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GLOSSARY 

Baud Rate: It is the number of distinct symbol changes (signaling events) made to the 

transmission medium per second in a digitally modulated signal or a line code 

Gaussian distribution: It is an approximation to describe real-valued random variables 

that tend to cluster around a single mean value. 

Gaussian white noise: It is a time series (rt) that is normally distributed with mean 0 and 

standard deviation σ. 

Markov Chain: It is a mathematical system in which a system’s next state is dependent 

only on its current state. 

Mean: Expected value of a random variable. 

MIDI: (Musical Instrument Digital Interface) is an industry-standard protocol that enables 

electronic musical instruments (synthesizers, drum machines), computers and other 

electronic equipment (MIDI controllers, sound cards and samplers) to communicate and 

synchronize with each other 

Particle Filters: These are estimation techniques based on Monte Carlo methods. 

Probability Density Function (pdf): It is a function that describes the relative likelihood 

of a random variable to occur at a given point. 

Random variable: It is a variable whose value results from a measurement on some type 

of random process. 

SLAM: Simultaneous Localization And Mapping 

Standard Deviation (Std.Dev): It is the measurement of variability or diversity of a 

variable. 

State variable: This is one of the set of variables that describes the "state" of a dynamical 

system 

Variance: It is the measure of how far a set of numbers are spread out from each other. 
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CHAPTER 1  

 

INTRODUCTION 

 

For any mobile robot application it is important that the robot should be able to know its 

location in an operating environment. The operating environment map may not be available every 

time. So, we need to build a map as the robot explores its surroundings. As a result, robot 

simultaneously Localizes and Maps the operating environment. This is (the) SLAM - Simultaneous 

Localization And Mapping problem [1]. The mapping can be achieved by using the robot’s internal 

sensors, externally placed sensors and/or by referring to the map of the operating environment. 

Examples of internal sensors could be accelerometer, proximity sensors, etc. Ultrasonic Distance 

sensor, Compass module, Color sensors, etc. are the examples for external sensors. The “map” 

mentioned here maybe a database of obstacles the robot knows beforehand, while “referring to” 

could be a lookup of the database based on robot’s current state. Robot’s internal sensor readings 

are also known as odometry readings. But, the odometry readings (e.g. measuring distance travelled 

or angular rotation by the robot) are error prone. Navigating a map solely on the estimate of the 

known position and current set of readings is called “Dead Reckoning”. As the new position is 

calculated based on previous values the errors/uncertainties (that are cumulative in nature) grow 

with time. So, we need external sensors as measuring devices. While some external sensors (like 

direction sensor) provide better estimate for odometry readings, others (like Ultrasonic range 

sensor) help determine a measurement, robot is unable to make by itself. There are a few variations 

of the problem where, the robot has entire map of the environment, no map at all or just a few 

landmarks [24]. In any of these cases, robot needs to localize itself based on the sensor 

measurements. Robot localization is the process through which robot tries to determine on its 

position in a given map, known or unknown. SLAM aims to iteratively, either build a map or 

improve a known existing map and at the same time keep track of robot’s current position. SLAM 

is applicable for both 2D and 3D motion.  

The other aspects of this problem are the sensors and the filters used to process the readings from 

sensors. We cannot rely just on the odometry readings from robot’s internal sensors because they 

tend to accumulate errors over time. We use external sensors in conjunction with filters to overcome 

this problem. Particle Filters [26] generally work for any kind of system. This is because 
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sufficiently large numbers of particles/samples tend to take into account most of the possible states 

a system can be in at a particular point of time. 

Particle Filter is a Monte Carlo based simulation technique which uses particles or samples to 

represent different possible states a system can possibly be in at a given point of time. These 

samples represent Probability Distribution Function (PDF) of the state. It works for any kind of 

system (linear or non-linear, Gaussian, or non-Gaussian, etc.). We get a better estimation of system 

state if we use higher number of samples to represent the PDF. The only drawback of maintaining 

higher number of samples is that, the whole process becomes computationally expensive.  

The work presents, a working prototype of “iRobot’s Roomba” and simulations for mapping a 

random maze using MATLAB and Blender [2]. Blender is a 3D animation tool that provides a rich 

feature set for realistic robotic simulations. 

Section [II] presents the background of SLAM problem and Particle filter. Section [III] presents the 

“Mathematical Model” and describes (in detail) Monte Carlo Simulation Method –“Particle Filter” 

and the stages that make up the entire Slam Process. Pseudo code is presented where ever necessary 

for a complete understanding of the process. Section [IV] delves into “Implementation Details” – 

the robot (hardware) setup and coding details. Section [V] presents the “Results” of simulation 

(both MATLAB and Blender) and Roomba. Section [VI] and [VII] are “Conclusion” and “Related 

Work” respectively. 
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CHAPTER 2 
 

 BACKGROUND 

 

Simultaneous localization and mapping (SLAM) is a technique used by robots and 

autonomous vehicles to build up a map within an unknown environment (without a priori 

knowledge), or to update a map within a known environment (with a priori knowledge from a given 

map), while at the same time keeping track of their current location. This section sets up the 

problem of SLAM and provides a brief introduction to Particle Filter. 

2.1 SLAM Problem 

Maps help us navigate and locate objects in a given environment. Mapping of an environment 

involves locating and mapping objects under conditions of error/noise. SLAM binds the processes 

of locating and mapping together in an iterative feedback loop to improve the results. FIG 2.2.1 is a 

flow chart that depicts logic flow in the SLAM process. 

 

FIG 2.2.1 SLAM Flowchart 

 SLAM tries to answer two fundamental questions for a robot “What does the world around 

me look like?” and “Where am I?” In order to answer these questions the robot needs to interpret 

sensor measurements, estimate its current pose and take into account the inherent uncertainties in 
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sensor measurements and robot movement. Over time, this results in a cumulative buildup of errors 

and an inaccurate map. This, however, can be compensated using a number of statistical techniques. 

Statistical techniques help model the noise and their effects on measurements. Kalman and Particle 

Filters are the most commonly used techniques in SLAM. SLAM finds its applications in various 

real life situations where automated vehicles need to map the environment during disaster relief, 

underwater navigation, airborne systems, minimal invasive surgery, visual tracking, etc. 

A mobile robot, while operating in a 2 dimensional environment is represented by a 3-tuple. 

� � ��, �, ��                                                                  2.1.1 

where x, y are the Cartesian co-ordinates and θ is the robot orientation – the angle robot makes with 

the positive X-axis. Initially the 3-tuple is set to [0,0,0].  

 

 

 

 

FIG 2.1.2 System Definition 

With every control, consisting of a velocity (V), turn rate(R) and time step (k)
1
  robot moves 

according to the motion model in equation 2.1.2[51] 

	�
� � 1��
� � 1�θ
t � 1��
� � 	�
�� � � ∗ � ∗ cos��
�� � �
��� � ���
�� � � ∗ � ∗ sin��
�� � �
��� � � θ
t� � k ∗ �
�� � �" �

�
          2.1.2 

Here, �� , �  and �" are the noise terms that take into account wheel slippage, control response, etc. 

While moving around the environment robot makes measurements to the landmarks [51]. 

                                                 
1 k = The time duration for which the robot moves 

θ 

x, y 

      Robot 

X axis 

Direction robot 

 is moving 
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∅ � $%&�$' (�)*�+,- )* +,-. − θ
�� + 	1
0, 34�                                   2.1.3 

[�5,�5] is co-ordinate of the obstacle. 1
0, 34� is the white Gaussian noise[52]. 

∅ is the angle robot makes with the obstacle 

The SLAM problem boils down to provide an estimate for the landmarks and at the same time 

positioning itself in the environment. This is achieved though the three stages of “Prediction”, 

“Update” and “Resampling”. Detailed explanation is provided in SECTION III. 

 
2.2 Filters 

 
Kalman and Particle Filters are the most commonly used filters in SLAM to compensate for 

errors in measuring and movement. 

Kalman is a recursive filter that provides an optimal estimate of the desired state of a linear 

system from a series of noisy measurements. The results are optimal for a linear system with white 

Gaussian noise. This poses a certain constraints in developing solutions for SLAM. Recursive 

filters, memory-wise, are expensive. Most of the real life systems are non-linear. As a result Kalman 

filter cannot be applied to these systems. 

On the other hand, Particle Filters (PF) are a class of Monte Carlo Simulation methods. They 

are used in cases where we see conditional independence between random variables connected in a 

Markov chain i.e. the process is memoryless or the next state depends only on the current state and 

not the events that preceded it. Tracking framework provided by PF is robust enough to be applied 

for non-linear systems or/and non-Gaussian noise or/and multi nodal distributions. 

The main aim of “Particle Filters” is the estimation of state variable (�) based on observed 

data (data calculated using odometry readings) and sensed data (data calculated using external 

sensors). A Probability Distribution Function (PDF) is used to represent the state information. PF 

uses a large number of samples (�6) to represent possible system states i.e. PF takes into account 

multiple state hypotheses simultaneously. 
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The PDF represented by these particles evolves based on motion model of the system.  At 

time zero, system PDF is represented as 7
�8�. As the system evolves with time, PDF gets updated 

and the PDF at time 
� + 1� is 7
�9:;|�9�. Since probability of measuring an observation (Ζ) is 7
=9:;|�9:;�. Using Bayes formula we have [51], 

7��9:;>=9:;� ∝ 	7�=9:;>�9:;� ∗ 	7��9:;>�9� ∗ 7��9>=9�                       2.2.1 

 

Equation 2.2.1 is used to calculate the weights of samples representing the system. 

Implementation of PF includes passing the samples through motion model, calculating the weights 

and (if needed) resampling of the particles. 

 

Theoretical development of the model can be found in [45]. An outline of particle filter is given 

below 

 

 

 

 

 

A more detailed explanation of Particle Filter and the different stages involved is given in 

SECTION [III].  

 

 

Initialize particles �6 

Propagate the particles through motion model at the 

end of each time step  �6 	→ 	�6
A 

Calculate weight for each sample  7
�6
A|=9� 

Resample particles according to their weights. 

�6 	→ 	�B 
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2.3 Related Work 

 
With robots being used widely, robotic mapping is one of the most important applied areas. 

[6] presents the work done over a period of time. The current work is related with SLAM, where in 

the robot, while mapping the unknown environment tries to localize its position [7]. Recent works 

focus on variations of SLAM like FAST SLAM [12] and Visual SLAM [13, 14]. Particle filters are 

frequently used in vision applications [27, 28, 29, 30]. Particle filters are also used to detect and 

track multiple objects using Boosted Particle Filters, Hierarchical Particle Filters [31, 32]. Different 

flavors of Particle Filter, e.g. sampling importance resampling (SIR) filter [42], auxiliary sampling 

importance resampling (ASIR) filter [43], regularized particle filter (RPF) [44], etc. are used based 

on different assumptions. SLAM in conjunction with “Particle filter” is used to map large 3D 

outdoor environments [16, 17]. A number of techniques are used while mapping either 2D or 3D 

environments: Planar 2D mapping [33], Planar 3D mapping [36, 34, 35], Slice-wise 6D mapping 

[37], Full 6D SLAM [38. 39, 40], Globally consistent image alignment [41]. The environment to 

map here is a maze and while many maze traversal algorithms exist [8] this work simply uses a 

random path. 
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CHAPTER 3 
 

PARTICLE FILTER 

 

The main objective of a particle filter is to track the State variable (�) as it moves through 

and tries to map the environment.  Based on some actions, the State variable keeps changing. The 

objective is to provide a better estimate for this variable. Multiple copies of the same variable are 

associated with a weight function. These copies are called samples (particles). The weight function 

decides the importance of each particle. The updated value of State variable is weighted sum of all 

particles. Greater the number of particles better the accuracy. But this increases the processing time.  

 

Particle filter is an iterative process that has two main stages: prediction and update. At the 

end of each iteration, particles are modified based on a model. This is the prediction stage. Once this 

stage is complete, weight associated with every particle is recalculated based on the latest sensory 

readings. This is the update stage. Sometimes, after a few iterations, the weights of certain particles 

become so small that they do not contribute at all. As a result the particle set needs to be re-

sampled.  

 

In our case State variable ( ) that we track represents the position robot. The sensory 

readings are the obstacles in the maze (i.e. the walls). is called pose of the robot and is presented 

as a 3-tuple.  

	� = [�, �, �] 

Also, �  is represented by a set of M samples or the “particle set”. 

	C6 = [�6 , D6] ∶ F = 1…H 

Here, i is the index for every particle while D6 is weight of the particle that it contributes during 

update stage. 

Since pdf at time t is known, using the motion model we predict pdf at time t+1. Using the 

distribution at time (t+1) we update the state variable�. We use weighted mean
2
 method to update 

the variable�. As a result, particles with most weight contribute in the update process while lower 

weight particles eventually get left out. 

                                                 
2 A mean that is computed with a weight given to every particle in a sample set. 

χ

χ
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The algorithm for particle filter is given below 

 

 

 

 

 

 

Algorithm: Particle Filter pseudo code 

 

This section focuses on the mathematical models that go into implementing a “Particle Filter”. It 

also presents pseudo code for a resampling algorithm. But, initially it describes and explains the 

basic assumptions on which the models are built upon. 

 

3.1 Assumptions 

The work focuses on implementation of SLAM process using Particle filter to localize an 

unmapped random maze based on the following assumptions.  

• Almost no Drift: This means that the robot, when it moves from “Point A” to “Point B” will 

have an almost zero angular displacement. i.e. both wheels move relatively at the same 

speed. Experimental measurements with the robot have confirmed this assumption. 

• Gaussian distribution for motion model: The errors in measurement of sensors, odometry 

readings of the motion model along with the noise have a Gaussian distribution. As a result 

we need to calculate “mean” and “Standard Deviation” values also referred to as system 

constants of sensors. 

• Number of Particles: The work assumes that 1000 particles are sufficient enough to 

accurately estimate value of the state variable.  

• In place Angular Displacement: This means that every time robot turns, only change is in 

its orientation and not the co – ordinates and even if there is, it’s negligible. 

while (stillexploring) 

  obstacles = sense( ) 

  particleSet = motionModel(particleSet) 

  particleSet = calcWeights(particleSet, obstacles) 

   = update(particleSet) 

  if (EffectiveSampleSize(particleSet) < threshold) 
    particleSet=resample(particleSet) 



 

10 
 

3.2 Prediction Model 

We use Gaussian model to predict pose for the robot and for probability distribution of the samples. 

There are a few other models [4-5] that can be used instead of the Gaussian model.  

 

FIG 3.2.1 is used as a reference to derive motion model for the robot 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 3.2.1 Motion Model 

For a robot to move [∆�, ∆�]  from an initial pose of	� = [�, �, �]  to	�′ = [�′, �′, �′]    it first 

rotates by 	∆� = 	�AA − �′ and then moves a distanceK = L∆�M + ∆�M.  

∆� = �A − �, ∆� = �A − �
 
and �′′ = arctan	
∆�/∆��. 

The final pose of the robot is given by 

[�A, �A, �A] = [� + K ∗ cos
�AA� , � + K ∗ sin
�AA� , �′′]                      Eq. 3.1 

 

While performing translational motion, we have errors with respect to orientation and the distance 

traveled. The orientation error is because of the drift during linear motion. As a result the robot’s 

final orientation is 

�A = � + ∆� + 1
∆�, 3Q59�	                   Eq.3.2 

  

θ 

θ' 

∆y = y’ - y 

∆x = x’ - x 

θ’’ = arctan(∆y/ ∆x) 

x’ = x + ρ*cos(θ’’) 

y’ = y + ρ*sin(θ’’) 

θ’ = θ’’ 

[x, y, θ] 

[x’, y’, θ’] 

ρ = LΔx2 + 	Δy2 
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Since the robot moves in discrete steps and not in just one jump we need to add Gaussian noise to 

these steps. The movement in discrete steps is an approximation because it is analytically difficult 

to model continuous movement. The discrete number of steps  is chosen to be large enough to 

approximate the continuous motion but low enough not to be computationally intensive. Since the 

step size we have chosen is so small we do not perform this computation in the code at all. 

 

Pseudo code for Motion model for “Particle Set” is  

 

 

 

 

 

 

Pseudo Code for (Translation) Motion Model 

 

Validity of the motion model and its results are interpreted in Chapter V. But, Figs. 3.2.2 and 3.2.3 

show results for a variation of angular and/or linear displacements. 

 

 

FIG 3.2.2 More angular displacement, less linear displacement 

 

κ

ρ = Distance to move 

for(i = 1 to M) 

Ntrs = normDist(ρ, σp) 

      θ[i] = θ[i] + N(θm, σθ) 

      x[i] = x[i] + Ntrs*cos(θ[i]) 

      y[i] = y[i] + Ntrs*sin(θ[i]) 
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FIG 3.2.3 More angular & linear displacement 

 

3.3 Update Model 

Once the robot completes its action of moving to a new position after moving a distance 

(ρ), its sensors try to detect landmarks around it. At this point, the robot has two readings: Odometry 

(the distance it has moved) and the sensor (distance to obstacles and the robot orientation) readings. 

Based on sensor readings the robot updates it position. With every reading, the sensors detect robot 

orientation (θ) and distances (KW , KQ , KX) to the obstacle in front of left, right and center sensors 

respectively. 

Let, 

 pose of the robot be               �9 � ��Q, �Q, �Q� 
 co-ordinates of the obstacle  	Y6 � ��6 , �6�							F � Z�[�, %F\]�	, &�'��% 

 sensor measurement              	^ � ��, KW , KQ, KX� 
 

Based on sensor measurements, co-ordinates of the obstacle/s as calculated. 

YW_`9 � a�Q � KW ∗ &bc
�Q � d� � �e	�Q � KW ∗ cF'
�Q � d� � �e f			
YQ6gh9 � a�Q � KQ ∗ &bc
�Q − d� � �e	�Q � KQ ∗ cF'
�Q − d� � �e f					
YX_i9_Q � a�Q � KX ∗ &bc
�Q� 								� �e	�Q � KX ∗ cF'
�Q� 									� �e f				jkk

l
kkm					
no. 3.3� 

 �e is the noise or the error in measuring the distance to an obstacle. 
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We need to calculate the probability of pose for the next state given the current state and the 

sensor readings, i.e.7
�9:;|�9, ^�, closer the particle is to the actual robot position greater the 

weight.  

7
�9:;|�9, ^� � ;
rMs
tu�v

�*

uwxu�v
v
yu�v 	                           (Eq. 3.4) 

 

FIG 3.3.1 Update Model 

Update model can be explained using FIG 3.3.1 

Robots initial position “m” 

After moving a step it thinks it is in position “n” 

But, the robot is actually at position “o”. 

From position “n”, robot senses obstacles at distances .ρ1& ρ2 . 

As a result we have (an estimate of) obstacle(s) co-ordinates 

We pass the particle set through the motion model. 

(i) We measure obstacle - particle distance for every particle corresponding to robot 

obstacle distance (e.g. K1;, K1M, …	correspond to K1). 

(ii) We calculate weight of every particle using Eq. 3.4. 

(iii) Using weighted average we calculate updated co-ordinates. 

Steps (i) – (iii) are repeated for the next obstacle. 
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3.4 Resample 

With Particle filters, after a few iterations the weights of certain particles become so low, 

that that they do not contribute in updating . As a result the particle set needs to be resampled. 

This means that some particles with higher weights get duplicated. A variety of sampling 

algorithms are available. In this case “Select with Replacement” is used. It is one of the simplest 

and fastest algorithms. The algorithm selects a particle with probability equal to its weight. It does 

so by calculating cumulative sum of weights of all the particles and sorting N random numbers 

uniformly distributed with [0, 1]. The number of times a random number appears in the cumulative 

sum represents the number of times the particles that are propagated to the next stage or how many 

times a particle is represented in the final particle set. It works based on the fact that a particle with 

small weight would have small cumulative sum interval and therefore would have a less chance of 

being selected. Similarly for a particle with high weight the cumulative sum range would be high. 

So, particles with high weights have a higher probability of being selected. 

 

 

 

 

 

 

 

 

 

 

 

Pseudo code for resampling algorithm 

χ

#W = Weights of Particles 

#N = Number of Particles 

 

C = cumulativeSum(W) 

r = random(N+1) 

R = sort(r) 

R(N+1) = 1; I =1; j = 1; 

while(i<=N) 

   if(R[i]<C[j]) 

      I[i] = j 

      i = i + 1 

   else 

      j = j + 1 
return I 
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CHAPTER 4 

 

SETUP 

 

4.1 Hardware 

Following components were used to setup the robot. 

• iRobot Roomba [20, 49] is used as an autonomous vehicle to move around and map the 

environment. FIG 4.1.1. Roomba is a robot manufactured by iRobot. It was initially 

introduced as an automated robot to clean floors indoors. It comes preloaded with a set of 

algorithms to move around in a predetermined path. Roomba has quite a few built in 

sensory and actuation capabilities. Table 4.1.1 lists the number of sensory/input and 

actuation/outputs of the iRobot Roomba. 

Sensors/Input Actuation/Outputs 

Wheel encoders(2) Buttons(3-4) 
Drive wheels(L & R

3
) 

Bump Sensors (2) Dirt-Detection(1-2) 

IR Wall Sensor (1) IR Receiver(-255) 
Cleaning Motors (3) 

Cliff sensors(7) Electrical(5) 

 

    Table 4.1.1 Sensory and Actuation capabilities of Roomba 

With growing popularity of these robots iRobot released the serial API
4
 for Roomba called 

Roomba Serial Command Interface or Roomba SCI [11]. Roomba SCI is a serial protocol 

that allows users to control a Roomba through its external serial port. These protocols have 

been integrated into quite a few software drivers written in C++ [46], Python [47], JAVA 

[48] and MATLAB [19]. With time Roomba has found many applications more 

significantly in robotics research and education community. 

                                                 
3 Left and Right 

4 Application Programming Interface 
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iRobot-based software support along with compatible third party hardware interfaces have 

helped Roomba modify, both programmatically and physically, to perform a variety of 

tasks, ranging from controlling Roomba with a cellphone, using Roomba as a MIDI 

synthesizer, using Bluetooth with Roomba for wireless control, etc. [50] 

• 3, PING Ultrasonic Sensors(PiUS)[21] placed on the robot's edges to measure distances 

left, right and center. FIG 4.1.2 

• Hm55b compass module (HCM) [22] to measure angular displacement. FIG 4.1.3 

• Arduino UNO Microcontroller [23] to program and measure the readings off the sensors. 

FIG 4.1.4 

• Standard USB printer cable is used to connect Arduino Uno microcontroller with a 

computer. 

• Serial cable to communicate with Roomba from MATLAB. FIG 4.1.5 

• And, “KeyspanUSA-19HS” Serial to USB Converter. FIG 4.1.5 

 

Final robot setup with all the sensors and complete connection is shown in FIG 4.1.6 and FIG 4.1.7 

 

 

 

 

 

 

 
FIG 4.1.1 iRobot Roomba 

 

 
FIG 4.1.2 Ping Ultrasonic 

Sensor 
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FIG 4.1.3 HM55B Compass 

Module 

 
FIG 4.1.4 Arduino Uno 

Microcontroller 

 
FIG 4.1.5 Roomba Serial and 

USB cables 

 
FIG 4.1.6 Final Roomba Setup 

 

 
FIG 4.1.7 Outline of Final Roomba Setup 
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4.2 Evaluating System Constants 

A series of measurements were carried out to determine system constants. Mean and Standard 

Deviation values were calculated over a sufficient sample size
5
 for external and internal sensors for 

linear and angular displacement: 

Robot was issued a command to move a fixed step size (5cm) and at the end of every command 

sensors were queried for the linear displacement. 

• Robot’s (internal) sensor for linear displacement: Robot was issued a command move a 

fixed step of 5cm. and at the end of every command execution, the internal sensor was 

queried (over a sample size of 40) 

• External Sensor (PiUS) for linear displacement: There is no external sensor for measuring 

linear displacement. So, at the end of every command distances were measured manually. 

(over a sample size of  30) 

Robot was issued a command to turn 90
o
 and at the end of every command sensors were queried for 

the angular displacement. 

• Robot’s (internal) sensor for angular displacement: Robot was issued a command move 

90deg and at the end of every command its internal sensor was queried for the angular 

displacement (over a sample size of 40). 

• External Sensor (HCM) for angular displacement: Robot was issued a command move 

90deg and at the end of every command HCM was queried through Arduino 

Microcontroller for the angular displacement (over a sample size of 30). 

Tables 4.2.1 and 4.2.2 show the values of “Mean” and “Standard Deviation” (S.Dev) for external 

and internal sensors respectively. The mean is for a 5cm linear and 90
o
 angular displacement. The 

robot always moves in steps of 5cm and turns 90
o
 (since the walls of the maze are at right angles). 

 

                                                 
5 Number of times the experiment was carried out or a measurement was made 
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Linear Disp (sample size  30) Ang. Rotation (sample size 30) 

Mean S.Dev Mean S.Dev 

External 

Sensor 
5.48181 0.24318 90.52517 3.72526 

 

Table 4.2.1 System Constants for external sensors 

Linear Disp (sample size  40) Ang. Rotation (sample size 40) 

Mean S.Dev Mean S.Dev 

Internal 

Sensors 
5.58333 0.07914 91.02514 0.1581 

 

Table 4.2.2 System Constants for internal sensors 

Based on values “Mean” and “Standard Deviation”, following observations can be made 

• There is a bias in case of “Linear displacement” measurements. We see a mean of 

approximately 5.5 and a bias of 10% for both external and internal sensor measurements. 

• “Standard Deviation” values for “Linear displacement” in both cases is low. This is 

considered a good sign since robot moves a consistent fixed distance in spite of the bias. 

• “Mean” values for “Angular Rotation” are fairly consistent with the issued command to 

rotate by 90 deg., in both cases. 

• “Standard Deviation” value for “Angular Rotation” in case of external sensor is quite high 

when compared to internal sensor. 

4.3 Implementation 

The work uses MATLAB, C and C# to communicate between the different components of the 

robot. Main components (programming/implementation wise) of the Roomba robot are 

• Arduino Microcontroller 

• Serial Port reader:  
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• Roomba communicator:  

• Core module 

Implementation of each of the components is explained next 

Arduino Microcontroller  

This component is an interface between hardware and software. The Arduino Microcontroller 

provides a programmatic door to control, modify and interpret the behavior for compatible 

hardware (in our case “sensors”). The hardware in our case being Ultrasonic Range and Direction 

Sensors, while the software is the code that interprets the raw signals received from these sensors. 

The code is implemented mainly in C. Once the readings are interpreted, they are output on a COM 

port to be read by a different component. The code that is uploaded into the microcontroller is 

added in Appendix. 

Serial Port reader 

The Serial Port Reader (SPR) is an executable that reads values off the COM port that 

Arduino Microcontroller writes. The SPR reports values of the direction and obstacles.  Direction 

being the angle robot makes to geographic North and obstacles being the distances “Ultrasonic 

Range Sensors” placed on left, right and forward edges detect, to their nearest and respective 

obstacles. These values are reported back to the main module. This code is implemented in C#. 

The executable takes “COM Port name”, “Baud rate” and “iterations” as command line parameters 

and returns an array - direction and 3 distance values to the calling component. 

 The C# code Serial Port Reader is added in Appendix. 

Roomba communicator 

This module communicates with the Roomba. It is used to issue commands to move or turn. 

It is also used to query the Roomba for linear and angular displacements. This module is developed 

in MATLAB by Dr. Joel Esposito, United States Naval Academy [19]. 
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e.g. The commands used from this API are  

                  RoombaInit(comPortR) 

            travelDist(serPort,spd,dist) 

            DistanceSensorRoomba(serPort) 

            turnAngle(serPort,spd,angl) 

            AngleSensorRoomba(serPort) 

RoombaInit sets up the connection between MATLAB and Roomba through a COM Port 

comPortR. 

travelDist tells the robot to move a distance of dist meters at a speed of spd meters per 

second. 

DistanceSensorRoomba queries the robot for the distance travelled since last invocation of 

this command. 

turnAngle tells the robot to turn an angle of “angl deg”. at a speed of “spd meters per second”. 

AngleSensorRoomba queries the robot for the change in angular orientation of Roomba since 

last invocation of this command. 

Core module 

This is the module where SLAM is implemented. This module issues control statements and 

communicates between the above mentioned components. All the decisions of Roomba either 

moving in a straight direction or turning by an angle of 90 degrees are made here including the 

issuing of commands to SPR, sensing obstacles, updating estimated position and if required, 

resampling the particle set.  

(01)   get sensor readings 

(02)   while(robot explores the maze) 

(03)    if robot can move ahead 

(04)      move 

(05)     calculate obstacles based on sensor readings 
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(06)    update Particle Set 

(07)   calculate particle weights 

(08)  update robot position 

(09)  else 

(10)    turn the robot by 90 degrees. 

(11)      get sensor readings  

(12)      if particle set below threshold  

(13)         resample 

Pseudo Code for core module 

readSerialPort(execFile, comPortA, baudRate, iter) is the function call that 

implements line (1) and (11) in the pseudo code. execFile is the name of SPR. 

travelDist(serPort, spd, dist) is the function call to implement line (04) in pseudo 

code. This function makes the robot travel a certain distance (dist) at some speed (spd). 

calcObst(sensorReading, offset, currPose) returns obstacles(for line [05] of 

pseudo code) based on the current sensor readings and current pose (currPose) of the robot. 

Offset is the distance from center of the robot to the sensors (placed on edges of the robot). 

transM(partSet, rho, stdLinDisp, stdAngDisp, steps) for line (06) is for 

passing the particle set through motion model to get PDF. This function returns updated particle set 

as return value. Only the co-ordinates and orientation of the particles are updated in this function 

and not the weights. 

Calculation of weights and updating of robots position based on obstacles(obst) and current 

pose(currPose) is done through [partSetupdPose] = calcWeights(currPose, 

obst, partSet) for lines (07) & (08) in pseudo code. This function returns particle set with 

updated weights and updated pose (updPose) 

turnAngle(serPort, spd, tAngle) makes the robot turn by an angle(tAngle) at some 

speed(spd). This is for line (10) of pseudo code. 
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If value/s of weights become so low that they do not contribute to updation process, the particle set 

is resampled.   partSet = resample(partSet) implements this function for line (13) of 

pseudo code. 
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CHAPTER 5 
 

RESULTS AND INTERPRETATION 

 

The figures used to discuss the results of different models and simulations have been 

generated using MATLAB.  

5.1 Prediction Model 

 
The motion model helps us understand the effect of linear and angular “Standard Deviation” 

about the mean on samples in a particle set. 

Mean and Standard Deviation of the external sensors for linear displacement are respectively, 

ρz{|}{~�= 5.48181 ρ�{|}{~�  = 0.24318. 

Mean and Standard Deviation of the external sensors for angular displacement are respectively, 

�z{|}{~�= 90.52517 ��{|}{~�  = 3.72526. 

These are the same values we see in Tables 4.2.1. 

 

 

 

 

 

 
 

FIG 5.1.1 Motion model based on external sensor values 
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We see that with more linear movement, particles move further apart. This is the expected behavior. 

Higher the value of  ��{|}{~�   higher the dispersion of particles. 

Although the system values of “Mean” and “Standard Deviation” for the robot will never be used in 

a motion model. The plot is more for validation. 

Mean and Standard Deviation of internal sensors for linear displacement are respectively, ρz�~�~� = 

5.5833 ρ��~�~�  = 0.07914. 

Mean and Standard Deviation of internal sensors for angular displacement are respectively, �z�~�~� 
= 91.02514  ���~�~� = 0.1581. 

 

FIG 5.1.2 Motion model based on robot’s sensor values 

Since values for “Standard Deviation” are much smaller we do not see much of particle dispersion 

in FIG 5.1.2. 

So, the motion model works correctly. 
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5.2 Update Model 

 
The update model comes into play whenever sensors detect an obstacle. Based on position of 

an obstacle and weights of the samples/particles, we need to update current pose of the robot. This 

is seen from the output of the MATLAB code, once it is started. 

Following is a part of the output 

 

 

 

FIG 5.2.1 Update of position 

“EstdPos” is the estimated position by the robot based on robot sensors. “UpdtPos” is the updated 

position based on external sensor readings and the weights of all particles. 

“OrigPos” is the previous position of the robot. 

5.3 Simulations 

 
This section will, in detail explain and interpret the process of mapping. 

“createGrid” function is used to generate a random grid. The initial position of the robot is set 

to [2, 2] and it is assumed that robot makes an angle of 90 degrees with the X-axis. These 

assumptions just help initiate the process. Once the simulation starts robot iterates and alternates 

between sensing and moving/turning. At the end of each iteration, robot updates its position. 

Simulation plots the estimated robot path (the path robot thinks is right) and updated path (a more 

accurate path based on the SLAM process). 

 

 

OrigPos  [2.00  2.00] 

EstdPos  [3.03  2.15] 

UpdtPos  [2.90  1.99] 
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The values used  for the simulation were K��~�~� � 0.4  and ���~�~� � 0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 5.3.1 Random Grid 
(generated) 

 
FIG 5.3.2 Step 1 

 
FIG 5.3.3 Step 3 

 
FIG 5.3.4 Step 5 

 
FIG 5.3.5 Step 8 

 
FIG 5.3.6 Step 11 
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With the path traversed in FIG 5.3.9 and the actual grid in FIG 5.3.1, the simulation (within its 

limits) works correctly.  In “Steps 1-5” (FIG 5.3.2-4) the robot behaves correctly. We see that in 

Step 8 & 11 (FIG 5.3.5 & FIG 5.3.6 respectively) a bad reading from robot sensor can make the 

robot behave erratically. But, because of low variance values the paths always converge. The 

system in this sense is resilient to one time inaccurate reading. In subsequent steps 13-20 (FIG 

5.3.7-9) the robot moves around the maze and maps it successfully. 

As a sanity check, simulation used values for a perfect system by setting variance to 0. Estimated 

and Updated paths were exactly the same. 

Now, we know that the simulator behaves as expected we input the system constants from Tables 

4.2.1 and  4.2.2 Here are the results. 

 

 
FIG 5.3.7 Step 13 

 
FIG 5.3.8 Step 16 

 
FIG 5.3.9 Step 20 
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FIG 5.3.10 was a random 2x2 grid. Subsequent figures are snapshots of robot during maze traversal 

at different stages. The robot begins by positioning itself at [2, 2] and placing the obstacles correctly 

at [1, 2] and   [2, 3] as seen in FIG 5.3.11 and FIG 5.3.12. It’s from this point onwards that the robot 

 
FIG 5.3.10 Random Grid 

(generated) 

 
FIG 5.3.11 Step 1 

FIG 5.3.12 Step 2 FIG 5.3.13 Step 4 

FIG 5.3.14 Step 8 FIG 5.3.15 Step 20 
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goes hay wire.  In step 4 FIG 5.3.13 and onwards we see that the robot’s “estimated path” (blue 

line) always tries to catch up to the “updated path” (green line). This is seen in FIG 5.3.14 and 

FIG5.3.15. Eventually both positions are similar (co-ordinate wise). 

If we look up at the paths and the grid we can make out that the robot has mapped the grid, but, just 

barely. 

If we try to interpret this erratic behavior, we could argue that it is because of the high ratio between 

Standard deviations of external sensors and that of robot’s own sensors. This ratio is as high as 25. 

This means that one of the sensors is highly inaccurate. 

If we try to analyze the constants for the robot i.e. ρ��~�~�  = 5.5833, ρ��~�~�=0.07914, �z�~�~�= 

91.02514, ���~�~�= 0.1581, we see that measurements did not vary much about their respective 

“means”. If this were considered to be true, one can conclude that every time in executing either 

command of linear displacement or angular rotation, the robot’s motor functioned exactly the same 

each time and there were no unforeseen circumstances like wheel slippage, motor not behaving 

correctly, etc. Or even if there was wheel slippage, it happened almost every time and had almost 

the same effect on almost all measurements. This is highly unlikely. So, either internal robot sensors 

are not being able to measure correctly or external sensors are inaccurate. 

The other case where external sensors are inaccurate would mean that the manual measurements 

done earlier are faulty. This case is highly unlikely since measurements made by hand were 

repeated many times to make sure they were correct. This leaves us with one conclusion that the 

robot’s internal sensors inaccurately report the readings that cause the robot to behave erratically.  

One of the assumptions was that the robot’s angular displacement would be “almost” in place. But 

experiments have revealed that there is quite a bit of linear displacement even when the robot is 

commanded to “just” turn. FIG 5.3.16 is an overlap of initial and final positions, after robot was 

commanded to turn. 
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FIG.5.3.16 Linear Displacement along with Angular 

Since this linear displacement is random in both direction and magnitude no model can be built 

around it. As a result this behavior cannot be assimilated in an implementation. 

The simulation actually assumed that rotation was in place. But just the internal sensors were 

inaccurate enough to make the robot behave erratically. Even if we were to introduce the linear shift 

somehow, “iRobot Roomba’s” problems would be compounded. With this being the ground reality, 

any simulation and/or a robot in an actual environment would definitely do much worse. This could 

however work if, there were minimal robot rotation. 
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5.4 Blender Simulations 

Blender is an open source 3d animation and game development suite. The simulation creates 

of a random NxN maze. 

 FIG 5.4.1 shows Blender interface while FIG 5.4.2 shows the Blender interface once (random) 

maze is created. The randomly generated maze is similar to the maze in physical setup. 

          Red cubes are walls of the maze.  

          White square is floor of the maze. 

          Green sphere is the robot. 

          Blue square means that robot has visited that grid. 

 

 

 

 

 

 

 

 

 

FIG 5.4.3 shows the setup required, in terms of adding sensors, data structures and making 

necessary connections for proper working of the “virtual” robot.  

 

FIG 5.4.4 shows connections, sensors and parenting the virtual robot with the actual robot(sphere). 

 

 

 

 

 

 

 
FIG 5.4.1 Blender initial state FIG 5.4.2 Maze initial state 

 
FIG 5.4.3 Setup 

 
FIG 5.4.4 Connections for robot 
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FIG 5.4.5 shows the robots position and state after its 1
st
 step. We see that the white grid has turned 

blue, meaning that the grid is visited. Similarly in FIG 5.4.6 we see that the robot has returned to its 

original position and the entire grid is blue, meaning that the grid is mapped. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG 5.4.5 Robot’s 1st move 

 
FIG 5.4.6 Maze used with robot 
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5.5 Roomba results 

The robot was placed in an actual maze to see the performance of Roomba. The sample maze 

is shown in FIG 5.5.1. Maze traversal path (black dots) and obstacle detection (red dots) by 

Roomba are shown in FIG 5.5.2-6.  FIG 5.5.2 is the Step 1 for maze traversal where we see robot 

detecting 3 obstacles. FIG 5.5.3 is Step 13 where Roomba has moved in an almost straight path and 

is about to turn left. FIG 5.3.4 is Step 14 where Roomba has turned left and the newly detected 

obstacles are in “green”. We see that these obstacles align with the obstacles detected in previous 

step. This confirms that turning of robot works correctly. The robot continues to explore the maze 

FIG.5.5.5 and FIG 5.5.6 where Roomba makes a left turn. Again, obstacles (green dots) align with 

previously detected obstacles. FIG 5.5.8 is the final mapped (and rotated) result. We see that the 

mapped maze FIG 5.5.8 is almost comparable to the maze in FIG 5.5.7 or FIG 5.5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG 5.5.1 Maze used with robot 

 
FIG 5.5.2 Step 1 

 
FIG 5.5.3 Step 13 

 
FIG 5.5.4 Step 14 

 
FIG 5.5.5 Step 31 

 
FIG 5.5.6 Step 37 
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FIG 5.5.7 Maze 

 
FIG 5.5.8 Final Mapped Maze 

 
FIG 5.5.9 Merged Mapped Mazes 
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To see the mapping more clearly, actual maze FIG 5.5.7, and mapped maze FIG 5.5.8 have been 

merged, scaled and rotated in FIG 5.5.9.  

 

We see that mapping is almost accurate. The stray “Red Dots” are mainly because of limitations of 

the robot itself, like “non in-place” angular displacement and less accurate robot’s internal sensors. 

Apart from these, the other contributing factor was the cables hanging from the sides. When robot 

turned left (the second time), left sensor detected some of cables lying around. This sensing resulted 

in plotting them as obstacles. 
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5.6 Comparison of Roomba and simulator 

For a more accurate comparison, the Particle Filter simulator was run on a maze similar (in 

dimensions w.r.t to number of rows and columns) to the maze used with “iRobot Roomba” (the 

experimental setup – Section 5.5.5). In simulation, the robot was placed in a position similar to the 

one in the actual maze. The maze used with Roomba and the simulated maze are shown in FIG 

5.6.1 & 5.6.2 respectively. FIG 5.6.3 demonstrates that FIG 5.6.1 and 5.6.2 are similar in dimension 

and setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG 5.6.1 Maze used with Roomba 

 
FIG 5.6.2 Maze used simulator 

 
FIG 5.6.3 Overlapped mazes 

(actual and simulated) 
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The main aim of this comparison is to check if the simulator and the robot behave similarly given 

(approximately) the same environment (i.e. the maze and system constants) and the same initial 

condition (approximately identical point of origin to map the maze). FIG 5.6.4 is the same 

mapped maze as in FIG 5.5.8. FIG 5.6.5 is the maze (in FIG 5.6.2) mapped by the 

simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

The two mapped mazes (FIG 5.6.4 and FIG 5.6.5) are overlapped in FIG 5.6.6 to verify the 

similarity in mapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG 5.6.4 Actual Maze mapped by 

iRobot Roomba 

 
FIG 5.6.5 Simulated maze mapped 

by the simulator 

 
FIG 5.6.6 Overlapped mapped 
mazes by simulator and iRobot 

Roomba  
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We see that walls of the maze (red and orange dots) and path taken by the robot (back and yellow 

dots) approximately coincide. There are a few differences in the maps.  

 

To quantify the differences, the obstacles mapped using the robot and the simulator were compared, 

i.e. sufficient number of samples (44) were collected for the distance between an obstacle mapped 

by the simulator and the robot. The mean and standard deviation for the collected samples is, 

 

��6�9�iX_ � 5.208	&�                3�6�9�iX_ � 1.029	&� 

 

This means that the results of the simulation and the robot are identical within 5.208 cm accuracy. 

This difference in mapping of obstacles and path taken by the robot in either of the cases could be a 

result of differences in the dimensions of the maze and/or initial positioning of the robot in the 

simulator and actual maze and/or the fact that the actual distance to the wall at which the robot 

(Roomba) makes a turn cannot be formulated to units for the simulator (with a certain accuracy).  

 

Even with these constraints simulator did map the maze with reasonable accuracy.   This means that 

both, simulator and the robot behave in a similar fashion. 
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CHAPTER 6 
 

CONCLUSION 

 

As far as mapping of the maze is concerned, with the given constraints, Roomba did it with 

reasonable accuracy. If not for the constraints of robot’s internal sensors and “non in-place”
6
 

angular displacement Roomba would have mapped the maze with better accuracy. 

 

In case of the robot simulation, mapping did complete but the results were just passable 

(notwithstanding the “linear shift” issue). This is attributed to the inaccurate internal sensors. With 

better sensors robot would not have problems in mapping the environment. This can be seen in the 

results of first simulation. 

In case of Blender simulation, the main aim was to show that it is simple enough to 

implement the SLAM concepts even in the suite that was meant for 3D simulations or Game 

development. Blender is really helpful since it provides real life constructs of gravity, friction, 

viscosity in case of fluids, mass, torque, linear/angular velocity/ displacement, etc. With these 

constructs it can simulate realistic conditions for robotic behavior. It is helpful in cases where the 

environment is not known or the robot needs to be tested in extreme conditions. In cases where 

robot design needs to be tested this suite can prove helpful. Most importantly it is helpful in cases 

where a robot is not present at all, but we need to test the theory and mathematical models. 

SLAM in conjunction with “Particle filter”, can map an unknown environment with accuracy, 

provided we use high number of particles. High numbers of particles help in cases where 

obstacles/landmarks are rare. Particle filters are inherently suited for mapping unknown 

environments. Although observed, but not quantifiable, random movement as opposed to prioritized 

movement map the environment much quicker. This may be because the random movement tends 

to sense/observe the unseen obstacles more often than in the case of predetermined prioritized 

movement. 

                                                 
6 The angular displacement commands resulted in erratic linear displacement 



 

41 
 

REFERENCES 

 

[1] D. Hahnel, D. Fox, W. Burgard, and S. Thrun, “An efficient FastSLAM ¨algorithm for 

generating maps of large-scale cyclic environments from raw laser range measurements,” in 

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), vol. 1, Las 

Vegas Nevada USA, 27-31 October 2003, pp. 206 – 211.  

[2] http://www.blender.org/ 

[3] SLAM for Dummies: A Tutorial Approach to Simultaneous Localization and Mapping 

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-

2005/projects/1aslam_blas_repo.pdf 

[4] Borenstein, J., Everett, B., and Feng, L., 1996, "Navigating Mobile Robots: Systems and 

Techniques." A. K. Peters, Ltd., Wellesley, MA, ISBN 1-56881-058-X, Publication Date: February 

199 

[5] Borenstein, J., Everett, H.R. ,Feng, L., and Wehe, D., 1996, "Mobile Robot Positioning: Sensors 

and Techniques." Invited paper for the Journal of Robotic Systems, Special Issue on Mobile Robots. 

Vol. 14, No. 4, April 1997, pp. 231-249. 

[6] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial Intelligence in the New 

Millenium, G. Lakemeyer and B. Nebel, Eds. Morgan Kaufmann, 2002, to appear. 

[7] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and mapping (slam): Part i the 

essential algorithms,” Robotics and Automation Magazine, June 2006. 

[8] "Random walks, universal traversal sequences, and the complexity of maze problems," focs, 

pp.218-223, 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), 1979. 

[9] G. Welch and G. Bishop. An introduction to the Kalman filter. Technical Report TR 95-041, 

University of North Carolina, Department of Computer Science, 1995 



 

42 
 

[10] A Particle filter Tutorial for Mobile Robot Localization by Ioannis Rekleitis 

http://www.cim.mcgill.ca/~yiannis/particletutorial.pdf 

[11] Roomba Serial Command Interface (SCI) Specification, iRobot, 2006. [Online]. Available: 

http://www.irobot.com/images/consumer/hacker/Roomba_SCI_Spec_Manual.pdf 

[12] Michael Montemerlo, FastSLAM: A Factored Solution to the Simultaneous Localization and 

Mapping Problem 

[13] L. Goncavles, E. di Bernardo, D. Benson, M. Svedman, J. Ostrovski, N. Karlsson, and P. 

Pirjanian, “A visual front-end for simultaneous localization and mapping,” in Proc. of ICRA, apr 

2005, pp. 44–49 

[14] N. Ouerhani, A. Bur, and H. H¨ ugli, Visual attention-based robot self-localization, in Proc. of 

ECMR, 2005, pp. 8–13 

[15] Arulampalam, Maskell, Gordon, Clapp: A Tutorial on Particle Filters for on-line Nonlinear / 

Non-Gaussian Bayesian Tracking, IEEE Transactions on Signal Processing, Vol. 50, 2002 

[16] T. Bailey. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments. PhD 

thesis, Univ. of Sydney, 2002. 

[17] A. N¨ uchter, K. Lingemann, J. Hertzberg, H. Surmann, 6D SLAM for 3D mapping outdoor 

environments, Journal of Field Robotics 24 (8–9)(2007) 

[18] iRobotCreate: Open Interface Specifications, 

http://www.irobot.com/filelibrary/pdfs/hrd/create/Create%20Open%20Interface_v2.pdf 

[19] Joel M. Esposito and Owen Barton, "MatlabCreate:Matlab Toolbox for the iRobot Create", 

2008, www.usna.edu/Users/weapsys/esposito/roomba.matlab/ 

[20] iRobot Create Owner's Manual 

http://www.irobot.com/filelibrary/create/Create%20Manual_Final.pdf 



 

43 
 

[21] PING)))™ Ultrasonic Distance Sensor (#28015), 

http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf 

[22] Hitachi HM55B Compass Module (#29123), 

http://www.crustcrawler.com/products/Nomad/docs/HM55BModDocs.pdf 

[23] ArduinoBoardUno, http://arduino.cc/en/Main/ArduinoBoardUnoand 

http://arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf 

[24] Crowley J. L., Position Estimation for a Mobile Robot Using Vision and Odometry. Proc. 1992 

IEEE Intl. Conf. on Robotics and Automation, 2588-2593, Nice, May 1992 

[25] Dissanayake G., Newman P., Clark S., Durrant-Whyte H. F. and Csorba M., A Solution to the 

Simultaneous Localisation and Map Building (SLAM) problem. IEEE Trans. on Robotics and 

Automation, 17(3):229-241, June 2001 

[26] Gordon N. J., Salmond D. J. andSmith A. F. M., Novel Approach to Nonlinear/Non Gaussian 

Bayesian State Estimation. IEE Proceedings F,Radar and Signal Processing, 140(2):107-113, April 

1993. 

[27] Dieter Koller, Joseph Weber, Jitendra Malik. Robust Multiple Car Tracking with Occlusion 

Reasoning. In Proceedings of ECCV (1)'1994. pp.189~196 

[28] Michael Isard, Andrew Blake. Contour Tracking by Stochastic Propagation of Conditional 

Density. In Proceedings of ECCV (1)'1996. pp.343~356 

[29] Michael Isard, Andrew Blake. CONDENSATION - Conditional Density Propagation for 

Visual Tracking. International Journal of Computer Vision, 1998: 5~28 

[30] Dorin Comaniciu, Visvanathan Ramesh, Peter Meer. Real-Time Tracking of Non-Rigid 

Objects Using Mean Shift. In Proceedings of CVPR'2000. pp.2142~2142 

[31] Changjiang Yang, Ramani Duraiswami, Larry S. Davis. Fast Multiple Object Tracking via a 

Hierarchical Particle Filter. In Proceedings of ICCV'2005. pp.212~219 



 

44 
 

[32]Kenji Okuma, Ali Taleghani, Nando de Freitas, James J. Little, David G. Lowe. A Boosted 

Particle Filter: Multitarget Detection and Tracking. In Proceedings of ECCV (1)'2004. pp.28~39 

[33] S. Thrun, Robotic mapping: A survey, CMU-CS-02-111, February 2002, School of Computer 

Science, Carnegie Mellon University, Pittsburgh, PA 15213 

[34] C. Fruh, A. Zakhor, 3D model generation for cities using aerial photographs and ground level 

laser scans, in: Proceedings of the Computer Vision and Pattern Recognition Conference, CVPR 

’01, Kauai, Hawaii, USA, December 2001 

[35] H. Zhao, R. Shibasaki, Reconstructing textured CAD model of urban environment using 

vehicle–borne laser range scanners and line cameras, in: Second International Workshop on 

Computer Vision System, ICVS ’01, Vancouver, Canada, 2001, pp. 284–295. 

[36] S. Thrun, D. Fox, W. Burgard, A real-time algorithm for mobile robot mapping with 

application to multi robot and 3D mapping, in: Proceedings of the IEEE International Conference 

on Robotics and Automation, ICRA 00, San Francisco, CA, USA, April 2000 

[37] S. Thrun, M.Montemerlo, A. Aron, Probabilistic terrain analysis for high-speed desert driving, 

in: Proceedings of Robotics: Science and Systems,Cambridge, USA, June 2006 

[38] V. Sequeira, K. Ng, E. Wolfart, J. Goncalves, D. Hogg, Automated 3D reconstruction of 

interiors with multiple scan-views, in: Proceedings of SPIE, Electronic Imaging ’99, The Society 

for Imaging Science and Technology/SPIE’s 11th Annual Symposium, San Jose, CA, USA, 

January 1999 

[39]A. Georgiev, P.K. Allen, Localization methods for a mobile robot in urban environments, IEEE 

Transaction on Robotics and Automation (TRO) 20 (5) (2004) 851–864. 

[40] P. Allen, I. Stamos, A. Gueorguiev, E. Gold, P. Blaer, AVENUE: Automated site modelling in 

urban environments, in: Proceedings of the Third International Conference on 3D Digital Imaging 

and Modeling, 3DIM ’01, Quebec City, Canada, May 2001. 



 

45 
 

[41] Y. Chen, G. Medioni, Object modelling by registration of multiple range images, Image and 

Vision Computing 10 (3) (1992) 145–155 

[42]N. Gordon, D. Salmond, and A. F. M. Smith, “Novel approach to non-linear and non-Gaussian 

Bayesian state estimation,” Proc. Inst. Elect.Eng., F, vol. 140, pp. 107–113, 1993. 

[43] M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” J. Amer. Statist. 

Assoc., vol. 94, no. 446, pp. 590–599, 1999. 

[44] C. Musso, N. Oudjane, and F. LeGland, “Improving regularised particle filters,” in Sequential 

Monte Carlo Methods in Practice, A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds. New York: 

Springer-Verlag, 2001. 

[45] Gordon, Salmond & Smith, Novel approach to nonlinear non-Gaussian Bayesian state 

estimation, IEE, 1993 

[46] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project: Tools for multi-robot 

and distributed sensor systems,” in In Proceedings of the 11th  International Conference on 

Advanced Robotics (ICAR), 2003, pp. 317–323 

[47] Z. Dodds and B. Tribelhorn, “Erdos: Cost effective peripheral robotics for AI education,” in 

Proceedings, AAAI, 2006, pp. 1966–1967. 

[48] T. Kurt, Hacking Roomba: ExtremeTech. Wiley, 2006. 

[49] Ben Tribelhorn, Zachary Dodds. Evaluating the Roomba: A low-cost, ubiquitous platform for 

robotics research and education. In Proceedings of ICRA'2007. pp.1393~1399 

[50] http://hackingroomba.com/projects/  

[51] N. M. Kwok and G. Dissanayake, “Bearing-only. SLAM in indoor environments using a 

modified particle filter 

[52] http://www.analog.com/library/analogDialogue/Anniversary/7.html 



 

46 
 

APPENDIX 

 

Arduino Uno Microcontroller 

This is the implementation code for Arduino Uno Microcontroller component to write the 

sensed data to a COM Port 
 
#include <math.h> // (no semicolon) 

//// VARS 

byte CLK_pin = 8; 

byte EN_pin = 9; 

byte DIO_pin = 10; 

 

intX_Data = 0; 

intY_Data = 0; 

int angle; 

 

constint pingPin1 = 2; 

constint pingPin2 = 4; 

constint pingPin3 = 7; 

 

 

//// FUNCTIONS 

 

void ShiftOut(int Value, intBitsCount) { 

  for(int i = BitsCount; i >= 0; i--) { 

digitalWrite(CLK_pin, LOW); 

    if ((Value & 1 << i) == ( 1 << i)) { 

digitalWrite(DIO_pin, HIGH); 

      //Serial.print("1"); 

    } 

    else { 

digitalWrite(DIO_pin, LOW); 

      //Serial.print("0"); 

    } 

digitalWrite(CLK_pin, HIGH); 

delayMicroseconds(1); 

  } 

//Serial.print(" "); 

} 

 

intShiftIn(intBitsCount) { 

intShiftIn_result; 

ShiftIn_result = 0; 

pinMode(DIO_pin, INPUT); 

    for(int i = BitsCount; i >= 0; i--) { 

digitalWrite(CLK_pin, HIGH); 

delayMicroseconds(1); 

      if (digitalRead(DIO_pin) == HIGH) { 

ShiftIn_result = (ShiftIn_result<< 1) + 1;  

        //Serial.print("x"); 

      } 

      else { 

ShiftIn_result = (ShiftIn_result<< 1) + 0; 

        //Serial.print("_"); 

      } 

digitalWrite(CLK_pin, LOW); 
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delayMicroseconds(1); 

    } 

 

  if ((ShiftIn_result& 1 << 11) == 1 << 11) { 

ShiftIn_result = (B11111000 << 8) | ShiftIn_result;  

  } 

 

 

  return ShiftIn_result; 

} 

 

void HM55B_Reset() { 

pinMode(DIO_pin, OUTPUT); 

digitalWrite(EN_pin, LOW); 

ShiftOut(B0000, 3); 

digitalWrite(EN_pin, HIGH); 

} 

 

void HM55B_StartMeasurementCommand() { 

pinMode(DIO_pin, OUTPUT); 

digitalWrite(EN_pin, LOW); 

ShiftOut(B1000, 3); 

digitalWrite(EN_pin, HIGH); 

} 

 

int HM55B_ReadCommand() { 

int result = 0; 

pinMode(DIO_pin, OUTPUT); 

digitalWrite(EN_pin, LOW); 

ShiftOut(B1100, 3); 

  result = ShiftIn(3); 

  return result; 

} 

 

 

long microsecondsToCentimeters(long microseconds){ 

  // The speed of sound is 340 m/s or 29 microseconds per centimeter. 

  // The ping travels out and back, so to find the distance of the 

  // object we take half of the distance travelled. 

  return microseconds / 29 / 2; 

} 

 

 

long calcDuration(intpingPin){ 

  // The PING))) is triggered by a HIGH pulse of 2 or more microseconds. 

  // Give a short LOW pulse beforehand to ensure a clean HIGH pulse: 

pinMode(pingPin, OUTPUT); 

digitalWrite(pingPin, LOW); 

delayMicroseconds(2); 

digitalWrite(pingPin, HIGH); 

delayMicroseconds(5); 

digitalWrite(pingPin, LOW); 

 

  // The same pin is used to read the signal from the PING))): a HIGH 

  // pulse whose duration is the time (in microseconds) from the sending 

  // of the ping to the reception of its echo off of an object. 

pinMode(pingPin, INPUT); 

  return pulseIn(pingPin, HIGH); 

} 
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void setup() { 

Serial.begin(115200); 

pinMode(EN_pin, OUTPUT); 

pinMode(CLK_pin, OUTPUT); 

pinMode(DIO_pin, INPUT); 

 

  HM55B_Reset(); 

} 

 

 

void loop(){ 

  long duration1, duration2, duration3, cm1, cm2, cm3; 

 

  HM55B_StartMeasurementCommand(); // necessary!! 

  delay(40); // the data is 40ms later ready 

  HM55B_ReadCommand(); 

 

  //Serial.print(); // read data and print Status 

  //Serial.print(" ");   

   

  X_Data = ShiftIn(11); // Field strength in X 

  Y_Data = ShiftIn(11); // and Y direction 

  digitalWrite(EN_pin, HIGH); // ok deselect chip 

 

  duration1 = calcDuration(pingPin1); 

  duration2 = calcDuration(pingPin2); 

  duration3 = calcDuration(pingPin3); 

 

  // convert the time into a distance 

  //inches = microsecondsToInches(duration); 

  cm1 = microsecondsToCentimeters(duration1); 

  cm2 = microsecondsToCentimeters(duration2); 

  cm3 = microsecondsToCentimeters(duration3); 

 

 

  angle = 180 * (atan2(-1 * Y_Data , X_Data) / M_PI); // angle is atan( -y/x) !!! 

 

 

Serial.print(angle); // print angle 

Serial.print(" "); 

Serial.print(cm2); 

Serial.print(" "); 

Serial.print(cm1); 

Serial.print(" "); 

Serial.print(cm3); 

Serial.println();   

} 
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Serial Port Reader 
This component reads the data from the COM port and reports it to the MATLAB component 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.IO.Ports; 

 

namespace Serial 

{ 

    class Program 

    { 

        public static void Main(string[] args) 

        { 

            //System.Console.WriteLine("Entered"); 

            Int32 baudRate, iterations; 

            string comPort = args[0]; 

 

            double angle, lDist, rDist, cDist; 

int v0, v1, v2, v3; 

int i = 1, numer=0, denom =0, sv1=0, sv2=0, sv3=0; 

 

            Dictionary<int, int>dictAng; 

 

            //System.Console.WriteLine("Initialized"); 

            while (true) { 

                try{ 

baudRate = Convert.ToInt32(args[1]); 

                    break; 

                } 

                catch (FormatException) { 

                    continue; 

                } 

            } 

            while (true){ 

                try{ 

                    iterations = Convert.ToInt32(args[2]); 

                    break; 

                } 

                catch (FormatException){ 

                    continue; 

                } 

            } 

 

dictAng = new Dictionary<int, int>(); 

 

            using (SerialPort port = new SerialPort(comPort, baudRate)) { 

port.Open(); 

string[] strArray = new string[4]; 

                while (i < iterations){ 

                    try{ 

strArray = port.ReadLine().Split(new char[] { ' ' }); 

                    } 

                    catch (TimeoutException) { 

continue; 

                    } 
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                    try{ 

                        v0 = Convert.ToInt32(strArray[0]); 

                        v1 = Convert.ToInt32(strArray[1]); 

                        v2 = Convert.ToInt32(strArray[2]); 

                        v3 = Convert.ToInt32(strArray[3]); 

                    } 

                    catch (FormatException){ 

continue; 

                    } 

                    catch (IndexOutOfRangeException) { 

continue; 

                    } 

if(dictAng.ContainsKey(v0)) 

dictAng[v0]++; 

                    else 

dictAng[v0]=1; 

 

 

                    sv1 += v1; 

                    sv2 += v2; 

                    sv3 += v3; 

 

                    ++i; 

                } 

            } 

foreach(KeyValuePair<int, int>kv in dictAng){ 

numer += kv.Value * kv.Key; 

denom += kv.Value; 

            } 

            angle = numer / denom; 

            if(angle<0.0) 

                angle = 180.0 + (180.0 - Math.Abs(numer/denom)); 

 

lDist = sv1 / iterations; 

rDist = sv2 / iterations; 

cDist = sv3 / iterations; 

 

System.Console.Write("{0} {1} {2} {3}", angle, lDist, rDist, cDist); 

        } 

    } 

} 


