

i

MOTION PLANNING AND CONSTRAINT EXPLORATION FOR ROBOTIC

SURGERY

By

Sam Bhattacharyya

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

In

Mechanical Engineering

December 2011

Nashville, Tennessee

Approved:

Professor Nabil Simaan

Professor Nilanjan Sarkar

ii

ACKNOWLEDGEMENTS

 This work would not have been possible without the financial support of the NSF,

and the Vanderbilt Department of Mechanical Engineering. I would also like to thank my

lab-mates, classmates, the department staff, my professors, my thesis committee, 5 hour

energy™ and of course my advisor Professor Nabil Simaan. G(tb)
2
.

iii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ... ii

NOMENCLATURE ..v

 LIST OF FIGURES .. vi

LIST OF TABLES ... viii

 Chapter

I. INTRODUCTION ..8

A. Motivation ..8

B. Scope and Problem Statement ..9

C. Related Laboratory Work ...12

D. Contributions and Outline ..12

II. LITERATURE REVIEW ..14

A. Constraint Identification ...14

B. Exploration of Unknown environments ...17

C. Path Planning in Flexible Environments ..19

III. MATHEMATICAL BACKGROUND ..21

A. Mechanics/Analytical Methods ..21

i. Screw Theory ...21

ii. Mechanical Constraints ..23

iii. Spatial Stiffness in the context of Screw theory27

B. Numerical Methods ..30

i. Numerical Optimization ...30

ii. Clustering ...33

iv

iii. Stochastic Methods ..35

IV. PATH PLANNING FOR SAFE MANIPULATION ...41

A. Function Definition ..42

B. Algorithm Augmentation ...47

C. Safe Manipulation Algorithm ...51

D. Simulation ..52

E. Results ..57

V. CONSTRAINT DETECTION, CLASSIFICATION AND MAPPING60

A. Spatial Stiffness ..61

B. Stiffness Regions ..62

C. Elementary Constraints ..64

D. Constraint Identification and Classification ...67

E. Constraint Exploration Algorithm ..68

F. Experimental Evaluation ..69

G. Discussion ..76

VI. CONCLUSION ..79

BIBLIOGRAPHY ...81

APPENDIX A (Code) ..86

APPENDIX B (Code) ..122

v

NOMENCLATURE

Table 1: A list of symbols and nomenclature used in this publication

Symbol Description

 7 Dimensional gripper position/orientation in space

 3-dimensional Cartesian position

 ̂ 4-dimensional quaternion orientation

 6 – dimensional twist vector in Cartesian space

 Elastic reaction Wrench, exerted on the environment by the gripper

 Local Stiffness Matrix

E Elastic energy exerted on the elastic system by the gripper

 Designation for Mechanical Constraint

 Constraint Vector

 Path Planner Optimization function

 Diagonal Dimensional weighting matrix

 Designation for Stiffness Region

 Axis coordinate conversion matrix

 Screw pitch

 Eigenvalue

 Principle Rotational Stiffness

 Principle Translational Stiffness

 Dimensional weighting factor

vi

LIST OF FIGURES

 Page

1. Semi rigid object suspended in a flexible environment 10

2. Unknown Environment 10

3. Theoretical Reconstruction of the unknown environment 11

4. General Rigid Body Motion 23

5. Planar Constraint 24

6. Pin Joint Constraint 25

7. Peg-in-hole Constraint 26

8. Ball Joint Constraint 26

9. Spatial Stiffness Model 27

10. Steepest Descent Algorithm 31

11. Non-Linear Optimization Algorithm 32

12. Illustration of Clustering 33

13. State Machine 36

14. Markov Chain 36

15. Backtrack Algorithm 49

16. Safe Manipulation Algorithm 51

17. Rigid Triangle 57

18. Safe Manipulation Setup 58

19. Autonomous Navigation: Wrench Profile 58

20. Autonomous Navigation: Pose Profile 59

21. Stiffness Region Example 62

22. Frame Invariant Constraint: Normal Vectors on a curved surface 65

23. Real Membrane Constraint 65

24. Constraint Exploration Algorithm 69

25. Constraint Identification Experimental Mock-Ups 70

26. Constraint Identification using clustering 72

27. Foam Membrane Experimental Setup 73

28. Constraint Detection using clustering, Foam Sheet 74

vii

29. Constraint Map, with Stiffness regions, of a Foam sheet 75

30. Foam Sheet Mock-Up 76

31. Planar Robot Simulation 52

32. Planar Robot Simulation, Feasibly Goal 53

33. Error Profile, Feasible Goal 54

34. Wrench Profile, Feasible Goal 54

35. Planar Robot Simulation, Infeasible goal 55

36. Error Profile, Infeasible goal 56

37. Wrench Profile, Infeasible goal 56

38. Planar Simulation of Object manipulation 41

39. Biomechanical Tissue Properties 77

viii

LIST OF TABLES

 Page

1. Nomenclature 5

2. Translational Constraint Vectors from Local Stiffness 73

1

CHAPTER I

I INTRODUCTION

I.A Motivation

Commercial surgical assistance systems, such as the Intuitive Surgical ™Da-

Vinci robotic system [1], continue to gain adoption in hospitals around the country, due

to their ability to augment surgeons’ skills (e.g. dexterity and accuracy). Though

significant progress has been made by existing commercial systems, they are almost

exclusively teleoperated (i.e. they are passive manipulators); thus, they ultimately place

the entire burden of safeguarding the anatomy on the surgeon. As the next generation of

robotic surgical assistants (RSA) are developed, the functionality and complexity of

emerging systems such as [2], [3], [4] calls for the development of intelligent surgical

robotic slaves that continuously gather information about their environment and actively

participate in aiding the surgeon in completion of surgical subtasks. This vision of

intelligent, semi-autonomous RSAs, which can coordinate with surgeons in performing

menial tasks, will allow surgeons to focus on more crucial aspects of the operation, while

seamlessly manipulating high DoF robots, and safeguarding the anatomy against trauma.

An example of an application scenario is the manipulation of a kidney, by several

robotic arms, during a nephrectomy procedure. An intelligent slave, which can determine

the mechanical properties of the suspended organ in its current configuration, can then

coordinate the motion of all arms to safely manipulate the suspended organ, while

2

allowing the surgeon to command movement of one arm or specify target retraction

distance from the surgical site. Another application would the manipulation of organs

within the abdominal cavity, in order to gain access to underlying tissues. A cooperative

intelligent RSA would be able to determine the mechanical properties of the obstructive

organ, and automatically move it in order to increase visibility of/open up access to the

critical underlying tissue.

 This aim of this work is three fold: To propose a framework for modeling and

characterizing the mechanical properties of an unknown elastic system, to propose

algorithms for safe autonomous manipulation of tissues in an unknown environment and

finally to propose a methodology for detecting and identifying mechanical constraints of

an arbitrary unknown elastic system. Used in tandem, these tools can enable an intelligent

RSA to autonomously perform surgical subtasks without a priori knowledge of the

workspace, while simultaneously mapping the elastic properties of the environment.

I.B Problem Statement and Scope

 For the purposes of this work, we consider a standard 6 degree of freedom (DoF)

manipulator, with an attached robotic gripper, operating in an unknown and flexible

environment. The robot operates in a full 6-dimensional Cartesian workspace, and is

grabbing some semi-rigid object, which is suspended within an elastic environment, as

shown in the figure below. Our definition of semi-rigid is such that, though the object

internal deformation of the object is noticeable smaller than its elastic connections to the

environment. Actual magnitudes will vary with the application, and the environment.

3

Figure 1: Semi-rigid object suspended in a flexible environment

The environment is unknown, but it assumed to be stable, meaning that while

surfaces may be deformable, any deformations will return back to equilibrium in the

absence of disturbances.

Figure 2: Unknown Environment

We represent the gripper’s pose in space as ̂ , a 7 dimensional vector

including its 3-dimensional Cartesian position , and it’s 4-dimensional

orientation in quaternion space ̂ []

. The robot is assumed to be perfectly

kinematically controllable, such that it can move in full 6-dimensional Cartesian space

along any given twist from any pose to any other pose . Furthermore,

4

the robot is equipped with 6-axis force sensing capability, and can measure the elastic

wrench acting on the robot by the environment. In this work, we are not considering

any forces due to gravity, dynamics or friction, as the former two can easily be

compensated for in practice, while the latter is kept out of the scope of this work, since

models of internal organ friction are not available yet. .

 The problem to be solved, therefore, can be stated as such: Given the initial

object pose , manipulate the object to a new pose , while avoiding exceeding a

critical force at any point, on the unknown elastic system, and while minimizing the

elastic energy exerted on the elastic system.

This Thesis will present a solution to the aforementioned problem, and also

answer the following 5 problems: 1) Develop a model to describe the elastic properties of

the environment, 2) use to identify the mechanical constraints of the system, 3) Use

information to intelligently navigate the workspace, 4) Create a map of these constraints

throughout the workspace and 5) Use the information to aid in future manipulation tasks

and goals. These problems will be sequentially solved in chapter IV and V of this thesis.

Figure 3: Theoretical Re-construction of the unknown environment

5

In order to develop a proper solution, a very basic assumption is made about the

elastic system. Firstly, a maximum safe elastic energy/elastic force is assumed, below

which exertion of such force or elastic energy will not damage the environment. The

range and scales of such values will be application dependent, and while this does

constitute a-priori knowledge about the environment, information of this kind of can be

easily obtained through bio-mechanics references for tasks in the surgical domain.

I.C Related Laboratory Work

The work presented in this thesis was done at the ARMA lab at Vanderbilt

University, under the direction of Dr. Nabil Simaan. This work ties into the work done

by current and former students of the lab, who have worked in the areas of local stiffness

exploration, contact and constraint detection for surgical robots. In [15], Xu and Simaan

(2009) implement stiffness mapping of the surface of an organ, using the intrinsic force

sensing capabilities of a snake-like RSA. In [36], [37], Goldman et al. (2010, 2011) use

the same RSA for exploration of shape and local impedance of an unknown

environment. Finally, in [47] Bajo et al. (2011) presented work on detection of contact

for the same snake-like RSA.

I.D Contribution and outline

The primary contributions of this work are in validating the feasibility of

autonomous manipulation in an unknown elastic environment, in developing a real-time

6

compatible representation of global stiffness properties, and in presenting methods for

automatically identifying and classifying flexible constraints in real time.

Previous works on exploration mainly focus on constraint exploration in rigid

environments (Lefebvre) [44], constraint identification of tools (Dupont and Howe) [9],

and exploration in rigid environments (Okamura and Kutcowsky) [11]. To date, there are

no clear frameworks to exploration in flexible environments. A recent exception is the

work of Goldman in [36], [37] where exploration of shape, and local impedance has been

carried out. This work extends these results to include the characterization of organ

constraints and path planning for safe manipulation.

First, in section II, works in the related areas of path planning and environment

exploration are reviewed in detail. In section III, some necessary background, including

Spatial Stiffness theory and AI methods, are reviewed. An algorithm for blind, safe,

autonomous manipulation is proposed in section IV, and then experimentally validated

using a Puma 560 industrial robot arm. Finally, section V details our methods for

characterizing, identifying and mapping the elastic constraints of a workspace in real

time, and presents experimental evaluation of these techniques on real flexible objects

using the Puma 560.

7

CHAPTER II

II LITERATURE REVIEW

There have been numerous works on the relevant topics of environmental

exploration, detection of contact, constraint identification and path planning in elastic

environments. The solutions presented in these works operate in restricted domains

however, and only provide solutions to parts of the problem posed in the previous

section.

II.A Constraint detection/identification

He [5,6] explicitly dealt with the exploration and detection of mechanical

constraints (“Contact States”) between two rigid objects. Xiao developed a simple model

of a manipulator grasping a movable polyhedron A, which is possibly in contact with

fixed polyhedron B, and represented the contact as the super-position as a combination of

“principle contacts”, simple dimensionless/directionless kinematic constraints. He then

assumed that the geometry (shape, dimensions and position/orientation) of the objects

was known, but with experimental uncertainty. Xiao simply defines a method for

resolving the rigid kinematic model with the actual experimental data, to determine the

most likely contact state for a given configuration of object A. This methodology works,

however it requires explicit geometric information about the object being manipulated,

8

especially since it works entirely in the kinematic domain (constraints are not considered

as reaction forces, but rather as purely kinematic constraints).

De Schutter [7] also deals with manipulation of objects with known geometries

and an appropriate kinematic map (with experimental error), but tackles the problem of

constraint identification, for manipulation under flexible constraints. To do this, he

represents the flexible constraint of an object at a given configuration as a virtual

compliant manipulator. This virtual manipulator results in the same degrees of freedom

as the object, but models the compliance in each direction of motion, to provide

predictions in the changes of the constraint forces as the real manipulator moves in space.

This methodology allows for simple characterization/representation of elastic constraints

in a given workspace, however it requires explicit kinematic models of the environment

and assumes known geometries ahead of time.

Kitagaki and Suehiro [8] get rid of the assumption of known geometric/kinematic

models by incorporating force information. Assuming a manipulator with an attached

force sensor, manipulating an object in a rigid environment, they estimate the location of

point contact using static balancing. The associated constraint results in a normal force,

which will result in an applied moment on the force sensor. Furthermore, they present

models for detecting edge on plane constraints, and propose methods detection of contact

state transitions. This methodology is powerful and simple, however it assumes a rigid

environment, and furthermore requires high accuracy force measurements of contacts

with very high rigidity.

9

Dupont [9] presented a simple but effective method for modeling and identifying

kinematic constraints of a general robotic manipulator. He does this by using the notion

that, for a kinematic constraint, no constraint wrench can do any work about a freedom

twist (see section III.A.2). He suggests that for a manipulator’s end effector, at a certain

position while moving along a trajectory, any forces/torques in the direction of the

trajectory cannot be due to a constraint force, and furthermore, that any forces/torques

normal to the trajectory are due to a kinematic constraint at that location. Correcting for

dynamics and gravity forces at the end effector, he then utilizes this method to

automatically explore the kinematic constraints on surgical instruments during insertion.

 Howe [10] uses probabilistic methods to infer contact and constraint properties of

a given object being manipulated, using experimental force/position data. He assumes a

set of known Kinematic constraints (“Contact States”), and develops geometric models

for each of these constraints, which are independent of size/scale/orientation. For a given

robot manipulation task, force/kinematic data are then simultaneously evaluated on how

well it matches each geometric model. A hidden Markov model is then used to

stochastically determine the current contact state, using a closest fit to that contact state’s

model.

 To the author’s knowledge, none of these works deals explicitly with

identification of flexible constraints in unknown environments, with the exception of

course being Goldman (2011). With high-DoF RSAs further abstracting the interface

between the surgeon and the patient anatomy, there is a clear need for further

investigation in this area to enable proper force feedback and semi-autonomous

manipulation schemes in robotic surgery.

10

II.B Exploration of unknown environments

Okamura and Cutkosky [11, 12] focus on the haptic exploration of objects using

robot fingers which are equipped with tactile sensors. They use feature based exploration

to map and characterize the surface properties of an object being grasped by a robotic

hand. They define classes of features, macrofeatures, such as a ‘bump’ feature, or a

‘ridge’ feature, and present methods for detecting instances on these macrofeatures on an

object being grasped. A map of these features on an object represents a tactile signature,

and could then be used to identify/characterize the particular object being grasped.

Allen [13] also worked on haptic exploration of objects using robot fingers,

however he focused on developing models of the geometric shape of the object, rather

than mapping/characterizing the stiffness properties. Allen uses tactile and kinematic

information to define a set of contact points in space, corresponding to where the

fingers/hand is in contact with the object. He then fits these points to a 3-dimensional

superquadric function, to recover the general form of the object in space, from a set of

sparse contact data.

 One alternative to representing elasticity as FEM is to use a stiffness map, map

over the workspace which simply measures the magnitude of the stiffness at each

location. Althoefer [14] and Xu[15] [38], both present devices which can be used to

develop stiffness maps over a flexible surface, which can be used to detect specific

features, such as sections of high rigidity, while exploring an elastic workspace. They do

this by simple considering stiffness as the spatial derivative of force, and use the

kinematic models and intrinsic force sensing capabilities of their devices to map the

11

stiffness in a given region. Exploration of stiffness in this manner can be used to detect

features, such as tumor, on an on organ during surgery. Since such stiffness maps only

explicitly consider magnitude, they cannot be used for characterizing mechanical

constraints, which are inherently direction dependent at a given location. These works

explore normal stiffness. Goldman extended these works to include exploration of

perceived impedence tensors (damping, stiffness, inertia).

Finally, Gupta [16] presents a straightforward method for simultaneous path

planning and exploration of an unknown workspace, using a robot manipulator and a

tactile “skin” sensor. Using the sensor, it is assumed that contact can be measured at any

point on the robot manipulator, and Gupta proposes an algorithm for systematically

exploring the unknown workspace, and recording positions without contact as the

“freedom space”. Given sufficient time to explore the workspace, the algorithm will have

developed a full map of the workspace, broken down into the “freedom space” and the

constraint space.

Most of these works, which deal with contact estimation of environment

exploration, assume a rigid and otherwise static environment, which, for many

applications is certainly valid. Despite the progress made in environment exploration,

contact detection and constraint estimation, to the best of our knowledge, little work has

been done on the blind characterization and estimation of flexibly constrained objects in

unknown environments.

12

II.C Path Planning

As opposed to environmental exploration, path planning is a subject which has

had some attention, in the context of flexible/elastic environment. Using a force based

approach and an FEM model, Rodriguez [17] considered the path planning issues of

navigating in a completely deformable known environment. By using a Rapidly-

Exploring Random Tree algorithm and a collision detection algorithm, they attempt to

minimize the elastic energy in all of the possible paths that could be taken to reach the

end goal. They used this path planning method to simulate a robot navigating around

flexible organs/tissues within the human chest cavity.

 Patil et al. [18] used finite element methods to model the elastic characteristics of

a flap of tissue being manipulated during organ retraction. Patil uses an offline

optimization algorithm to pre-compute an optimal path for a given manipulator to retract

the tissue in order to maximize the area exposed under the flap, while minimizing the

elastic energy exerted on the tissue.

Gayle et al. [19] model a deformable robot moving through a flexible

environment, and proposes an algorithm which uses a finite element model and virtual

dynamic equations to compute an optimal path (offline) for the robot from a start goal to

a finish goal, while observing a set of hard constraints. They then apply this methodology

to optimize the path for a snake robot which enters the femoral artery (in the legs) and

navigates to the liver to perform some operation.

13

Like Rodriguez and Patil, Gayle assumed a known environment and used FEM to

model its elasticity. There are many other works on path planning methods in flexible

environments, but which almost exclusively deal with Finite element methods and off-

line path planning. While they are effective for providing theoretically optimal paths in a

given scenario, real-time implementation of these paths will never be perfect. Hence there

is great potential in utilizing real time exploration of constraints.

14

CHAPTER III

III MATHEMATICAL BACKGROUND

III.A Stiffness, Compliance and Screw Theory

III.A.1 Screw theory

In Cartesian space, there are 6 dimensions of motion for a general rigid body:

Translation along the three Cartesian axes, and rotation about each of those axes .While

absolute orientation cannot be represented completely in only 3 dimensions, any

Cartesian angular velocity can be expressed completely in 3 dimensions.To represent a

general velocity in space, we can then define a 6 dimensional vector, which includes

three translational velocities, and 3 angular velocities. This vector will be denoted as

 [

] (1)

Chasle’s theorem forms the basis for screw theory, and can be stated as such: The

most general displacement for a rigid body in space can be described as translation along

a line in space, and a rotation about that same line. Plucker coordinates can be used to

describe any such line in space, and are composed of 6 homogenous coordinates\

 [

] (2)

Where describes the direction of the line, and is a vector from the origin to

any point on the line. These 6 homogenous coordinates can accurately describe any line

in space. Now consider again the general 6-dimensional vector [

]

15

The rotation around a vector (along a general line in space) can be expressed in

plucker coordinates, as follows

 [

] (3)

As can be seen, when the line is away from the origin, the rotation about that line

will create a velocity normal to the line. Depending on the direction and magnitude of ,

any velocity normal to can be expressed as . As Chasle’s theorem states, any

general rigid body motion can be described by the movement along a line in space, and

around that line in space. Any velocity that is along the direction of the axis of rotation

can be modeled as a screw such that rotation around the axis is coupled with a translation

along that axis, via pitch h. . If we add this term to the Plucker line

coordinates, we get:

 [

] (4)

Since can be used to represent any velocity normal to and can be used to

represent any velocity along , any general velocity can be described at

Thus, we can represent the general motion [

] as a screw vector [

].

If , the twist corresponds to a revolute joint. If , the twist corresponds to a

pure translation.

 can be calculated as

()

|| ||
 (5)

 can be calculated as

16

 (6)

Using screw theory, it is possible to analyze twist vectors to analyze centers of

rotation and to classify and characterize complex rigid body motions.

It is also possible to analyze force and moments using screw theory. This is done

by considering a general 6-dimensional force/moment

 [

] (7)

As done with twists, the moment can be expressed as a perpendicular component

 and a parallel component . Thus, any force/moment in space can be expressed

as:

 [

] (8)

III.A.2 Mechanical Constraints

The concept of mechanical constraints is used to describe kinematic restrictions on

the movement of rigid objects in space. Consider a general 3-dimensional rigid object

suspended in 6-dimensional Cartesian space, as shown in Figure 4 below.

Figure 4: General rigid body motion

17

If there are no constraints on the movement of this object, then it can follow any

general twist in 6-dimensional space (6 Degrees of Freedom), without restriction. For

most practical applications in robotics/engineering, this is usually never the case, as

objects aren’t simply suspended in space. Rather, most objects at rest are constrained

from motion along certain directions, due to gravity, friction and contact with the

environment, and are thus restricted the fewer than 6 degrees of freedom. As an example,

consider a book lying on a table, as shown below:

Figure 5: Planar Constraint

The book is free to slide along the table, and can rotate around the normal axis of

the table. It is, however, restricted from moving into the table, and from rotation around

axes in the plane of the table. Thus, it has been restricted to 3 DoF, by restrictions along 3

directions of motion. This particular form of motion restriction is known as a planar

constraint, which is one of a large set of mechanical constraints. A mechanical constraint

is composed of a set of restrictions on the motion of an object along a set of directions.

The directions along which there is no motion restriction are known as freedom twists ,

since twists along these directions incur no resistance. Directions along which motion is

impeded, due to rigid body contact or friction, are known as constraint wrenches , as

reaction wrenches along these directions prevent rigid objects from moving along them.

18

There are a number of different general rigid body constraints, that are represented by

constraint wrenches and freedom twists. A few are described below:

III.A.2.a Pin joint

One of the most common types of constraints is a pin-joint constraint, as shown in

the diagram below. Pin joints contain only one DoF, rotation along an axis. Accordingly,

the joint itself is composed of 5 constraint wrenches, which prevent Cartesian translation

of the joint, as well as rotation around axes which are perpendicular to the primary axis of

rotation.

Figure 6: Pin Joint Constraint

Real examples of pin-joints would include any type of hinge, or a robotic arm.

III.A.2.b Peg-in-Hole

 A less common type of constraint is a cylinder constraint, which has 2 DoF, and

is modeled as a cylinder-peg inside a circular hole. The cylinder is allowed to translate

back and forth along it’s axes, as well as to rotate around it’s own axis.

19

Figure 7: Peg in hole constraint

III.A.2.c Ball joint

 Ball joints are very typical constraints, and allow free rotation along any axis,

while restricting translation along any axis.

Figure 8: Ball joint constraint

Real examples of ball joints include any shoulder joints. These, along with a large

set of other rigid mechanical constraints are used to describe the mechanical/kinematic

properties of general rigid bodies suspended in an environment.

20

III.A.3 Spatial Stiffness in the context of screw theory

For surgical applications, in which we wish to describe objects suspended in

unknown elastic environments, the rigid mechanical constraint models described above

are no-longer applicable. Fortunately, there has been a great deal of work done in the late

90’s and early 2000’s to analyze spatial stiffness and elastic environments using screw

theory, allowing simpler representations of complex elastic behavior and providing

insight into the fundamental elastic properties of the system.

For an object suspended in an elastic environment (see figure 9), perceived

constraint stiffness matrix is defined as the linear map between an infinitesimal twist

 of the object, and the resulting change in the reaction wrench from an

equilibrium pose.

 (9)

Schimmels and Huang [20], Roberts[21,22], Lipkin [23] and others have shown

that the local stiffness , can be represented as the linear combination of several springs

acting in parallel, as long as is Symmetric, positive semi-definite.

Figure 9: Spatial Stiffness model

21

This is done via matrix decompositions of , and provides a more intuitive

representation of the stiffness than the regular stiffness matrix, as well as some

information about the fundamental properties of the system.

The Eigenvalue problem of (equation 10) is one such decomposition, and

yields 6 eigenvectors and eigenvalues. The system can then be modeled by 6 complex

springs (springs with both linear and torsional components), each with a direction and

magnitude of one of the eigenvectors and its associated eigenvalue respectively.

 (10)

Like many other decompositions, this one is not frame-invariant, and will result in

different eigenvectors and eigenvalues, based on the frame being considered. While the

eigenvectors will never be frame independent, both [32] and [33] present modified

eigenvalue problems which will yield frame invariant eigenvalues.

Schimmels proposes the “Eigenscrew Decomposition”, in which the only

modification is a delta matrix [

] and formulates the eigenscrew problem

as in equation (11)

 (11)

The effect of the matrix is to interchange the first and last three elements of a 6-

dimensional axis, which converts between axis screw coordinates ([

]) to ray

screw coordinates [

] , in order to preserve the units. This yields a set of

eigenvalues which are frame invariant, in units of , and as Schimmels argues,

provides insight into the fundamental nature of the problem.

22

Lin [39] breaks into sub-matrices [

], uses matrix algebra

to cancel out frame-dependent components of , resulting in the following sub-matrices

 (12)

Where the eigenvalues of are the principle rotational stiffnesses of ,

the eigenvalues of are the principle translational stiffnesses of . The result

is a set of 3 orthogonal, rotational axes and set of 3 orthogonal translational axes, whose

magnitudes are frame invariant and describe the pure rotational and pure translational

behavior of the system.

Lipkin [25] uses a similar analysis to define the principle rotational stiffness axes

and the principle translational compliant axes of a stiffness matrix , and then uses them

to create rotational and translational elasticity ellipsoids.

The tools outlined above can and will be used to analyze the mechanical

properties of unknown elastic environments. As Schimmels et al. discuss [24], any proper

eigenvalue or eigenscrew decomposition requires a Symmetric, positive, Semi-Definite

(SPSD) matrix, which is almost never obtainable from experimental numbers (due to

noise and displacement from equilibrium). Thus, in order to experimentally implement

this analysis, an SPSD matrix needs to be derived from experimentally gathered data.

Ellis and McAllister [26] present a method of doing so, by using an SPSD approximate

 of a given experimentally derived stiffness matrix . The solution is explained in

[27] and is summarized below:

 (13)

Take the Eigenvalue decomposition of B

23

 (14)

Where is a matrix of eigenvectors and is a diagonal matrix of eigenvalues.

 | | (15)

 (16)

The result is a close approximate of the stiffness matrix , which will not include

negative or complex eigenvalues.

III.B Numerical Optimization and Stochastic Methods

The previous chapter presented an entirely analytical framework for describing

and understanding flexibility and spatial stiffness using screw theory. When the necessary

information is available, and the analytical models are applicable, analytical methods are

effective, efficient and provide broader insight into the structure of the problem.

In real world applications such as robotic surgery however, complete information

almost never available. In order for an autonomous Robotic Surgical Assistant to operate

is any such environment, it has to explore, gather data, and make intelligent decisions

using incomplete information, without compromising the safety of the patient. To tackle

these problems, a variety of numerical, computational and AI methods can be used. This

chapter will discuss the ideas of Numerical Optimization, Clustering, Markov models,

Particle Filtering and Monte-Carlo methods.

III.B.1 Numerical Optimization

Consider some function (), which is a function of many variables for which

computation of () is easy, while the inverse () is highly intractable.

24

The problem of optimization (finding the which will minimize/maximize) usually

cannot be solved analytically, even though evaluating the function is trivial. For this

situation, numerical methods can be utilized to navigate the domain space , and

find the vector of inputs which will locally or globally minimize ()

III.B.1.a Steepest Descent

The simplest numerical optimization method is known as the steepest descent

method. Starting from the current parameter vector , the steepest descent method

evaluates the derivative

, and moves in the direction of

 in configuration space, by

incrementing by

. The algorithm is summarized below, in Figure 10.

The Steepest Descent method is a good basic numerical optimization algorithm,

but suffers from slow convergence [40]. More effective gradient techniques exist [29]

(Newton/Quasi-Newton), but require more information, such as the Hessian of ,

Steepest Descent Algorithm

Given starting configuration 𝒙 𝒙𝑜

While (|𝒙 𝒙 | < 𝜖)

 𝒑
𝑑𝑓

𝑑𝒙

𝑑𝑓

𝑑𝑥

 𝒙 𝒙 𝛼𝒑

Figure 10: Steepest Descent Algorithm

25

III.B.1.b Non-Linear Optimization

 One such hessian based algorithm is the typical non-linear optimization function.

For example, consider a non-linear system () , where represents the hidden inputs to

the system. Suppose we can observe the output of the system () , and we want to

use the observed variable to learn the hidden variables such that () . To do

this, we define a lease square’s function (), as shown in equation 17

 (| () |) () (17)

The non-linear algorithm shown below can be used to find the value of

Figure 11: Iterative Non-Linear least square’s Optimization algorithm

Iterative Non-Linear Least Square’s Solver

 Given y

 Make initial guess for 𝑛 1 vector 𝒙𝑖

 Error vector 𝒆 𝒇(𝒙𝑜) 𝒚

 𝑤 𝑖𝑙𝑒

𝒆𝑇𝒆 < 𝜖

o 𝒃 𝒃 𝒇(𝒙)

o 𝐴
𝜕𝒇

𝜕𝒙

o Δ𝒙 𝐴 𝑇𝐴

 𝐴
𝑇
𝒃

o 𝒙 𝒙 Δ𝒙

o 𝒆 𝒇(𝒙) 𝒚

 End

26

One advantage to this algorithm versus the steepest descent, is the ability to stack

multiple observations [

] and dynamically update the estimates as new

observations are made.

III.B.2 Clustering

For any kind autonomous RSA to operate intelligently, it needs to gather data

from the environment, subsequently make inferences and conclusions from sparse and

possibly incomplete data. Instead of pre-defining theoretical models to classify data

based on how it ‘should’ fit (i.e., this stiffness matrix should represent a planar

constraint, based on our geometric model), there are a number of statistical methods

available for recognizing patterns and classifying data automatically [30], including

Principle Component Analysis (PCA) and Bayesian Networks. In this work however, we

focus on Clustering.

Consider a data set, such as points on a 2-dimensional graph (figure 12). By visual

inspection, it is clear that there are two distinct groups within the whole population.

Figure 12: Illustration of Clusering

27

In the language of clustering, each individual point/measurement is called an

‘Example’ , and each example has a feature vector (x and y values) with

 elements (in this case). In hard clustering, we wish to organize and classify

this data set into groups called classes (ideally 2 groups in this case) which share

similar feature vectors.

One simple algorithm to do this is called the k-means algorithm, which is

initialized by randomly assigning one of classes to each example (a random

classification), and then iteratively improves this classification by minimizing the

following utility function

 (∑ ∑ ()

) (18)

Where () is the class that was assigned to example , (()) is

the mean value of feature vector element for all the examples in (), and where

 () is just the value of in the feature vector of element .

In words, this utility is just the sum of squares error between each of the examples

 and the class they were assigned to. This utility function results in good classifications,

in which classes would be comprised of similar examples, such that the mean value for

each class is close to the actual value of any particular example within that class. The -

means algorithms iteratively improves the classification at each step by re-assigning

each example to the cluster which best fits it, using the mean value of the cluster in the

previous step.

28

Eventually, the -means algorithm will reach a stable classification (a local

minimum of the utility function), which can be used to making decisions / inferences /

predictions about current and new data points. This simplified algorithm is only a local

optimizer, and is not guaranteed to find the optimal classification of the data set (the

global minimum of). With data points, and possible classes, there are

possible classifications, the optimal classification problem is exponential in its run time.

Furthermore, the optimal classification problem can be shown to be NP complete, as the

CNF Satisfiability problem (a known NP-complete problem) can be reduced to an

instance of this problem.

III.B.3 Stochastic methods

In the absence of a structured model of a system, such as a clearly defined () or

set of continuous variables , non-derivative based stochastic methods can be used to

model/describe/predict the behavior of complex systems.

III.B.3.a Markov Models

Consider an abstract mathematical model of a system, in which the system can be

in one of a finite number of states at any given time. This is called a state machine, and it

describes the transition of the system from one state to another. They system could be as

simple as a daily commute (see Fig. 13), in which the states are “At Home” (H), “In the

Car” (C), and “At Work” (W).

29

Figure 13: State Machine

The home state will always transition to the car state, before transitioning to the

work state, with the same being true in reverse.

Markov models are stochastic versions of state machines, and are used to model

non-deterministic systems through probabilities. A possible example of a Markov model

is the following Markov chain (Fig. 14), which describes the weather on any particular

day, with states “Sunny”, “Cloudy” and “Rainy”, and the probabilities of the next day’s

weather given today’s forecast.

Figure 14: Markov Chain

30

Using experience from previous weather patterns (specifically, via a state

transition matrix), it is possible to determine the probabilities of these state transitions,

and predict future weather patterns, or infer previous weather patterns, given the current

state.

One example of the use of Markov Models can be seen in Rosen et al (2006) [40],

in which a generalized minimally invasive surgical procedure was broken down into a set

of discrete, elementary subtasks (such as clamping, gripping, etc..). These sub-tasks were

then represented as states in a Hidden Markov model (HMM), and each state was

associated with a certain end effector motion/force profile. Given a set of training data,

the HMM could then be used to guess the current surgical subtask being performed by a

surgeon, by stochastically estimating the current state of the Markov model. Another

example of Markov chains would be the Random Walk algorithm, as discussed below.

III.B.3.b Random Walk

 Like a Markov model, random walks are stochastic models that are often used to

describe systems. In the context of Numerical optimization, random walks can be used as

a method of escaping local minima. Given an n-dimensional space, with a state

{ } , a random walk is simply a sequence of random steps in n-

dimensional space, from the current state to some new state.

 ∑ ()

 (19)

 () () (20)

 () here is random uniform distribution from to . Random walks can be

used not only to escape local-minima, but to add a level of non-determinism into an

31

otherwise fairly deterministic algorithm, such as the gradient and Quasi-Newton

algorithms presented above. In the best case, a random walk will only create deviations

on the path to the correct solution. In the worst case however, a random walk can help

avoid traps/ relapses into local minima

III.B.3.c Monte-Carlo methods:

The non-linear/gradient optimization methods presented previously are “greedy”

derivative based optimization methods. Greedy algorithms, algorithms which blindly

follow locally optimal trajectories without considering alternative steps/paths, often run

into issues of local minima. For high parameter spaces and complex non-linear functions

 (), such as might be found in solving for unknown parameters of a system , the

problem of local minima can become fairly prohibitive in finding an optimal solution to

the problem. Monte-carlo methods lie within a larger class of derivative free and often

population based optimization methods, many of which can be efficiently used to solve

problems in highly non-linear, discontinuous and large-parameter spaces.

These are stochastic optimization methods, and operate in the following way:

1. Given an n-dimensional parameter space { }

2. Then create a number of samples over the parameter space

3. These samples are evaluated in terms by some deterministic metric ()

4. These results are then aggregated to determine a solution.

An example application of a Monte-Carlo method would be as follows: Consider

a system with a set of parameters { } in which and are known,

while and are inherently unknowable/unobservable. The combination of these

32

parameters can deterministically yield one of two implications: and . A Monte-carlo

method could be used to search the parameter space of by creating a set of samples

of these parameters. Each sample of or can be evaluated by their likelihood of

being the value of . The aggregate can then be used to evaluate the probability of or

 , given unknown values of and ..The complexity of such problems are

exponential with the number of unknowns , such that given domain size , the run-time

scales with . While Monte-Carlo methods can help stochastically explore a large

domain, it requires prohibitively higher (exponential) number of sample points as the

dimensionality of the problem increases.

III.B.3.d Particle Filtering

Other stochastic population methods, such as Genetic Algorithms and Simulated

annealing, perform an optimization to find optimal configurations of . Particle filtering

is a simple and easy to implement stochastic optimization methods. The algorithm

proceeds as follows:

1. Create a large set of m samples of an n-space, called ‘particles’

2. Assign them random values in the n-dimensional space

3. These particles are assigned some fitness metric

4. These fitness metrics should be weighted to a probability (0-1) such that, the

higher the metric, the higher the probability

5. This will be the probability that this particle will not be eliminated after ‘filtering’

6. ‘filtering’ selects each particle and may delete it, based on its probability

7. New particles are added to the population and the process is repeated

33

This and the other population based algorithms seek to stochastically weed out

un-optimal configurations of , while iteratively and randomly altering to find optimal

configurations. Of course, as with any optimization algorithm, its performance highly

depends on the chosen fitness function. An example of such an approach can be seen in

Petrovskya’s work [35], in which particle filtering was used to estimate the position and

orientation of an object being grasped by an industrial robot. Given the geometric model

of the object to be manipulated, as well as sparse tactile data (locations of contact, and

surface normals), her stochastic methods generated a large set of possible solutions and

weeded out those solutions which did not fit the geometric models. In the indeterminate

case (infinitely many solutions), the algorithm returned a band of candidate

positions/orientations of the object given the data set which had been collected, whereas

deterministic solution methods (steepest descent) would have failed to properly reach

such a set of solutions.

34

CHAPTER IV

IV PATH PLANNING FOR SAFE MANIPULATION

Given the problem statement in section I, any autonomous intelligent RSA will

need to make decisions about how to safely move around within an unknown elastic

workspace, without a priori information about the workspace. The RSA also needs to

explore the workspace and gather more information in order to make intelligent decisions

about how to move. The problem is, how do you safely manipulate an object with no a

priori knowledge of the system?

Figure 38: Planar Simulation of Object Manipulation

Given a gripper with an attached force sensor, we assume the elastic wrench

on the gripper and the gripper pose are immediately available at every time step.

Consider these the states of the system. In addition, the directly obtainable states can be

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

mm

m
m

35

used to deduce the Stiffness and Elastic energy, which are the spatial derivatives and

integrals of respectively. Even without a priori knowledge, the RSA can make

intelligent decisions using not only the currently available states, but on deduced states as

well. This will allow the RSA to manipulate an object towards a goal configuration.

First, we want an RSA to make decisions that will: 1) get it to the goal

configuration, 2) minimize distance taken to get to the goal configuration, 3) minimize

the elastic energy displaced on the system and most importantly 4) avoid exceeding a

specified set of hard constraints. To do this, a set of cost/reward functions can be defined,

which are functions of the states of the system, and will reward the desired states, while

penalizing undesired states.

A numerical optimization method (section III.B.1) can then be used to search the

pose space for the configuration which minimizes ()

IV.A Function definitions

To formalize this, define a reward function “task” function t(x) to promote goal-

seeking behavior, and a constraint “penalty” function c(x) to enforce the given constraint.

These functions are defined below:

IV.A.1 Tasks

 To enforce the goal-seeking behavior, define reward function

 (). To achieve the simple objective of moving a flexibly suspended object to

36

some goal pose , we can mathematically express this task function as the square of the

dimensionally weighted distance :

 (21)

Where is the distance from the current pose to the goal pose, with the first 3

elements as the distance in Cartesian space, and the last 4 elements as the relative

orientation ̂ in quaternion space.

 [

 ̂]

 (22)

As shown in [42], the vector portion of ̂ can be used as a metric for orientation

error. Thus, we use the 7-dimensional matrix to extract and weight the vector portion

of ̂ by .

 ̂ ̂ ̂

And is a diagonal weighting matrix

(23)

 (1 1 1) (24)

 Here, designates the multiplication operator in quaternion space [43]. The scalar

 is a dimensional weighting factor, to resolve the scaling between rotation and

translation. It is defined as the ratio of translation to rotation needed to produce

equivalent amounts of elastic energy.

1

 ()

1

 () (25)

 √

 (26)

The scalar stiffness and can be obtained from the Frobenius norm of the

translational and rotational quadrants of K (A and D, see section III.A.3), respectively.

37

IV.A.2 Constraints

In order to enforce the soft and hard constraints outlined above, we define 3

different penalty functions, and combine them into one cost function, which we can call

the constraint function.

IV.A.2.a Constraint 1

To provide some form of real optimization in the path taken to the goal, we define

a soft constraint, which puts a penalty on the elastic energy applied on the system, by the

gripper, relative to the initial undisturbed configuration. This constraint function can be

defined as

 () (27)

where is some scaling factor, and E is the elastic energy, relative to the initial

state. As mentioned before, the elastic energy at each node is not explicitly measured, but

rather inferred from the integral

 () ∫ ()

 (28)

 is the screw twist, and is an explicit function of, but not equivalent to the

derivative of the pose (because the pose includes terms in quaternion space, while the

twist is measured in pure 6-dimensional Cartesian space).

IV.A.2.b Constraint 2:

 We define a second constraint function to enforce the hard constraint that the

absolute elastic wrench exerted on the elastic system never exceeds a critical value

 . This can be mathematically defined as shown below:

38

(| |)

(29)

 Where is a 6-dimensional weighting matrix, and is a scaling factor, and is

proportional to the constraint’s radius of influence. Plainly stated, this constraint enforces

a harsh penalty (blows up to infinity) as the magnitude of the elastic wrench approaches

the critical value

IV.A.2.c Constraint 3

 In order to deal with local minima and constraint violations, we can define a 3
rd

and final constraint, called the ‘red flag’ constraint. The purpose of this constraint is to

avoid moving towards known problem configurations (red-flags), such as previously

explored local minima, and locations of hard constraint violations. To do this, we create a

simple repulsive field around each of these locations. This constraint function can be

mathematically expressed as

 ∑

√

 (30)

Where
 is the relative position of the red flag to the pose, and is another

scaling factor, which is proportional to the radius of influence of the constraint.

 The total constraint function is just the sum of the individual constraint functions

(eq. 20).

 (31)

 The combined constraint function captures the penalty-avoiding behavior of each

of the individual functions.

39

IV.A.3 J function

 Lastly, we can define the function, which is the sum of all the task and

constraint functions:

 (32)

Ultimately, the steepest descent optimization algorithm will seek to minimize the

J function, in order to find a low-cost path to the goal, while observing the given set of

constraints, by numerically evaluating the gradient of this function at every step.

 To actually command the desired manipulator motion, the algorithm calculates

the direction vector ̂ , at the step of the algorithm.

 ̂

| |
 (33)

Finally, the desired manipulator twist is set to be some scalar speed in the

direction of ̂ .

 ̂ (34)

This desired twist can then be sent directly to a resolved rates algorithm to

achieve the desired manipulator motion for moving a flexibly suspended object.

Using the above functions with the steepest descent algorithm yields a basic but

effective path planning algorithm for autonomously reaching the goal state. There are,

however, a few things that need to be explained, and a few augmentations that need to be

made, in order to make the algorithm practical.

40

IV.B Algorithm Augmentations

IV.B.1 Dynamic Updating

At every step, the quantities of and need to be re-evaluated. The former is a

gradient of functions of the four states, and the latter is the hessian of the elastic energy

(gradient of the elastic wrench). In a very basic implementation of this algorithm, these

derivative quantities could be explicitly evaluated via their respective derivative

definitions: by perturbing the manipulator along each dimensions, and measuring the

changes in and .This implementation is time intensive, as it requires 7 additional

manipulator movements every time the quantities need to be updated.

It is possible, however, to update both of these quantities at each step, without

explicitly evaluating the derivative. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) [29]

method comes from numerical optimization, and provides a way of estimating and

updating the hessian of a function, using only rank-1 gradient information. The formula

for BFGS is shown below

(

)

Where is the hessian function of (), is the change/gradient of the

function , and is the change in the domain of the function, . For our application,

we can set the function to the elastic energy of the system (). The gradient then

becomes the measured wrench , and s becomes the infinitesimal twist from the

previous step to the current step .

41

This formula will make rank-1 updates of the stiffness matrix, by evaluating the

change in wrench only along the path of travel. While this necessarily loses information

over-time about directions not along the trajectory, this lost information is arguably not as

important. Additionally, there are measures available, including minor randomization to

the trajectory, to recover lost information about the stiffness in full 6-dimensional space.

Secondly, given K which is updated at every step with BFGS, it should be noted

that the other 3 states can be integrated from position. That is,

 , , () (35)

Since J is explicitly only a function of (), it’s derivative can be

evaluated without actually perturbing the system.

 ()
 () ()

 (36)

Using these methods, it is possible to update and estimate and K at each point

on the trajectory, without making any deviations/perturbations.

IV.B.2 Path discretization

To facilitate storage of data into memory (storing path histories at 1kHz is

impractical), as well as in updating derivatives , , the path/ path history of the

manipulator is discretized from a continuous curve to a set of nodes. This is done by

determining the next node by calculating along ̂ , and then moving along

 ̂ until .

IV.B.3 Backtrack algorithm

One flaw of using an optimization algorithm like this is the susceptibility to local

minima. Another problem is how to deal with constraint violations. To solve these

42

problems, a 2-part solution is implemented: Red-Flag nodes, and Backtrack/random Walk

algorithms.

As mentioned in the constraint function definition, we can label problem

configurations, nodes at which local minima are detected or where there is a constraint

violation, as a ‘red-flag’ nodes. Constraint 3 then creates repulsive fields around these

red-flag nodes, so as to avoid visiting them again.

After labeling a red-flag, a backtracking algorithm can be used return along the

recent trajectory to some previously explored node, and starting again. A random walk

algorithm can also be implemented to add a level of non-determinism to the system, to

avoid repeat configurations. To implement these solutions together, a simple Markov

Chain was defined (see section III.B.3.a), to stochastically determine when and how-

many backtracking /random walk steps should be made.

Figure 15: Backtrack Algorithm

43

The Markov Chain involves 3 states: the normal state ‘N’ (̂ determines next

node), ‘R’ which is a random step, and ‘B’ which moves one step back in the trajectory.

Detecting a red flag automatically sets the state as B, and initiates backtracking. The

transition probabilities were defined in order to achieve the following behavior:

 In the backtracking state, probability of retaining the back-tracking state

results in the algorithm backtracking a random number of steps, with an

expected

 steps, and the probability of backtracking steps being . For

60%, this results in 2.5 expected steps. After backtracking, the algorithm will

either enter a random walk, or the normal state.

 In the random walk state, the probability of retaining the random walk state

results in the algorithm performing a random number of random steps, with an

expected

steps. Like the backtracking algorithm 60% results in an expected

random walk of 2.5 steps. Once the random walk is completed, the algorithm

will decay back into the Normal state.

 In the Normal state, the manipulator will follow its normal trajectory, and

continue to do so with probability at each node. With a 10% probability of

retaining the normal state, the algorithm will move an expected 10 steps

normally, before making a random walk.

44

IV.C Safe Manipulation Algorithm

With the functions and augmentations defined, we can finally present the safe-

manipulation algorithm, shown in graphical form below (figure 16). At each regular step,

the algorithm evaluates the gradient , and calculates the position of the next node to

visit, and a twist-velocity to that node. Once the next node is reached, the algorithm is

iterated, and the states are updated. Unless the MDP chooses a random walk, the

algorithm will repeat itself and re-evaluate the gradient . It will repeat this procedure

until it reaches the goal state (the distance to the goal falls below).

Figure 16: Safe Manipulation Algorithm

45

IV.D Simulation

Before experimentally testing the algorithm, it was implemented in simulation,

using a simplified planar simulation (shown below, Figure 31). In this simulation, the

object to be manipulated was a rigid planar triangle (red), attached by simple linear

springs (green) to fixed locations the ground. A manipulator (not drawn graphically), is

assumed to have perfect kinematic control over the red triangle , as well as

perfect force sensing capability , and is commanded to move the red triangle

from its initial configuration to some desired planar configuration (shown in blue).

Figure 31: Planar Robot Simulation

In order to test the ability of the algorithm to converge on the desired

configuration, two scenarios were presented. The first scenario involved setting the

desired configuration of the rigid body to a configuration which would not violate any

constraints. The other scenario was obviously to set the desired configuration to one that

46

clearly would violate the constraints if it was achieved. Below is the graphical output of

the outcome of the first scenario.

Figure 32: Planar Robot Simulation , Feasible goal

Here, the blue dots represent nodes that have been stored along the trajectory of

the rigid body, and the blue triangle represents the desired configuration of the rigid

body. Without any constraints near violation, the rigid body heads directly towards the

desired configuration and converges without issue.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

mm

m
m

47

Figure 33: Error Profile, Feasible Goal

The error profile (distance to the goal) from this simulation is shown above in Figure

33.

Figure 34: Wrench Profile, Feasible goal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30
Dimensionally weighted distance from goal

time (s)

D
is

ta
m

c
e
 (

m
m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50
Dimensionally weighted reaction wrench

W
re

n
c
h
 f

o
rc

e
 (

N
)

Time (s)

48

The wrench profile for this simulation is shown above, in Figure 34. Given that

the critical (dimensionally weighted) wrench is 50N, the desired configuration is still

close to violating the primary constraint.

For the other scenario however, convergence was not possible since the desired

configuration would have resulted in constraint violation. The graphic output of this

simulation is show below:

Figure 35: Planar Robot Simulation , Infeasible Goal

Here, the red stars represent red flags. It leaves red flags at the boundary between

the constraint space and the freedom space.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

mm

m
m

49

Figure 36: Error Profile, Goal

As shown in the distance profile in Figure 36, above, the rigid body attempts to

get as close as it can to the goal, without violating the constraint. Eventually, the path

planner sends it do a configuration which does violate the constraint at around 3.25

seconds, and the rigid body is returned to the nearest safe-point.

Figure 37: Wrench Profile, Infeasible Goal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

15

20

25

30

35
Dimensionally weighted distance from goal

time (s)

D
is

ta
m

c
e
 (

m
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

50
Dimensionally weighted reaction wrench

W
re

n
c
h
 f

o
rc

e
 (

N
)

Time (s)

50

 The situation is clear when looking at the force profile in figure 37. Since the rigid

body can’t reach the desired configuration without violating the constraint, it hovers

around a configuration which lies just below the threshold for constraint violation.

IV.E Experimental Evaluation

 To test this algorithm experimentally, a simple experimental mock-up of an

object, suspended in a flexible environment, was laser cut and assembled with springs, as

shown in Figure 17 below. To manipulate this object, a Puma560 industrial robot was

used, with a Gamma ATI 6-axis force sensor and a custom-made solenoid powered

gripper, designed by the author for the purposes of these experiments and manufactured

with a rapid prototyper.

Figure 17: Rigid Triangle

51

Figure 18: Safe Manipulation Setup

Given a target pose for the planar object, the autonomous manipulation algorithm

was able to move the rigid triangle to the goal pose, or get as close as possible without

violating the constraints. While this algorithm is elementary, it is important to emphasize

its effectiveness and repeatability. The results from two such runs are shown in figures

19, and 20 respectively.

Figure 19: Autonomous navigation: Wrench profile

52

Figure 20: Autonomous navigation: Pose profile

In one of the runs, the goal pose is , while the other has a goal

pose of . These poses are listed in planar coordinates () in

units of [m, m, rad] respectively. In the latter run, the robot is prevented from moving to

the goal pose, to avoid violating a maximum constraint force of 25 N. In this way, the

constraint function acts like a basic virtual fixture, however it operates in the unknown

force domain, as opposed to the spatial domain.

53

CHAPTER V

V CONSTRAINT DETECTION, CLASSIFICATION AND MAPPING

Finite element methods are currently the most popular method of representing

global stiffness properties of elastic body/environment, and they do have their

advantages. They allow complete and accurate description of the full workspace given

the necessary parameters of the system. For the application of robotic surgery however,

they are impractical. They require a-priori knowledge of the structure and parameters of

the system, and as well as localization/registration to match the numerical model with

real observed data during an operation. Most importantly however, they cannot be

implemented in real time due to significant computational costs.

Ideally, there would be some method that makes no assumptions about the

environment, (a blind algorithm), and perfectly describes the elastic behavior of the

unknown system. In practice however, to describe the elastic behavior of the system,

some information/properties have to either be assumed about the environment (not blind),

or gathered and deduced from the environment during exploration. This work takes the

latter approach, and presents an algorithm which makes no minimal about the nature of

the environment, and uses only local stiffness information during exploration of the

environment, and deduces/infers the global stiffness properties using a constraint based

model. This allows compact representation of global elastic properties, using methods

and calculations easily realizable in real time.

54

V.A Spatial Stiffness

Commonly, exploration algorithms (see Section II.B) use kinematic constraints to

determine allowable directions of motion of a manipulator in an environment, and

consider primarily rigid constraints of the form shown in Section III.A.2.

In this work, we consider the idea of flexible constraints, in which the rigid

assumption is dropped, and the kinematic constraints are no longer applicable. Unlike a

rigid constraint, a flexible constraint does not prevent motion in a given direction

(kinematic constraint), it can only impede motion in that direction. An example would be

a flexible wall versus a rigid wall. A rigid wall could be modeled as being infinitely stiff,

and thus would have the analogous kinematic constraint that a hand cannot physically

move into the wall/occupy space within the wall. For a flexible wall, the rigid

assumption is dropped, and the kinematic constraint is no longer applicable. A hand

touching a flexible wall could push into the flexible wall, given sufficient force to over-

come the impedance of the wall.

V.B Stiffness region

We seek to develop a method for characterizing the global stiffness behavior of a

specific elastic workspace. Even if we use local stiffness properties to deduce the

mechanical constraints at a given location, there can easily be multiple mechanical

constraints that operate at different locations throughout the workspace. To resolve this,

we introduce a new concept, called a stiffness region.

55

Consider a given mechanical constraint, such as the gripper in contact with the

wall, as shown in figure 21.

Figure 21: Stiffness Region example

 For a given system in which there is mechanical contact or coupling, which produces

a specific mechanical constraint, there are multiply nearby configurations in which

this coupling also exists and produces approximately the same basic mechanical

constraint

 We define a 'Stiffness Region’ as the set of configurations in which a specific

mechanical coupling exists, and yields the same basic mechanical constraint

While the gripper of figure remains in contact with the wall, it is subject to a

planar constraint, which prevents the gripper from moving into the wall. Thus any

configuration that results in contact with the wall will be part of the same stiffness region

 .

56

If the gripper moves over the circular hole of the wall, however, the gripper will

lose contact with the wall, and no-longer subject to the same set of constraints as it was

before. The previous set of constraints have not disappeared, they are just not active at

the new configuration of the gripper. The points on the wall and inside the hole can then

be associated with two distinct stiffness regions, each of which exhibit a different set of

mechanical constraints.

The global stiffness of an environment would then be composed not of an infinite

number of local stiffnesses, but rather a finite number of identifiable stiffness regions.

Each of these stiffness regions would then be a space, in which the local stiffness

properties of every configuration in the space share the same form of elastic

behavior/exhibit the same constraint. Using this definition, a stiffness region can be

mathematically expressed as

 { | } (37)

Where C is a mechanical constraint.

V.C Elementary Constraints

The question then becomes, how do we deduce mechanical constraints from local

stiffness properties? This is done by considering stiffness itself as a type of constraint.

Consider the principle rotational and translational stiffness axes of a spatial stiffness

matrix (see section III.A.3). The result is six vectors in space, each with a direction and a

magnitude. Each of these vectors represents a possible direction of motion (rotational or

57

translational), and its associated eigenvalue represents the magnitude of the

stiffness/impedance to motion along that direction.

Accordingly, these principle axes can each be thought of as 1 degree of freedom

constraints, which impede motion along a given direction. We can call these 1 DoF

constraints ‘elementary constraints’, and the superposition of these elementary constraints

is the composite which describes the local stiffness. In fact, we can represent well known

and theoretical common constraints (See section III.2.a) as the superposition of rigid

elementary constraints.

 Any of these theoretical mechanical constraints are simply a set of orthogonal

elementary constraints, which are binary (rigid or free) and frame invariant (the relation

between these constraints hold in any reference frame). The principle translational and

principle rotational stiffness of provide orthogonal sets of elementary constraints,

whose magnitudes are numerically quantified and frame invariant.

Taking advantage of this equivalence, we therefore propose representing

mechanical constraints, flexible or rigid, by the eigenvalues of the principle axes

 of stiffness matrix , where represents translational

stiffness, represents rotation stiffness, and where each set is ranked in descending order.

To denote this particular representation, we call the resulting vector of eigenvalues a

Constraint vector, as shown in equation 38 below.

 (38)

58

To illustrate this, consider the rigid 2-D curved surface in Figure 22. There is

essentially a rigid planar constraint for any local configuration on the curved surface.

Figure 22: Frame invariant Constraint s: Normal vectors on a curved surface

For any configuration along the surface, the constraint can be represented as

 , which is true for any perfectly rigid planar constraint,

regardless of the direction of the normal to the plain.

 To illustrate the process, consider the gripper in figure 23, below, in what shall be

called a ‘membrane constraint’. The gripper grasps the thin and flexible membrane, and

perturbs it along all 6 cartesian directions to evaluate the local stiffness properties.

Figure 23: Real Membrane Constraint

59

The resulting local stiffness matrix is shown below

[

 1 1 1
 1 11 11 1
1 11 1 11

 1
 1 1 1
 11 1

 1
 1 11
 1 1 1

 1
 1
]

 (39)

To obtain the principle axes, the matrix K is broken down into upper left, upper

right and lower right sub-matrices. Units are in N/m, N/rad, Nm/rad respectively.

 [
 1 1 1
 1 11 11 1
1 11 1 11

] [
 1
 1 1 1
 11 1

]

 [
 1

 1

]

(40)

Using the approach developed in Lin [39] , the rotational stiffness matrix and

the translational stiffness matrix are obtained from the sub-matrices, as shown below.

 (41)

 [
 1
 1
 1 1 1

] [
 1 1 1
 1 11 11 1
1 11 1 11

] (42)

 To obtain the principle axes, an eigenvalue decomposition is performed on each

matrix:

 (43)

 [

] [
 1 1
 1

 1
]

(44)

 11 (45)

60

 Where and are the resulting eigenvectors (principle axes) and are the

magnitudes of the principle rotational and translational stiffnesses respectively. Finally,

the constraint vector is defined as

 11 (46)

 As can be seen from the translational eigenvalues, there are two directions in

which motion is restricted in roughly equal magnitude, whereas there is one direction in

which motion is not impeded and negligible rotational stiffness in any direction.

Therefore, it is clear to see that the stiffness matrix does represent a membrane constraint.

V.D Constraint identification and classification

After sufficient navigation of the elastic system, as described in section IV , we

can assume set of previously visited nodes { } , each with a stiffness

matrix and an associated constraint vector . To classify these constraints vectors, we

can use the k-means algorithm (see section III.B.2) to break the set of nodes (examples)

into a set of similar classes. The number of classes will be the number of constraints in

the system, and the set of nodes in each class will be defined as a stiffness region, for that

class.

In order to adapt the k-means algorithm to this problem, several small

augmentations need to be made. Firstly, each constraint vector contains a set of

translational stiffnesses, and a set of rotational stiffnesses, each with its own set of units.

To scale/balance the units, the dimensional weighting factor can be used (see section

IV.A.1) to scale rotational stiffnesses, such that

61

 Furthermore, the k-mean algorithm assumes fixed number of classes, which is

used as an input to the algorithm. In our application however, the optimal number of

classes is unknown however, so we make the number of classes a variable, and define

the following modified utility function which we wish to minimize:

 (∑ ∑ ()

) (47)

 Here, run the k-mean algorithm for several values of , and find the optimal

classification from this set of classifications, and thus the optimal number of classes .

Finally, in comparing objects with rigidity of different orders of magnitude, we propose

using a log scale, in order to properly define clusters between both rigid and compliant

stiffnesses.

 (∑ ∑ ()

) (48)

This methodology for constraint identification is validated experimentally in

section V.F on several test objects within the Puma 560’s workspace.

V.E Constraint exploration algorithm

Given a manipulator, manipulating an object in an unknown flexible environment

(see section I), the following algorithm with allow the manipulator to develop a constraint

based map of the elastic properties of the system as it explores it. The algorithm is

initialized by performing a local perturbation to obtain the local stiffness properties, and

subsequently defining the first stiffness region. At each iteration, the stiffness is updated

62

and a principle axis decomposition using eq. (40-44) is performed on . The resulting

eigenvalues (principle stiffnesses) are stored in the constraint vector for the current node

for use in cluster classification. If sufficient nodes have been explored, the clustering

algorithm will define/update the clusters. If a new cluster is defined, a new stiffness

region is defined for the associated constraint, and is then associated with all nodes

within the new cluster. The algorithm is shown in Figure 24, below.

Figure 24: Constraint Exploration Algorithm, using Clustering and Stiffness Regions

V.F Experimental evaluation

 In order to evaluate the proposed constraint detection/classification methodology,

two series of experiments were conducted. The first used local stiffness

63

measurements to distinguish/classify the constraints represented by several different

flexible objects. In the second experiment, the robot used local stiffness

measurements to identify the constraint(s) and map the resulting stiffness regions

over the surface of a single flexible object. These experiments were conducted using a

Puma560 industrial robot arm, an ATI-Gamma 6 axis force sensor, and a solenoid-

powered rapid-prototyped gripper, designed by the author for these experiments.

V.F.1 Constraint identification of multiple objects

In order to model several clearly distinct flexible constraints, 3 different mockups

were created, each involving a flexible object constrained to the environment in a

different manner, such that manipulation of the object had visually identifiable directions

of compliance/rigidity. These objects, including a polyurethane flexible hinge, a foam

sheet and a simple linear spring, are shown in figures 1a, 1b, and 1c below.

Figure 25a, 25b:Flexible Hinge, Foam Sheet experimental mock -ups

64

Figure 25c: Linear Spring Constraint

The robot was then used to grip each object at a point, and perturb it along each

cartesian dimension to explicitly calculate the 6-dimensional local stiffness matrix. For

each measurement, the object being manipulated was placed at a different configuration

(different position and orientation, with respect to the environment), in order to

emphasize the directional independence of this method. In total, 5 measurements were

made for each object, with a total of 15 local stiffness measurements.

 The resulting local stiffness matrices were decomposed into their principle axes,

from which their constraint vectors (see equation 38) were obtaned. The constraint

vectors were then fed into a clustering algorithm and automatically categorized into

clusters, with the results shown (translational constraint vectors) in figure 26 below in

semi-log scale.

65

Figure 26: Constraint identification using clustering

 The clustering algorithm broke the 15 measurements into 3 clusters (red, blue and

black), correctly categorizing all 5 measurements corresponding to each object into its

own cluster. The blue cluster corresponds to the linear spring, the red to the flexible

hinge, and the black to the foam sheet. It should be noted that this clustering was obtained

from the global optimal clustering (global minimum of). This is important, as the

traditional k-means algorithm (see section III.B.2) uses a local optimizer, whereas

particle filtering (section III.B.3) was used here to find the global minimum.

 The constraint vectors plotted in Figure 26 are shown below in tabular form,

along with the average of their associated clusters.

10
2

10
3

10
4

10
2

10
3

10
4

10
1

10
2

10
3

M
in

o
r

A
x
is

 S
ti
ff

n
e
s
s
(N

/m
)

3-dimensional feature space: 3 object constraint identification

Major Axis Stiffness (N/m)
Mid Axis Stiffness (N/m)

Linear Spring Foam Sheet

Flexible Hinge

66

Table II: Translational Constraint vectors obtained from local stiffness

measurements of 3 different objects. All quantities are in units of N/m.

Linear Spring Flexible Hinge Foam Membrane

1 729.32 195.39 137.3 6476.2 1121.5 22.05 776.79 752.96 241.40

2 656.98 222.50 213.49 4294.5 1151.6 565.44 847.42 548.86 398.12

3 613.99 163.75 161.37 6101.0 2154.4 142.95 1034.8 906.39 866.94

4 580.81 259.70 153.62 5689.7 2183.6 109.20 1037.6 860.99 391.49

5 751.12 233.90 133.76 4428.6 990.13 91.67 864.73 654.62 153.55

- Average Average Average

Av 666.44 215.07 159.92 5.39e+3 1.52e+3 186.257 912.28 744.77 410.3

V.F.2 Constraint mapping of a Foam membrane

In the second experiment, the local stiffness was measured at multiple locations

along the surface of a pink foam sheet, attached to a rigid table by 4 separate clamps

(shown in Figure 27 below). The nodes were manually distributed and marked, placing

several nodes near the clamp attachment points where the foam’s stiffness was noticeably

higher.

Figure 27: Foam Membrane Experimental Mockup

67

As with the previous experiment, the resulting local stiffness matrices were

decomposed into their principle axes, and the associated constraint vectors were then fed

into the same clustering algorithm, which automatically cateogorized the data into a set of

clusters, as shown below (Figure 28).

Figure 28: Constraint detection using clustering, Foam sheet

Using linear scale clustering algorithm [30] (as opposed to log scale), the

algorithm identified 2 primary clusters, shown in blue and red. The blue cluster

corresponds roughly to a membrane constraint, in which translation is impeded in a

plane, whereas movement along the normal is fairly complaint. The cluster in red,

however, corresponds to a more homogeneous stiffness, in which no axis in particular is

negligible. There were two particular nodes in the middle, which were either one of the

600
800

1000
1200

1400
1600

1800 400
600

800
1000

1200
100

200

300

400

500

600

700

800

900

M
in

o
r

a
x
is

 s
ti
ff

n
e
s
s
 (

N
/m

)

3 dimensional feature space: Foam bed

Major axis stiffness (N/m)

Mid axis stiffness (N/m)

68

two clusters in different non-optimal classifications, and which were assigned their own

cluster in the 3-cluster classifications, however

 Using the Cartesian position (all measurements were taken in the same orientation

 1) of each node, and the classification obtained from the clustering

algorithm, a 3-dimensional constraint map was defined for the foam sheet, and is shown

below in figure 29.

Figure 29: Constraint map, with Stiffness regions, of a Foam sheet

With two clusters identified, the nodes measured were broken into two stiffness

regions, with red corresponding to higher rigidity, at nodes close to the clamps as

expected. For comparison, the image of the actual foam bed is shown below in, figure 30

-0.6

-0.55

-0.5

-0.45

-0.4

0

0.05

0.1

0.15

0.72

0.74

0.76

0.78

R
o
b
o
t

F
ra

m
e
 z

(m
)

3-dimensional Stiffness Regions: Foam bed

Robot Frame x(m)Robot Frame y(m)

69

Figure 30: Foam Sheet Mock-up

V.G Discussion

The flexible objects used in these experiments were chosen as real examples of

intuitive known constraints, in order to have a frame of reference for basic evaluation of

the proposed constraint identification methodology. For this data set, the constraint

identification clustering algorithm neatly and effectively partitioned the data set into sets

of well-defined constraints, using only 3-dimensional vectors to describe the constraints.

While “membrane”, “flexible hinge” and “linear spring” constraints were chosen

as intuitive theoretical models, there are many instances of these types of constraints in

practice. Any thin-walled piece of tissue, such as the surface of the bladder, would

exhibit a membrane constraint. The kidney, which has a series of tube connections along

a line, creates a flexible hinge constraint. Finally, any organs constrained by single

tubular connections, such as the appendix, will exhibit a “linear spring” constraint (linear

70

is a misnomer, as biological tissue can act as a spring, but whose properties are highly

non-linear).

The flexible objects used varied greatly in scales of stiffness and the same is true

of tissues within the human body. For a typical set of tissue, however, a rough idea of the

stiffness is provided in the stress-strain diagram below, obtained from biomechanical

references [45], [46]:

Figure 40: Biomechanical Tissue properties

Where the longitudinal stiffness for a tubular organ, such as the duodenum, would

be around

 for small deformations. With a cross section area corresponding to a

tube of 1 diameter, and length, this would correspond to a stiffness of

71

 , which resides on the low side of the stiffness measurements founds in these

experiments, however it is on the same/similar order of magnitude. Therefore, from the

preliminary results, it would be safe to conclude that the presented constraint vector

classification methodology is capable of identifying/differentiating between basic flexible

constraints, using only local stiffness measurements. More thorough

evaluation/performance analysis of these methods is left as future work.

72

CHAPTER VI

VI CONCLUSION

In this thesis, Algorithms for blind, safe, autonomous manipulation in unknown

flexible environments were presented. A solution was proposed, using state-based

cost/reward functions and force/based constraints/virtual fixtures, and was subsequently

verified using a custom-fabricated planar mock-up of an elastic environment. Secondly,

compact representation of global stiffness was presented via the use of stiffness regions

and constraint maps, and real-time constraint detection/identification/classification was

achieved using constraint vectors, 6-dimensional frame-invariant vectors derived from

local stiffness measurements. These methods were evaluated using local stiffness

measurements of several different flexible objects, each with its own constraint(s). A

clustering algorithm was able to correctly classify/group together the stiffness

measurements from 3 different flexible objects, and was furthermore able to define a

constraint map, highlighting two distinct stiffness regions, over the surface of a

particular flexible object.

 Given the reasonable set of objects used in the constraint identification

experiments, it would be safe to say that constraint vector clustering is at least capable of

discerning/classifying constraints of basic flexible objects. The primary weakness of

such a technique would be the situation of varied but smoothly changing stiffness

properties, in which the constraint vectors would form a large continuous data set, and

would result in poor cluster classifications. In such a situation, Principle component

73

Analysis might provide a much better framework for organizing/classifying the

constraints. Using a log scale clustering however, the cluster technique is perfectly

capable of discerning/identifying hard rigid constraints (bone) free space (air) and

anything in between.

The utility of the approaches presented in this Thesis would truly be realized by

integrating the constraint identification/mapping with the safe-manipulation algorithm.

The target approach would be to use explored stiffness regions to make non-local

trajectory optimization, by predicting the force, stiffness and elasticity many steps ahead

of the local configuration.

While the approaches presented are blind, they could be enhanced with a-priori

information. If the clustering classification algorithm is given a set of training data

(previously obtained experimental data from similar environments), it could be used for

haptic exploration and localization. The target application would be in searching for a

constraint, which is known to exist in the workspace, but whose location in the

workspace is unknown (such as searching for a tumor/cyst on an organ).

Blind, safe manipulation in flexible environments, used in tandem with real time

constraint identification/mapping, will allow a robot to simultaneously explore,

characterize, and manipulate an elastic system safely without a-priori knowledge. This

approach, if developed further, could eventually enable safe semi-autonomous

cooperative manipulation of RSAs in applications such as organ retraction and organ

manipulation, during surgical procedures.

74

BIBLIOGRAPHY

1. Guthart, Gary S, and J Kenneth Salisbury. “The Intuitive TM Telesurgery

System : Overview and Application.” In IEEE International Conference on

Robotics and Automation, 2-5, 2000.

2. Ding, Jienan, Kai Xu, Roger Goldman, Peter Allen, Dennis Fowler, and Nabil

Simaan. “Design , Simulation and Evaluation of Kinematic Alternatives for

Insertable Robotic Effectors Platforms in Single Port Access Surgery.” In

IEEE International Conference on Robotics and Automation, 2-7, 2010.

3. Abbott, D.J., Chris Becke, R.I. Rothstein, and W.J. Peine. “Design of an

endoluminal NOTES robotic system.” In Intelligent Robots and Systems, 2007.

IROS 2007. IEEE/RSJ International Conference on, 410–416. IEEE, 2007.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4399536.

4. Degani, Amir, Howie Choset, Brett Zubiate, Takeyoshi Ota, and Marco Zenati.

“Highly articulated robotic probe for minimally invasive surgery.” In IEEE

International Conference on Robotics and Automation, 3273-6, 2006.

http://www.ncbi.nlm.nih.gov/pubmed/19163406.

5. Xiao, Jing. “Automatic Determination of Topological Contacts in the Presence

of Sensing Uncertainties *.” In IEEE International Conference on Robotics

and Automation, 65-70, 1993.

6. Xiao, J. “Automatic Generation of High-Level Contact State Space.” The

International Journal of Robotics Research 20, no. 7 (July 1, 2001): 584-606.

http://ijr.sagepub.com/cgi/doi/10.1177/02783640122067552.

7. Bruyninckx, Herman, and Joris De Schutter. “Kinematic Models of Rigid

Body Interactions for Uncertainties.” In IEEE International Conference on

Robotics and Automation, 1007-1012, 1993.

8. Kitagaki, K., T. Ogasawara, and T. Suehiro. “Contact state detection by force

sensing for assembly tasks.” In IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems, 366-370. Ieee, 1994.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=398431.

9. Dupont, Pierre E, Timothy M Schulteis, and D Howe. “Experimental

Identification of Kinematic Constraints.” In IEEE International Conference on

Robotics and Automation, 2677-2682, 1997.

10. Debus, Thomas J., Pierre E. Dupont, and Robert D. Howe. “Contact State

Estimation Using Multiple Model Estimation and Hidden Markov Models.”

The International Journal of Robotics Research 23, no. 4 (April 1, 2004): 399-

413. http://ijr.sagepub.com/cgi/doi/10.1177/0278364904042195.

75

11. Okamura, a. M. “Feature Detection for Haptic Exploration with Robotic

Fingers.” The International Journal of Robotics Research 20, no. 12

(December 1, 2001): 925-938.

http://ijr.sagepub.com/cgi/doi/10.1177/02783640122068191.

12. Okamura, A M, M L Turner, and M R Cutkoslcy. “- Haptic Exploration of

Objects with Rolling and Sliding.” In IEEE International Conference on

Robotics and Automation, 2485-2490, 1997.

13. Allen, P.K., and K.S. Roberts. “Haptic object recognition using a multi-

fingered dextrous hand.” In Proceedings, 1989 International Conference on

Robotics and Automation, 342-347. IEEE Comput. Soc. Press, 1989.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=100011.

14. Liu, Hongbin, Jichun Li, Xiaojing Song, Lakmal D Seneviratne, and Kaspar

Althoefer. “Identification During Minimally Invasive Surgery.” In IEEE

transactions on robotics, 27:450-460, 2011.

15. Xu, Kai, Student Member, and Nabil Simaan. “An Investigation of the Intrinsic

Force Sensing Capabilities of Continuum Robots.” In IEEE International

Conference on Robotics and Automation, 24:576-587, 2008.

16. Mehrandezh, M., and K.K. Gupta. “Simultaneous path planning and free space

exploration with skin sensor.” In Proceedings 2002 IEEE International

Conference on Robotics and Automation (Cat. No.02CH37292), 4:3838-3843.

Ieee, 2002.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1014319.

17. Rodriguez, S., J.M. Lien, and N.M. Amato. “Planning motion in completely

deformable environments.” In Robotics and Automation, 2006. ICRA 2006.

Proceedings 2006 IEEE International Conference on, 2466–2471. IEEE, 2006.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1642072.

18. Patil, Sachin, and Ron Alterovitz. “Toward automated tissue retraction in

robot-assisted surgery.” In Robotics and Automation (ICRA), 2010 IEEE

International Conference on, 2088–2094. IEEE, 2010.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509607.

19. Gayle, Russell, Paul Segars, MC Lin, and D. Manocha. “Path planning for

deformable robots in complex environments.” In Proc. of Robotics: Science

and Systems (RSS), 225–232. Citeseer, 2005.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.1601&rep=

rep1&type=pdf.

20. Huang, Shuguang, and J.M. Schimmels. “The bounds and realization of spatial

stiffnesses achieved with simple springs connected in parallel.” In Robotics

and Automation, IEEE Transactions on, 14:466–475. IEEE, 1998.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=678455.

76

21. Roberts, R.G. “Minimal realization of a spatial stiffness matrix with simple

springs connected in parallel.” In Robotics and Automation, IEEE Transactions

on, 15:953–958. IEEE, 1999.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=795799.

22. Roberts, R.G. “Minimal realization of an arbitrary spatial stiffness matrix with

a parallel connection of simple and complex springs.” In Robotics and

Automation, IEEE Transactions on, 16:603–608. IEEE, 2000.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=880811.

23. Ciblak, Namik, and H. Lipkin. “Synthesis of Cartesian stiffness for robotic

applications.” In Robotics and Automation, 1999. Proceedings. 1999 IEEE

International Conference on, 3:2147–2152. IEEE, 1999.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=770424.

24. Huang, Shuguang, and Joseph M Schimmels. “The Eigenscrew Decomposition

of Spatial.” In IEEE Transactions on Robotics and Automation, 6:146-156,

2000.

25. McAllister, PL. “An eigenscrew analysis of mechanism compliance.” Robotics

and Automation, 2000. (2000).

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=845173.

26. Lipkin, Harvey, and Timothy Patterson. “Generalized center of compliance

and stiffness.” In IEEE International Conference on Robotics and Automation,

54:1161-1164, 1992. http://www.ncbi.nlm.nih.gov/pubmed/19962288.

27. Higham, NJ. “Computing a nearest symmetric positive semidefinite matrix.”

Linear algebra and its applications 118 (1988).

http://www.sciencedirect.com/science/article/pii/0024379588902236.

28. F. Fahimi Autonomous Robots: Modeling, Path Planning and Control, New

York, NY, Springer Science + Business Media , 2009

29. J. Nocedal and S. J. Wright, Numerical Optimization, New York NY,

Springer-Verlag (1999)

30. Poole, David L., and Alan K. Mackworth. Artificial Intelligence: Foundations

of Computational Agents. New York, NY: Cambridge University PRess, 2010.

31. Korf, Richard E. “Real-time heuristic search.” Artificial Intelligence 42, no. 2-

3 (March 1990): 189-211.

http://linkinghub.elsevier.com/retrieve/pii/0004370290900544.

32. Griffis, Michael, and J. Duffy. “Comparing structures of stiffness matrices

using invariants.” RoManSy 9, no. 3 (1993): 85–92.

http://www.springerlink.com/index/M685515657663T85.pdf.

33. Ma, Burton, and R. Ellis. “Spatial-stiffness analysis of surface-based

registration.” Medical Image Computing and Computer-Assisted Intervention–

77

MICCAI 2004, no. 1 (2004): 623–630.

http://www.springerlink.com/index/HEYHPN967Q5TJFAE.pdf.

34. Yuan, JS. “Closed-loop manipulator control using quaternion feedback.”

Robotics and Automation, IEEE Journal of 4, no. 4 (1988): 434–440.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=809.

35. A. Petrovskaya, O. Khatib, S. Thrun, and A. Y. Ng. “Bayesian estimation for

autonomous object manipulation based on tactile sensors” Proceedings of the

2006 IEEE International Conference on Robotics and Automation, 2006

36. Goldman, R. E., Bajo, A. & Simaan, N (2011). Compliant Motion Control for

Continuum Robots with Intrinsic Actuation Sensing. In 2011 IEEE

International Conference on Robotics and Automation, pages 1126-1132.

Shanghai, China.

37. Goldman, R. (2011). Analysis, Algorithms, and Control for Intelligent Surgical

Exploration and Intervention. Phd Thesis, Columbia University

38. Yamamoto, Tomonori, Balazs Vagvolgyi, Kamini Balaji, Louis L. Whitcomb,

and Allison M. Okamura. “Tissue property estimation and graphical display

for teleoperated robot-assisted surgery.” 2009 IEEE International Conference

on Robotics and Automation (May 2009): 4239-4245.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5152674.

39. Lin, Q., J.W. Burdick, and E. Rimon. “A stiffness-based quality measure for

compliant grasps and fixtures.” IEEE Transactions on Robotics and

Automation 16, no. 6 (2000): 675-688.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=897779.

40. Arora, J.S., Introduction to Optimum Design, Second Edition, Elsevier

Academic Press, 2004.

41. Rosen, Jacob, Jeffrey D Brown, Lily Chang, Mika N Sinanan, and Blake

Hannaford. “Generalized approach for modeling minimally invasive surgery as

a stochastic process using a discrete Markov model.” In IEEE transactions on

bio-medical engineering, 53:399-413, 2006.

http://www.ncbi.nlm.nih.gov/pubmed/16532766.

42. Hart, John C., George K. Francis, and Louis H. Kauffman. “Visualizing

quaternion rotation.” ACM Transactions on Graphics 13, no. 3 (July 1, 1994):

256-276. http://portal.acm.org/citation.cfm?doid=195784.197480.

43. Kuipers, Jack. B. Quaternions and Rotation Sequences. 2nd ed. Princeton, NJ:

Princeton University Press, 1999.

44. Lefebvre, Tine, Herman Bruyninckx, and J. De Schutter. “Polyhedral contact

formation identification for autonomous compliant motion: Exact nonlinear

78

Bayesian filtering.” Robotics, IEEE Transactions on 21, no. 1 (2005): 124–

129.

45. Yamada, H. Strength of Biological Material, Baltimore, William&Wilkins

(1970)

46. Y.C. Fung Biomechanics: Mechanical Properties of Living Tissues, New

York, NY, Springer (1993)

47. Bajo, A., Goldman, R. E. & Simaan, N (2011). Configuration and Joint

Feedback for Enhanced Performance of Multi-Segment Continuum Robots. In

2011 IEEE International Conference on Robotics and Automation, pages

2905-2912. Shanghai,

79

VII Appendix A: Code

VII.A Simulation Code:

 The following includes all the code in the red-triangle simulations used in section

IV of the thesis.

VII.A.1 Simulation.m

Purpose: The main simulation file, starts the planar red triangle simulation

Associated files: sim2D.m

Notes: By itself, this code does little to nothing. It simply calls a set of functions, each

of which perform a specific macro-task (such as calculating ̂, or graphing the

simulation) from the general safe manipulation algorithm. These functions are methods

in the sim2D class, which takes care of all the “under the hood” specific code.

clear
close all
clc
%Define Starting and goal configurations

start = [63.3013, 36.5470, 0, 0, 0, pi/2]';
goal = [100, 100, 0, 0, 0, 1.6]';

%Create a simulation object
PP = sim2D(start, goal);

%Set Path Planner Parameters
PP.alpha = [1/20; .001; 20; 5];
PP.controller = [.3, -.3, .05];

%Misc. variables
df = 10; %Discretization factor

80

t = 1;

while PP.convergence == 0

 %% Evaluate Tasks and Constraints at current configuration
 %------------------------------------
 constr = PP.EvaluateConstraint(1);

 if PP.constraint > 0
 PP.RedFlag;
 PP.backtrack;
 end

 task = PP.EvaluateTask(1);

 if task < PP.eps
 PP.convergence = 1;
 break
 end

 %--------------------------------------

 %% Evaluate motion direction

 % Update the node directions every df steps
 if (floor(PP.k/df) == PP.k/df || PP.k == 1)

 % Markov Model Behavior selection

PP.markov_update;

%Behavior Selection
 switch PP.markov_state

 case 3 %Backtracking
 p = PP.dim_weight*(PP.safe_points(:,PP.z-1) - PP.cnfg);
 p = p/norm(p);
 PP.backtrack;

 case 2 %Random Walk

 p = zeros(6,1);

 p(1) = rand-.5;
 p(2) = rand-.5;
 p(6) = (rand-.5)*PP.alpha(1);

 p = p/norm(p);

 PP.GenerateSafePoint

81

 case 1 %Normal State

 p = PP.deriv;

 PP.GenerateSafePoint

 end

 %% Calculate control velocity

 %Calculate movement from current configuration
 %---
 kd = PP.controller(1);
 kv = PP.controller(2);
 ki = PP.controller(3);

 v = PP.v;
 d = PP.distance;

 v = kd*d + ki*PP.intd + kv*v;
 v = v*1/(norm(constr))^.3;

 if v > 10
 v = 10;
 end

 PP.v = v;
 %--

 end

 %% Update, Increment Simulation

 %Graphical output of current configuration
 PP.graphsim;

 %Increment simulation
 %---
 %Calculate the steepest descent direction

 %Calculate the next movement step
 PP.cnfg = PP.cnfg + PP.v*PP.dt*p;

 %Integrate the distance, d
 d = PP.distance;
 PP.intd = PP.intd + d*PP.dt;

 M(PP.k) = getframe(1);

82

 %Increment the simulation counter
 PP.k = PP.k + 1;

 %---

end

VII.A.2 Sim2D.m

Purpose: Contains all the data, under-the-hood functions necessary to run the red

triangle simulation

Associated files: sim2D.m

Notes: Don’t read this file first. Each of the functions in Sim2D is specifically

referring to some point in the simulation.m code.

classdef sim2D < handle
 % Creates a sim2D object, which is a simulation of a planar robot

being
 %manipulated within a flexible environment.

 % All the parameter data is stored in the object properties, and

can be
 % called upon by the class methods

 % The sim2D object replaces the individual simulation .m files

used in
 % previous versions

 properties (SetAccess=protected)

 %The following set of properties fully define the unknown
 %parameters of the elastic environment in which the 2d object

is
 %being manipulated

 %Defines position of the ground links in 3 dimensional

vectors

83

 Links = [63.3013, 109.6410, 0;
 0, 0, 0;
 126.6026, 0, 0]';

 %Defines the spring constant and free length of the springs
 kc =[1.39; 1.39; 1.39];
 lo =[50; 50; 50];
 end

 properties (SetAccess= public)

 %These define the starting and ending configurations for the

robot
 cnfg = [0; 0; 0; 0; 0; 0];
 goal = [10; 10; 0; 0; 0; .5];

 %This defines the geometry of the robot
 robot = 23.02*[cosd(0), sind(0), 0;
 cosd(120), sind(120), 0;
 cosd(240), sind(240), 0]';

 %A list of the different safe points and red flags currently

stored
 %within the simulation
 safe_points = zeros(6,1);
 red_flags = zeros(6,1);

 %The dimensional weighting scheme
 dim_weight = diag([1; 1; 0; 0; 0; 1/23]);

 %Controller and task/constraint law parameters,
 %which determine the scaling of the potential field and the
 %behavior of the motion planner PID controller, respectively
 controller = [1.6 -1 1];
 alpha = [0, 0, 0, 0];

 %General Simulation variables
 dt = .05; %Time step
 eps = .1; %Convergence tolerance
 k = 1; %Simulation step counter

 constraint = 0; %Binary constraint value, representing
 convergence = 0; % 'has a constraint been

violated yet?'

 %History variables, storing relevent force and position
 %to memory
 xi_hist = [0, 0, 0, 0, 0, 0];
 We_hist = [0, 0, 0, 0, 0, 0];

84

 K_hist = zeros(6,6,1);

 %Misc. variables
 intd = 0;
 v = 0;
 z = 0;
 y = 0;
 markov_state = 1;

 end

 methods

 function PP = sim2D(start, goal)
 PP.cnfg = start;
 PP.goal = goal;
 end

 function setspringparam(PP,Links, kc, lo)
 PP.Links = Links;
 PP.kc = kc;
 PP.lo = lo;
 end

 function We = Force_Measurement(PP)

 % ----------------- Position of Robot -------------------

 xi = PP.cnfg;
 % Defines Rotation matrices based on the euler angles

specified in th =[thx, thy, thz]'
 Rx = [1 0 0;
 0 cos(xi(4)) -sin(xi(4));
 0 sin(xi(4)) cos(xi(4))];

 Ry = [cos(xi(5)) 0 sin(xi(5));
 0 1 0;
 -sin(xi(5)) 0 cos(xi(5))];

 Rz = [cos(xi(6)) -sin(xi(6)) 0;
 sin(xi(6)) cos(xi(6)) 0;
 0 0 1];

 %Rotate about x,y, then z world frame axes
 R = Rz*Ry*Rx;

 %Orients the triangle w.r.t. the world frame based on

input euler angles
 bi = R*PP.robot;

 %Defines the vertices of the triangles

85

 xii = [bi(:,1) + xi(1:3,1), bi(:,2) + xi(1:3, 1), bi(:,3)

+ xi(1:3, 1)];

 %The length vector for each spring
 li = xii - PP.Links;

 %The normalized length vector for each spring
 si = [li(:,1)/norm(li(:,1)), li(:,2)/norm(li(:,2)), li(:,

3)/norm(li(:, 3))];

 %--------------------- Force Calculation ----------------

 %Defines Jacobian and Force Vectors
 Jp = [si(:, 1) , si(:, 2) ,

si(:, 3) ;
 cross(bi(:,1),si(:,1)), cross(bi(:,2),si(:,2)),

cross(bi(:,3), si(:,3))];

 %Calculate tau vector (Spring forces)
 tau = [PP.kc(1)*(norm(li(:,1)) - PP.lo(1));
 PP.kc(2)*(norm(li(:,2)) - PP.lo(2));
 PP.kc(3)*(norm(li(:,3)) - PP.lo(3))];

 %Calculates the reaction spring wrench
 We = -Jp*tau;
 end

 function constraint = EvaluateConstraint(PP, i)

 %Evaluates the Constraint function based on the desired

input
 %constraint law. If i == 1, then the first set of rules

is used
 %to define the constraint function, and if i== 2, the

second
 %set of rules is used, etc...

 if i ==1

 % Conservative force constraint
 %-------------------------------------
 We = Force_Measurement(PP);
 We(6,1) = 0;
 F = norm(PP.dim_weight*We);

 Fcrit = 50; %N
 constraint_1 = PP.alpha(3)/(Fcrit - F);
 %---

86

 % Avoid Red flags constraint
 %---------------------------------

 % If there are any red flags
 if PP.y > 0
 dist_to_flag(1:PP.y,1) = inf;
 constraint_2 = 0;

 for j = 1:PP.y
 %Calculate the distance from the current

configuration to
 %Each red flag configuration
 dist_to_flag(j,1) = norm(PP.dim_weight*(PP.cnfg -

PP.red_flags(:,j)));
 %Add the potential field for each red flag

 % Add exception for negligiable distances
 if dist_to_flag(j,1) < .01
 constraint_2 = constraint_2 + 10;
 else
 constraint_2 = PP.alpha(4)/dist_to_flag(j,1)^.4 +

constraint_2;
 end
 end

 constraint_2 = constraint_2*PP.EvaluateTask(1);
 % If no red flags, no constraint

 else

 constraint_2 = 0;

 end

 %--

 %Constraint Law
 constraint = constraint_1 + constraint_2;

 %Defining the binary constraint
 PP.constraint = (F>Fcrit);

 else
 constraint = 0;
 end
 end

 function task = EvaluateTask(PP, i)

 %Evaluates the task function, which defines the set of
 %attractive potential fields centered about the goal.

87

 if i==1
 dv = (PP.dim_weight)*(PP.goal - PP.cnfg);
 d = norm(dv);
 task = .5*d^2;
 end
 end

 function J = J(PP)

 %The function J simply adds the Task function on top of

the
 %Constraitn function, to construct the total artificial
 %potential field

 J = EvaluateTask(PP,1)+ EvaluateConstraint(PP,1);

 end

 function [p, dJ_dx, K] = deriv(PP)

 %The following function performs a simple routine which
 %perturbs the robot along each dimension of the

configuration,
 %in order to evaluate the derivative of the artificial
 %potential field.

 dJ_dx = zeros(6,1);
 p = dJ_dx;

 J_current = J(PP);
 We_current = Force_Measurement(PP);

 for i = 1:6
 %Move along each dimension of xi
 dxi = zeros(6,1);
 delta = .1;

 %Adjust for angular displacements
 b = norm(PP.robot(:,1));
 if i > 3
 delta = delta/b;
 end

 dxi(i,1) = delta;

 PP.cnfg = PP.cnfg + dxi;

88

 dJ_dx(i,1) = (J(PP) - J_current)/delta;
 We = Force_Measurement(PP);

 K(:,i) = (We - We_current)/delta;

 PP.cnfg = PP.cnfg - dxi;
 end

 dJ_dx = PP.dim_weight*dJ_dx;

 p = -dJ_dx/norm(dJ_dx);
 end

 function v = Position_Controller(PP)

 kd = PP.controller(1);
 kv = PP.controller(2);
 ki = PP.controller(3);
 d = PP.distance(PP);
 v = PP.v;

 v = kd*d + ki*PP.intd + kv*v;
 PP.v = v;

 end

 function d = distance(PP)
 d = norm(PP.dim_weight*(PP.goal-PP.cnfg));
 end

 function graphsim(PP)

 % Graphing function graphs out the environment, triangles,

etc..

 % ----------------- Position of Robot ---------------------

 xi = PP.cnfg;

 % Defines Rotation matrices based on the euler angles

specified in th =[thx, thy, thz]'
 Rx = [1 0 0;
 0 cos(xi(4)) -sin(xi(4));
 0 sin(xi(4)) cos(xi(4))];

 Ry = [cos(xi(5)) 0 sin(xi(5));
 0 1 0;
 -sin(xi(5)) 0 cos(xi(5))];

 Rz = [cos(xi(6)) -sin(xi(6)) 0;

89

 sin(xi(6)) cos(xi(6)) 0;
 0 0 1];

 %Rotate about x,y, then z world frame axes
 R = Rz*Ry*Rx;

 %Orients the triangle w.r.t. the world frame based on

input euler angles
 bi = R*PP.robot;

 %Defines the vertices of the triangles
 xii = [bi(:,1) + xi(1:3,1), bi(:,2) + xi(1:3, 1), bi(:,3)

+ xi(1:3, 1)];

 %---

 % Defines Rotation matrices based on the euler angles

specified in th =[thx, thy, thz]'
 Rx = [1 0 0;
 0 cos(PP.goal(4)) -sin(PP.goal(4));
 0 sin(PP.goal(4)) cos(PP.goal(4))];

 Ry = [cos(PP.goal(5)) 0 sin(PP.goal(5));
 0 1 0;
 -sin(PP.goal(5)) 0 cos(PP.goal(5))];

 Rz = [cos(PP.goal(6)) -sin(PP.goal(6)) 0;
 sin(PP.goal(6)) cos(PP.goal(6)) 0;
 0 0 1];

 %Rotate about x,y, then z world frame axes
 R = Rz*Ry*Rx;

 %Orients the triangle w.r.t. the world frame based on

input euler angles
 bi_goal = R*PP.robot;

 %Defines the vertices of the triangles
 xii_goal = [bi_goal(:,1) + PP.goal(1:3,1), bi_goal(:,2) +

PP.goal(1:3, 1), bi_goal(:,3) + PP.goal(1:3, 1)];

 figure(1)
 hold off
 plot(0, 0)

 hold all
 plot([xii(1,:) xii(1,1)],[xii(2, :) xii(2,1)], 'r-*')
 plot([xii_goal(1,:) xii_goal(1,1)],[xii_goal(2, :)

xii_goal(2,1)], 'b-*')

90

 plot(PP.Links(1, :),PP.Links(2, :), 'sb')

 axis equal
 plot([PP.Links(1,1) xii(1,1)],[PP.Links(2,1) xii(2, 1)],

'g')
 plot([PP.Links(1,2) xii(1,2)],[PP.Links(2,2) xii(2, 2)],

'g')
 plot([PP.Links(1,3) xii(1,3)],[PP.Links(2,3) xii(2, 3)],

'g')
 xlabel('mm')
 ylabel('mm')

 % Plot Safe Points

 plot(PP.safe_points(1,:), PP.safe_points(2,:), 'b-*');

 % Plot Red flags
 if PP.y > 0
 plot(PP.red_flags(1, :), PP.red_flags(2, :), 'r*');
 end

 end

 function GenerateSafePoint(PP)

 %This function plots a new point along the trajectory

 PP.z = PP.z+1; %Increment the safe point count
 PP.safe_points(:,PP.z) = PP.cnfg; % Add current config

as a safe point

 end

 function backtrack(PP)
 % This function effectively performs backtracking to the
 % previous node

 % Brute force move to previous node
 PP.cnfg = PP.safe_points(:, PP.z);

 % Delete the last safe point, unless there is only one

safe
 % point
 if ~(PP.z == 1);
 PP.safe_points(:,PP.z) = []; % Eliminate from stored

values
 PP.z = PP.z-1; % Decrement counter

91

 end
 end

 function RedFlag(PP)
 %Define red flags counter

 % Do not plant a red flag while backtracking
 if ~(PP.markov_state == 3)

 % If no red flags
 if PP.y == 0

 % Define initial red flag
 PP.y = PP.y+1;
 PP.red_flags(:,PP.y) = PP.cnfg;

 else

 % Otherwise, see if any nearby red flags
 %===
 dist_to_red_flags = zeros(PP.y, 1);

 for j=1:PP.y
 dist_to_red_flags(j,1) = norm(PP.dim_weight*(PP.cnfg-

PP.red_flags(:,j)));
 end

 [dist, point_number] = min(dist_to_red_flags);
 %===

 % if no red flags within 4 units of current config, define

new red
 % flag
 if (dist > 4)
 PP.y = PP.y+1;
 PP.red_flags(:,PP.y) = PP.cnfg;
 end

 end

 end

 % Set markov state to Backtrack
 PP.markov_state = 3;

 end

 function K = stiffness(PP, xi)

92

 xi_old = PP.cnfg;
 PP.cnfg = xi;
 [p, J, K] = PP.deriv;
 PP.cnfg = xi_old;
 end

 function new_state = markov_update(PP)

 %Purpose of the function is to update the Markov Chain in

the
 %sytem

 %Obtain the current state of the system
 current_state = PP.markov_state;

 %Obtain random number, to decide new state
 p = rand;

 %Assign new state based on the current state, random

number
 switch current_state

 % Normal state
 %-------------------------
 case 1
% disp(num2str(p))
 % 90% chance of staying in normal state
 if p < .9

 new_state = 1;

 else % 10% chance of moving to random sate
 disp('random state')
 new_state = 2;

 end

 % Random State
 %---------------------------

 case 2

 % 60% chance of staying in random state
 if p < .6

 new_state = 2;

 else % 40 % chance of normal state

 new_state = 1;

93

 end

 %Backtracking State
 %------------------------------------
 case 3

 % 60% chance of staying in backtracking state

 if p < .6

 new_state = 3;

 else % 10% chance of random state

 new_state = 1;

 end

 end

 PP.markov_state = new_state;

 end

 end

end

VII.B Robot Control Code

94

Overview:

 The Puma560 robot control code, shown below in figure A.1, involves 3 primary

subsystems:

 Puma560

o Sends motor control signals to actual Puma560 robot (via control/Daq

cards)

o Recieves potentiometer and encoder readings from Puma motors

 Calculates Robot’s joint angles

 PD + Inverse Dynamics

o Uses computed torque to compensate for robot dynamics

o PD controller for joint-level position control

 Trajectory planner

o Determines desired trajectory in joint space

 Joint positions, velocities, accelerations

o Has multiple modes, including cartesian control and position control

Figure A.1 Puma560 main control code

VII.B.1 Non-Application-Specific code

q,qd

Dev ices

brake release

q des qd des qdd des

Trajectory Planner

? ? ?

Puma 560

q des qd des qdd des

q curr qd curr

u [V]

PD + Inverse Dynamics

? ? ?

Enable Motors

Dev ices

Devices

? ? ?

Brake Release

[V]

q [rad]

qd [rad/s]

95

 Below is a set of Simulink blocks/subsystems which are not specific to the

applications presented in this thesis, but are rather for general kinematic control of the

robot.

PD + Inverse Dynamics:

This code was written by lab member Andrea Bajo, in 2009

Figure A.2 is a diagram of the PD + Inverse dynamics block. It has 3 general

components

 Determining the appropriate control signal

 Determining the system dynamics

 Converting control signal to voltage

96

Figure A.2: PD+ Inverse dynamic block of the Puma 560 control code

Puma560 block

This code was also written by Andrea Bajo in 2009. Figure A.3 below is the Puma560

block, which interfaces with the actual robot. It can be broken down into 3 sections:

97

 Motor signals to robot

 Joint signals from robot

 Processing Joint signals

Figure A.3: Puma560 Interface subsystem

Trajectory Planner Block

The trajectory planner block switches the Puma between several different

control modes (Cartesian control, Joint Space control, etc..). The code was

designed by Sam Bhattacharyya in 2011, with some original sets of code in the

first two subsystems written by Andrea Bajo and Francesco Senni. The last

subsystem, Mode 4, contains all code used to implement the algorithms presented

in the thesis.

98

Figure A.4: Puma trajectory planner

VII.B.2 Application specific code

Autonomous manipulation section

 In the Mode 4 subsystem, there are 3 main components. The first calculates the

states from the force sensor, joint positions. The middle section is the Path Planner,

and it directly implements the autonomous manipulation algorithm, as discussed in this

thesis. It takes in the system states , and outputs a task-space twist . The final

section converts the task space twist into a desired joint position, velocity and

acceleration.

1

q des

qd des

qdd des

1/z

1

2

3

4

Multiport

Switch

q, qd

F
q des qd des qdd des

Mode 4: Autonomous Manipulatiom

q, qd

F

q des qd des qdd des

Mode 3: Force Following

q, qd

brake release

reset

Omni

q des qd des qdd des

Mode 2: Task Space

q, qd
q qd des qdd des

Mode 1: Joint Space

1

Control Mode

== 4

== 3

== 2

== 1

3

brake release

2

Devices

1

q,qd

<Phantom Omni>

<Gamma Force Sensor>

99

Figure A.5: Puma Path Planner

Path Planner

The Path Planner is the primary subsystem, which implements the algorithms/featured

discussed in the autonomous navigation/stiffness exploration sections of this

thesis.

 At first glance, it looks complex, however it can be broken down very easily.

 The Path planner block acts as a hub for 5 subsystems, each of which represent a

mode of operation

o In the same way that the Trajectory planner is a hub for 4 control modes

 These subsystems reside within a switch, which is controlled by the behavior

selector block (decides which subsystem should be enabled at the current time

step)

 The subsystems are activated in a specific sequence: 1, 2, 3 and finally 4.

Subsystem 5 is only activated under special circumstances.

 These subsystems all output a desired end effector twist

o Default State

 As soon as the robot switches to Mode 4: autonomous

manipulation, the Default state is enabled

100

 The default state simply output’s a desired manipulator twist of 0,

keeping the robot stationary

o Initialization State

 This state simple perturbs the robot along each dimension, and

measures the changes in end effector wrench (to calculate the

initial K)

o Autonomous navigation

 Performs the actual path planning code

 Is similar to the planar path planning code

o Telemanipulation state

 After the robot achieves a given manipulation goal, it switches to

the telemenipulation state, which is also a



Figure A.6: Autonomous navigation Path Planner

1 twist
z

1

1

2

3

4

5

Twist Switch

Manual Twist

Telemanipulation

Conf ig

Plot Zeta

Mode

1

2

3

4

5

Mode Selection

Reset

Conf ig

Perturb Twist

Initialization Complete

Wrenches

Initialization Procedure

[CFG]

[WP]

[RF]

[K]

[L]

[W]

[CFG]

From9

[CFG]

[CFG]

[WP]

[RF]

[K]

[CFG]

[L]

[W]

C
o
n
fi
g

K
o

M
o
d
e

K
_
e
s
t

R
e
d
 F

la
g
s

S
a
fe

 P
o
in

ts

Env explore

Out1

Default

Logic

Constraint

Mode

Behavior Selector

Conf ig

Way Points

Backtrack

Recov ery mode

Backtrack Procedure

Conf ig

K

Red f lags

Auto Twist

Conv ergence

Autonomous Navigation

4

w_e

3

Reset

2

Enable

1

zeta

twist

Logic

101

Environmental Exploration:

Designed to run concurrentely with the regular code, it had 3 very simple subsystems:

 Way points

o Stores the path history, termed here “way points”, as a set of nodes in 7-

dimensional space.

 Update K

o Takes care of the K-updates, using the BFGS algorithm presented in this

thesis

 Eigenscrew System

o Does the eigenscrew decomposition to identify principle axes

Autonmous navigation code

The following code is the core of the path planning algorithm, and is similar to the

code used in the planar robot simulation. It takes in the current pose, wrench, K and set of

red flags, and determines the output twist. The code to do shown below:

function [p, e, convergence, task_curr, constraint_curr] = fcn(zeta,

w_e, K, zeta_goal, w_cr)
%#eml

3

Red Flags

2

Safe Points

1

K_est

Conf ig

way _conf

red_f lags

saf e_points

Waypoint

W

Way Conf

K

n

Update K

K

n

Eigenscrew

Enable

2

K_in

1

Config

102

% Define Initial Constants
%--
alpha = .043;

Gamma = diag([1, 1, 0, 0, 0, 0, alpha]);

% Dimensionality weighting matrix
% First three entries are in cartesian coord
% Last three entries are angular perturbations
Gamma_six = diag([1, 1, 1, 5, 5, 5]);

%The curent
eps = .005^2;

% 5mm = theoretical perturbation
delta = .02;
%---

%Calculate the current J value
J_curr = task(zeta, zeta_goal, Gamma) + constraint(w_e, w_cr,

Gamma_six, 0);
% J_curr = task(zeta, zeta_goal, Gamma);

task_curr = task(zeta, zeta_goal, Gamma);
constraint_curr = constraint(w_e, w_cr, Gamma_six, 0);

if task_curr < eps
 convergence = 1;
else

 convergence = 0;
end

dJ_dx = zeros(6,1);

for i = [1, 2, 6]

%Calculate the hypothetical next move
%---
dxi = zeros(6,1);
dxi(i,1) = delta;
dxi = (Gamma_six)*dxi;

%Calculate the change in each property
%--
dw_e = K*dxi; %Calculate change in wrench

103

dE = w_e.'*dxi; %Calculate change in elastic energy
dzeta = proppose(zeta, dxi); %Calculate the change in pose

%Calclate the gradient
dJ_dx(i,1) = (task(dzeta, zeta_goal, Gamma) + constraint(w_e + dw_e,

w_cr, Gamma_six, dE) - J_curr)/norm(dxi);
% dJ_dx(i,1) = (task(dzeta, zeta_goal, Gamma) - J_curr)/norm(dxi);
end

p = -dJ_dx/norm(dJ_dx);

p(4:6,1) = p(4:6,1);

e = distance(zeta, zeta_goal, Gamma);

end

function task = task(zeta, zeta_goal, Gamma)

d = distance(zeta, zeta_goal, Gamma);

task = 1/2*d^2;

end

 function d = distance(zeta, zeta_goal, Gamma)

 dr = zeta_goal(1:3, 1) - zeta(1:3, 1);

 dq = qmult(zeta_goal(4:7).', qinv(zeta(4:7).')).';

 dzeta = [dr; dq];

104

 d = sqrt(dzeta.'*Gamma*dzeta);
 d = norm(d - .014);

 end

function constraint = constraint(w_e, w_cr, Gamma_six, E)

 %Radius of influence
 roi = .25; %m

 %Calculated weighted wrench
 w_weighted = sqrt(norm((Gamma_six*w_e)));

 %Calculate the correct wrench
 if w_cr < w_weighted
 constraint = 10^6;
 else
 constraint = abs(roi/(w_cr - w_weighted));
 end

 constraint = constraint + .1*E/w_cr;

end

function dzeta = proppose(zeta, dxi)
%The purpose of this function is to propogate the pose, based on the

input infinitessimal displacement given by dxi

%Calculate the angle of displacement
th = norm(dxi(4:6,1));

if th == 0
 dq = [1, 0, 0, 0];

else
 % Rotational axis
 o = (dxi(4:6).')/th;

 %Displacement quaternion
 dq = [cos(th/2), o*sin(th/2)];

end

% Current quaternion
qcurr = zeta(4:7)';

% Propogate the current quaternion, by rotation in world frame
qprop = qmult(dq, qcurr);

105

rprop = zeta(1:3) + dxi(1:3);

dzeta = [rprop; qprop.'];

end

VII.C Stiffness Code

VII.C.1 Process_K.m

Purpose: The point of this code was to calculate the SPSD approximates of K, and to

then calculate the constraint vectors from those SPSD approximates, using a set of raw

stiffness matrices K. Each K matrix was saved in a different .mat file, obtained directly

from control code.

Associated files: A set of .mat files, no other code needed to function

for i = 1:15

% Load the .mat files
load(['Foam_' num2str(i) '.mat'])

% SPSD Approximate
%----------------
K_i = (-W)*T^-1;

B = (K_i + K_i.')/2;

[Z, L] = eig(B);

H = Z*L*Z.';

106

K = (B+H)/2;
%------------------

% Principle Axis Decomposition
%---------------------------
A = K(1:3, 1:3);

B = K(1:3, 4:6);

D = K(4:6, 4:6);

Kv = A;

Kw = D - B.'*A^-1*B;
%-------------------------

% Eigenvalues
%-----------------------
d = abs(eig(Kv));

d = sort(d, 'descend');

r = abs(eig(Kw));
r = sort(r, 'descend');

%Tranlational
Tr(:, i) = d';

%Rotational
Ro(:, i) = r';
%---------------------------
end

VII.C.2 Particle Filter.m

Purpose: To estimate the optimal classification for a set of constraint vectors

Associated files: clusterfy.m, CU.m

% Particle Filter

107

% The purpose of to classify constraint vectors using clustering,

which is
% optimized via particle filtering

clear
close all
clc

% Load the data
load signatures
load Locations

% Number of classes
k = 2;

% Number of examples
E = 15;

% Particle Filter sample size
n = 100;

% Classification matrix, each row is the classification for a

particle
classification = zeros(n, E);

% Utility vector corresponding to each particle
utility = zeros(n,1);

% Load all examples into static variable
e = Tr; % Tr from signatures file

% Number of Filters
REP = 10;

% Initial random classification
%---

for i = 1:n

 % Generate a set of random classification

 for j = 1:E
 %For each example, assign a random class
 classification(i,j) = ceil(rand*k);
 end
end

%---

108

for reps = 1:REP

 for i = 1:n

 % Locally optimize each classification

 [classification(i,:)] = clusterfy(classification(i,:), e);

 utility(i,1) = CU(classification(i,:), e);
% % Evaluate the utility of each classification
% utility(i,1) = CU(classification(i,:), e);

 end

 %Randomized elimination
 %===

 norm_factor = max(utility(:,1));

 % Probability of elimination
 pdf = utility(:,1)/norm_factor;

 % Elimination vector
 elimination_vector = zeros(n,1);

 for i = 1:n

 p = rand;

 if pdf(i,1) > p

 elimination_vector(i,1) = 1;

 end

 end

 % Replace eliminated variables with new random classifications

 for i = 1:n

 if elimination_vector(i,1)

 for j = 1:E
 %For each example, assign a random class
 classification(i,j) = ceil(rand*k);
 end

109

 end
 end

end

% Graph the results
figure(1)
hold on

for j = 1:15
% Graph each node

% Decide the color based on it's class
%--
 clss = optimal(1, j);

 switch clss

 case 1
 clr = 'b';

 case 2

 clr = 'r';
 end
%--

% Plot
 spcs = [clr 'o'];
 plot3(e(1,j), e(2,j), e(3,j), spcs, 'MarkerSize', 5, 'LineWidth',

4);
end

grid on

VII.C.3 clusterfy.m

110

Purpose: To locally optimize a set of clusters, designed to be operated with a particle

filter, with a set of classifications (particles).

Associated files: Particle_Filter.m

function [classifications, utility] = clusterfy(classification,

examples)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

% Number of examples
E = length(classification(1,:));

% Number of particles
n = length(classification(:, 1));

sse = zeros(n, E);

utility = zeros(n,1);

% For each particle
for i = 1:n

% Number of classes
k = max(max(classification(i,:)));

% Class count variable
clss_cnt = zeros(k,1);

% Average value of each class
clss_av = zeros(3, k);

% k lists, one for each class
classes = zeros(k, 15);

reor = zeros(k,1);

111

 % Locally optimize each particle
 for t = 1:1

% First, populate the class lists
%----------------------------------

 for j = 1:E

 clss = classification(i, j);

 clss_cnt(clss) = clss_cnt(clss) + 1;

 classes(clss, clss_cnt(clss)) = j;

 end
%--------------------------------------

% Find the class average
%---
 for clss = 1:k

 %Clear the class average
 clss_av(:,clss) = 0;

 for j = 1:clss_cnt(clss)

 % the current node n, in class i
 node = classes(clss, j);

 %Class average
 clss_av(:,clss) = clss_av(:,clss) + examples(1:3, node);

 end

 clss_av(:, clss) = clss_av(:, clss)/clss_cnt(clss);

 end

 %--

 % Assign each node to new class
%--------------------------------------

 for j = 1:15

 %For the current node

112

 %Find best fit, for node to class
 %-------------------------------
 for clss = 1:k

 v = examples(1:3, j) - clss_av(:,clss);

 reor(clss) = v.'*v;

 end

 [y, clss] = min(reor);

 %-------------------------------------

 %Re-assign node to class

 classification(i,j) = clss;

 end

 % Examples improved one step for one particle

 end

 % Examples improved all steps (locally optimized), for one

particle

end

 % Examples locally optimized, for all particles

 classifications = classification;

end

113

VII.C.4 CU.m

Purpose: To calculate the fitness function for a particular classification of a set of

examples

Associated files: Particle_Filter.m

function [utility] = CU(classification, examples)

% Number of examples
E = length(classification(1,:));

% Number of classes
k = max(max(classification(1,:)));

% Class count variable
clss_cnt = zeros(k,1);

% Average value of each class
clss_av = zeros(3, k);

% k lists, one for each class
classes = zeros(k, 15);

% First, populate the class lists
%----------------------------------

 for j = 1:E

 clss = classification(1, j);

114

 clss_cnt(clss) = clss_cnt(clss) + 1;

 classes(clss, clss_cnt(clss)) = j;

 end
%--------------------------------------

% Find the class average
%---
 for clss = 1:k

 %Clear the class average
 clss_av(:,clss) = 0;

 for j = 1:clss_cnt(clss)

 % the current node n, in class i
 node = classes(clss, j);

 %Class average
 clss_av(:,clss) = clss_av(:,clss) + examples(1:3, node);

 end

 clss_av(:, clss) = clss_av(:, clss)/clss_cnt(clss);

 end
 %--

 % Find the sum of squared error
 %--------------------------------------

 sse = 0;

 for j= 1:15

 clss = classification(1,j);

 v = examples(1:3, j) - clss_av(:, clss);

 sse = sse + v.'*v;

 end

 %--
 utility = sse;

end

115

VIII Appendix B: Hardware

VIII.A Gripper

VIII.A.1 Gripper version 1.0

In order to manipulate objects and evaluate stiffness, some type of gripper needs

to be mounted on top of the ATI Gamma Force sensor. The image below shows the Pro-

Engineer model for a custom gripper, developed by Sam Bhattacharyya in June 2011,

including an attachment to the force sensor.

This gripper is actuated by a large push style solenoid, McMaster Part# 69905K48,

and the solenoid is housed within the large cylindrical portion of the gripper. The

solenoid has a stroke of approximately 20mm while assembled within the gripper, and the

gripper is able to grip down with a force of ~10 N.

 The gripper is almost entirely manufactured out of ABS, via rapid prototyping.

The associated files are available at arma.vuse.vanderbilt.edu/mediawiki

Figure A.8: Puma Gripper Pro-E model, V 1.0

116

Electronics setup for gripper + relay

The solenoid is a simple on/off mechanism that pushes/extends a rod outwards when a

specified voltage, at high enough current, applied across the solenoid’s leads (polarity

doesn’t actually matter). The resulting control circuit is actually quite simple, and is

detailed in the image to the right.

Below is a table including the parts used in the electronic setup, which were ordered

from OnlineComponents.com

Part number Description

1-1393788-6 5V 5A Relay

2N3392 NPN Transistor

1.5KE100CA/54 Diode

RL020S222G Resistor

These components were organized into the following circuit

117

Figure A.9: Puma gripper v 1.0 relay circuit

VIII.A.2 Gripper 2.0

Design:

Due to a lack of gripping force, and limited functionality, the Puma's Gripper 1.0 was

significantly redesigned. The new design uses a motor and worm-gear drive instead of a

solenoid as the principle actuation mechanism. This new gripper should theoretically

output a gripping force of 86 Newtons, and is much more flexible in terms of gripper-

head design. This design was created by Sam Bhattacharyya on October 14, 2011, and

was intended for the Global Stiffness exploration project, but designed for general

purpose use.

Below is an attached Pro-Engineer image of the design. The housing was designed to

be made using laser cut parts, and to be attached to the ATI-Gamma force sensor, via a

custom rapid prototyped attachment.

118

Figure A.10: Puma gripper v 2.0 Pro-Engineer model

Specifications

Overview

 Gripping Force: 86.4 N

 Actuation time: 1.375 s

 Weight: .8824 kg

 Center of Grip: 185 mm along Force sensor Z axis

Force analysis

Motor specifications for Pololu 29:1 Metal Gear Motor

 Operating Voltage: 6V

 Free run speed: 440 rpm

 Stall Current: 3.3 Amps

 Stall Torque: .18Nm

Transmission Specification (Worm drive x1)

 Gear ratio: 60:1

 Worm Gear SDP-SI Part # A 1B 6MYH08R060

o Module: .80

o # of Teeth: 60

o Gear Ratio: 60:1

o Pitch Diameter: 48.00 mm

119

 Worm SDP-SI Part # A 1Y 5MYK08RA

o Module: .8

o Pitch diameter: 10.4mm

o Leads: 1

o Hub Configuration: 5mm bore, with set screw

End effector Specification

 Lever arm: 75 mm

 Range of motion: 0 - 65 mm

 Angular range of motion:0 - 110 degrees (between arms), 0 - 55 degrees per arm

 Gripper force: 86.4 N

o Force = [(Lever Arm)^-1]*[(Motor Torque)*(Gear Ratio)*(Gear

Efficiency)]

o Force = (.075 m)^-1*(.18 Nm)*(60)*(.6)

 Actuation time: 1.375 seconds

o Angular Speed = (Motor Speed)*(Speed Efficiency @ No load)*(Gear

Ratio)^-1

o Angular Speed = 40 deg/s = 6.6 rpm = (400 rpm)*(90%)*(60)^-1

o Actuation time = (Angular range of motion)/(Angular speed)

Weight:

The approximate weight of the gripper is .8843 kg, numerically calculated from

the Pro-Engineer model. With respect to the coordinate frame of the ATI Gamma Force

sensor, via the specified attachment block, the center of gravity of the Gripper is located

in the table below:

Coordi

nate

Distance

X 0 mm

Y -

9.003mm

Z 100.005

mm

120

Parts list

The table below shows the list of commercial parts which were ordered for this

particular project.

Parts
Quan

tity
Supplier Part #

Price
Each

Price
Total

Acrylic of Enclosure 6
Delvie\'s

Plastics
250-12x12 5 30

Potentiometer 2 Digikey
3382G-1-253GCT-

ND
2.17 4.34

Drive Shaft 1 McMaster 6112K37 8.04 8.04

Spacers 7 McMaster 93295A113 0.99 6.93

Spacers 6 McMaster 93295A088 0.37 2.22

Spacer bearing gripper
head

4 Mcmaster 92474A026 1.43 5.72

Gripper Head screws, 2-56 1 McMaster 91772A084 4.27 4.27

4 mm Pins 1 McMaster 93600A137 7.33 7.33

M2 x 10 1 McMaster 92005A033 3.23 3.23

Motor 1 Pololu 1163 19.99 19.99

5MM Bearing w/ pillow
block

2 SDP-SI A 7Z29MXS005 13.21 26.42

Worm 1 SDP-SI A 1Y 5MYK08RA 26.35 26.35

Bearing 2 SDP-SI A 7Y 5MF1304 9.23 18.46

Oldham Couping 1 SDP-SI A 5P15M3315 2.04 2.04

Oldham clamps 2 SDP-SI A 5A15M331504 9.01 18.02

Worm Gear 2 SDP-SI
A 1B

6MYH08R060
45.35 90.7

Total
Cost:

274.06

121

VIII.B Experimental Setup

VIII.B.1 Rigid triangle Experiment

 The main structure of the rigid triangle experiment was created via laser cutting of

¼’’ acrylic sheets of plastic.

Figure A.11: Rigid triangle fully setup, with spring

 Two primary pieces were cut out of acrylic: The frame itself (below, left), and the

rigid triangle (below, right).

Figure A.12: The rigid triangle experiment setup -components

122

 The length of the side of each triangle is , the length of the laser cut frame

was 1 ftx1ft, with a thickness a border thickness of 1’’.

The springs used were simple linear 1kN/m springs, McMaster Part number

9654K125. The unstreched length of each spring was 31.75mm, and there were two

springs, hooked in series, between each vertex of the triangle, and it’s fixed location on

the environment.

