially 

harmful, unproven treatments.  

In practice, we envision implementing a system that works much like a spam filter works 

for e-mail. Spam filters identify illegitimate e-mails. In a similar fashion, we envision a 

system that runs on top of a search engine and flags any web pages that may have 

unproven health claims. 
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Table VI-2 - Web page excerpts where previous tools fail to detect unproven claims. A page that makes unproven claims is identified 

as such if it has a small support vector machine rank, a large quackometer score, and a large Google rank, respectively. SVM rank is 

calculated over 10 fold cross validation test set composed of 9 positives and 9 negatives. Google rank is out of the top 30 results 

returned. Quackometer score provides ranks from 0 to 10. “S” denotes success of the corresponding filter, while “F” failure. 

Failure Analysis Excerpts Support Vector 
Machine Rank 

Quackometer 
score 

Google rank 

I am convinced that our mind and emotions are the deciding factor in 
the cure of cancer. 

1 (S) 1 (F) 16 (F) 

The hundreds of clinical studies conducted by many competent 
physicians around the world, including those directed by Dr. Emesto 
Contreras Rodriguez at the Oasis of Hope Hospital hospital in Mexico, 
give us complete confidence that there is no danger. 

3 (S) 0 (F) 9   (F) 

The cure shows results almost immediately and lasts three weeks only. 
It is cheap and affordable for everybody and proved with 138 case 
studies. 

3 (S) 8 (S) 3  (F) 

Many advanced cancer patients are petrified of their tumor. This knee-
jerk reaction is caused by orthodox medicine's focus on the highly 
profitable (and generally worthless) process of shrinking tumors. 

1 (S) 1 (F) 18 (F) 

IPT (Insulin Potentation Therapy) has an outstanding 135 doctor-year 
track record (115 years for cancer) over 72 years, and is ready for 
clinical trials and widespread use. 

1 (S) 0 (F) 1 (F) 

We are proud of these findings, which confirm that cellular medicine 
offers solutions for the most critical process in cancer development, 
the invasion of cancer cells to other organs in the body. Conventional 
medicine is powerless in this. 

2 (S) 1 (F) 8 (F) 
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Limitations 

We tested a small sample comprised of 8 unproven treatments in 240 web pages. We will 

explore how well the models generalize with an independently collected dataset, more 

unproven treatments, and more labeled web pages. Collecting an independent dataset 

would allow for validation of the labeling criteria and the model selection procedures.  

For this feasibility study, we purposely limited the topic of this study to cancer treatment. 

In the future, we will build and evaluate other models identifying web pages that make 

unproven claims for other conditions such as arthritis, autism, and allergies. 

 

Conclusions 

We present a first of its kind feasibility study to build machine learning filter models that 

exhibit high discriminatory performance for identifying web pages with unproven cancer 

treatment claims. This work paves the way for building broadly applicable models 

involving more health conditions, more pages with unproven claims, and eventually 

applied systems to protect patients from quackery. 

 

Acknowledgments 

The first author acknowledges support from NLM grant LM007948-02. The second 

author acknowledges support from grant LM007948-01. 

 



Aphinyanaphongs – Text Categorization ModelsPage 206 of 224 

 
 

206

References 

[1] Clark H. The Cure for All Cancers: New Century Press; 1993. 

[2] American Heritage Dictionary. 

[3] Hainer MI, Tsai N, Komura ST, Chiu CL. Fatal hepatorenal failure associated with 
hydrazine sulfate. Ann Intern Med. 2000 Dec 5;133(11):877-80. 

[4] See KA, Lavercombe PS, Dillon J, Ginsberg R. Accidental death from acute selenium 
poisoning. Med J Aust. 2006 Oct 2;185(7):388-9. 

[5] Bromley J, Hughes BG, Leong DC, Buckley NA. Life-threatening interaction 
between complementary medicines. Ann Pharmacother. 2005 Sep;39(9):1566-9. 

[6] Mularski RA, Grazer RE, Santoni L, Strother JS, Bizovi KE. Treatment advice on the 
internet leads to a life-threatening adverse reaction: hypotension associated with Niacin 
overdose. Clin Toxicol (Phila). 2006;44(1):81-4. 

[7] Metz JM, Devine P, DeNittis A, Jones H, Hampshire M, Goldwein J, Whittington R. 
A multi-institutional study of Internet utilization by radiation oncology patients. Int J 
Radiat Oncol Biol Phys. 2003 Jul 15;56(4):1201-5. 

[8] Richardson MA, Sanders T, Palmer JL, Greisinger A, Singletary SE. 
Complementary/alternative medicine use in a comprehensive cancer center and the 
implications for oncology. J Clin Oncol. 2000 Jul;18(13):2505-14. 

[9] Sagaram S, Walji M, Bernstam E. Evaluating the prevalence, content and readability 
of complementary and alternative medicine (CAM) web pages on the internet. Proc 
AMIA Symp. 2002:672-6. 

[10] Ernst E, Schmidt K. 'Alternative' cancer cures via the Internet? Br J Cancer. 2002 
Aug 27;87(5):479-80. 

[11] Health on the Net.   [accessed 11-27-2006]; http://www.hon.ch/ 

[12] Eysenbach G, Kohler C. How Do Consumers Search For and Appraise Health 
Information on the WWW? BMJ. 2002 March 9;324. 

[13] Bernstam EV, Shelton DM, Walji M, Meric-Bernstam F. Instruments to assess the 
quality of health information on the World Wide Web. Int J Med Inform. 2005 
Jan;74(1):13-9. 

[14] Kim P, Eng TR, Deering MJ, Maxfield A. Published criteria for evaluating health 
related web sites: review. Bmj. 1999 Mar 6;318(7184):647-9. 



Aphinyanaphongs – Text Categorization ModelsPage 207 of 224 

 
 

207

[15] Bernstam EV, Sagaram S, Walji M, Johnson CW, Meric-Bernstam F. Usability of 
quality measures for online health information. Int J Med Inform. 2005 Aug;74(7-8):675-
83. 

[16] Ademiluyi G, Rees CE, Sheard CE. Evaluating the reliability and validity of three 
tools to assess the quality of health information on the Internet. Patient Educ Couns. 2003 
Jun;50(2):151-5. 

[17] Walji M, Sagaram S, Sagaram D, Meric-Bernstam F, Johnson C, Mirza NQ, 
Bernstam EV. Efficacy of quality criteria to identify potentially harmful information. J 
Med Internet Res. 2004 Jun 29;6(2):e21. 

[18] Price SL, Hersh WR. Filtering Web pages for quality indicators: an empirical 
approach to finding high quality consumer health information on the World Wide Web. 
Proc AMIA Symp. 1999:911-5. 

[19] Fallis D, Fricke M. Indicators of accuracy of consumer health information on the 
Internet. J Am Med Inform Assoc. 2002 Jan-Feb;9(1):73-9. 

[20] Fricke M, Fallis D, Jones M, Luszko GM. Consumer health information on the 
Internet about carpal tunnel syndrome. Am J Med. 2005 Feb;118(2):168-74. 

[21] Griffiths KM, Tang TT, Hawking D, Christensen H. Automated assessment of the 
quality of depression websites. J Med Internet Res. 2005;7(5):e59. 

[22] Tang TT, Craswell N, Hawking D, Griffiths KM, Christensen H. Quality and 
Relevance of Domain-specific Search: A Case Study in Mental Health. Info Retr. 
2006;9(2):207-25. 

[23] Aphinyanaphongs Y, Tsamardinos I, Statnikov A, Hardin D, Aliferis CF. Text 
Categorization Models for High Quality Article Retrieval in Internal Medicine. J Amer 
Med Inform Assoc. 2005;12(2):207-16. 

[24] Cancer Patients Seeking Alternative Treatments.   [accessed 11-26-2006]; 
http://www.quackwatch.org/00AboutQuackwatch/altseek.html 

[25] Cohen J. A coefficient of agreement for nominal scales. Education and Psych 
Measurement. 1960;20(1):37-46. 

[26] Chang C, C. L. LIBSVM.  3-13-2006  [accessed; 
http://www.csie.ntu.edu.tw/~cjlin/libsvm 

[27] Science of Quackometrics.   [accessed 11-26-2006; 
http://www.quackometer.net/blog/2006/04/science-of-quackometrics.html 

[28] Quackometer.   [accessed 11-26-2006]; 
http://www.quackometer.net/?page=quackometer 



Aphinyanaphongs – Text Categorization ModelsPage 208 of 224 

 
 

208

[29] Brin S, Page L. The anatomy of a large scale hypertextual Web search engine. 
Computer Networks and ISDN Systems. 1998;30:107-17. 

 



Aphinyanaphongs – Text Categorization ModelsPage 209 of 224 

 
 

209

CHAPTER VII 

 

VII. CONCLUSIONS 

 

    This dissertation addresses the problem of identifying high quality journal articles and 

web-sites in support of Evidence-Based Medicine using machine learning methodologies.   

As the volume and size of the medical literature and the web continue to grow, the need 

for automated techniques to filter and identify quality literature and web pages becomes 

paramount.   

     The experimental evidence amassed and discussed in the previous chapters supports a 

number of conclusions: 

1. The models produced and evaluated have excellent predictivity for identifying 

high quality articles. 

2. The discriminatory ability of machine learning models is superior to Boolean 

filters, bibliometric citation count, impact factor, Google Pagerank, Yahoo 

Webranks, and web page hit count. 

3. The model selection procedures employed yield models that are not overfit and 

their performance generalizes well in prospective validation corpora. 

4. Models can be built for many medical specialty areas outside of internal 

medicine. 

5. The models can identify quality articles in many content categories. 
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6. The models are straightforward to implement as demonstrated with a proof of 

concept web-based system that applies the models to MEDLINE articles. 

7. Finally, the methodology was also capable of producing models with high 

discriminatory performance for identifying web pages that make unproven 

treatment claims. 

 

The set of hypotheses explored and the experiments presented also point out to several 

significant open questions. I discuss here several such related problems that are both non-

trivial and important to solve. 

 

Open Problems 

1. In evaluating the machine learning filter models, I ranked the articles by score and 

applied receiver operating characteristic curve analysis. The receiver operating 

characteristic curve shows multiple points of sensitivity and specificity obtained 

across all topics. Specific users will need the models to rank documents within one 

or just a few topics, however. Because each topic has prior probabilities of positive 

to negative articles than the totality of PubMed, topic-specific thresholds will be 

needed to ensure performance characteristics such as smallest number of 

documents needed to be read in order to see x% of all positive ones, etc.  Such 

thresholds can be pre-computed for topics and topic categories, or dynamic 

schemes employing user-feedback may be utilized.  

2. Following standard modeling methodology principles, I started with simple 

representation of articles, that is the “bag of words” (and occasionally the “bag of 
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concepts”) approach before considering more complex representations. The 

experiments showed that the simple representations were very effective for the 

tasks studied. In future tasks, especially as the granularity of questions answered by 

the machine learning models increases, more complex representations may be 

needed.  

3. The machine learning filter models have very high discriminatory power with area 

under the ROC curves greater than 90% in all categories and close to 99% for many 

of them. For the categories where area under the curve is in the low 90s (%),in-

depth failure analysis on false positives and false negatives may shed light on 

techniques needed to further improve discriminatory performance. 

4. How vulnerable are the machine learning filter models to being gamed? 

Understanding the mechanisms by which this is feasible and preventing them is an 

interesting and necessary area of work. 

5.  The machine learning filter models outperform citation metrics but the former 

require a labeled gold standard whereas the latter do not. In the majority of 

experiments presented, pre-existing labeling was used and the manual effort of 

labeling documents was thus minimized. In information retrieval tasks where 

existing labels cannot be readily found, it would be valuable to have methods that 

create such by using/processing citation structure information, by employing 

imputation or via other semi-supervised methods.  

6. An important open question is how the machine learning filter models can help 

answer clinical questions and influence medical decision making and outcomes.   
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7. As discussed, I built a proof-of-concept system that demonstrated the application of 

the machine learning filter models on MEDLINE. The returned results are shown 

in a list format. An open area of research is to explore state of the art ways to 

present and highlight the pertinent information from the abstracts.  

8. Finally, the experiments to identify unproven cancer treatments in the WWW just 

scratched the surface of what is possible. Increasing the scope of diseases, 

treatments, evaluation years, and types of questions asked define a large space of 

possibilities for health-related information retrieval on the WWW. 


