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NOMENCLATURE 

 

Table 1: A list of symbols and nomenclature used in this publication 

Symbol Description 

  7 Dimensional gripper position/orientation in space 

  3-dimensional Cartesian position 

 ̂ 4-dimensional quaternion orientation 

  6 – dimensional twist vector in Cartesian space 

   Elastic reaction Wrench, exerted on the environment by the gripper 

  Local Stiffness Matrix 

E Elastic energy exerted on the elastic system by the gripper 

  Designation for Mechanical Constraint 

   Constraint Vector 

  Path Planner Optimization function 

  Diagonal Dimensional weighting matrix 

  Designation for Stiffness Region 

  Axis coordinate conversion matrix 

  Screw pitch 

  Eigenvalue 

  Principle Rotational Stiffness 

  Principle Translational Stiffness 

  Dimensional weighting factor 
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CHAPTER I 

 

I INTRODUCTION 

 

I.A Motivation 

 

Commercial surgical assistance systems, such as the Intuitive Surgical ™Da-

Vinci robotic system [1], continue to gain adoption in hospitals around the country, due 

to their ability to augment surgeons’ skills (e.g. dexterity and accuracy). Though 

significant progress has been made by existing commercial systems, they are almost 

exclusively teleoperated (i.e. they are passive manipulators); thus, they ultimately place 

the entire burden of safeguarding the anatomy on the surgeon. As the next generation of 

robotic surgical assistants (RSA) are developed, the functionality and complexity of 

emerging systems such as [2], [3], [4] calls for the development of  intelligent surgical 

robotic slaves that continuously gather information about their environment and actively 

participate in aiding the surgeon in completion of surgical subtasks. This vision of 

intelligent, semi-autonomous RSAs, which can coordinate with surgeons in performing 

menial tasks, will allow surgeons to focus on more crucial aspects of the operation, while 

seamlessly manipulating high DoF robots, and safeguarding the anatomy against trauma.  

An example of an application scenario is the manipulation of a kidney, by several 

robotic arms, during a nephrectomy procedure. An intelligent slave, which can determine 

the mechanical properties of the suspended organ in its current configuration, can then 

coordinate the motion of all arms to safely manipulate the suspended organ, while 
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allowing the surgeon to command movement of one arm or specify target retraction 

distance from the surgical site. Another application would the manipulation of organs 

within the abdominal cavity, in order to gain access to underlying tissues. A cooperative 

intelligent RSA would be able to determine the mechanical properties of the obstructive 

organ, and automatically move it in order to increase visibility of/open up access to the 

critical underlying tissue.  

 This aim of this work is three fold: To propose a framework for modeling and 

characterizing the mechanical properties of an unknown elastic system, to propose 

algorithms for safe autonomous manipulation of tissues in an unknown environment and 

finally to propose a methodology for detecting and identifying mechanical constraints of 

an arbitrary unknown elastic system. Used in tandem, these tools can enable an intelligent 

RSA to autonomously perform surgical subtasks without a priori knowledge of the 

workspace, while simultaneously mapping the elastic properties of the environment.  

 

I.B Problem Statement and Scope 

 

 For the purposes of this work, we consider a standard 6 degree of freedom (DoF) 

manipulator, with an attached robotic gripper, operating in an unknown and flexible 

environment. The robot operates in a full 6-dimensional Cartesian workspace, and is 

grabbing some semi-rigid object, which is suspended within an elastic environment, as 

shown in the figure below. Our definition of semi-rigid is such that, though the object 

internal deformation of the object is noticeable smaller than its elastic connections to the 

environment. Actual magnitudes will vary with the application, and the environment. 
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Figure 1: Semi-rigid object suspended in a flexible environment 

  

The environment is unknown, but it assumed to be stable, meaning that while 

surfaces may be deformable, any deformations will return back to equilibrium in the 

absence of disturbances.  

 

 

Figure 2: Unknown Environment  

 

We represent the gripper’s pose in space as        ̂   , a 7 dimensional vector 

including its 3-dimensional Cartesian position           , and it’s 4-dimensional 

orientation in quaternion space  ̂  [           ]
 
. The robot is assumed to be perfectly 

kinematically controllable, such that it can move in full 6-dimensional Cartesian space 

along any given twist           from any pose   to any other pose   . Furthermore, 
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the robot is equipped with 6-axis force sensing capability, and can measure the elastic 

wrench    acting on the robot by the environment. In this work, we are not considering 

any forces due to gravity, dynamics or friction, as the former two can easily be 

compensated for in practice, while the latter is kept out of the scope of this work, since 

models of internal organ friction are not available yet. .  

   The problem to be solved, therefore, can be stated as such: Given the initial 

object pose   , manipulate the object to a new pose   , while avoiding exceeding a 

critical force     at any point, on the unknown elastic system, and while minimizing the 

elastic energy exerted on the elastic system.  

This Thesis will present a solution to the aforementioned problem, and also 

answer the following 5 problems: 1) Develop a model to describe the elastic properties of 

the environment, 2) use     to identify the mechanical constraints of the system, 3) Use 

information to intelligently navigate the workspace, 4) Create a map of these constraints 

throughout the workspace and 5) Use the information to aid in future manipulation tasks 

and goals. These problems will be sequentially solved in chapter IV and V of this thesis.  

 

 

 
Figure 3: Theoretical Re-construction of the unknown environment  
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In order to develop a proper solution, a very basic assumption is made about the 

elastic system. Firstly, a maximum safe elastic energy/elastic force is assumed, below 

which exertion of such force or elastic energy will not damage the environment. The 

range and scales of such values will be application dependent, and while this does 

constitute a-priori knowledge about the environment, information of this kind of can be 

easily obtained through bio-mechanics references for tasks in the surgical domain.  

 

I.C Related Laboratory Work 

 

The work presented in this thesis was done at the ARMA lab at Vanderbilt 

University, under the direction of Dr. Nabil Simaan. This work ties into the work done 

by current and former students of the lab, who have worked in the areas of local stiffness 

exploration, contact and constraint detection for surgical robots. In [15], Xu and Simaan 

(2009) implement stiffness mapping of the surface of an organ, using the intrinsic force 

sensing capabilities of a snake-like RSA. In [36], [37], Goldman et al. (2010, 2011) use 

the same RSA for exploration of shape and local impedance of an unknown 

environment. Finally, in [47] Bajo et al. (2011) presented work on detection of contact 

for the same snake-like RSA.  

 

I.D Contribution and outline 

 

The primary contributions of this work are in validating the feasibility of 

autonomous manipulation in an unknown elastic environment, in developing a real-time 
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compatible representation of global stiffness properties, and in presenting methods for 

automatically identifying and classifying flexible constraints in real time.    

Previous works on exploration mainly focus on constraint exploration in rigid 

environments (Lefebvre) [44], constraint identification of tools (Dupont and Howe) [9], 

and exploration in rigid environments (Okamura and Kutcowsky) [11]. To date, there are 

no clear frameworks to exploration in flexible environments. A recent exception is the 

work of Goldman in [36], [37] where exploration of shape, and local impedance has been 

carried out. This work extends these results to include the characterization of organ 

constraints and path planning for safe manipulation.  

First, in section II, works in the related areas of path planning and environment 

exploration are reviewed in detail. In section III, some necessary background, including 

Spatial Stiffness theory and AI methods, are reviewed. An algorithm for blind, safe, 

autonomous manipulation is proposed in section IV, and then experimentally validated 

using a Puma 560 industrial robot arm. Finally, section V details our methods for 

characterizing, identifying and mapping the elastic constraints of a workspace in real 

time, and presents experimental evaluation of these techniques on real flexible objects 

using the Puma 560.  
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CHAPTER II 

 

II LITERATURE REVIEW 

 

There have been numerous works on the relevant topics of environmental 

exploration, detection of contact, constraint identification and path planning in elastic 

environments. The solutions presented in these works operate in restricted domains 

however, and only provide solutions to parts of the problem posed in the previous 

section.   

 

II.A Constraint detection/identification 

 

He [5,6] explicitly dealt with the exploration and detection of mechanical 

constraints (“Contact States”) between two rigid objects. Xiao developed a simple model 

of a manipulator grasping a movable polyhedron A, which is possibly in contact with 

fixed polyhedron B, and represented the contact as the super-position as a combination of 

“principle contacts”, simple dimensionless/directionless kinematic constraints. He then 

assumed that the geometry (shape, dimensions and position/orientation) of the objects 

was known, but with experimental uncertainty. Xiao simply defines a method for 

resolving the rigid kinematic model with the actual experimental data, to determine the 

most likely contact state for a given configuration of object A. This methodology works, 

however it requires explicit geometric information about the object being manipulated, 
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especially since it works entirely in the kinematic domain (constraints are not considered 

as reaction forces, but rather as purely kinematic constraints).   

De Schutter [7] also deals with manipulation of objects with known geometries 

and an appropriate kinematic map (with experimental error), but tackles the problem of 

constraint identification, for manipulation under flexible constraints. To do this, he 

represents the flexible constraint of an object at a given configuration as a virtual 

compliant manipulator. This virtual manipulator results in the same degrees of freedom 

as the object, but models the compliance in each direction of motion, to provide 

predictions in the changes of the constraint forces as the real manipulator moves in space. 

This methodology allows for simple characterization/representation of elastic constraints 

in a given workspace, however it requires explicit kinematic models of the environment 

and assumes known geometries ahead of time.  

Kitagaki and Suehiro [8] get rid of the assumption of known geometric/kinematic 

models by incorporating force information. Assuming a manipulator with an attached 

force sensor, manipulating an object in a rigid environment, they estimate the location of 

point contact using static balancing. The associated constraint results in a normal force, 

which will result in an applied moment on the force sensor. Furthermore, they present 

models for detecting edge on plane constraints, and propose methods detection of contact 

state transitions. This methodology is powerful and simple, however it assumes a rigid 

environment, and furthermore requires high accuracy force measurements of contacts 

with very high rigidity.   
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Dupont [9] presented a simple but effective method for modeling and identifying 

kinematic constraints of a general robotic manipulator. He does this by using the notion 

that, for a kinematic constraint, no constraint wrench can do any work about a freedom 

twist (see section III.A.2). He suggests that for a manipulator’s end effector, at a certain 

position while moving along a trajectory, any forces/torques in the direction of the 

trajectory cannot be due to a constraint force, and furthermore, that any forces/torques 

normal to the trajectory are due to a kinematic constraint at that location. Correcting for 

dynamics and gravity forces at the end effector, he then utilizes this method to 

automatically explore the kinematic constraints on surgical instruments during insertion. 

 Howe [10] uses probabilistic methods to infer contact and constraint properties of 

a given object being manipulated, using experimental force/position data. He assumes a 

set of known Kinematic constraints (“Contact States”), and develops geometric models 

for each of these constraints, which are independent of size/scale/orientation. For a given 

robot manipulation task, force/kinematic data are then simultaneously evaluated on how 

well it matches each geometric model. A hidden Markov model is then used to 

stochastically determine the current contact state, using a closest fit to that contact state’s 

model.   

 To the author’s knowledge, none of these works deals explicitly with 

identification of flexible constraints in unknown environments, with the exception of 

course being Goldman (2011). With high-DoF RSAs further abstracting the interface 

between the surgeon and the patient anatomy, there is a clear need for further 

investigation in this area to enable proper force feedback and semi-autonomous 

manipulation schemes in robotic surgery.   
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II.B Exploration of unknown environments 

 

Okamura and Cutkosky [11, 12] focus on the haptic exploration of objects using 

robot fingers which are equipped with tactile sensors.  They use feature based exploration 

to map and characterize the surface properties of an object being grasped by a robotic 

hand. They define classes of features, macrofeatures, such as a ‘bump’ feature, or a 

‘ridge’ feature, and present methods for detecting instances on these macrofeatures on an 

object being grasped.  A map of these features on an object represents a tactile signature, 

and could then be used to identify/characterize the particular object being grasped. 

Allen [13] also worked on haptic exploration of objects using robot fingers, 

however he focused on developing models of the geometric shape of the object, rather 

than mapping/characterizing the stiffness properties. Allen uses tactile and kinematic 

information to define a set of contact points in space, corresponding to where the 

fingers/hand is in contact with the object. He then fits these points to a 3-dimensional 

superquadric function, to recover the general form of the object in space, from a set of 

sparse contact data.   

 One alternative to representing elasticity as FEM is to use a stiffness map, map 

over the workspace which simply measures the magnitude of the stiffness at each 

location. Althoefer [14] and Xu[15]  [38], both  present devices  which can be used to 

develop stiffness maps over a flexible surface, which can be used to detect specific 

features, such as sections of high rigidity, while exploring an elastic workspace. They do 

this by simple considering stiffness as the spatial derivative of force, and use the 

kinematic models and intrinsic force sensing capabilities of their devices to map the 
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stiffness in a given region. Exploration of stiffness in this manner can be used to detect 

features, such as tumor, on an on organ during surgery. Since such stiffness maps only 

explicitly consider magnitude, they cannot be used for characterizing mechanical 

constraints, which are inherently direction dependent at a given location. These works 

explore normal stiffness. Goldman extended these works to include exploration of 

perceived impedence tensors (damping, stiffness, inertia).  

Finally, Gupta [16] presents a straightforward method for simultaneous path 

planning and exploration of an unknown workspace, using a robot manipulator and a 

tactile “skin” sensor. Using the sensor, it is assumed that contact can be measured at any 

point on the robot manipulator, and Gupta proposes an algorithm for systematically 

exploring the unknown workspace, and recording positions without contact as the 

“freedom space”. Given sufficient time to explore the workspace, the algorithm will have 

developed a full map of the workspace, broken down into the “freedom space” and the 

constraint space. 

Most of these works, which deal with contact estimation of environment 

exploration, assume a rigid and otherwise static environment, which, for many 

applications is certainly valid. Despite the progress made in environment exploration, 

contact detection and constraint estimation, to the best of our knowledge, little work has 

been done on the blind characterization and estimation of flexibly constrained objects in 

unknown environments.  
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II.C Path Planning 

 

As opposed to environmental exploration, path planning is a subject which has 

had some attention, in the context of flexible/elastic environment. Using a force based 

approach and an FEM model, Rodriguez [17] considered the path planning issues of 

navigating in a completely deformable known environment. By using a Rapidly-

Exploring Random Tree algorithm and a collision detection algorithm, they attempt to 

minimize the elastic energy in all of the possible paths that could be taken to reach the 

end goal. They used this path planning method to simulate a robot navigating around 

flexible organs/tissues within the human chest cavity. 

 Patil et al. [18] used finite element methods to model the elastic characteristics of 

a flap of tissue being manipulated during organ retraction. Patil uses an offline 

optimization algorithm to pre-compute an optimal path for a given manipulator to retract 

the tissue in order to maximize the area exposed under the flap, while minimizing the 

elastic energy exerted on the tissue.  

Gayle et al. [19] model a deformable robot moving through a flexible 

environment, and proposes an algorithm which uses a finite element model and virtual 

dynamic equations to compute an optimal path (offline) for the robot from a start goal to 

a finish goal, while observing a set of hard constraints. They then apply this methodology 

to optimize the path for a snake robot which enters the femoral artery (in the legs) and 

navigates to the liver to perform some operation.  



 

13 

 

Like Rodriguez and Patil, Gayle assumed a known environment and used FEM to 

model its elasticity. There are many other works on path planning methods in flexible 

environments, but which almost exclusively deal with Finite element methods and off-

line path planning. While they are effective for providing theoretically optimal paths in a 

given scenario, real-time implementation of these paths will never be perfect. Hence there 

is great potential in utilizing real time exploration of constraints.  
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CHAPTER III 

 

III MATHEMATICAL BACKGROUND 

 

III.A Stiffness, Compliance and Screw Theory 

 

III.A.1 Screw theory 

In Cartesian space, there are 6 dimensions of motion for a general rigid body: 

Translation along the three Cartesian axes, and rotation about each of those axes .While 

absolute orientation cannot be represented completely in only 3 dimensions, any 

Cartesian angular velocity can be expressed completely in 3 dimensions.To represent a 

general velocity in space, we can then define a 6 dimensional vector, which includes 

three translational velocities, and 3 angular velocities. This vector will be denoted as   

   [
  

  
] (1)  

Chasle’s theorem forms the basis for screw theory, and can be stated as such: The 

most general displacement for a rigid body in space can be described as translation along 

a line in space, and a rotation about that same line. Plucker coordinates can be used to 

describe any such line in space, and are composed of 6 homogenous coordinates\ 

 [
  

    
] (2)  

Where    describes the direction of the line, and   is a vector from the origin to 

any point on the line. These 6 homogenous coordinates can accurately describe any line 

in space. Now consider again the general 6-dimensional vector   [
  

  
]  
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The rotation around a vector (along a general line in space) can be expressed in 

plucker coordinates, as follows 

 [
  

    
] (3)  

As can be seen, when the line is away from the origin, the rotation about that line 

will create a velocity normal to the line. Depending on the direction and magnitude of  , 

any velocity normal to    can be expressed as     . As Chasle’s theorem states, any 

general rigid body motion can be described by the movement along a line in space, and 

around that line in space. Any velocity that is along the direction of the axis of rotation    

can be modeled as a screw such that rotation around the axis is coupled with a translation 

along that axis, via pitch h.            . If we add this term  to the Plucker line 

coordinates, we get: 

 [
  

        
] (4)  

Since    can be used to represent any velocity normal to    and   can be used to 

represent any velocity along   , any general velocity can be described at            

Thus, we can represent the general motion    [
  

  
] as a screw vector  [

  

        
]. 

If    , the twist corresponds to a revolute joint. If    , the twist corresponds to a 

pure translation.    

   can be calculated as  

    
(     )

|| ||
  (5)  

              can be calculated as  
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 (6)  

Using screw theory, it is possible to analyze twist vectors to analyze centers of 

rotation and to classify and characterize complex rigid body motions.  

It is also possible to analyze force and moments using screw theory. This is done 

by considering a general 6-dimensional force/moment    

    [
 
 

] (7)  

As done with twists, the moment can be expressed as a perpendicular component 

    and a parallel component   . Thus, any force/moment in space can be expressed 

as: 

     [
 

      
] (8)  

III.A.2 Mechanical Constraints 

The concept of mechanical constraints is used to describe kinematic restrictions on 

the movement of rigid objects in space. Consider a general 3-dimensional rigid object 

suspended in 6-dimensional Cartesian space, as shown in Figure 4 below.  

 

 

Figure 4: General rigid body motion  
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If there are no constraints on the movement of this object, then it can follow any 

general twist in 6-dimensional space (6 Degrees of Freedom), without restriction. For 

most practical applications in robotics/engineering, this is usually never the case, as 

objects aren’t simply suspended in space. Rather, most objects at rest are constrained 

from motion along certain directions, due to gravity, friction and contact with the 

environment, and are thus restricted the fewer than 6 degrees of freedom. As an example, 

consider a book lying on a table, as shown below: 

 

 

Figure 5: Planar Constraint  

 

The book is free to slide along the table, and can rotate around the normal axis of 

the table. It is, however, restricted from moving into the table, and from rotation around 

axes in the plane of the table. Thus, it has been restricted to 3 DoF, by restrictions along 3 

directions of motion. This particular form of motion restriction is known as a planar 

constraint, which is one of a large set of mechanical constraints. A mechanical constraint 

is composed of a set of restrictions on the motion of an object along a set of directions. 

The directions along which there is no motion restriction are known as freedom twists  , 

since twists along these directions incur no resistance. Directions along which motion is 

impeded, due to rigid body contact or friction, are known as constraint wrenches  , as 

reaction wrenches along these directions prevent rigid objects from moving along them. 
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There are a number of different general rigid body constraints, that are represented by 

constraint wrenches and freedom twists. A few are described below: 

III.A.2.a Pin joint 

One of the most common types of constraints is a pin-joint constraint, as shown in 

the diagram below. Pin joints contain only one DoF, rotation along an axis. Accordingly, 

the joint itself is composed of 5 constraint wrenches, which prevent Cartesian translation 

of the joint, as well as rotation around axes which are perpendicular to the primary axis of 

rotation.  

 

 

Figure 6: Pin Joint Constraint  

 

Real examples of pin-joints would include any type of hinge, or a robotic arm.  

III.A.2.b Peg-in-Hole 

  A less common type of constraint is a cylinder constraint, which has 2 DoF, and 

is modeled as a cylinder-peg inside a circular hole. The cylinder is allowed to translate 

back and forth along it’s axes, as well as to rotate around it’s own axis.  
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Figure 7: Peg in hole constraint  

 

III.A.2.c Ball joint 

 Ball joints are very typical constraints, and allow free rotation along any axis, 

while restricting translation along any axis.  

 

 

Figure 8: Ball joint constraint  

  

Real examples of ball joints include any shoulder joints. These, along with a large 

set of other rigid mechanical constraints are used to describe the mechanical/kinematic 

properties of general rigid bodies suspended in an environment.  
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III.A.3 Spatial Stiffness in the context of screw theory 

For surgical applications, in which we wish to describe objects suspended in 

unknown elastic environments, the rigid mechanical constraint models described above 

are no-longer applicable. Fortunately, there has been a great deal of work done in the late 

90’s and early 2000’s to analyze spatial stiffness and elastic environments using screw 

theory, allowing simpler representations of complex elastic behavior and providing 

insight into the fundamental elastic properties of the system.    

For an object suspended in an elastic environment (see figure 9), perceived 

constraint stiffness matrix   is defined as the linear map between an infinitesimal twist 

   of the object, and the resulting change in the reaction wrench     from an 

equilibrium pose.  

         (9)  

Schimmels and Huang [20], Roberts[21,22], Lipkin [23] and others have shown 

that the local stiffness  , can be represented as the linear combination of several springs 

acting in parallel, as long as   is Symmetric, positive semi-definite.  

 

 

Figure 9: Spatial Stiffness model  
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This is done via matrix decompositions of  , and provides a more intuitive 

representation of the stiffness than the regular stiffness matrix, as well as some  

information about the fundamental properties of the system. 

The Eigenvalue problem of    (equation 10) is one such decomposition, and 

yields 6 eigenvectors and eigenvalues. The system can then be modeled by 6 complex 

springs (springs with both linear and torsional components), each with a direction and 

magnitude of one of the eigenvectors and its associated eigenvalue respectively.   

       (10)  

Like many other decompositions, this one is not frame-invariant, and will result in 

different eigenvectors and eigenvalues, based on the frame being considered. While the 

eigenvectors will never be frame independent, both [32]  and [33] present modified 

eigenvalue problems which will yield frame invariant eigenvalues.  

Schimmels proposes the “Eigenscrew Decomposition”, in which the only 

modification is a delta matrix   [
         

        
]  and formulates the eigenscrew problem 

as in equation (11) 

        (11)  

The effect of the   matrix is to interchange the first and last three elements of a 6-

dimensional axis, which converts between axis screw coordinates (   [
  
  

]) to ray 

screw coordinates      [
  
  

] , in order to preserve the units. This yields a set of 

eigenvalues which are frame invariant, in units of      , and as Schimmels argues, 

provides insight into the fundamental nature of the problem. 
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Lin [39] breaks   into sub-matrices      [
        

 

        
],  uses matrix algebra 

to cancel out frame-dependent components of  , resulting in the following sub-matrices  

                                                                (12)  

Where the eigenvalues         of    are the principle rotational stiffnesses of  , 

the eigenvalues          of    are the principle translational stiffnesses of   . The result 

is a set of 3 orthogonal, rotational axes and set of 3 orthogonal translational axes, whose 

magnitudes are frame invariant and describe the pure rotational and pure translational 

behavior of the system.   

Lipkin [25] uses a similar analysis to define the principle rotational stiffness axes 

and the principle translational compliant axes of a stiffness matrix  , and then uses them 

to create rotational and translational elasticity ellipsoids.  

The tools outlined above can and will be used to analyze the mechanical 

properties of unknown elastic environments. As Schimmels et al. discuss [24], any proper 

eigenvalue or eigenscrew decomposition requires a Symmetric, positive, Semi-Definite 

(SPSD) matrix, which is almost never obtainable from experimental numbers (due to 

noise and displacement from equilibrium). Thus, in order to experimentally implement 

this analysis, an SPSD matrix needs to be derived from experimentally gathered data. 

Ellis and McAllister [26] present a method of doing so, by using an SPSD approximate 

      of a given experimentally derived stiffness matrix  . The solution is explained in 

[27] and is summarized below:  

   
    

 
 (13)  

Take the Eigenvalue decomposition of B 
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       (14)  

Where   is a matrix of eigenvectors and   is a diagonal matrix of eigenvalues.  

    | |   (15)  

       
   

 
 (16)  

The result is a close approximate of the stiffness matrix  , which will not include 

negative or complex eigenvalues.  

 

III.B Numerical Optimization and Stochastic Methods 

 

The previous chapter presented an entirely analytical framework for describing 

and understanding flexibility and spatial stiffness using screw theory. When the necessary 

information is available, and the analytical models are applicable, analytical methods are 

effective, efficient and provide broader insight into the structure of the problem.  

In real world applications such as robotic surgery however, complete information 

almost never available. In order for an autonomous Robotic Surgical Assistant to operate 

is any such environment, it has to explore, gather data,  and make intelligent decisions 

using incomplete information, without compromising the safety of the patient. To tackle 

these problems, a variety of numerical, computational and AI methods can be used. This 

chapter will discuss the ideas of Numerical Optimization, Clustering, Markov models, 

Particle Filtering and Monte-Carlo methods.  

III.B.1 Numerical Optimization 

Consider some function  ( ), which is a function of many variables for which 

computation of  ( )     is easy, while the inverse     ( )     is highly intractable.  



 

24 

 

The problem of optimization (finding the   which will minimize/maximize  ) usually 

cannot be solved analytically, even though evaluating the function is trivial.  For this 

situation, numerical methods can be utilized to navigate the domain space     , and 

find the vector of inputs    which will locally or globally minimize  ( )   

III.B.1.a Steepest Descent 

The simplest numerical optimization method is known as the steepest descent 

method. Starting from the current parameter vector  , the steepest descent method 

evaluates the derivative 
  

  
, and moves in the direction of 

  

  
 in configuration space, by 

incrementing   by  
  

  
.  The algorithm is summarized below, in Figure 10. 

 

 

 

 

The Steepest Descent method is a good basic numerical optimization algorithm, 

but suffers from slow convergence [40]. More effective gradient techniques exist [29] 

(Newton/Quasi-Newton), but require more information, such as the Hessian of  ,  
   

    

Steepest Descent Algorithm 

Given starting configuration 𝒙  𝒙𝑜 

While (|𝒙  𝒙 | < 𝜖) 

 𝒑  
𝑑𝑓

𝑑𝒙
  
𝑑𝑓

𝑑𝑥
    

 𝒙  𝒙  𝛼𝒑  

Figure 10: Steepest Descent Algorithm 
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III.B.1.b Non-Linear Optimization 

  One such hessian based algorithm is the typical non-linear optimization function. 

For example, consider a non-linear system ( ) , where    represents the hidden inputs to 

the system. Suppose we can observe the output of the system  ( )   , and we want to 

use the observed variable   to learn the hidden variables    such that  (  )    .  To do 

this, we define a lease square’s function  (   ), as shown in equation 17 

    (  | ( )   | )     (  ) (17)  

The non-linear algorithm shown below can be used to find the value of    

 

Figure 11: Iterative Non-Linear least square’s Optimization algorithm 

Iterative Non-Linear Least Square’s Solver 

 Given y 

 Make initial guess for 𝑛  1  vector 𝒙𝑖 

 Error vector 𝒆  𝒇(𝒙𝑜)  𝒚 

 𝑤 𝑖𝑙𝑒  
 

 
𝒆𝑇𝒆 < 𝜖  

o 𝒃  𝒃  𝒇(𝒙) 

o 𝐴  
𝜕𝒇

𝜕𝒙
 

o Δ𝒙   𝐴 𝑇𝐴  
  

 𝐴  
𝑇
𝒃  

o 𝒙  𝒙  Δ𝒙 

o 𝒆  𝒇(𝒙)  𝒚 

 End  
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One advantage to this algorithm versus the steepest descent, is the ability to stack 

multiple observations   [

  

 
  

]  and dynamically update the estimates    as new 

observations are made.  

III.B.2 Clustering 

For any kind autonomous RSA to operate intelligently, it needs to gather data 

from the environment, subsequently make inferences and conclusions from sparse and 

possibly incomplete data. Instead of pre-defining theoretical models to classify data 

based on how it ‘should’ fit (i.e., this stiffness matrix should represent a planar 

constraint, based on our geometric model), there are a number of statistical methods 

available for recognizing patterns and classifying data automatically [30], including 

Principle Component Analysis (PCA) and Bayesian Networks. In this work however, we 

focus on Clustering.  

Consider a data set, such as points on a 2-dimensional graph (figure 12). By visual 

inspection, it is clear that there are two distinct groups within the whole population.   

 

 

Figure 12: Illustration of Clusering  
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In the language of clustering, each individual point/measurement is called an 

‘Example’  , and each example has a feature vector            (x and y values) with 

  elements (    in this case). In hard clustering, we wish to organize and classify 

this data set into   groups called classes (ideally 2 groups in this case) which share 

similar feature vectors.  

One simple algorithm to do this is called the k-means algorithm, which is 

initialized by randomly assigning one of   classes to each example (a random 

classification), and then iteratively improves this classification by minimizing the 

following utility function 

    (∑ ∑            ( )               
 

  

 

      

) (18)  

Where      ( ) is the class that was assigned to example  ,     (     ( )   ) is 

the mean value of feature vector element    for all the examples in     ( ), and where 

   (    ) is just the value of    in the feature vector of element  .  

In words, this utility is just the sum of squares error between each of the examples 

  and the class they were assigned to. This utility function results in good classifications, 

in which classes would be comprised of similar examples, such that the mean value for 

each class is close to the actual value of any particular example within that class. The  -

means algorithms iteratively improves the classification at each step by re-assigning 

each example to the cluster which best fits it, using the mean value of the cluster in the 

previous step.  
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Eventually, the  -means algorithm will reach a stable classification (a local 

minimum of the utility function), which can be used to making decisions / inferences / 

predictions about current and new data points. This simplified algorithm is only a local 

optimizer, and is not guaranteed to find the optimal classification of the data set (the 

global minimum of   ). With   data points, and   possible classes, there are    

possible classifications, the optimal classification problem is exponential in its run time. 

Furthermore, the optimal classification problem can be shown to be NP complete, as the 

CNF Satisfiability problem (a known NP-complete problem) can be reduced to an 

instance of this problem.   

III.B.3 Stochastic methods 

In the absence of a structured model of a system, such as a clearly defined  ( ) or 

set of continuous variables  , non-derivative based stochastic methods can be used to 

model/describe/predict the behavior of complex systems.  

III.B.3.a Markov Models 

Consider an abstract mathematical model of a system, in which the system can be 

in one of a finite number of states at any given time. This is called a state machine, and it 

describes the transition of the system from one state to another. They system could be as 

simple as a daily commute (see Fig. 13), in which the states are “At Home” (H), “In the 

Car” (C), and “At Work” (W).  
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Figure 13: State Machine  

 

The home state will always transition to the car state, before transitioning to the 

work state, with the same being true in reverse. 

Markov models are stochastic versions of state machines, and are used to model 

non-deterministic systems through probabilities. A possible example of a Markov model 

is the following Markov chain (Fig. 14), which describes the weather on any particular 

day, with states “Sunny”, “Cloudy” and “Rainy”, and the probabilities of the next day’s 

weather given today’s forecast.  

 

 

Figure 14: Markov Chain 
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Using experience from previous weather patterns (specifically, via a state 

transition matrix), it is possible to determine the probabilities of these state transitions, 

and predict future weather patterns, or infer previous weather patterns, given the current 

state.  

One example of the use of Markov Models can be seen in Rosen et al (2006) [40], 

in which a generalized minimally invasive surgical procedure was broken down into a set 

of discrete, elementary subtasks (such as clamping, gripping, etc..). These sub-tasks were 

then represented as states in a Hidden Markov model (HMM), and each state was 

associated with a certain end effector motion/force profile. Given a set of training data, 

the HMM could then be used to guess the current surgical subtask being performed by a 

surgeon, by stochastically estimating the current state of the Markov model. Another 

example of Markov chains would be the Random Walk algorithm, as discussed below.   

III.B.3.b  Random Walk 

 Like a Markov model, random walks are stochastic models that are often used to 

describe systems. In the context of Numerical optimization, random walks can be used as 

a method of escaping local minima. Given an n-dimensional space, with a state   

{        }    , a random walk is simply a sequence of   random steps in n-

dimensional space, from the current state to some new state.  

       ∑      ( )

 

   

            (19)  

     ( )    (        ) (20)  

  (   ) here is random uniform distribution from   to  . Random walks can be 

used not only to escape local-minima, but to add a level of non-determinism into an 
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otherwise fairly deterministic algorithm, such as the gradient and Quasi-Newton 

algorithms presented above. In the best case, a random walk will only create deviations 

on the path to the correct solution. In the worst case however, a random walk can help 

avoid traps/ relapses into local minima 

III.B.3.c Monte-Carlo methods: 

The non-linear/gradient optimization methods presented previously are “greedy” 

derivative based optimization methods. Greedy algorithms, algorithms which blindly 

follow locally optimal trajectories without considering alternative steps/paths, often run 

into issues of local minima. For high parameter spaces and complex non-linear functions 

 ( ), such as might be found in solving for unknown parameters of a system  , the 

problem of local minima can become fairly prohibitive in finding an optimal solution to 

the problem. Monte-carlo methods lie within a larger class of derivative free and often 

population based optimization methods, many of which can be efficiently used to solve 

problems in highly non-linear, discontinuous and large-parameter spaces. 

These are stochastic optimization methods, and operate in the following way: 

1. Given an n-dimensional parameter space   {        }     

2. Then create a number of samples over the parameter space 

3. These samples are evaluated in terms by some deterministic metric  ( ) 

4. These results are then aggregated to determine a solution.  

An example application of a Monte-Carlo method would be as follows: Consider 

a system with a set of parameters {              } in which       and    are known, 

while    and    are inherently unknowable/unobservable. The combination of these 
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parameters can deterministically yield one of two implications:   and   . A Monte-carlo 

method could be used to search the parameter space of       by creating a set of samples 

of these parameters. Each sample of    or    can be evaluated by their likelihood of 

being the value of   . The aggregate can then be used to evaluate the probability of   or 

  , given unknown values of    and   ..The complexity of such problems are 

exponential with the number of unknowns  , such that given domain size  , the run-time 

scales with   . While Monte-Carlo methods can help stochastically explore a large 

domain, it requires prohibitively higher (exponential) number of sample points as the 

dimensionality of the problem increases.  

III.B.3.d Particle Filtering 

Other stochastic population methods, such as Genetic Algorithms and Simulated 

annealing, perform an optimization to find optimal configurations of  . Particle filtering 

is a simple and easy to implement stochastic optimization methods. The algorithm 

proceeds as follows: 

1. Create a large set of m samples of an n-space, called ‘particles’ 

2. Assign them random values in the n-dimensional space 

3. These particles are assigned some fitness metric 

4. These fitness metrics should be weighted to a probability (0-1) such that, the 

higher the metric, the higher the probability 

5. This will be the probability that this particle will not be eliminated after ‘filtering’ 

6. ‘filtering’ selects each particle and may delete it,  based on its probability 

7. New particles are added to the population and the process is repeated 
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This and the other population based algorithms seek to stochastically weed out 

un-optimal configurations of  , while iteratively and randomly altering   to find optimal 

configurations. Of course, as with any optimization algorithm, its performance highly 

depends on the chosen fitness function. An example of such an approach can be seen in 

Petrovskya’s work [35], in which particle filtering was used to estimate the position and 

orientation of an object being grasped by an industrial robot. Given the geometric model 

of the object to be manipulated, as well as sparse tactile data (locations of contact, and 

surface normals), her stochastic methods generated a large set of possible solutions and 

weeded out those solutions which did not fit the geometric models. In the indeterminate 

case (infinitely many solutions), the algorithm returned a band of candidate 

positions/orientations of the object given the data set which had been collected, whereas 

deterministic solution methods (steepest descent) would have failed to properly reach 

such a set of solutions.   
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CHAPTER IV 

 

IV PATH PLANNING FOR SAFE MANIPULATION 

 

Given the problem statement in section I, any autonomous intelligent RSA will 

need to make decisions about how to safely move around within an unknown elastic 

workspace, without a priori information about the workspace. The RSA also needs to 

explore the workspace and gather more information in order to make intelligent decisions 

about how to move. The problem is, how do you safely manipulate an object with no a 

priori knowledge of the system?   

 

 
Figure 38: Planar Simulation of Object Manipulation  

 

Given a gripper with an attached force sensor, we assume the elastic wrench    

on the gripper and the gripper pose   are immediately available at every time step. 

Consider these the states of the system. In addition, the directly obtainable states can be 
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used to deduce the Stiffness and Elastic energy, which are the spatial derivatives and 

integrals of    respectively. Even without a priori knowledge, the RSA can make 

intelligent decisions using not only the currently available states, but on deduced states as 

well. This will allow the RSA to manipulate an object towards a goal configuration. 

First, we want an RSA to make decisions that will: 1) get it to the goal 

configuration, 2) minimize distance taken to get to the goal configuration, 3) minimize 

the elastic energy displaced on the system and most importantly 4) avoid exceeding a 

specified set of hard constraints. To do this, a set of cost/reward functions can be defined, 

which are functions of the states of the system, and will reward the desired states, while 

penalizing undesired states.  

A numerical optimization method (section III.B.1) can then be used to search the 

pose space   for the configuration    which minimizes  ( )   

 

IV.A Function definitions  

 

To formalize this, define a reward function “task” function t(x) to promote goal-

seeking behavior, and a constraint “penalty” function c(x) to enforce the given constraint. 

These functions are defined below: 

IV.A.1 Tasks 

  To enforce the goal-seeking behavior, define reward function      

 (         ). To achieve the simple objective of moving a flexibly suspended object to 
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some goal pose   , we can mathematically express this task function as the square of the 

dimensionally weighted distance : 

        
       (21)  

Where    is the distance from the current pose to the goal pose, with the first 3 

elements as the distance in Cartesian space, and the last 4 elements as the relative 

orientation   ̂ in quaternion space.   

    [      
 
   ̂ ]

 

 (22)  

As shown in [42], the vector portion of   ̂  can be used as a metric for orientation 

error. Thus, we use the 7-dimensional matrix    to extract and weight the vector portion 

of   ̂ by  . 

 

  ̂   ̂    ̂  

And    is a diagonal weighting matrix 

(23)  

        (1 1 1        ) (24)  

 Here,   designates the multiplication operator in quaternion space [43]. The scalar 

  is a dimensional weighting factor, to resolve the scaling between rotation and 

translation. It is defined as the ratio of translation to rotation needed to produce 

equivalent amounts of elastic energy.  

    
1

 
  (  )  

1

 
  (  )  (25)  

   
  

  
  √

  

  
 (26)  

The scalar stiffness    and    can be obtained from the Frobenius norm of the 

translational and rotational quadrants of K (A and D, see section III.A.3), respectively.  
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IV.A.2 Constraints 

In order to enforce the soft and hard constraints outlined above, we define 3 

different penalty functions, and combine them into one cost function, which we can call 

the constraint function.  

IV.A.2.a Constraint 1 

To provide some form of real optimization in the path taken to the goal, we define 

a soft constraint, which puts a penalty on the elastic energy applied on the system, by the 

gripper, relative to the initial undisturbed configuration. This constraint function can be 

defined as 

            (        )     (27)  

where   is some scaling factor, and E is the elastic energy, relative to the initial 

state. As mentioned before, the elastic energy at each node is not explicitly measured, but 

rather inferred from the integral 

  ( )   ∫   ( )   
  

 (28)  

   is the screw twist, and is an explicit function of,  but not equivalent to the 

derivative of the pose   (because the pose includes terms in quaternion space, while the 

twist is measured in pure 6-dimensional Cartesian space).  

IV.A.2.b Constraint 2: 

 We define a second constraint function to enforce the hard constraint that the 

absolute elastic wrench exerted on the elastic system never exceeds a critical value 

      . This can be mathematically defined as shown below: 
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(      |    |)
 

(29)  

 Where   is a 6-dimensional weighting matrix, and   is a scaling factor, and is 

proportional to the constraint’s radius of influence. Plainly stated, this constraint enforces 

a harsh penalty (blows up to infinity) as the magnitude of the elastic wrench approaches 

the critical value          

IV.A.2.c Constraint 3  

 In order to deal with local minima and constraint violations, we can define a 3
rd

 

and final constraint, called the ‘red flag’ constraint. The purpose of this constraint is to 

avoid moving towards known problem configurations (red-flags), such as previously 

explored local minima, and locations of hard constraint violations. To do this, we create a 

simple repulsive field around each of these locations. This constraint function can be 

mathematically expressed as 

             ∑
 

√   
      

  

     

 (30)  

Where    
 is the relative position of the     red flag to the pose, and   is another 

scaling factor, which is proportional to the radius of influence of the constraint.  

 The total constraint function is just the sum of the individual constraint functions 

(eq. 20).  

                                                   (31)  

 The combined constraint function captures the penalty-avoiding behavior of each 

of the individual functions. 
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IV.A.3 J function  

 Lastly, we can define the   function, which is the sum of all the task and 

constraint functions: 

                       (32)  

Ultimately, the steepest descent optimization algorithm will seek to minimize the 

J function, in order to find a low-cost path to the goal, while observing the given set of 

constraints, by numerically evaluating the gradient of this function at every step.    

 To actually command the desired manipulator motion, the algorithm calculates 

the direction vector  ̂ , at the     step of the algorithm.  

  ̂    
  

|  |
  (33)  

Finally, the desired manipulator twist    is set to be some scalar speed    in the 

direction of  ̂  .  

        ̂  (34)  

This desired twist can then be sent directly to a resolved rates algorithm to 

achieve the desired manipulator motion for moving a flexibly suspended object.   

Using the above functions with the steepest descent algorithm yields a basic but 

effective path planning algorithm for autonomously reaching the goal state.  There are, 

however, a few things that need to be explained, and a few augmentations that need to be 

made, in order to make the algorithm practical.  
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IV.B Algorithm Augmentations 

 

IV.B.1 Dynamic Updating 

At every step, the quantities of    and   need to be re-evaluated. The former is a 

gradient of functions of the four states, and the latter is the hessian of the elastic energy 

(gradient of the elastic wrench). In a very basic implementation of this algorithm, these 

derivative quantities could be explicitly evaluated via their respective derivative 

definitions:  by perturbing the manipulator along each dimensions, and measuring the 

changes in    and   .This implementation is time intensive, as it requires 7 additional 

manipulator movements every time the quantities need to be updated. 

It is possible, however, to update both of these quantities at each step, without 

explicitly evaluating the derivative. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) [29] 

method comes from numerical optimization, and provides a way of estimating and 

updating the hessian of a function, using only rank-1 gradient information. The formula 

for BFGS is shown below 

        
      

   

  
     

 
(    

 )

    
 

Where    is the hessian function of  ( ),    is the change/gradient of the 

function   , and    is the change in the domain of the function,   . For our application, 

we can set the function to the elastic energy of the system  ( ). The gradient     then 

becomes the measured wrench   , and s becomes the infinitesimal twist from the 

previous step to the current step    .  
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This formula will make rank-1 updates of the stiffness matrix, by evaluating the 

change in wrench only along the path of travel. While this necessarily loses information 

over-time about directions not along the trajectory, this lost information is arguably not as 

important. Additionally, there are measures available, including minor randomization to 

the trajectory, to recover lost information about the stiffness in full 6-dimensional space.  

Secondly, given K which is updated at every step with BFGS, it should be noted 

that the other 3 states can be integrated from position. That is, 

         ,          ,      (  ) (35)  

Since J is explicitly only a function of    (      ), it’s derivative can be 

evaluated without actually perturbing the system. 

   ( )  
 (                   )   (      )

  
 (36)  

Using these methods, it is possible to update and estimate    and K at each point 

on the trajectory, without making any deviations/perturbations.  

IV.B.2 Path discretization 

To facilitate storage of data into memory (storing path histories at 1kHz is 

impractical), as well as in updating derivatives   ,  , the path/ path history of the 

manipulator is discretized from a continuous curve to a set of nodes. This is done by 

determining the next node       by calculating      along  ̂ ,  and then moving along 

      ̂   until         .  

IV.B.3 Backtrack algorithm 

One flaw of using an optimization algorithm like this is the susceptibility to local 

minima. Another problem is how to deal with constraint violations. To solve these 
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problems, a 2-part solution is implemented: Red-Flag nodes, and Backtrack/random Walk 

algorithms.  

As mentioned in the constraint function definition, we can label problem 

configurations, nodes at which local minima are detected or where there is a constraint 

violation, as a ‘red-flag’ nodes. Constraint 3 then creates repulsive fields around these 

red-flag nodes, so as to avoid visiting them again.  

After labeling a red-flag, a backtracking algorithm can be used return along the 

recent trajectory to some previously explored node, and starting again. A random walk 

algorithm can also be implemented to add a level of non-determinism to the system, to 

avoid repeat configurations.  To implement these solutions together, a simple Markov 

Chain was defined (see section III.B.3.a), to stochastically determine when and how-

many backtracking /random walk steps should be made. 

 

 
Figure 15: Backtrack Algorithm 
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The Markov Chain involves 3 states: the normal state ‘N’ ( ̂  determines next 

node), ‘R’ which is a random step, and ‘B’ which moves one step back in the trajectory. 

Detecting a red flag automatically sets the state as B, and initiates backtracking. The 

transition probabilities were defined in order to achieve the following behavior: 

 In the backtracking state,  probability   of  retaining the back-tracking state  

results in the algorithm backtracking a random number of steps, with an 

expected 
 

   
 steps, and the probability of backtracking   steps being     . For 

60%, this results in 2.5 expected steps. After backtracking, the algorithm will 

either enter a random walk, or the normal state. 

 In the random walk state, the probability   of retaining the random walk state 

results in the algorithm performing a random number of random steps, with an 

expected 
 

   
steps.  Like the backtracking algorithm 60% results in an expected 

random walk of 2.5 steps. Once the random walk is completed, the algorithm 

will decay back into the Normal state.  

 In the Normal state, the manipulator will follow its normal trajectory, and 

continue to do so with probability   at each node. With a 10% probability of 

retaining the normal state, the algorithm will move an expected 10 steps 

normally, before making a random walk.  
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IV.C Safe Manipulation Algorithm 

 

With the functions and augmentations defined, we can finally present the safe-

manipulation algorithm, shown in graphical form below (figure 16). At each regular step, 

the algorithm evaluates the gradient   , and calculates the position of the next node to 

visit, and a twist-velocity to that node. Once the next node is reached, the algorithm is 

iterated, and the states are updated. Unless the MDP chooses a random walk, the 

algorithm will repeat itself and re-evaluate the gradient   . It will repeat this procedure 

until it reaches the goal state (the distance to the goal falls below  ).  

 

 
Figure 16: Safe Manipulation Algorithm 
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IV.D Simulation 

 

Before experimentally testing the algorithm, it was implemented in simulation, 

using a simplified planar simulation (shown below, Figure 31). In this simulation, the 

object to be manipulated was a rigid planar triangle (red), attached by simple linear 

springs (green) to fixed locations the ground. A manipulator (not drawn graphically), is 

assumed to have perfect kinematic control over the red triangle        , as well as 

perfect force sensing capability           , and is commanded to move the red triangle 

from its initial configuration to some desired planar configuration (shown in blue). 

 

 
Figure 31: Planar Robot Simulation  

 

In order to test the ability of the algorithm to converge on the desired 

configuration, two scenarios were presented. The first scenario involved setting the 

desired configuration of the rigid body to a configuration which would not violate any 

constraints. The other scenario was obviously to set the desired configuration to one that 
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clearly would violate the constraints if it was achieved. Below is the graphical output of 

the outcome of the first scenario. 

 

 
Figure 32: Planar Robot Simulation , Feasible goal 

 

Here, the blue dots represent nodes that have been stored along the trajectory of 

the rigid body, and the blue triangle represents the desired configuration of the rigid 

body. Without any constraints near violation, the rigid body heads directly towards the 

desired configuration and converges without issue. 
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Figure 33: Error Profile, Feasible Goal  

  

The error profile (distance to the goal) from this simulation is shown above in Figure 

33.  

 

 
Figure 34: Wrench Profile, Feasible goal  
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The wrench profile for this simulation is shown above, in Figure 34. Given that 

the critical (dimensionally weighted) wrench is 50N, the desired configuration is still 

close to violating the primary constraint.  

For the other scenario however, convergence was not possible since the desired 

configuration would have resulted in constraint violation. The graphic output of this 

simulation is show below: 

 

 
Figure 35: Planar Robot Simulation , Infeasible Goal  

  

Here, the red stars represent red flags. It leaves red flags at the boundary between 

the constraint space and the freedom space. 
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Figure 36: Error Profile, Goal 

 

As shown in the distance profile in Figure 36, above, the rigid body attempts to 

get as close as it can to the goal, without violating the constraint. Eventually, the path 

planner sends it do a configuration which does violate the constraint at around 3.25 

seconds, and the rigid body is returned to the nearest safe-point. 

 

 
Figure 37: Wrench Profile, Infeasible Goal  
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 The situation is clear when looking at the force profile in figure 37. Since the rigid 

body can’t reach the desired configuration without violating the constraint, it hovers 

around a configuration which lies just below the threshold for constraint violation.  

 

IV.E Experimental Evaluation 

 

 To test this algorithm experimentally, a simple experimental mock-up of an 

object, suspended in a flexible environment, was laser cut and assembled with springs, as 

shown in Figure 17 below. To manipulate this object, a Puma560 industrial robot was 

used, with a Gamma ATI 6-axis force sensor and a custom-made solenoid powered 

gripper, designed by the author for the purposes of these experiments and manufactured 

with a rapid prototyper.  

 

 

Figure 17: Rigid Triangle  
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Figure 18: Safe Manipulation Setup  

  

Given a target pose for the planar object, the autonomous manipulation algorithm 

was able to move the rigid triangle to the goal pose, or get as close as possible without 

violating the constraints. While this algorithm is elementary, it is important to emphasize 

its effectiveness and repeatability. The results from two such runs are shown in figures 

19, and 20 respectively.  

 

 
Figure 19: Autonomous navigation: Wrench profile  
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Figure 20: Autonomous navigation: Pose profile 

  

In one of the runs, the goal pose   is              , while the other has a goal 

pose of                  . These poses are listed in planar coordinates (        ) in 

units of [m, m, rad] respectively. In the latter run, the robot is prevented from moving to 

the goal pose, to avoid violating a maximum constraint force of 25 N. In this way, the 

constraint function acts like a basic virtual fixture, however it operates in the unknown 

force domain, as opposed to the spatial domain.   
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CHAPTER V 

 

V CONSTRAINT DETECTION, CLASSIFICATION AND MAPPING 

  

Finite element methods are currently the most popular method of representing 

global stiffness properties of elastic body/environment, and they do have their 

advantages. They allow complete and accurate description of the full workspace given 

the necessary parameters of the system. For the application of robotic surgery however, 

they are impractical. They require a-priori knowledge of the structure and parameters of 

the system, and as well as localization/registration to match the numerical model with 

real observed data during an operation. Most importantly however, they cannot be 

implemented in real time due to significant computational costs.  

Ideally, there would be some method that makes no assumptions about the 

environment, (a blind algorithm), and perfectly describes the elastic behavior of the 

unknown system. In practice however, to describe the elastic behavior of the system, 

some information/properties have to either be assumed about the environment (not blind), 

or gathered and deduced from the environment during exploration.  This work takes the 

latter approach, and presents an algorithm which makes no minimal about the nature of 

the environment, and uses only local stiffness information during exploration of the 

environment, and deduces/infers the global stiffness properties using a constraint based 

model. This allows compact representation of global elastic properties, using methods 

and calculations easily realizable in real time.  
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V.A Spatial Stiffness 

 

Commonly, exploration algorithms (see Section II.B) use kinematic constraints to 

determine allowable directions of motion of a manipulator in an environment, and 

consider primarily rigid constraints of the form shown in Section III.A.2.  

In this work, we consider the idea of flexible constraints, in which the rigid 

assumption is dropped, and the kinematic constraints are no longer applicable. Unlike a 

rigid constraint, a flexible constraint does not prevent motion in a given direction 

(kinematic constraint), it can only impede motion in that direction. An example would be 

a flexible wall versus a rigid wall. A rigid wall could be modeled as being infinitely stiff, 

and thus would have the analogous kinematic constraint that a hand cannot physically 

move into the wall/occupy space within the wall.  For a flexible wall, the rigid 

assumption is dropped, and the kinematic constraint is no longer applicable. A hand 

touching a flexible wall could push into the flexible wall, given sufficient force to over-

come the impedance of the wall. 

 

V.B Stiffness region 

 

We seek to develop a method for characterizing the global stiffness behavior of a 

specific elastic workspace. Even if we use local stiffness properties to deduce the 

mechanical constraints at a given location, there can easily be multiple mechanical 

constraints that operate at different locations throughout the workspace. To resolve this, 

we introduce a new concept, called a stiffness region.  
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Consider a given mechanical constraint, such as the gripper in contact with the 

wall, as shown in figure 21.   

 

 

Figure 21: Stiffness Region example  

 

 For a given system in which there is mechanical contact or coupling, which produces 

a specific mechanical constraint, there are multiply nearby configurations in which 

this coupling also exists and produces approximately the same basic mechanical 

constraint 

 We define a 'Stiffness Region’    as the set of configurations in which a specific 

mechanical coupling exists, and yields the same basic mechanical constraint 

While the gripper of figure remains in contact with the wall, it is subject to a 

planar constraint, which prevents the gripper from moving into the wall. Thus any 

configuration that results in contact with the wall will be part of the same stiffness region 

 . 
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If the gripper moves over the circular hole of the wall, however, the gripper will 

lose contact with the wall, and no-longer subject to the same set of constraints as it was 

before. The previous set of constraints have not disappeared, they are just not active at 

the new configuration of the gripper. The points on the wall and inside the hole can then 

be associated with two distinct stiffness regions, each of which exhibit a different set of 

mechanical constraints.   

The global stiffness of an environment would then be composed not of an infinite 

number of local stiffnesses, but rather a finite number of identifiable stiffness regions.  

Each of these stiffness regions would then be a space, in which the local stiffness 

properties of every configuration in the space share the same form of elastic 

behavior/exhibit the same constraint.  Using this definition, a stiffness region can be 

mathematically expressed as 

   { |   } (37)  

Where C is a mechanical constraint.  

 

V.C Elementary Constraints 

 

The question then becomes, how do we deduce mechanical constraints from local 

stiffness properties? This is done by considering stiffness itself as a type of constraint.  

Consider the principle rotational and translational stiffness axes of a spatial stiffness 

matrix (see section III.A.3). The result is six vectors in space, each with a direction and a 

magnitude. Each of these vectors represents a possible direction of motion (rotational or 
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translational), and its associated eigenvalue represents the magnitude of the 

stiffness/impedance to motion along that direction.   

Accordingly, these principle axes can each be thought of as 1 degree of freedom 

constraints, which impede motion along a given direction. We can call these 1 DoF 

constraints ‘elementary constraints’, and the superposition of these elementary constraints 

is the composite which describes the local stiffness. In fact, we can represent well known 

and theoretical common constraints (See section III.2.a) as the superposition of rigid 

elementary constraints.  

 Any of these theoretical mechanical constraints are simply a set of orthogonal 

elementary constraints, which are binary (rigid or free) and frame invariant (the relation 

between these constraints hold in any reference frame). The principle translational and 

principle rotational stiffness of   provide orthogonal sets of elementary constraints, 

whose magnitudes are numerically quantified and frame invariant.  

Taking advantage of this equivalence, we therefore propose representing 

mechanical constraints, flexible or rigid, by the eigenvalues of the principle axes 

                       of stiffness matrix  , where    represents translational 

stiffness,   represents rotation stiffness, and where each set is ranked in descending order. 

To denote this particular representation, we call the resulting vector of eigenvalues a 

Constraint vector, as shown in equation 38 below.  

                          (38)  
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To illustrate this, consider the rigid 2-D curved surface in Figure 22. There is 

essentially a rigid planar constraint for any local configuration on the curved surface. 

 

 
Figure 22: Frame invariant Constraint s: Normal vectors  on a curved surface  

  

For any configuration along the surface, the constraint can be represented as 

                   , which is true for any perfectly rigid planar constraint, 

regardless of the direction of the normal to the plain.  

 To illustrate the process, consider the gripper in figure 23, below, in what shall be 

called a ‘membrane constraint’. The gripper grasps the thin and flexible membrane, and 

perturbs it along all 6 cartesian directions to evaluate the local stiffness properties.  

 

 
Figure 23: Real Membrane Constraint  
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The resulting local stiffness matrix   is shown below 

    

[
 
 
 
 
 
      1  1   1     
 1   11    11 1  
1     11 1  11   

       1          
 1           1 1 
     11    1   

       1         
 1          11    
       1 1  1    

        1       
   1             
                 ]

 
 
 
 
 

 (39)  

 

To obtain the principle axes, the matrix K is broken down into upper left, upper 

right and lower right sub-matrices. Units are in N/m, N/rad,  Nm/rad respectively.   

 

  [
      1  1   1     
 1   11    11 1  
1     11 1  11   

]      [
       1          
 1           1 1 
     11    1   

]  

     [
        1       

   1             
                 

] 

(40)  

Using the approach developed in Lin [39] , the rotational stiffness matrix    and 

the translational stiffness matrix    are obtained from the sub-matrices, as shown below. 

                                        (41)  

 

   [
              1 
          1 
    1    1   1   

]      [
      1  1   1     
 1   11    11 1  
1     11 1  11   

]    (42)  

       

 To obtain the principle axes, an eigenvalue decomposition is performed on each 

matrix: 

                                 (43)  

 
   [ 

              
                
               

]      [
       1       1
  1             

     1          
]  

(44)  

    11                                   (45)  
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 Where     and    are the resulting eigenvectors (principle axes) and     are the 

magnitudes of the principle rotational and translational stiffnesses respectively. Finally, 

the constraint vector is defined as  

     11                                 (46)  

 As can be seen from the translational eigenvalues, there are two directions in 

which motion is restricted in roughly equal magnitude, whereas there is one direction in 

which motion is not impeded and negligible rotational stiffness in any direction. 

Therefore, it is clear to see that the stiffness matrix does represent a membrane constraint.  

 

V.D Constraint identification and classification 

 

After sufficient navigation of the elastic system, as described in section IV , we 

can assume set of previously visited nodes {        }   , each with a stiffness 

matrix    and an associated constraint vector   . To classify these constraints vectors, we 

can use the k-means algorithm (see section III.B.2) to break the set of nodes (examples) 

into a set of similar classes. The number of classes will be the number of constraints in 

the system, and the set of nodes in each class will be defined as a stiffness region, for that 

class.  

In order to adapt the k-means algorithm to this problem, several small 

augmentations need to be made. Firstly, each constraint vector    contains a set of 

translational stiffnesses, and a set of rotational stiffnesses, each with its own set of units.  

To scale/balance the units, the dimensional weighting factor   can be used (see section 

IV.A.1) to scale rotational stiffnesses, such that                            
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 Furthermore, the k-mean algorithm assumes fixed number of classes, which is 

used as an input to the algorithm. In our application however, the optimal number of 

classes is unknown however, so we make the number of classes   a variable, and define 

the following modified utility function which we wish to minimize: 

     (∑ ∑            ( )               

 

      

)    (47)  

 Here, run the k-mean algorithm for several values of  , and find the optimal 

classification from this set of classifications, and thus the optimal number of classes  . 

Finally, in comparing objects with rigidity of different orders of magnitude, we propose 

using a log scale, in order to properly define clusters between both rigid and compliant 

stiffnesses.  

         (∑ ∑                ( )                     

 

      

)    (48)  

This methodology for constraint identification is validated experimentally in 

section V.F on several test objects within the Puma 560’s workspace.  

 

V.E Constraint exploration algorithm 

 

Given a manipulator, manipulating an object in an unknown flexible environment 

(see section I), the following algorithm with allow the manipulator to develop a constraint 

based map of the elastic properties of the system as it explores it. The algorithm is 

initialized by performing a local perturbation to obtain the local stiffness properties, and 

subsequently defining the first stiffness region. At each iteration, the stiffness is updated 
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and a principle axis decomposition using eq. (40-44) is performed on  . The resulting 

eigenvalues (principle stiffnesses) are stored in the constraint vector for the current node 

for use in cluster classification. If sufficient nodes have been explored, the clustering 

algorithm will define/update the clusters. If a new cluster is defined, a new stiffness 

region is defined for the associated constraint, and is then associated with all nodes 

within the new cluster. The algorithm is shown in Figure 24, below.  

 

 

Figure 24: Constraint Exploration Algorithm, using Clustering and Stiffness Regions  

 

V.F Experimental evaluation 

 

 In order to evaluate the proposed constraint detection/classification methodology, 

two series of experiments were conducted. The first used local stiffness 
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measurements to distinguish/classify the constraints represented by several different 

flexible objects. In the second experiment, the robot used local stiffness 

measurements to identify the constraint(s) and map the resulting stiffness regions 

over the surface of a single flexible object. These experiments were conducted using a 

Puma560 industrial robot arm, an ATI-Gamma 6 axis force sensor, and a solenoid-

powered rapid-prototyped gripper, designed by the author for these experiments.   

V.F.1 Constraint identification of multiple objects 

In order to model several clearly distinct flexible constraints, 3 different mockups 

were created, each involving a flexible object constrained to the environment in a 

different manner, such that manipulation of the object had visually identifiable directions 

of compliance/rigidity. These objects, including a polyurethane flexible hinge, a foam 

sheet and a simple linear spring, are shown in figures 1a, 1b, and 1c below. 

 

 

Figure 25a, 25b:Flexible Hinge,  Foam Sheet experimental mock -ups        
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Figure 25c: Linear Spring Constraint        

  

The robot was then used to grip each object at a point, and perturb it along each 

cartesian dimension to explicitly calculate the 6-dimensional local stiffness matrix. For 

each measurement, the object being manipulated was placed at a different configuration 

(different position and orientation, with respect to the environment), in order to 

emphasize the directional independence of this method. In total, 5 measurements were 

made for each object, with a total of 15 local stiffness measurements.  

 The resulting local stiffness matrices were decomposed into their principle axes, 

from which their constraint vectors (see equation 38) were obtaned. The constraint 

vectors were then fed into a clustering algorithm and automatically categorized into 

clusters, with the results shown (translational constraint vectors) in figure 26 below in 

semi-log scale.  
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Figure 26: Constraint identification using clustering        

 

 The clustering algorithm broke the 15 measurements into 3 clusters (red, blue and 

black), correctly categorizing all 5 measurements corresponding to each object into its 

own cluster.  The blue cluster corresponds to the linear spring, the red to the flexible 

hinge, and the black to the foam sheet. It should be noted that this clustering was obtained 

from the global optimal clustering (global minimum of       ). This is important, as the 

traditional k-means algorithm (see section III.B.2) uses a local optimizer, whereas 

particle filtering (section III.B.3) was used here to find the global minimum.  

 The constraint vectors plotted in Figure 26 are shown below in tabular form, 

along with the average of their associated clusters.  
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Table II: Translational Constraint vectors obtained from local stiffness 

measurements of 3 different objects. All quantities are in units of N/m.  

# Linear Spring Flexible Hinge Foam Membrane 

1 729.32 195.39 137.3 6476.2 1121.5 22.05 776.79 752.96 241.40 

2 656.98 222.50 213.49 4294.5 1151.6 565.44 847.42 548.86 398.12 

3 613.99 163.75 161.37 6101.0 2154.4 142.95 1034.8 906.39 866.94 

4 580.81 259.70 153.62 5689.7 2183.6 109.20 1037.6 860.99 391.49 

5 751.12 233.90 133.76 4428.6 990.13 91.67 864.73 654.62 153.55 

- Average Average Average 

Av 666.44 215.07 159.92 5.39e+3 1.52e+3 186.257 912.28 744.77 410.3 

 

 

V.F.2 Constraint mapping of a Foam membrane  

In the second experiment, the local stiffness was measured at multiple locations 

along the surface of a pink foam sheet, attached to a rigid table by 4 separate clamps 

(shown in Figure 27 below). The nodes were manually distributed and marked, placing 

several nodes near the clamp attachment points where the foam’s stiffness was noticeably 

higher.    

 

 

Figure 27: Foam Membrane Experimental Mockup        
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As with the previous experiment, the resulting local stiffness matrices were 

decomposed into their principle axes, and the associated constraint vectors were then fed 

into the same clustering algorithm, which automatically cateogorized the data into a set of 

clusters, as shown below (Figure 28).  

 

 
Figure 28: Constraint detection using clustering, Foam sheet        

   

Using linear scale clustering algorithm [30] (as opposed to log scale), the 

algorithm identified 2 primary clusters, shown in blue and red. The blue cluster 

corresponds roughly to a membrane constraint, in which translation is impeded in a 

plane, whereas movement along the normal is fairly complaint. The cluster in red, 

however, corresponds to a more homogeneous stiffness, in which no axis in particular is 

negligible. There were two particular nodes in the middle, which were either one of the 

600
800

1000
1200

1400
1600

1800 400
600

800
1000

1200
100

200

300

400

500

600

700

800

900

M
in

o
r 

a
x
is

 s
ti
ff

n
e
s
s
 (

N
/m

)

3 dimensional feature space: Foam bed

Major axis stiffness (N/m)

Mid axis stiffness (N/m)



 

68 

 

two clusters in different non-optimal classifications, and which were assigned their own 

cluster in the 3-cluster classifications, however  

 Using the Cartesian position (all measurements were taken in the same orientation 

    1       ) of each node, and the classification obtained from the clustering 

algorithm, a 3-dimensional constraint map was defined for the foam sheet, and is shown 

below in figure 29. 

 

 

Figure 29: Constraint map, with Stiffness regions, of a Foam sheet       

  

With two clusters identified, the nodes measured were broken into two stiffness 

regions, with red corresponding to higher rigidity, at nodes close to the clamps as 

expected. For comparison, the image of the actual foam bed is shown below in, figure 30 
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Figure 30: Foam Sheet Mock-up      

 

V.G Discussion 

 

The flexible objects used in these experiments were chosen as real examples of 

intuitive known constraints, in order to have a frame of reference for basic evaluation of 

the proposed constraint identification methodology. For this data set, the constraint 

identification clustering algorithm neatly and effectively partitioned the data set into sets 

of well-defined constraints, using only 3-dimensional vectors to describe the constraints.  

While “membrane”, “flexible hinge” and “linear spring” constraints were chosen 

as intuitive theoretical models, there are many instances of these types of constraints in 

practice. Any thin-walled piece of tissue, such as the surface of the bladder, would 

exhibit a membrane constraint. The kidney, which has a series of tube connections along 

a line, creates a flexible hinge constraint. Finally, any organs constrained by single 

tubular connections, such as the appendix, will exhibit a “linear spring” constraint (linear 
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is a misnomer, as biological tissue can act as a spring, but whose properties are highly 

non-linear).  

The flexible objects used varied greatly in scales of stiffness and the same is true 

of tissues within the human body. For a typical set of tissue, however, a rough idea of the 

stiffness is provided in the stress-strain diagram below, obtained from biomechanical 

references [45], [46]: 

 

 
Figure 40: Biomechanical Tissue properties  

  

Where the longitudinal stiffness for a tubular organ, such as the duodenum, would 

be around  
 

   
 for small deformations. With a cross section area corresponding to a 

tube of 1     diameter, and      length, this would correspond to a stiffness of 
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 , which resides on the low side of the stiffness measurements founds in these 

experiments, however it is on the same/similar order of magnitude. Therefore, from the 

preliminary results, it would be safe to conclude that the presented constraint vector 

classification methodology is capable of identifying/differentiating between basic flexible 

constraints, using only local stiffness measurements. More thorough 

evaluation/performance analysis of these methods is left as future work.  
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CHAPTER VI 

 

VI CONCLUSION 

 

In this thesis, Algorithms for blind, safe, autonomous manipulation in unknown 

flexible environments were presented. A solution was proposed, using state-based 

cost/reward functions and force/based constraints/virtual fixtures, and was subsequently 

verified using a custom-fabricated planar mock-up of an elastic environment. Secondly, 

compact representation of global stiffness was presented via the use of stiffness regions 

and constraint maps, and real-time constraint detection/identification/classification was 

achieved using constraint vectors, 6-dimensional frame-invariant vectors derived from 

local stiffness measurements. These methods were evaluated using local stiffness 

measurements of several different flexible objects, each with its own constraint(s). A 

clustering algorithm was able to correctly classify/group together the stiffness 

measurements from 3 different flexible objects, and was furthermore able to define a 

constraint map, highlighting two distinct stiffness regions, over the surface of a 

particular flexible object.   

 Given the reasonable set of objects used in the constraint identification 

experiments, it would be safe to say that constraint vector clustering is at least capable of 

discerning/classifying constraints of basic flexible objects. The primary weakness of 

such a technique would be the situation of varied but smoothly changing stiffness 

properties, in which the constraint vectors would form a large continuous data set, and 

would result in poor cluster classifications. In such a situation, Principle component 
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Analysis might provide a much better framework for organizing/classifying the 

constraints. Using a log scale clustering however, the cluster technique is perfectly 

capable of discerning/identifying hard rigid constraints (bone) free space (air) and 

anything in between.  

The utility of the approaches presented in this Thesis would truly be realized by 

integrating the constraint identification/mapping with the safe-manipulation algorithm. 

The target approach would be to use explored stiffness regions to make non-local 

trajectory optimization, by predicting the force, stiffness and elasticity many steps ahead 

of the local configuration. 

While the approaches presented are blind, they could be enhanced with a-priori 

information. If the clustering classification algorithm is given a set of training data 

(previously obtained experimental data from similar environments), it could be used for 

haptic exploration and localization. The target application would be in searching for a 

constraint, which is known to exist in the workspace, but whose location in the 

workspace is unknown (such as searching for a tumor/cyst on an organ).   

Blind, safe manipulation in flexible environments, used in tandem with real time 

constraint identification/mapping, will allow a robot to simultaneously explore, 

characterize, and manipulate an elastic system safely without a-priori knowledge. This 

approach, if developed further, could eventually enable safe semi-autonomous 

cooperative manipulation of RSAs in applications such as organ retraction and organ 

manipulation, during surgical procedures.  
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VII Appendix A: Code 

 

VII.A Simulation Code:  

 The following includes all the code in the red-triangle simulations used in section 

IV of the thesis. 

 

VII.A.1 Simulation.m 

Purpose:  The main simulation file, starts the planar red triangle simulation   

Associated files: sim2D.m 

Notes: By itself, this code does little to nothing.  It simply calls a set of functions, each 

of which perform a specific macro-task (such as calculating  ̂, or graphing the 

simulation) from the general safe manipulation algorithm.   These functions are methods 

in the sim2D class, which takes care of all the “under the hood” specific code.  

 

clear 
close all 
clc 
%Define Starting and goal configurations 

  
start = [63.3013,  36.5470, 0, 0, 0, pi/2]';   
goal = [100, 100, 0, 0, 0, 1.6]'; 

  
%Create a simulation object 
PP = sim2D(start, goal); 

  
%Set Path Planner Parameters 
PP.alpha = [1/20; .001; 20;  5]; 
PP.controller = [.3, -.3, .05]; 

  
%Misc. variables 
df = 10; %Discretization factor 
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t = 1; 

  
while PP.convergence == 0 

  

     
    %% Evaluate Tasks and Constraints at current configuration 
    %------------------------------------  
    constr = PP.EvaluateConstraint(1); 

    
    if PP.constraint > 0 
        PP.RedFlag; 
        PP.backtrack; 
    end 

     
    task = PP.EvaluateTask(1); 

     
    if task < PP.eps 
        PP.convergence = 1; 
        break 
    end 

     
    %-------------------------------------- 

     

  
   %% Evaluate motion direction 

     
 % Update the node directions every df steps 
 if (floor(PP.k/df) == PP.k/df || PP.k == 1) 

  
 % Markov Model Behavior selection 

  
PP.markov_update; 

  
%Behavior Selection 
    switch PP.markov_state 

         

         
        case 3 %Backtracking  
            p  = PP.dim_weight*(PP.safe_points(:,PP.z-1) - PP.cnfg); 
            p = p/norm(p); 
            PP.backtrack; 

             
        case 2   %Random Walk 

             
            p = zeros(6,1); 

             
            p(1) = rand-.5;       
            p(2) = rand-.5; 
            p(6) = (rand-.5)*PP.alpha(1); 

             
            p = p/norm(p); 

             
            PP.GenerateSafePoint 
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        case 1  %Normal State 

             
             p = PP.deriv; 

              
             PP.GenerateSafePoint 

              
    end 

      

  
   %% Calculate control velocity 

    
       %Calculate movement from current configuration 
    %--------------------------------------------- 
    kd = PP.controller(1); 
    kv = PP.controller(2); 
    ki = PP.controller(3); 

     
    v = PP.v; 
    d = PP.distance; 

     

    
    v = kd*d + ki*PP.intd + kv*v; 
    v = v*1/(norm(constr))^.3; 

     
    if v > 10 
        v = 10; 
    end 

     
    PP.v = v; 
    %---------------------------------------------- 

  
 end 

     
   %% Update, Increment Simulation 

         
    %Graphical output of current configuration 
    PP.graphsim; 

       
        %Increment simulation  
    %----------------------------------------------------- 
            %Calculate the steepest descent direction 

  

             
            %Calculate the next movement step 
            PP.cnfg = PP.cnfg + PP.v*PP.dt*p;   

  
            %Integrate the distance, d 
            d = PP.distance; 
            PP.intd = PP.intd + d*PP.dt;  

             
            M(PP.k) = getframe(1); 
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            %Increment the simulation counter 
            PP.k = PP.k + 1; 

  
   %-----------------------------------------------------         

  
end 

  

    

 

 

VII.A.2 Sim2D.m 

Purpose:  Contains all the data, under-the-hood functions necessary to run the red 

triangle simulation 

Associated files: sim2D.m 

Notes: Don’t read this file first. Each of the functions in Sim2D is specifically 

referring to some point in the simulation.m code.  

classdef sim2D < handle 
    % Creates a sim2D object, which is a simulation of a planar robot 

being 
    %manipulated within a flexible environment. 

     
    % All the parameter data is stored in the object properties, and 

can be 
    % called upon by the class methods 

     
    % The sim2D object replaces the individual simulation .m files 

used in 
    % previous versions 

     

     
    properties (SetAccess=protected) 

         
        %The following set of properties fully define the unknown 
        %parameters of the elastic environment in which the 2d object 

is 
        %being manipulated 

         
        %Defines position of the ground links in 3 dimensional 

vectors 
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        Links = [63.3013, 109.6410, 0; 
                  0,          0,    0; 
                 126.6026,    0,    0]'; 

              
        %Defines the spring constant and free length of the springs      
        kc =[1.39; 1.39; 1.39]; 
        lo =[50; 50; 50]; 
    end 

     

     

     
    properties (SetAccess= public) 

         
        %These define the starting and ending configurations for the 

robot 
        cnfg = [0; 0; 0; 0; 0; 0]; 
        goal   = [10; 10; 0; 0; 0; .5]; 

         
        %This defines the geometry of the robot 
        robot =  23.02*[ cosd(0),  sind(0),   0;  
                    cosd(120), sind(120), 0; 
                    cosd(240), sind(240), 0]'; 

                 
        %A list of the different safe points and red flags currently 

stored 
        %within the simulation 
        safe_points = zeros(6,1); 
        red_flags   = zeros(6,1); 

         

         
        %The dimensional weighting scheme 
        dim_weight = diag([1; 1; 0; 0; 0; 1/23]); 

  

         
        %Controller and task/constraint law parameters, 
        %which determine the scaling of the potential field and the 
        %behavior of the motion planner PID controller, respectively 
        controller = [1.6 -1 1]; 
        alpha = [0, 0, 0, 0]; 

         
        %General Simulation variables 
        dt         = .05;    %Time step 
        eps        = .1;   %Convergence tolerance 
        k = 1;               %Simulation step counter 

         
        constraint = 0;      %Binary constraint value, representing 
        convergence = 0;                     % 'has a constraint been 

violated yet?' 

                              

                              
        %History variables, storing relevent force and position  
        %to memory 
        xi_hist = [0, 0, 0, 0, 0, 0]; 
        We_hist = [0, 0, 0, 0, 0, 0]; 
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        K_hist = zeros(6,6,1); 

   
        %Misc. variables 
        intd = 0; 
        v = 0; 
        z = 0; 
        y = 0; 
        markov_state = 1; 

         
    end 

     
    methods 

         
        function PP = sim2D(start, goal) 
            PP.cnfg = start; 
            PP.goal = goal; 
        end 

         
        function setspringparam(PP,Links, kc, lo) 
            PP.Links = Links; 
            PP.kc = kc; 
            PP.lo = lo; 
        end 

         

         
        function We = Force_Measurement(PP) 

             
            % ----------------- Position of Robot -------------------

------ 
            xi = PP.cnfg; 
            % Defines Rotation matrices based on the euler angles 

specified in th =[thx, thy, thz]'      
                    Rx = [1        0             0; 
                          0 cos(xi(4)) -sin(xi(4));  
                          0 sin(xi(4))  cos(xi(4))]; 

  
                    Ry = [cos(xi(5)) 0  sin(xi(5)); 
                          0          1           0; 
                         -sin(xi(5)) 0  cos(xi(5))]; 

  

  
                    Rz = [cos(xi(6)) -sin(xi(6)) 0; 
                          sin(xi(6)) cos(xi(6))  0; 
                          0           0          1]; 

         
            %Rotate about x,y, then z world frame axes   
               R = Rz*Ry*Rx;    

                
            %Orients the triangle w.r.t. the world frame based on 

input euler angles  
             bi = R*PP.robot; 

                
           %Defines the vertices of the triangles 
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            xii = [bi(:,1) + xi(1:3,1), bi(:,2) + xi(1:3, 1), bi(:,3) 

+ xi(1:3, 1)]; 

  
            %The length vector for each spring 
            li = xii - PP.Links; 

  
            %The normalized length vector for each spring 
            si = [li(:,1)/norm(li(:,1)), li(:,2)/norm(li(:,2)), li(:, 

3)/norm(li(:, 3))]; 

             

             
            %--------------------- Force Calculation ----------------

-------- 

  
            %Defines Jacobian and Force Vectors 
            Jp = [si(:, 1)             , si(:, 2)              , 

si(:, 3)               ;  
                cross(bi(:,1),si(:,1)), cross(bi(:,2),si(:,2)), 

cross(bi(:,3), si(:,3))]; 

  

  

  
            %Calculate tau vector (Spring forces) 
            tau = [PP.kc(1)*(norm(li(:,1)) - PP.lo(1)); 
                   PP.kc(2)*(norm(li(:,2)) - PP.lo(2)); 
                   PP.kc(3)*(norm(li(:,3)) - PP.lo(3))]; 

  

  
            %Calculates the reaction spring wrench     
            We = -Jp*tau; 
        end 

             
        function  constraint = EvaluateConstraint(PP, i) 

             
            %Evaluates the Constraint function based on the desired 

input 
            %constraint law. If i == 1, then the first set of rules 

is used 
            %to define the constraint function, and if i== 2, the 

second 
            %set of rules is used, etc... 

             
            if i ==1 

                 
            % Conservative force constraint 
            %------------------------------------- 
            We = Force_Measurement(PP); 
            We(6,1) = 0; 
            F = norm(PP.dim_weight*We); 

  
             Fcrit = 50; %N 
            constraint_1 = PP.alpha(3)/(Fcrit - F);  
            %----------------------------------------- 
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            % Avoid Red flags constraint 
            %--------------------------------- 

             
            % If there are any red flags 
            if PP.y > 0 
            dist_to_flag(1:PP.y,1) = inf; 
            constraint_2 = 0; 

             

           
            for j = 1:PP.y 
                %Calculate the distance from the current 

configuration to  
                %Each red flag configuration 
                dist_to_flag(j,1) = norm(PP.dim_weight*(PP.cnfg - 

PP.red_flags(:,j))); 
                %Add the potential field for each red flag 

                 
                % Add exception for negligiable distances 
                if dist_to_flag(j,1) < .01          
                constraint_2 = constraint_2 + 10; 
                else 
                constraint_2 = PP.alpha(4)/dist_to_flag(j,1)^.4 + 

constraint_2;  
                end 
            end 

             
            constraint_2 = constraint_2*PP.EvaluateTask(1); 
            % If no red flags, no constraint 

             
            else 

                 
                constraint_2 = 0; 

                 
            end 

  
            %--------------------------------------------------------

----- 
            %Constraint Law 
            constraint = constraint_1 + constraint_2; 

             
            %Defining the binary constraint 
            PP.constraint = (F>Fcrit); 

             
            else 
                constraint = 0; 
            end 
        end 

         
        function task = EvaluateTask(PP, i) 

             
            %Evaluates the task function, which defines the set of 
            %attractive potential fields centered about the goal.  
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            if i==1 
                dv = (PP.dim_weight)*(PP.goal - PP.cnfg); 
                d = norm(dv); 
                task = .5*d^2; 
            end 
        end 

         

         
        function J = J(PP) 

             
            %The function J simply adds the Task function on top of 

the 
            %Constraitn function, to construct the total artificial 
            %potential field 

             
        J = EvaluateTask(PP,1)+ EvaluateConstraint(PP,1); 

         
        end 

         

         

         
        function [p, dJ_dx, K] = deriv(PP) 

             
            %The following function performs a simple routine which 
            %perturbs the robot along each dimension of the 

configuration, 
            %in order to evaluate the derivative of the artificial 
            %potential field. 

             
            dJ_dx = zeros(6,1); 
            p = dJ_dx; 

             

  
            J_current = J(PP); 
            We_current = Force_Measurement(PP); 

             

             
            for i = 1:6                 
            %Move along each dimension of xi         
            dxi = zeros(6,1); 
            delta = .1; 

         
            %Adjust for angular displacements 
            b = norm(PP.robot(:,1)); 
            if i > 3 
                delta = delta/b; 
            end 

             
            dxi(i,1) = delta; 

             

             
            PP.cnfg = PP.cnfg + dxi; 
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            dJ_dx(i,1) = (J(PP) - J_current)/delta; 
            We = Force_Measurement(PP); 

             
            K(:,i) = (We - We_current)/delta; 

             
            PP.cnfg = PP.cnfg - dxi; 
            end 

             
            dJ_dx = PP.dim_weight*dJ_dx; 

             
            p = -dJ_dx/norm(dJ_dx); 
        end 

         
        function v = Position_Controller(PP) 

             
            kd = PP.controller(1); 
            kv = PP.controller(2); 
            ki = PP.controller(3); 
            d = PP.distance(PP); 
            v = PP.v; 

             
            v = kd*d + ki*PP.intd + kv*v; 
            PP.v = v; 

             
        end 

         
        function d = distance(PP) 
            d = norm(PP.dim_weight*(PP.goal-PP.cnfg)); 
        end 

         

  

         
        function graphsim(PP) 

             
          % Graphing function graphs out the environment, triangles, 

etc.. 

             
          % ----------------- Position of Robot ---------------------

---- 
            xi = PP.cnfg; 

  
            % Defines Rotation matrices based on the euler angles 

specified in th =[thx, thy, thz]'      
                    Rx = [1        0             0; 
                          0 cos(xi(4)) -sin(xi(4));  
                          0 sin(xi(4))  cos(xi(4))]; 

  
                    Ry = [cos(xi(5)) 0  sin(xi(5)); 
                          0          1           0; 
                         -sin(xi(5)) 0  cos(xi(5))]; 

  

  
                    Rz = [cos(xi(6)) -sin(xi(6)) 0; 
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                          sin(xi(6)) cos(xi(6))  0; 
                          0           0          1]; 

         
            %Rotate about x,y, then z world frame axes   
               R = Rz*Ry*Rx;    

                
            %Orients the triangle w.r.t. the world frame based on 

input euler angles  
             bi = R*PP.robot; 

                
           %Defines the vertices of the triangles 
            xii = [bi(:,1) + xi(1:3,1), bi(:,2) + xi(1:3, 1), bi(:,3) 

+ xi(1:3, 1)]; 

             

             
           %---------------------------------------------------------

------ 

            

             
           % Defines Rotation matrices based on the euler angles 

specified in th =[thx, thy, thz]'      
                    Rx = [1        0             0; 
                          0 cos(PP.goal(4)) -sin(PP.goal(4));  
                          0 sin(PP.goal(4))  cos(PP.goal(4))]; 

  
                    Ry = [cos(PP.goal(5)) 0  sin(PP.goal(5)); 
                          0          1           0; 
                         -sin(PP.goal(5)) 0  cos(PP.goal(5))]; 

  

  
                    Rz = [cos(PP.goal(6)) -sin(PP.goal(6)) 0; 
                          sin(PP.goal(6)) cos(PP.goal(6))  0; 
                          0           0          1]; 

         
            %Rotate about x,y, then z world frame axes   
               R = Rz*Ry*Rx;    

                
            %Orients the triangle w.r.t. the world frame based on 

input euler angles  
             bi_goal = R*PP.robot; 

                
           %Defines the vertices of the triangles 
            xii_goal = [bi_goal(:,1) + PP.goal(1:3,1), bi_goal(:,2) + 

PP.goal(1:3, 1), bi_goal(:,3) + PP.goal(1:3, 1)]; 

  

             
            figure(1) 
            hold off 
            plot(0, 0) 

  
            hold all 
            plot([xii(1,:) xii(1,1)],[xii(2, :) xii(2,1)], 'r-*') 
            plot([xii_goal(1,:) xii_goal(1,1)],[xii_goal(2, :) 

xii_goal(2,1)], 'b-*') 
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            plot(PP.Links(1, :),PP.Links(2, :), 'sb') 

  
            axis equal 
            plot([PP.Links(1,1) xii(1,1)],[PP.Links(2,1) xii(2, 1)], 

'g') 
            plot([PP.Links(1,2) xii(1,2)],[PP.Links(2,2) xii(2, 2)], 

'g') 
            plot([PP.Links(1,3) xii(1,3)],[PP.Links(2,3) xii(2, 3)], 

'g') 
            xlabel('mm') 
            ylabel('mm') 

  

             
            % Plot Safe Points 

  
            plot(PP.safe_points(1,:), PP.safe_points(2,:), 'b-*'); 

                 
            % Plot Red flags 
                if PP.y > 0 
                plot(PP.red_flags(1, :), PP.red_flags(2, :), 'r*'); 
                end 

   
        end 

  

         
        function GenerateSafePoint(PP) 

             
            %This function plots a new point along the trajectory 

             
             PP.z = PP.z+1;  %Increment the safe point count 
             PP.safe_points(:,PP.z) = PP.cnfg; % Add current config 

as a safe point 

  
        end 

         

         

         
        function backtrack(PP) 
           % This function effectively performs backtracking to the 
           % previous node 

            

            
           % Brute force move to previous node  
            PP.cnfg = PP.safe_points(:, PP.z); 

             

             
           % Delete the last safe point, unless there is only one 

safe 
           % point 
            if ~(PP.z == 1); 
            PP.safe_points(:,PP.z) = [];   % Eliminate from stored 

values 
            PP.z = PP.z-1;                 % Decrement counter 
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            end 
        end 

         

         

         
        function RedFlag(PP) 
        %Define red flags counter     

  

         
        % Do not plant a red flag while backtracking 
        if ~(PP.markov_state == 3) 

         
        % If no red flags 
        if PP.y == 0 

                 
         % Define initial red flag    
        PP.y = PP.y+1; 
        PP.red_flags(:,PP.y) = PP.cnfg; 

         
        else 

          
         % Otherwise, see if any nearby red flags 
         %=========================================== 
         dist_to_red_flags = zeros(PP.y, 1); 

  

        
        for j=1:PP.y 
            dist_to_red_flags(j,1) = norm(PP.dim_weight*(PP.cnfg-

PP.red_flags(:,j))); 
        end 

         

         
        [dist, point_number] = min(dist_to_red_flags); 
        %===================================================== 

         
        % if no red flags within 4 units of current config, define 

new red 
        % flag 
        if (dist > 4) 
        PP.y = PP.y+1; 
        PP.red_flags(:,PP.y) = PP.cnfg; 
        end    

  
            end 

  
        end 

  
        % Set markov state to Backtrack 
        PP.markov_state = 3; 

             
        end 

         
        function K = stiffness(PP, xi) 
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           xi_old = PP.cnfg; 
           PP.cnfg = xi; 
           [p, J, K] = PP.deriv; 
           PP.cnfg = xi_old; 
        end 

         

         
        function new_state = markov_update(PP) 

             
            %Purpose of the function is to update the Markov Chain in 

the 
            %sytem 

             
            %Obtain the current state of the system 
            current_state = PP.markov_state; 

             
            %Obtain random number, to decide new state 
                    p = rand; 

             

            
            %Assign new state based on the current state, random 

number 
            switch current_state 

                 
                % Normal state 
                %------------------------- 
                case 1 
%                      disp(num2str(p))                     
                    % 90% chance of staying in normal state 
                    if p < .9 

                         
                        new_state = 1; 

                         
                    else % 10% chance of moving to random sate 
                        disp('random state') 
                        new_state = 2; 

                         
                    end 

                     

                  
              % Random State 
              %--------------------------- 

                   
                case 2 

                     
                    % 60% chance of staying in random state 
                     if p < .6 

                          
                         new_state = 2; 

                          
                     else % 40 % chance of normal state 

                          
                         new_state = 1; 
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                     end 

                      
               %Backtracking State 
               %------------------------------------       
                case 3 

                     

                     
                    % 60% chance of staying in backtracking state 

                     
                    if p < .6 

                         
                        new_state = 3; 

                         

                         
                    else               % 10% chance of random state 

                                    
                        new_state = 1; 

                         
                    end 

                     
            end 

  
            PP.markov_state = new_state; 

             
        end 

                     

         
    end 

     
end 

  

 

 

 

 

 

 

VII.B Robot Control Code 
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Overview: 

 The Puma560 robot control code, shown below in figure A.1, involves 3 primary 

subsystems: 

 Puma560  

o Sends motor control signals to actual Puma560 robot (via control/Daq 

cards) 

o Recieves potentiometer and encoder readings from Puma motors 

 Calculates Robot’s joint angles 

 PD + Inverse Dynamics 

o Uses computed torque to compensate for robot dynamics 

o PD controller for joint-level position control 

 Trajectory planner 

o Determines desired trajectory in joint space 

 Joint positions, velocities, accelerations 

o Has multiple modes, including cartesian control and position control 

 

 

Figure A.1 Puma560 main control code 

 

VII.B.1 Non-Application-Specific code 
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 Below is a set of Simulink blocks/subsystems which are not specific to the 

applications presented in this thesis, but are rather for general kinematic control of the 

robot.  

 

PD + Inverse Dynamics: 

This code was written by lab member Andrea Bajo, in 2009 

Figure A.2 is a diagram of the PD + Inverse dynamics block.  It has 3 general 

components 

 Determining the appropriate control signal 

 Determining the system dynamics 

 Converting control signal to voltage 
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Figure A.2: PD+ Inverse dynamic block of the Puma 560 control code 

 

 

 

 

Puma560 block 

This code was also written by Andrea Bajo in 2009. Figure A.3 below is the Puma560 

block, which interfaces with the actual robot. It can be broken down into 3 sections: 
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 Motor signals to robot 

 Joint signals from robot 

 Processing Joint signals 

 

Figure A.3: Puma560 Interface subsystem 

Trajectory Planner Block 

The trajectory planner block switches the Puma between several different 

control modes (Cartesian control, Joint Space control,  etc..). The code was 

designed by Sam Bhattacharyya in 2011, with some original sets of code in the 

first two subsystems written by Andrea Bajo and Francesco Senni. The last 

subsystem, Mode 4, contains all code used to implement the algorithms presented 

in the thesis.  
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Figure A.4: Puma trajectory planner  

VII.B.2 Application specific code  

Autonomous manipulation section 

 In the Mode 4 subsystem, there are 3 main components. The first calculates the 

states      from the force sensor, joint positions. The middle section is the Path Planner, 

and it directly implements the autonomous manipulation algorithm, as discussed in this 

thesis. It takes in the system states     , and outputs a task-space twist  . The final 

section converts the task space twist into a desired joint position, velocity and 

acceleration. 
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Figure A.5: Puma Path Planner 

 

Path Planner 

The Path Planner is the primary subsystem, which implements the algorithms/featured 

discussed in the autonomous navigation/stiffness exploration sections of this 

thesis. 

 At first glance, it looks complex, however it can be broken down very easily.  

 The Path planner block acts as a hub for 5 subsystems, each of which represent a 

mode of operation 

o In the same way that the Trajectory planner is a hub for 4 control modes 

 These subsystems reside within a switch, which is controlled by the behavior 

selector block (decides which subsystem should be enabled at the current time 

step) 

 The subsystems are activated in a specific sequence: 1, 2, 3  and finally 4. 

Subsystem 5 is only activated under special circumstances. 

 These subsystems all output a desired end effector twist 

o Default State 

 As soon as the robot switches to Mode 4: autonomous 

manipulation, the Default state is enabled 
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 The default state simply output’s a desired manipulator twist of 0, 

keeping the robot stationary 

o Initialization State 

 This state simple perturbs the robot along each dimension, and 

measures the changes in end effector wrench (to calculate the 

initial K) 

o Autonomous navigation 

 Performs the actual path planning code 

 Is similar to the planar path planning code 

o Telemanipulation state 

 After the robot achieves a given manipulation goal, it switches to 

the telemenipulation state, which is also a  

  

 

Figure A.6: Autonomous navigation Path Planner  
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Environmental Exploration: 

Designed to run concurrentely with the regular code, it had 3 very simple subsystems: 

 Way points 

o Stores the path history, termed here “way points”, as a set of nodes in 7-

dimensional space. 

 Update K 

o Takes care of the K-updates, using the BFGS algorithm presented in this 

thesis 

 Eigenscrew System 

o Does the eigenscrew decomposition to identify principle axes 

 

 

Autonmous navigation code 

The following code is the core of the path planning algorithm, and is similar to the 

code used in the planar robot simulation. It takes in the current pose, wrench, K and set of 

red flags, and determines the output twist. The code to do shown below: 

function [p, e,  convergence, task_curr, constraint_curr] = fcn(zeta, 

w_e, K, zeta_goal, w_cr) 
%#eml 

  

  

3

Red Flags

2

Safe Points

1

K_est

Conf ig

way _conf

red_f lags

saf e_points

Waypoint

W

Way  Conf

K

n

Update K

K

n

Eigenscrew

Enable

2

K_in

1

Config



 

102 

 

% Define Initial Constants 
%------------------------------------------ 
alpha = .043; 

  
Gamma = diag([1, 1, 0, 0, 0, 0, alpha]); 

  
% Dimensionality weighting matrix 
% First three entries are in cartesian coord 
% Last three entries are angular perturbations 
Gamma_six = diag([1, 1, 1, 5, 5, 5]); 

  
%The curent 
eps = .005^2; 

  
% 5mm = theoretical perturbation 
delta = .02; 
%----------------------------------------------------- 

  

  
%Calculate the current J value 
J_curr = task(zeta, zeta_goal, Gamma) + constraint(w_e, w_cr, 

Gamma_six, 0); 
% J_curr = task(zeta, zeta_goal, Gamma); 

  

  
task_curr = task(zeta, zeta_goal, Gamma); 
constraint_curr = constraint(w_e, w_cr, Gamma_six, 0); 

  
if task_curr < eps 
    convergence = 1; 
else 

     
    convergence = 0; 
end 

  

  
dJ_dx = zeros(6,1); 

  

  
for i = [1, 2, 6] 

     

     
%Calculate the hypothetical next move     
%------------------------------------------- 
dxi = zeros(6,1); 
dxi(i,1) =  delta; 
dxi = (Gamma_six)*dxi; 

  

  

  
%Calculate the change in each property 
%------------------------------------------------ 
dw_e = K*dxi;   %Calculate change in wrench 
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dE = w_e.'*dxi;  %Calculate change in elastic energy 
dzeta = proppose(zeta, dxi); %Calculate the change in pose 

  

  
%Calclate the gradient 
dJ_dx(i,1) = (task(dzeta, zeta_goal, Gamma) + constraint(w_e + dw_e, 

w_cr, Gamma_six, dE) - J_curr)/norm(dxi); 
% dJ_dx(i,1) = (task(dzeta, zeta_goal, Gamma) - J_curr)/norm(dxi); 
end 

  

  
p = -dJ_dx/norm(dJ_dx); 

  
p(4:6,1) = p(4:6,1); 

  

  
e = distance(zeta, zeta_goal, Gamma); 

  

  

  

  

  

  

  
end 

  

  

  

  

  
function task = task(zeta, zeta_goal, Gamma) 

  
d = distance(zeta, zeta_goal, Gamma); 

  

  
task = 1/2*d^2; 

  

  

  
end 

  

  
    function d = distance(zeta, zeta_goal, Gamma) 

         

        
       dr = zeta_goal(1:3, 1) - zeta(1:3, 1); 

        
       dq = qmult(zeta_goal(4:7).', qinv(zeta(4:7).')).'; 

        
       dzeta = [dr; dq]; 
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       d = sqrt(dzeta.'*Gamma*dzeta); 
       d = norm(d - .014);  

        

        
    end 

  

  
function constraint  = constraint(w_e, w_cr, Gamma_six, E) 

     
    %Radius of influence 
    roi = .25; %m 

     
    %Calculated weighted wrench 
    w_weighted = sqrt(norm((Gamma_six*w_e))); 

     
    %Calculate the correct wrench 
    if w_cr < w_weighted 
        constraint = 10^6; 
    else 
        constraint = abs(roi/(w_cr - w_weighted)); 
    end 

     
    constraint = constraint + .1*E/w_cr; 

     
end 

     

     
function dzeta = proppose(zeta, dxi) 
%The purpose of this function is to propogate the pose, based on the 

input infinitessimal displacement given by dxi 

  
%Calculate the angle of displacement 
th = norm(dxi(4:6,1)); 

  
if th == 0 
    dq = [1, 0, 0, 0]; 

     
else 
    % Rotational axis 
    o = (dxi(4:6).')/th; 

     
    %Displacement quaternion 
    dq = [cos(th/2), o*sin(th/2)]; 

     
end 

  
% Current quaternion 
qcurr = zeta(4:7)'; 

  
% Propogate the current quaternion, by rotation in world frame 
qprop = qmult(dq, qcurr); 
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rprop = zeta(1:3) + dxi(1:3); 

  
dzeta = [rprop; qprop.']; 

  

  
end 

 

 

VII.C Stiffness Code 

 

VII.C.1 Process_K.m 

Purpose: The point of this code was to calculate the SPSD approximates of K, and to 

then calculate the constraint vectors from those SPSD approximates, using a set of raw 

stiffness matrices K. Each K matrix was saved in a different  .mat file, obtained directly 

from control code.  

Associated files: A set of .mat files, no other code needed to function 

for i = 1:15 

  

     
% Load the .mat files 
load(['Foam_' num2str(i) '.mat']) 

  

     

  
% SPSD Approximate 
%---------------- 
K_i = (-W)*T^-1; 

  
B = (K_i + K_i.')/2; 

  
[Z, L] = eig(B); 

  
H = Z*L*Z.'; 
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K = (B+H)/2; 
%------------------ 

  

  
% Principle Axis Decomposition 
%--------------------------- 
A  = K(1:3, 1:3); 

  
B = K(1:3, 4:6); 

  
D = K(4:6, 4:6); 

  
Kv = A; 

  
Kw = D - B.'*A^-1*B; 
%------------------------- 

  

  
% Eigenvalues 
%----------------------- 
d =  abs(eig(Kv)); 

  
d = sort(d, 'descend'); 

  
r = abs(eig(Kw)); 
r = sort(r, 'descend'); 

  
%Tranlational 
Tr(:, i) = d'; 

  
%Rotational 
Ro(:, i) = r'; 
%--------------------------- 
end 

 

VII.C.2 Particle Filter.m 

 

Purpose: To estimate the optimal classification for a set of constraint vectors 

Associated files: clusterfy.m, CU.m 

 

%  Particle Filter 
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%  The purpose of to classify constraint vectors using clustering, 

which is 
%  optimized via particle filtering 

  
clear 
close all 
clc 

  
% Load the data 
load signatures 
load Locations 

  

  
% Number of classes 
k = 2; 

  
% Number of examples 
E = 15;  

  
% Particle Filter sample size 
n = 100; 

  
% Classification matrix, each row is the classification for a 

particle 
classification  = zeros(n, E); 

  
% Utility vector corresponding to each particle 
utility = zeros(n,1); 

  

  
% Load all examples into static variable 
e = Tr;   % Tr from signatures file 

  
% Number of Filters 
REP = 10; 

  

  
% Initial random classification 
%------------------------------------------------------- 

  
for i = 1:n 

     
    % Generate a set of random classification 

     
    for j = 1:E 
        %For each example, assign a random class 
        classification(i,j) = ceil(rand*k);  
    end 
end 

  
%--------------------------------------------------------------- 
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for reps = 1:REP 

  

     
    for i = 1:n 

     
    % Locally optimize each classification 

     
    [classification(i,:)] = clusterfy(classification(i,:), e); 

      

     
    utility(i,1) = CU(classification(i,:), e); 
%      % Evaluate the utility of each classification 
%      utility(i,1) = CU(classification(i,:), e); 

      

      
    end 

      
     %Randomized elimination 
     %================================================= 

  
      norm_factor = max(utility(:,1)); 

       
      % Probability of elimination 
      pdf = utility(:,1)/norm_factor; 

       
      % Elimination vector 
      elimination_vector = zeros(n,1); 

       
      for i = 1:n 

           
          p = rand; 

           
          if pdf(i,1) > p 

               
              elimination_vector(i,1) = 1; 

               
          end 

           
      end 

  
      % Replace eliminated variables with new random classifications 

       
      for i = 1:n 

           
          if elimination_vector(i,1) 

               
          for j = 1:E 
        %For each example, assign a random class 
        classification(i,j) = ceil(rand*k);  
          end 
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          end 
      end 

       

       
end 

  

  

  
% Graph the results 
figure(1) 
hold on 

  

  
for j = 1:15 
% Graph each node 

  

  
% Decide the color based on it's class 
%------------------------------------------ 
    clss = optimal(1, j); 

     
    switch  clss 

         
        case 1 
        clr = 'b'; 

         
        case 2 

             
         clr = 'r'; 
    end 
%-------------------------------------------- 

  
% Plot 
    spcs = [clr 'o']; 
    plot3(e(1,j), e(2,j), e(3,j), spcs, 'MarkerSize', 5, 'LineWidth', 

4); 
end 

  
grid on 

          

           

  

      

VII.C.3 clusterfy.m 
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Purpose: To locally optimize a set of clusters, designed to be operated with a particle 

filter, with a set of classifications (particles).  

Associated files: Particle_Filter.m 

 

function [classifications, utility] = clusterfy(classification, 

examples ) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 

  

  

  

  
% Number of examples 
E = length(classification(1,:));  

  

  

  
% Number of particles 
n = length(classification(:, 1)); 

  
sse = zeros(n, E); 

  
utility = zeros(n,1); 

  

  
% For each particle 
for i = 1:n 

     

     

     
% Number of classes 
k = max(max(classification(i,:)));  

     
% Class count variable 
clss_cnt = zeros(k,1); 

  
% Average value of each class 
clss_av = zeros(3, k); 

  
% k lists, one for each class 
classes = zeros(k, 15); 

  

  
reor = zeros(k,1); 
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    % Locally optimize each particle 
    for t = 1:1 

  

       

         
%  First, populate the class lists        
%---------------------------------- 

  
        for j = 1:E 

             
        clss = classification(i, j); 

         
        clss_cnt(clss) = clss_cnt(clss) + 1; 

         
        classes(clss, clss_cnt(clss)) = j; 

         
        end 
%-------------------------------------- 

  
% Find the class average 
%----------------------------------------- 
    for clss = 1:k 

         
        %Clear the class average 
        clss_av(:,clss) = 0; 

         
        for j = 1:clss_cnt(clss) 

         
        % the current node n, in class i     
        node = classes(clss, j);     

         
        %Class average 
        clss_av(:,clss) = clss_av(:,clss) + examples(1:3, node); 

         
        end 

  
        clss_av(:, clss) = clss_av(:, clss)/clss_cnt(clss); 

         
    end 

         
 %--------------------------------------------     

     

   
   % Assign each node to new class 
%-------------------------------------- 

     
    for j = 1:15 

   

  
 %For the current node        
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  %Find best fit, for node to class   
  %------------------------------- 
     for clss = 1:k 

          
     v = examples(1:3, j) - clss_av(:,clss); 

      
     reor(clss) = v.'*v; 

   
     end 

      

      
     [y, clss] = min(reor); 

          
 %-------------------------------------     

      

  
 %Re-assign node to class 

  
    classification(i,j) = clss; 

     

     
    end 

     

     
    % Examples improved one step for one particle 

     
    end 

     
    % Examples improved all steps (locally optimized), for one 

particle 

     

     
end 

  
    % Examples locally optimized, for all particles 

     

     

     

     
    classifications = classification; 

     

      

     

     
end 
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VII.C.4  CU.m 

 

Purpose:  To calculate the fitness function for a particular classification of a set of 

examples 

Associated files:  Particle_Filter.m 

 

 

function [utility] = CU(classification, examples ) 

  

  

  

  

  
% Number of examples 
E = length(classification(1,:));  

  

  

  

  
% Number of classes 
k = max(max(classification(1,:)));  

  

  
% Class count variable 
clss_cnt = zeros(k,1); 

  
% Average value of each class 
clss_av = zeros(3, k); 

  
% k lists, one for each class 
classes = zeros(k, 15); 

  
%  First, populate the class lists        
%---------------------------------- 

  
        for j = 1:E 

             
        clss = classification(1, j); 
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        clss_cnt(clss) = clss_cnt(clss) + 1; 

         
        classes(clss, clss_cnt(clss)) = j; 

         
        end 
%-------------------------------------- 

  
% Find the class average 
%----------------------------------------- 
    for clss = 1:k 

         
        %Clear the class average 
        clss_av(:,clss) = 0; 

         
        for j = 1:clss_cnt(clss) 

         
        % the current node n, in class i     
        node = classes(clss, j);     

         
        %Class average 
        clss_av(:,clss) = clss_av(:,clss) + examples(1:3, node); 

         
        end 

  
        clss_av(:, clss) = clss_av(:, clss)/clss_cnt(clss); 

         
    end 
    %--------------------------------------------      

     

     

     
    % Find the sum of squared error 
    %-------------------------------------- 

     
    sse = 0; 

     
    for j= 1:15 

     
        clss =  classification(1,j); 

         
        v = examples(1:3, j) - clss_av(:, clss); 

         
        sse = sse + v.'*v; 

         
    end 

     
    %------------------------------------------ 
    utility = sse; 

     

     

         
end 
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VIII   Appendix B:  Hardware 

 

VIII.A Gripper 

VIII.A.1 Gripper version 1.0 

In order to manipulate objects and evaluate stiffness, some type of gripper needs 

to be mounted on top of the ATI Gamma Force sensor. The image below shows the Pro-

Engineer model for a custom gripper, developed by Sam Bhattacharyya in June 2011, 

including an attachment to the force sensor.  

This gripper is actuated by a large push style solenoid, McMaster Part# 69905K48, 

and the solenoid is housed within the large cylindrical portion of the gripper. The 

solenoid has a stroke of approximately 20mm while assembled within the gripper, and the 

gripper is able to grip down with a force of ~10 N.  

 The gripper is almost entirely manufactured out of ABS, via rapid prototyping. 

The associated files are available at arma.vuse.vanderbilt.edu/mediawiki 

 

Figure A.8: Puma Gripper Pro-E model, V 1.0 
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Electronics setup for gripper + relay  

The solenoid is a simple on/off mechanism that pushes/extends a rod outwards when a 

specified voltage, at high enough current, applied across the solenoid’s leads (polarity 

doesn’t actually matter). The resulting control circuit is actually quite simple, and is 

detailed in the image to the right.  

Below is a table including the parts used in the electronic setup, which were ordered 

from OnlineComponents.com  

 

Part number Description 

1-1393788-6 5V 5A Relay 

2N3392 NPN Transistor 

1.5KE100CA/54 Diode 

RL020S222G Resistor 

 

These components were organized into the following circuit 
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Figure A.9: Puma gripper v 1.0 relay circuit  

VIII.A.2 Gripper 2.0 

Design:  

Due to a lack of gripping force, and limited functionality, the Puma's Gripper 1.0 was 

significantly redesigned. The new design uses a motor and worm-gear drive instead of a 

solenoid as the principle actuation mechanism. This new gripper should theoretically 

output a gripping force of 86 Newtons, and is much more flexible in terms of gripper-

head design. This design was created by Sam Bhattacharyya on October 14, 2011, and 

was intended for the Global Stiffness exploration project, but designed for general 

purpose use.  

Below is an attached Pro-Engineer image of the design. The housing was designed to 

be made using laser cut parts, and to be attached to the ATI-Gamma force sensor, via a 

custom rapid prototyped attachment. 
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Figure A.10: Puma gripper v 2.0 Pro-Engineer model  

Specifications  

Overview  

 Gripping Force: 86.4 N  

 Actuation time: 1.375 s  

 Weight: .8824 kg  

 Center of Grip: 185 mm along Force sensor Z axis  

Force analysis 

Motor specifications for Pololu 29:1 Metal Gear Motor  

 Operating Voltage: 6V  

 Free run speed: 440 rpm  

 Stall Current: 3.3 Amps  

 Stall Torque: .18Nm  

 

Transmission Specification (Worm drive x1)  

 Gear ratio: 60:1  

 Worm Gear SDP-SI Part # A 1B 6MYH08R060  

o Module: .80  

o # of Teeth: 60  

o Gear Ratio: 60:1  

o Pitch Diameter: 48.00 mm  
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 Worm SDP-SI Part # A 1Y 5MYK08RA  

o Module: .8  

o Pitch diameter: 10.4mm  

o Leads: 1  

o Hub Configuration: 5mm bore, with set screw  

 

End effector Specification  

 Lever arm: 75 mm  

 Range of motion: 0 - 65 mm  

 Angular range of motion:0 - 110 degrees (between arms), 0 - 55 degrees per arm  

 Gripper force: 86.4 N  

o Force = [(Lever Arm)^-1]*[(Motor Torque)*(Gear Ratio)*(Gear 

Efficiency)]  

o Force = (.075 m)^-1*(.18 Nm)*(60)*(.6)  

 Actuation time: 1.375 seconds  

o Angular Speed = (Motor Speed)*(Speed Efficiency @ No load)*(Gear 

Ratio)^-1  

o Angular Speed = 40 deg/s = 6.6 rpm = (400 rpm)*(90%)*(60)^-1  

o Actuation time = (Angular range of motion)/(Angular speed)  

Weight:  

The approximate weight of the gripper is .8843 kg, numerically calculated from 

the Pro-Engineer model. With respect to the coordinate frame of the ATI Gamma Force 

sensor, via the specified attachment block, the center of gravity of the Gripper is located 

in the table below:  

     

Coordi

nate 

Distance 

X 0 mm 

Y -

9.003mm 

Z 100.005

mm 
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Parts list  

The table below shows the list of commercial parts which were ordered for this 

particular project.  

Parts  
Quan

tity  
Supplier  Part #  

Price 
Each  

Price 
Total  

Acrylic of Enclosure 6 
Delvie\'s 

Plastics 
250-12x12 5 30  

Potentiometer 2 Digikey 
3382G-1-253GCT-

ND 
2.17 4.34  

Drive Shaft 1 McMaster 6112K37 8.04 8.04  

Spacers 7 McMaster 93295A113 0.99 6.93  

Spacers 6 McMaster 93295A088 0.37 2.22  

Spacer bearing gripper 
head 

4 Mcmaster 92474A026 1.43 5.72  

Gripper Head screws, 2-56 1 McMaster 91772A084  4.27 4.27  

4 mm Pins 1 McMaster 93600A137 7.33 7.33  

M2 x 10 1 McMaster 92005A033 3.23 3.23  

Motor 1 Pololu 1163 19.99 19.99  

5MM Bearing w/ pillow 
block 

2 SDP-SI A 7Z29MXS005 13.21 26.42  

Worm 1 SDP-SI A 1Y 5MYK08RA 26.35 26.35  

Bearing 2 SDP-SI A 7Y 5MF1304 9.23 18.46  

Oldham Couping 1 SDP-SI A 5P15M3315 2.04 2.04  

Oldham clamps 2 SDP-SI A 5A15M331504 9.01 18.02  

Worm Gear 2 SDP-SI 
A 1B 

6MYH08R060 
45.35 90.7  

    

Total 
Cost: 

274.06  
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VIII.B Experimental Setup 

VIII.B.1 Rigid triangle Experiment 

 The main structure of the rigid triangle experiment was created via laser cutting of 

¼’’ acrylic sheets of plastic.  

 

Figure A.11: Rigid triangle fully setup, with spring  

 Two primary pieces were cut out of acrylic: The frame itself (below, left), and the 

rigid triangle (below, right).  

 

Figure A.12: The rigid triangle experiment setup -components 
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 The length of the side of each triangle is     ,  the length of the laser cut frame 

was 1 ftx1ft, with a thickness a border thickness of 1’’.  

The springs used were  simple linear 1kN/m springs, McMaster Part number 

9654K125. The unstreched length of each spring was 31.75mm, and there were two 

springs, hooked in series, between each vertex of the triangle, and it’s fixed location on 

the environment. 

 

 

 

 


