
PARTICLE FILTER BASED SLAM TO MAP

RANDOM ENVIRONMENTS USING

“IROBOT ROOMBA”

by

Akash Patki

Thesis

Submitted to the Faculty of the

Graduate School, Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

December, 2011

Nashville, Tennessee

Approved:

 Professor Gabor Karsai

 Professor Alan Peters

i

ACKNOWLEDGMENTS

I would like to put forth an honest and sincere "Thank You" to my advisor Dr. Gabor

Karsai for his continuous support and patience. Our discussions helped me realize one of

the overlooked assumptions. I would also like to thank Dr. Alan Peters for his input on

mapping and maintaining the environment using "Grid Mapping Technique/s". I am

grateful to Dr. Sandeep Neema for lending the robot - "iRobot Roomba" and ISIS for

providing rest of the hardware and sensors. A special mention of Nihaar Mahatme, Indranil

Chatterjee and Sayan Sen for their help on the thesis. Last and definitely not the least I

thank my parents for being there and for their silent but constant support throughout my

studies.

 ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS….……………………………………………………………..i

LIST OF TABLES…...…………………………………………………………………….iii

LIST OF FIGURES………………………………………………………………………...iv

GLOSSARY.………………………………………………………………………………vi

1 INTRODUCTION....…………………………………………………………………….1

2 BACKGROUND………………………………………………………………………...3

 SLAM Problem…………………………………………………………………… ..3

 Filters…………………………………………………….. ...5

 Related Work……………………………………………………..7

3 PARTICLE FILTER……………………………………………………………………..8

 Assumptions…………………………………………………………………………9

 Prediction Model……………………………………………………………………10

 Update Model……………………………………………………………………….12

 Resample…………………………………………………………………………....14

4 SETUP.……………………………………………………….………………………….15

 Hardware…………………………………………………………………………….15

 Evaluating System Constants………………………………………………………..18

 Implementation…………………………………………………………………........19

 Arduino Microcontroller……………………………………………………..... .20

 Serial Port Reader……………………………………………………………….20

 Roomba Communicator……………………………………………………….. .20

 Core Module…………………………………………………………………….21

5 RESULTS AND INTERPRETATION.…...……………………………………………..24

 Prediction Model…………………………………………………………………….24

 Update Model………………………………………………………………………..26

 Simulations…………………………………………………………………………..26

 Blender Simulations……………………………………………………………….…32

 Roomba Results………………………………………………………………….......34

 Comparison of Roomba and Simulator. ……………………………………………..37

6 CONCLUSION……………………………………………………………………….......40

REFERENCES.…….…………………………………………………………………….......41

APPENDIX ………….………………………………………………………………………46

 iii

LIST OF TABLES

Table Page

4.1.1 Sensory and Actuation capabilities of Roomba ……………………… 15

4.2.1 System Constants for external sensors……………………………….. 19

4.2.2 System Constants for internal sensors……………………………….. . . . …. 19

 iv

LIST OF FIGURES

Figure Page

2.2.1 SLAM Flowchart 3

2.1.1 System Definition. 4

3.2.1 Motion Model 10

3.2.2 More angular displacement, less linear displacement 11

3.2.3 More angular & linear displacement . 12

3.3.1 Update Model . 13

4.1.1 iRobot Roomba . 16

4.1.2 Ping Ultrasonic Sensor . 16

4.1.3 HM55B Compass Module . 17

4.1.4 Arduino Uno Microcontroller . 17

4.1.5 Roomba Serial and USB cables . 17

4.1.6 Final Roomba Setup . 17

4.1.7 Outline of Final Roomba Setup . 17

5.1.1 Motion model based on external sensor values . 24

5.1.2 Motion model based on robot’s sensor values . 25

5.2.1 Update of position . 26

5.3.1 Random Grid (generated) . 27

5.3.2 Step 1 . 27

5.3.3 Step 3 . 27

5.3.4 Step 5 . 27

5.3.5 Step 8 . 27

5.3.6 Step 11 . 27

5.3.7 Step 13 . 28

5.3.8 Step 16 . 28

5.3.9 Step 20 . 28

 v

5.3.10 Random Grid (generated) . 29

5.3.11 Step 1 . 29

5.3.12 Step 2 . 29

5.3.13 Step 4 . 29

5.3.14 Step 8 . 29

5.3.15 Step 20 . 29

5.3.16 Linear Displacement along with Angular . 31

5.4.1 Blender initial state . 32

5.4.2 Maze initial state . 32

5.4.3 Setup . 32

5.4.4 Connections for robot . 32

5.4.5 Robot’s 1st move . 33

5.4.6 Maze used with robot . 33

5.5.1 Maze used with robot . 34

5.5.2 Step 1 . 34

5.5.3 Step 13 . 34

5.5.4 Step 14 . 34

5.5.5 Step 31 . 34

5.5.6 Step 37 . 34

5.5.7 Maze . 35

5.5.8 Final Mapped Maze . 35

5.5.9 Merged Mapped Mazes . 35

5.6.1 Maze used with Roomba . 37

5.6.2 Maze used simulator. 37

5.6.3 Overlapped mazes (actual and simulated) . 37

5.6.4 Actual Maze mapped by iRobot Roomba . 38

5.6.5 Simulated maze mapped by the simulator . 38

5.6.6 Overlapped mapped mazes by simulator and iRobot Roomba 38

 vi

GLOSSARY

Baud Rate: It is the number of distinct symbol changes (signaling events) made to the

transmission medium per second in a digitally modulated signal or a line code

Gaussian distribution: It is an approximation to describe real-valued random variables

that tend to cluster around a single mean value.

Gaussian white noise: It is a time series (rt) that is normally distributed with mean 0 and

standard deviation σ.

Markov Chain: It is a mathematical system in which a system’s next state is dependent

only on its current state.

Mean: Expected value of a random variable.

MIDI: (Musical Instrument Digital Interface) is an industry-standard protocol that enables

electronic musical instruments (synthesizers, drum machines), computers and other

electronic equipment (MIDI controllers, sound cards and samplers) to communicate and

synchronize with each other

Particle Filters: These are estimation techniques based on Monte Carlo methods.

Probability Density Function (pdf): It is a function that describes the relative likelihood

of a random variable to occur at a given point.

Random variable: It is a variable whose value results from a measurement on some type

of random process.

SLAM: Simultaneous Localization And Mapping

Standard Deviation (Std.Dev): It is the measurement of variability or diversity of a

variable.

State variable: This is one of the set of variables that describes the "state" of a dynamical

system

Variance: It is the measure of how far a set of numbers are spread out from each other.

1

CHAPTER 1

INTRODUCTION

For any mobile robot application it is important that the robot should be able to know its

location in an operating environment. The operating environment map may not be available every

time. So, we need to build a map as the robot explores its surroundings. As a result, robot

simultaneously Localizes and Maps the operating environment. This is (the) SLAM - Simultaneous

Localization And Mapping problem [1]. The mapping can be achieved by using the robot’s internal

sensors, externally placed sensors and/or by referring to the map of the operating environment.

Examples of internal sensors could be accelerometer, proximity sensors, etc. Ultrasonic Distance

sensor, Compass module, Color sensors, etc. are the examples for external sensors. The “map”

mentioned here maybe a database of obstacles the robot knows beforehand, while “referring to”

could be a lookup of the database based on robot’s current state. Robot’s internal sensor readings

are also known as odometry readings. But, the odometry readings (e.g. measuring distance travelled

or angular rotation by the robot) are error prone. Navigating a map solely on the estimate of the

known position and current set of readings is called “Dead Reckoning”. As the new position is

calculated based on previous values the errors/uncertainties (that are cumulative in nature) grow

with time. So, we need external sensors as measuring devices. While some external sensors (like

direction sensor) provide better estimate for odometry readings, others (like Ultrasonic range

sensor) help determine a measurement, robot is unable to make by itself. There are a few variations

of the problem where, the robot has entire map of the environment, no map at all or just a few

landmarks [24]. In any of these cases, robot needs to localize itself based on the sensor

measurements. Robot localization is the process through which robot tries to determine on its

position in a given map, known or unknown. SLAM aims to iteratively, either build a map or

improve a known existing map and at the same time keep track of robot’s current position. SLAM

is applicable for both 2D and 3D motion.

The other aspects of this problem are the sensors and the filters used to process the readings from

sensors. We cannot rely just on the odometry readings from robot’s internal sensors because they

tend to accumulate errors over time. We use external sensors in conjunction with filters to overcome

this problem. Particle Filters [26] generally work for any kind of system. This is because

2

sufficiently large numbers of particles/samples tend to take into account most of the possible states

a system can be in at a particular point of time.

Particle Filter is a Monte Carlo based simulation technique which uses particles or samples to

represent different possible states a system can possibly be in at a given point of time. These

samples represent Probability Distribution Function (PDF) of the state. It works for any kind of

system (linear or non-linear, Gaussian, or non-Gaussian, etc.). We get a better estimation of system

state if we use higher number of samples to represent the PDF. The only drawback of maintaining

higher number of samples is that, the whole process becomes computationally expensive.

The work presents, a working prototype of “iRobot’s Roomba” and simulations for mapping a

random maze using MATLAB and Blender [2]. Blender is a 3D animation tool that provides a rich

feature set for realistic robotic simulations.

Section [II] presents the background of SLAM problem and Particle filter. Section [III] presents the

“Mathematical Model” and describes (in detail) Monte Carlo Simulation Method –“Particle Filter”

and the stages that make up the entire Slam Process. Pseudo code is presented where ever necessary

for a complete understanding of the process. Section [IV] delves into “Implementation Details” –

the robot (hardware) setup and coding details. Section [V] presents the “Results” of simulation

(both MATLAB and Blender) and Roomba. Section [VI] and [VII] are “Conclusion” and “Related

Work” respectively.

3

CHAPTER 2

 BACKGROUND

Simultaneous localization and mapping (SLAM) is a technique used by robots and

autonomous vehicles to build up a map within an unknown environment (without a priori

knowledge), or to update a map within a known environment (with a priori knowledge from a given

map), while at the same time keeping track of their current location. This section sets up the

problem of SLAM and provides a brief introduction to Particle Filter.

2.1 SLAM Problem

Maps help us navigate and locate objects in a given environment. Mapping of an environment

involves locating and mapping objects under conditions of error/noise. SLAM binds the processes

of locating and mapping together in an iterative feedback loop to improve the results. FIG 2.2.1 is a

flow chart that depicts logic flow in the SLAM process.

FIG 2.2.1 SLAM Flowchart

 SLAM tries to answer two fundamental questions for a robot “What does the world around

me look like?” and “Where am I?” In order to answer these questions the robot needs to interpret

sensor measurements, estimate its current pose and take into account the inherent uncertainties in

4

sensor measurements and robot movement. Over time, this results in a cumulative buildup of errors

and an inaccurate map. This, however, can be compensated using a number of statistical techniques.

Statistical techniques help model the noise and their effects on measurements. Kalman and Particle

Filters are the most commonly used techniques in SLAM. SLAM finds its applications in various

real life situations where automated vehicles need to map the environment during disaster relief,

underwater navigation, airborne systems, minimal invasive surgery, visual tracking, etc.

A mobile robot, while operating in a 2 dimensional environment is represented by a 3-tuple.

� � ��, �, �� 2.1.1

where x, y are the Cartesian co-ordinates and θ is the robot orientation – the angle robot makes with

the positive X-axis. Initially the 3-tuple is set to [0,0,0].

FIG 2.1.2 System Definition

With every control, consisting of a velocity (V), turn rate(R) and time step (k)
1
 robot moves

according to the motion model in equation 2.1.2[51]

	�
� � 1��
� � 1�θ
t � 1��
� � 	�
�� � � ∗ � ∗ cos��
�� � �
��� � ���
�� � � ∗ � ∗ sin��
�� � �
��� � � θ
t� � k ∗ �
�� � �" �

�
 2.1.2

Here, �� , � and �" are the noise terms that take into account wheel slippage, control response, etc.

While moving around the environment robot makes measurements to the landmarks [51].

1 k = The time duration for which the robot moves

θ

x, y

 Robot

X axis

Direction robot

 is moving

5

∅ � $%&�$' (�)*�+,-)* +,-. − θ
�� + 	1
0, 34� 2.1.3

[�5,�5] is co-ordinate of the obstacle. 1
0, 34� is the white Gaussian noise[52].

∅ is the angle robot makes with the obstacle

The SLAM problem boils down to provide an estimate for the landmarks and at the same time

positioning itself in the environment. This is achieved though the three stages of “Prediction”,

“Update” and “Resampling”. Detailed explanation is provided in SECTION III.

2.2 Filters

Kalman and Particle Filters are the most commonly used filters in SLAM to compensate for

errors in measuring and movement.

Kalman is a recursive filter that provides an optimal estimate of the desired state of a linear

system from a series of noisy measurements. The results are optimal for a linear system with white

Gaussian noise. This poses a certain constraints in developing solutions for SLAM. Recursive

filters, memory-wise, are expensive. Most of the real life systems are non-linear. As a result Kalman

filter cannot be applied to these systems.

On the other hand, Particle Filters (PF) are a class of Monte Carlo Simulation methods. They

are used in cases where we see conditional independence between random variables connected in a

Markov chain i.e. the process is memoryless or the next state depends only on the current state and

not the events that preceded it. Tracking framework provided by PF is robust enough to be applied

for non-linear systems or/and non-Gaussian noise or/and multi nodal distributions.

The main aim of “Particle Filters” is the estimation of state variable (�) based on observed

data (data calculated using odometry readings) and sensed data (data calculated using external

sensors). A Probability Distribution Function (PDF) is used to represent the state information. PF

uses a large number of samples (�6) to represent possible system states i.e. PF takes into account

multiple state hypotheses simultaneously.

6

The PDF represented by these particles evolves based on motion model of the system. At

time zero, system PDF is represented as 7
�8�. As the system evolves with time, PDF gets updated

and the PDF at time
� + 1� is 7
�9:;|�9�. Since probability of measuring an observation (Ζ) is 7
=9:;|�9:;�. Using Bayes formula we have [51],

7��9:;>=9:;� ∝ 	7�=9:;>�9:;� ∗ 	7��9:;>�9� ∗ 7��9>=9� 2.2.1

Equation 2.2.1 is used to calculate the weights of samples representing the system.

Implementation of PF includes passing the samples through motion model, calculating the weights

and (if needed) resampling of the particles.

Theoretical development of the model can be found in [45]. An outline of particle filter is given

below

A more detailed explanation of Particle Filter and the different stages involved is given in

SECTION [III].

Initialize particles �6

Propagate the particles through motion model at the

end of each time step �6 	→ 	�6
A

Calculate weight for each sample 7
�6
A|=9�

Resample particles according to their weights.

�6 	→ 	�B

7

2.3 Related Work

With robots being used widely, robotic mapping is one of the most important applied areas.

[6] presents the work done over a period of time. The current work is related with SLAM, where in

the robot, while mapping the unknown environment tries to localize its position [7]. Recent works

focus on variations of SLAM like FAST SLAM [12] and Visual SLAM [13, 14]. Particle filters are

frequently used in vision applications [27, 28, 29, 30]. Particle filters are also used to detect and

track multiple objects using Boosted Particle Filters, Hierarchical Particle Filters [31, 32]. Different

flavors of Particle Filter, e.g. sampling importance resampling (SIR) filter [42], auxiliary sampling

importance resampling (ASIR) filter [43], regularized particle filter (RPF) [44], etc. are used based

on different assumptions. SLAM in conjunction with “Particle filter” is used to map large 3D

outdoor environments [16, 17]. A number of techniques are used while mapping either 2D or 3D

environments: Planar 2D mapping [33], Planar 3D mapping [36, 34, 35], Slice-wise 6D mapping

[37], Full 6D SLAM [38. 39, 40], Globally consistent image alignment [41]. The environment to

map here is a maze and while many maze traversal algorithms exist [8] this work simply uses a

random path.

8

CHAPTER 3

PARTICLE FILTER

The main objective of a particle filter is to track the State variable (�) as it moves through

and tries to map the environment. Based on some actions, the State variable keeps changing. The

objective is to provide a better estimate for this variable. Multiple copies of the same variable are

associated with a weight function. These copies are called samples (particles). The weight function

decides the importance of each particle. The updated value of State variable is weighted sum of all

particles. Greater the number of particles better the accuracy. But this increases the processing time.

Particle filter is an iterative process that has two main stages: prediction and update. At the

end of each iteration, particles are modified based on a model. This is the prediction stage. Once this

stage is complete, weight associated with every particle is recalculated based on the latest sensory

readings. This is the update stage. Sometimes, after a few iterations, the weights of certain particles

become so small that they do not contribute at all. As a result the particle set needs to be re-

sampled.

In our case State variable () that we track represents the position robot. The sensory

readings are the obstacles in the maze (i.e. the walls). is called pose of the robot and is presented

as a 3-tuple.

	� = [�, �, �]

Also, � is represented by a set of M samples or the “particle set”.

	C6 = [�6 , D6] ∶ F = 1…H

Here, i is the index for every particle while D6 is weight of the particle that it contributes during

update stage.

Since pdf at time t is known, using the motion model we predict pdf at time t+1. Using the

distribution at time (t+1) we update the state variable�. We use weighted mean
2
 method to update

the variable�. As a result, particles with most weight contribute in the update process while lower

weight particles eventually get left out.

2 A mean that is computed with a weight given to every particle in a sample set.

χ

χ

9

The algorithm for particle filter is given below

Algorithm: Particle Filter pseudo code

This section focuses on the mathematical models that go into implementing a “Particle Filter”. It

also presents pseudo code for a resampling algorithm. But, initially it describes and explains the

basic assumptions on which the models are built upon.

3.1 Assumptions

The work focuses on implementation of SLAM process using Particle filter to localize an

unmapped random maze based on the following assumptions.

• Almost no Drift: This means that the robot, when it moves from “Point A” to “Point B” will

have an almost zero angular displacement. i.e. both wheels move relatively at the same

speed. Experimental measurements with the robot have confirmed this assumption.

• Gaussian distribution for motion model: The errors in measurement of sensors, odometry

readings of the motion model along with the noise have a Gaussian distribution. As a result

we need to calculate “mean” and “Standard Deviation” values also referred to as system

constants of sensors.

• Number of Particles: The work assumes that 1000 particles are sufficient enough to

accurately estimate value of the state variable.

• In place Angular Displacement: This means that every time robot turns, only change is in

its orientation and not the co – ordinates and even if there is, it’s negligible.

while (stillexploring)

 obstacles = sense()

 particleSet = motionModel(particleSet)

 particleSet = calcWeights(particleSet, obstacles)

 = update(particleSet)

 if (EffectiveSampleSize(particleSet) < threshold)
 particleSet=resample(particleSet)

10

3.2 Prediction Model

We use Gaussian model to predict pose for the robot and for probability distribution of the samples.

There are a few other models [4-5] that can be used instead of the Gaussian model.

FIG 3.2.1 is used as a reference to derive motion model for the robot

FIG 3.2.1 Motion Model

For a robot to move [∆�, ∆�] from an initial pose of	� = [�, �, �] to	�′ = [�′, �′, �′] it first

rotates by 	∆� = 	�AA − �′ and then moves a distanceK = L∆�M + ∆�M.

∆� = �A − �, ∆� = �A − �

and �′′ = arctan	
∆�/∆��.

The final pose of the robot is given by

[�A, �A, �A] = [� + K ∗ cos
�AA� , � + K ∗ sin
�AA� , �′′] Eq. 3.1

While performing translational motion, we have errors with respect to orientation and the distance

traveled. The orientation error is because of the drift during linear motion. As a result the robot’s

final orientation is

�A = � + ∆� + 1
∆�, 3Q59�	 Eq.3.2

θ

θ'

∆y = y’ - y

∆x = x’ - x

θ’’ = arctan(∆y/ ∆x)

x’ = x + ρ*cos(θ’’)

y’ = y + ρ*sin(θ’’)

θ’ = θ’’

[x, y, θ]

[x’, y’, θ’]

ρ = LΔx2 + 	Δy2

11

Since the robot moves in discrete steps and not in just one jump we need to add Gaussian noise to

these steps. The movement in discrete steps is an approximation because it is analytically difficult

to model continuous movement. The discrete number of steps is chosen to be large enough to

approximate the continuous motion but low enough not to be computationally intensive. Since the

step size we have chosen is so small we do not perform this computation in the code at all.

Pseudo code for Motion model for “Particle Set” is

Pseudo Code for (Translation) Motion Model

Validity of the motion model and its results are interpreted in Chapter V. But, Figs. 3.2.2 and 3.2.3

show results for a variation of angular and/or linear displacements.

FIG 3.2.2 More angular displacement, less linear displacement

κ

ρ = Distance to move

for(i = 1 to M)

Ntrs = normDist(ρ, σp)

 θ[i] = θ[i] + N(θm, σθ)

 x[i] = x[i] + Ntrs*cos(θ[i])

 y[i] = y[i] + Ntrs*sin(θ[i])

12

FIG 3.2.3 More angular & linear displacement

3.3 Update Model

Once the robot completes its action of moving to a new position after moving a distance

(ρ), its sensors try to detect landmarks around it. At this point, the robot has two readings: Odometry

(the distance it has moved) and the sensor (distance to obstacles and the robot orientation) readings.

Based on sensor readings the robot updates it position. With every reading, the sensors detect robot

orientation (θ) and distances (KW , KQ , KX) to the obstacle in front of left, right and center sensors

respectively.

Let,

 pose of the robot be �9 � ��Q, �Q, �Q�
 co-ordinates of the obstacle 	Y6 � ��6 , �6�							F � Z�[�, %F\]�	, &�'��%

 sensor measurement 	^ � ��, KW , KQ, KX�

Based on sensor measurements, co-ordinates of the obstacle/s as calculated.

YW_`9 � a�Q � KW ∗ &bc
�Q � d� � �e	�Q � KW ∗ cF'
�Q � d� � �e f			
YQ6gh9 � a�Q � KQ ∗ &bc
�Q − d� � �e	�Q � KQ ∗ cF'
�Q − d� � �e f					
YX_i9_Q � a�Q � KX ∗ &bc
�Q� 								� �e	�Q � KX ∗ cF'
�Q� 									� �e f				jkk

l
kkm					
no. 3.3�

 �e is the noise or the error in measuring the distance to an obstacle.

13

We need to calculate the probability of pose for the next state given the current state and the

sensor readings, i.e.7
�9:;|�9, ^�, closer the particle is to the actual robot position greater the

weight.

7
�9:;|�9, ^� � ;
rMs
tu�v

�*

uwxu�v
v
yu�v 	 (Eq. 3.4)

FIG 3.3.1 Update Model

Update model can be explained using FIG 3.3.1

Robots initial position “m”

After moving a step it thinks it is in position “n”

But, the robot is actually at position “o”.

From position “n”, robot senses obstacles at distances .ρ1& ρ2 .

As a result we have (an estimate of) obstacle(s) co-ordinates

We pass the particle set through the motion model.

(i) We measure obstacle - particle distance for every particle corresponding to robot

obstacle distance (e.g. K1;, K1M, …	correspond to K1).

(ii) We calculate weight of every particle using Eq. 3.4.

(iii) Using weighted average we calculate updated co-ordinates.

Steps (i) – (iii) are repeated for the next obstacle.

14

3.4 Resample

With Particle filters, after a few iterations the weights of certain particles become so low,

that that they do not contribute in updating . As a result the particle set needs to be resampled.

This means that some particles with higher weights get duplicated. A variety of sampling

algorithms are available. In this case “Select with Replacement” is used. It is one of the simplest

and fastest algorithms. The algorithm selects a particle with probability equal to its weight. It does

so by calculating cumulative sum of weights of all the particles and sorting N random numbers

uniformly distributed with [0, 1]. The number of times a random number appears in the cumulative

sum represents the number of times the particles that are propagated to the next stage or how many

times a particle is represented in the final particle set. It works based on the fact that a particle with

small weight would have small cumulative sum interval and therefore would have a less chance of

being selected. Similarly for a particle with high weight the cumulative sum range would be high.

So, particles with high weights have a higher probability of being selected.

Pseudo code for resampling algorithm

χ

#W = Weights of Particles

#N = Number of Particles

C = cumulativeSum(W)

r = random(N+1)

R = sort(r)

R(N+1) = 1; I =1; j = 1;

while(i<=N)

 if(R[i]<C[j])

 I[i] = j

 i = i + 1

 else

 j = j + 1
return I

15

CHAPTER 4

SETUP

4.1 Hardware

Following components were used to setup the robot.

• iRobot Roomba [20, 49] is used as an autonomous vehicle to move around and map the

environment. FIG 4.1.1. Roomba is a robot manufactured by iRobot. It was initially

introduced as an automated robot to clean floors indoors. It comes preloaded with a set of

algorithms to move around in a predetermined path. Roomba has quite a few built in

sensory and actuation capabilities. Table 4.1.1 lists the number of sensory/input and

actuation/outputs of the iRobot Roomba.

Sensors/Input Actuation/Outputs

Wheel encoders(2) Buttons(3-4)
Drive wheels(L & R

3
)

Bump Sensors (2) Dirt-Detection(1-2)

IR Wall Sensor (1) IR Receiver(-255)
Cleaning Motors (3)

Cliff sensors(7) Electrical(5)

 Table 4.1.1 Sensory and Actuation capabilities of Roomba

With growing popularity of these robots iRobot released the serial API
4
 for Roomba called

Roomba Serial Command Interface or Roomba SCI [11]. Roomba SCI is a serial protocol

that allows users to control a Roomba through its external serial port. These protocols have

been integrated into quite a few software drivers written in C++ [46], Python [47], JAVA

[48] and MATLAB [19]. With time Roomba has found many applications more

significantly in robotics research and education community.

3 Left and Right

4 Application Programming Interface

16

iRobot-based software support along with compatible third party hardware interfaces have

helped Roomba modify, both programmatically and physically, to perform a variety of

tasks, ranging from controlling Roomba with a cellphone, using Roomba as a MIDI

synthesizer, using Bluetooth with Roomba for wireless control, etc. [50]

• 3, PING Ultrasonic Sensors(PiUS)[21] placed on the robot's edges to measure distances

left, right and center. FIG 4.1.2

• Hm55b compass module (HCM) [22] to measure angular displacement. FIG 4.1.3

• Arduino UNO Microcontroller [23] to program and measure the readings off the sensors.

FIG 4.1.4

• Standard USB printer cable is used to connect Arduino Uno microcontroller with a

computer.

• Serial cable to communicate with Roomba from MATLAB. FIG 4.1.5

• And, “KeyspanUSA-19HS” Serial to USB Converter. FIG 4.1.5

Final robot setup with all the sensors and complete connection is shown in FIG 4.1.6 and FIG 4.1.7

FIG 4.1.1 iRobot Roomba

FIG 4.1.2 Ping Ultrasonic

Sensor

17

FIG 4.1.3 HM55B Compass

Module

FIG 4.1.4 Arduino Uno

Microcontroller

FIG 4.1.5 Roomba Serial and

USB cables

FIG 4.1.6 Final Roomba Setup

FIG 4.1.7 Outline of Final Roomba Setup

18

4.2 Evaluating System Constants

A series of measurements were carried out to determine system constants. Mean and Standard

Deviation values were calculated over a sufficient sample size
5
 for external and internal sensors for

linear and angular displacement:

Robot was issued a command to move a fixed step size (5cm) and at the end of every command

sensors were queried for the linear displacement.

• Robot’s (internal) sensor for linear displacement: Robot was issued a command move a

fixed step of 5cm. and at the end of every command execution, the internal sensor was

queried (over a sample size of 40)

• External Sensor (PiUS) for linear displacement: There is no external sensor for measuring

linear displacement. So, at the end of every command distances were measured manually.

(over a sample size of 30)

Robot was issued a command to turn 90
o
 and at the end of every command sensors were queried for

the angular displacement.

• Robot’s (internal) sensor for angular displacement: Robot was issued a command move

90deg and at the end of every command its internal sensor was queried for the angular

displacement (over a sample size of 40).

• External Sensor (HCM) for angular displacement: Robot was issued a command move

90deg and at the end of every command HCM was queried through Arduino

Microcontroller for the angular displacement (over a sample size of 30).

Tables 4.2.1 and 4.2.2 show the values of “Mean” and “Standard Deviation” (S.Dev) for external

and internal sensors respectively. The mean is for a 5cm linear and 90
o
 angular displacement. The

robot always moves in steps of 5cm and turns 90
o
 (since the walls of the maze are at right angles).

5 Number of times the experiment was carried out or a measurement was made

19

Linear Disp (sample size 30) Ang. Rotation (sample size 30)

Mean S.Dev Mean S.Dev

External

Sensor
5.48181 0.24318 90.52517 3.72526

Table 4.2.1 System Constants for external sensors

Linear Disp (sample size 40) Ang. Rotation (sample size 40)

Mean S.Dev Mean S.Dev

Internal

Sensors
5.58333 0.07914 91.02514 0.1581

Table 4.2.2 System Constants for internal sensors

Based on values “Mean” and “Standard Deviation”, following observations can be made

• There is a bias in case of “Linear displacement” measurements. We see a mean of

approximately 5.5 and a bias of 10% for both external and internal sensor measurements.

• “Standard Deviation” values for “Linear displacement” in both cases is low. This is

considered a good sign since robot moves a consistent fixed distance in spite of the bias.

• “Mean” values for “Angular Rotation” are fairly consistent with the issued command to

rotate by 90 deg., in both cases.

• “Standard Deviation” value for “Angular Rotation” in case of external sensor is quite high

when compared to internal sensor.

4.3 Implementation

The work uses MATLAB, C and C# to communicate between the different components of the

robot. Main components (programming/implementation wise) of the Roomba robot are

• Arduino Microcontroller

• Serial Port reader:

20

• Roomba communicator:

• Core module

Implementation of each of the components is explained next

Arduino Microcontroller

This component is an interface between hardware and software. The Arduino Microcontroller

provides a programmatic door to control, modify and interpret the behavior for compatible

hardware (in our case “sensors”). The hardware in our case being Ultrasonic Range and Direction

Sensors, while the software is the code that interprets the raw signals received from these sensors.

The code is implemented mainly in C. Once the readings are interpreted, they are output on a COM

port to be read by a different component. The code that is uploaded into the microcontroller is

added in Appendix.

Serial Port reader

The Serial Port Reader (SPR) is an executable that reads values off the COM port that

Arduino Microcontroller writes. The SPR reports values of the direction and obstacles. Direction

being the angle robot makes to geographic North and obstacles being the distances “Ultrasonic

Range Sensors” placed on left, right and forward edges detect, to their nearest and respective

obstacles. These values are reported back to the main module. This code is implemented in C#.

The executable takes “COM Port name”, “Baud rate” and “iterations” as command line parameters

and returns an array - direction and 3 distance values to the calling component.

 The C# code Serial Port Reader is added in Appendix.

Roomba communicator

This module communicates with the Roomba. It is used to issue commands to move or turn.

It is also used to query the Roomba for linear and angular displacements. This module is developed

in MATLAB by Dr. Joel Esposito, United States Naval Academy [19].

21

e.g. The commands used from this API are

 RoombaInit(comPortR)

 travelDist(serPort,spd,dist)

 DistanceSensorRoomba(serPort)

 turnAngle(serPort,spd,angl)

 AngleSensorRoomba(serPort)

RoombaInit sets up the connection between MATLAB and Roomba through a COM Port

comPortR.

travelDist tells the robot to move a distance of dist meters at a speed of spd meters per

second.

DistanceSensorRoomba queries the robot for the distance travelled since last invocation of

this command.

turnAngle tells the robot to turn an angle of “angl deg”. at a speed of “spd meters per second”.

AngleSensorRoomba queries the robot for the change in angular orientation of Roomba since

last invocation of this command.

Core module

This is the module where SLAM is implemented. This module issues control statements and

communicates between the above mentioned components. All the decisions of Roomba either

moving in a straight direction or turning by an angle of 90 degrees are made here including the

issuing of commands to SPR, sensing obstacles, updating estimated position and if required,

resampling the particle set.

(01) get sensor readings

(02) while(robot explores the maze)

(03) if robot can move ahead

(04) move

(05) calculate obstacles based on sensor readings

22

(06) update Particle Set

(07) calculate particle weights

(08) update robot position

(09) else

(10) turn the robot by 90 degrees.

(11) get sensor readings

(12) if particle set below threshold

(13) resample

Pseudo Code for core module

readSerialPort(execFile, comPortA, baudRate, iter) is the function call that

implements line (1) and (11) in the pseudo code. execFile is the name of SPR.

travelDist(serPort, spd, dist) is the function call to implement line (04) in pseudo

code. This function makes the robot travel a certain distance (dist) at some speed (spd).

calcObst(sensorReading, offset, currPose) returns obstacles(for line [05] of

pseudo code) based on the current sensor readings and current pose (currPose) of the robot.

Offset is the distance from center of the robot to the sensors (placed on edges of the robot).

transM(partSet, rho, stdLinDisp, stdAngDisp, steps) for line (06) is for

passing the particle set through motion model to get PDF. This function returns updated particle set

as return value. Only the co-ordinates and orientation of the particles are updated in this function

and not the weights.

Calculation of weights and updating of robots position based on obstacles(obst) and current

pose(currPose) is done through [partSetupdPose] = calcWeights(currPose,

obst, partSet) for lines (07) & (08) in pseudo code. This function returns particle set with

updated weights and updated pose (updPose)

turnAngle(serPort, spd, tAngle) makes the robot turn by an angle(tAngle) at some

speed(spd). This is for line (10) of pseudo code.

23

If value/s of weights become so low that they do not contribute to updation process, the particle set

is resampled. partSet = resample(partSet) implements this function for line (13) of

pseudo code.

24

CHAPTER 5

RESULTS AND INTERPRETATION

The figures used to discuss the results of different models and simulations have been

generated using MATLAB.

5.1 Prediction Model

The motion model helps us understand the effect of linear and angular “Standard Deviation”

about the mean on samples in a particle set.

Mean and Standard Deviation of the external sensors for linear displacement are respectively,

ρz{|}{~�= 5.48181 ρ�{|}{~� = 0.24318.

Mean and Standard Deviation of the external sensors for angular displacement are respectively,

�z{|}{~�= 90.52517 ��{|}{~� = 3.72526.

These are the same values we see in Tables 4.2.1.

FIG 5.1.1 Motion model based on external sensor values

25

We see that with more linear movement, particles move further apart. This is the expected behavior.

Higher the value of ��{|}{~� higher the dispersion of particles.

Although the system values of “Mean” and “Standard Deviation” for the robot will never be used in

a motion model. The plot is more for validation.

Mean and Standard Deviation of internal sensors for linear displacement are respectively, ρz�~�~� =

5.5833 ρ��~�~� = 0.07914.

Mean and Standard Deviation of internal sensors for angular displacement are respectively, �z�~�~�
= 91.02514 ���~�~� = 0.1581.

FIG 5.1.2 Motion model based on robot’s sensor values

Since values for “Standard Deviation” are much smaller we do not see much of particle dispersion

in FIG 5.1.2.

So, the motion model works correctly.

26

5.2 Update Model

The update model comes into play whenever sensors detect an obstacle. Based on position of

an obstacle and weights of the samples/particles, we need to update current pose of the robot. This

is seen from the output of the MATLAB code, once it is started.

Following is a part of the output

FIG 5.2.1 Update of position

“EstdPos” is the estimated position by the robot based on robot sensors. “UpdtPos” is the updated

position based on external sensor readings and the weights of all particles.

“OrigPos” is the previous position of the robot.

5.3 Simulations

This section will, in detail explain and interpret the process of mapping.

“createGrid” function is used to generate a random grid. The initial position of the robot is set

to [2, 2] and it is assumed that robot makes an angle of 90 degrees with the X-axis. These

assumptions just help initiate the process. Once the simulation starts robot iterates and alternates

between sensing and moving/turning. At the end of each iteration, robot updates its position.

Simulation plots the estimated robot path (the path robot thinks is right) and updated path (a more

accurate path based on the SLAM process).

OrigPos [2.00 2.00]

EstdPos [3.03 2.15]

UpdtPos [2.90 1.99]

27

The values used for the simulation were K��~�~� � 0.4 and ���~�~� � 0.5.

FIG 5.3.1 Random Grid
(generated)

FIG 5.3.2 Step 1

FIG 5.3.3 Step 3

FIG 5.3.4 Step 5

FIG 5.3.5 Step 8

FIG 5.3.6 Step 11

28

With the path traversed in FIG 5.3.9 and the actual grid in FIG 5.3.1, the simulation (within its

limits) works correctly. In “Steps 1-5” (FIG 5.3.2-4) the robot behaves correctly. We see that in

Step 8 & 11 (FIG 5.3.5 & FIG 5.3.6 respectively) a bad reading from robot sensor can make the

robot behave erratically. But, because of low variance values the paths always converge. The

system in this sense is resilient to one time inaccurate reading. In subsequent steps 13-20 (FIG

5.3.7-9) the robot moves around the maze and maps it successfully.

As a sanity check, simulation used values for a perfect system by setting variance to 0. Estimated

and Updated paths were exactly the same.

Now, we know that the simulator behaves as expected we input the system constants from Tables

4.2.1 and 4.2.2 Here are the results.

FIG 5.3.7 Step 13

FIG 5.3.8 Step 16

FIG 5.3.9 Step 20

29

FIG 5.3.10 was a random 2x2 grid. Subsequent figures are snapshots of robot during maze traversal

at different stages. The robot begins by positioning itself at [2, 2] and placing the obstacles correctly

at [1, 2] and [2, 3] as seen in FIG 5.3.11 and FIG 5.3.12. It’s from this point onwards that the robot

FIG 5.3.10 Random Grid

(generated)

FIG 5.3.11 Step 1

FIG 5.3.12 Step 2 FIG 5.3.13 Step 4

FIG 5.3.14 Step 8 FIG 5.3.15 Step 20

30

goes hay wire. In step 4 FIG 5.3.13 and onwards we see that the robot’s “estimated path” (blue

line) always tries to catch up to the “updated path” (green line). This is seen in FIG 5.3.14 and

FIG5.3.15. Eventually both positions are similar (co-ordinate wise).

If we look up at the paths and the grid we can make out that the robot has mapped the grid, but, just

barely.

If we try to interpret this erratic behavior, we could argue that it is because of the high ratio between

Standard deviations of external sensors and that of robot’s own sensors. This ratio is as high as 25.

This means that one of the sensors is highly inaccurate.

If we try to analyze the constants for the robot i.e. ρ��~�~� = 5.5833, ρ��~�~�=0.07914, �z�~�~�=

91.02514, ���~�~�= 0.1581, we see that measurements did not vary much about their respective

“means”. If this were considered to be true, one can conclude that every time in executing either

command of linear displacement or angular rotation, the robot’s motor functioned exactly the same

each time and there were no unforeseen circumstances like wheel slippage, motor not behaving

correctly, etc. Or even if there was wheel slippage, it happened almost every time and had almost

the same effect on almost all measurements. This is highly unlikely. So, either internal robot sensors

are not being able to measure correctly or external sensors are inaccurate.

The other case where external sensors are inaccurate would mean that the manual measurements

done earlier are faulty. This case is highly unlikely since measurements made by hand were

repeated many times to make sure they were correct. This leaves us with one conclusion that the

robot’s internal sensors inaccurately report the readings that cause the robot to behave erratically.

One of the assumptions was that the robot’s angular displacement would be “almost” in place. But

experiments have revealed that there is quite a bit of linear displacement even when the robot is

commanded to “just” turn. FIG 5.3.16 is an overlap of initial and final positions, after robot was

commanded to turn.

31

FIG.5.3.16 Linear Displacement along with Angular

Since this linear displacement is random in both direction and magnitude no model can be built

around it. As a result this behavior cannot be assimilated in an implementation.

The simulation actually assumed that rotation was in place. But just the internal sensors were

inaccurate enough to make the robot behave erratically. Even if we were to introduce the linear shift

somehow, “iRobot Roomba’s” problems would be compounded. With this being the ground reality,

any simulation and/or a robot in an actual environment would definitely do much worse. This could

however work if, there were minimal robot rotation.

32

5.4 Blender Simulations

Blender is an open source 3d animation and game development suite. The simulation creates

of a random NxN maze.

 FIG 5.4.1 shows Blender interface while FIG 5.4.2 shows the Blender interface once (random)

maze is created. The randomly generated maze is similar to the maze in physical setup.

 Red cubes are walls of the maze.

 White square is floor of the maze.

 Green sphere is the robot.

 Blue square means that robot has visited that grid.

FIG 5.4.3 shows the setup required, in terms of adding sensors, data structures and making

necessary connections for proper working of the “virtual” robot.

FIG 5.4.4 shows connections, sensors and parenting the virtual robot with the actual robot(sphere).

FIG 5.4.1 Blender initial state FIG 5.4.2 Maze initial state

FIG 5.4.3 Setup

FIG 5.4.4 Connections for robot

33

FIG 5.4.5 shows the robots position and state after its 1
st
 step. We see that the white grid has turned

blue, meaning that the grid is visited. Similarly in FIG 5.4.6 we see that the robot has returned to its

original position and the entire grid is blue, meaning that the grid is mapped.

FIG 5.4.5 Robot’s 1st move

FIG 5.4.6 Maze used with robot

34

5.5 Roomba results

The robot was placed in an actual maze to see the performance of Roomba. The sample maze

is shown in FIG 5.5.1. Maze traversal path (black dots) and obstacle detection (red dots) by

Roomba are shown in FIG 5.5.2-6. FIG 5.5.2 is the Step 1 for maze traversal where we see robot

detecting 3 obstacles. FIG 5.5.3 is Step 13 where Roomba has moved in an almost straight path and

is about to turn left. FIG 5.3.4 is Step 14 where Roomba has turned left and the newly detected

obstacles are in “green”. We see that these obstacles align with the obstacles detected in previous

step. This confirms that turning of robot works correctly. The robot continues to explore the maze

FIG.5.5.5 and FIG 5.5.6 where Roomba makes a left turn. Again, obstacles (green dots) align with

previously detected obstacles. FIG 5.5.8 is the final mapped (and rotated) result. We see that the

mapped maze FIG 5.5.8 is almost comparable to the maze in FIG 5.5.7 or FIG 5.5.1.

FIG 5.5.1 Maze used with robot

FIG 5.5.2 Step 1

FIG 5.5.3 Step 13

FIG 5.5.4 Step 14

FIG 5.5.5 Step 31

FIG 5.5.6 Step 37

35

FIG 5.5.7 Maze

FIG 5.5.8 Final Mapped Maze

FIG 5.5.9 Merged Mapped Mazes

36

To see the mapping more clearly, actual maze FIG 5.5.7, and mapped maze FIG 5.5.8 have been

merged, scaled and rotated in FIG 5.5.9.

We see that mapping is almost accurate. The stray “Red Dots” are mainly because of limitations of

the robot itself, like “non in-place” angular displacement and less accurate robot’s internal sensors.

Apart from these, the other contributing factor was the cables hanging from the sides. When robot

turned left (the second time), left sensor detected some of cables lying around. This sensing resulted

in plotting them as obstacles.

37

5.6 Comparison of Roomba and simulator

For a more accurate comparison, the Particle Filter simulator was run on a maze similar (in

dimensions w.r.t to number of rows and columns) to the maze used with “iRobot Roomba” (the

experimental setup – Section 5.5.5). In simulation, the robot was placed in a position similar to the

one in the actual maze. The maze used with Roomba and the simulated maze are shown in FIG

5.6.1 & 5.6.2 respectively. FIG 5.6.3 demonstrates that FIG 5.6.1 and 5.6.2 are similar in dimension

and setup

FIG 5.6.1 Maze used with Roomba

FIG 5.6.2 Maze used simulator

FIG 5.6.3 Overlapped mazes

(actual and simulated)

38

The main aim of this comparison is to check if the simulator and the robot behave similarly given

(approximately) the same environment (i.e. the maze and system constants) and the same initial

condition (approximately identical point of origin to map the maze). FIG 5.6.4 is the same

mapped maze as in FIG 5.5.8. FIG 5.6.5 is the maze (in FIG 5.6.2) mapped by the

simulator.

The two mapped mazes (FIG 5.6.4 and FIG 5.6.5) are overlapped in FIG 5.6.6 to verify the

similarity in mapping.

FIG 5.6.4 Actual Maze mapped by

iRobot Roomba

FIG 5.6.5 Simulated maze mapped

by the simulator

FIG 5.6.6 Overlapped mapped
mazes by simulator and iRobot

Roomba

39

We see that walls of the maze (red and orange dots) and path taken by the robot (back and yellow

dots) approximately coincide. There are a few differences in the maps.

To quantify the differences, the obstacles mapped using the robot and the simulator were compared,

i.e. sufficient number of samples (44) were collected for the distance between an obstacle mapped

by the simulator and the robot. The mean and standard deviation for the collected samples is,

��6�9�iX_ � 5.208	&� 3�6�9�iX_ � 1.029	&�

This means that the results of the simulation and the robot are identical within 5.208 cm accuracy.

This difference in mapping of obstacles and path taken by the robot in either of the cases could be a

result of differences in the dimensions of the maze and/or initial positioning of the robot in the

simulator and actual maze and/or the fact that the actual distance to the wall at which the robot

(Roomba) makes a turn cannot be formulated to units for the simulator (with a certain accuracy).

Even with these constraints simulator did map the maze with reasonable accuracy. This means that

both, simulator and the robot behave in a similar fashion.

40

CHAPTER 6

CONCLUSION

As far as mapping of the maze is concerned, with the given constraints, Roomba did it with

reasonable accuracy. If not for the constraints of robot’s internal sensors and “non in-place”
6

angular displacement Roomba would have mapped the maze with better accuracy.

In case of the robot simulation, mapping did complete but the results were just passable

(notwithstanding the “linear shift” issue). This is attributed to the inaccurate internal sensors. With

better sensors robot would not have problems in mapping the environment. This can be seen in the

results of first simulation.

In case of Blender simulation, the main aim was to show that it is simple enough to

implement the SLAM concepts even in the suite that was meant for 3D simulations or Game

development. Blender is really helpful since it provides real life constructs of gravity, friction,

viscosity in case of fluids, mass, torque, linear/angular velocity/ displacement, etc. With these

constructs it can simulate realistic conditions for robotic behavior. It is helpful in cases where the

environment is not known or the robot needs to be tested in extreme conditions. In cases where

robot design needs to be tested this suite can prove helpful. Most importantly it is helpful in cases

where a robot is not present at all, but we need to test the theory and mathematical models.

SLAM in conjunction with “Particle filter”, can map an unknown environment with accuracy,

provided we use high number of particles. High numbers of particles help in cases where

obstacles/landmarks are rare. Particle filters are inherently suited for mapping unknown

environments. Although observed, but not quantifiable, random movement as opposed to prioritized

movement map the environment much quicker. This may be because the random movement tends

to sense/observe the unseen obstacles more often than in the case of predetermined prioritized

movement.

6 The angular displacement commands resulted in erratic linear displacement

41

REFERENCES

[1] D. Hahnel, D. Fox, W. Burgard, and S. Thrun, “An efficient FastSLAM ¨algorithm for

generating maps of large-scale cyclic environments from raw laser range measurements,” in

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), vol. 1, Las

Vegas Nevada USA, 27-31 October 2003, pp. 206 – 211.

[2] http://www.blender.org/

[3] SLAM for Dummies: A Tutorial Approach to Simultaneous Localization and Mapping

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-

2005/projects/1aslam_blas_repo.pdf

[4] Borenstein, J., Everett, B., and Feng, L., 1996, "Navigating Mobile Robots: Systems and

Techniques." A. K. Peters, Ltd., Wellesley, MA, ISBN 1-56881-058-X, Publication Date: February

199

[5] Borenstein, J., Everett, H.R. ,Feng, L., and Wehe, D., 1996, "Mobile Robot Positioning: Sensors

and Techniques." Invited paper for the Journal of Robotic Systems, Special Issue on Mobile Robots.

Vol. 14, No. 4, April 1997, pp. 231-249.

[6] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial Intelligence in the New

Millenium, G. Lakemeyer and B. Nebel, Eds. Morgan Kaufmann, 2002, to appear.

[7] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and mapping (slam): Part i the

essential algorithms,” Robotics and Automation Magazine, June 2006.

[8] "Random walks, universal traversal sequences, and the complexity of maze problems," focs,

pp.218-223, 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), 1979.

[9] G. Welch and G. Bishop. An introduction to the Kalman filter. Technical Report TR 95-041,

University of North Carolina, Department of Computer Science, 1995

42

[10] A Particle filter Tutorial for Mobile Robot Localization by Ioannis Rekleitis

http://www.cim.mcgill.ca/~yiannis/particletutorial.pdf

[11] Roomba Serial Command Interface (SCI) Specification, iRobot, 2006. [Online]. Available:

http://www.irobot.com/images/consumer/hacker/Roomba_SCI_Spec_Manual.pdf

[12] Michael Montemerlo, FastSLAM: A Factored Solution to the Simultaneous Localization and

Mapping Problem

[13] L. Goncavles, E. di Bernardo, D. Benson, M. Svedman, J. Ostrovski, N. Karlsson, and P.

Pirjanian, “A visual front-end for simultaneous localization and mapping,” in Proc. of ICRA, apr

2005, pp. 44–49

[14] N. Ouerhani, A. Bur, and H. H¨ ugli, Visual attention-based robot self-localization, in Proc. of

ECMR, 2005, pp. 8–13

[15] Arulampalam, Maskell, Gordon, Clapp: A Tutorial on Particle Filters for on-line Nonlinear /

Non-Gaussian Bayesian Tracking, IEEE Transactions on Signal Processing, Vol. 50, 2002

[16] T. Bailey. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments. PhD

thesis, Univ. of Sydney, 2002.

[17] A. N¨ uchter, K. Lingemann, J. Hertzberg, H. Surmann, 6D SLAM for 3D mapping outdoor

environments, Journal of Field Robotics 24 (8–9)(2007)

[18] iRobotCreate: Open Interface Specifications,

http://www.irobot.com/filelibrary/pdfs/hrd/create/Create%20Open%20Interface_v2.pdf

[19] Joel M. Esposito and Owen Barton, "MatlabCreate:Matlab Toolbox for the iRobot Create",

2008, www.usna.edu/Users/weapsys/esposito/roomba.matlab/

[20] iRobot Create Owner's Manual

http://www.irobot.com/filelibrary/create/Create%20Manual_Final.pdf

43

[21] PING)))™ Ultrasonic Distance Sensor (#28015),

http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf

[22] Hitachi HM55B Compass Module (#29123),

http://www.crustcrawler.com/products/Nomad/docs/HM55BModDocs.pdf

[23] ArduinoBoardUno, http://arduino.cc/en/Main/ArduinoBoardUnoand

http://arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf

[24] Crowley J. L., Position Estimation for a Mobile Robot Using Vision and Odometry. Proc. 1992

IEEE Intl. Conf. on Robotics and Automation, 2588-2593, Nice, May 1992

[25] Dissanayake G., Newman P., Clark S., Durrant-Whyte H. F. and Csorba M., A Solution to the

Simultaneous Localisation and Map Building (SLAM) problem. IEEE Trans. on Robotics and

Automation, 17(3):229-241, June 2001

[26] Gordon N. J., Salmond D. J. andSmith A. F. M., Novel Approach to Nonlinear/Non Gaussian

Bayesian State Estimation. IEE Proceedings F,Radar and Signal Processing, 140(2):107-113, April

1993.

[27] Dieter Koller, Joseph Weber, Jitendra Malik. Robust Multiple Car Tracking with Occlusion

Reasoning. In Proceedings of ECCV (1)'1994. pp.189~196

[28] Michael Isard, Andrew Blake. Contour Tracking by Stochastic Propagation of Conditional

Density. In Proceedings of ECCV (1)'1996. pp.343~356

[29] Michael Isard, Andrew Blake. CONDENSATION - Conditional Density Propagation for

Visual Tracking. International Journal of Computer Vision, 1998: 5~28

[30] Dorin Comaniciu, Visvanathan Ramesh, Peter Meer. Real-Time Tracking of Non-Rigid

Objects Using Mean Shift. In Proceedings of CVPR'2000. pp.2142~2142

[31] Changjiang Yang, Ramani Duraiswami, Larry S. Davis. Fast Multiple Object Tracking via a

Hierarchical Particle Filter. In Proceedings of ICCV'2005. pp.212~219

44

[32]Kenji Okuma, Ali Taleghani, Nando de Freitas, James J. Little, David G. Lowe. A Boosted

Particle Filter: Multitarget Detection and Tracking. In Proceedings of ECCV (1)'2004. pp.28~39

[33] S. Thrun, Robotic mapping: A survey, CMU-CS-02-111, February 2002, School of Computer

Science, Carnegie Mellon University, Pittsburgh, PA 15213

[34] C. Fruh, A. Zakhor, 3D model generation for cities using aerial photographs and ground level

laser scans, in: Proceedings of the Computer Vision and Pattern Recognition Conference, CVPR

’01, Kauai, Hawaii, USA, December 2001

[35] H. Zhao, R. Shibasaki, Reconstructing textured CAD model of urban environment using

vehicle–borne laser range scanners and line cameras, in: Second International Workshop on

Computer Vision System, ICVS ’01, Vancouver, Canada, 2001, pp. 284–295.

[36] S. Thrun, D. Fox, W. Burgard, A real-time algorithm for mobile robot mapping with

application to multi robot and 3D mapping, in: Proceedings of the IEEE International Conference

on Robotics and Automation, ICRA 00, San Francisco, CA, USA, April 2000

[37] S. Thrun, M.Montemerlo, A. Aron, Probabilistic terrain analysis for high-speed desert driving,

in: Proceedings of Robotics: Science and Systems,Cambridge, USA, June 2006

[38] V. Sequeira, K. Ng, E. Wolfart, J. Goncalves, D. Hogg, Automated 3D reconstruction of

interiors with multiple scan-views, in: Proceedings of SPIE, Electronic Imaging ’99, The Society

for Imaging Science and Technology/SPIE’s 11th Annual Symposium, San Jose, CA, USA,

January 1999

[39]A. Georgiev, P.K. Allen, Localization methods for a mobile robot in urban environments, IEEE

Transaction on Robotics and Automation (TRO) 20 (5) (2004) 851–864.

[40] P. Allen, I. Stamos, A. Gueorguiev, E. Gold, P. Blaer, AVENUE: Automated site modelling in

urban environments, in: Proceedings of the Third International Conference on 3D Digital Imaging

and Modeling, 3DIM ’01, Quebec City, Canada, May 2001.

45

[41] Y. Chen, G. Medioni, Object modelling by registration of multiple range images, Image and

Vision Computing 10 (3) (1992) 145–155

[42]N. Gordon, D. Salmond, and A. F. M. Smith, “Novel approach to non-linear and non-Gaussian

Bayesian state estimation,” Proc. Inst. Elect.Eng., F, vol. 140, pp. 107–113, 1993.

[43] M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” J. Amer. Statist.

Assoc., vol. 94, no. 446, pp. 590–599, 1999.

[44] C. Musso, N. Oudjane, and F. LeGland, “Improving regularised particle filters,” in Sequential

Monte Carlo Methods in Practice, A. Doucet, J. F. G. de Freitas, and N. J. Gordon, Eds. New York:

Springer-Verlag, 2001.

[45] Gordon, Salmond & Smith, Novel approach to nonlinear non-Gaussian Bayesian state

estimation, IEE, 1993

[46] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project: Tools for multi-robot

and distributed sensor systems,” in In Proceedings of the 11th International Conference on

Advanced Robotics (ICAR), 2003, pp. 317–323

[47] Z. Dodds and B. Tribelhorn, “Erdos: Cost effective peripheral robotics for AI education,” in

Proceedings, AAAI, 2006, pp. 1966–1967.

[48] T. Kurt, Hacking Roomba: ExtremeTech. Wiley, 2006.

[49] Ben Tribelhorn, Zachary Dodds. Evaluating the Roomba: A low-cost, ubiquitous platform for

robotics research and education. In Proceedings of ICRA'2007. pp.1393~1399

[50] http://hackingroomba.com/projects/

[51] N. M. Kwok and G. Dissanayake, “Bearing-only. SLAM in indoor environments using a

modified particle filter

[52] http://www.analog.com/library/analogDialogue/Anniversary/7.html

46

APPENDIX

Arduino Uno Microcontroller

This is the implementation code for Arduino Uno Microcontroller component to write the

sensed data to a COM Port

#include <math.h> // (no semicolon)

//// VARS

byte CLK_pin = 8;

byte EN_pin = 9;

byte DIO_pin = 10;

intX_Data = 0;

intY_Data = 0;

int angle;

constint pingPin1 = 2;

constint pingPin2 = 4;

constint pingPin3 = 7;

//// FUNCTIONS

void ShiftOut(int Value, intBitsCount) {

 for(int i = BitsCount; i >= 0; i--) {

digitalWrite(CLK_pin, LOW);

 if ((Value & 1 << i) == (1 << i)) {

digitalWrite(DIO_pin, HIGH);

 //Serial.print("1");

 }

 else {

digitalWrite(DIO_pin, LOW);

 //Serial.print("0");

 }

digitalWrite(CLK_pin, HIGH);

delayMicroseconds(1);

 }

//Serial.print(" ");

}

intShiftIn(intBitsCount) {

intShiftIn_result;

ShiftIn_result = 0;

pinMode(DIO_pin, INPUT);

 for(int i = BitsCount; i >= 0; i--) {

digitalWrite(CLK_pin, HIGH);

delayMicroseconds(1);

 if (digitalRead(DIO_pin) == HIGH) {

ShiftIn_result = (ShiftIn_result<< 1) + 1;

 //Serial.print("x");

 }

 else {

ShiftIn_result = (ShiftIn_result<< 1) + 0;

 //Serial.print("_");

 }

digitalWrite(CLK_pin, LOW);

47

delayMicroseconds(1);

 }

 if ((ShiftIn_result& 1 << 11) == 1 << 11) {

ShiftIn_result = (B11111000 << 8) | ShiftIn_result;

 }

 return ShiftIn_result;

}

void HM55B_Reset() {

pinMode(DIO_pin, OUTPUT);

digitalWrite(EN_pin, LOW);

ShiftOut(B0000, 3);

digitalWrite(EN_pin, HIGH);

}

void HM55B_StartMeasurementCommand() {

pinMode(DIO_pin, OUTPUT);

digitalWrite(EN_pin, LOW);

ShiftOut(B1000, 3);

digitalWrite(EN_pin, HIGH);

}

int HM55B_ReadCommand() {

int result = 0;

pinMode(DIO_pin, OUTPUT);

digitalWrite(EN_pin, LOW);

ShiftOut(B1100, 3);

 result = ShiftIn(3);

 return result;

}

long microsecondsToCentimeters(long microseconds){

 // The speed of sound is 340 m/s or 29 microseconds per centimeter.

 // The ping travels out and back, so to find the distance of the

 // object we take half of the distance travelled.

 return microseconds / 29 / 2;

}

long calcDuration(intpingPin){

 // The PING))) is triggered by a HIGH pulse of 2 or more microseconds.

 // Give a short LOW pulse beforehand to ensure a clean HIGH pulse:

pinMode(pingPin, OUTPUT);

digitalWrite(pingPin, LOW);

delayMicroseconds(2);

digitalWrite(pingPin, HIGH);

delayMicroseconds(5);

digitalWrite(pingPin, LOW);

 // The same pin is used to read the signal from the PING))): a HIGH

 // pulse whose duration is the time (in microseconds) from the sending

 // of the ping to the reception of its echo off of an object.

pinMode(pingPin, INPUT);

 return pulseIn(pingPin, HIGH);

}

48

void setup() {

Serial.begin(115200);

pinMode(EN_pin, OUTPUT);

pinMode(CLK_pin, OUTPUT);

pinMode(DIO_pin, INPUT);

 HM55B_Reset();

}

void loop(){

 long duration1, duration2, duration3, cm1, cm2, cm3;

 HM55B_StartMeasurementCommand(); // necessary!!

 delay(40); // the data is 40ms later ready

 HM55B_ReadCommand();

 //Serial.print(); // read data and print Status

 //Serial.print(" ");

 X_Data = ShiftIn(11); // Field strength in X

 Y_Data = ShiftIn(11); // and Y direction

 digitalWrite(EN_pin, HIGH); // ok deselect chip

 duration1 = calcDuration(pingPin1);

 duration2 = calcDuration(pingPin2);

 duration3 = calcDuration(pingPin3);

 // convert the time into a distance

 //inches = microsecondsToInches(duration);

 cm1 = microsecondsToCentimeters(duration1);

 cm2 = microsecondsToCentimeters(duration2);

 cm3 = microsecondsToCentimeters(duration3);

 angle = 180 * (atan2(-1 * Y_Data , X_Data) / M_PI); // angle is atan(-y/x) !!!

Serial.print(angle); // print angle

Serial.print(" ");

Serial.print(cm2);

Serial.print(" ");

Serial.print(cm1);

Serial.print(" ");

Serial.print(cm3);

Serial.println();

}

49

Serial Port Reader
This component reads the data from the COM port and reports it to the MATLAB component

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.IO.Ports;

namespace Serial

{

 class Program

 {

 public static void Main(string[] args)

 {

 //System.Console.WriteLine("Entered");

 Int32 baudRate, iterations;

 string comPort = args[0];

 double angle, lDist, rDist, cDist;

int v0, v1, v2, v3;

int i = 1, numer=0, denom =0, sv1=0, sv2=0, sv3=0;

 Dictionary<int, int>dictAng;

 //System.Console.WriteLine("Initialized");

 while (true) {

 try{

baudRate = Convert.ToInt32(args[1]);

 break;

 }

 catch (FormatException) {

 continue;

 }

 }

 while (true){

 try{

 iterations = Convert.ToInt32(args[2]);

 break;

 }

 catch (FormatException){

 continue;

 }

 }

dictAng = new Dictionary<int, int>();

 using (SerialPort port = new SerialPort(comPort, baudRate)) {

port.Open();

string[] strArray = new string[4];

 while (i < iterations){

 try{

strArray = port.ReadLine().Split(new char[] { ' ' });

 }

 catch (TimeoutException) {

continue;

 }

50

 try{

 v0 = Convert.ToInt32(strArray[0]);

 v1 = Convert.ToInt32(strArray[1]);

 v2 = Convert.ToInt32(strArray[2]);

 v3 = Convert.ToInt32(strArray[3]);

 }

 catch (FormatException){

continue;

 }

 catch (IndexOutOfRangeException) {

continue;

 }

if(dictAng.ContainsKey(v0))

dictAng[v0]++;

 else

dictAng[v0]=1;

 sv1 += v1;

 sv2 += v2;

 sv3 += v3;

 ++i;

 }

 }

foreach(KeyValuePair<int, int>kv in dictAng){

numer += kv.Value * kv.Key;

denom += kv.Value;

 }

 angle = numer / denom;

 if(angle<0.0)

 angle = 180.0 + (180.0 - Math.Abs(numer/denom));

lDist = sv1 / iterations;

rDist = sv2 / iterations;

cDist = sv3 / iterations;

System.Console.Write("{0} {1} {2} {3}", angle, lDist, rDist, cDist);

 }

 }

}

