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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

 

Introduction 

 Obesity has become a major health concern in both developed and developing 

nations (1).  The relative contribution of Environment versus Genetics on obesity remains 

highly debated; however, monogenic obesity has been demonstrated in humans (2, 3), 

other mammals (4), and even the fruit fly Drosophila melanogaster (5).  Many of the 

known mutations found to be causative in monogenetic obesity syndromes in mammals 

lie in genes involved in a humoral-neuronal circuit that culminates (theoretically) in the 

hypothalamus of the brain.  The hypothalamus contains many nuclei known to control 

feeding behavior and other aspects of energy homeostasis (6), some of which were 

discovered by physical lesion studies, especially the ventromedial hypothalamus, prior to 

the age of genetics (7).  As researchers in this field, we have also benefited from the 

“mouse fanciers” who collected odd and interesting strains of mice.  Five of these strains 

were examples of monogenetic obesity, some of which will be discussed later in this 

chapter.   

  One of the genes currently thought to play a key role in the energy balance 

equation that takes place in the hypothalamus is the melanocortin receptor type 4 

(MC4R).  We now know that the MC4R gene is expressed in many specific nuclei within 

the hypothalamus; however, the study of the melanocortin signaling pathways and, 

eventually, their role in feeding behavior began with an observation that frog pituitary 
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extracts had two interesting and seemingly unrelated properties when injected into the 

bloodstream of other frogs: vasodilation and quickening of the pulse 

(adrenocorticotrophic activity) and pigmentation deposition in the skin (melanotrophic 

activity) (8).  These observations led to the discoveries of the glucocorticoids released 

from the adrenals and eumelanin synthesis in melanocytes of the skin.  Ultimately, the 

pre-prohormone from the pituitary extract responsible for both physiological actions was 

cloned, namely the pro-opiomelanocortin gene (POMC).   

 The POMC pre-prohormone is cleaved to form several bioactive peptides, 

including the agonists for the five melanocortin receptors in addition to the mu-opioid 

receptor (9).  One of these fragments, alpha-MSH, is the hormone agonist for MC1R in 

melanocytes of the skin and MC4R in the CNS.  The physiological actions of alpha-MSH 

upon MC1R and the melanocytes in the skin has been better characterized.   

 Upon binding of the alpha-MSH ligand, the MC1R activates a cAMP-dependent 

pathway, which results in eumelanin synthesis and deposition (See Figure 1.1).  Genetic 

studies of mouse strains harboring interesting coat colors led to the cloning and 

physiological characterization of the agouti signaling protein (agouti), a paracrine 

hormone normally produced in close proximity to melanocytes (10).  The function of this 

hormone is to act as an endogenous antagonist of the MC1R (11), though some studies 

claim evidence for agouti acting as a reverse-agonist (12).  The physiological 

consequence in melanocytes in response to agouti signaling is the lowering of cAMP 

levels, which in turn leads to production of pheomelanin (red to yellow pigment) instead 

of eumelanin (dark brown to black pigment) (See Figure 1.1).   
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Figure 1.1 
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Figure 1.1: Competing Action of Alpha-MSH and Agouti Signaling Protein on Melanocortin Receptor 
Type 1 in Melanocytes of the Skin.  Alpha-MSH is released by the pituitary gland into the bloodstream of 
fur bearing mammals.  Upon reaching its target site in the skin (melanocytes) it binds to and activates the 
MSH Receptor (MC1R).  Activation of MC1R yields an increase in intracellular concentration of cAMP.  
The increased levels of cAMP activate a PKA dependent signaling cascade that culminates in deposition of 
eumelanosomes (brown or black pigments).  When the paracrine Agouti Signaling Protein (Agouti) is 
released from nearby cells, it binds to and blocks alpha-MSH binding of MC1R.  The result is relatively 
low levels of intracellular cAMP and the deposition of phaeomelanosomes (yellow or red pigments). 
 
 Mice in the wild (or in your kitchen cupboard) have a brownish coat color due to 

a temporal expression of agouti in the skin during growth of the fur.  The resulting 

eumelanin-pheomelanin-eumelanin banding pattern results in a brownish appearance.  

Dominant hypermorphic mutations in MC1R (13), as well as recessive mutations in 

agouti (14), lead to a “black” coat color.  The latter mutation example is the genetic cause 
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of the coat color phenotype familiar to all who have worked with the popular laboratory 

model animal, the C57bl6 strain of mice.  Conversely, dominant overexpressing 

mutations of agouti result in a yellow coat color phenotype (10).  One such strain is the 

Obese Lethal Yellow (Ay) mouse, named because of the fact that two copies of the 

mutant allele (harboring a large upstream deletion in the agouti and adjacent gene) are 

lethal in utero.  As the name implies, the mice are also obese with melanocortinergic 

signaling blockade due to the ectopic expression of agouti causing the unique phenotype, 

albeit initially it was unclear which melanocortin receptor in the CNS was being targeted 

by agouti. 

 

Cloning of the Central Melanocortin Receptors 

 At the time of the discovery of the mutational cause of the agouti yellow obesity 

syndrome, four melanocortin receptors had been cloned in mouse and human.  The 

MC1R, or MSH-Receptor, has been discussed above.  The ACTH-R (MC2R) was cloned 

at the same time by the Cone Laboratory (15).  The primary tissue of MC2R expression is 

the adrenal glands, where it takes a key role in adrenal cortical function.  The MC3R and 

MC4R were cloned shortly thereafter, and were found to have the highest expression in 

the CNS; therefore, they were collectively termed the “Neural” or “Central” melanocortin 

receptors (16).  The fifth and final melanocortin receptor, MC5R, was cloned and found 

to be widely expressed in the periphery, but its primary function is in sebaceous glands 

(17, 18, 19).  Table 1.1 lists the five melanocortin receptors, principal sites of expression, 

and physiological function(s). 
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Table 1.1 

The Melanocortin Receptors
PRINCIPAL

RECEPTOR SITES OF EXPRESSION FUNCTION(S)

MC1 (MSH-R) MELANOCYTES PIGMENTATION

MC2 (ACTH-R) ADRENAL CORTEX, STEROIDOGENESIS
ADIPOCYTES

MC3  HYPOTHALAMUS, UNKNOWN,
Energy Partitioning?
Kidney Function?

LIMBIC SYSTEM,
PLACENTA, GUT 

MC4 HYPOTHALAMUS, FEEDING, METABOLISM,
LIMBIC SYSTEM, ERECTILE FUNCTION,

Memory?, Axon Guidance?
Cachexia?

CORTEX, BRAIN STEM

MC5 EXOCRINE GLANDS EXOCRINE FUNCTION

  

Expression Profiles of the Central Melanocortin Receptors 

 The sites of expression of both MC3R and MC4R led to the hypothesis that one or 

both of these melanocortin receptors were responsible for the metabolic syndrome of the 

agouti yellow lethal mouse.  Both of these receptors are widely, yet weakly expressed 

throughout the brain, as determined by in situ hybridization studies of mammalian brains: 

rodent (20), and sheep (21).  Such widespread expression suggests a number of 

autonomic physiological roles for the Central Melanocortin Receptors.1  Two sites of 

expression were especially suggestive of a central role in energy homeostasis for MC4R:  

relatively dense expression of RNA transcripts of the receptor in the hypothalamus 
                                                 
1 Central Melanocortin Receptors have been postulated to be involved in learning and memory formation 
(22), feeding behavior (23, 24), naturesis (25), erectile function (26), drug addiction and drug seeking 
behavior (27, 28), axonal guidance (29), and possibly immuno-regulation in dermal papilla cells (30). 
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(ventromedial, dorsomedial, and lateral hypothalamic nuclei) and in the midbrain portion 

of the brain stem (ventral tegmental area).  Both of these sites had long been known to 

induce feeding behavior via physical disruption and/or electrical stimulation.   

 Feeding behavior, per se, is best described in context of energy homeostasis.  

Energy homeostasis is in constant flux, and the body has developed a complex set of 

sensory neuro-humoral circuits that detect levels of stored and circulating energy 

molecules.  These neuro-humoral circuits culminate in one or both of the classic “feeding 

centers” of the brain (hypothalamus and brain stem).  The hypothalamic feeding center 

neural-circuitry is better characterized, albeit still poorly understood at the present, 

despite the hypothesis that the brain stem controlled feeding behavior is probably more 

ancient and/or primitive (31).    

 A schematic representation of the hypothalamic neuro-humoral circuitry is 

depicted in Figure 1.2.  Signaling molecules (i.e., hormones or metabolites) from the 

periphery are able to cross the blood brain barrier at the structure known as the median 

eminence (ME).  Neurons located in the arcuate nucleus (ARC) project dendrite-like 

appendages into the ME, where their various receptors (and possibly transporter proteins) 

will detect the presence of the signaling molecule(s).  Some of these ARC neurons are 

tasked with orexigenic (pro-food seeking) control of feeding behavior, while others are 

tasked with anorexigenic (anti-food seeking) control (32).   

 The anorexigenic ARC neurons express and process the pre-prohormone POMC 

into alpha-MSH.  These cells also produce Cocaine and Amphetamine Regulated 
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Transcript (CART).2  Electrophysiology studies have determined that POMC/CART 

neurons have a relatively high basal activity, presumably translating into a constant 

release of alpha-MSH and CART at their axonal synapses (34).  Upon stimulation by 

leptin, or some other humoral signaling molecule, these anorexigenic neurons increase 

their firing rate even more.  One hypothesis is that these neurons must keep this constant 

anorexigenic signaling to stem the tide of the pre-programmed food seeking circuitry of 

the CNS.  This is an appealing hypothesis because food seeking behavior is key to 

survival and inherent in the thriving behavior of newborn animals.  However, it should be 

noted that MC4R connections in the hypothalamus are not believed to be fully active 

until sometime after birth in rodents (35). 

 The orexigenic ARC neurons produce Agouti Related Protein (AgRP).  AgRP 

was discovered by in silico mining, when two groups made a GenBank search for 

sequences homologous to the agouti signaling protein (36, 37).  The two proteins share a 

conserved cysteine-rich c-terminus primary structure.  However, AgRP was found to be 

expressed in the CNS, while agouti is normally only expressed in the periphery.  Since its 

cloning, molecular and biochemical studies have shown that AgRP binds preferentially to 

the central melanocortin receptors, thus its actions in the CNS are believed to be similar 

to its homologous cousin: blocking alpha-MSH stimulation of melanocortin receptors to 

inhibit the intracellular increase in cAMP (38-40).   

 These orexigenic neurons also produce Neuropeptide Y (NPY, 41).  NPY is the 

most potent natural orexigenic molecule known to science (42).  Like CART, NPY has its 

own family of receptors independent of the melanocortins, which may provide alternative 

                                                 
2 As the name suggests, this neuropeptide was discovered as an upregulated transcript following cocaine or 
amphetamine regimens (33).  It may also be one of the physiological reasons that these drugs of abuse 
generally lead to weight loss in habitual users. 
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feeding and/or autonomic pathways to diverge from the first order neuro-humoral 

circuitry of the hypothalamus or brain stem.  Interestingly, mice lacking NPY are not lean 

when given ad libitum access to chow; it is only when these animals are challenged with 

a high fat diet that a lean phenotype presents (43).   

Figure 1.2
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Figure 1.2: Central Melanocortin Circuit. The neuro-humoral circuit begins in the periphery of the body 
where hormones (e.g., leptin) are produced in response to feeding, metabolism, or energy stores (e.g., 
leptin).  Leptin is exclusively produced by white adipose tissue (WAT) generally in proportion to the 
amount of lipid stored in these cells.  Leptin travels to the brain where it is able to cross the blood brain 
barrier (BBB) at the median eminence at the base of the hypothalamus.  The median eminence is populated 
with dendrite-like appendages from orectic (Green) neurons and anorectic (Red) neurons located in the 
Arcuate Nucleus of the hypothalamus.  Leptin activates the anorectic neurons, causing them to increase the 
release of alpha-MSH, while leptin inhibits the release of AgRP from the orectic neurons.  The net effect is 
increased activation of MC4R.  The molecular events beyond the activation of MC4R are not well 
understood, but the behavioral and metabolic changes are well documented. 
 

 The number of signaling molecules that interact with the neuro-humoral circuitry 

rapidly expanded in the past decade.  Leptin, shown in Figure 1.2, is the classic example 
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of this class of molecule.  The hormone was found to be the gene disrupted in the Obese 

(ob/ob) mouse (4); one of the five classic mouse models of obesity collected by mouse 

fanciers.  Leptin is expressed exclusively in white adipose tissue, the body’s primary 

energy storage depot.  The proportion of circulating leptin hormone correlates with the 

adiposity of the subject animal.  In addition to leptin, gherelin (44), CCK (45), bombesin-

like peptides (46), insulin (47), glucose (48), fatty acids (49), and other molecules have 

been found to activate ARC neurons and/or affect feeding behavior. 

 

Physiological Functions of MC4R Signaling in the CNS 

 MC4R Knock-Out mice are also morbidly obese (24).  The phenotype is 

remarkably similar to that of the Agouti Lethal Yellow (Ay) obese mouse (i.e., increased 

linear growth and morbidly obese).  This paper demonstrated that MC4R was the central 

melanocortin receptor that is predominantly responsible for energy homeostasis in the 

CNS.  The MC4R KO allele is autosomal dominant, but heterozygous MC4R KO mice 

present intermediate obesity and metabolic phenotypes.  Upon the discovery of an 

autosomal dominant obesity syndrome, the race was on to find a human proband with a 

mutation in the MC4R gene.  Two independent groups found patients with a frame shift 

mutation in their MC4R gene that presented with increased linear growth and early onset 

morbid obesity (2, 3). 

 Mutations in the coding region of the human MC4R gene are now estimated to be 

associated with nearly 4% of morbid obese human patients (50).  These mutations are 

predominantly inherited in an autosomal dominant pattern, and studies have been 

conducted to assess the functional activity of some mutants in transient transfected cell 
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lines (51).  Most mutations show greatly reduced functional activity, possibly due to 

frame shift mutations that destroy the gene’s membrane localization signal sequence at 

the C-terminus (52).   

 However, the severity of lost activity is reduced in some families whose 

mutations appear to present with incomplete penetrance (53).  The resulting receptor in 

one of these mutations has been found to have approximately 60% of the wildtype 

receptor’s activity in transient transfection studies (51, 54).  Such a relatively small loss 

of activity that can still lead to morbid obesity in adults is reminiscent of the intermediate 

phenotype found in heterozygous MC4R KO mice.  The studies of this mutation suggest 

that adults with small losses in receptor activity, or expression, could lead to an increased 

risk for energy imbalance and the horde of related metabolic diseases.   

 While many lines of research have determined how MC4R is regulated by its 

cognate ligands, coupled to adenylate cyclase, and functions in vivo, little is known about 

the mechanisms which control MC4R expression in the CNS.  The importance of MC4R 

activity in energy homeostasis predicts that the expression must be tightly regulated.  

Therefore, given the weak expression in discrete neural loci and the constant modulation 

of alpha-MSH and AgRP signaling, I have hypothesized that MC4R expression must be 

tightly regulated in the feeding centers of the CNS in order to properly monitor energy 

stores and direct appropriate feeding behavior. 

 

Regulation of MC4R 

 Little has been learned about the MC4R promoter since the gene was cloned in 

1994.  The apparent reason for this has been largely due to a concerted focus on the 
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physiological role of the gene in vivo.  Other reasons include a lack of appropriate model 

cell lines and, more importantly, the great technical challenge of detecting MC4R 

transcripts reliably in a system that is capable of monitoring even robust changes in 

expression.  However, some groups have recently begun to lay down a foundation upon 

which exciting discoveries will be made concerning the MC4R promoter and how it 

controls temporal and spatial MC4R expression.   

 Recently, Professor Duman’s found that rat MC4R expression in certain brain 

regions (striatum and hippocampus) increases about 100% in response to a regimen of 

acute, high dose morphine (27).  The group has since shown that a regimen of chronic 

cocaine will induce nearly 100% increase in MC4R expression in the same neural regions 

(28).  The method of expression monitoring chosen by Duman’s group was traditional 

Northern blots.  This method requires a relatively high amount of total RNA to detect 

MC4R expression in isolated brain regions.  The size of the rat brain allows for a greater 

yield in RNA extraction, which facilitated these studies.  Doing the same study using 

Northern blots in laboratory mice (the most common mammal amenable to genetic 

studies) would require pooling RNA from several animals to detect even baseline levels 

of MC4R transcript.  This would necessarily increase the likelihood of variance in results, 

leading to a lower probability of finding statistically significant data. 

 Another group has recently reported that CART and MC4R are acutely 

upregulated by increase in dietary calories from fats (55).  This group hypothesized that 

acute or intermediate changes in energy balance would lead to compensatory action in the 

hypothalamus and other tissues to reach energy homeostasis.  In order to find such acute 

effects, adult rats were fed a high fat diet for 14 days.  During the 14 day period, some 
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animals were sacrificed at 12, 24, and 48 hours after switching the diets, while the 

remaining animals were all analyzed after 14 days.  Interestingly, no change in leptin 

gene expression or circulating levels was detected over the experimental period.  Similar 

to the Duman Laboratory studies, this study used laboratory rats and showed by in situ 

hybridization increases in transcript expression in the hypothalamus.  This method is an 

improvement over that employed by the Duman group because RNA does not have to be 

pooled to detect the minutely expressed levels of endogenous MC4R.  However, in situ 

hybridization studies are still very difficult to reproduce in mice because of the weak 

expression of MC4R. 

 In 2001, Professor Mountjoy’s group published a paper describing the basal 

activity of the murine MC4R promoter (56).  By using RT-PCR, the group showed that 

UMR106 (bone), HEK-293 (kidney), and GT1-7 cell lines expressed endogenous MC4R 

transcripts, while no transcripts were detected in Neuro-2A cells.  The group noted 

multiple transcription start sites were evident from 5’-RACE assays, but the primary start 

site was located approximately 430 bp upstream of the start of translation in C57BL6 

mice.  Their results show almost no difference in the luciferase (promoter) activity when 

increasing 5’-flanking sequence from -600 to -1500 (relative to start of translation) in 

GT1-7 cells.  However, a marked increase was observed between the -434 construct (2.0 

± 0.1) and the -600 construct (5.2 ± 0.1), which includes a highly conserved region of the 

5’-flanking sequence (see Chapter 3). 

 Mountjoy’s group has recently published a paper describing MC4R promoter 

beta-galactosidase transgenic mice (57).  The group created three independent lines; 

however, only one of three transgenic lines showed a pattern of transgene expression that 



 13 

almost entirely mimicked endogenous MC4R expression in the CNS.  The sequence used 

in these transgenic mice was from -1500:-1 of 5’-flanking sequence without any of the 

3’-flanking sequence used in their in vitro experiments.   

 The Vaisse group described the basal promoter activity of the human MC4R 

promoter (58).  This group used luciferase reporter constructs ranging in 5’-flanking 

sequence from -2900 to -470 (relative to the start of translation), and all constructs shared 

a 3’-end at 10 bp into the 5’-UTR (i.e., the constructs did not contain the hMC4R 5’-

UTR).  Basal promoter activity was determined in both neuronal cell lines (GT1-7 and 

Neuro-2A) and non-neuronal cell lines (HEK-293 and NIH3T3).  Luciferase (promoter) 

activity was weak in all cell lines, relative to the empty pGL3 vector, with the shortest 

constructs (-470 and -600 constructs).  However, the larger constructs reached a peak 

plateau with the -1200 through -1900 constructs in all but the NIH3T3 cells.  The largest 

construct (-2900) showed some loss in peak activity in all cell lines but Neuro-2A.  These 

data suggest that the crucial promoter sequence of the human MC4R 5’-flanking 

sequence is between -600 and -1900 bp upstream from the start of translation, but the 

experiments fail to consider the possible contribution of promoter activity in the 5’-UTR 

of the human gene. 

 These foundational papers are important steps in learning about the regulation of 

MC4R temporal and spatial expression.  Determining which promoter regions control the 

spatial expression pattern of MC4R will help investigators understand which neuronal 

regions control which aspects of autonomic physiology, or more importantly, which 

regions could lead to increased risk for diseases of metabolic imbalance.   
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Materials and Providers 

 All common laboratory reagents mentioned in the following chapter were 

obtained from Sigma, Fisher Scientific, VWR Scientific Products and EMD Chemicals, 

unless specifically noted.  Restriction and DNA/RNA modifying enzymes were 

purchased from Promega and New England Biosciences, except those contained in kits or 

noted otherwise.  All Real Time PCR reagents were obtained from Invitrogen.  All cell 

culture reagents, including sterile media, sera, and liposomal transfection agents, were 

purchased from Gibco/Invitrogen (Life Technologies, Inc.).  Luciferase and Beta-

Galactosidase (Bea-Glo) assay reagents were obtained from Promega.  Radioactivity in 

the form of alpha-32P dCTP was purchased from Amersham Biosciences.   

  

RNA and Recombinant DNA Methods 

 

General Techniques 

 All recombinant DNA techniques and methods were performed following the 

general procedures as outlined in Molecular Cloning: A Laboratory Manual (Maniatis et 

al., 1982).  Radiolabeling of all Southern probes was carried out using Ready-To-Go 

DNA Labeling Beads (Amersham Biosciences).  Any modifications or variations of these 

procedures are noted in the text below.  All sequence for the genomic MC4R loci are 
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referenced from the start of translation.  All linear vectors were treated with Calf Intestine 

Alkaline Phosphatase (Promega) prior to ligation, as per the manufacturer’s directions.  

All ligations were performed using the Rapid DNA Ligation Kit (Roche) following the 

manufacturer’s provided protocols. 

 

BACmid Screening and Subcloning of mMC4R 

 We isolated genomic DNA flanking the MC4R coding region by screening a 

mouse BAC library (129/SvEvTACfBr obtained from Roswell Park Cancer Institute), a 

generous gift of Dr. David Threadgill (Duke University).  A 32P labeled 999 bp mouse 

MC4R predicted coding sequence probe was used to screen the library digested with 

KpnI or HindIII.  Three independent and overlapping BACmid clones were isolated, 

restriction mapped, and characterized by Southern blot analysis using probes 

corresponding to the coding region or 3’-untranslated regions (UTR) of the mouse MC4R 

gene.  One positive BACmid was digested with KpnI, resulting in a 13.4 kb fragment 

containing 12.7 kb of 5’-flanking sequence and 700bp of coding sequence and a 4.6 kb 

fragment containing 299bp of coding sequence and 4.3 kb of 3’-flanking sequence.  

These fragments were each cloned into pSP72 (Stratagene) and sequenced (pSP72+14 kb 

MC4R and pSP72+4.6 kb MC4R, respectively).  The positive BACmid was also digested 

with HindIII, and a 4.8 kb fragment containing 3.3 kb of 5’-flanking sequence, the entire 

coding sequence, and approximately 500bp of 3’-flanking sequence was cloned into 

pSP72 and sequenced (pSP72+4.8 kb mMC4R).   
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 These three subcloned genomic fragments were used as templates and/or 

restriction digested for generating all of the murine MC4R promoter-reporter fusion 

constructs and Southern blot probes. 

 

Generation of Promoter-Reporter Fusion Constructs 

 The proximal murine MC4R (mMC4R) promoter fragments were amplified by 

PCR with a series of forward primers located at -648bp, -432bp, -344bp, and -186bp 

paired with a single reverse primer at -5bp using the pSP72+4.8 kb mMC4R as PCR 

template.  Each forward and reverse primer contained an Acc65I site engineered onto its 

5’end.  These PCR products were cloned into the Acc65I restriction site of the luciferase 

reporter vector pGL3-Basic (Promega) 5’-multiple cloning site (5’-MCS) and sequenced 

for verification (designated pGL+648m, +430m, +340m, and +180m, respectively).  A 

1.6 kb PstI fragment (-1607:-5) was isolated from pSP72+4.8 kb mMC4R and cloned into 

pBKS+ (pBKS+1.6 kb mMC4R).  The 1.6 kb fragment was subsequently freed, 

subcloned into the Acc65I and XhoI sites of pGL3-Basic, and sequence verified 

(pGL+1600m).  A 2.4 kb Acc65I-PacI fragment was lifted from pSP72+4.8 kb mMC4R 

and cloned into Acc65I/PacI digested pGL+1600m (pGL+3300m).  A 6.4 kb EcoRI 

fragment from pSP72+14 kb mMC4R was cloned into EcoRI linearized pGL+1600m 

(pGL+7900m).  Finally, the pGL+3300m was restriction digested with EcoRV and PacI, 

the overhang from PacI was filled with Klenow fragment, and subsequently ligated to 

create pGL+890m. 

 Sequencing of the clones revealed an unstable CA di-nucleotide repeat located 

approximately 1500bp upstream of the mMC4R starting codon.  All of the constructs 
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containing this repeat were verified to contain between ten and fifteen CA di-nucleotide 

repeats following each large scale plasmid prep. 

 The human MC4R (hMC4R) gene was cloned via PCR using primers based on 

sequence data obtained from the Ensembl genome website (http://www.ensembl.org).  

Forward cloning primers for the human MC4R were located at -2030bp, -1770bp, -

1554bp, -895bp, -744bp, -594bp, -419bp, -233bp, and -133bp relative to the start of 

translation.  A single reverse cloning primer with 5’-end at -1, also relative to the start of 

translation, was paired with each of the forward cloning primers, such that the constructs 

would contain the entire 5’-UTR.  Each forward primer had an Acc65I site engineered 

onto their 5’-ends, while the reverse primer had an XhoI site engineered onto its 5’-end.  

The PCR products were restriction digested with Acc65I and XhoI, cloned into linear 

pGL3-Basic, and sequence verified (designated pGL+2030h, +1770h, +1550h, +900h, 

+740h, +600h, +420h, +230h and +130h, respectively).   

 The human DNA material used for cloning the MC4R 5’-flanking was a generous 

gift from Dr. James Sutcliffe (Vanderbilt University).  Sequencing of each construct 

revealed a 100% match between the donor’s DNA sequence and that obtained from the 

Ensembl genome website, supra. 

 

Sequencing and In Silico Analysis 

 Sequencing PCR reactions were performed using Big Dye Terminator (Applied 

Biosystems) chemistry following the manufacturer’s instructions.  The reactions were 

resolved on sequencers in the DNA Sequencing Core laboratory at Vanderbilt University 



 18 

Medical Center and the Heflin Center for Human Genetics at the University of Alabama 

at Birmingham. 

 The MC4R locus sequence from multiple species available in the public databases 

and that from the 129 strain mouse BACmid was submitted for VISTA sequence 

conservation analysis following the guidelines provided on the VISTA website 

(http://genome.lbl.gov/vista/index.shtml).  The threshold for “significant” conservation 

was left at the default level of 75%, as provided by the VISTA site.  Putative cis-element 

sites were identified and confirmed by at least two of the following software packages: 

rVISTA (http://genome.lbl.gov/vista/index.shtml), MacVector 7.1 (Accelrys), 

GenomatixSuite (Genomatix Software GmbH), or AliBaba2.1 (http://www.gene-

regulation.com).   

 

Polymerase Chain Reaction and Analysis 

 PCR was performed using standard protocols for a variety of polymerases.  

Cloning PCR was performed using murine or human genomic DNA as template (~100-

200ng per 25μL reaction) and Pfu polymerase (Stratagene) for high fidelity cloning.  

General PCR (genotyping, construct screening, RT-PCR, etc.) was performed using 0.01-

10ng of plasmid/BACmid DNA or 50-100ng genomic DNA and Taq polymerase 

provided in AccuPrime SuperMix II (Invitrogen).  PCR reactions (with the exception of 

Real Time PCR) were performed on DNA Engine Dyad Peltier Thermal Cyclers (MJ 

Research/Bio-Rad).  Genotyping PCR and Real Time PCR conditions and protocols are 

discussed further below.   
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 PCR reactions were analyzed by running on 1.0-2.0% agarose matrix gels to 

separate DNA bands by size.  Molecular weight markers of standard size were run to 

determine if reactions yielded the predicted size products. 

 

Total RNA Extraction and DNase I Treatment  

 Total RNA was prepared following the manufacturer’s suggested protocol for cell 

culture dishes or tissue mass using TRIzol reagent (Invitrogen) for cell lines and non-

brain tissue samples, respectively (see below for tissue harvesting protocol).   

 For cell culture preparations of total RNA, the growth medium was aspirated and 

the cell dish was washed twice with warmed phosphate buffered saline (Gibco).  Eight 

milliliters of reagent was pipetted onto the cells and incubated at room temperature for 

approximately one minute.  Then, the cell lysate was passed through a pipet four to five 

times to aid lysis, and the cell lysate was placed in a 15mL conical tube with cap.  After a 

five minute room temperature incubation, 1.6mL of chloroform was added to the tube 

and vigorously shaken for 15 seconds.  The lysate:chloroform mixture was allowed to 

incubate at room temperature for 2-3 minutes prior to a low speed spin in a tabletop 

centrifuge for 15 minutes to separate the phases.  Upon centrifugation, the clear top 

(aqueous) phase was removed (approximately 3-3.5mL) and placed in a fresh tube with 

cap.  Careful attention was paid not to disturb the white interphase, which contains DNA 

that would contaminate the sample preparation.  The RNA was precipitated by adding an 

equal volume of ice cold Molecular Biology Grade isopropyl alcohol (Sigma) and mixed 

thoroughly.  During a ten minute room temperature incubation, the sample was placed 
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into 7-8 1.5mL microfuge tubes.  The microfuge tubes were spun at maximum speed for 

ten minutes in a microfuge to pellet the RNA. 

 For tissue samples (~50-150mg), the harvested tissues were physically 

homogenized in the presence of 0.5mL of TRIzol reagent in a 1.5mL microfuge tube 

using a plastic capped pestle.  If more than one tissue was being homogenized, the pestle 

was cleaned thoroughly with Kimwipes and autoclaved double distilled water, and they 

were rinsed with RNase-Away (Invitrogen) between each sample preparation.  The tissue 

lysates for kidney and liver samples were spun at 1500 rpm for five minutes to remove 

insoluble debris before continuing with the protocol.  The tissue lysate would then be 

added to an additional 1.5mL of TRIzol reagent, and the above described protocol for cell 

culture RNA preparations would then followed, albeit with smaller volumes and fewer 

microfuge tubes for the RNA precipitation step. 

 All samples were analyzed for concentration and purity, and subsequently treated 

to remove any residual genomic DNA contaminants with RNase-Free DNase I (Promega) 

following the manufacturer’s directions.  Following DNase treatment, the enzyme was 

heat inactivated and removed via phenol:chloroform extraction.  The precipitated DNase 

treated RNA was then resuspended in DEPC-treated water.   

 Due to the small mass of the brain tissue samples (ranging from 5mg to 20mg), 

these samples were prepared using the Absolutely RNA RT-PCR Miniprep Kit 

(Stratagene) following the manufacturer’s suggested protocol by sample mass.  Samples 

were physically homogenized in the prepared lysis buffer using the pestles and cleaning 

regimen as previously described above.  The brain tissue lysates were spun through a 

column to remove insoluble materials and then through a second column designed to 
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collect RNA preferentially.  The kit includes a DNase treatment step, which was 

performed while the sample was incubated on the second column.  Following DNase 

treatment and column washes, the RNA was eluted from the second column with two 

consecutive 30μL elution buffer rinses. 

 DNase treated samples (cell culture, peripheral, and brain region samples) were 

analyzed for concentration and purity prior to cDNA synthesis reactions.  All RNA was 

stored ultrafrozen at -80C. 

 

cDNA Synthesis from RNA  

 Two micrograms of DNase I treated RNA from cell culture and tissue samples or 

400ng of DNase treated RNA from brain tissue samples were used in cDNA synthesis 

reactions using SuperScript III reverse transcriptase (Invitrogen) following the 

manufacturer’s provided protocol with the following modifications.  Sample reactions 

were performed in 20μL volume reactions.  A dNTP-master mix of shared components 

was prepared containing 0.5μL of provided oligo dT (50μM), 0.5μL of provided random 

hexamers (50ng/μL), and 1.0μL of dNTP mix (10mM) per reaction to reduce variability 

between sample reactions.  Each sample had two dNTP-master mix tubes for an RT 

reaction and a -RT reaction control.  The 4.0μL dNTP-master mix, sample DNased total 

RNA (400ng), and DEPC-treated water to 10μL were added to a PCR reaction tube.   

 The first mixture was incubated at 65C for five minutes, then it was placed on ice 

for at least one minute before opening the tubes.  During the first incubation, an RT-

master mix and a –RT-master mix were prepared containing 2.0μL of provided 10X RT 

Buffer, 4.0μL MgCl2 (25mM), 2.0μL DTT (0.1mM), 1.0μL RNaseOUT (RNase 
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Inhibitor), and either 1.0μL of SuperScript III Reverse Transcriptase or 1.0μL of DEPC-

treated water per reaction, again to reduce inter-reaction variability in these micro volume 

reactions.  The master mixes were added to the respective PCR reaction tubes so that 

each sample had an RT reaction and a sister -RT control reaction.  The cDNA reactions 

(and control -RT tubes) were incubated at room temperature for ten minutes prior to a 50 

minute incubation at 42C.  Following the RT reaction, the RT enzyme was heat 

inactivated at 70C for 15 minutes, and the RNA was destroyed by the addition of 1.0μL 

of RNase H and a subsequent incubation at 37C for 20 minutes.  Samples were stored at -

20C until further analysis (PCR, Real Time PCR, etc.) was performed. 

 

Real Time Multiplex Quantitative PCR and Analysis 

 Triplicate Real Time PCR reactions for brain and peripheral tissue samples from 

control and transgenic mice were performed using a Chromo4 equipped Real Time PCR 

96-well 4-color multiplex thermal cycler (MJResearch).  Primers for experimental gene 

(MC4R, EGFP, or Beta-Galactosidase) were FAM labeled, and control (beta-actin) were 

JOE labeled.  Both an experimental and control primer pair were included in all reactions, 

allowing for multiplexing with an internal control (beta-actin) in the reactions.   

 The Real Time PCR reactions were performed using the Platinum Quantitative 

PCR SuperMix-UDG System (Invitrogen), including loading reference dye, reaction 

components, and water.  Briefly, 2μL of brain tissue cDNA reaction (~40ng of total RNA 

template) or 3μL of peripheral tissue cDNA reaction (~300ng of total RNA template) was 

used in each Real Time PCR triplicate reaction.  Only one Real Time PCR reaction was 

performed for each -RT control reaction.  To minimize variability between sample 
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reactions, a master mix containing all reaction components except the template was 

prepared.  The master mix contained 25μL Platinum Quantitative SuperMix-UDG, 17 or 

18 μL of nuclease free water (peripheral and brain tissues, respectively), 1.0μL each of 

ROX reference dye, and the primer pairs for the experimental gene and beta-actin internal 

control per 50μL reaction.  The requisite amount of master mix was added to each well of 

an opaque 96 well plate (Bio-Rad) on ice, and then the template was vortexed and 

aliquotted into each reaction tube.   

 A dilution series of murine MC4R plasmid (EGFP plasmid or LacZ plasmid) of 

known amplicon copies/volume was used for plotting a standard curve and quantifying 

amplifiable template from the cDNA reactions as a standard.3  The Chromo4 equipped 

thermal cycler took optical readings during each cycle to monitor the reaction in real 

time.  The data was analyzed by the Opticon 2 software in context of the standards 

provided in the user interface.  The ROX reference dye was monitored to ensure loading 

volume of reaction master mix was consistent.  The internal control PCR reaction (beta-

actin) was used to normalize the data from each tissue.  The results are expressed in terms 

of cDNA amplicons per nanogram of total RNA template.   

 

SNP Discovery  

 For the single nucleotide polymorphism discovery, we provided Professor 

Philippe Froguel’s laboratory with the approximate sequence location of the CR-8 

conserved region in the human MC4R locus (centered within a ~250 bp window of 

sequence).  That lab then designed PCR primers (Forward 5’-CAG TCT CTT ATC CGG 

CTT GC; Reverse 5’-CCA TTG GGA GAC GAA TCT GT) flanking the 250 bp 
                                                 
3 Each plasmid has two amplifiable DNA “amplicons”, one for the plus strand and one for the minus strand. 
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sequence given to screen, amplified the region from a cohort of 162 subjects with early 

onset morbid obesity, and sequenced the clones.  Sequence data was compared to the 

human sequence data available on the Ensembl website, supra.  Over 350 normal weight 

control chromosome pairs were then screened in the same manner. 

 

Site-Directed DNA Mutagenesis 

 Site-directed mutagenesis was performed using the Quick Change II Kit 

(Stratagene).  Primers harboring a G residue to A residue mutation were synthesized and 

purified by HPLC (Invitrogen).  Plus strand primer: (090) 5’-GGA TTG GTC AGA AGG 

AAG CAA AGG AGG AGC C-3’, Minus strand primer: (091) 5’-GGC TCC TCC TTT 

GCT TCC TTC TGA CCA ATC C-3’ (underlined base is the point of mutagenesis).  

Mutagenesis was carried out on mMC4R promoter-luciferase reporter constructs 

pGL+640m and pGL+890m and on human constructs pGL+600h and pGL+900h to 

generate pMut+640m, pMut+890m, pMut+600h, and pMut+900h, respectively.   

 

Cell Culture  

 

Propagation  

 Cell lines maintained in a humidified 5% CO2 incubator.  GT1-1, GT1-7, HEK-

293, and HeLa cells were maintained in DMEM (high glucose) medium supplemented 

with 1% glutaMAX, 10% heat inactivated fetal bovine serum, and 100U/mL penicillin-

streptomycin.  Neuro-2A cells were maintained in 1:1 DMEM/F12 (low glucose, 15mM 

HEPES buffer, and pyridoxine hydrochloride) medium supplemented with 1% 
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glutaMAX, 10% heat inactivated fetal bovine serum, and 100U/mL penicillin-

streptomycin.  CAD cells were maintained in 1:1 DMEM/Ham’s F12 medium 

supplemented with 1% glutaMAX, 8% heat inactivated fetal bovine serum, and 100U/mL 

penicillin-streptomycin.  SH-sY5Y cells were maintained on 1:1 Earle’s MEM/Ham’s 

F12 medium supplemented with 1% glutaMAX, 10% heat inactivated fetal bovine serum, 

0.1mM non-essential amino acids (NEAA), and 100U/mL penicillin-streptomycin.     

 Cell passages were performed using Enzyme Free Dissociation Buffer 

(Invitrogen).  Briefly, cells in 10cm plates (Sarstedt) were washed twice with 5.0mL 

warmed PBS (37C).  Five milliliters of warmed Dissociation Buffer was added to the 

plate and rocked back and forth for 60-90 seconds at room temperature.  After aspiration 

of the buffer, the plate was rapped 2-3 times on the palm of the hand.  After a 2-3 minute 

room temperature incubation, the plate was rapped again and 5-6mL of appropriate 

growth medium was added to the plate.  The cells were passed through a pipet to aid in 

dissociation and counted before replating in growth medium. 

  

Transient Transfection and Harvest 

 All constructs were prepared in triplicate large scale preps using the Endotoxin 

Free Plasmid Maxi Kit (Qiagen).  The endotoxin free plasmid preps ensured lower cell 

toxicity and greater reproducibility of transfection results between plasmid preps.  Each 

plasmid prep was transfected three times.  All transfections were performed in triplicate 

in the 24-well plates.   

 Lipofectamine 2000 was used to perform transient transfections in all cell lines.  

The manufacturer’s suggested protocol was optimized for the GT1 cell lines and the 
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Neuro-2A cell line by varying the amount of total and experimental DNA mass in 24-

well plates (Sarstedt).  As per the manufacturer’s instructions, cells were passaged, 

counted, and plated in 0.5mL of growth medium without antibiotics per well in the 

optimized density for a 90-95% confluency on the date of transfection. The optimal 

confluency of GT1 cell lines was about 95%, while the Neuro-2A cell line’s optimal 

confluency was between 90-95%.  All other cell lines were transfected according to GT1 

optimized conditions.   

 For the Neuro-2A cells, however, and additional step was included to induce the 

cells to enter a quasi-differentiated state, complete with axon-like appendages connecting 

cells up to 15 cell lengths apart.  24 hours prior to transfection, the medium for Neuro-2A 

cells was replaced with DMEM (low glucose) supplemented with 1% glutaMAX and 1% 

N2A-Supplement (N2A experimental medium). 

 The optimal amount of DNA to transfect for the GT1 cell lines was found to be 

600ng total DNA per well.  To account for the greatly different mass of the experimental 

plasmids from large to small promoter-reporter constructs, the total mass of the largest 

construct transfected was 600ng, while the mass of the smaller constructs would be 

proportional based on size so that an equal amount of experimental plasmid would be 

introduced for each construct.  Any mass less than 600ng for the smaller constructs 

would be made up by adding an inert plasmid (e.g., pBKS) up to 600ng total.  For Neuro-

2A cells, the optimal total mass of DNA per well was found to be 500ng.  To normalize 

the transfection results, an internal control plasmid, phRL-SV40 (Promega), was co-

transfected in each experiment.  The robust activity of the Renilla luciferase reporter gene 
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and strong promoter allowed for only a negligible addition of 1.0ng of phRL-SV40 

control plasmid per well.   

 The DNA/Lipofectamine 2000 reagent transfection solution was prepared 

according to manufacturer’s suggested protocol for 100μL volume per well.  This 

solution was allowed to bathe the cells for 24 hours before harvesting.  Twenty-four 

hours after transfection, the cells were washed 2x with PBS (warmed to 37C), and cell 

lysates were harvested by freeze fracture in the presence of 200μL of Passive Lysis 

Buffer (PLB, Promega).  After the PLB was completely frozen in all 24 wells, the plates 

were removed from the dry ice to the bench to allow to thaw.  Upon thawing, the cell 

lysates were passed through a micro-pipet 3-4 times and transferred to a fresh microfuge 

tube with cap.  The lysates were cleared of cellular debris by spinning briefly in a 

microfuge, and supernatants were transferred to a fresh tube.  Lysates were analyzed 

immediately (see below for reporter assays), but remaining lysate supernatant was kept at 

-80C for up to six months with negligible loss in relative activity of experimental firefly 

luciferase to internal control Renilla luciferase. 

 

Transgenic Animals 

 

Generation of Transgenic Animals at Vanderbilt University 

 The murine MC4R 4.8kb HindIII fragment containing 3.3kb of 5’-flanking, the 

entire coding sequence, and 450bp of 3’-flanking sequence was cloned into the XhoI site 

in pIRES-tauGFP-LNL, generously provided by Dr. P. Mombaerts (The Rockefeller 

University).  A 7.8kb XhoI to SalI restriction fragment was gel purified and prepared for 
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pronuclear micro-injection using the GeneClean kit (BIO-101).  The construct fragment 

was further cleaned using an S&S Elutip (Schleicher & Schuell) following 

manufacturer’s directions.  Single cell embryos from hybrid (B6D2 F1) donor females 

were micro-injected by the Vanderbilt-Ingramm Cancer Center Transgenic Core Facility 

using approved protocols by the IACUC at Vanderbilt University.  Tail clippings from 30 

potential founders were collected approximately 21 days after birth, and these were used 

to extract genomic DNA for genotyping.  Four founder animals with germline 

transmission were backcrossed and maintained on C57BL6NTac strain mice from 

Taconic Farms.   

 

Generation of Transgenic Animals at UAB 

 The 3300MC4Luc3 transgenic construct (Construct B) was generated by PCR 

amplifying the 3’-region of murine MC4R from +975 to +1645, cloned into the BamHI 

restriction site in the 3’-MCS of the previously described pGL+3300m and sequence 

verified.  The 3300MC4Luc3 transgene was liberated by an Acc65I and SalI restriction 

double digest.  The 3300MC4LacZ3 (Construct A) was similarly generated by removing 

the luciferase reporter cassette from the 3300MC4Luc3 construct and replacing it with 

purified restriction cut nuclear localization signal tagged-LacZ reporter cassette from 

pnls-lacZ (a generous gift of Dr. R. O’Brien, Vanderbilt University).  The 3300MC4Luc 

construct (Construct C) was liberated from pGL+3300m by Acc65I and BamHI double 

digest, the 890MC4Luc construct (Construct D) was liberated from pGL+890m by 

Acc65I and SalI double digest, and the 430MC4Luc construct (Construct E) was 

liberated from pGL+432m by Acc65I and SalI double digests.  All transgenic constructs 
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were gel purified using QiaEX II gel purification beads (Qiagen) and resuspended in 

nuclease free water (Invitrogen).  Single cell fertilized embryos from donor female 

C57BL6NTac (Taconic Farms) were injected with purified linear DNA for 

3300MC4Luc, 890MC4Luc and 430MC4Luc constructs and transferred to 

pseudopregnant recipient females for gestation (UAB Transgenic Core).  The purified 

linear 3300MC4Luc3 construct was microinjected into fertilized single cell embryos (F2) 

collected from hybrid C57bl6 x SLJ (Taconic Farms) females (UAB Transgenic Core).   

 The minimal TK promoter -109:+54 was isolated from pT109-luc by restriction 

digest with Acc65I and XmaI.  The isolated minimal TK promoter fragment was ligated 

into the Acc65I/XmaI sites of pGL3-Basic 5’ multiple cloning site and sequence verified 

(pTKLuc).  The 5’ murine MC4R sequence fragment from -614:-495 was PCR amplified 

and cloned into the Acc65I site upstream of the minimal TK promoter plasmid and 

verified by sequencing (pTKLuc+-614:-495m, Construct H).  Taking advantage of ClaI 

restriction sites at -560 in the murine MC4R flanking sequence and at +2018 in pGL3-

Basic (just 3’ of BamHI in downstream MCS), the MC4R-TK heterologous promoter 

transgenic constructs were isolated by ClaI digestion and gel purified for microinjection.  

For comparison in vivo, an empty TKLuc transgene (Construct G) was isolated from 

pTKLuc by Acc65I/BamHI double digest and gel purified for microinjection.  Linear, 

purified DNA constructs were microinjected into F2 hybrid (C57BL6 x SLJ) single cell 

embryos and transferred to surrogate mothers for gestation.  At three weeks of age, mice 

were weaned and tail clippings were collected.  Genomic DNA extracted from tail 

clippings were then analyzed by PCR and Southern Blotting for genotyping.  Twelve 

positive transgenic founders were identified by PCR and Southern Blot.   
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 All luciferase transgenic mice were maintained on C57BL6NTac background 

strain mice obtained from Taconic Farms. 

 

Housing and Care of Animals 

 All housing and care of animals were performed according to current IACUC 

protocols and standards.  All animal protocols for experiments were approved by IACUC. 

 

Genomic DNA Isolation 

 Genomic DNA was extracted from tail clippings (1-3cm in length, depending on 

age of the animal) of the potential founder animals and offspring.  Tail biopsies were 

digested in Proteinase K buffer 8-24 hours at 55C.  Following digestion, the tail solution 

was phenol:chloroform extracted with an equal volume of 1:1:24 

phenol:chloroform:isoamyl alcohol.  The DNA in the supernatant (following 10 minute 

maximum speed microfuge spin) was ethanol precipitated with 2X volume of ice cold 

100% ethanol.  The pelleted DNA was resuspended in TE buffer (10mM Tris, pH 8.0, 

1mM EDTA) for a concentration of about 1.0mg/μL.  Genomic DNA was stored at 4C. 

 

Southern Analysis and Genotyping 

 Genomic DNA Southern analysis and genotyping were performed according to 

standard protocols by Maniatis, supra.  However, certain modifications were of the 

standard Southern protocol were executed.  Briefly, genomic DNA (15mg) was digested 

for 12-24 hours with restriction enzyme(s) at the requisite temperature.  Digested DNA 

was loaded onto a 12cm x 13cm 1.0% agarose gel with ethidium bromide, and it was 
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allowed to run for 8-12 hours at 30 volts (a molecular weight standard was included in 

the left most lane).  Following electrophoresis, the gel was wrapped in cellophane and 

photographed under UV light (a fluorescent ruler was placed along the left side of the gel.  

Good restriction enzyme digests show a relatively even “smear” of DNA in each lane, 

usually with a characteristic bright band(s) of intensity of ethidium bromide, which 

represents one or more RFLP.  Only good digests were blotted for analysis. 

 The blotting apparatus was constructed to allow 0.4M NaOH solution wick up 

thick filter paper (Fisher Scientific) and through the gel and cellulose blotting paper 

(Zeta-Probe GT, Bio-Rad).  The blotting paper was marked with a pencil to note which 

side was facing the gel.  The blotting paper was also marked with a pencil on the left side 

corresponding to the molecular weight standards for 1.0 kb to 12 kb.  Blotting was 

allowed to continue for 10-15 hours.  Following blotting, the papers were rinsed for five 

minutes in 1X SSC Buffer, blotted dry gently with a KimWipe, placed between two 

pieces of dry filter paper, and baked at 80C for 45 minutes. 

 Blots were pre-hybed in hybridization buffer at 65C.  During pre-hybridization, 

Southern probes were radiolabeled using the Ready-to-Go Labeling Beads, which utilize 

a Klenow fragment.  A 0.7 kb fragment of the EGFP transgene coding sequence was used 

as a probe template for the MC4R-ITG transgenic mice.  A 1.0kb fragment from the 

firefly luciferase transgene coding sequence was used as a probe template for all 

luciferase transgenic mice.  A 1.8kb fragment from the beta-galactosidase transgene 

coding sequence was used as a probe template for the LacZ transgenic mice.  Southern 

probes were analyzed for incorporation of radioactivity by scintillation counting.  Probe 

was added to fresh hybridization buffer at 1,000,000 cps/mL.  Hybridization was allowed 
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to run overnight.  Following hybridization, blots were washed four times with Wash 

Buffer, for one hour each at 65C.  Washed blots were sealed in plastic bags devoid of air, 

and placed on blanked phosphor screens for imaging capture.  Image capture was allowed 

to proceed 12 hours for initial image, then allowed to remain on re-blanked phosphor 

screen for a second image for up to one week. 

 Southern blot images were analyzed for hybridization of probe to predicted or 

known restriction digest fragment sizes.  The fragment sizes were calculated from known 

genomic sequences available through GenBank or Ensembl.  To determine relative 

transgene copy number per haploid genome, a calculation available on the University of 

Virginia Health System Gene Targeting and Transgenic Facility’s website was used 

(http://www.healthsystem.virginia.edu/internet/transgenic-mouse/).  A series (1-20 copies 

per haploid genome) of standardized linear plasmid containing the transgene was added 

to 15mg of wildtype C57BL6 genomic DNA and restriction digested with experimental 

samples.  The relative intensity of the standards was compared to the intensity of the 

experimental animal lanes on a single blot. 

 Transgenes introduced via microinjection often insert in tandem copies in a single 

site of the genome.  In some cases, the transgene was determined to have incorporated 

into more than one site in the founder animal’s genome.  These independently 

segregating transgene integration sites could be tracked by Southern blotting, as each site 

had its own characteristic banding pattern.  Offspring of founders with independently 

segregating transgene integration sites were monitored with Southern blot genotyping to 

separate the integration sites into individual lines of transgenic mice.   
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PCR Genotyping and Analysis 

 Once relative copy number and integration site analysis was complete for each 

line of transgenic mice, PCR genotyping was the standard method for genotyping 

offspring.  PCR primer pairs ranging in distance of 150-300bp for each transgene coding 

sequence was optimized for 10μL reactions using AccuPrime Super Mix, supra.  50-

100ng of tail biopsy genomic DNA was used per reaction.  PCR reactions were run on 

1.2% agarose electrophoresis gels at 120V for 35 minutes.  Following electrophoresis, 

gels were photographed under UV light and analyzed for the presence or absence of the 

transgene sequence.  Positive (usually the founder of the line being genotyped) and 

negative control (wildtype C57BL6) were included in every PCR run. 

 

Tissue Harvesting and Extract Preparations for Reporter Assays 

 Adult mice (>12 weeks) were given a lethal IP dose of Avertin (tribromoethanol, 

roughly 2-3mL) before dissection, following IACUC approved protocols.  To the extent 

possible, tissues were removed and placed in crushed dry ice in the following order: (1) 

each mouse was decapitated, brain was removed and five regions (bi-lobe – 

hypothalamus, hippocampus, striatum [caudate putamen], cortex, and brain stem 

midbrain containing the ventral tegmental area])4 were dissected using the aid of a brain 

                                                 
4 Precise locations of dissecting cuts for the brain regions – For the Hypothalamus, Hippocampus, and 
Cortex regions, a 2-3mm coronal section was taken in a whole brain positioned in a brain mold with wetted 
razor blades making incisions at approximately Interaural +1.5mm/ Bregma -2.0mm (caudal) and Interaural 
+4.0mm/ Bregma +0.5mm (rostral).  The Hypothalamus was then excised with three cuts releasing a 
roughly square tissue (just above the third ventricle and on either side to exclude the lower cortex).  The 
Cortex was cut from either side of the same section so that about 1.0mm X 3.0mm section including outer 
and Piriform Cortex was included.  The Hippocampus was simply freed by cutting away the remainder of 
the brain to release this neuronal organ.  For the Striatum, a 1-2mm coronal section was taken by making 
incisions at approximately Interaural +4.5mm/ Bregma +1.0mm (caudal) and Interaural +5.5mm/ Bregma 
+2.0mm (rostral).  The Striatum (caudate putamen) was cut free from both hemispheres with wetted blades.  
The Brain Stem region was taken by making incisions at approximately Interaural -2.0mm/ Bregma -
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mold (Brain Tree Scientific), (2) the ear, (3) the tail, (4) the rear paw sans toes, (5) skin 

from the scalp, back, and abdomen (when applicable), (6) liver, (7) the lower one half of 

one kidney (to avoid ovaries in females, and adrenal glands in both sexes), (8) soleus 

skeletal muscle (predominantly slow twitch fibers) and forelimb extensor skeletal muscle 

(predominantly fast twitch fibers), (9) duodenum of small intestine, stomach, and other 

portions of digestive track, except esophagus (when applicable), (10) testes (when 

applicable), (11) lower apex of heart, and (12) top right lobe of lung, and (13) esophagus 

(when applicable). 

 Brain tissues were generally between 5-25mg per sample.  Peripheral tissues 

ranged from 35-250mg.  Upon dissection, tissues were immediately placed in a fresh tube 

and flash frozen in a dry ice:ethanol bath and stored at -80C.  Tissues to be analyzed for 

RNA were prepared as described above.  Tissues for reporter assay analysis were thawed 

on ice and physically homogenized with a plastic tipped pestle in the presence of 200μL 

(brain and small peripheral tissues) or 300μL (most peripheral tissues) of Reporter Lysis 

Buffer (Promega).  After physical homogenization, samples were flash frozen again in 

crushed dry ice to aid lysis.  Samples were then microfuged at 1500 rpm for five minutes 

to pellet insoluble cellular debris, and approximately 60% of the supernatant was 

transferred to a fresh microfuge tube to avoid disturbing the pelleted debris.  The 

supernatant was analyzed immediately, and the remainder was stored at -80C for up to 

three months. 

 

                                                                                                                                                 
6.0mm (caudal) and Interaural –3.5mm/ Bregma -7.5mm (rostral).  For Cerebellum, a 2mm cube was cut 
with wetted blades. 
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Reporter Assays for Cell Culture and Transgenic Animals 

 

In Vitro Cell Culture (Dual Luciferase Assay) 

 All in vitro luciferase assay reagents were purchased from Promega.  To take 

advantage of the Renilla luciferase internal control, the Dual Luciferase Assay System 

was employed for reporter assays of transient transfection experiments following the 

manufacturer’s directions.  Briefly, twenty microliters of cleared lysate was analyzed for 

firefly and Renilla luciferase activities using the provided reagents in a MonoLight 3010 

photometer (Pharmingen) for 10 sec, each.  For each construct, firefly luciferase activity 

was normalized to the Renilla luciferase activity and compared to the basal activity of the 

empty vector, pGL3-Basic (Promega).  The reported values are thus relative to the empty 

vector, which was set equal to 1.0 RLU (relative light unit).  Both firefly and Renilla 

luciferase raw activity assays were collected within the linear range of the instrument, or 

serial dilutions of the samples were analyzed. 

 

In Vitro Transgenic Animal Tissue Extracts (Firefly Luciferase Assay) 

 Luciferase assays were performed by adding 20μL of cleared sample lysate to 

100μL of Luciferase Assay Buffer (Promega) in an opaque 96 well plate with clear 

bottom window (Bio-Rad).  The reactions were mixed by pipeting 3-4 times and assayed 

for luminescence in a Wallac plate reader for two 10 sec readings.  Six samples were read 

at a time, with one blank per 24 samples.  Raw data are reported as average counts per 

second (cps).  The luciferase activity was normalized to total sample protein assayed by 

using the Coomassie-Plus Bradford Assay Kit (Pierce Endogen).  For comparison across 
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mouse lines and constructs, the normalized data is expressed relative to brain stem 

sample activity (average brain stem is set equal to 1.0 arbitrary units).   

 

In Vitro Transgenic Animal Tissue Extracts (Beta-Glo Assay) 

 Beta-galactosidase assays were performed by adding 20μL of cleared sample 

lysate to 100μL of Beta-Glo Reagent (Promega) in an opaque 96 well plate with clear 

bottom window.  The Beta-Glo System is a luciferase based reporter assay.  The beta-

galactosidase activity in the samples is measured indirectly by the amount of luciferin 

reagent that is enzymatically cleaved from the 6-O-β-galactopyranosyl-luciferin molecule 

in the Beta-Glo Reagent.  The reactions were mixed by pipeting 3-4 times and assayed 

for luminescence in a Wallac plate reader for two 10 sec readings.  Due to the steady state 

reaction of the Beta-Glo System, up to 96 samples were read at a time after a 60 minute 

room temperature incubation.  The Beta-Glo reaction was found to yield consistent 

readings from 45-120 minutes after mixing reagent with sample lysate (data not shown).  

One blank sample was included per 24 samples.  Raw data are reported as average counts 

per second (cps).     

 

Total Protein Assay for Animal Tissue Extracts 

 To compare the in vitro luciferase activity data from mouse to mouse, tissue 

sample lysates were analyzed for total protein concentration following the microplate 

sample protocol included in the Coomassie Plus - The Better Bradford Assay” Kit (Pierce 

Endogen) following the provided procedure.  Briefly, protein concentration standards 

ranging from 25μg/mL to 2,000μg/mL of albumin was prepared fresh for each run in 
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Reporter Lysis Buffer.  Duplicates (10μL each) of standards, blanks, and samples were 

loaded into an opaque 96 well plate with clear window bottoms.  300μL of Coomassie 

Plus Reagent (warmed to room temperature) was added to each well via a multi-channel 

pipet.  An adhesive strip was placed over the top of the plate, and the plate was shaken 

for 30 seconds.  Following a twelve minute room temperature incubation, the plate was 

read on a plate reader equipped with a spectrophotometer read at 595nm wavelength.  

The readings for the blanks were subtracted from all other samples, and the standards 

were plotted on an Excel spreadsheet.  Each sample was then fit to the resulting curve to 

determine the total protein concentration in the sample. 

 

Beta-Galactosidase Staining 

 

Animal Preparation 

 For whole brain and sagittal brain section staining, mice were given a lethal dose 

of Avertin by intraperitoneal and prepared for perfusion.  The thoracic cavity was opened 

and an 18-gauge needle was inserted into the left ventricle of the heart.  The right atrium 

was cut open, and 50mL of normal saline was perfused into the animal using its 

vasculature.  Then, about 60mL of fresh 4% paraformaldehyde in borate buffer (pH 9.5, 

kept at 4C) was perfused to fix the tissues.  The brain was promptly removed and stored 

in PBS buffer containing 10% sucrose at 4C until blocked and/or stained. 

 For whole fetus or embryo staining, the timed pregnant females were given a 

lethal dose of Avertin by intraperitoneal injection.  The abdominal cavity was opened to 

expose the uterine horn and the embryos/fetuses.  The embryos or fetuses were removed 



 38 

and carefully dissected away from their protective sacs.  The animals were washed twice 

in PBS and placed in fixative solution (1% formaldehyde, 0.2% gluteraldehyde, 2mM 

MgCl2, 5mM EGTA [pH 8.0], 0.02% Nonidet P40 ([NP40], all in PBS) overnight at 4C.  

After fixation, the animals were washed five times in PBS + 0.1% Tween-20 (PBT) for 

15 minutes each.  The fixed animals were stored in PBS at 4C for less than 24 hours 

before staining. 

 

CNS Tissue Staining 

 The LacZ staining procedure was modified from the method described in Mercer 

et al in the journal Neuron (59). Briefly, after fixation the whole brains were thinly sliced 

in a brain mold to ~1mm sagittal sections.  These sections were washed twice in the PBT 

solution, supra, then placed in 10mL of staining solution (5mM potassium ferricyanide, 

5mM ferrocyanide, 2mM MgCl2, 0.01% sodium deoxycholate, 0.02% NP-40, 1.0mg/mL 

X-Gal, all in PBS) in a 50mL conical tube with cap.  The tube was wrapped in aluminum 

foil to shield the tissue and staining solution from light.  The wrapped tube was placed on 

its side in a 37C incubator equipped with a rotor set to low speed.  Depending on the 

level of beta-galactosidase activity, the reaction was allowed to continue for 1-3 hours.  

Following staining, the sections were post fixed for 24 hours in 10% formalin, and stored 

at 4C. 

 

Whole Embryo and Fetus Staining 

 For whole embryo and fetus staining, after fixation the embryos were placed in 

staining solution in 24 well plates and the fetuses were placed in 15mL conical tubes with 
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caps.  One half milliliter or 5mL of staining solution, supra, was placed in the wells and 

tubes, respectively.  The plates or tubes were wrapped with aluminum foil to protect the 

tissues and staining solution from light, and they were placed on a rotor table at room 

temperature set to low speed.  Depending on the level of beta-galactosidase activity, 

staining was allowed to continue for 2-12 hours.   

 Following staining, animals were washed twice in PBS.  The blue stain would 

intensify if allowed to set at 4C in PBS for ore than 12 hours.  Stained animals were 

stored indefinitely at 4C in 70% ethanol. 

 

Bioluminescence Imaging 

 

D-Luciferin Preparation  

 Purified firefly D-luciferin potassium salt was purchased from Xenogen.  

Luciferin was reconstituted for animal injections into sterile pharmaceutical grade saline 

(Sigma) to a concentration of 25mg/mL.  The reconstituted luciferin was filtered using a 

0.2 micron PTFE filter disc.  The luciferin:saline solution was drawn into sterile insulin 

syringes (100μL per syringe, or 2.5mg per dose).  The luciferin syringes were stored in 

sealed black opaque plastic bags at -20C.  Just prior to use, the necessary number of 

syringes were thawed to room temperature.   

 

High Casein Diet for Bioluminescent Imaging 

 Normal mouse chow contains a large proportion of plant material.  Plant material 

will create phosphorescence in the gut of the animal as it is digested, so an alternative 
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chow was needed.  For these experiments, it was necessary to feed the mice a casein-

based diet (Formula 89222, Harlan Teklad), as the background signal was reduced by a 

factor of 200, as compared with that from normal mouse chow with plant material that 

showed greater phosphorescence.  Mice to be imaged were given fresh cages with the 

Formula 89222 chow at least 48 hours before to imaging to be certain that all prior 

ingested plant material was passed by the animals prior to image capture.   

 

Animal Preparation 

 Natural and artificial light is absorbed by animals and remitted as 

phosphorescence.  The fur of C57BL6 mice is capable of absorbing light and giving off 

phosphorescence, which would greatly increase background or cause false positives in 

the light capture imaging apparatus.  Removal of the fur was necessary to reduce 

background.  Animals were anesthetized under 5% isoflurane from a vaporizer, and kept 

under anesthetic with 2% isoflurane.  Animals were depilated with clippers from the eyes 

to the base of the tail and the paws.   

 To further reduce background, all fur remaining in the shorn areas was removed 

by Nair (Church & Dwight Co., Inc.).  Animals were then thoroughly rinsed with warmed 

water (37C) and dried.  While animals were recovering from the anesthetic, either a 

heating pad was placed under the cage or an incandescent light was placed above the 

cage to maintain the animals’ body temperature.  Fur removal was performed at least 24 

hours prior to (first) image capture.   
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In Vivo Imaging and Analysis 

 After a minimum 24 hour recovery period, mice were injected with 2.5mg firefly 

D-luciferin by intraperitoneal injection.  The luciferin requires about 10 minutes to reach 

saturating and stable levels for 30-60 minutes in all tissues, and it readily crosses the 

blood-brain barrier (60).  Substrate was allowed to circulate for 15 minutes prior to first 

image capture.  Bioluminescence imaging was carried out with a highly sensitive, liquid 

nitrogen cooled charge-coupled device (CCD) camera with anesthetized (1-2% 

isoflurane) animals in a light-tight heated (37° C) specimen chamber (IVIS-100, 

Xenogen).  Depending on the sample signal, light capture was allowed to continue from 

1-600 seconds with a binning of 8 (8 x 8 digital pixels binned together for software 

analysis).  The binning allows for “tuning” of the light capture, and 8 x 8 binning is 

sufficient for determining luciferase activity through a variety of internal tissues, 

including the thin murine skull. 

 The image capture and subsequent analysis was performed using the Living 

Image Software available with the IVIS-100 bioluminescence instrument (Xenogen).  

The intensity of the light emitted from the animals is represented by a pseudocolor scale 

of intensity per digital pixel area (red being the most intense and blue/violet being the 

least intense).  The software makes sure that no pixel is saturated.  Thus, independently 

imaging of two animals with vastly different levels of ubiquitous luciferase activity can 

result in identical images.  However, the scale of the pseudocolor can be user 

manipulated to show the disparity of the true differences, as if the animals were imaged 

together.   
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 The bioluminescent images were overlayed on black and white digital 

photographs of the animals in the light-tight box.  Thus, the user is able to determine the 

location of the light source within the animal.  Of course, the further distance (or thicker 

the tissue) the luciferase generated photon must travel the more likely photon scatter is to 

occur.  Photon scatter can cause a strong signal from a precise location to appear to have 

a halo of weaker intensity light emission, while weak signals could be reduced to near 

background levels.   

 In addition to using bioluminescent images as a screening device for transgenic 

animals, the Living Image Software package also can give light emission results per unit 

of area over per second.  This feature allows the user to quantify the level of luciferase 

activity in a given animal or portion of that animal’s body under varying experimental 

conditions. 

 

 



 43 

CHAPTER III 

 

IN SILICO SEQUENCE ANALYSIS AND TRANSIENT TRANSFECTIONS OF 
MC4R PROMOTER-LUCIFERASE FUSION CONSTRUCTS 

 
 

Note: Base pairs are numbered from the MC4R start of translation.   
 
 

Results 

 

In Silico Sequence Analysis 

 We cloned the murine MC4R and flanking sequences from a 129 strain BAC 

library.  The murine MC4R sequence was compared to that of the human MC4R locus 

available on the Ensembl database for homology using the VISTA webtool 

(http://genome.lbl.gov/vista/index.shtml).  The homology plot (shown in Figure 3.1) 

revealed twelve distinct regions of the proximal 3.5 kb of 5’-flanking sequence with 

~75% sequence conservation.  The boundaries of the twelve conserved regions are listed 

in Table 3.1, along with putative cis-elements reproducibly identified by more than one 

transcription factor binding site prediction software tool.   

 The most striking conserved region (designated CR-8) is 32bp in length, 100% 

conserved between human and mice, and located approximately 100bp upstream of the 

putative major start of transcription in both species.  CR-8 is also highly conserved in 

other mammalian species, such as rat, pig, dog, and the old world primate macaque, but 

not in non-mammalian chordates chicken or fugu rubripes (data not shown).  

Interestingly, the central nervous system is not the only tissue of predominant expression 
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of MC4R in chicken and fish (61, 62).  The predicted cis-elements within CR-8 (Sp1 and 

CCAAT motifs), along with the distance to the putative major start of transcription, 

suggest that this element could be involved in basal transcription.  Using the rVISTA  

 

Figure 3.1 

 

Figure 3.1: VISTA Homology Plot: Mouse and Human Genomic Loci.  Human sequence is on the X-axis, 
and the percent homology (from 50-100%) in 25 bp sliding blocks is graphed.  The most prominent feature 
is the homology of the coding sequence of the two species (dark blue, +1:+999).  Several highly conserved 
regions are also present in the immediate 5’- and 3’-UTRs (light blue).  All regions of at least 75% 
homology are shaded pink (default setting for significant sequence homology in the VISTA program).  CR-
8 is marked with a green bar below the X-axis.  Above the 100% homology line are the length of the 
MC4R mRNA (UTR and coding sequence), as well as conserved locations of various DNA repeat motifs. 
 

(regulatory VISTA) program, these two putative cis-elements were determined to be 

conserved between human and rodent species (See Table 3.1). 

 Also, located approximately 12 kb upstream of the mc4r gene, there are multiple 

regions of significant sequence homology focused around an expressed sequence tag 

(EST, accession BG168153) isolated from both rodent and human kidney tissue.  
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Northern blot and in situ hybridization analyses were both negative for brain expression 

of this EST (data not shown). 

 

Table 3.1 

 

 

Endogenous Expression of MC4R in Cell Lines 

 A panel of cell lines, neuronal (GT1-1, GT1-7, Neuro-2A, CAD, and SH-SY5Y) 

and non-neuronal (HEK-293 and HeLa), were selected to characterize the murine MC4R 

promoter activity in vitro.  Previous publications have reported endogenous MC4R 

transcript expression in Neuro-2A (29), GT1-1 and GT1-7 (63), and HEK-293 (56).  I 

chose neuronal catacholaminergic CAD, human neuroblastoma SH-sY5Y cell lines, and 

HeLa cells as examples of cell lines with no report of endogenous MC4R expression.   

 The GT1 cell lines were a logical choice to focus in vitro promoter analysis 

because the cell lines were derived from an induced tumor cell line located in the Medial 

Pre-Optic Nucleus of the hypothalamus, a region with endogenous MC4R expression in 
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rodents.  We confirmed the expression of endogenous MC4R transcript in the 

hypothalamic gonadotropin releasing hormone (GnRH) producing GT1-1 and GT1-7 

cells; however, we found all other cell lines contained no detectable level of MC4R by 

reverse transcriptase (RT) coupled to Real Time PCR (RT-Real Time PCR, data not 

shown).  Similar to the report by Khong et al (63), we found that the GT1-1 cell line 

express approximately twice the level of MC4R transcript as GT1-7 cell line (data not 

shown). 

 

Murine MC4R Promoter Results 

 The murine MC4R promoter-reporter constructs that were used in transfection 

analyses are shown in the left-hand panel of Figure 3.2.  A series of deletion fragments 

were cloned into the 5’-MCS of the pGL3-Basic luciferase vector by either restriction 

fragment subcloning or PCR, or a combination of the two.  The fragments are 

progressively shorter with 5’-end ranging from -7.9 kb at the largest to -180bp at the 

smallest for the murine constructs.  All murine constructs have a 3’-end at the PstI site, at 

-5bp relative to the ATG start codon.  The constructs have been given the following 

designations: pGL+7900m, pGL+3300m, pGL+1600m, pGL+890m, pGL+648m, 

pGL+432m, pGL+340m, and pGL+180m. 

  

Endogenous MC4R Expressing Cell Lines 

 All in vitro firefly luciferase activity results were normalized to a co-transfected 

internal control expression vector carrying the Renilla luciferase gene (phRL-SV40), and 

the results are presented as relative light units (RLU relative to the luciferase activity 
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from transfections of the promoter-less pGL3-Basic vector).  In the hypothalamic GT1-1 

cell line, the largest promoter construct yielded modest promoter activity (Figure 3.2, 

pGL+7900m, 8.8 ± 1.6 relative to pGL3-Basic = 1.0).  Deleting from 7.9 kb to 3.3 kb of  

 

Figure 3.2 

 

Figure 3.2: Murine MC4R Promoter-Luciferase Reporter Constructs and In Vitro Results.  The left-hand 
panel shows a schematic representation of the murine MC4R locus and the promoter-luciferase reporter 
constructs used in the experiments.  The dashed line represents the PstI site at -5 bp from the start of 
translation that is the 3’-end of the MC4R sequence used in all murine MC4R-promoter reporter constructs.  
The right-hand panel is a graph representation of the luciferase activity from transient transfected cells 
lines.  The data is the average of at least three transfections from three independent plasmid preps.  Error 
bars represent S.E.M.  Ec = EcoRI; H = HindIII; Nc = NcoI; P = PstI; Pc = PacI; K = KpnI. 
 
5’-flanking sequence shows an increase in activity (pGL+3300m, 22.2 ± 2.8) that peaks 

with the pGL+890m construct (26.2 ± 2.2).  A small decrease in activity is seen upon 

deletion of the sequence from -890 to -648 (pGL+648m, 19.9 ± 1.9).  However, a marked 

decrease in luciferase activity is seen when deleting the sequence from -648 to near the 

putative major start of transcription (pGL+432m, 4.8 ± 0.1), which contains the entire 5’-

UTR sequence.  This deleted sequence included the CR-8 conserved region.   
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 Further deletions yielded little decrease in promoter activity in the GT1-1 cell 

line.  The same relative pattern of luciferase activity is present in transiently transfected 

GT1-7 cells, albeit at approximately 50% of the luciferase activity relative to the 

promoter activity seen in the GT1-1 cells (Figure 3.2, pGL+7900m, 3.8 ± 1.2; 

pGL+3300m, 11.4 ± 1.7; and pGL+648m, 9.9 ± 1.2).   

 

Non-Expressing Cell Lines 

 A similar pattern of luciferase activity for the murine MC4R promoter constructs 

was also found in the murine neuroblastoma cell line Neuro-2A and the human 

embryonic kidney cell line HEK-293 (see Figure 3.2).  Note that the luciferase activity 

did not markedly drop between the two largest constructs, as it did for the GT1 cells lines 

and the Neuro-2A cells.  HeLa, SH-SY5Y and CAD cells also produced modest to low 

luciferase activity, despite not expressing detectable levels of transcript (data not shown).  

The luciferase activity in these cell lines tracked similarly to that of HEK-293 results. 

 

Distal Conserved Regions  

 Since the relative basal promoter activity decreased from a maximum in the GT1 

cell lines with the pGL3+890m to less than half of the level of the pGL3+648m with the 

longest construct (pGL3+7900m), it was possible that negative promoter elements could 

be located in the sequence between -890 to -7.9 kb.  To further characterize the more 

distal conserved regions found through the VISTA homology plots, I PCR cloned the 

conserved regions (with 300-500 flanking base pairs both upstream and downstream for 

sequence context) in the murine MC4R genomic locus located from -2.5 kb to -12.5 kb.  
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These PCR fragments harboring individual conserved regions (at least 75% homologous 

to human MC4R genomic locus) were cloned upstream of the murine MC4R sequence in 

the pGL+648m luciferase construct.  The PCR fragments were also cloned upstream of 

the TK minimal promoter in the pGL3-TK plasmid (Promega). 

 These heterologous promoter constructs were then transiently transfected into 

GT1-1, GT1-7, Neuro-2A, and HEK-293 cell lines.  However, no significant difference 

in relative promoter activity was seen with the heterologous constructs and their base line 

constructs (pGL3+648m and pGL3-TK, respectively) (data not shown).   

 

Human MC4R Promoter Results 

 Each human 5’-flanking fragment was cloned by PCR from genomic DNA 

generously provided by Dr. Sutcliffe (Vanderbilt University).  For the human constructs, 

the fragments range from -2030bp at the largest to -130bp at the smallest.  All human 

constructs have a 3’-end at -1 position, relative to the first codon.  The human constructs 

have been given the following designations: pGL+2030h, pGL+1770h, pGL+1550h, 

pGL+900h, pGL+740h, pGL+600h, pGL+420h, pGL+230h, and pGL+130h.  A 

schematic representation of the human MC4R promoter-reporter constructs are shown in 

the left panel of Figure 3.3. 

 

Endogenous MC4R Expressing Cell Lines 

 I transiently transfected the human promoter constructs into the same panel of cell 

lines used for the murine constructs.  As with the results for the murine constructs, 

sequence within the putative 5’-UTR of the human promoter also had weak promoter 
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activity in GT1-1 cells (Figure 3.3, pGL+130h, 0.8 ± 0.04; pGL+230h, 1.2 ± 0.1; 

pGL+420h, 1.9 ± 0.1, relative to pGL3-Basic = 1.0).  A marked increase in luciferase 

activity was observed with the pGL+600h construct (5.4 ± 0.2), which includes the 32bp 

conserved region CR-8.  The luciferase activity of the human constructs slightly 

increased from the level of the pGL+600h construct to a plateau starting with pGL+740h 

construct (pGL+740h, 6.4 ± 0.4).  A small increase in activity is seen with the 

pGL+1550h construct that is not sustained in larger constructs (pGL+900h, 6.4 ± 0.3; 

pGL+1550h, 8.6 ± 0.3; pGL+1770h, 7.1 ± 0.3; pGL+2030h, 7.1 ± 0.6).   

 

Figure 3.3 

 

Figure 3.3: Human MC4R Promoter-Luciferase Reporter Constructs and In Vitro Results.  The left-hand 
panel shows a schematic representation of the human MC4R locus and the promoter-luciferase reporter 
constructs used in the experiments.  The dashed line represents the start of translation that is the 3’-end of 
the MC4R sequence used in all human MC4R-promoter reporter constructs.  The right-hand panel is a 
graph representation of the luciferase activity from transient transfected cells lines.  The data is the average 
of at least three transfections from three independent plasmid preps.  Error bars represent S.E.M.  Nh = 
NheI; H = HindIII; Ec = EcoRI; P = PstI. 
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 The relative pattern of promoter activity for the human constructs was identical in 

the GT1-7 cells.  As observed with the murine promoter constructs, a similar decrease of 

roughly one half in the activity levels of the human constructs was noted in GT1-7 cells 

compared to the activity seen in GT1-1 cells for constructs pGL+600h and larger (Figure 

3.3, pGL+600h, 2.6 ± 0.6; pGL+900h, 3.1 ± 0.4; pGL+2030h, 3.6 ± 0.6). 

 

Non-expressing Cell Lines 

 Luciferase activity from the human constructs was also observed in each of the 

other cell lines (Neuro-2A and HEK-293 cells, Figure 3.3; CAD, SH-SY5Y, and HeLa 

cells, data not shown), regardless of cell type or tissue of origin.   

 

Identification of Human Single Nucleotide Polymorphism in Proximal MC4R Promoter 
Conserved Region 
 

 

Discovery of Human SNP 

 To identify mutations that could adversely affect transcription of the MC4R gene 

in humans and therefore be telling of a risk for energy imbalance, we focused on the 

~250bp region surrounding the highly conserved CR-8 region.  The CR-8 region and 

flanking sequence was PCR amplified and sequenced in 162 obese patients with a 

phenotype that closely mimics that of known MC4R coding mutation subjects, which is 

hallmarked by severe early onset morbid obesity and increased linear growth.  One G to 

A single nucleotide polymorphism (SNP) was identified in a single obese subject at 

residue -502 (SNP-502).  The location and context of the SNP within the CR-8 conserved 
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region is shown in Figure 3.4.  No mutations/polymorphisms were observed in over 700 

control chromosomes within the CR-8 and flanking sequences.   

 

Figure 3.4 

 

Figure 3.4: Human SNP in the CR-8 Conserved Region of an Early Onset Obesity Subject.  The sequence 
is 100% conserved between rodents and human MC4R loci.  The sequence shown here is numbered from 
the human start of translation.  The “G” residue in the putative Sp1 site is present in all species in which the 
CR-8 is conserved.  The “A” residue was found in one proband presenting with early onset morbid obesity 
and increased height, which are hallmark phenotypes of MC4R deficiency.  Other putative conserved cis-
elements are depicted.  The G-502A SNP is in red.  The AP-1 half site is in blue. 
 

Site-Directed Mutagenesis of MC4R Promoter-Luciferase Fusion Constructs 

 The proband with the SNP was unavailable for further genetic studies, so we set 

about studying the SNP’s effects on basal transcription in vitro.  In order to recreate the 

SNP, I used site-directed mutagenesis to substitute the guanine residue at -502 of the 

human and mouse promoter in the normal human promoter-luciferase construct 

pGL+900h and normal mouse promoter-luciferase construct pGL+890m with an adenine 

residue observed in the proband.  The normal human and mouse constructs (henceforth 

referred to as hWT and mWT, respectively) and the mutated human and mouse constructs 

(henceforth referred to as hMut and mMut, respectively) were transiently transfected into 

the GT1-7 cell line.   

 The mMut construct showed a small but significant decrease in relative basal 

promoter activity compared to the mWT construct in the GT1-7 cell line (mWT 1.0 ± 
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0.05; mMut 0.94 ± 0.04; p < 0.05, Paired 2-Tailed t-Test).  However, in the native 

context of the human MC4R genomic locus the hMut construct showed a larger decrease  

 

Figure 3.5 
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Figure 3.5: Transient Transfection of Human SNP Promoter-Luciferase Construct.  GT1-7 cell line 
cultures were transient transfected, as described above, with the empty pGL3-Basic vector, hWT, and hMut 
plasmids.  The results are shown as average RLU relative to the hWT construct (set to 1.0).  The results are 
an average from three transient transfections from two independent plasmid preps.  Error bars are S.E.M.  
p=0.10 by two tailed Paired t-Test.  Data analysis performed by GraphPad Prism Software. 
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in relative basal promoter activity, but the change was not statistically significant (See 

Figure 3.5).  The decrease in luciferase activity was just under 90% of the hWT construct 

basal activity (mWT 1.0 ± 0.08; mMut 0.86 ± 0.02). 

 

Discussion 

 The data from the murine and human MC4R promoter-luciferase reporter 

constructs together suggest that positive promoter elements reside in the proximal 5’-

flanking sequence of the MC4R gene, specifically between positions -430 and -600 in 

both species and between positions -650 and -900 in the murine sequence context.  The 

previously noted 100% conserved CR-8 region resides within the former, and the highly 

conserved CR-6 and CR-7 regions reside within the latter.  Interestingly, weak promoter 

activity was observed within the putative 5’-UTR of both species.  This may be due to 

cis-elements or alternative transcription start sites within the 5’-UTR.  The in silico 

predicted cis-elements of the CR-8 region (CCAAT box and Sp1 family) are consistent 

with a region that is important for basal promoter activity of TATA-less promoters, such 

as MC4R. 

 The expression patterns seen in the various cell lines, both neuronal and non-

neuronal in origin, was interesting in that my data refutes the conclusions drawn in the 

Dumont et al (56) paper that the MC4R promoter imparts cell specific expression in vitro.  

However, the reporter constructs in those experiments also contained a significant 

amount of 3’-flanking sequence which could have been responsible for purported tissue-

specific expression in the cell lines chosen.  Given the results and conclusions drawn 

from the Lubrano-Berthelier et al study of the human MC4R promoter along with my 
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results presented herein, it is quite clear that the 5’-flanking sequence is typical of many 

weak expressing TATA-less promoters in which promoter activity “leakage” is possible 

absent some strong negative enhancer or insulator sequence tag in stable transfection 

studies.  The heterologous construct data not detailed herein show that no such negative 

enhancer resides within the 14,000 bp upstream of the mc4r translational start site. 

 The in vitro and in silico results was highly suggestive of the highly conserved 

CR-8 region could be crucial for proper in vivo expression of the gene.  Our collaborators 

screened a cohort of morbidly obese patients and found one SNP (G-502A) in the middle 

of the CR-8 region.  My in vitro characterization data is suggestive of causation of this 

patient’s obesity, but we were unable to pursue that line of investigation further due to 

lack of consent from the patient.  The SNP remains an open question that will be pursued 

in other screens as new cohorts are formed. 

 Altogether, the data from the in vitro studies (particularly the lack of tissue 

specificity in vitro) led me to direct my studies to making transgenic animals to 

characterize the proximal flanking sequences in vivo. 
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CHAPTER IV 

 

EXPRESSION OF TAU-EGFP TRANSGENE IN 3.3KBMC4ITG TRANSGENIC 
MICE 

 
 

Results 

 Due to the limitations of the cell culture models, I generated transgenic mice to 

study the promoter in vivo.  Based on the tissue culture results, I decided to focus on the 

proximal 3.3 kb of 5’-flanking sequence that included the 12 highly conserved regions.  I 

created a transgenic construct using a 4.8 kb HindIII murine MC4R fragment cloned 

upstream of an Internal Ribosome Entry Site-bovine tau-EGFP (MC4ITG) reporter 

cassette to generate a bicistronic transgene (See Figure 4.1).  The construct, therefore, 

also includes approximately 500 bp of 3’-UTR in the MC4ITG construct. 

 

FIGURE 4.1 
 

 
 
Figure 4.1: MC4R-ITG Transgenic Construct. Schematic of MC4ITG transgene with murine MC4R 
HindIII 4.8kb restriction fragment.  The bicistronic transgene contains 3313bp upstream and 1514bp 
downstream of the start of translation, including the entire coding sequence.  An Internal Ribosome Entry 
Site (IRES) allows for an independent translation product for the bovine tau-EGFP fusion gene.  An 
immediate early SV40 polyadenylation site follows the tau-EGFP reporter.  H = HindIII; IRES = Internal 
Ribosome Entry Site; pA = poly-adenylation signal sequence. 
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Transgene Expression Validation in Cell Culture 

 Before using the construct to generate transgenic mice, I first validated the 

construct by transient transfections into Neuro-2A and GT1-1 cell lines.  The bovine tau 

portion of the transgene binds to microtubules present in the axons and dendrites of 

neurons, which renders the EGFP reporter to be capable of demarking positive expressing 

cell bodies and their appendages.  Figure 4.2 shows a successful validation experiment in 

which Neuro-2A cells are expressing the tau-EGFP transgene.  The tau-EGFP is clearly 

deposited in both the cell body and the appendages of the “differentiated” cell. 

 

Endogenous MC4R Expression in C57BL6 Mouse Strain 

 Five transgenic founders were identified by PCR screening and Southern blot 

analysis for the EGFP coding sequence, of which four passed the transgene to offspring 

(Lines MC4ITG#1, MC4ITG#6, MC4ITG#13, and MC4ITG#15).  These four lines were 

maintained and used to analyze tau-EGFP reporter expression. 

 Using non-transgenic C57BL6 as controls, endogenous murine MC4R transcript 

was found to be present in all brain regions sampled (See Figure 4.3).  In order to detect 

this weakly expressed endogenous gene, I had to optimize a highly sensitive RT-PCR 

reaction using Real Time PCR Multiplexing technology.  The highest level of 

endogenous MC4R transcript in quantity of amplifiable cDNA was found to be in the 

hypothalamus (163 ± 40 amplicons/ng total RNA) and the lowest in the cerebellum (11.1 

± 5.6 amplicons/ng total RNA).  I did not expect to find endogenous transcript in the 

cerebellum of adult mice, as all previous reports claim this adult tissue to be negative for 

MC4R expression.   
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Figure 4.2 

 

Figure 4.2: Photomicrograph of Neuro-2A Expressing Tau-EGFP Reporter Gene.  Neuro-2A cells were 
passaged in a 10cm dish and given N2A Experimental medium.  The cells were allowed to culture into the 
pseudo-differentiated state for 24 hours prior to transient transfection.  Cells were transient transfected with 
Lipofectamine 2000 using 10μg of MC4ITG construct.  The cells were screened for EGFP expression using 
a GFP filter and mercury lamp 12 hours post transfection.  Cell image was captured using NIH Image 
software.  The photomicrograph shows several Neuro-2A cells positive for EGFP expression.  The 
objective is focused on a plane that shows the tau-EGFP reporter gene properly localizing in the 
microtubule filled appendages of the cell in the center left of the field. 
 

 

 The kidney was the only peripheral tissue to have a detectable level of 

endogenous MC4R transcript (6.6 ± 2.7 copies/ng total RNA), but still lower than that 

observed in the cerebellum.  All other peripheral tissues were not significantly higher 

than the reaction lacking RT enzyme or no-template (water) control reactions (data not 

shown).   
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Figure 4.3 

 

Figure 4.3: Endogenous MC4R Expression in C57bl6 Mice. Endogenous MC4R expression pattern, as 
determined by Reverse Transcriptase Real Time PCR (RT-Real Time PCR) of non-transgenic MC4ITG 
littermates.  Endogenous MC4R transcript was detected in five of five isolated brain regions 
(hypothalamus, striatum, cerebellum, piriform cortex, and brain stem).  The kidney was the only peripheral 
tissue found to have endogenous MC4R transcript levels above background.  Data represents mean from at 
least three wildtype C57bl6 male tissue RNA preps.  Error bars represent S.E.M. 
 
  

Expression Pattern of tau-EGFP Reporter mRNA in the CNS of Transgenic Mice 

 I then performed RT-Real Time PCR on the four MC4ITG transgenic lines for 

tau-EGFP mRNA expression to compare to that of the endogenous MC4R pattern of 

expression (See Figure 4.4).  The relative pattern of tau-EGFP transcript expression 

between the various brain regions was found to be similar to that of endogenous MC4R 
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transcript in three of four lines, where highest transcript levels were observed in 

hypothalamus and lowest in cerebellum.   

  

Figure 4.4 

 
 
Figure 4.4: Tau-EGFP Expression in MC4ITG Transgenic Mice. RT-Real Time PCR detection of EGFP 
transcript in four independent MC4ITG transgenic lines.  All four lines were found to have highest 
expression in the hypothalamus and striatum, two regions chosen for analysis based on their relatively high 
expression of endogenous MC4R as determined by published in situ hybridization experiments.  EGFP 
transcript was also detected in piriform cortex and brain stem tissue samples in lower levels than striatum 
abut greater than cerebellum in all MC4ITG lines.  Line #6 was the only MC4ITG line having detectable 
levels of EGFP transcript in the kidney, but low levels of EGFP transcript was also detected in the heart, 
lung and soleus muscle of the hind limb.  No sexual dimorphic expression of MC4R or EGFP was observed 
in the MC4ITG lines.  Data is mean from at least three transgenic mice for each tissue RNA prep.  No 
sexual dimorphism of reporter expression was found.  Error bars represent S.E.M. 
  
 Line MC4ITG#6 also had detectable expression of the transgene in kidney (16.7 ± 

7.8 amplicons/ng total RNA), heart (5.4 ± 4.1 amplicons/ng total RNA), and lung (9.7 ± 

6.8 amplicons/ng total RNA), although expression was highest in the CNS 

(hypothalamus, 87.3 ± 16.1 amplicons/ng total RNA; striatum, 91.8 ± 16.6 amplicons/ng 

total RNA). 
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Discussion 

 Unfortunately, the tau-EGFP reporter was not detectable by visual analysis under 

a fluorescent microscope; however, I was able to detect expression of the transgene 

throughout the CNS by RT-Real Time PCR.  The modest promoter activity of the 

MC4ITG transgenic mice forced me to consider more sensitive and less expensive 

reporter gene systems for future experiments. 

 Another (anticipated) weakness in the MC4ITG transgenic construct was the 

bicistronic nature of the transgene, which precluded analysis of endogenous MC4R levels 

in the transgenic animals.  Only one line (MC4ITG Line #1) had transcript levels of 

MC4R that were significantly higher than those seen in the non-transgenic animals in 

each of the brain regions analyzed.  In experiments not detailed herein, a partial, yet 

significant, rescue of the MC4R-KO obesity phenotype was found when crossing to 

either MC4ITG Line #1 or Line #15. 

 The results presented in this chapter show that the MC4ITG transgene is 

expressed preferentially in the CNS.  Furthermore, the quantitative ratio pattern of 

expression is similar to that of the endogenous MC4R transcript within distinct regions of 

the CNS in three of four independent lines. 
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CHAPTER V 

 

EXPRESSION OF E. COLI BETA-GALACTOSIDASE IN 3300MC4LACZ3 MICE 

 

Results 

 

Generation of MC4-LacZ Trangenic Mice 

 Due to the limitations of the MC4ITG transgenic mice, I decided to use a different 

in vivo approach with alternative reporter transgenes.  The classic mouse transgenic 

reporter is the beta-galactosidase gene from the E. coli lacZ operon.  The advantages of 

using this reporter gene are the technical developments in detection garnered by its wide-

spread use.  Dr. Richard O’Brien (Vanderbilt University) kindly provided a nuclear-

localized beta-galactosidase reporter cassette.   

 A schematic of the LacZ transgene construct (Construct A) is shown in Figure 

5.1.  For comparison of the included MC4R sequence, the MC4ITG construct and a 

relevant VISTA homology plot are included.  The LacZ construct contains all of the 5’ 

sequence included in the MC4ITG construct, but it lacks the MC4R coding sequence.  

The 3’-sequence included in the LacZ construct is about 250bp more than what was 

included in the MC4ITG construct; however, no putative conserved transcription factor 

binding sites were located in this downstream sequence. 

 Initially, three founders were positively identified by PCR and Southern blot 

screening at UAB.  Of these, only two transmitted the transgene to progeny (Lines A2 

and A3).  Southern blot analysis showed that Line A2 harbored a single copy of the 
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transgene, while Line A3 carried more than 20 tandem copies of the transgene.  Line A1 

never threw positive pups, and this male founder was sacrificed for data collection.  

However, no detectable expression was found by either Beta-Glo in vitro assays or RT-

Real Time PCR.  A fourth and final founder (A4) was generated once it was discovered 

that the Line A1 founder was not expressing the transgene.  Yet, this female founder died 

during a breached delivery, and no data was recoverable. 

 

Figure 5.1  
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Figure 5.1: Nuclear Localized LacZ Transgene Construct.  The figure shows a schematic representation of 
the MC4R promoter- nuclear localized LacZ transgenic construct.  For comparison, a schematic drawing of 
the MC4ITG transgenic construct and a VISTA plot of the relevant human and mouse sequence are 
included above the MC4R-LacZ construct. 
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Beta-Galactosidase Staining of Mouse Embryo and Fetus 

 Previous studies had shown that MC4R is expressed in the CNS of developing 

mouse embryos no earlier than day 14 (e14) past implantation (64, 65).  The gestational 

period of a mouse is typically 21 days, but the embryo has all major organs formed by 

e15 (technically a fetus at this point).  I chose to harvest and stain whole embryos at e15-

16.  At this stage, the brain has taken form and the hypothalamus has been expressing 

MC4R for at least one day.  Also, the embryos are capable of staining with X-Gal without 

a Proteinase K digestion step in the protocol, which could also degrade the transgene that 

is expected to be produced in low quantities.   

 Line A2 and A3 males were caged with wildtype females until a copulation plug 

was found so that the pregnancies could be timed.  After 15 days, the pregnant dams were 

euthanized and the embryos were harvested and stained.  Line A3 embryos showed no 

visible staining after 24 hours at 37C in staining solution, at which time the non-specific 

staining in the abdominal cavity of both transgenic and wildtype animals became deep 

blue.  Due to the very weak expression of the endogenous MC4R gene, it was not 

unexpected to have a seemingly negative result. 

 Line A2 embryos, however, expressed enough LacZ transgene in utero to stain 

within a very short time at room temperature (less than one hour to show blue staining in 

the cortex of the CNS).  Staining was allowed to continue for two hours at room 

temperature.  The pattern of expression visible through the transparent skin of the e15 

embryos is shown in Figure 5.2.  These photographs show relatively high transgene 

expression in the CNS (given the short staining time and extent of staining), down the 

midline of the back, olfactory nerves, snout/jaw, ears, paws, eyes, tail, and the fast twitch 
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muscles in the limbs.  Extra-CNS expression in the fetal animals was not expected at the 

time of the experiments. 

 
Figure 5.2 
 

 
 
Figure 5.2: X-Gal Staining of Line A2 Whole Embryos. Dam euthanized and killed before harvest of 
~e15.5 embryos. (A) Genomic DNA prepared from placenta for PCR genotyping. Embryos ‘C’ and ‘F’ are 
positive for the LacZ transgene (marked *, positive control marked +), and these were the only embryos 
with specific staining. (B) View of head and forelimb of embryos ‘A’ (top, negative) and ‘C’ (bottom, 
positive). Specific staining is apparent below the skin near the forelimb joint, paw, ear, nose, eye, olfactory 
bulb and cerebrum. (C) Specific staining at the midline of the back (likely the spinal chord). (D) Closer 
view of staining around the head. The olfactory nerves, olfactory bulb, cerebrum, and cerebellum are 
densely stained. Lighter staining is observed around the ear and at the spinal chord. (E) Closer view of 
staining under the skin near the forelimb joint (left) and the paw (right). Note: embryos stained in the dark 
for 10.5 hours at room temperature while gently shaking. At end of staining, only the back midline, paws, 
olfactory nerves, cerebellum, and cerebrum were noticeably stained. The staining at the olfactory bulb, 
limbs, and eyes became apparent only after intensification in PBS. SC – spinal chord (midline); Ce – 
cerebrum; Bl – cerebellum; e – ear; ON – olfactory nerve; OB – olfactory bulb; J? – fast twitch skeletal 
muscle in forelimb. 
 

Beta-Galactosidase Activity in Adult Transgenic Mice 

 I next wanted to determine whether the adult transgenic animals expressed the 

reporter transgene.  To test for CNS expression, adults were perfused and the whole 

brains were removed for X-Gal staining.  Wildtype brains showed no staining whatsoever 
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in the time periods utilized for staining either transgenic line (see Figure 5.3).  Similar to 

the results in the fetal staining experiments, the Line A2 adult brains needed less than one 

hour to stain deep blue in the cortex and the supraoptic nucleus (the location of the 

hypothalamus, see Figure 5.3).  The Line A3 adult brains required substantially longer to 

stain (data not shown).  These brains were sliced using the aid of a brain mold into 1mm 

sections.  However, the interiors of the adult brains from both lines were completely 

devoid of staining.  This suggested that the X-Gal reagent was not penetrating the whole 

brains, so I next made 1-2mm sections of perfused brains which were then allowed to 

stain directly in the reagent. 

 The brain sections from Line A3 adult animals showed modest staining 

throughout the CNS, primarily in the hypothalamus, hippocampus, and striatum, but the 

highest level of staining was in the cortex (data not shown).  In fact, reporter activity in 

the hypothalamus and striatum was only evident after prolonged staining (> 5 hours).  

The brain sections from Line A2 adult mice, however, showed staining throughout the 

CNS (cerebellum, cortex, and hypothalamus staining shown in Figure 5.3).  The highest 

level of staining appeared to be in the cortex in this transgenic line.  Attempts to make 

slices for slides were unsuccessful, apparently due to insufficient fixing of the tissues 

(note: post fixing was not performed in order to preserve reporter activity).  Despite the 

fact that the staining patterns were not 100% reproduced between the two LacZ 

transgenic lines, the widespread reporter activity throughout the CNS was promising that 

at least part of the MC4R promoter responsible for CNS preferential expression was 

within the flanking sequence used for the transgene, which would be consistent with the 

MC4ITG transgenic mice (see previous chapter). 
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 Since the Line A2 fetus showed deep blue staining in unexpected peripheral 

tissues, I next wanted to test for expression of the transgene in adult animals using an in 

vitro method that would allow for comparison between CNS and peripheral tissue  

 

Figure 5.3 

1
2

3
4

 

Figure 5.3: X-Gal Staining in Adult Line A2 Brain Tissue.  The top panels show an over-stained whole 
brain from a transgenic (right) and wildtype (left) littermate.  The bottom left panel shows a detailed close 
up of the caudal section (including the cerebellum and cortex) of the same over-stained transgenic brain in 
the top left panel.  Note the contrast in staining between the cortex (deep blue) and the cerebellum (light 
blue), suggesting the transgene correctly directs weakend expression of the reporter in the cerebellum.  The 
bottom right panel shows a detailed image of the hypothalamus of a 1.0mm coronal section stained with X-
Gal.  1 = Third Ventricle; 2 = Dorsomedial Hypothalamic Nucleus; 3 = Ventromedial Hypothalamic 
Nucleus; 4 = Arcuate Nucleus. 
 
expression.  The method chosen was the Promega Beta-Glo Assay system, which utilizes 

an indirect means of detecting LacZ reporter activity with a highly sensitive luciferase 

assay (the LacZ reporter gene frees the luciferin reagent which is then free to react with 
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the firefly luciferase included in the reagent).  The hope was that even small levels of 

expression in tissues would be detected reproducibly due to the high sensitivity of the 

assay.  No published reports were available in the literature for a method of using the 

assay from tissues harvested from transgenic animals, so I had to develop a method 

independently (See Chapter II).   

 Tissue samples from the CNS (same regions used for the MC4ITG transcript 

assays) and a panel of peripheral tissues (liver, kidney, paw, tail, ear, skin, heart, lungs, 

digestive tract, skeletal muscle, and spleen) from Lines A2 and A3 adult transgenic mice 

and wildtype littermates were harvested.  Wildtype and transgenic samples from each 

tissue were analyzed simultaneously so that the wildtype results could be subtracted from 

the transgenic tissue results as background.  This was necessary because every tissue has 

some level of background beta-galactosidase activity present.  The background levels 

were found to be the lowest in the brain, while the kidney, liver, and digestive tract 

tissues had background levels that dwarfed all bona fide transgene reporter activity. 

 The results for the Beta-Glo assays for Lines A2 and A3 are shown in Figures 5.4 

and 5.5, respectively.  The in vitro results closely approximated the relative staining 

levels seen in the adult brain slices for both lines.  For example, the striatum samples had 

roughly twice the reporter activity in vitro as the hypothalamus and the cortex samples.  

Although the staining did not appear to be twice the level as these other two CNS 

regions, it was certainly more densely stained than both.  Also, Line A3 mice clearly have 

the highest reporter activity in the cortex under both assays. 

 Due to the high levels of background in the peripheral tissues, no tissue 

reproducibly had higher levels of Beta-Glo activity in transgenic over wildtype mice.  
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Nonetheless, the means from several peripheral tissues were higher than the background 

levels.  None of these means are statistically significant from the wildtype background 

activity for these tissues.  This was an interesting result, especially for Line A2, because 

the fetal staining assays clearly showed X-Gal staining many times higher than 

background levels in peripheral tissues ranging from the paw to skeletal muscle that was 

comparable to the level seen in the cortex of the same animals.  None of these tissues 

were determined to have expression in the adult in vitro assays in either transgenic line.  

Another interesting result was that the relatively low level of expression of the reporter 

transgene in the cerebellum of Line A2 adults (staining and in vitro assays) did not match 

what was observed in the staining of the fetal cerebellum tissue (see discussion). 

 Comparing between the lines, the Beta-Glo assay results also reproduced the 

relatively higher expression of the transgene in Line A2.  Figures 5.4 and 5.5 show that 

the highest expression (reporter activity) in Line A2 CNS was more than ten times higher 

than the highest level of expression (reporter activity) in Line A3 CNS.  The data also 

confirmed the lack of reproducibility between both LacZ transgenic lines in relative 

expression pattern between CNS regions, which was seen with the MC4ITG transgenic 

mice.  However, like the data from the MC4ITG mice, the data from Lines A2 and A3 

show that the flanking sequence in the transgene is sufficient to direct CNS preferential 

expression of the beta-galactosidase reporter in vivo, albeit in adult animals because as 

the Line A2 fetal staining assays show, the transgene is also sufficient to temporally 

direct extra-CNS expression in the fetus in vivo.  This extra-CNS expression is then lost 

between birth and adulthood, suggesting temporal expression control within the flanking 
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sequence within the transgene that mimics the endogenous temporal MC4R expression 

pattern. 

  
Figure 5.4  
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Figure 5.4: Quantitative Beta-Galactosidase Activity for Line A2. Tissues harvested and 
homogenized in Promega Reporter Lysis Buffer. Assay performed using Promega BetaGlo reagent. 
Reactions are allowed to reach a steady state (multiple reads). The data is reported in Relative Light Units 
(indirect beta-galactosidase activity), which has been normalized to the sample mass homogenized.  Results 
are means of duplicate samples from at least three transgenic animals with non-transgenic BetaGlo activity 
subtracted out.  Error bars represent S.E.M.   
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Figure 5.5 
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Figure 5.5: Quantitative Beta-Galactosidase Activity for Line A3. Tissues harvested and 
homogenized in Promega Reporter Lysis Buffer. Assay performed using Promega BetaGlo reagent. 
Reactions are allowed to reach a steady state (multiple reads). The data is reported in Relative Light Units 
(indirect beta-galactosidase activity), which has been normalized to the sample mass homogenized.  Results 
are means of duplicate samples from at least three transgenic animals with non-transgenic BetaGlo activity 
subtracted out.  Error bars represent S.E.M.   
 

Beta-Galactosidase mRNA Expression Analysis 

 I next wanted to test whether the pattern of the reporter transcript would be 

consistent with that seen with the MC4ITG mice or the Beta-Glo activity assays 

performed.  Due to budget constraints, only Line A2 was analyzed in these pilot 

experiments.  The results in Figure 5.6 show that the transcript levels for the striatum are 

not consistent with the in vitro Beta-Glo activity assays; however, the relative ratios of 

expression for the other four CNS regions was consistent with the in vitro data.  The 

cortex region had the highest level of reporter transcript in these assays, which was a 
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departure from the results seen for the MC4ITG transgenic mice; however, the ratio of 

transcript expression in the other four brain regions tested did roughly mimic that which 

was observed in the MC4ITG transgenic mice (Compare Figure 4.4 with Figure 5.6).  

Importantly, no transgene expression was detected in any of the peripheral tissues tested, 

including the kidney. 

 

Figure 5.6 
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Figure 5.6: Beta-Galactosidase Transgene Transcript Expression in the CNS of Line A2 Mice.  RT-Real 
Time PCR results for LacZ transcript normalized to beta-actin expression.  The data is expressed in terms 
of amplicons per 100ng total RNA used in the cDNA synthesis reaction prior to Real Time PCR.  No 
expression was detected in any peripheral tissue analyzed.  Results are the means from three individual 
animals for both transgenic and wildtype littermates.  Error bars represent S.E.M. 
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Discussion 

 Even though the pattern was not reproducible in the CNS between both lines that 

threw transgenic pups, the data does show that the nls-LacZ reporter transgene was 

restricted to the CNS in adult tissues.  The Beta-Glo in vitro assay data shows that the 

expression was limited to the CNS, as the levels of beta-galactosidase activity in the 

peripheral tissues analyzed were not significantly different in transgenic and wildtype 

littermates.  Moreover, the complete lack of reporter transcript in peripheral tissues of 

adult animals via RT-Real Time PCR assays confirmed this conclusion.  Also, this data 

was consistent with the results fro three of four MC4ITG transgenic lines that showed 

reporter expression restricted to the CNS.   

 Another interesting result from the nls-LacZ transgenic mice was the unexpected 

finding of reporter activity in fetal staining experiments.  At the time of my results, no 

one had done a detailed study of endogenous MC4R expression in animals prior to birth.  

Even though the fetal staining showed extensive, organ-specific expression of the 

reporter, this extra-CNS expression was lost in the adult transgenic animals.  Also, the 

expression of the reporter in the cerebellum greatly decreased from in utero to adult 

animals.  This apparent promoter control of temporal expression is consistent with recent 

data from a study detailing endogenous MC4R expression in the fetal rat (66).  In 

summary, the data from the MC4ITG and nls-LacZ transgenic mice show that the 

proximal 3.3 kb of 5’-flanking (and possibly 600 bp of proximal 3’-flanking) sequence is 

sufficient for CNS preferential expression in vivo.   
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CHAPTER VI 

 

EXPRESSION OF FIREFLY LUCIFERASE IN 3300MC4LUC3, 3300MC4LUC, 
890MC4LUC, AND 430MC4LUC MICE 

 
 

Results 

 

Bioluminescent Imaging of Transgenic Founders and Offspring 

 In addition to the LacZ transgenic construct, four transgenic constructs utilizing 

the firefly luciferase gene were prepared following the MC4ITG transgenics (See Figure 

6.1A).  The luciferase reporter gene allows for highly sensitive in vitro assays in 

transgenic promoter characterization studies (67, 68).  Additionally, founders and 

progeny can be screened for luciferase expression by in vivo bioluminescence imaging.  

Bioluminescence imaging can also be used to monitor changes in gene expression in 

living animals.  This is because the firefly luciferase enzymatically produces photons, 

which are emitted in a broad spectrum (530-640nm) with a peak at 562nm (69, 70).  Due 

to the optical properties of mammalian tissue, light of this spectrum and peak emission 

can pass through and be detected on highly sensitive CCD cameras, including bones (60, 

71).  Thus, there are many advantages to using luciferase as a promoter-reporter 

transgene.   

 The four luciferase transgenic constructs were chosen based mostly on the in vitro 

results (see Chapter 3) and the results of the MC4ITG mice generated at Vanderbilt.  Of 

paramount importance in this decision was the ability to compare the results of these 

transgenic mice (and Construct A) with the MC4ITG mice, which had three of four lines 
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show CNS specific expression (see Chapter 4).  Also important was the need to narrow 

down regions of the murine MC4R 5’-flanking sequence (i.e., the promoter) that are 

responsible, if at all, for MC4R’s CNS preferential expression pattern.  This was to be 

accomplished by comparing the results of luciferase expression in transgenic mice of 

shorter and shorter length of flanking sequence (see Figure 6.1).  Initial results from two-

week old founders of Construct B that died unexpectedly were promising because two of 

two transgenic animals expressed luciferase in the CNS without any detectable signal in 

the liver, kidney, or heart – all of the peripheral tissues analyzed (data not shown).  

Thereafter, the constructs were put in queue starting with the largest (B) to the smallest 

(E) for generation at UAB.  Founders and breeding success are discussed along with 

results below.  Representative in vivo bioluminescence images are shown in Figure 6.1B.  

Due to better reproducibility of expression patterns between independent lines, I chose to 

use luciferase as the reporter gene for the remainder of the studies.   

 

Luciferase Transgene Activity Assay in Transgenic Mice 

 Sixteen transgenic founders for 3300MC4Luc3 (construct B) were initially 

identified by PCR and Southern blot genotyping.  In vivo bioluminescence imaging 

confirmed luciferase reporter gene activity in 15 of the founder animals, of which four 

representative lines (B5, B6, B11, and B18) were chosen for further analysis.  In vivo 

bioluminescence images are shown in panels B and C of Figure 6.1 for the 

3300MC4Luc3 construct lines B6 and B18, respectively.  Three of the four representative 

3300MC4Luc3 construct lines show the highest detectable level of luciferase activity at 
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the caudal area of the head in the dorsal bioluminescent images.  In vitro luciferase assays 

performed on tissue extracts 

 

Figure 6.1 

Panel A 
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Figure 6.1: Luciferase Transgenic Constructs and In Vivo Bioluminescence Imaging.  (A) A schematic 
representation of each Luciferase Transgenic construct (B-E) is shown in this panel.  For comparison, a 
schematic drawing of the murine MC4R locus is placed at the top of the transgenic constructs, along with 
restriction sites for reference.  Of particular importance is to note that all constructs share the same 3’-end 
for the 5’-flanking sequence, but the 5’-end of this varies from -432 bp to -3313 bp.  Constructs B and C 
share the same 5’-flanking sequence, but B also shares the 3’-flanking sequence included in the LacZ 
Transgene Construct (Construct A).  NOTE: Due to the software’s programming, the in vivo 
bioluminescence images are best compared by intensity rater than actual photon emission levels.  
Therefore, this data is best used as a preliminary comparison between lines and for direction of which 
tissues to analyze using the in vitro methodologies discussed in Chapter 2.  (B) In vivo bioluminescence 
imaging of line B6.  Note the ubiquitous pattern of expression (determined to be in the skin, ears, and 
paws) with the highest intensity of expression coming from the head (determined to be the CNS).  (C) In 
vivo bioluminescence imaging of line B18.  Note the pattern is remarkably similar to B6, except for the 
expression in the skin.  (D) In vivo bioluminescence imaging of line C1.1.  Note the staining down the 
midline of the back (undetermined origin, but somewhat similar to the patterns seen in B18, C4, and D9 
lines).  (E) In vivo bioluminescence imaging of line C4.  Note that the pattern is almost identical to C1.1, 
only the actual expression levels are lower.  (F) In vivo bioluminescence imaging of line D8.1.  The only 
expression detected by the imaging software is emitted from the head of this line.  (G) In vivo 
bioluminescence imaging of line D9.  Very similar pattern of expression to that seen in C1.1 and C4 with 
an actual level of light emission that is between the two.  (H) In vivo bioluminescence imaging of line E1.  
Note that only the paws and the right flank of the animal appears to be expressing the transgene; however, 
in vitro data actually shows that the highest level of transgene expression is in the CNS.  (I) In vivo 
bioluminescence imaging of line E4.  
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demonstrated that this site of expression is the brain stem (Table 6.1, B5 = 0.4 photon 

counts per second/microgram total protein ± 0.1; B6 = 21.1 ± 4.3; B11 = 119 ± 37; B18 = 

21.8 ± 9.6).  The in vivo dorsal image of line B6 mice also show expression throughout 

the body, which was found to be from luciferase expression in the skin.  Low level (less 

than 100 photons per 8 x 8 pixel in a five minute light capture image) skin expression of 

the luciferase reporter was observed in four of the 15 transgenic lines for the 

3300MC4Luc3 “B” construct.  Most 3300MC4Luc3 transgenic lines exhibit ectopic 

luciferase activity in the ears, snout, paws, and tail (see discussion).  Luciferase reporter 

expression was found to be present in numerous peripheral tissues in the 3300MC4Luc3 

mice; however, reporter expression outside of the CNS was not consistent from line to 

line (See Table 6.1).   

 Seven 3300MC4Luc (construct C) transgenic founders were identified by initial 

PCR genotype screening and Southern blot analysis.  Three of the founders (C1, C4, and 

C5) were selected for further analysis.  Of these, the C4 transgenic founder failed to pass 

on the transgene to F1 offspring.  Southern analysis of F1 offspring from the line C1 

founder revealed four transgene integration sites which segregated independently.  

Offspring from three of the independent C1 integration sites were maintained as separate 

lines (C1.1, C1.2, and C1.3), of which line C1.1 recapitulated the in vivo bioluminescence 

pattern of luciferase activity that was observed in the founder animal.   

 In vivo bioluminescence imaging of line C1.1 F1 and C4 founder are shown in 

panels D and E of Figure 6.1, respectively.  These images show a similar pattern of 

luciferase activity in the CNS and the dorsal midline of the back.  In vitro luciferase 

assays of tissue samples from these two lines revealed that each had a similar pattern of 
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Table 6.1 
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luciferase activity within the CNS.  The expression in the CNS of line C5 (Table 6.1) also 

had a similar pattern as the C1.1 and C4 lines, albeit at much lower levels of activity.  

Similar to the 3300MC4Luc3 expression patterns in the CNS, the highest reporter activity 

in the CNS was found to be in the brain stem in these three “C” construct lines (Table 

6.1, C1.1 = 14.0 ± 5.1; C4 = 8.0; C5 = 0.4 ± 0.2).  The data suggest that the 3’-flanking 

sequence present in the 3300MC4Luc3 construct have little or no effect on brain 

expression of MC4R, but the data does support a hypothesis that extra CNS expression 

sites could be controlled from this sequence. 

 In vivo bioluminescence imaging of line C1.2 mice initially suggested that this 

line was non-expressing, and imaging of line C1.3 showed very low levels of expression 

in the tail, paws and snout – areas of presumed ectopic expression (see discussion).  

Expression in the brain, as determined by in vitro luciferase assays, was inconsistent for 

line C1.2 and negative for lines C1.3; however, ex vivo imaging of 1mm coronal brain 

slices (sectioned on brain mold, BrainTree Scientific) bathed in Promega Luciferase 

Assay Reagent (Promega) demonstrated weak luciferase activity throughout the brain in 

line C1.2 mice (data not shown). 

 Six transgenic founders for 890MC4Luc (construct D) were identified from 

genotyping PCR screens and in vivo bioluminescence imaging.  Of these, three 

representative lines (D5, D8, and D9) were chosen for further analysis.  Dorsal view in 

vivo bioluminescence images of D8.1 and D9 F1 offspring are shown in panels F and G 

of Figure 6.1, respectively.  The founder of line D8 was found to pass on two 

independently segregating transgenic alleles when analyzed by Southern blot, and both 

genomic integrations were maintained as individual lines (D8.1 and D8.2).   
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 Three of the four maintained 890MC4Luc lines clearly show CNS preferential 

expression (See Table 6.1) defined as greater than five fold expression in the CNS over 

that observed in peripheral sites of expression.  Interestingly, by deleting the MC4R 5’-

flanking sequence from -3313:-890 (numbered from the start of translation) increased 

CNS specificity of the luciferase reporter transgene.  However, the expression pattern 

within the individual brain regions is less consistent between each 890MC4Luc 

transgenic line where expression is relatively higher in the cortex compared to the brain 

stem in these mice (Table 6.1, D5 Piriform Cortex = 2.3 ± 0.5, Brain Stem = 4.6 ± 0.5; 

D8.1 Piriform Cortex = 14.8 ± 4, Brain Stem = 4.2 ± 3.4; D9 Piriform Cortex = 25.8 ± 

14, Brain Stem = 24.5 ± 8.4). 

 Three luciferase expressing transgenic founders for 430MC4Luc (construct E) 

were identified by PCR genotyping and in vivo bioluminescent imaging.  The E3 

transgenic founder did not produce any F1 offspring, but lines E1 and E4 were 

successfully maintained for further analysis.  The initial in vivo bioluminescent imaging 

suggested no expression in the CNS from any of the 430MC4Luc lines.  Line E1 

transgenic mice appeared to express luciferase in the paws and ears (Figure 6.1H), while 

the in vivo bioluminescence imaging of line E4 transgenic mice suggested reporter gene 

expression in an area consistent with the kidneys in a dorsal view (Figure 6.1I) and the 

heart in a ventral view (data not shown).  However, subsequent in vitro luciferase assays 

from isolated brain regions showed reporter expression in the CNS of all three 

430MC4Luc lines.   

 With the exception of the luciferase expression in the paws, line E1 transgenic 

mice have an interesting luciferase expression pattern within the CNS that is limited to 
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the hypothalamus, striatum, and dorsal brain stem (Table 6.1, Hypothalamus = 3.1 ± 0.3, 

Brain Stem = 0.2 ± 0.2).  When normalized to total protein, the expression in the 

hypothalamus is ~10 fold greater than in the paws.  The false in vivo imaging results is 

likely due to the relative ease of luciferase generated photons to reach the detector from 

the paws, while the luciferase generated photons from the hypothalamus at the base of the 

brain is sufficiently scattered in its path to the detector due to the amount and type of 

tissue it must pass through (particularly the bone tissue of the skull).   

 Line E4 mice also show luciferase activity in the CNS, but the expression in the 

heart was found to be highest in this line (Table 6.1, Heart = 2.3 ± 0.4; Hypothalamus = 

0.5 ± 0.1).  The line E3 founder shows a similar pattern of expression in the CNS as line 

E4 (Table 6.1, E3 Hypothalamus = 0.4; E3 Piriform Cortex = 0.5; E3 Cerebellum = 0.2; 

E4 Hypothalamus = 0.5 ± 0.1; E4 Piriform Cortex = 0.6 ± 0.1; E4 Cerebellum = 0.1 ± 

0.1); however, there was no detectable expression in the peripheral tissues of the line E3 

founder. 

 With the exception of the relatively high expression in the hypothalamus of line 

E1 transgenic mice, the 430MC4Luc construct has consistently low levels of expression 

throughout the CNS.  Only line E4 transgenic mice had peripheral expression in tissues 

other than ears, tail, and paws (see discussion), suggesting that a brain selective 

element(s) reside within the 5’-UTR of the MC4R gene, albeit much weaker in promoter 

activity than the regions found in the sequence upstream of the putative major start of 

transcription. 
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Discussion 

 The results for the in vivo imaging of the 3300MC4Luc3 luciferase transgenic 

mice were at first troubling because of the prominent light emission from the snout, ears, 

tails, and paws from many of the founders.  This construct contained the same MC4R 

flanking sequences as the 3300MC4LacZ3 construct, and it was very similar to the 

sequence used in the MC4ITG transgenic construct.  I went back to the MC4ITG and 

LacZ transgenic mice to perform RT-Real Time PCR on ear and foot pad tissues, with 

negative results in all six lines.   

 A careful review of the literature, however, revealed that the likely culprit of this 

reproducible non-specific expression was the pGL3-Basic vector.  In all luciferase 

transgenic studies that used the pGL3-Basic vector as a donor for the firefly luciferase 

reporter the mice showed this characteristic pattern of non-specific expression in the 

snout, ears, tails, and paws in in vivo light-capture imaging.  This pattern of expression 

was clearly present no matter what the promoter utilized to drive expression was: PPAR 

response element (72); serum amyloid protein and major urinary protein promoters (73), 

and human prostate-specific antigen promoter (74).  However, even when the data from 

these sites of non-specific expression are included in comparisons with all other tissue 

results from the in vitro luciferase assays, the CNS expression is clearly preferential in all 

but a small number of MC4-Luc transgenic lines (e.g., Line E4, which only includes the 

putative 5’-UTR).   

 The in vitro data from the 3300MC4Luc3 and 3300MC4Luc transgenic 

constructs, though consistent with the data from 3300MC4LacZ3 and MC4ITG 

transgenic mice as being CNS preferentially expressed, are different in the fact that the 
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highest level of normalized luciferase activity in the CNS is almost always the brainstem 

region.  However, it should be noted that the MC4ITG data was exclusively RT-Real 

Time PCR.  Also, the RT-Real Time PCR data from the 3300MC4LacZ3 line A2 was 

inconsistent the in vitro Beta-Glo data, and ore consistent with the MC4ITG pattern of 

results. 

 The data, taken together up to this point suggests that the 3300 bp flanking 

sequence is sufficient for CNS preferential expression.  Also, the data from the 

890MC4Luc mice suggest that the CR-6-8 regions may be sufficient by themselves for 

CNS preferential expression.  Interestingly, the 430MC4Luc data also suggest that the 5’-

UTR may harbor elements sufficient for preferential expression in the hypothalamus and 

brainstem (both evolutionarily conserved autonomic feeding centers in the CNS).  Since 

the most promising region in the proximal sequence was the highly conserved CR-8 

region, I decided to further focus on the CR-8 region by generating a heterologous 

transgenic construct, to determine whether this region of the promoter was capable of 

directing CNS preferential expression of a non-specific viral minimal promoter. 
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CHAPTER VII 

 

EXPRESSION OF FIREFLY LUCIFERASE IN TKLUC, -560:-495MC4-TKLUC, AND 
-560:-450MC4-TKLUC MICE 

 
 

Results  

 Data from the in vitro promoter analysis (see Chapter III), in vivo transgenic 

promoter analysis (see Chapters IV-VI), and the novel human SNP (see Chapter III) 

directed me towards characterizing the CR-8 region further using the in vivo approach.  

To do so, I created heterologous promoter transgenic constructs – constructs that contain 

promoter elements from more than one source.  These constructs (Construct G – TKLuc 

and Construct H – MC4-TKLuc) include a core minimal promoter from the Herpes 

Simplex Virus Type 1 thymidine kinase (tk) gene (see Figure 7.1A).  The minimal tk 

gene promoter is sufficient for positive promoter activity in a variety of cell lines in in 

vitro assays, and it is often used for a positive control in such experiments or as a 

heterologous promoter system to study an enhancer in isolation of its cognate promoter 

(75).  However, the virus itself is specialized for infecting dorsal root ganglia of the 

peripheral nervous system in vivo where it sets up a lifelong latency with periodic and 

poorly understood reactivation (76).  Therefore, the expected expression pattern for the 

luciferase reporter in the TKLuc transgenic mice was ubiquitous with a strong possibility 

for tissue specific expression following the promoters of “trapped” genes – more or less 

acting as random heterologous promoters for the integrated TKLuc cassette.  Also, males 

were expected to have relatively higher levels of expression in testes, given the known 
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preferential expression in the male gonads of transgenic mice using the minimal tk gene 

promoter (77). 

 The MC4-TKLuc constructs contain only the highly conserved 32bp CR-8 region 

with very little flanking sequence on either side (<100bp, see Figure 7.1A).  This 

heterologous promoter arrangement should act as if the TKLuc construct has “trapped” 

the CR-8 region of MC4R.  If the highly conserved CR-8 region is sufficient for CNS 

preferential expression, then one would expect the resulting luciferase activity to be 

highest throughout the CNS, given the broad in vivo expression pattern of the transfactors 

that would bind to putative cis-elements contained in this region (see Table 3.1 and 

Figure 3.4).  The known preferential expression in the testes will serve as a good 

“internal control” in these experiments.  However, if the highly conserved CR-8 region is 

not sufficient for CNS preferential expression, one then might expect to see something 

similar to the expected TKLuc pattern: a ubiquitous expression pattern with a relatively 

strong chance of “trapping” another enhancer.  The results are clear, the highly conserved 

CR-8 region is sufficient to drive the expression of the heterologous promoter 

preferentially in the CNS.  Moreover, the highly conserved CR-8 region was sufficient to 

block testes expression in the heterologous constructs, while it was expressed in the testes 

of all but one male founders and two of three lines maintained from female founders. 

 

Bioluminescent Imaging of Transgenic Founders and Offspring 

 Six positive transgenic founders were identified by initial PCR screens and 

southern blot analysis.  These founders were subsequently screened for expression of the 

luciferase reporter gene by in vivo bioluminescence analysis, of which three were 
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Figure 7.1 

Panel A 
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Figure 7.1: Heterologous MC4R-TK Luciferase Constructs and In Vivo Bioluminescence Imaging.  (A) A 
schematic representation of the TK heterologous transgenic constructs (G-H) is shown in this panel.  For 
comparison, a schematic drawing of the murine MC4R locus is placed at the top of the transgenic 
constructs, along with restriction sites for reference (the sequence included in the D construct is that which 
is shown for reference, as it is the shortest construct that includes the CR-8 region).  Also shown for 
reference is the position of the highly conserved CR-8 region in the murine MC4R locus and the transgene 
(transparent oval).  NOTE: Due to the software’s programming, the in vivo bioluminescence images are 
best compared by intensity rater than actual photon emission levels.  Therefore, this data is best used as a 
preliminary comparison between lines and for direction of which tissues to analyze using the in vitro 
methodologies discussed in Chapter 2.  (B) In vivo bioluminescence imaging of line G3.  This image shows 
the dorsal side of the animal.  Note the expression in the ears and paws of this animal.  (C) In vivo 
bioluminescence imaging of line G3.  This iage shows the ventral side of the same animal imaged in Panel 
B.  (D) In vivo bioluminescence imaging of line G9.  (E) In vivo bioluminescence imaging of line G13 
(ventral).  Note that the expression appears to be exclusive to the entrails of the animal.  (F) In vivo 
bioluminescence imaging of line H1.  Note the “patchy” expression pattern.  (G) In vivo bioluminescence 
imaging of line H2.  (H) In vivo bioluminescence imaging of line H3.  Note that this expression pattern is 
remarkably similar to that seen for Lines C1.1, C4, and D9 that also contain the highly conserved CR-8 
region.  (I) In vivo bioluminescence imaging of line H5.  Note that this image appears to be completely 
null; however, in vitro analysis showed that the only detectable expression was in the CNS. 
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positively identified as expressing detectable levels of the transgene by the imaging 

technique (see Figure 7.1B-I).  Panels B and C in Figure 7.1 show a male founder for 

Line G3 of the TKLuc construct.  As shown in the ventral imaging position in Panel C, 

this line, as does all but two TKLuc construct lines total, expresses the luciferase reporter 

gene in the testes.  This result confirmed the expected testes-positive expression pattern 

for the TKLuc transgenic lines.  Also note the expression in the paws, tails, and ears in 

Panels B-D.  This was also seen in the MC4R promoter luciferase mice, and it appears to 

be due to sequence associated with the pGL3-luciferase vector from Promega (see 

discussion).  The image of Line G9 in Panel D shows what appears to be a ubiquitous 

expression pattern, with some internal tissues expressing relatively higher levels.  Panel E 

shows the ventral image of a female F1 animal from Line G13.  This represents what 

appears to be a “trapped” enhancer mouse, where the enhancer directs expression in the 

small intestine.  This animal was sacrificed and the entire digestive tract was removed 

and imaged beside the animal ex vivo to show that the expression pattern observed was 

exclusively coming from the small intestine (data not shown).  Another interesting 

observation taken from the in vivo imaging was the relatively low expression observed 

for the TKLuc mice, compared to that seen in the MC4R-promoter luciferase mice 

(compare intensity bars in the images in Figure 6.1 with Figure 7.1). 

 The three known expressing founders were immediately selected to be maintained 

for further analysis (H1, H2, and H3).  Before analysis on the other three founders (H4, 

H5, or H6) was performed, each was paired for breeding in case an interesting expression 



 90 

pattern was detected using the in vitro assays.  However, none of these founders produced 

any offspring.   

 Of the three MC4-TKLuc mice that had observable expression in the in vivo 

imaging screening, only one, Line H3, appeared to be promising for CNS preferential 

expression.  Indeed, the in vivo images of Line H3 mice look markedly similar to in vivo 

images of Line D9 mice, the shortest MC4R promoter-luciferase construct that also 

contained the highly conserved CR-8 region (compare Figure 6.1G with Figure 7.1H).  

The in vivo imaging of Line H1 mice showed a spotty pattern that can be seen in Figure 

7.1F.  The spotty pattern varied in intensity between individual animals; however, all 

such images showed luciferase activity in the head and what appeared to be the spleen of 

these animals (note: the spleen was subsequently found to be negative by in vitro 

analysis, data not shown).  The most likely cause of the varied intensity of expression 

would be multiple integration sites, as Southern blots showed that this line harbored 

nearly 50 copies of the transgene, but no independent integration site was observed on 

Southern blots.  Such results do not rule out the possibility of multiple integration sites on 

the same chromosome, which would also explain why there was no independent 

segregation.   

  

Luciferase Transgene Activity Assay in Transgenic Mice 

 Wildtype and transgenic offspring were sacrificed, and tissues were harvested 

based upon the pattern of expression seen in the in vivo imaging.  The results from the in 

vitro luciferase assays are shown in Table 7.1.  Of the six TKLuc lines analyzed, only one 

line, G3 showed a clear preferential expression in the CNS, but the highest expression 
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was in the cerebellum (see Table 7.1: 3.5 cps/μg).  No MC4 transgenic construct showed 

preferential luciferase activity in the cerebellum, by either RT-Real Time PCR or in vitro 

assay.  The G13 line, the clear “enhancer trap” line, showed a higher mean in vitro 

luciferase activity level in the CNS, but the variance of luciferase activity in the CNS 

regions of this line was extreme (see Table 7.1: Hypothalamus 10.9 ± 12.2, Cortex 12.7 ± 

12.9).  The variance in the small intestine (duodenum results shown) was much less in 

Line G13 (see Table 7.1: Small Intestine 11.8 ± 3.8).  All other lines show clear 

preferential expression in peripheral tissues – G9: Heart at 14.5 ± 9.4; G10: Ear at 0.9 and 

Paw at 0.7; G11: Ear at 0.2 (note that Line G5’s preferential tissue expression is in the 

testes 0.4 ± 0.3, skin 0.5 ± 0.3, and tail 0.8 ± 0.7).  Interestingly, most of these lines have 

preferential luciferase activity in the very repeatable, non-specific sites that have been 

previously discussed with the pGL3-Basic vector donor transgenic mice in other labs. 

 On the other hand, the results from the in vitro luciferase assays in the MC4-

TKLuc heterologous lines are in rather stark contrast to the TKLuc data.  The H1 Line 

shows a varied expression pattern from mouse to mouse, but the mean data shows that the 

luciferase reporter activity is clearly CNS preferential, with only one peripheral tissue 

yielding any reproducible positive results (Table 7.1: Hypothalamus 2.2 ± 1.8, Cortex 

10.9 ± 12.9, Cerebellum 0.1 ± 0.1, Heart 0.5 ± 0.5).  The H2 Line showed very low levels 

of in vitro reporter activity in the CNS and the pGL3-Basic non-specific sites of ear and 

paw (Table 7.1: Hypothalamus 0.4 ± 0.2, Cortex 0.3 ± 0.3, Cerebellum <0.1, Ear 0.3 ± 

0.3, and Paw 0.3 ± 0.3), while all other tissues were negative.   

 The results from the H3 Line show the highest reproducible levels of in vitro 

luciferase activity in the CNS, but some expression was found in the non-specific pGL3-
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Basic sites (Table 7.1: Hypothalamus 10.6 ± 6.1, Cortex 7.7 ± 2.1, Cerebellum 5.1 ± 2.6, 

Ear 1.0 ± 0.8, and Paw 0.8 ± 0.6).  The line H5 founder, which did not throw any 

transgenic offspring, also showed a CNS preferential pattern of expression of in vitro 

luciferase activity (Table 7.1: Hypothalamus <0.1, Cortex 0.8, Cerebellum 0.1).  It is not 

clear whether the CNS expression in the MC4-TKLuc heterologous transgenic mice was 

actually due to the cloned CR-8 region or from the minimal TK promoter, itself.  

However, the fact that the CR-8 heterologous promoter is sufficient to direct CNS 

preferential expression in three of four of these H Construct lines is very telling of this 

highly conserved region’s possible role in endogenous MC4R expression. 
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Table 7.1 
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Discussion 

 The absence of LacZ reporter expression in peripheral tissues in adult transgenic 

mice taken together with the noticeable repeated expression of the TKLuc mice in the 

ears, paws, tail, and snout allows me to comfortably conclude that these unexpected sites 

of reporter expression in the in vivo images of the luciferase mice are due to sequence 

within the luciferase vector and/or gene from pGL3-Basic and not due to expression from 

the MC4R promoter sequence.  This conclusion is also consistent with the brain-

specific/preferential expression of the tauEGFP transgene in the four independent 

MC4ITG transgenic lines, and it is consistent with the images and data from pGL3-Basic 

transgenic mice in other labs. 

 Furthermore, while I cannot say with confidence that the actual CNS pattern of 

expression in the heterologous construct mice is due to only the CR-8 region, the data 

does suggest that the CR-8 region is sufficient to direct a minimal virus promoter to CNS 

preferential expression. 
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CHAPTER VIII 

 

EVIDENCE FOR REVERSIBLE ACUTE REGULATION OF ENDOGENOUS MC4R 
EXPRESSION FOLLOWING 24 HOUR FAST 

 
  

Results  

 Previously, others had shown that chronic (over 14 days) exposure to narcotics, 

morphine (28) or cocaine (29), could regulate MC4R expression in the CNS.  No 

previous experiment has shown that MC4R could be regulated acutely in response to any 

stimulant.  In fact, a chronic diet change study in sheep showed no changes in long term 

MC4R expression in the hypothalamus (21).  However, MC4R deficient mice fail to 

acutely respond to increases in dietary fat, while MC3R deficient mice respond similarly 

to wildtype controls (78).  Although these latter experiments only suggest that the 

presence of MC4R will correct this physiological malady, the previous experiments 

confirm that the MC4R gene promoter is amenable to regulation.  In fact, one group has 

recently published data that suggests MC4R itself is regulated acutely (within 24 hours) 

by an increase in calories from dietary fat (55).  This led me to hypothesize that acute 

regulation of MC4R could be a physiological mechanism involved in the response to 

changes in dietary conditions (i.e., feeding behavior).   

 Since the change in the level of chow consumption for MC4R deficient mice in 

response to high fat diet are most likely attributed to lack of the gene rather than the 

ability of the animal to regulate MC4R acutely, a more radical change in dietary 

conditions would likely be needed to detect a change in the naturally weak MC4R 

expression in the CNS.  It is true that a goal of the project was to be able to detect and 
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study small changes in MC4R promoter activity in vivo, and the MC4R-luciferase 

transgenic mice give a readily detectable basal level of photon production, a more robust 

change in expression would be desirable for a pilot experiment.  Thus, I first chose to test 

whether endogenous MC4R expression is acutely regulated by an acute fast (24 hour). 

 

Endogenous CNS MC4R Expression in Fed and Fasted Mice 

 Total RNA from several CNS regions was prepared from acutely fasted and 

control fed non-transgenic C57Bl6 mice as previously described.  Multiplex RT-real time 

PCR was performed on the samples for endogenous MC4R RNA and beta-actin (internal 

control) RNA levels.  The data was normalized to the internal control and expressed 

relative to the average beta-actin expression in the control (fed) group.  Figure 8.1 shows 

that endogenous MC4R expression is increased about >1 fold in response to an acute fast 

(Fasted 2.3 ± 0.5; Fed 1.2 ± 0.3).   

 

Bioluminescent Imaging of 3300MC4Luc, 890MC4Luc, and TKLuc Transgenic Mice 

 I next wanted to test whether the luciferase activity of the MC4R promoter-

luciferase fusion transgenic mice would mimic the increase seen in the endogenous gene 

mRNA expression.  I chose to first use the long construct mice (3300MC4Luc, lines C1.1 

and C4), as these have the greatest amount of MC4R promoter sequence and would be 

more likely to mimic physiological changes in endogenous MC4R expression in response 

to the acute fasting regimen.  The TKLuc transgenic mouse line (Line G9) was chosen as 

a suitable control because it has an expression pattern of the luciferase transgene in a near 

ubiquitous pattern, including the CNS. 
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Figure 8.1 
 

 
 
Figure 8.1: Endogenous MC4R Expression is Induced by 24 Hour Fast.  Wildtype C57bl6 females were 
housed in cages of four animals per cage for one week prior to experiment.  On the day before tissue 
harvesting, at 10:00AM both cages were changed; however, only one received fresh food.  The second cage 
was then the fasted group.  After a 24 hour fast, all eight female mice were sacrificed, and the 
hypothalamus, striatum, and cortex were harvested for RNA extraction.  DNased total RNA was prepared 
as described above.  The RNA was used to synthesis cDNA for use in Real Time Quantitative PCR.  The 
results are an average of the four animals in each group (Fed and Fasted), and the MC4R expression was 
normalized to beta-actin mRNA.  Error bars are S.E.M.  * denotes p<0.05 by Two Tailed Paired t Test.  
Data analysis was performed using GraphPad Prism software. 
 
   

 The mice were depilated for bioluminescence imaging as described previously, 

but 72 hours prior to the first image capture, rather than the usual 24-48 hours.  This 

alteration in protocol was deemed necessary to make sure that all experimental animals 

were fully recovered from the hair removal regimen.  As in all other bioluminescence 

imaging protocols, the normal mouse chow was replaced with the high casein chow 48-
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72 hours prior to the first image capture.  The fed/control mice were given ad libitum 

access to the high casein chow throughout the experimental period.  The 

fasted/experimental mice had their chow removed between 10:00-11:00AM (five hours 

after light cycle start) immediately after the first image capture.  The first image capture 

was performed on Day 1 as a baseline reading for all animals.  Twenty-four hours later,  

 

Figure 8.2 

10AM Day 1                      10AM Day 2               10AM Day 3
Imaged                               Imaged Imaged

10AM Day 1                      10AM Day 2               10AM Day 3
Imaged/ Food removed Imaged/ Food returned Imaged

Control Group
Fed Fed Fed

Experimental Group
Fed Fasted Re-Fed

 
Figure 8.2: Schematic Diagram of Fed/Fasted Protocol.  Mice were prepared for imaging at least 72 hours 
prior to Day 1 image capture.  All mice were imaged on Day 1 at approximately 10AM.  During imaging, 
the cages for each animal were changed to fresh bedding.  The experimental group animals were placed in 
cages that did not contain food, but were given free access to water.  Twenty-four hours later, the mice 
were imaged on Day 2.  During the imaging, food was returned to the cages of the experimental mice.  The 
final image capture was acquired on Day 3, after 24 hours of free access to food in the experimental group.   
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Day 2, the second image capture was performed, and the high casein chow was returned 

to the fed/experimental animals immediately after this image capture.  Then 24 hours 

later, Day 3, the final image capture was performed.  See Figure 8.2 for a schematic 

diagram of the Fed/Fast imaging protocol.   

 The quantitative in vivo imaging results of the MC4-Luc and heterologous 

construct are consistent with the results from the endogenous MC4R transcripts in the 

hypothalamus of C57BL6 wildtype mice after a 24 hour fast (see Figure 8.3).  However, 

the results from the TKLuc mice in this experiment taint the final results (see discussion, 

below).  Also, it was interesting that the quantitative results from the entire body of the 

mice (with the quantitative data from the head subtracted) from each line imaged was 

slightly increased.  Although the slight increase was not the ~50% increase in quantitative 

results seen within the head of the TKLuc line, it suggests that some of the data in these 

experiments is due to non-specific increase luciferase activity (see discussion, below). 
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Figure 8.3 
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Figure 8.3: Luciferase Activity in Transgenic Mice is Induced by 24 Hour Fast.  Following image capture 
on Day 3, the images were analyzed with the Living Image Software to determine the total photon capture 
for a given area (consistent between groups) that only included the heads of each animal.  Data represents 
mean activity levels for the given 2-D area relative to the Day 1 activity (set to 100%).  Error bars represent 
S.E.M. 
 
 

Discussion  

 Given the results by Archer et al acute high fat diet experiments (52), I predicted 

that an acute overnight fast would decrease MC4R expression.  However, the RT-Real 

Time PCR results for endogenous MC4R transcript expression show a clear induction of 

greater than one fold.  Moreover, these results are more robust than those reported by 

Archer et al.  It is possible to reconcile the data by suggesting that while MC4R 

expression is amenable to regulation by acute metabolic stimuli, the rapid increase in 

release of either alpha-MSH or AgRP will induce MC4R expression.  Given the already 

weak expression of MC4R and its unique physiological role as a signal “input processor” 

for both anorectic (alpha-MSH) and orexigenic (AgRP) “output signals”, it may be more 
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advantageous to the organism to have an increase in the number of “processors” to 

augment the already increased release of “signals.” 

 A possible explanation of the results in the MC4R-luciferase fasted mice would 

be that the decrease in food (or water consumption) somehow increased the availability 

of luciferin reagent or its absorption into the CNS.  Thus the results would be a false 

positive.  However, the data from the control TKLuc mice did not suggest this result, 

because they did not show as robust an increase in luciferase activity in vivo as the 

3300MC4Luc, 890C4Luc, or the heterologous H Construct mice did.  Yet, the marginal 

increase in luciferase activity in the control TKLuc mice suggested that at least some of 

the increased luciferase activity in the fasted animals expressing firefly luciferase could 

be due to an uncontrolled variable – such as increased availability of the reagent in the 

CNS directly due to fasting or indirectly due to fasting by a decreased water intake while 

fasting.  In either case, the hypothalamus is located near a point of great access to blood 

flow, thus reagent delivery.  Therefore, the modest increase in the TKLuc mice could be 

due to the increased reagent delivery in general to the expression found in the head (and 

elsewhere), while the greater increases in luciferase activity in the various MC4R-

luciferase mice could be due to a combination to the increased reagent delivery and 

increased reporter expression in the hypothalamus. 
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CHAPTER IX 

 

GENERAL SUMMARY AND SIGNIFICANCE OF FINDINGS 

 

 While the CNS expression pattern of MC4R mRNA has been delineated, the 

regulatory elements of the MC4R gene that control expression in multiple brain nuclei 

have yet to be fully characterized.  During the course of my studies, our laboratory and 

others have initiated several studies to identify these key regulatory elements.  Using 5’-

RACE (rapid amplification of cDNA ends) of mouse brain RNA, Dumont and colleagues 

(56) demonstrated that a major transcriptional start site lies about 430 bp upstream of the 

start of translation.  Analysis of a series of mouse MC4R 5’-flanking region fragments 

fused to a luciferase reporter gene, established that fragments up to 3.3 kb would function 

as basal promoters when transfected into HEK293, UMR106, and GT1-7 cell lines, but 

not Neuro-2A neuronal cells (56).  

            Using a similar approach, we have further characterized the mouse MC4R 

promoter region; however, our preliminary studies indicate that while in general 

agreement with Dumont et al (56), there are several subtle differences.  Using 

hypothalamic GT1-1 and GT1-7 cells (originally derived from tumors in the Medial Pre-

optic Nucleus from mice harboring a GnRH promoter/SV40 T antigen transgene, 79), we 

find that MC4R promoter constructs consisting of 1600 bp of 5’-flanking sequences 

confer maximal basal promoter activity, whereas a 3.3kb construct is nearly as active.  

Shorter constructs with as little as 180bp of putative 5’-UTR of the mRNA transcript will 

also function as a promoter in GT1-1 cells.  However, a more extensive construct 
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containing 7.9 kb of 5’UT region displays markedly reduced promoter activity indicating 

that one or more potential negative regulatory enhancer elements likely reside distally.   

 A comparison between mouse and human distal promoter regions indicates that 

several “islands” of conserved sequences indeed reside between 3.3 to 7.9 kb upstream of 

the putative transcriptional start site.  In contrast to previous results (56), a similar profile 

of expression is also seen with each of the promoter fragments transfected into Neuro-2A 

cells, albeit at reduced overall levels of activity.  This latter result does however support a 

previous report of MC4R expression in Neuro-2A cells (29).  Overall, these results are 

surprising in that substantial promoter activity was not expected in any of the neuronal 

cells lines since detection of endogenous MC4R mRNA and protein in both tissue culture 

models, and in vivo, has been relatively difficult to date.   

            To overcome the limitations associated with low level of expression of MC4R in 

immortalized tissue culture cells, several series of transgenic mouse lines utilizing 

putative promoter fragments of the murine MC4R gene fused to various reporter genes 

(each of which have their respective strengths as noted previously) were created.  Initial 

experiments utilizing a bicistronic tau-EGFP transgene reporter (MC4ITG construct) 

provided evidence that 3300 bp of upstream sequence of the MC4R gene (along with 

limited downstream sequences) was sufficient to drive expression exclusively in neuronal 

tissues since three of four independent lines all showed brain-specific expression.   

 However, as mentioned previously, the tau-EGFP reporter protein was not 

expressed in sufficient quantity to detect via fluorescent microscopy, and it could only be 

detected by RT-PCR.  To overcome this technical hurdle, we next turned to fusion 

constructs containing 3300 bp of 5’-flanking sequence (and limited 3’-flanking sequence) 



 104 

fused to LacZ and Firefly Luciferase reporter transgenes.  The 3300MC4LacZ3 

transgenic construct mice demonstrated brain-specific transgene expression in adult 

animals in two of two independent lines, consistent with our data from the MC4ITG 

transgenic mice.  Unexpectedly, multiple organs in the fetuses of one line (Line A2) 

showed expression of the LacZ reporter.  At the of these experiments, no one had studied 

the expression of endogenous MC4R in non-CNS tissue in developing embryonic or fetal 

organs, but shortly after our findings, Mountjoy and colleagues published an in situ study 

of endogenous MC4R mRNA expression in the developing rat fetus (66).  Interestingly, 

our observed reporter expression pattern in peripheral tissues in Line A2 fetal mice 

closely parallels the data presented in this paper (66), including expression in the 

developing heart and skeletal muscles.  Even more interesting is the fact that this 

widespread fetal expression pattern is entirely lost in the adult Line A2 mice.  This result 

is consistent with the adult CNS-specific expression of the endogenous MC4R gene in 

vivo in rodents.   

 Some species of animals, chicken (61) and fish (62), do not express MC4R 

exclusively in the CNS, though it is believed to be involved in feeding behavior, at least 

in fish (80, 81).  Our data taken together with the data from Mountjoy et al (66) suggests 

that promoter elements in the proximal 3.3 kb could have evolved in mammals to restrict 

expression of MC4R in the CNS in adult tissues.  Given the increased use in teleost 

(Danio rerio) and the bioinformatics tools now available for cross examination of 

conserved genomic DNA sequences, this remains an interesting hypothesis that will 

likely be addressed in the near future by MC4R investigators. 
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 The next set of transgenic animals utilized the Firefly Luciferase reporter gene.  

This reporter gene is commonly used for in vitro studies because of its low background 

and highly sensitive linear results, but recent technological advances, mainly by 

Xenogen, Inc., have allowed investigators to take advantage of luciferase in vivo.  Our 

results from the panel of MC4R flanking sequence-luciferase fusion constructs 

(3300MC4Luc3, 3300MC4Luc, 890MC4Luc, and 430MC4Luc) are largely consistent 

with the tau-EGFP and LacZ reporter transgenic mice.  Of the four representative 

3300MC4Luc3 (Construct B) lines chosen to characterize, three of four showed CNS 

preferential expression of the reporter by in vitro assays.  Of the three lines that showed 

CNS preferential expression, the relative ratio of in vitro luciferase activity was similar, 

suggesting that the MC4R flanking sequences were acting reproducibly in these lines.  

The highest peripheral expression in these CNS-preferential lines was in the ears, paws, 

and tails.  As previously noted, these sites (along with the snout) are non-specific 

expression in transgenic mice using the Promega pGL3-Basic vector for the Firefly 

luciferase reporter transgene (72-74). 

 Our results from the 3300MC4Luc (Construct C) transgenic mice were similar to 

that of the 3300MC4Luc3 mice in respect of the ratio of in vitro luciferase activity in the 

CNS.  However, of the three representative lines chosen for characterization (one of 

which had at least three independently segregating genomic integration sites) all showed 

CNS-preferential expression, if the non-specific ear, paws, and tail results are properly 

discounted.  Surprisingly, three of four independent 890MC4Luc (Construct D) lines 

showed exclusive CNS expression in in vitro assays (note: the expression seen in the 

dorsal midline of Lines D5 and D9 are presumed to be spinal cord expression).  This was 
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an unexpected result because only about 500 bp of putative promoter sequence with the 

5’-UTR is all the MC4R sequence in this construct.  However, the data from the in vitro 

studies showed that this sequence had a very strong positive promoter activity.  Also, this 

sequence contains seven of the twelve highly conserved regions in the proximal 5’-

flanking sequence, including the 100% conserved CR-8 region. 

 The results from the 430MC4Luc (Construct E) transgenic mice were also 

surprising.  This construct contained only the putative 5’-UTR of the murine MC4R 

transcript, yet all three lines expressed the transgene in the CNS, and two of the three 

lines showed CNS-preferential patterns of expression – and one of those was CNS-

specific.  This result makes sense, given the in silico sequence conservation results, 

which show that on average the 5’-UTR is the most highly conserved sequence in the 

gene outside of the coding sequence.  Overall, the luciferase data as a whole is consistent 

with the CNS-preferential results from the other two reporter transgenics.  Also, the 

results suggest that elements within the 5’-UTR at a minimum, and the first 500 bp of 

putative promoter sequence is sufficient for CNS preferential expression of MC4R in 

adult mice. 

 Moreover, our transgenic data is consistent with a recent report by Mountjoy and 

colleagues (57), in which they show that 1.5 kb of 5’-flanking sequence is sufficient to 

replicate endogenous MC4R expression in one transgenic mouse line.  These results 

agree with our initial findings, especially with the data from the 890MC4Luc construct 

being sufficient to direct brain-specific expression.  However, our heterologous promoter 

studies indicate that as little as 65 bp including the highly conserved CR-8 region are 

capable of conferring CNS-specific expression in the context of a minimal TK promoter. 
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 Furthermore, this region has also been the focus of other studies including those by our 

collaborators in screening obese patient populations for single nucleotide polymorphisms.  

We predicted that mutations found in the CR-8 region could interfere with basal and 

possibly induced expression of MC4R, thus reducing the total functional activity of 

MC4R in feeding behavior neurons and result in obesity or a heightened risk thereof.  

The severity of obesity or weight aberrations will depend on the severity of expression 

loss.  Other contributors to the overall severity of weight aberrations include 

environmental, life style, and epistatic effects of other genes, which make the study of 

small changes in promoter activity in this region difficult to fully characterize.  Age could 

also affect the severity of the phenotype presented in adult sample populations; however, 

the early onset cohort of our collaborators would likely exclude any such weak promoter 

mutation.  These studies are currently on-going. 

 Another study that concerning this region of the MC4R promoter was recently 

presented by Naville and colleagues (82).  This study focused on the Sp1 sites in and 

around the CR-8 region of the human MC4R promoter.  Their findings show that a 

complete loss of the Sp1 site in the CR-8 region of the human MC4R gene by 

mutagenesis results in a loss of 80% or more of basal promoter activity in vitro.  Our 

results with site-directed mutagenesis of the human G-502A SNP, though not as great a 

loss in promoter activity, showed a 13% loss in the human sequence context.  These 

results are consistent with the CR-8 region being important for at least basal promoter 

activity of the MC4R gene, and gives further credence to the SNP discovery efforts in 

this region pursued by our colleagues.   

 In summary, although the study of the MC4R promoter has been technically 
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challenging, these experiments indicate that a key regulatory elements likely reside in the 

CR-8 region and in the 5’-flanking untranslated region of the MC4R transcript.  

Confirmation of these findings may have to wait for additional technological 

developments either with the identification of a tissue culture cell line expressing MC4R 

at more substantial levels, or in the field of transgenics, with the development of a system 

to eliminate position-dependent expression effects due to transgene insertion sites.   
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